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i

“If you expect science to give all the answers to the wonderful questions about what we are,
where we’re going, what the meaning of the universe is... you could easily become

disillusioned and look for a mystic answer... We’re exploring, trying to find out as much as
we can about the world. People ask: ‘Are you looking for the ultimate physics laws?’ No,
I’m not. I’m just looking to find out more about the world. If it turns out there is an

ultimate law which explains everything, so be it; that would be very nice to discover. If it
turns out it’s like an onion, with millions of layers... then that’s the way it is. But
whatever way it comes out, it’s nature, and she’s going to come out the way she is!

Therefore we shouldn’t pre-decide what it is we’re going to find, except to try to find out
more. If you think that you are going to get an answer to some deep philosophical question,
you may be wrong - it may be that you can’t get an answer to that particular problem by
finding out more about the character of nature. But I don’t look at it like that; my interest

in science is to find out more about the world, and the more I find out, the better.”

Richard P. Feynman





Foreword

The following manuscript reports the Thesis submitted for the degree of PhilosophiæDoc-
tor and it is based on the research activity carried out during four years of PhD at the
International School for Advanced Studies (SISSA) in Trieste, under the supervision of Prof.
Andrea Dal Corso.

The Thesis is conceived to be read at two levels: at a first level, corresponding to Chapters
1-4, we provide the reader with an appropriate background, and we report the main outcomes
of the research work, based on the papers published, listed in the List of Publications. At
a second, more complete level, corresponding to the additional part reported in Appendices
A-I, we give both some pedagogical introductions on particular topics (e.g. the antilinear
operators and the action of symmetry operators on scalar and spinor wave functions), as
well as additional proofs and derivations of some particularly important equations presented
in the Chapters. In this way, our aim is to provide the reader with a work that is as
self-contained as possible.

Trieste, 30th October 2020

Andrea Urru
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Introduction

Quantum Mechanics and Special Relativity are two of the basic theories of modern physics.
The relevance of Quantum Mechanics in condensed matter physics and in chemistry has been
evident since its foundation, the first achievements being the explanation of the electronic
structure of atoms and molecules. Originally, many properties addressed in chemistry and in
condensed matter physics have been accurately studied at the non-relativistic level. However,
relativistic effects become increasingly important as the speed v of a particle (or the average
speed, if we consider a quantum particle) approaches the speed of light, c. In atomic systems,
the ratio v/c (c = 1/α ≈ 137 in atomic units, α being the fine structure constant) becomes
rapidly non-negligible for the electrons in the inner shells of heavy elements, which results
in visible effects also for the valence electrons. In the Bohr model, in a hydrogen-like atom
with nuclear charge Z, the 1s electron has a speed Z (in atomic units), therefore the ratio
v/c ≈ Z/α increases with the atomic number: as a consequence, relativistic effects can be
considered small only for elements up to the first row of transition metals [1].

Two of the most outstanding predictions of the relativistic theory, the spin and the spin-
orbit coupling (SOC), have paved the way for important research fields, such as spintronics
[2,3] and spin-orbitronics [4], which promise important scientific progress. Among the most
remarkable discoveries, that have had a relevant impact for technological applications, we
mention the Rashba effect [5], the spin-Hall effects [6–8], the spin-orbit torque effect [4],
magnetic skyrmions [9], and topological insulators [10–12]. From a more general point of
view, SOC is responsible for the coupling between the lattice and the magnetic structure, and
may lead to magnetocrystalline anisotropy, which is responsible for the existence of a easy
axis for magnetic moments in magnetically ordered systems. Magnetocrystalline anisotropy
can give rise to interesting phenomena, such as the spin-reorientation transition [13].

Since the formulation of Dirac equation in 1928 [14], several attempts have been made
to account for relativistic effects in realistic systems. In 1928, Darwin and Gordon proposed
a solution of the Dirac equation for one-electron atoms [15, 16]. In many-electron atoms,
relativistic effects were initially included using perturbation theory, a widely used approach
that later had been refined into the quasi-relativistic method [17], which consisted in in-
cluding the mass-velocity and Darwin corrections in a non-relativistic Hamiltonian during
the self-consistent steps, whereas the spin-orbit term was added at the end as a first-order
perturbation. Further approaches, devoted to capture the exchange and correlation effects,
include the Dirac-Hartree [18], the Dirac-Slater [19–21], and the Dirac-Fock [22–24] methods.
For a more detailed explanation of the methods mentioned above and for a more extensive
bibliography, we refer the interested reader to Ref. [25].
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2 Introduction

Alongside to the progress on relativistic ab initio methods for atomic and molecular
systems, similar techniques were developed for extended systems. At the beginning, the
relativistic corrections were computed using perturbation theory [26–28]. Few years later,
extensions of the most well known methods, such as the orthogonalized plane-wave [29], the
augmented plane-wave [30], the Korringa-Kohn-Rostocker [31, 32], the pseudo-plane wave
[33], and the Density Functional Theory (DFT) methods, to the relativistic regime were
presented. Few years after the original formulation of DFT by P. Hohenberg, W. Kohn, and
L. J. Sham [34,35], a relativistic extension, which allowed to deal also with magnetic systems,
was proposed and resulted in single-particle Dirac-like self-consistent equations [36]. A very
efficient method to include relativistic effects in DFT calculations is the pseudopotentials
(PPs) technique, where PPs are constructed by solving relativistic DFT equations for atoms.
Essentially, all modern PPs adopt a scalar relativistic (SR) approach, which is based on a
j-average of the solutions of the Dirac equation and introduces a simplification in that it
requires only one radial wave function for each orbital angular momentum l, but neglects spin-
orbit coupling. The fully relativistic (FR) PP approach [37–40], instead provides two different
radial wave functions for each l > 0 (obtained for j = l+ 1/2 and j = l− 1/2, respectively),
and includes spin-orbit splitting effects. Remarkably, in the FR scheme, relativistic effects
are encoded in the PPs, which are then used in a scheme of non-collinear non-relativistic
Kohn-Sham equations, based on two-component spinor wave functions, an approach that
was shown to give the same electronic structure, to order α2, as an all-electron FR four-
component Dirac-like equation [37,40].

In solid state physics, the equilibrium properties of materials are usually related to the
response of the system to an external perturbation. From the microscopic point of view,
and within DFT, the responses of the electronic charge density and of the free energy of the
system, induced by a given external perturbation, allow to predict the macroscopic response
of the material. In the case of small perturbations, meaning that the induced variation of
the free energy is small compared to the free energy itself, it is reasonable to assume that
we are in the so-called linear response regime, where the density response varies linearly
with the perturbation. In this approach, the free energy is expanded up to the second or-
der in the perturbation: in particular, we are interested in the second-order derivatives of
the free energy, also called susceptibilities, which can be linked to the macroscopic material
properties. Some well known examples are, e.g., the electric and the magnetic suscepti-
bilities which correspond to the second-order derivatives with respect to the electric and
magnetic field, respectively. In the Born-Oppenheimer approximation, the free energy at
equilibrium is replaced by the total energy of the electrons, Etot, therefore we are interested
in the second-order derivatives of the electronic total energy. Different approaches based
on the calculation of Etot by first-principles techniques have been developed to cope with
external perturbations in periodic systems. One of the first to be used has been the so-called
direct method [41], which handles the perturbed system on the same footage as the unper-
turbed one: the response is obtained from a direct comparison of the two systems. The
main drawback of such approach is its high computational cost to deal with long-wavelength
perturbations, for which the simulation of large supercells is needed. In 1987 a new scheme,
based on perturbation theory, was proposed to study the linear response of crystals [42]. The
method combines the linear response approach with the computational techniques typical of
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DFT: the response of the system is addressed with perturbation theory and is computed by
iterating the calculation, based on a solid-state rephrasing of the Sternheimer equation for
atomic polarizabilities, up to self-consistency. The approch, known as Density Functional
Perturbation Theory (DFPT) [43], allows to overcome the main limitations of the previously
developed techniques: remarkably, the calculation of the linear response does not require the
use of any supercell. DFPT has been conceived for a generic perturbation: in its current
implementation, it has been applied, e.g., both to static perturbations, such as the lattice
dynamics for ionic displacements [42–49], and homogeneous electric fields [43], as well as to
time-dependent perturbations (using the Liouville-Lanczos approach), applied to the study
of the electron energy loss spectroscopy [50] and the spin fluctuations [51, 52]. With par-
ticular emphasis on its implementation for lattice dynamics, we mention that after its first
formulation for the plane waves norm-conserving PPs scheme [42, 44], generalized to deal
with metallic systems as well [45], DFPT has been extended to the ultrasoft (US) [46, 47]
and, more recently, to the Projector Augmented-Wave [48] schemes. Later, in Ref. [49] it was
shown that spin-orbit effects could be included in DFPT for lattice dynamics by using the
FR PPs approach, already successfully implemented for the DFT ground state calculations.

The work presented in this Thesis is based on the FR PPs technique, as implemented
in the Density Functional Theory (DFT) scheme [34, 35]. We start by providing a method-
ological background on the main theoretical aspects of DFT in Chapter 1, with particular
attention to relativistic effects in condensed matter and to the PPs theory, and we explain
how relativistic effects are addressed in the SR and FR PPs schemes.

A first part of the project has been devoted to study two surfaces where the SOC has
a relevant effect on the electronic structure and can result in Rashba split surface states.
Following the literature of the past decades, where several surfaces of 5d metals, such as Au,
Ir, and Pt, have been studied, showing the presence of Rashba split states, we have studied
the electronic structure of clean Os(0001) and Re(0001) surfaces, focusing our attention on
the characterization of surface states and resonances and on the calculation of their spin
polarization. The main outcomes of this part of the project are presented and discussed in
Chapter 2.

The second part of the project has been oriented towards a methodological development
in the FR DFPT for lattice dynamics. Since its first formulation, DFPT has been always
conceived by assuming time-reversal invariance, which turns out to be helpful in the compu-
tational implementation of the theory. Such assumption yields physically correct results for
time-reversal-invariant, i.e. non-magnetic, systems. Remarkably, also the lattice dynamics
of magnetic systems, if described within the local spin density approximation (LSDA), can
be studied with this assumption, because the LSDA Hamiltonian, being real, is time-reversal
invariant (a net magnetization is obtained by allowing the two spin-polarized (spin-up and
spin-down) channels, to have a different number of electrons). Yet, in the non-collinear
formulation, the Hamiltonian is not time-reversal invariant in presence of magnetization,
therefore the DFPT formulated by assuming time-reversal invariance works only at zero
magnetization. The aim of the project has been to extend the formulation of non-collinear
DFPT to cover the case of time-reversal symmetry breaking, and, in particular, we followed
the recent developments of DFPT for the calculation of magnons [52]. Notably, we consider
the general case of metallic systems: in Chapter 3 we present the more general formulation
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with US PPs presented in 2007 in Ref. [49], we provide the explicit formulation for the mag-
netic case as well, and moreover we extend the symmetrization of the induced densities and
the dynamical matrix to include also the symmetry operations that require the time-reversal
operation. The new formulation has been implemented and tested. The tests were based
on a comparison between the phonon frequencies computed with the new method and those
computed with the frozen phonon (direct) method. The systems studied at this stage are
fcc Ni and a monatomic ferromagnetic Pt nanowire, simulated in the idealized form of an
infinite chain [53]. In addition to the purely quantitative shifts of the phonon frequencies,
the possible lowering of symmetry due to the magnetic order may lift the degeneracy of the
phonon modes along some high-symmetry lines and high-symmetry points in the BZ: fcc Ni
and the Pt nanowire are well suited systems in this respect, being both ferromagnetic and
having both simple enough structures that let the effects to be immediately understandable.
Moreover, magnetocrystalline anisotropy can influence the phonon frequencies, which as a
result may depend on the orientation of the magnetization of the system.

As a further step, the new formulation has been applied to a more realistic system,
MnBi. The choice of this compound has been motivated by the sizable magnetocrystalline
anisotropy, due to the simultaneous presence of a strong magnetism carried by Mn, and the
large SOC brought by Bi, reported by experiments. MnBi is even more interesting because
it undergoes a spin-reorientation transition at T ≈ 90 K, due to a change of the sign of the
magnetocrystalline anisotropy constant, a fact that has been reported since the first exper-
imental studies on this compound. In Chapter 4 we study the lattice dynamics of MnBi
and we compute the contribution to the magnetocrystalline anisotropy energy of the vibra-
tional free energy difference, obtained with the harmonic approximation from the phonon
dispersions corresponding to two phases with different orientation of the magnetization.
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1
Theoretical and methodological

background

The theoretical description of a condensed matter system, made of N electrons and M
nuclei, has its natural starting point in the many-body Schrödinger equation. The presence
of both nuclei and electrons, and the correlation effects between electrons, force us to deal
with the many-body wave function, which becomes rapidly numerically untractable as N
and M increase. As a consequence, several approximations have to be introduced to solve
the quantum-mechanical problem. One of them is the Born-Oppenheimer approximation,
which separates the nuclear and electronic degrees of freedom. A complete description of
such an approximation is beyond the scope of this work, hence we will revise here only
its fundamental aspects. Once the nuclear and electronic degrees of freedom have been
decoupled, the electronic problem has to be solved. Correlation effects prevent the possibility
to further separate the electronic degrees of freedom, leaving a many-body problem whose
complexity grows with increasing number of electrons. To make the electronic problem
solvable from a computational point of view is the aim of ab initio methods, such as Density
Functional Theory (DFT), whose basic features will be briefly discussed below.

In this chapter we start mentioning the Born-Oppenheimer approximation, then we will
present the fundamental aspects of DFT (in the collinear and non-collinear formalism) and
we will discuss also the solution of the Kohn-Sham equations via plane waves. Finally we will
focus on the description of relativistic effects, such as the spin-orbit coupling, showing how
they can be included in the DFT framework via the pseudopotential theory. In particular,
we will focus on the fully relativistic ultrasoft pseudopotentials.

5



6 Theoretical and methodological background

1.1 The Born-Oppenheimer approximation
A quantum-mechanical system made up of M nuclei and N electrons can be described by
the Schrödinger equation:

[TI + Te + VIe + Vee + VII] Φ(R1, . . . ,RM , r1, . . . , rN) = E Φ(R1, . . . ,RM , r1, . . . , rN), (1.1)

where TI (Te) is the ionic (electronic) kinetic energy, whereas Vee, VIe, and VIe are the electron-
electron, ion-electron, and ion-ion interaction energy operators, and read:

Vee =
1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
, (1.2)

VIe = −
M∑
I=1

N∑
i=1

ZI
|RI − ri|

, (1.3)

VII =
1

2

M∑
I,J=1
I 6=J

ZI ZJ
|RI −RJ |

. (1.4)

Φ(R1, . . . ,RM , r1, . . . , rN) in Eq. (1.1) is the many-body wave function, where RI , I =
1, . . . ,M (ri, i = 1, . . . , N) are the ionic (electronic) spatial coordinates. In order to simplify
the problem, the solution may be written using the variables separation technique:

Φ(R1, . . . ,RM , r1, . . . , rN) =
∑
j

Fj(R1, . . . ,RM) Ψj(R1, . . . ,RM , r1, . . . , rN), (1.5)

where {Ψj} is a complete basis set. The expansion given by Eq. (1.5) can lead to a com-
plete separation of the nuclear and electronic degrees of freedom in the extreme approxi-
mation of fixed nuclei. A different approximation, which preserves the complete separation
of variables, is the Born-Oppenheimer (BO) approximation. The nuclei are not consid-
ered fixed, but being much more massive than electrons, they are slower, so one can ne-
glect the gradient of the electronic wave function with respect to the nuclear coordinates
(∇Ri

Ψj). As a consequence, the problem can be completely separated into two equations,
one for the nuclear wave function Fj(R1, . . . ,RM), the other for the electronic wave func-
tion Ψj({R1, . . . ,RM}, r1, . . . , rN), which depends parametrically on the nuclear coordinates,
while the electronic total energy represents the potential energy surface for the nuclei.

1.2 The electronic problem
Following the BO approximation we can write the electronic problem in the following way:

H [{R}] Ψ ({R}, r1, r2, . . . , rN) = EΨ ({R}, r1, r2, . . . , rN) , (1.6)

where Ψ ({R}, r1, r2, . . . , rN) is the many-body wave function. The Hamiltonian H [{R}],
where the nuclear coordinates {R} enter as simple parameters, reads as (we use Hartree
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atomic units):

H [{R}] =
N∑
i=1

−1

2
∇2
i +

1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
−

M∑
I=1

N∑
i=1

ZI
|RI − ri|

+
1

2

M∑
I,J=1
I 6=J

ZI ZJ
|RI −RJ |

, (1.7)

where ZI is the charge of the I-th nucleus. The ion-ion interaction energy does not depend
on the electronic coordinates: its contribution to the total electronic energy is a constant
(once {R} are given), hence it can be added to the total energy after the solution of the
electronic problem.

From the many-body wave function a physical quantity of interest, the electronic density,
can be computed:

n(r) = N

∫
d3r2 . . .

∫
d3rN |Ψ ({R}, r, r2, . . . , rN) |2. (1.8)

n(r) plays a central role in the simplification of the many-body problem carried out by
theoretical approaches such as the DFT, briefly described below.

1.2.1 The total energy functional

Let us consider a set of N interacting electrons, described by the Hamiltonian (1.7). We
write H [{R}] in the following compact form:

H = T + U + vext, (1.9)

where T , U , and vext are the kinetic energy, electron-electron interaction energy, and external
potential energy operators, respectively. In particular, the latter corresponds to the electron-
ion interaction energy (third term of Eq. (1.7)) and we can write:

vext(r) =
N∑
i=1

Vext(ri), (1.10)

where

Vext(ri) = −
M∑
I=1

ZI
|RI − ri|

. (1.11)

The total energy can be calculated as the expectation value of the Hamiltonian on the
ground state Ψ ({R}, r1, r2, . . . , rN); given the expression of the electronic density, it reads:

Etot = 〈Ψ|T + U |Ψ〉+

∫
d3r Vext(r)n(r). (1.12)

In 1964 P. Hohenberg and W. Kohn [34] proved that, if an N -electrons system is described
by the Hamiltonian (1.7), then the following, Hohenberg-Kohn (HK) theorems, hold:
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1. Vext(r) is, up to a constant, a unique functional of the electronic density n(r). Since
Vext fixes H, it follows that the total energy itself is a unique functional of n(r), and it
is written as:

Etot[n(r)] = F [n(r)] +

∫
d3r Vext(r)n(r). (1.13)

Here, the contribution given by Vext is system-dependent. Conversely, F [n(r)] (corre-
sponding to the expectation value of T + U) is a universal functional, valid for any
number of particles and any external potential.

2. Once the external potential Vext(r) is given, the total energy functional has a minimum
at the ground state density n0(r).

1.2.2 The Kohn-Sham formulation

The HK theorems do not provide an expression for the universal functional F [n(r)]. In 1965
a further, crucial simplification of the theoretical scheme, currently found in the implemen-
tation of DFT in electronic structure codes, was achieved. W. Kohn and L. J. Sham [35],
proposed to introduce a non-interacting electron gas with the same ground state density as
the interacting system and to compute a part of the total energy using such auxiliary system.
They wrote the total energy functional in the following way:

Etot[n(r)] = Ts[{ψi}] + EH[n(r)] + Exc[n(r)] + Eext[n(r)]. (1.14)

n(r) is the electronic density and can be expressed in terms of the one-particle wave functions:

n(r) =
∑
i

fi 〈ψi|r〉 〈r|ψi〉 , (1.15)

where the sum is performed over all the states and fi is the occupation number (1 or 0 if the
state |ψi〉 is occupied or empty, respectively). Therefore, the complete total energy functional
can be expressed, in the Kohn-Sham framework, as a functional of |ψi〉. In Eq. (1.14), Ts[ψi]
is the kinetic energy of the non-interacting electron gas. It is an implict functional of n(r),
and an explicit functional of the one-particle orbitals |ψi〉:

Ts[{ψi}] =
∑
i

fi

〈
ψi

∣∣∣∣− 1

2
∇2

∣∣∣∣ψi〉. (1.16)

EH[n(r)] is the Hartree energy functional, given by:

EH[n(r)] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
, (1.17)

Eext is the expectation value of Vext, and Exc[n(r)] is the so-called exchange-correlation energy
functional : it is the difference between the total energy of the interacting system and the
terms explicitly written above for the non-interacting system, Ts, EH, and Eext.

Since 〈ψi|ψj〉 = δij, the second HK theorem can be recast into the following constrained
minimization condition using the Lagrange multipliers technique:

δ

δψ∗i (r)
(Etot[n(r)]− εi 〈ψi|ψi〉) = 0, (1.18)
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where δ identifies the functional derivative. Eq. (1.18) leads to a set of one-particle
Schrödinger equations, known as Kohn-Sham (KS) equations, whose solutions are the wave
functions |ψi〉: [

−1

2
∇2 + VKS

]
|ψi〉 = εi |ψi〉 . (1.19)

In particular, the KS potential VKS is defined as:

VKS(r) = VH(r) + Vxc(r) + Vext(r), (1.20)

where:

VH(r) =

∫
d3r′

n(r′)

|r− r′|
, (1.21)

Vxc(r) =
δExc

δn(r)
. (1.22)

1.2.3 The exchange-correlation energy functional

DFT is a formally exact theory, but it does not provide any analytic expression for Exc.
However, in their work Kohn and Sham proved that if n(r) is sufficiently slowly-varying,
then Exc[n(r)] can be written as:

Exc[n(r)] =

∫
d3r n(r) εxc(n(r)), (1.23)

where εxc(n(r)) is the exchange-correlation energy of a homogeneous electron gas with density
n(r). Over time, several approximations of Exc have been proposed. One of the simplest
and most widely used ones is the Local Density Approximation (LDA), where Exc is written
in the following way:

ELDA
xc [n(r)] =

∫
d3r n(r) εhomxc (n(r)). (1.24)

εhomxc (n(r)) is the exchange-correlation energy of a homogeneous gas of interacting electrons
with uniform charge density n, and is evaluated at each point r with the local charge density
of the inhomogeneous system, n(r) . In the 80s, the value of εhomxc (n) has been computed for
some values of the density n with Monte Carlo techniques [54]. Later, further theoretical
works proposed interpolation recipes for εhomxc (n(r)) [55–57].

LDA is, in principle, appropriate to describe systems with a slowly-varying electron
density. In practice, it turns to be a good choice for a rather wide variety of materials and it
has successfully predicted several materials properties [58]. However, a well known drawback
of LDA is its tendency to overestimate the binding energies. In extended solids, this leads to
an underestimation of the lattice parameters and, similarly, to an overestimation of cohesive
energies. Phonon frequencies and elastic moduli are also often overestimated. A first attempt
to correct the overbinding issue has been made with the Generalized Gradient Approximation
(GGA), where εxc depends on the local density n(r) and on its gradient ∇n(r):

EGGA
xc [n(r)] =

∫
d3r n(r) εGGA

xc (n(r),∇n(r)). (1.25)
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Several expressions for εGGA
xc (n(r),∇n(r)) have been proposed in literature [59–65]: nowa-

days, one of the most widely used parametrizations of the GGA functional is the one pro-
posed by Perdew, Burke, and Ernzerhof, known as PBE [65]. GGA has been proved to
perform generally better than LDA, especially in atomic and molecular systems, where the
prediction of ionization energies, electron affinities, and atomization energies becomes more
accurate [64]. In solids, the success of GGA is more controversial: while, in general, the
estimation of lattice constants is improved with respect to LDA, GGA often overcorrects the
overbinding typical of LDA and results in an overestimation of the lattice constants. More
recently, a corrected PBE functional, known as PBEsol [66], has been developed to improve
the description of exchange in solids, which as a result provides a better agreement with
experiments for equilibrium properties of densely packed solids and their surfaces.

1.2.4 The self-consistent field method

The HK theorems imply that the total energy is a functional of the electronic charge density,
n(r). In the KS formulation, given in Eqs. (1.19)-(1.22), the KS potential is a functional
of n(r) itself: since n(r) is, in turn, computed from the KS orbitals, it follows that the KS
hamiltonian depends on its eigenfunctions. From a practical point of view, it is possible
to deal with such a loop by using an iterative procedure known as Self-Consistent Field
method (SCF): an initial guess for the charge density, n(0)

in (r) (computed using randomized
atomic wave functions), is used to compute the KS potential. By diagonalizing HKS, the
set of single-particle orbitals {|ψi〉} and, in turn, a new estimation of the charge density,
n

(0)
out(r), are obtained. A new trial density n(1)

in (r) is obtained from a linear combination of
the densities n(0)

in (r) and n
(0)
out(r) and is used to recompute VKS: HKS is then diagonalized

to get a new estimate of the density, n(1)
out(r). The iterative procedure described is repeated

until the absolute difference between two consecutive solutions, which can be defined e.g. as∫
d3r |n(j)

out(r)− n(j)
in (r)|2, (1.26)

where j labels the iteration, is lower than a given threshold.

1.3 Spin density functional theory
So far, the wave functions adopted in the DFT approach have been considered as scalar
quantities. In order to include the interaction with an external magnetic field, or to deal
with magnetic systems, it is necessary to include the spin variables, which leads to the
so-called spin density functional theory.

1.3.1 Local spin density approximation

The most immediate way to include the spin variables consists into introducing two different
sets of single-particle orbitals, |ψσi 〉, with σ = {↑, ↓} being the spin variable: ↑ and ↓ identify
two opposite orientations along an arbitrary quantization axis, and are usually referred to as
spin up and spin down channels. The two channels may have different occupation numbers,
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f ↑i and f ↓i , in such a way that if the number of occupied states in the two channels is different,
the system has a non-zero net magnetization. The charge density and the magnitude of the
magnetization density 1 are written in terms of the two sets of single-particle wave functions
as:

n(r) = n↑(r) + n↓(r), (1.27)
m(r) = µB(n↑(r)− n↓(r)), (1.28)

where µB is the Bohr magneton, and:

n↑(r) =
∑
i

f ↑i 〈ψ
↑
i |r〉 〈r|ψ

↑
i 〉 , (1.29)

n↓(r) =
∑
i

f ↓i 〈ψ
↓
i |r〉 〈r|ψ

↓
i 〉 . (1.30)

The wave functions |ψ↑i 〉 and |ψ
↓
i 〉 are determined with a generalized KS scheme. In particular,

in the LDA scheme, the exchange-correlation energy Exc is written as a functional of n↑(r)
and n↓(r):

Exc[n
↑(r), n↓(r)] =

∫
d3r n(r) εhomxc (n↑(r), n↓(r)). (1.31)

In this scheme, a different set of KS equations is provided for each of the two sets of wave
functions: [

−1

2
∇2 + VH + V ↑xc + Vext

]
|ψ↑i 〉 = ε↑i |ψ

↑
i 〉 , (1.32)[

−1

2
∇2 + VH + V ↓xc + Vext

]
|ψ↓i 〉 = ε↓i |ψ

↓
i 〉 , (1.33)

where the exchange-correlation potentials for the two spin channels are defined as:

V ↑xc(r) =
δExc

δn↑(r)
, (1.34)

V ↓xc(r) =
δExc

δn↓(r)
. (1.35)

1.3.2 Non-collinear spin density functional theory

A more general formulation that provides a magnetization density field that, at any point in
space, can point in different directions, is the non-collinear spin density functional theory.
In this framework, the one-particle wave functions are described by the spinors:(

|ψ↑i 〉
|ψ↓i 〉

)
. (1.36)

1In this approach, since the wave functions are considered as scalar quantities, it is not possible to define
a magnetization density as a vector field, only its magnitude is accessible.
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If their components are indicated with the short-hand notation |ψσi 〉, the 2× 2 spin density
matrix is defined as:

nσσ
′
(r) =

∑
i

fi 〈ψσi |r〉 〈r|ψσ
′

i 〉 . (1.37)

The density and the magnetization density are then defined by multiplying the spin density
matrix with the identity matrix or the Pauli matrices σα, respectively:

n(r) =
∑
σ

nσσ(r), (1.38)

mα(r) = µB
∑
σσ′

nσσ
′
(r)σσσ

′

α , (1.39)

where α indicates the cartesian component.
The total energy functional can be decomposed in a similar way to what described in the

previous section:

Etot[{ψσi }] = Ts[{ψσi }] + EH[n(r)] + Exc[n
σσ′(r)] + Eext[n

σσ′(r)], (1.40)

where the external energy functional is written as:

Eext[n
σσ′(r)] =

∑
σσ′

∫
d3r V σσ′

ext (r)nσσ
′
(r), (1.41)

whereas the Hartree energy is expressed as in Eq. (1.17), and the exchange-correlation energy
is tipically written in terms of the density and magnetization density fields:

Exc[n
σσ′(r)] = Exc[n(r), |m(r)|]. (1.42)

Similarly to the formulation for scalar wave functions, the total energy has been written
using an auxiliary system of N non-interacting spin-1/2 particles, hence a set of N equations
for single-particle orbitals can be derived using the KS scheme described above. The KS
equations in the non-collinear formulation are then:∑

σ′

[
−1

2
∇2 δσσ

′
+ V σσ′

ext + (VH + Vxc) δ
σσ′ − µB

3∑
α=1

Bxc,α σ
σσ′

α

]
|ψσ′i 〉 = εi |ψσi 〉 , (1.43)

where Bxc(r) is a three-component vector field called exchange-correlation magnetic field
and is defined as:

Bxc,α(r) = − δExc

δmα(r)
. (1.44)

Eq. (1.44) can be specialized for the LDA and GGA schemes for the exchange and correlation
functional, to get:

BLDA
xc,α (r) = −n(r)

∂εxc
∂|m(r)|

mα

|m(r)|
, (1.45)

BGGA
xc,α (r) = −n(r)

[
∂εxc

∂|m(r)|
− ∇ · ∂εxc

∂∇|m(r)|

]
mα

|m(r)|
. (1.46)

whence it follows that Bxc ‖m at any point in space.
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Collinear formulation

A simplified formulation is the collinear spin density functional theory, where the wave
functions are written as: (

|ψ↑i 〉
0

)
,

(
0

|ψ↓i 〉

)
. (1.47)

As a consequence, the spin density defined in Eq. (1.37) is diagonal:

nσσ
′
(r) =

(
n↑↑(r) 0

0 n↓↓(r)

)
, (1.48)

therefore the density and the magnetization density are expressed as:

n(r) = n↑↑(r) + n↓↓(r), (1.49)

m(r) =

 0
0

µB(n↑↑(r)− n↓↓(r))

 . (1.50)

It follows that m(r) always points along a given quantization axis, uniform in space, hence
only its magnitude is physically relevant, which is at some extent similar to what we discussed
above for the Local Spin Density Approximation (LSDA). As a result, all the effects related
to the orientation of the magnetization, such as the magnetic anisotropy effects, are not
accounted for in the collinear framework.

The total energy, external energy, and exchange-correlation energy functionals can be
expressed as in Eqs. (1.40), (1.41), and (1.42) [67]. Since Bxc ‖ m, we can write Bxc =
(0, 0, Bxc,z), and hence the Kohn-Sham equations in the collinear formulation are:[

−1

2
∇2 + Vext + VH + Vxc − µBBxc,z

]
|ψ↑i 〉 = ε↑i |ψ

↑
i 〉 , (1.51)[

−1

2
∇2 + Vext + VH + Vxc + µBBxc,z

]
|ψ↓i 〉 = ε↓i |ψ

↓
i 〉 . (1.52)

The two equations allow to separately determine |ψ↑i 〉 and |ψ
↓
i 〉, but cannot be regarded as

completely decoupled: they are implicitly coupled through the Hartree and exchange and
correlation terms, which need both |ψ↑i 〉 and |ψ

↓
i 〉 to be computed. As a consequence, the

self-consistent field approach must be carried out by solving them together. As a side note,
we remark that comparing the collinear and the LSDA formulations, V ↑xc and V ↓xc of the LSDA
approach correspond to Vxc − µBBxc,z and Vxc + µBBxc,z, respectively.

1.4 Periodic solids and plane waves
In this Thesis we will focus mainly on crystalline solids. A crystalline solid is a periodic,
extended system, characterized by the infinite repetition in space of a constituent unit, called
primitive cell. A solid can be described, from a mathematical point of view, by a set of points,
named Bravais lattice, with coordinates given by:

Rµ = n1 a1 + n2 a2 + n3 a3, (1.53)
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where the index µ labels the primitive cell, n1, n2, and n3 are integer numbers, while a1, a2,
and a3 are three linearly independent vectors which identify the primitive cell and are called
primitive lattice vectors. The volume of the primitive cell can be computed directly from the
primitive lattice vectors as:

Ω = a1 · (a2 × a3). (1.54)

In order to identify the position of all the atoms of a solid, we introduce an additional set
of vectors ds, s = 1, . . . , Nat (Nat ≥ 1 identifies the number of atoms in the primitive cell):
ds specifies the position of the nucleus of the s-th atom, of atomic species γ(s), with respect
to the origin of the primitive cell, therefore the positions of the atomic nuclei in space are
given by Rµ + ds.

The potential Vext, generated by the nuclear charges, has the same periodicity as the
Bravais lattice,

Vext(r + Rµ) = Vext(r). (1.55)

As a consequence, the electronic charge density n(r) and, in turn, the KS potential VKS are
invariant with respect to a translation of a direct lattice vector Rµ:

n(r + Rµ) = n(r), (1.56)
VKS(r + Rµ) = VKS(r), (1.57)

therefore also the whole KS Hamiltonian is lattice-periodic, and we can apply Bloch’s theorem
to write the single-particle wave functions in the following way:

ψkv(r) = eı̇k·r ukv(r), (1.58)

where ukv is a lattice-periodic function. k is a three-dimensional vector, defined in the
reciprocal space and it labels the wave functions ψkv(r): the specific way adopted to describe
the system, usually represented by a given boundary condition on the wave functions, imposes
constraints that determine a set of allowed wave vectors. In solid state physics, we usually
adopt the so-called Born-von Kármán Periodic Boundary Conditions (PBCs): the solid is
modeled as an extended system made up of Nj unit cells along the direction aj (j = 1, 2, 3)
2 and the following conditions are imposed on the wave functions:

ψkv(r +Nj aj) = ψkv(r). (1.59)

Given Bloch’s theorem, PBCs imply that:

eı̇Nj k·aj = 1, (1.60)

hence, after introducing the vectors bj such that ai · bj = 2π δij, the allowed wave vectors
are expressed as:

k =
m1

N1

b1 +
m2

N2

b2 +
m3

N3

b3, (1.61)

where mj are integers such that 0 ≤ mj < Nj.
2So, overall the system is made up of N = N1N2N3 unit cells and has a volume V = N Ω
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In order to solve the KS equations, it is useful to expand the wave functions on a given
basis set. One of the most widely used is the Plane Waves (PWs) basis set: PWs are indeed
an orthogonal basis by construction and represent the most natural choice while dealing
with crystalline solids. The translational invariance of the Bravais lattice imposes further
constraints on the wave vectors that enter in the expansion of a lattice-periodic function in
the PWs basis set. Indeed, PWs eı̇k·r are lattice-periodic only for a given set of wave vectors
G, called reciprocal lattice vectors and defined by the condition eı̇G·Rµ = 1. The G vectors
form a lattice in the reciprocal space, its primitive vectors being b1, b2, and b3 introduced
above. The Wigner-Seitz primitive cell of the reciprocal lattice is called Brillouin Zone (BZ):
all the wave vectors k allowed in PBCs can be refolded into it and, as a consequence, a band
index v needs to be introduced to label the wave functions, ψkv(r).

The periodic part of the wave function can be expanded in PWs, to get:

ψkv(r) =
1√
V

∑
G

ck+G v e
ı̇(k+G)·r, (1.62)

where V is the volume of the solid. If we substitute ψkv(r) given by Eq. (1.62) into Eq.
(1.19), we obtain the following expression for the KS equations in reciprocal space:∑

G′

[
1

2
|k + G|2 δGG′ + VKS(G−G′)

]
ck+G′ v = εkv ck+G v, (1.63)

where VKS(G − G′) (VKS = VH + Vxc + Vext) is the matrix elements of the KS potential
between two PWs with wave vectors k + G and k + G′, hence it corresponds to the G−G′

Fourier component of the KS potential defined in real space:

VKS(G−G′) =
1

Ω

∫
Ω

d3r e−ı̇(k+G)·r VKS(r) eı̇(k+G′)·r

=
1

Ω

∫
Ω

d3r e−ı̇(G−G
′)·r VKS(r).

(1.64)

The charge density can be written in terms of the single-particle wave functions (Eq. (1.15))
and, following the expansion in PWs introduced above, it reads:

n(r) =
1

V

∑
kv

∑
GG′

fkv c
∗
k+G′ v ck+G v e

ı̇(G−G′)·r, (1.65)

or, equivalently:
n(r) =

∑
G

n(G) eı̇G·r. (1.66)

The PWs expansion in Eq. (1.62) is formally exact, but it requires an infinite number of
PWs. Clearly, in order for such an approach to be computationally affordable, the number
of basis elements has to be finite: in electronic structure codes, this is usually achieved by
considering only the PWs with G vectors such that:

1

2
|k + G|2 < Ecut, (1.67)
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where Ecut is a kinetic energy cut-off that is chosen accordingly to the desired accuracy on
the wave functions, which naturally affects the accuracy of computed quantities such as,
e.g., the ground state energy and the forces. The representation of the wave functions with
a truncated basis set implies that also the charge density is computed with a limited number
of PWs. By comparing Eqs. (1.65) and (1.66) it follows that the kinetic energy cut-off for
the charge density is 4 times larger than the one for the wave functions, namely:

1

2
|G|2 < 4Ecut. (1.68)

1.5 Ionic forces: the Hellmann-Feynman theorem
In solid state physics we often are interested in equilibrium properties of solids. Ionic forces
are important quantities in this respect, since their calculation, together with an appropriate
minimization algorithm, allow to get the equilibrium structure of the solid. In the BO
approximation, the ionic forces f are computed as the derivative of the total energy of the
electrons with respect to the ionic displacements u, namely:

fµsα = − dEtot

duµsα
. (1.69)

The total derivative of the total energy can be computed by exploiting the Hellmann-
Feynman (HF) theorem [68, 69]. If we consider the total energy Etot = Etot,λ[{ψi}], written
in the KS DFT formalism as a functional of the single-particle orbitals |ψi〉, and dependent
on the parameter λ, its total derivative, computed with the chain rule, reads:

dEtot

dλ
=
∂Etot

∂λ
+
∑
i

∫
d3r

(
δEtot

δψ∗i (r)

dψ∗i (r)

dλ
+

δEtot

δψi(r)

dψi(r)

dλ

)
=
∂Etot

∂λ
+
∑
i

εi

∫
d3r

(
dψ∗i (r)

dλ
ψi(r) + ψ∗i (r)

dψi(r)

dλ

)
=
∂Etot

∂λ
+
∑
i

εi
d

dλ
〈ψi|ψi〉

=
∂Etot

∂λ
,

(1.70)

where the second line follows from Eq. (1.18). The partial derivative of Etot is then further
expressed using the HF theorem, therefore:

dEtot

dλ
=
∂Etot

∂λ

=
∑
i

〈
ψi

∣∣∣∣∂VKS

∂λ

∣∣∣∣ψi〉. (1.71)

1.6 The smearing technique
DFT is a ground state theory, because the second HK theorem derives from the variational
principle of quantum mechanics, which is valid only for the ground state. As a consequence,



1.6. The smearing technique 17

the occupation numbers of the states |ψkv〉 have no thermal broadening, therefore fkv is 1
or 0. Equivalently, if we identify with εF the Fermi energy, fkv can be expressed as a Fermi-
Dirac function at zero temperature, θ(εF− εkv). Being θ(εF− εkv) discontinous, convergence
issues on the BZ summations may show up. This is especially true for metals, where the
presence of a Fermi surface would require a very dense k-points mesh in order to converge
the BZ summations. Moreover, due to the discontinuity of θ(εF− εkv), in metals one or more
states with energy close to εF that are occupied at a given iteration of the self-consistent loop,
may be empty at the next iteration (or viceversa): as a consequence, the charge density can
be subject to evident variations during the SCF iterative procedure, leading to convergence
issues.

A method widely used to overcome this shortcoming is the smearing technique: the idea
is to remove the discontinuity by smoothing out the Fermi-Dirac function at T = 0 K. In
practice, this is achieved by approximating the Dirac’s δ function, i.e. the derivative of
θ(εF − εkv)T=0, by a smearing function:

f(ε) =
1

η
δ̃

(
ε

η

)
, (1.72)

where η is called smearing parameter. Many kinds of smearing functions can be used:
gaussian [70], gaussian combined with polynomials, the most well known methods being
the Methfessel-Paxton [71] and the Marzari-Vanderbilt [72] methods, and the Fermi-Dirac
broadening 3.

The use of the smearing technique introduces a difficulty when applying the HF theorem
to compute the ionic forces. The occupation numbers fkv are not fixed, therefore the KS
energy functional E[n(r)] is not variational because ∂E/∂fkv 6= 0. As a result, the HF
theorem cannot be applied and an additional term in the forces appears. To solve this issue,
it has been proposed [73] to substitute the energy functional with the Mermin free energy:

F = E − Tel S, (1.73)

where S is the entropy and is given by:

S = −kB
∑
kv

[fkv ln fkv + (1− fkv) ln(1− fkv)] . (1.74)

We remark that the smearing technique mentioned above corresponds to a fictitious thermal
broadening (with temperature Tel) of the electronic occupation function: in the original KS
formulation, where no smearing is used, the fictitious temperature of the electronic system
is Tel = 0. If Eq. (1.72) is adopted, the entropic contribution in the free-energy reads [45]:

Emet =
∑
kv

η θ̃1

(
εF − εkv

η

)
, (1.75)

that is usually included in the kinetic energy functional. The function θ̃1(x) introduced is:

θ̃1(x) =

∫ x

−∞
dy y δ̃(y). (1.76)

3We are not going to discuss these methods in detail here: the interested reader is encouraged to check
out the references indicated.
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The derivative of the entropic contribution with respect to the atomic displacement cancels
the extra term in the forces coming from the derivative of the occupation function and, as a
result, the HF theorem is still valid.

1.7 Symmetrization
Several physical quantities of interest depend on integrals of periodic functions over the BZ.
These integrals are calculated taking a uniform mesh of points, an idea proposed in 1976 by
H. J. Monkhorst and J. D. Pack [74]. In the basis of the primitive vectors of the reciprocal
lattice, the k-points of the mesh are given by:

k =
m− 1

Nk1

b1 +
p− 1

Nk2

b2 +
q − 1

Nk3

b3, (1.77)

where Nk1 , Nk2 , and Nk3 are the number of k-points along b1, b2, and b3, respectively, and
m, p, and q, are integers such that 1 ≤ m < Nk1 , 1 ≤ p < Nk2 , and 1 ≤ q < Nk3 .

Besides translational invariance, crystalline solids may possess a further set of symmetries:
the complete set of symmetries forms the so-called space group of the crystal. We identify
the symmetries with the symbol {S|f}, where S is a rotation (proper or improper) and f is
a translation. The action of {S|f} is defined in the following way:

{S|f}r = Sr + f . (1.78)

The element {S|f} belongs to the space group of the crystal if it leaves the crystal invariant,
i.e.:

{S|f}(Rµ + ds) = Rµ̄ + ds̄, (1.79)

for every µ and s, and with γ(s̄) = γ(s).
Bloch’s theorem implies that (for a general discussion on the action of symmetry operators

on wave functions the interested reader is referred to Appendix B):

O{S|f}−1ψkv(r) = ψkv({S|f}r)

= ψS−1kv(r),
(1.80)

which allows to reduce the summations over the whole BZ to a smaller portion of the BZ,
called Irreducible Brillouin Zone (IBZ): the reduction procedure is often called symmetriza-
tion. As an example, we mention the symmetrization of the charge density. If we consider
n(r) as written in Eq. (1.15), it can be symmetrized using Eq. (1.80) to get:

n(r) =
1

NS

∑
{S|f}

(∑
k∈IBZ

∑
v

ωk fkv |ψkv({S|f}r)|2
)
, (1.81)

where NS is the number of symmetries S in the space group of the crystal, whereas ωk is
the weight factor, corresponding to the number of points k′ of the star of k, obtained from
k by applying the symmetry operations S, namely k′ = Sk. Eq. (1.81) is usually written in
the following compact form:

n(r) =
1

NS

∑
{S|f}

nNS({S|f}r), (1.82)
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where we introduced the so-called non-symmetrized charge density nNS(r), defined as:

nNS(r) =
∑
k∈IBZ

∑
v

ωk fkv |ψkv(r)|2. (1.83)

While dealing with magnetic systems, also the magnetization density m(r) needs to be
symmetrized. In a magnetic solid, the set of symmetries that leave the crystal invariant
(including also the magnetization density) is called magnetic space group: it contains the
symmetries {S|f} introduced above and, in addition, it may contain also symmetries that
require the time-reversal operation T , so that {T S|f} is a symmetry of the crystal 4. In
order to distinguish the two cases we introduce a variable τ(S), such that τ = 0 (τ = 1)
if {S|f} ({T S|f}) is a symmetry of the crystal. After introducing the non-symmetrized
magnetization density mNS(r), similarly to Eq. (1.83):

mNS
α (r) = µB

∑
k∈IBZ

∑
v

ωk fkv
∑
σ σ′

ψ∗σkv (r)σσσ
′

α ψσ
′

kv(r), (1.84)

the full, symmetrized, magnetization density reads:

mα(r) =
1

NS

∑
{S|f}

(−1)τ(S)
∑
β

S̃−1
αβ m

NS
β ({S|f}r), (1.85)

where S̃ is the proper part of S.

1.8 Pseudopotentials theory: an overview
The expansion of the wave functions on a given basis set is computationally affordable
only if a truncated basis is used. Unavoidably, basis set reduction implies inaccuracies in
representing the wave functions, hence a good compromise between computational cost and
accuracy is necessary. The effort made during the years to optimize such aspect led to the
development of the pseudopotentials theory. While a detailed and complete description of
the theoretical aspects of the pseudopotentials theory is far beyond the scope of this Thesis,
in this Section we highlight the milestones that lead to the current formulation.

It is well known that core states vary on short length scales, hence a high number of PWs
is needed to accurately represent them. This affects also the valence states which, being
orthogonal to the core states, present oscillations near the atomic nuclei. This issue has
been faced since the early 1940s, when C. Herring proposed [75] to expand the eigenfunctions
in plane waves orthogonalized to the core states. In 1959, J. C. Phillips and L. Kleinman
specialized the method to crystals and molecules [76]: they considered the smooth part of
symmetrized Bloch functions and showed that it is the solution of an equation similar to
the starting Schrödinger equation, with an additional term in the potential. The auxiliary
wave function introduced is usually called pseudowave function and the modified potential is
referred to as pseudopotential. Briefly, the idea behind the pseudopotential scheme is to find
a modified potential and proper auxiliary wave functions that solve a Schrödinger equation
with the same eigenvalues as the exact ones. Clearly, the complexity of the task lies in
developing proper techniques to construct such auxiliary wave functions and potentials.

4This is the case of a symmetry {S|f} that leaves the charge density invariant, but changes the sign of
the magnetization density, i.e. m(r) = −m({S|f}r).
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1.8.1 The atomic pseudopotential

We recall from previous sections that in DFT the KS potential is written as:

VKS = VH + Vxc + Vext. (1.86)

Considering an atomic system, the radial part of the wave functions solves the KS equation:

[Tl + VKS] |ψnl〉 = εnl |ψnl〉 , (1.87)

where n and l are the principal and orbital quantum numbers, respectively, and:

Tl = −1

2

d2

dr2
+
l(l + 1)

2r2
(1.88)

is the kinetic energy operator that contains the centrifugal contribution.
In the pseudopotential scheme, we look for a potential V l

ps such that:[
Tl + V l

ps

]
|φl〉 = ε̃l |φl〉 . (1.89)

The pseudopotential V l
ps must be devised in such a way that:

• the pseudowave function |φl〉 is identical to the all-electron (AE) wave function for
r ≥ rlc, where rlc is called core radius, and it is nodeless for r < rlc;

• ε̃l is equal to the exact energies εnl.

V l
ps is usually tailored to reproduce the tail of VKS for r ≥ rlc, by writing it as:

V l
ps = Veff + ∆V l

ps, (1.90)

where Veff, called effective potential, is a l-independent, function that matches VKS for r ≥ rlc,
whereas ∆V l

ps is a l-dependent, localized function, different from zero for r < rlc, called
non-local component of the pseudopotential. Veff contains also the screening contributions
given by VH and Vxc, therefore it is affected by the valence charge density distribution, which
usually varies in a significant way depending on the system studied. A more effective way
to improve the transferability of the pseudopotential is to descreen Veff by subtracting the
Hartree and exchange-correlation contributions computed with the valence charge density
nv(r). In this way, we have a more transferable, local, component of the pseudopotential:

Vloc = Veff − VH[nv(r)]− Vxc[nv(r)], (1.91)

whereas VH and Vxc can be then recomputed with the actual charge density.
The freedom in the choice of the pseudowave function and of the core radius rlc has led

to develop several pseudization techniques. As an example, among the most well known
methods we mention the Kerker [77], the Troullier-Martins [78, 79], and the Rappe-Rabe-
Kaxiras-Joannopoulos (RRKJ) [80] techniques, which require the pseudowave function to
obey a given set of constraints, such as the continuity of the function and of a given number
of its derivatives at rlc. Once the pseudowave functions have been constructed, the non-local
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Figure 1.1: AE (dashed line) and pseudo (PS, continuous line) radial wave functions for the
3s (a) and 3p (b) states of Si in the configuration 3s23p2.

part of the pseudopotential can be obtained by inverting the KS equation. Since |φl〉 are
nodeless, we can write:

∆V l
ps =

1

φl
[εl − Tl − Veff]φl. (1.92)

As an example, we report in Fig. 1.1 the radial pseudowave functions compared to the
AE wave functions for Si in the configuration 3s23p2. For r ≥ rlc, the pseudowave functions
match the AE wave functions. In the core region (r < rlc), the pseudowave functions are
smooth and nodeless: they deviate sensibly from the AE wave functions, which have 2 and
1 nodes, respectively, and show an oscillating behavior.

1.8.2 Norm-conserving pseudopotentials

The approach described above guarantees that the pseudo eigenvalues ε̃l match the AE
eigenvalues εnl. However, to have a good transferability of the pseudopotential, the matching
between the pseudo and AE eigenvalues is required to extend to wider energy ranges. This
goal can be achieved if the pseudopotential has the same scattering properties as the real
potential: in particular, in this case the so-called logarithmic derivative of the wave function,
a common quantity in scattering theory, defined as:

fl(ε) =
d

dr
lnψε l(r)

∣∣∣∣
r=R

=
1

ψε l(r)

dψε l(r)

dr

∣∣∣∣
r=R

,

(1.93)

is the same for the pseudo and the AE wave functions. In the practical construction of
a pseudopotential, the logarithmic derivatives fl(ε) of the pseudo and AE wave functions
coincide at the atomic eigenvalues. From the scattering theory it is possible to prove that
fl(ε) fulfills the following relationship:

− 2π |ψε l(r)|2
dfl(ε)

dε

∣∣∣∣
r=rlc

= 4π

∫ rlc

0

dr |ψε l(r)|2. (1.94)
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The most straightforward way to have a good matching of the logarithmic derivatives is to
impose that the quantity in the right-hand side of Eq. (1.94) is the same for the pseudo and
the AE wave functions, which provides the following, norm-conserving condition [81]:

∫ rlc

0

dr |φl(r)|2 =

∫ rlc

0

dr |ψnl(r)|2. (1.95)

1.8.3 Kleinman-Bylander pseudopotentials

In a solid, the pseudopotential is written as a sum over the ions of the corresponding atomic
pseudopotential. If RI are the positions of the ions, the local part of the pseudopotential is
written as:

Vloc(r) =
∑
I

V
γ(I)
loc (r−RI), (1.96)

where V γ(I)
loc is the local part of the atomic pseudopotential. The non-local part of the

pseudopotential in three dimensions is written starting from the l-dependent radial part
∆V l

ps introduced before, in the following way [81]:

VNL(r, r′) =
∑
I

∑
l

∑
ml

∆V l γ(I)
ps (|r−RI |) δ(|r−RI |− |r′−RI |) 〈r−RI |Ylml〉 〈Ylml |r′ −RI〉 ,

(1.97)
where l and ml are the orbital and azimuthal quantum numbers, and |Ylml〉 are spherical har-
monics. Although being formally correct, this formulation turned out to be computationally
expensive: in 1982, L. Kleinman and D. M. Bylander [82] noticed that when computing the
matrix elements of VNL between two PWs, the semi-local form of Eq. (1.97) (i.e. non-local in
the angular variables, but local in the radial coordinate) required to compute and to store a
number of integrals that increases quadratically with the size of the PWs basis set adopted.
They proposed to write VNL in real space in a fully separable form, non-local in the radial
variable as well. In particular, they introduced the states |χl〉 = ∆V l

ps |φl〉, where |φl〉 are
the atomic pseudowave functions, and then wrote the non-local part of the pseudopotential
in three dimensions as:

VNL(r, r′) =
∑
I

∑
l

∑
ml

1

r2

〈r−RI |χl Ylml〉 〈Ylml χl|r′ −RI〉
〈χl|φl〉

. (1.98)

In this way, the number of integrals needed when computing the matrix elements of VNL
increases linearly with the number of PWs used.

The local and non-local parts, given by Eqs. (1.96) and (1.98), are then introduced in the
KS equation for the extended system and the eigenvalues εkv and the eigenfunctions |ψkv〉
are computed. Since condition (1.95) holds, the charge density in the norm-conserving (NC)
case is written as:

n(r) =
∑
kv

fkv 〈φkv|r〉 〈r|φkv〉 . (1.99)
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1.8.4 Ultrasoft pseudopotentials

In order to improve the accuracy of the technique, which tipically means enlarging the energy
covered by the pseudopotential, a multi-projector form of the non-local part was proposed:

VNL(r, r′) =
∑
ij

Bij 〈r|βi〉 〈βj|r′〉 , (1.100)

where:

Bij = 〈φi|χj〉 , (1.101)

|βi〉 =
∑
j

(B−1)ji |χj〉 , (1.102)

and the functions |χ〉 are obtained in the following way:

|χi〉 = (εi − Tl − Veff) |φi〉 . (1.103)

i and j are indices that run from 1 to Nε, the number of energies used in the construction
of the pseudopotential for each l. The additional condition Bij −Bji = 0 has to be imposed
in order for VNL to be symmetric. The quantity Bij −Bji can be written as [83]:

Bij −Bji = (εi − εj) qij, (1.104)

where qij has been defined as:

qij = 〈ψi|ψj〉 − 〈φi|φj〉 , (1.105)

where |φi〉 are the pseudowave functions, while |ψi〉 are the all-electron wave functions. The
norm-conservation condition given in Eq. (1.95) corresponds to have qii = 0. In order for
VNL to be hermitian, this condition has to be generalized to the condition qij = 0, i 6= j. As
a consequence, it would be possible to build a pseudopotential that:

• is hermitian,

• is NC,

• is accurate in a wider range of energies than usual NC pseudopotentials.

However, the generalized norm-conserving condition is indeed difficult to satisfy. In 1990,
Vanderbilt proposed to relax both the condition qij = 0 for i 6= j and the norm-conserving
condition, Eq. (1.95), which led to the so-called ultrasoft (US) scheme [83]. He noticed that
the matrix Dij = Bij + εjqij is hermitian and recast VNL in the form:

VNL =
∑
ij

Dij |βi〉 〈βj| . (1.106)

By further introducing a non-local overlap operator S, defined as:

S = 1+
∑
ij

qij |βi〉 〈βj| , (1.107)



24 Theoretical and methodological background

he wrote the KS equation as:

[Tl + Veff + VNL] |φk〉 = εl S |φk〉 . (1.108)

These equations lead to the following consequences:

• the pseudowave functions are not orthogonal to each other, while they fulfill the gen-
eralized orthogonality condition:

〈φi|S |φj〉 = δij; (1.109)

• due to the relaxation of the norm-conserving condition, the charge density associated
to the k-th eigenfunction cannot be computed as 〈φk|r〉 〈r|φk〉, but an additional term,
called augmentation charge, has to be introduced:

nk(r) = 〈φk|r〉 〈r|φk〉+
∑
ij

Qij(r) 〈φk|βi〉 〈βj|φk〉 , (1.110)

where Qij(r) is the function integrated to compute qij, i.e.:

Qij(r) = 〈ψi|r〉 〈r|ψj〉 − 〈φi|r〉 〈r|φj〉 . (1.111)

Passing to a periodic solid, we define the projectors |βIτlml〉 in the following way:

〈r|βIτlml〉 =
1

r
〈r−RI |βτl Ylml〉 . (1.112)

The non-local part of the pseudopotential is written as:

VNL(r, r′) =
∑
I

∑
τ lml

∑
τ ′ l′m′l

D
γ(I)
τlml
τ ′l′m′l

〈r|βIτlml〉 〈β
I
τ ′l′m′l
|r′〉 , (1.113)

where
D
γ(I)
τlml
τ ′l′m′l

= D
γ(I)
ττ ′ δll′δmlm′l , (1.114)

while τ and τ ′ are the energy indices, called i and j above.
The charge density is then obtained by summing Eq. (1.110) over the occupied states:

n(r) =
∑
kv

fkv 〈φkv|r〉 〈r|φkv〉+
∑
I

∑
mn

ρImnQ
I
mn(r), (1.115)

where we introduced again the composite indices m = {τ lml} and n = {τ ′l′m′l}. The
coefficients ρImn, called partial occupations, are defined as:

ρImn =
∑
kv

fkv 〈φkv|βIm〉 〈βIn|φkv〉 , (1.116)
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whereas the augmentation functions QI
mn(r) are obtained by generalizing the radial functions

Q(r) to three dimensions in the following way:

QI
mn(r) =

1

r2

(
〈ψτl Ylml |r−RI〉 〈r−RI |ψτ ′l′ Yl′m′l〉 − 〈φτl Ylml |r−RI〉 〈r−RI |φτ ′l′ Yl′m′l〉

)
.

(1.117)
QI
mn(r) can be factorized into the product of a radial part, QI

mn(r), and an angular part that
depends on the spherical harmonics with angular numbers {l,ml} and {l′,m′l}. The radial
augmentation functions QI

mn(r) depend on the AE wave functions, hence they present rapid
oscillations in the core region, which increase the cut-off of the PWs needed to expand the
charge density. This shortcoming can be avoided by pseudizing Qmn(r) itself. In practice,
this is done by introducing a new set of functions Q̃L

mn(r) that have the same L-th momentum
as Qmn(r) [84], namely: ∫ +∞

0

dr rL Q̃L
mn(r) =

∫ +∞

0

dr rLQmn(r). (1.118)

The angular part of QI
mn(r) is addressed by exploiting the properties of the spherical harmon-

ics, in particular by writing the product of two spherical harmonics as a linear combination
of spherical harmonics. As a final result, Qmn(r) is pseudized in the following way [84]:

Q̃mn(r) =
∑
LM

c(l ml, l
′m′l, LM) Q̃L

mn(r)YLM(Ω), (1.119)

where |l− l′| ≤ L ≤ l+ l′ and −L ≤M ≤ L, while c(l ml, l
′m′l, LM) are the Clebsch-Gordan

coefficients.
The fact that the charge density contains also the augmentation term implies that, when

written in the PWs basis set, the kinetic energy cut-off needed to describe it accurately is,
in general, higher than 4Ecut. From a practical point of view, the cut-offs for the wave
functions and the charge density are not related anymore and the convergence with respect
to both of them must be studied.

The charge density, Eq. (1.115), is often written in an alternative way as:

n(r) =
∑
kv

fkv 〈φkv|K(r)|φkv〉 , (1.120)

introducing the non-local kernel K(r, r1, r2):

K(r, r1, r2) = δ(r− r1) δ(r− r2) +
∑
I

∑
mn

QI
mn(r) 〈r1|βIm〉 〈βIn|r2〉 . (1.121)

As a side note, we remark that the NC framework can be obtained as a particular case of
the US formulation by dropping the augmentation term in Eq. (1.121):

K(r, r1, r2) = δ(r− r1)δ(r− r2), (1.122)

which implies that the overlap matrix is S = 1.
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Due to the generalized orthogonality condition, the KS equations become a generalized
eigenvalue problem. Moreover, due to the augmentation charge contribution, the constrained
minimization of the total energy functional:

δ

δφ∗kv(r)
(E[n(r)]− εkv 〈φkv|S|φkv〉) = 0, (1.123)

produces the following additional term in the KS potential:(∫
d3r′ Veff(r′)Qmn(r′)

)
|βIm〉 〈βIn| , (1.124)

which is usually introduced in the non-local potential by defining the screened D coefficients
[83,84]:

D̃I
mn = Dγ(I)

mn +

∫
d3r′ Veff(r′) Q̃I

mn(r′). (1.125)

D
γ(I)
mn must be obtained by descreening the D̃I

mn coefficients of the generating atomic config-
uration, as explained for the effective potential above.

The generalized orthogonality condition affects also the calculation of the forces. When
applying the HF theorem to compute ∂Etot/∂λ, the derivative of the orthonormalization
constraint, namely ∂/∂λ 〈ψi|S|ψi〉 = 0, must be properly taken into account. In particular:〈

∂ψi
∂λ

∣∣∣∣S|ψi〉+ 〈ψi|S
∣∣∣∣∂ψi∂λ

〉
= −

〈
ψi

∣∣∣∣∂S∂λ
∣∣∣∣ψi〉, (1.126)

therefore the total derivative of Etot (Eq. (1.71)) reads:

dEtot

dλ
=
∑
i

〈
ψi

∣∣∣∣∂VKS

∂λ
− εi

∂S

∂λ

∣∣∣∣ψi〉. (1.127)

1.8.5 Projector augmented-wave pseudopotentials

A further step forward in the pseudopotentials theory was made in 1994 by the work of P. E.
Blöchl [85]. The new method, named Projector Augmented-Wave method (PAW) resulted
from the need to combine the versatility of the Augmented-Plane-Wave (APW) methods,
which supply information about the wave functions in the core region (a feature that the
pseudopotentials scheme did not have in the NC and US schemes), with the simplicity of the
pseudopotentials formalism.

In Ref. [85], Blöchl proposed a generalization of the mapping technique of the pseudowave
function into the AE wave function. He introduced a transformation operator T such that:

|ψi〉 = T |ψ̃i〉 . (1.128)

As a consequence, the expectation value of a given operator A can be obtained either from the
AE wave function via 〈A〉 = 〈ψi|A|ψi〉, or from the pseudowave functions via 〈A〉 = 〈ψ̃i|Ã|ψ̃i〉
by defining the transformed operator Ã = T †AT . The total energy can then be expressed
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as a functional of the pseudowave functions and the KS equation for |ψ̃i〉 can be obtained
by the constrained minimization condition:

δ

δψ̃∗i (r)

(
E[{T |ψ̃i〉}]− εi 〈ψ̃i|T † T |ψ̃i〉

)
= 0. (1.129)

Since the aim of the PAW method is to reconstruct the information about the AE wave
functions in the core region, though keeping the advantages given by the formulation with
pseudowave functions, the operator T is written as the sum of the identity operator and a
sum of a set of local, atom-centered operators TI , namely:

T = 1+
∑
I

TI . (1.130)

TI acts only within the atomic core region, also called augmentation region or PAW sphere.
In order to pursue the reconstruction of the AE wave function, Blöchl proposed the following
form for the local operator T :

TI =
∑
I

∑
m

(
|ψIm〉 − |φIm〉

)
〈βIm| , (1.131)

where |ψIm〉 and |φIm〉 are the atomic AE and pseudowave functions, while |βIm〉 are a set of
projectors defined in a way similar to the NC and the US schemes.

Given the definition of the transformation T , the generic operator A transforms into:

Ã = A+
∑
I

∑
mn

(
〈ψIm|A|ψIn〉 − 〈φIm|A|φIn〉

)
|βIm〉 〈βIn| , (1.132)

i.e. a pseudized operator that coincides with A outside the PAW sphere, while inside the
core region is properly devised to fulfill the condition:

〈ψ̃i|Ã|ψ̃j〉 = 〈ψi|A|ψj〉 . (1.133)

Eq. (1.132) can be applied to any operator A. As an example, we mention the main results
obtained while applying it to some of the ubiquitous operators in DFT, e.g. the identity
operator and the charge density.

• The identity operator transforms in the following way:

〈ψk|1|ψj〉 = 〈ψ̃k|ψ̃j〉+
∑
I

∑
mn

(
〈ψIm|ψIn〉 − 〈φIm|φIn〉

)
〈ψ̃k|βIm〉 〈βIn|ψ̃j〉

= 〈ψ̃k|ψ̃j〉+
∑
I

∑
mn

qImn 〈ψ̃k|βIm〉 〈βIn|ψ̃j〉

= 〈ψ̃k|S|ψ̃j〉 ,

(1.134)

similarly to the US case. The overlap matrix S is defined as in Eq. (1.107).
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• The charge density transforms in the following way:

n(r) =
∑
kv

fkv 〈ψkv|r〉 〈r|ψkv〉

=
∑
kv

fkv 〈ψ̃kv|r〉 〈r|ψ̃kv〉+
∑
kv

∑
I

∑
mn

fkv
(
〈ψIm|r〉 〈r|ψIn〉 − 〈φIm|r〉 〈r|φIn〉

)
×〈ψ̃kv|βIm〉 〈βIn|ψ̃kv〉 (1.135)

= ñ(r) +
∑
I

∑
mn

ρImnQ
I
mn(r),

that is similar to Eq. (1.115) reported for the US scheme.

The application of Eq. (1.132) can be extended to the KS Hamiltonian as well, leading to
the total energy functional. While a comprehensive discussion is outside the scope of this
work, we refer the interested reader to Refs. [85,86] for a detailed derivation. Here we simply
report the final result, that is the KS equation obtained from Eq. (1.129):[
−1

2
∇2 + Ṽeff +

∑
I

∑
mn

(
D1I
mn − D̃1I

mn +

∫
d3r′Ṽeff(r′)QI

mn(r′)

)
|βIm〉 〈βIn|

]
|ψkv〉 = εkvS |ψkv〉 ,

(1.136)
where the PAW D coefficients are given by:

D1I
mn =

〈
ψIm

∣∣∣∣− 1

2
∇2 + VKS

∣∣∣∣ψIn〉 (1.137)

D̃1I
mn =

〈
φIm

∣∣∣∣− 1

2
∇2 + Ṽeff

∣∣∣∣φIn〉+

∫
ΩI

d3r′ Ṽeff(r′)QI
mn(r′), (1.138)

and ΩI indicates the PAW sphere of atom I.

1.9 Relativistic effects in electronic structure
Relativistic effects in condensed matter systems are relevant whenever the ratio v/c becomes
non negligible. Near the nucleus, v/c = Z α (in atomic units), therefore relativistic effects
become increasingly important for heavy elements. One of the most well known relativistic
effects is the radial contraction of the inner s and p shells. Such contraction implies a more
effective screening of the potential for the d and f orbitals (whose radial charge density
distribution is more spread due to the centrifugal term proportional to l(l + 1)/r2), which
will experience an upshift in energy and a radial expansion [87, 88]. A further important
relativistic effect, experienced by the electrons with l > 0, is the spin-orbit coupling (SOC),
which splits energy levels with the same orbital angular momentum according to the total
angular momentum number j (j = l ± 1/2).

Relativistic effects allow to explain several physical and chemical facts. As an example,
we mention the explanation of the yellow color of gold. Early studies [1, 89] reported a
comparison between relativistic and non-relativistic calculations on the band structure of
gold, and showed that the excitation energies from the 5d band to the half-filled 6s band were
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sensibly different in the two cases. More recently the calculation of the frequency-dependent
dielectric constant [90, 91] showed that relativistic calculations are able to reproduce the
lower bound of the optical absorption near 2 eV, whereas non-relativistic calculations are
not and wrongly predict an absorption onset at 3.6 eV. Among the consequences of relativity,
we further mention the effect on the bond lengths [1, 92] and the lattice parameters.

The exact method to systematically include all the relativistic effects is to solve the Dirac
equation [14] which, for a free particle, reads:

ı̇~
∂ψ

∂t
= Hψ, (1.139)

H = cα · p + βmc2, (1.140)

where p is the momentum, β is a 4× 4 matrix:

β =

(
12×2 0

0 −12×2

)
, (1.141)

and α is a set of three 4× 4 matrices, with components:

αi =

(
0 σi
σi 0

)
, (1.142)

where σi are the Pauli matrices.
In presence of a potential, Eq. (1.139) turns out to be rather challenging to solve, since

its solutions are four-component spinors. A common approach consists in performing a
low-energy expansion (typically, in powers of v/c), of the Dirac equation. The first-order
expansion of Eq. (1.139) gives the Schrödinger equation or, in presence of an external
magnetic field B, the Pauli equation:{

1

2m

[
(p + eA)2 + e ~σ ·B

]
+ V

}
ψ = ε ψ, (1.143)

where A is the vector potential, while σ identifies a set made up of the three Pauli matrices.
The second-order expansion gives three additional terms: the first two, called mass-velocity
(mv) and Darwin (D) terms, are known in condensed matter physics as scalar relativistic
corrections, and read:

Hmv = − p4

8m3c2
, (1.144)

HD =
~2

8m2c2
∇2V, (1.145)

whereas the third term is the spin-orbit (SO) correction:

HSO =
1

2m2c2

1

r

dV

dr
S · L. (1.146)

In this approach, the relativistic corrections are used as a perturbation to the non-
relativistic Schrödinger equation: perturbation theory is a well known technique and is
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used, for instance, to discuss the fine structure of the hydrogen-like atoms. However, such
approaches are accurate enough only for light atoms: concerning the relativistic corrections,
the perturbation parameter v/c = Z α is small (enough for the second-order expansion men-
tioned above to be accurate) only for atoms up to the first row of transition metals. For
heavier atoms, the perturbation v/c is not small and, in principle, many more terms in the
perturbative expansion must be considered: for instance, v/c ≈ 0.58 for the 5d metal Hg. It
is clear that, in these cases, a complete solution of the Dirac equation is desirable.

The solutions of the Dirac equation are four-component spinors, usually written in terms
of two-component spinors in the following way:

ψ =

(
ψA
ψB

)
. (1.147)

ψA and ψB are called large and small components because if the expression (1.147) is plugged
into the time-independent Dirac equation, the two components are then related by the fol-
lowing relationship:

ψB =
1

E ′ + 2mc2 − V
cσ · pψA, (1.148)

where E ′ = E −mc2 and V is the external potential. Eq. (1.148) implies that ψB ∝ v/c ψA,
whence ψB is called small component.

1.9.1 Scalar Relativistic and Fully Relativistic approaches

In presence of a central potential, the eigenfunction components ψA and ψB can be factorized
into a radial function and a two-component spin-angle function. The Dirac Hamiltonian
does not commute with the orbital angular momentum L or the spin angular momentum S
separately, but it commutes with their sum, the total angular momentum J = L + S. As
a consequence, the angular part of ψ is the eigenfunction of the total angular momentum
J2 and of the azimuthal total angular momentum Jz, and can be written using two two-
component spin-angle functions (see Appendix C for a more detailed discussion). The radial
parts of ψ satisfies the radial Dirac equations. For the large component, the radial equation
(see e.g. Ref. [93] for a complete discussion and the derivation) reads:

− ~2

2M

(
d2Rk

dr2
+

2

r

dRk

dr
− l(l + 1)

r2
Rk

)
− ~2

2M2c2

dV

dr

(
dRk

dr
+

1− k
r

Rk

)
+ V Rk = E Rk,

(1.149)
where: M = m[1− (V −E ′)/2mc2], Rk is the radial function, and k = −l or k = l+ 1 if the
total angular momentum quantum number j is j = l−1/2 or j = l+1/2, respectively. Since
two possible values of k are allowed for each l, two different radial functions are expected.
Two different approaches are possible at this stage:

• Scalar Relativistic (SR): in order to simplify the problem, the quantum number k is
substituted by a j-averaged k, called k̄. Since k̄ = 1, the k-dependent term of Eq.
(1.149), which represents the spin-orbit interaction, drops off. As a result, there is
only one radial function.
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• Fully Relativistic (FR): no simplifications are assumed. The complete Dirac equation,
for both the large and the small component, is solved, to get two radial functions for
each l > 0, one for j = l + 1/2 and one for j = l − 1/2.

1.9.2 Relativistic Pseudopotentials

In a practical ab initio approach based on plane waves, the shortcomings described in Sec-
tion 1.8 affect the radial eigenfunctions of the Dirac equation in a similar way, hence a
pseudopotentials-based theory is desirable. We remark that in the relativistic case, the goal
is to find an appropriate VNL that is able to reproduce the large-component of the Dirac
eigenfunctions for r ≥ rc, which are then pseudized for r < rc in order to have both the
pseudized wave function and the pseudopotential smooth enough to be represented with a
reasonable number of plane waves.

At a first stage, the small component of the wave function can be neglected, hence the
original four-component spinor problem is simplified into a two-component one. In the SR
approach an additional simplification holds: the two large component radial functions are
averaged, and we recover the SR wave function approach. In the FR approach, instead there
are two different radial wave functions for each orbital angular number l > 0 and both of
them have to be pseudized. The pseudopotential VNL is written as a 2 × 2 matrix, and the
most natural way to do it consists in generalizing the NC formalism by using the spin-angle
functions, as proposed by L. Kleinman in 1980 [37]. However, when first proposed, the FR
pseudopotential was written in a semilocal way, non-local only in the angular variables [94].
Further developments [38,39] led to a fully separable form of VNL:

V σ1σ2
NL (r, r′) =

∑
I

∑
l

∑
j

j∑
mj=−j

E
γ(I)
lj 〈r|βIlj Y

Ijmjσ1

l 1/2 〉 〈βIlj Y
Ijmjσ2

l 1/2 |r′〉 . (1.150)

The expression can be further simplified and recast into the usual pseudopotential construc-
tion scheme based on spherical harmonics [40]. Indeed, the spin-angle functions can be
written in terms of real spherical harmonics (see Appendix C for more details):

Y
jmjσ

l 1/2 =
l∑

ml=−l

cljσmjml Y
′
lml
, (1.151)

where Y ′ indicates a real spherical harmonic function. Eq. (1.150) then becomes:

V σ1σ2
NL (r, r′) =

∑
I

∑
ljml

∑
l′j′m′l

D
γ(I)σ1σ2

ljml
l′j′m′l

〈r|βIlj Y ′Ilml〉 〈β
I
l′j′ Y

′I
l′m′l
|r′〉 , (1.152)

where all the dependence on the spin indices has been attributed to the D coefficients of the
pseudopotential, defined as:

D
γ(I)σ1σ2

ljml
l′j′m′l

= E
γ(I)
lj fσ1σ2

ljml
l′j′m′l

δll′ δjj′ , (1.153)

fσ1σ2
ljml
l′j′m′l

=

j∑
mj=−j

cljσ1
mjml

c∗ l
′j′σ2

mjm′l
. (1.154)
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The ideas behind the the FR approach have been extended to the US pseudopotentials
scheme [40] as well. The non-local part of the pseudopotential is first written with projectors
that contain spin-angle functions:

V σ1σ2
NL (r, r′) =

∑
I

∑
τljmj

∑
τ ′l′j′m′j

D
γ(I)
τljmj
τ ′l′j′m′j

〈r|βIτlj Y
Ijmjσ1

l 1/2 〉 〈βIτ ′l′j′ Y
Ij′m′jσ2

l′ 1/2 |r′〉 , (1.155)

where τ and τ ′ are indices that run from 1 to Nε, the number of energies used in the con-
struction of the pseudopotential for each l and j. Then the complex spin-angle functions are
transformed into real spherical harmonics, getting the following expression, used in practical
implementations:

V σ1σ2
NL (r, r′) =

∑
I

∑
τljml

∑
τ ′l′j′m′l

D
γ(I)σ1σ2

τljml
τ ′l′j′m′l

〈r|βIτlj Y ′Ilml〉 〈β
I
τ ′l′j′ Y

′I
l′m′l
|r′〉 , (1.156)

where:
D
γ(I)σ1σ2

τljml
τ ′l′j′m′l

= D
lj γ(I)
ττ ′ fσ1σ2

ljml
l′j′m′l

δll′ δjj′ . (1.157)

In the following, we will adopt a short-hand notation by introducing the compact indices
m = {τ l j ml}, n = {τ ′ l′ j′m′l}.

Total energy functional, spin density, and Kohn-Sham potential

Since the wave functions are written as two-component spinors, the spin density functional
theory formalism is necessary. Moreover, in the FR approach the pseudopotentials is written
as a non-diagonal matrix, thus it is necessary to adopt the non-collinear formulation. If the
external potential Vext is modeled with the pseudopotentials formalism, the total energy
functional (Eq. (1.40)), the spin density (Eq. (1.37)), and the KS equations (Eq. (1.43))
must be generalized accordingly. Once the single-particle orbitals |ψσi 〉 are introduced, the
total energy functional is written in the following compact way:

E[{ψσi }] = Ē[{ψσi }] + F [n(r), |m(r)|], (1.158)

where the functional Ē contains the kinetic energy functional, the non-local potential con-
tribution, and the smearing contribution Emet mentioned in Section 1.6:

Ē[{ψσi }] =
∑
i

∑
σ1 σ2

[
fi

〈
ψσ1
i

∣∣∣∣− 1

2
∇2 δσ1σ2 + V σ1σ2

NL

∣∣∣∣ψσ2
i

〉]
+ Emet, (1.159)

while the functional F is made up of the local potential contribution and the Hartree and
exchange-correlation functionals:

F [n(r), |m(r)|] =

∫
d3r Vloc(r)n(r) + EH[n(r)] + Exc[n(r), |m(r)|]. (1.160)

The spin density is computed from the single-particle wave functions as:

nσσ
′
(r) =

∑
i

∑
σ1 σ2

fi 〈ψσ1
i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉 , (1.161)
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where the non-local kernel Kσσ′
σ1σ2

is (see Eq. (1.121), which here is properly generalized to
the non-collinear case) [40]:

Kσσ′

σ1σ2
(r, r1, r2) = δ(r−r1)δ(r−r2)δσσ1δσ

′σ2 +
∑
I

∑
mn

∑
m1 n1

QI
mn(r) fσ1σ

m1m
fσ
′σ2

nn1
〈r1|βIm1

〉 〈βIn1
|r2〉.

(1.162)
The single-particle orbitals are the solutions of the KS equations, obtained by the constrained
minimization condition applied to the total energy functional:∑

σ2

[
−1

2
∇2 δσ1σ2 + V σ1σ2

KS

]
|ψσ2
i 〉 = εi

∑
σ2

Sσ1σ2 |ψσ2
i 〉 , (1.163)

where the KS potential is:

V σ1σ2
KS (r1, r2) = V σ1σ2

NL (r1, r2) +
∑
σ3 σ4

∫
d3r′ V σ3σ4

LOC (r′)Kσ3σ4
σ1σ2

(r′, r1, r2), (1.164)

V σ3σ4
LOC (r) = Veff(r) δσ3σ4 − µB Bxc(r) · σσ3σ4 . (1.165)

Similarly to the non-relativistic case, the additional terms that appear in the KS equations
because the augmentation terms in the spin density depend on the spinor wave functions,
can be included in the non-local part of the pseudopotential by defining the screened D
coefficients [40]:

D̃I σ1σ2
m1n1

= Dγ(I)σ1σ2
m1n1

+
∑
mn

∑
σ3 σ4

4∑
α=1

fσ1σ3
m1m

Aσ3σ4
α II αmn f

σ4σ2
nn1

, (1.166)

where A is a four-component vector (α = 1, . . . , 4) of 2 × 2 matrices: A = (1, σx, σy, σz).
The quantity II αmn is defined as:

II αmn =

∫
d3r QI

mn(r)C ′α(r), (1.167)

where the four-component vector C′ is defined as: C′ = (Veff,−µBBxc,x,−µBBxc,y,−µBBxc,z).
The overlap matrix S appearing in the KS equations (Eq. (1.163)) can be determined from
the integration of the kernel K:

Sσ1σ2(r1, r2) =
∑
σ3

∫
d3r′Kσ3σ3

σ1σ2
(r′, r1, r2)

= δ(r1 − r2) δσ1σ2 +
∑
I

∑
m1 n1

qγ(I)σ1σ2
m1n1

〈r1|βIm1
〉 〈βIn1

|r2〉 ,
(1.168)

where the coefficients qγ(I)σ1σ2
m1n1 are spin-dependent and follow from the generalization of the

coefficients qγ(I)
mn =

∫
d3r QI

mn(r) [40]:

qγ(I)σ1σ2
m1n1

=
∑
mn

∑
σ3

fσ1σ3
m1m

qγ(I)
mn fσ3σ2

nn1
. (1.169)
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Spin-polarized electronic surface

states of clean Os(0001) and Re(0001)
surfaces: an ab initio fully

relativistic investigation

Surfaces can host electronic states localized on the last few layers and the surface electronic
structure is a key ingredient to predict many properties of materials. Pure surface states are
usually found in the gaps of the projected band structure (PBS) [95], while resonances can
be present also within the PBS. Due to surface states, surfaces can have properties different
from the bulk, as found e.g. in topological insulators [10–12]. Moreover, since surfaces lack
inversion symmetry, even non-magnetic (i.e. time-reversal invariant) materials can have sur-
face states with a non-vanishing spin polarization. Hence, surface states might be practically
useful for instance in spintronics applications [2,3], and it is worthwhile to characterize them.
The energy dispersion of surface states with respect to k‖, the wave vector parallel to the
surface, and in some cases also their spin polarization, have been analyzed for many surfaces
of different materials, by both theoretical (DFT [96–103]) and experimental (photoelectron
spectroscopy, PES [104–113], angular- and spin-resolved) techniques. For instance, among
the heavy metal surfaces, the L-gap surface states of Au(111) are a paradigmatic exam-
ple [96–101,105,106]. Their main feature is a split parabolic energy dispersion, which can be
interpreted as an effect of spin-orbit coupling and explained by the Rashba model [5]. The
latter suggests that the average direction of the electron spin is perpendicular to the wavevec-
tor k‖ and parallel to the surface, with opposite directions in the two energy paraboloids, a
property that has been proven by experiments [98], although in real materials the presence
of the underlying atomic layers can give rise to a small spin component orthogonal to the
surface.

Similar states have been studied in Ir(111) and Pt(111) surfaces [100,102,107–113]. Pass-

35
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ing from Au to Pt and to Ir their behavior changes: in Au(111) they are found in a PBS
gap (the so-called L-gap) and show a dispersion with positive curvature, while in Ir(111)
they hybridize with bulk states and have a characteristic negative curvature [102, 112]. In
Pt(111) their nature turns out to be trickier to characterize. At variance with Au(111) they
are empty and resemble the Au(111) states away from Γ̄, but close to Γ̄ they are very close
to bulk states and the predicted hybridization is quite sensitive to the technical details of
the calculation [100,102].

Re(0001) is another interesting surface used [114–116] both as a support for other metal-
lic layers and as a reactive catalytic surface. Very recently, it has been shown that artificially
constructed Fe chains on top of Re(0001) surface exhibit a spin spiral state [117]. Though
having been widely studied, little information is available about its electronic structure.
Os(0001) is another surface similar to the (111) surface of Ir, Pt, and Au, but little infor-
mation is available about it [118]. Os(0001) and Re(0001) could have states similar to the
Rashba split surface states with inverted dispersion as in Ir(111) but a priori one cannot
exclude the presence of empty surface states in a gap analogous to the L-gap. Also the other
surface states could be similar, but both the energy dispersion and their spin polarization,
are poorly known. An obvious difference between the (0001) surfaces of Os and Re and the
other surfaces mentioned is the position of the Fermi level, due to the lower atomic number,
while more subtle differences could be due to the hexagonal close-packed (hcp) structure
that on the third layer differs from the face-centered-cubic (fcc) surfaces.

In this chapter, we present and discuss the results of a first principle study of Os(0001) and
Re(0001). In particular, we analyze their band structure and characterize their main surface
states, including the Rashba split states. We find that they have an inverted dispersion as
in Ir(111), and cross the Fermi level. For some selected states we study in detail the spin
polarization. We first use symmetry considerations to determine its direction in different
high-symmetry lines and points of the BZ then we follow, for the most interesting surface
states, the direction of the spin polarization as a function of k‖. This spin polarization is
potentially measurable in spin-resolved ARPES experiments.

2.1 Methods

First principle calculations were performed by means of DFT [34, 35] within the LDA
scheme, as implemented in the Quantum ESPRESSO [119–121] and thermo_pw 1 packages.
The Perdew and Zunger’s [56] parameterization for the exchange-correlation energy has
been used. Spin-orbit coupling effects are included by using the FR PAW method [122]
(see Section 1.8.5), with 5d and 6s valence electrons and 5s and 5p semicore states (PPs
Os.rel-pz-spn-kjpaw_psl.1.0.0.UPF for Os and Re.rel-pz-spn-kjpaw_psl.1.0.0.UPF
from pslibrary.1.0.0 for Re, from pslibrary.1.0.0 2 [123]). while SR calculations are per-
formed with the PAW PPs Os.pz-spn-kjpaw_psl.1.0.0.UPF and Re.pz-spn-kjpaw_psl.-
1.0.0.UPF for Os and Re, respectively, from pslibrary.1.0.0. Calculations on the bulk system,

1thermo_pw is a driver of the Quantum ESPRESSO (QE) routines which provides an alternative organiza-
tion of the QE work-flow for the most common tasks. For more information see https://dalcorso.github.
io/thermo_pw.

2See https://dalcorso.github.io/pslibrary

https://dalcorso.github.io/thermo_pw
https://dalcorso.github.io/thermo_pw
https://dalcorso.github.io/pslibrary
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System-method a (a.u.) c (a.u.)
Os FR LDA (this work) 5.135 8.047
Os exp. (Ref. [124]) 5.169 8.162

Re FR LDA (this work) 5.175 8.338
Re exp. (Ref. [124]) 5.217 8.425

Table 2.1: Computed FR LDA and experimental lattice constants of bulk hcp Os and Re.

were performed with an hexagonal close-packed (hcp) structure at the theoretical LDA lat-
tice constants: a comparison between the theoretical LDA and experimental geometries is
reported in Table 2.1. The surfaces have been simulated by the slab method. For Os(0001)
we used a 24-layers slab perpendicular to the [0001] direction, while for Re(0001) we used
both a 24-layers and a 25-layers slab perpendicular to the [0001] direction in order to check
the stability of the results with respect to the breaking of the inversion symmetry. The slab
replicas have been separated by a vacuum space of 34 a.u. and 44 a.u. in Os(0001) and
Re(0001), respectively. The slab crystal structure has been obtained from the bulk, with a
further relaxation along the [0001] direction, which has the most relevant effects on the first
three atomic layers: in particular, the distance between the first two layers decreases of 5.4%
with respect to the idealized interlayer distance in the bulk, while the distance between the
second and the third layer increases of 2.9%. At a first stage, we performed a calculation with
a starting non-zero magnetization, but the self-consistent ground state of the slab ended up
to be non magnetic. The pseudo wavefunctions have been expanded in a PWs basis set with
a kinetic energy cut-off of 60 Ry for both systems, while the charge density with a cut-off
of 360 Ry and 400 Ry for Os(0001) and Re(0001), respectively. BZ integrations have been
performed using a shifted uniform Monkhorst-Pack [74] k-point mesh of 12 × 12 × 1 and
16 × 16 × 1 points for the Os(0001) and Re(0001) slabs, respectively, and 12 × 12 × 8 and
16 × 16 × 10 points for bulk Os and Re, respectively. The presence of a Fermi surface has
been dealt with by the Methfessel-Paxton method [71] with a smearing parameter η = 0.02
Ry in both systems. With these parameters the total energy is converged within 10−3 Ry
and the crystal parameters within 10−3 Å.

In Figs. 2.1 (a)-(b) we show the first two atomic layers of the 24-layers slab and the
25-layers slab, respectively. The 24-layers slab has a D3d point group. In particular, the z
axis, normal to the surface, is a 3̄ rotoinversion axis, while the axes [100], [110], and [010] in
Fig. 2.1 (a) are two-fold rotation axes. There are also three mirror planes, (1̄20), (21̄0), and
(110) shown in Fig. 2.1 (a). The 25-layers slab has instead, a D3h point group. The z axis
is a 6̄ axis, while the axes [210], [120], and [1̄10], shown in Fig. 2.1 (b), are two-fold rotation
axes. Moreover, there are three mirror planes, whose traces coincide with the C2 axes [210],
[120], and [1̄10]. The electronic band structure was calculated along the path Γ̄− K̄−M̄− Γ̄
(that is along the T̄ , T̄ ′, and Σ̄ high-symmmetry lines) of the Surface Brillouin Zone (SBZ),
shown in Figs. 2.1 (c)-(d). The small point group of k of the two slabs is indicated in the
band structures in Figs. 2.2, 2.11 (a), and 2.11 (b), both for the high symmetry points (Γ̄,
K̄, and M̄) and for the high symmetry lines (T̄ , T̄ ′, and Σ̄). In particular, for the 24-layers
slab, at Γ̄, K̄, and M̄ the small group of k is D3d, D3, and C2h, respectively. Along the high
symmetry lines T̄ , T̄ ′, and Σ̄ it is C2, C2, and Cs, respectively. Along T̄ the rotation axis
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Figure 2.1: (a)-(b) Positions of the atoms in the first two atomic layers of the Re(0001) 24-
layers and 25-layers slab, respectively. Arrows and solid lines indicate the C2 rotation axes
and the mirror planes, respectively. (c)-(d) Surface Brillouin Zone of Re(0001) 24-layers and
25-layers slab, respectively. The Irreducible Brillouin Zone (IBZ) and the path used to plot
the electronic band structure are shown. The [1̄20] and [100] axes are the two-fold rotation
axes of the small groups of k‖ along T̄ ′ for the 24-layers and along Σ̄ for the 25-layers slab,
respectively.

coincides with the x-axis, while along T̄ ′ the rotation axis is the [1̄20] axis, shown in Fig.
2.1 (c). Finally, along Σ̄ the trace of the mirror plane of Cs is Σ̄. On the other hand, for the
25-layers slab, at Γ̄, K̄, and M̄ the small group of k is D3h, C3h, and C2v, respectively, while
along the high symmetry lines T̄ , T̄ ′, and Σ̄ it is Cs, Cs, and C2v, respectively. In particular,
along T̄ and T̄ ′ the mirror plane is σh. The two slabs have more symmetry elements than the
surfaces, since they have symmetry operations that exchange the two surfaces. Removing
these elements, the surface point group is C3v, while the small groups of k are C3v, C3, and
Cs for Γ̄, K̄, and M̄ respectively and C1, C1, and Cs along T̄ , T̄ ′, and Σ̄. Actually, they are
the same for both slabs.
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Figure 2.2: LDA FR-PAW surface band structure of Os(0001). The yellow region is the PBS,
the light blue lines are the slab electronic states and the blue dots indicate surface states or
resonances, defined as those having a charge density greater than 0.5 on the last two atomic
layers of both surfaces. Energies are measured with respect to the Fermi energy, and the
energy maximum in the figure is the computed work function (5.03 eV).

2.2 Os(0001)

2.2.1 Results

In this section we analyze the FR band structure of Os(0001), shown in Fig. 2.2. We
characterize the main surface states and compare with Au(111), Pt(111), and Ir(111) (Refs.
[99], [102]). A list of the main surface states, their energy and symmetry, is given in Table
2.2. Whenever possible, we use the same names as in Refs. [99] and [102]. We start our
analysis from the Γ̄ point, where we find two main gaps in the PBS. Taking the energy zero
at the Fermi energy, the highest starts at 2 eV and is similar to the L-gap of the fcc surfaces.
It is located higher in energy with respect to Au(111), Pt(111), and Ir(111), due to the
lower number of electrons per cell. At Γ̄ we find a second gap, between −8 eV < E < −4
eV, approximately at the same energy as in Pt(111) and Ir(111), although a bit wider and
extending up to half of the T̄ line and along the whole Σ̄ line. As in Ir(111), and at variance
with Au(111) and Pt(111), no surface states are found in the L-gap. Rashba-split surface
states similar to the L-gap states of Au(111) are found around Γ̄ near the Fermi energy and,
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Surface k‖ ε (eV) ε (eV) ε (eV) ε (eV) Small group Symmetry
State Os(0001) Ir(111) Pt(111) Au(111) of k‖
L Γ̄ 0.08 −0.31 0.1 −0.5 D3d (C3v) Γ−4 , Γ+

4 (Γ4)
S2 Γ̄ −7.87 −8.0 −7.4 −7.6 Γ+

4 , Γ−4 (Γ4)
S13 Γ̄ 1.55 — — — Γ−4 , Γ+

4 (Γ4)
S′3a K̄ 1.07 — — — D3 (C3) Γ5 ⊕ Γ6 (2Γ6)
S′3b K̄ 0.97 — — — Γ4 (Γ4 ⊕ Γ5)
S4a K̄ −2.35 −2.7 −2.8 −3.7 Γ4 (Γ4 ⊕ Γ5)
S4b K̄ −2.72 −3.1 −3.1 −4.0 Γ5 ⊕ Γ6 (2Γ6)
S4c K̄ −2.74 −3.1 −3.1 −4.0 Γ4 (Γ4 ⊕ Γ5)
S4d K̄ −2.99 −3.5 −3.7 −4.7 Γ4 (Γ4 ⊕ Γ5)
S6 M̄ 2.93 1.6 0.6 — C2h (Cs) Γ−3 ⊕ Γ−4 (Γ3 ⊕ Γ4)
S11 M̄ 1.90 — — — Γ+

3 ⊕ Γ+
4 , Γ−3 ⊕ Γ−4 (Γ3 ⊕ Γ4)

S12 M̄ 0.86 — — — Γ−3 ⊕ Γ−4 (Γ3 ⊕ Γ4)
S7 M̄ −7.00 −6.7 −6.3 −6.6 Γ+

3 ⊕ Γ+
4 , Γ−3 ⊕ Γ−4 (Γ3 ⊕ Γ4)

S10 0.6 K̄ −0.24 −0.8 −1.2 — C2 (C1) Γ3 ⊕ Γ4

S12 0.6 M̄ −1.90 −2.6 −2.6 — Cs (Cs) Γ3 ⊕ Γ4

Table 2.2: Energy and symmetry properties of the surface states discussed in the paper for
the Os(0001), Ir(111), Pt(111), and Au(111) surfaces. The reported symmetry refers to the
slab. In parenthesis, the symmetry relevant for the surface.

as in Ir(111), show a characteristic negative dispersion. At Γ̄ there are two groups of two
degenerate states, transforming as the Γ4+ and Γ4− representations of the D3d group, that
extend up to 0.15 Å−1 along T̄ and to 0.13 Å−1 along Σ̄. Due to the finiteness of the slab
the two surfaces are not perfectly decoupled, so the two groups of states are not exactly
degenerate at Γ̄, although their energy splitting is very small (≈ 0.01 eV). Neglecting this
splitting it is possible to fit them with two parabolas as in the Rashba model [5]:

E± =
~2

2m∗
k2
‖ ± γSO k‖, (2.1)

where k‖ is the magnitude of the wave-vector parallel to the surface, m∗ is the effective
electron mass and γSO is the spin-orbit coupling parameter. γSO and m∗ are obtained by
fitting E+−E− as a function of k‖ with a straight line and E+ +E− with a parabola centered
in Γ̄, respectively. The fit of our data, shown in Fig. 2.3, gives: γSO = (6.1± 0.1)× 10−9 eV
cm, which falls between the values found in Au(111) and Ir(111) (γSO = 4.5×10−9 eV cm [99]
and γSO = 13× 10−9 eV cm [102] respectively). The fitted value of m∗/m = −0.140± 0.001,
where m is the electron mass, is approximately 40% lower in modulus than in Au(111) (0.24)
and Ir(111) (−0.22) 3. Along Σ̄ we find m∗/m = −0.146± 0.002 and a γSO parameter equal,
within the error bar, to the one obtained along T̄ . In Fig. 2.4 (a) we show the sum of charge
densities of the two degenerate states at higher energy that form the La band. The planar
average of the charge density is maximum at the surface and decays toward the center of
the slab. The contour plots suggest that it has mainly s character hybridized with some
d states, as also confirmed by the projection on atomic wavefunctions. We find very small
projections on the unoccupied 6p states.

At lower energies, at the Γ̄ point, we find a group of two two-fold degenerate states
within a PBS gap, similar to the S2 states previously studied in Au(111), Pt(111), and

3A calculation with a 40-layer slab has been performed as well. The fit gives γSO = (6.5 ± 0.3) × 10−9

eV cm, and m∗/m = −0.132± 0.002.
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Figure 2.3: Magnification of the FR electronic band structure around Γ̄. The L states
are shown with blue dots. Red lines show the two Rashba parabolas that fit the energy
dispersion, with the parameters reported in the main text.

Ir(111) [111]. At Γ̄, the S2 states have Γ4+ and Γ4− symmetry, as the L states. Their energy
difference is linear in k‖, as for Rashba split states, although with a smaller value of the
spin-orbit parameter. A fit performed as above gives: γSO = (0.288 ± 0.003) × 10−9 eV cm
and m∗/m = 0.732± 0.005, with identical values, within the error bar, along T̄ and Σ̄.

In Fig. 2.4 (b) we show the charge density for the S2a states, those with higher energy
at Γ̄. The states are localized in the last two atomic layers.

Finally, in Γ̄ there is another group of states, called S13 in Fig. 2.2, that was not discussed
before. They appear in the relaxed surface and, at Γ̄, they have symmetry Γ4+ and Γ4−. In
the non-relaxed surface they are not identified as surface states because their charge density
(≈ 0.47) is slightly below the threshold chosen (0.5). As the L states, they are resonances,
as shown by the planar average of the charge density in Fig. 2.4 (c). The contour plots,
together with the analysis of the projection of the states on atomic orbitals, show that the
S13 states have mainly d character, with main projections on the second and first atomic
layers.

L, S2, and S13 states extend also along a portion of the T̄ line, where they transform as
the Γ3 ⊕ Γ4 representations of C2. Along T̄ we find other PBS gaps as well: the widest ones
contain also some surface states as S10, that cross the Fermi level, and S4, at lower energies.
A small energy gap, in the central part of the T̄ line, contains the S5 states. At variance
with Au(111), Pt(111), and Ir(111) the S10 states are inside a PBS gap, while they were
hybridized with the bulk in the other surfaces.

The main states at the K̄ point are S ′3 (3 couples of empty states) and S4 (4 couples
of occupied states). S ′3a have symmetry Γ5 ⊕ Γ6 (D3 group), while S ′3b have symmetry Γ4

(D3 group). The planar average and contour plots of the charge density of S ′3a are shown
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Figure 2.4: Contour plots and planar average of the charge density corresponding to the
selected FR surface states indicated with red dots in Fig. 2.2. The left subplot shows the
charge density contour plot in the yellow region in Fig. 2.1a, on the top atomic layer of the
slab. The central subplot shows the contour plot in a plane perpendicular to the slab, whose
trace is the green line in Fig. 2.1a. The contours are equally spaced and are indicated with
different colors (red, green, and blue in increasing order of charge density). The first three
atomic layers are shown. The right subplot shows the planar average of the charge density
in one half of the slab. The vacuum is on the right; the x tics represent the positions of the
atomic layers.



2.2. Os(0001) 43

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  1  2  3  4  5

y
 (

a
.u

.)

x (a.u.)

S4a(a)

−10

−8

−6

−4

−2

 0

 2

 0  1  2  3  4

z 
(a

.u
.)

x (a.u.)

S4a(a)

−40 −20  0
 0

 0.1

 0.2

 0.3

|
ψ

(z
)|

2
 (

a
.u

.−
1
)

z (a.u.)

S4a(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  1  2  3  4  5

y
 (

a
.u

.)

x (a.u.)

S4b(b)

−10

−8

−6

−4

−2

 0

 2

 0  1  2  3  4

z 
(a

.u
.)

x (a.u.)

S4b(b)

−40 −20  0
 0

 0.1

 0.2

 0.3

 0.4

|
ψ

(z
)|

2
 (

a
.u

.−
1
)

z (a.u.)

S4b(b)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  1  2  3  4  5

y
 (

a
.u

.)

x (a.u.)

S4c(c)

−10

−8

−6

−4

−2

 0

 2

 0  1  2  3  4

z 
(a

.u
.)

x (a.u.)

S4c(c)

−40 −20  0
 0

 0.1

 0.2

 0.3

 0.4

|
ψ

(z
)|

2
 (

a
.u

.−
1
)

z (a.u.)

S4c(c)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  1  2  3  4  5

y
 (

a
.u

.)

x (a.u.)

S4d(d)

−10

−8

−6

−4

−2

 0

 2

 0  1  2  3  4

z 
(a

.u
.)

x (a.u.)

S4d(d)

−40 −20  0
 0

 0.1

 0.2

 0.3

 0.4

|
ψ

(z
)|

2
 (

a
.u

.−
1
)

z (a.u.)

S4d(d)

Figure 2.5: Contour plots and planar average of the charge density of the S4 surface states
at K̄. The organization of the subplots is the same as in Fig. 2.4.

in Fig. 2.4 (d). These states are almost entirely localized in the first two layers and derive
mainly from d3z2−r2 states. A comparison with the S ′3 states in Ir(111) shows that they have
a similar character, although in Ir(111) they are in a PBS gap.

In the PBS gap located at −3.8 eV < E < −1.8 eV we find the S4 states, whose charge
densities are shown in Fig. 2.5. They are strongly localized on the top atomic layer, with
a very small contribution in the third layer for S4a, S4c, and S4d. To analyze in more detail
their nature, in Fig. 2.6 we compare the FR S4 states with those found in the SR scheme.
In the SR case (Fig. 2.6 (a)), the S4 states are two couples of degenerate states. Along T̄
(T̄ ′) each couple is made up of an even and an odd state with respect to the C2 rotation
about the x ([1̄20]) axis. Their degeneracy is due to the localization of the states in the
outermost atomic layers, not to symmetry. Only at K̄, the two states at higher energy are
exactly degenerate and transform as the E representation of the D3 group, while the states
at lower energy have A1 and A2 symmetry, respectively. The former projects with similar
weights on dx2−y2 , dxy, dxz, and dzy of the first layer, while the latter projects mainly on dxy
and dx2−y2 states, with small projections on dxz and dyz.

In the FR band structure, along the T̄ and T̄ ′ lines all the states have symmetry Γ3 ⊕
Γ4 of the group C2, consistent with the product of the SR representation with the D+

1/2

representation of spin (A ⊗ D+
1/2 = Γ3 ⊕ Γ4, B ⊗ D+

1/2 = Γ3 ⊕ Γ4). At K̄ S4a, S4c, and
S4d have symmetry Γ4 (group D3), while S4b has symmetry Γ5 ⊕ Γ6. Multiplying the SR
symmetries with D+

1/2 we have A1⊗D+
1/2 = Γ4, A2⊗D+

1/2 = Γ4, E⊗D+
1/2 = Γ4⊕Γ5⊕Γ6 and,

as a result, the FR S4 states mix both the SR states. Another consequence of the spin-orbit
effects is the anti-crossing of the states S4b and S4c near K̄ (k‖ = 1.59Å−1).

The surface states found in K̄ extend also partly along T̄ ′ but do not reach M̄ . Near M̄
there are three gaps in the PBS. Two of them, at 2 eV and −3.8 eV, are quite narrow, while
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Figure 2.6: Enlarged view of the S4 surface states around K̄ in the SR (a) and FR (b) case,
respectively.

the third one is between −7 eV < E < −6.5 eV. At variance with Au(111), Pt(111), and
Ir(111) we do not find the gap that contained the Dirac-like S8 states studied in Ref. [101],
and S8 states are not found in Os(0001). Moreover, the gap along Σ̄ that contains the S2

states extends up to the M̄ point and includes also the S7 surface states. The other surface
states at M̄ are, in decreasing order of energy, S6, S11, and S12. S6 is empty, has symmetry
Γ3−⊕Γ4− (C2h group) and is a resonance, as can be seen from the planar average of its charge
density in Fig. 2.4 (e). This state, present in Au(111) (SR) band structure, disappears when
spin-orbit coupling is included (see [99] for more details). It is present also in the FR band
structure of Pt(111) and Ir(111), but it is not located in a PBS gap as in the SR Au(111)
surface. The charge density contours of the S6 states in Au(111) are pretty similar to those
of Os(0001), both in the top atomic layer and perpendicularly to the surface. At M̄ we find
also the states S11 and S12, that belong to the representations Γ3+ ⊕ Γ4+ and Γ3− ⊕ Γ4−
of C2h respectively. They are both resonances, with the main charge contribution coming
from second (S11) or first (S12) layer. S11 have mainly d3z2−r2 character, as shown by the
contour plot in the plane perpendicular to the surface, and smaller components coming from
first layer dxy and dx2−y2 states. Even though we gave them the same names as the states
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present in the same energy region in Ir(111), S11 and S12 look quite different from those of
Ref. [102]. S12 has non-negligible projections on many d states of the first six layers of the
slab and small projection on s states. Finally, again at M̄ , but deeper in energy we have
the S7 states, arranged in two couples of degenerate states, with symmetry Γ3+ ⊕ Γ4+ and
Γ3−⊕Γ4− respectively. In Fig. 2.4 (h) we report the contour plots and planar average of the
charge density of S7, which shows relevant contributions on the first, second and fourth layer.
The S7 states of Os(0001) are in a PBS gap and differ somewhat from those of Au(111). S7

projects on many atomic wavefunctions: the main contributions come from d states of the
first two layers and s states of the top layer.

2.2.2 Spin polarization: results and discussion

In this section we discuss the spin polarization of some of the surface states found above.
The spin polarization can be obtained integrating the planar average of the magnetization
density over half slab:

mα =

∫ L/2

0

mα(z) dz , (2.2)

where the zero of z is taken at the center of the slab and L is its length along z, includ-
ing vacuum. mα(z) in Eq. 2.2 is the planar average of the magnetization density mα

kn(r)
associated to the Bloch state 〈r|ψknσ〉 and is defined as:

mα(z) =

∫
A

mα
kn(x, y, z) dx dy , (2.3)

where A is the yellow shaded region shown in Fig. 2.1 (a), and

mα
kn(r) = µB

∑
σ1 σ2

σσ1σ2
α 〈ψσ1

kn|r〉 〈r|ψ
σ2
kn〉 , (2.4)

where µB is the Bohr magneton and σα are the Pauli matrices. The sum over σ1 and σ2 is
over the spin indices.

Bulk Os and Os(0001) slab have inversion symmetry, and since Os is nonmagnetic and
its Hamiltonian is time-reversal invariant, all the bands are at least two-fold degenerate.
Eq. 2.4 must be generalized accordingly considering the sum of the contributions of the
degenerate states to the magnetization. The surface breaks inversion symmetry, hence we
expect the states to have a non-zero average spin polarization when integrating the sum of
the two magnetization densities in half slab.

The crystal possesses other symmetries as well, like rotations (S), possibly together with
fractional translations (f). They can induce some constraint on the magnetization density,
leading in some cases to a vanishing spin polarization. If {S, f} is an operation of the
small space group of k, or if it is when composed with time-reversal T , the sum of the
magnetization densities of degenerate states must obey the following relationship:

m(r) = ±S̃m(S−1r− S−1f), (2.5)

where S̃ is the proper part of S. The ± signs of Eq. 2.5 distinguish the operations that
require T (− sign) from those that do not require it (+ sign) and are due to the fact that T
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k‖ Slab Surface
Γ̄ D3d ⊗ {E, T } C3v ⊗ {E, T }
T̄ C2h(C2) Cs(C1)
K̄ D3d(D3) C3v(C3)
T̄ ′ C2h(C2) Cs(C1)
M̄ C2h ⊗ {E, T } Cs ⊗ {E, T }
Σ̄ C2h(Cs) Cs(Cs)

Table 2.3: Small groups of k‖ at high symmetry points and high symmetry lines for the slab
(central column) and a single surface (right column).

reverses the sign of the magnetization. For a complete derivation of Eq. (2.5), the interested
reader is referred to Appendices B, E, and F.

Os(0001) space group does not contain any fractional translation, so we have f = 0, and
in the following we focus on the small point group of k.

In addition to its operations one can consider the magnetic point group, obtained by
multiplying the small point group operations by {E, T I} (I is the inversion), since T I leaves
k invariant and I is contained in the slab point group D3d. The magnetic point groups for
the high symmetry lines and points of Os(0001) slab are summed up in the central column of
Table 2.3. For the surface we must remove from these groups the operations that exchange
the two slab surfaces, obtaining the groups listed in the right column of Table 2.3.

For a group that contains T , Eq. 2.5 implies, using S = 1, that m(r) = −m(r), so
m(r) = 0. In Os(0001) this is the case for the small point group of the time-reversal
invariant k points Γ̄ and M̄ .

The states at T̄ , T̄ ′, Σ̄, and K̄, have instead a non-zero magnetization density. We show it
in Fig. 2.7 on the plane xy (the yellow shaded area in Fig. 2.1 (a)) for the states highlighted
with green dots in Fig. 2.2 (a state in each line or point).

Along T̄ the small magnetic point group of k‖, Cs(C1), contains T IC2x = T σy (σy
is the mirror plane perpendicular to x), which inserted in Eq. 2.5 leads to m‖(x, y, z) =

−m‖(−x, y, z), m⊥(x, y, z) = m⊥(−x, y, z), and mz(x, y, z) = −mz(−x, y, z), since S̃ = C2x,
the two-fold rotation about x. As an example we show the state S4a in Fig. 2.7 (a).

Along T̄ ′ the small magnetic point group of k‖, Cs(C1), has elements {E, T σΣ̄}, where
σΣ̄ is the mirror plane (1̄20). Considering T σΣ̄ in Eq. 2.5, we find that m‖ has opposite
signs in the two sides of the mirror σΣ̄, while m⊥ and mz have the same sign, as confirmed
by the state S ′3a (Fig. 2.7 (b)).

Along Σ̄, the small magnetic point group of k‖, Cs(Cs), contains only the operations E
and σΣ̄ and not T or operations that require T . Considering the operation σΣ̄ in Eq. 2.5
one finds that m‖ and mz change sign in the two sides of the mirror σΣ̄, while m⊥ does not,
as shown by the state S11 in Fig. 2.7 (c).

Finally, at the K̄ point the small magnetic point group of k‖ is C3v(C3), with operations
{E, C3, C2

3 , T σy, T σΣ̄, T σΣ̄′}, where σΣ̄′ is the mirror plane (110). Among these, T σy
leads to m‖(x, y, z) = −m‖(−x, y, z), m⊥(x, y, z) = m⊥(−x, y, z), mz(x, y, z) = mz(−x, y, z),
as along T̄ . C3 and C2

3 operations lead to a three-fold rotational symmetry for the mz

component, whereas T σΣ̄ and T σΣ̄′ lead to the mirror planes (1̄20) and (110) for the mz
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Figure 2.7: Magnetization density contour plots in the yellow region in Fig. 2.1a, on the top
atomic layer of the slab, for the selected FR surface states, indicated with green dots in Fig.
2.2. The three subplots show, from left to right, the contour plot of the components parallel
and perpendicular to the high symmetry line, and perpendicular to the slab. The contour
levels are equally spaced and range from a minimum and a maximum value, indicated in the
figure.

component, while they impose more complex constraints on m‖ and m⊥. As an example we
show the state S4a in Fig. 2.7 (d).

In Fig. 2.8 we show, for the same states as in Fig. 2.7, the planar averages of the
components of the magnetization density. The S4a states at T̄ and K̄ show a magnetization
that vanishes after five layers below the surface, while S ′3a and S11 have some non negligible
contribution also in the center of the slab. As a consequence of the symmetries discussed
above, all states have a vanishing component m‖(z) parallel to the high symmetry line: as
a result the spin polarization lies in a plane perpendicular to the high symmetry line. The
states along Σ̄ have also a vanishing z component, so their spin polarization has a fixed
direction, parallel to the surface. Moreover, since K̄ belongs both to T̄ and T̄ ′, both the
components parallel to T̄ and T̄ ′ must vanish, so the states at K̄ have only a z component.
This is in agreement with the conclusions of Ref. [125].

Along T̄ and T̄ ′ the spin polarization can rotate in a plane perpendicular to the high
symmetry line and we investigate its rotation for a few surface states: L, S ′3, S10, shown in
Fig. 2.9, and S4, depicted in Fig. 2.10. We start our analysis from the L states (Fig. 2.9
(a)). Their spin polarization is mainly parallel to the surface and perpendicular to the high
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Figure 2.8: Planar average of the magnetization density for the same states as in Fig. 2.7.
Only one half of the slab is shown. The vacuum is on the right of each plot, while the tics
in the reference line represent the position of the atomic layers.

symmetry line, as predicted by the Rashba model, although a small component perpendicular
to the surface survives along T̄ . The spin gets reverted when crossing the Γ̄ point, due to
the different orientation of the M̄ − Γ̄ and Γ̄ − K̄ lines. The spin flipping is not sudden as
predicted by the Rashba model, due to the residue coupling between the two surfaces that
opens a small gap at Γ̄ (Fig. 2.3).

Next we consider the S ′3 states (Fig. 2.9 (b)-(d)), named S ′3a, S ′3b, and S ′3c in decreasing
order of energy. They show a quite smooth behavior, with a slowly varying spin polarization
along the T̄ ′ line, although there are some differences among them. The spin of S ′3a state
points outside the slab, the spins of S ′3b and S ′3c point towards the slab. Moreover, S ′3b shows
a small rotation of the spin, which points mainly along z, whereas in S ′3a and S ′3c the rotation
is more evident: the spin is oriented mainly along z at K̄ and ends up with a main component
perpendicular to the high symmetry line.

The spin polarization of the S10 states (Fig. 2.9(e)-(f)) evolves more rapidly than in
the S ′3 states: in particular, the most rapid variations are found at about k‖ = 1Å−1. The
variations are due to the anticrossing of the two states (see Fig. 2.2).

Finally we analyze the spin polarizations of the S4 states (Fig. 2.10), that vary rapidly
with k‖ and show a quite complex behavior. Due to symmetry, the m⊥ component must
vanish at K̄, whereas mz is not influenced by symmetry. The most regular evolution is
shown by S4d, for which the mz component is almost constant and always negative; instead
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Figure 2.9: Spin polarization components as a function of k‖ for the FR surface states La,b,
S ′3a,b,c and S10a,b.

the other states show more evident rotations of the spin, which spans a wide range of different
configurations in a quite small region of the high symmetry line. In particular, the S4b and
S4c states show a quite abrupt variation of mz around k‖ = 1.59Å−1. As for the S10 states,
this behavior can be explained observing that at k‖ ≈ 1.59Å−1

S4b and S4c anti-cross. A
more clear representation of the anti-crossing is given in the inset of Fig. 2.10 (b), in which
we show a magnification of the S4b and S4c states around the K̄ point.
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Figure 2.10: Spin polarization components as a function of k‖ for the FR surface states
S4a,b,c,d.

2.3 Re(0001)

2.3.1 Results

In this section, we analyze the Re(0001) 24-layers slab FR band structure, shown in Fig. 2.11
(a). We characterize the main surface states, indicated with red dots in Fig. 2.11 (a), and
compare them with Os(0001) and other previously studied surfaces (e.g. Au(111), Pt(111),
and Ir(111)). We use the same names as in Ref. [103]. Moreover, at the end of the section
we discuss the band structure of a 25-layers slab (Fig. 2.11 (b)).

We start our analysis from the Γ̄ point, where we find two gaps in the PBS. Taking the
Fermi energy as a reference, the first is located 4 eV above it and the second approximately
from −7 eV to −3 eV. The first gap, higher in energy, is similar to the L-gap of the fcc
surfaces and is found in Os(0001) as well. It extends partly along the T̄ and Σ̄ lines. The
second gap, deeper in energy, extends up to half of the T̄ line and along the whole Σ̄ line.
Similarly to Os(0001) and Ir(111), but at variance with Au(111) and Pt(111), no surface
states are found in the L-gap. Below the L-gap, near the Fermi energy, we found two couples
of states (L in Fig. 2.11 (a)) that transform as the Γ−4 and Γ+

4 representations of the D3d

group. Their energy dispersion around Γ̄ is parabolic with negative curvature, as for the
Rashba split states in Os(0001) and Ir(111). In these surfaces we could fit their dispersion
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Figure 2.11: LDA FR-PAW surface band structure of Re(0001). (a) 24-layers slab band
structure, (b) 25-layers slab band structure. The yellow region is the PBS, the light blue and
red lines are the slab electronic states and the blue dots indicate surface states or resonances,
defined as those having a charge density greater than 0.35 on the last two atomic layers of
both surfaces. Energies are measured with respect to the Fermi energy, and the energy
maximum in the figure is the computed work function (5.01 eV). Red dots in (a) indicate
the states shown in Figs. 2.13 and 2.14.

with Eq. (2.1). However, here their dispersions do not cross at Γ̄, as shown in Fig. 2.12 (a),
and even neglecting this splitting it is not possible to fit them with Eq. (2.1). Nevertheless,
at the Fermi energy the two states show a splitting along k‖, due to spin-orbit coupling:
indeed, a comparison with the SR band structure (Fig. 2.12 (b)), shows that this splitting
emerges only in the FR picture. Moreover, the spin texture of the L states at the Fermi
energy is well predicted by the Rashba model (see Section 2.3.2 for more details), so they
behave as Rashba states. In Fig. 2.13 (a) we show the contour plots and the planar average
of the sum of the charge densities at Γ̄ for the La states, the couple higher in energy. The
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Figure 2.12: Magnification of the electronic band structure around Γ̄ in the FR (a) and SR
(b) case. The L states are shown with blue dots.

contour plots suggest that it has mainly s character hybridized with some d states. The
planar average is maximum around the surface and shows a very slow decay towards the
center of the slab, indicating that the L states are resonances. Their evident hybridization
with bulk states, together with the finite size of the slab, might be responsible for the gap
at Γ̄ 4.

At lower energies at Γ̄, there are two couples of states in a PBS gap, similar to the
previously studied S2 states of the other metal surfaces. At Γ̄, they have symmetry Γ+

4 and
Γ−4 . Their energy dispersion has a positive curvature and can be fitted with Eq. (2.1), with:
γSO = (0.200 ± 0.005) × 10−9 eV cm and m∗/m = (0.661 ± 0.003), with identical values,
within the error bar, along T̄ and Σ̄. In particular, γSO is 30 % lower than in Os(0001), while
the effective mass is approximately 10 % lower. The charge density contours and planar
average of the S2a states, those higher in energy, are shown in Fig. 2.13 (b). The states are
surface states mainly localized on the first two atomic layers.

Finally, at Γ̄ there are two couples of empty localized surface states called S13, which
have been characterized in Os(0001) surface. At Γ̄ they transform as the Γ+

4 and Γ−4 rep-

4A calculation with a 40-layers slab has been performed as well: the gap at Γ̄ between La and Lb is the
same as for the 24-layers slab.
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Surface k‖ ε (eV) ε (eV) ε (eV) ε (eV) ε (eV)
State Re(0001) Os(0001) Ir(111) Pt(111) Au(111)
L Γ̄ 0.68 0.08 −0.31 0.1 −0.5
S2 Γ̄ −6.77 −7.87 −8.0 −7.4 −7.6
S13 Γ̄ 3.35 1.55 — — —
S′3a K̄ 2.58 1.07 — — —
S′3b K̄ 2.49 0.97 — — —
S′3c K̄ 2.42 — — — —
S4a K̄ −1.30 −2.35 −2.7 −2.8 −3.7
S4b K̄ −1.72 −2.74 −3.1 −3.1 −4.0
S4c K̄ −1.73 −2.72 −3.1 −3.1 −4.0
S4d K̄ −1.82 −2.99 −3.5 −3.7 −4.7
S12 M̄ 1.68 0.86 — — —
S7 M̄ −5.80 −7.00 −6.7 −6.3 −6.6
S10 0.6 K̄ 1.42 −0.24 −0.8 −1.2 —

Surface k‖ Small Symmetry
State group of k‖
L Γ̄ D3d [D3h] (C3v) Γ−4 ,Γ

+
4 [Γ7,Γ8] (Γ4)

S2 Γ̄ Γ+
4 ,Γ

−
4 [Γ7,Γ8] (Γ4)

S13 Γ̄ Γ+
4 ,Γ

−
4 [Γ7,Γ8] (Γ4)

S′3a K̄ D3 [C3h] (C3) Γ5 ⊕ Γ6 [Γ11 ⊕ Γ12] (2Γ6)
S′3b K̄ Γ4 [Γ7 ⊕ Γ9] (Γ4 ⊕ Γ5)
S′3c K̄ Γ4 [Γ7 ⊕ Γ9] (Γ4 ⊕ Γ5)
S4a K̄ Γ4 [Γ8 ⊕ Γ10] (Γ4 ⊕ Γ5)
S4b K̄ Γ4 [Γ7 ⊕ Γ9] (Γ4 ⊕ Γ5)
S4c K̄ Γ5 ⊕ Γ6 [Γ11 ⊕ Γ12] (2Γ6)
S4d K̄ Γ4 [Γ8 ⊕ Γ10] (Γ4 ⊕ Γ5)
S12 M̄ C2h [C2v] (Cs) Γ+

3 ⊕ Γ+
4 [Γ5] (Γ3 ⊕ Γ4)

S7 M̄ Γ+
3 ⊕ Γ+

4 ,Γ
−
3 ⊕ Γ−4 [Γ5] (Γ3 ⊕ Γ4)

S10 0.6 K̄ C2 [Cs] (C1) Γ3 ⊕ Γ4 [Γ3 ⊕ Γ4] (Γ2)

Table 2.4: Energy and symmetry properties of the surface states discussed in the paper, for
the Re(0001), Os(0001), Ir(111), Pt(111), and Au(111) surfaces. The reported symmetry
refers to the 24-layers slab. In square brackets, the symmetry for the 25-layers slab, in
parentheses, the symmetry relevant for the surface.

resentations of the D3d group. Similarly to Os(0001), they are resonances and they have
mainly d character, with main contributions from the first two atomic layers (Fig. 2.13 (c)).

The states L, S2, and S13 extend partially also along the T̄ line, where they all transform
as the Γ3 ⊕ Γ4 representation of the C2 group. Along T̄ we find some PBS gaps as well: the
widest ones host the S10, S4, and the previously mentioned S2 states. The S10 states are
two couples of degenerate states with symmetry Γ3⊕ Γ4. They cross the Fermi level around
k‖ = 0.51Å−1. As in Pt(111), Ir(111), and Os(0001), they merge with the S ′3 states at K̄.
The S4 states are located inside a PBS gap, they cross the K̄ point and extend along the T̄ ′
line as well. They have symmetry Γ3 ⊕ Γ4.

At K̄ we find four main gaps in the PBS: the highest in energy is located above 3.5 eV,
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Figure 2.13: Contour plots and planar average of the charge density corresponding to the
selected FR surface states indicated with red dots in Fig. 2.11. The left subplot shows the
charge density contour plot in the yellow region in Fig. 2.1a, on the top atomic layer of the
slab. The central subplot shows the contour plot in a plane perpendicular to the slab, whose
trace is the green line in Fig. 2.1a. The contours are equally spaced and are indicated with
different colors (red, green, and blue in increasing order of charge density). The first three
atomic layers are shown. The right subplot shows the planar average of the charge density
in one half of the slab. The vacuum is on the right; the z tics represent the positions of the
atomic layers.

the second one crosses the Fermi level and does not host any surface state, the third one
contains the S4 states, while the fourth one extends down to −3.5 eV. The main surface
states at K̄ are the S ′3 and S4 states. S ′3 are made up of three couples of empty states, that
are named S ′3a, S ′3b, and S ′3c in decreasing order of energy. S ′3a transforms as the Γ5 ⊕ Γ6

representation of the D3 group, while S ′3b and S ′3c have symmetry Γ4. As in Os(0001), they
are not in a PBS gap, they are localized in the first two atomic layers and project mainly on
d3z2−r2 states, as can be seen from the charge density contour lines shown in Fig. 2.13 (d).

The S4 states are located in the PBS gap found at −2 eV < E < −0.3 eV. S4a, S4b, and
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Figure 2.14: Contour plots and planar average of the charge density of the S4 surface states
at K̄. The organization of the subplots is the same as in Fig. 2.13.

S4d transform as the representation Γ4, while S4c transforms as Γ5 ⊕ Γ6. In Fig. 2.14 we
show their charge density, which is peaked on the top atomic layer, with a small contribution
on the third atomic layer for S4a, S4b, and S4d. They have very similar features in Os(0001),
though S4b and S4c exchange their character, as can be argued from the symmetry and the
charge density plots.

The PBS gaps and surface states described at K̄ extend also along the T̄ ′ line. Both
S ′3 and S4 states, along T̄ ′ have symmetry Γ3 ⊕ Γ4 of the C2 group. Moreover, S4b and S4c

anticross near K̄ (k ≈ 1.53Å−1), similarly to Os(0001). Along T̄ ′, near M̄ , we find another
PBS gap, located around −6 eV, that hosts the S7 states. It extends up to M̄ and along the
whole Σ̄ line, as well as the S7 states, that connect to the S2 states at M̄ .

At M̄ , besides the previously mentioned PBS gap and S7 states, we find the S12 states.
They are a couple of degenerate states with symmetry Γ+

3 ⊕Γ+
4 and project on many d states

(Fig. 2.13 (e)). The S7 states, instead, are made up of two couples of states, that belong
to the representations Γ+

3 ⊕ Γ+
4 and Γ−3 ⊕ Γ−4 of the group C2h, respectively. They have a

strong contribution to the charge density (Fig. 2.13 (f)) coming from dx2−y2 and dxy orbitals
localized in the first atomic layer.

The band structure of the 25-layers slab (Fig. 2.11 (b)) is overall very similar to the one
of the 24-layers slab and the surface states are located at the same energies in both slabs.
Nevertheless there are minor differences, due to the different symmetries of the two slabs. In
particular, since the 25-layers slab lacks inversion symmetry (its point group is D3h), only
the k - −k Kramers degeneracy remains, and a spin splitting may appear, along some lines.
This is the case of the lines T̄ and T̄ ′, in which states of different symmetry (in our case,
even and odd with respect to the mirror plane σh) are split. The spin splitting is different
for different states: it can be very small as, e.g., ≈ 10−6 eV for the S4 states, or larger as
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Figure 2.15: (a) Fermi surface of the Re(0001) 24-layers slab. The light blue region is the
Irreducible Brillouin Zone (IBZ). (b) The La,b surface states contours shown in comparison
with the SBZ. (c) Magnification of the La,b surface states contours at the Fermi energy. The
black dots indicate the surface states, the arrows indicate the spin polarization parallel to
the surface, and they are colored depending on the magnitude of the z component of the
spin polarization. (d) z component of the spin polarization for the states La,b as a function
of Φk = tan−1(ky/kx).

≈ 0.03 eV for the S ′3 states, and it decreases increasing the slab thickness 5. At variance
with the states along T̄ and T̄ ′, the states along Σ̄ are doubly degenerate because the C2v

double group has only one two-dimensional irreducible representation, Γ5.

2.3.2 Spin polarization: results and discussion

In this section we discuss the spin polarization of some of the surface states found above.
The spin polarization can be obtained integrating the planar average of the magnetization
density over half slab (see Section 2.2.2 for more details, in particular Eqs. (2.2), (2.3), and
(2.4)).

We start our discussion from the L states. In particular, we consider their contribution
to the Fermi surface and their spin texture at the Fermi energy. The results are shown in
Fig. 2.15. The Fermi surface of the slab is shown in Fig. 2.15 (a), while the contour levels of

5A band structure calculation of a 41-layers slab shows that the spin splittings decrease, but quite slowly:
for instance, the splitting of the S′3 states decreases of about 30 %.
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the L states, shown in Fig. 2.15 (b) (compared with the SBZ) are magnified in Fig. 2.15 (c):
they have been obtained with a cubic interpolation of the energies of the states computed
in a 14 × 14 square mesh of k points centered in Γ̄. The spin polarization, computed via
Eq. (2.2), is represented by arrows whose length is proportional to the component of the
spin parallel to the surface. The arrows are colored according to the magnitude of the spin
polarization (Eq. 2.2) perpendicular to the surface, as indicated by the color map in the
Figure. The Lb states have a circular Fermi surface, whereas the shape of the La states is
more influenced by the underlying lattice. The component of the spin polarization parallel
to the surface is perpendicular to the wavevector for both states, and it rotates clockwise and
counter-clockwise for the two states, respectively. This is in agreement with the prediction
of the Rashba model [5], so the L states appear as Rashba split states at the Fermi level,
although it has not been possible to fit their energy dispersion with Eq. (2.1). In particular,
given the dependence of the Rashba spin texture on the sign of both the effective mass
and the spin-orbit coupling parameter [126], our results are consistent with a Rashba model
with γSO > 0. Due to the presence of the underlying atomic layers, the spin polarization
shows a non vanishing component perpendicular to the surface. As shown in Fig. 2.15 (d),
this component oscillates around zero along the contour levels, with a period of 2π/3 as a
consequence of the symmetry of the lattice, with opposite phase for La and Lb.

Along the T̄ and T̄ ′ high symmetry lines the spin polarization can rotate in a plane
perpendicular to the line, as explained in Refs. [103], [125], and previously in Section 2.3.2.
In this work we consider the rotation of the spin polarization of the states S ′3, S10 (Fig. 2.16),
and S4 (Fig. 2.17).

The S ′3 states (Figs. 2.16 (a)-(c)) have been studied along the whole T̄ ′ line: at K̄ the
states have only a non-zero z (perpendicular to the surface) component of the spin polariza-
tion, due to symmetry constraints, while at M̄ their spin polarization vanishes because M̄ is
a time-reversal invariant point. The spin polarization of S ′3a is mainly perpendicular to the
surface: the z component decreases along the T̄ ′ line, in a similar fashion as in Os(0001).
The S ′3b states show a more pronounced rotation: the z component changes sign along the
high symmetry line, and the component perpendicular to T̄ ′ spans a wide range of values, at
variance with Os(0001). Finally, the S ′3c states have a rotating spin along T̄ ′, which always
points towards the center of the slab: its behaviour is similar to what shown in Os(0001).

The S10 states show a smooth evolution of the spin polarization in the region 0.55Å−1
<

k‖ < 1Å−1, as shown in Figs. 2.16 (d)-(e): in particular, S10a and S10b have opposite spin.
Around k‖ ≈ 0.55Å−1 and k‖ ≈ 1Å−1 the spin polarization rotates more rapidly, because the
two states anti-cross. Overall, their behaviour is similar to that shown by Os(0001).

Finally, the S4 states (Fig. 2.17) show a spin texture along T̄ and T̄ ′ very similar to
Os(0001). In particular, the smoothest behaviour is shown by S4d, for which the spin always
points towards the slab. S4b and S4c have a rapidly varying spin, even in a very narrow
range of k‖ as shown in Fig. 2.17 (b)-(c), due to their mixing and anticrossing around K̄: a
comparison with Os(0001) shows that their features are exchanged, as pointed out by their
symmetry (see Table 2.4).

Similar calculations have been performed for the 25-layers slab as well. The results are
very similar to those discussed above, in particular for the S4 and S10 states, which have the
same energy dispersion in the two systems. Instead, the spin polarization of the S ′3 states
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Figure 2.16: Spin polarization components as a function of k‖ for the FR surface states S ′3a,b,c
and S10a,b. m‖ and m⊥ are the spin polarization components parallel to the surface: they
are parallel and perpendicular to the high symmetry line, respectively. mz is the component
perpendicular to the surface.

shows a somehow different behavior, characterized by more rapid variations, which might
be due to the mixing of the states caused by their non-negligible spin splitting. However, as
pointed out before, the spin splitting decreases, though slowly, with increasing slab thickness,
so we expect a better agreement using a thicker slab.
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Figure 2.17: Spin polarization components as a function of k‖ for the FR surface states
S4a,b,c,d. The convention on m‖, m⊥, and mz is the same as in Fig. 2.16

2.4 Closing remarks
The results presented and discussed in this work have been obtained within the DFT-LDA
scheme. The Kohn-Sham eigenvalues are distinct from the quasi-particle energies, so in prin-
ciple many-body corrections might be necessary for a detailed comparison with experiment.
Yet, these calculations are more computationally demanding and are usually carried out only
in those cases in which LDA is not sufficient to explain the experimental results. In the other
surfaces mentioned, the main features of the bands, such as the presence or absence of L-gap
states, are well predicted by DFT-LDA, while the exact energy positions of the surface states
might have small shifts.
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Density Functional Perturbation

Theory with Fully Relativistic
Ultrasoft Pseudopotentials: the

magnetic case

Density Functional Perturbation Theory (DFPT) is widely used for the computation of the
linear response properties of solids, and in particular for the study of their lattice dynamics
[42–49]. Some years ago, DFPT has been applied [49] to a scheme based on PWs and
NC or US [83] PPs, that allow the introduction of spin-orbit effects within a FR density
functional formalism [40] and can be written in a form very similar to the SR one. However,
the theory presented in Ref. [49] was implemented only for time-reversal-invariant systems,
and therefore applications that include spin-orbit so far have been limited to non-magnetic
solids [49, 127].

In the first part of this Chapter, Section 3.2, we consider the DFPT for generic perturba-
tions in the non-collinear FR case, as presented in Ref. [49], and we discuss its extension to
deal with magnetic systems, by explicitly considering the presence of an exchange-correlation
magnetic field in the Hamiltonian. DFPT equations in presence of a magnetic field have been
recently written to calculate magnons with NC PPs in Refs. [51] and [52]. In Ref. [51], the
charge density induced by a periodic perturbation was computed by using the response to a
perturbation at wave vector q and the response to a perturbation at −q, while in Ref. [52]
the problem at −q was not solved, but the time-reversal operator was used to obtain a second
Sternheimer equation with a reversed magnetic field. The two formulations are equivalent.

In Section 3.3, we generalize the theory of Ref. [52] to a phonon perturbation, avoiding
the study of the response at −q, and write it in a form suitable for both NC and US PPs.

In presence of a magnetic field, the solid is invariant upon the symmetry operations of
the magnetic space group. Some of these operations require the time-reversal operator. In
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Section 3.4, we discuss how to exploit these symmetries for the symmetrization of the induced
charge and magnetization densities and for the dynamical matrix.

Finally, in Section 3.5, we validate our method in ferromagnetic fcc Ni first computing the
phonon frequencies at the X point in the BZ via the frozen phonon method and comparing
with DFPT results, and then by computing the phonon dispersions. Moreover, we apply our
method to a monatomic ferromagnetic Pt nanowire and compare its vibrational properties
when the magnetization is parallel or perpendicular to the wire. Also for this case, we
compare the DFPT results to the frozen phonon method for a phonon perturbation with
wavevector q = π/a and q = π/2a, and then we compute by DFPT the phonon dispersion
in the one-dimensional BZ.

3.1 A recap on lattice dynamics in the harmonic
approximation

Within the BO adiabatic approximation, mentioned in Section 1.1, the atomic nuclei move
in a potential energy given by the total energy Etot of the electronic system. Conversely,
the electronic total energy depends parametrically on the nuclear positions Rµ + ds and the
electrons are assumed to be in the ground state for each nuclear configuration.

We model a generic lattice distortion by introducing the atomic displacements uµs. For
displacements of small amplitude |u| we can perform a Taylor expansion of Etot. In the
harmonic approximation this expansion is truncated at second order, and Etot reads

Etot[{R + u}] = Etot[{R}] +
∑
µsα

dEtot

duµsα
uµsα +

1

2

∑
µsα

∑
νs′β

d2Etot

duµsαduνs′β
uµsα uνs′β, (3.1)

where α and β identify the cartesian coordinates, and the derivatives are computed at u = 0.
The classical dynamics of the nuclei is described by the Newton’s equations of motion which,
at equilibrium (dEtot/duµsα = 0), read:

Ms
d2uµsα
dt2

= −
∑
νs′β

d2Etot

duµsαduνs′β
uνs′β, (3.2)

where Ms identifies the mass of the s-th atom in the unit cell. We look for solutions in the
form of a phonon perturbation at finite wave vector q:

uµsα(t) =
1√
Ms

Re
(
usα(q) eı̇q·Rµ e−ı̇ωqt

)
, (3.3)

where ωq is the frequency of the lattice vibration and usα(q) is the (complex) phonon mode
amplitude. Eq. (3.2) thus becomes:

ω2
q usα(q) =

∑
s′β

1√
MsMs′

Φ sα
s′β

(q)us′β(q), (3.4)
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where 1/
√
MsMs′ Φsαs′β(q) is the dynamical matrix at wave vector q. Φsαs′β(q) is defined

as:

Φ sα
s′β

(q) =
1

N

∑
µν

e−ı̇q·Rµ
d2Etot

duµsαduνs′β
eı̇q·Rν , (3.5)

where N is the number of unit cells in the solid. As a result, ωq and usα(q) are the eigenvalues
and the eigenvectors of the dynamical matrix, respectively.

The second-order derivatives of Etot, known also as interatomic force constants, play a
crucial role, in that they allow to compute the dynamical matrix and, ultimately, the phonon
frequencies and the phonon modes. Below we start by addressing the calculation of the
interatomic force constants when Etot is computed within the non-collinear DFT formalism
with the FR US PPs scheme, discussed in Section 1.9.2.

3.2 Formulation with generic perturbations

3.2.1 Second-order energy derivatives: introduction

If we consider a generic perturbation λ, the generalized force, computed as the first-order
derivative of the total energy with respect to λ, follows directly from the HF theorem (see
Section 1.5 and Eqs. (1.71) and (1.127)) and reads:

dEtot

dλ
=
∑
i

∑
σ1

θ̃F,i 〈ψσ1
i |φ

λ[B]σ1

i 〉 , (3.6)

with

|φλ[B]σ1

i 〉 =
∑
σ2

[
∂V

[B]σ1σ2

KS

∂λ
− εi

∂Sσ1σ2

∂λ

] ∣∣∣∣ψσ2
i

〉
, (3.7)

where the superscript [B] identifies the exchange-correlation magnetic field Bxc in VKS. Here-
after we will adopt the total derivative symbol d to identify derivatives where the one-particle
wave functions |ψσi 〉 are considered as implicit functions of λ, whereas the partial derivative
symbol ∂ will refer to derivatives computed assuming fixed wave functions. The partial
derivative of the KS potential appearing in Eq. (3.7) thus reads:

∂V
[B]σ1σ2

KS

∂λ
=
∂V σ1σ2

NL

∂λ
+
∑
σ3

∫
d3r

∂Vloc(r)

∂λ
Kσ3σ3
σ1σ2

(r) +
∑
σ3 σ4

∫
d3r V

[B]σ3σ4

LOC (r)
∂Kσ3σ4

σ1σ2
(r)

∂λ
. (3.8)

The mixed second-order derivative of the total energy is computed by taking the deriva-
tive of Eq. (3.6), and contains three terms. The first term accounts for the change in the
occupation numbers θ̃F,i:

d2E
(a)
tot

dµdλ
=
∑
i

∑
σ1

dθ̃F,i
dµ
〈ψσ1

i |φ
λ[B]σ1

i 〉 , (3.9)
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the second one keeps into account the derivatives of the energy levels εi and of the wave
functions |ψσi 〉:

d2E
(b)
tot

dµdλ
=−

∑
i

∑
σ1 σ2

θ̃F,i
dεi
dµ

〈
ψσ1
i

∣∣∣∣∂Sσ1σ2

∂λ

∣∣∣∣ψσ2
i

〉
+
∑
i

∑
σ1

θ̃F,i

[〈
dψσ1

i

dµ

∣∣∣∣φλ[B]σ1

i

〉
+

〈
φ
λ[B]σ1

i

∣∣∣∣dψσ1
i

dµ

〉]
,

(3.10)

and the third term contains the expectation value of the mixed second-order derivative of
the potential, generalized to the US scheme:

d2E
(c)
tot

dµdλ
=
∑
i

∑
σ1 σ2

θ̃F,i

〈
ψσ1
i

∣∣∣∣ ddµ
(
∂V

[B]σ1σ2

KS

∂λ

)
− εi

∂2Sσ1σ2

∂µ∂λ

∣∣∣∣ψσ2
i

〉
. (3.11)

The term d2E
(b)
tot/dµdλ depends on the first-order derivative of the KS orbitals, which can

be computed by applying the time-independent first-order perturbation theory to the KS
equations, a widely used and well known technique [43], that we briefly summarize below.

3.2.2 First-order perturbation theory: a brief introduction

In first-order perturbation theory the quantities appearing in the KS equations are expanded
at first order in the external perturbation µ:

εi = ε
(0)
i +

dεi
dµ

µ, (3.12)

|ψσ1
i 〉 = |ψ(0)σ1

i 〉+

∣∣∣∣dψσ1
i

dµ

〉
µ, (3.13)

V
[B]σ1σ2

KS = V
(0) [B]σ1σ2

KS +
dV

[B]σ1σ2

KS

dµ
µ, (3.14)

where the superscript (0) identifies the unperturbed quantities. In the US scheme, the overlap
matrix is written in a similar way because the projectors |β〉 may depend on the external
perturbation:

Sσ1σ2 = S(0)σ1σ2 +
dSσ1σ2

dµ
µ. (3.15)

In the following, for the sake of simplicity we will drop the superscript (0) from the unper-
turbed quantities.

By introducing in the KS equations (Eq. (1.163)) the first-order expansions reported
above, and keeping only the linear terms, we get the following linear system:

∑
σ2

(
H

[B]σ1σ2

KS − εiSσ1σ2

) ∣∣∣∣dψσ2
i

dµ

〉
= −

∑
σ2

dV
[B]σ1σ2

KS

dµ
|ψσ2
i 〉+

∑
σ2

(
dεi
dµ

Sσ1σ2 + εi
dSσ1σ2

dµ

)
|ψσ2
i 〉 ,

(3.16)
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whose solution is the first-order derivative of the KS orbitals. Eq. (3.16) is known in
literature as Sternheimer linear system. The total derivative of the KS potential appearing
on the right-hand side reads:

dV
[B]σ1σ2

KS

dµ
=
∂V

[B]σ1σ2

KS

∂µ
+
∑
σ3 σ4

∫
d3r

dV
[B]σ3σ4

H,xc (r)

dµ
Kσ3σ4
σ1σ2

(r), (3.17)

and differs from the partial derivative of V [B]σ1σ2

KS (Eq. (3.8)) for the presence of the self-
consistent term dV

[B]σ3σ4

H,xc (r)/dµ [49]:

dV
[B]σ3σ4

H,xc (r)

dµ
=

[
δVH,xc
δn(r)

dn(r)

dµ
+

3∑
α=1

δVH,xc
δmα(r)

dmα(r)

dµ

]
δσ3σ4 − µB

3∑
β=1

[
δBxc,β

δn(r)

dn(r)

dµ

+
3∑

α=1

δBxc,β

δmα(r)

dmα(r)

dµ

]
σσ3σ4
β .

(3.18)

dV
[B]σ3σ4

H,xc (r)/dµ depends on the induced charge and magnetization densities, which in turn
depend on the response of the wave functions (see Section 3.2.3), hence the right-hand side
of the Sternheimer linear system depends on the solutions of the system itself: in practical
calculations, Eq. (3.16) is solved with a self-consistent approach, similarly to that used for
the KS equations.
|dψσi /dµ〉 can be alternatively expressed in the basis of the unperturbed wave functions:

indeed, contraction of Eq. (3.16) with 〈ψσj | (j 6= i) gives:

∑
σ1 σ2

〈ψσ1
j |Sσ1σ2

∣∣∣∣dψσ2
i

dµ

〉
= −

∑
σ1 σ2

〈
ψσ1
j

∣∣∣∣dV [B]σ1σ2

KS

dµ
− εi

∂Sσ1σ2

∂µ

∣∣∣∣ψσ2
i

〉
εj − εi

. (3.19)

The change of the energy levels, instead can be obtained by contracting Eq. (3.16) with
〈ψσi |:

dεi
dµ

=
∑
σ1 σ2

〈
ψσ1
i

∣∣∣∣dV [B]σ1σ2

KS

dµ
− εi

∂Sσ1σ2

∂µ

∣∣∣∣ψσ2
i

〉
. (3.20)

3.2.3 Induced densities

The induced charge and magnetization densities, appearing in the self-consistent term dV σ1σ2
H,xc /

dµ (Eq. (3.18)) in the Sternheimer linear system, can be computed by taking the derivative
of Eqs. (1.38) and (1.39):

dn(r)

dµ
=
∑
σ

dnσσ(r)

dµ
, (3.21)

dmα(r)

dµ
= µB

∑
σ σ′

dnσσ
′
(r)

dµ
σσσ

′

α . (3.22)
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dnσσ
′
(r)/dµ is the induced spin density: it can be computed by differentiating Eq. (1.161)

and is made up of three terms. The first one is typical of metals and accounts for the change
in the occupation numbers:(

dnσσ
′
(r)

dµ

)(a)

=
∑
i

∑
σ1 σ2

dθ̃F,i
dµ
〈ψσ1

i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉 , (3.23)

the second one contains the change in the wave functions:(
dnσσ

′
(r)

dµ

)(b)

=
∑
i

∑
σ1 σ2

θ̃F,i

[〈
dψσ1

i

dµ

∣∣∣∣Kσσ′

σ1σ2
(r)|ψσ2

i 〉+ 〈ψσ1
i |Kσσ′

σ1σ2
(r)

∣∣∣∣dψσ2
i

dµ

〉]
, (3.24)

and the third one characterizes the US scheme and contains the derivative of the kernel K:(
dnσσ

′
(r)

dµ

)(c)

=
∑
i

∑
σ1 σ2

θ̃F,i

〈
ψσ1
i

∣∣∣∣∂Kσσ′
σ1σ2

(r)

∂µ

∣∣∣∣ψσ2
i

〉
. (3.25)

The terms (a) and (b) can be further manipulated. First of all, in term (a) the derivative of
the occupation numbers can be written as:

dθ̃F,i
dµ

=
1

η
δ̃F,i

(
dεF
dµ
− dεi
dµ

)
, (3.26)

then we write explicitly dεi/dµ using Eq. (3.20). In term (b), instead we exploit Eq. (3.19)
together with analytical tricks to deal with the fractional occupation numbers. Finally, we
introduce the following auxiliary quantities [47,49]:

|∆µψσ1
i 〉 =

1

2η
δ̃F,i

dεF
dµ

+
∑
j

∑
σ2 σ3

θ̃F,i − θ̃F,j
εi − εj

θj,i |ψσ1
j 〉
〈
ψσ2
j

∣∣∣∣
[
dV

[B]σ2σ3

KS

dµ
− εi

∂Sσ2σ3

∂µ

] ∣∣∣∣ψσ3
i

〉
,

(3.27)

|δµψσ1
i 〉 =

∑
j

∑
σ2σ3

(
θ̃F,iθi,j + θ̃F,jθj,i

)
|ψσ1
j 〉
〈
ψσ2
j

∣∣∣∣∂Sσ2σ3

∂µ

∣∣∣∣ψσ3
i

〉
, (3.28)

∆µnσσ
′
(r) = −

∑
i

∑
σ1σ2

〈δµψσ1
i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉+
∑
i

∑
σ1σ2

〈
ψσ1
i

∣∣∣∣∂Kσσ′
σ1σ2

(r)

∂µ

∣∣∣∣ψσ2
i

〉
, (3.29)

where θi,j = θ(εi−εj) and θ(x) is the Heaviside step function, while θ̃F,i = θ̃(εF−εi) represents
the occupation function approximated with the smearing technique (see Section 1.6). As a
final result, summing up the three terms (a), (b), and (c), the induced spin density reads:

dnσσ
′
(r)

dµ
=
∑
i

∑
σ1 σ2

[
〈ψσ1

i |Kσσ′

σ1σ2
(r)|∆µψσ2

i 〉+ 〈∆µψσ1
i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉
]

+ ∆µnσσ
′
(r). (3.30)

The quantities introduced in Eqs. (3.27), (3.28), and (3.29) to lighten the expression of the
induced spin density generalize the formulation of DFPT to metallic systems and to the US
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scheme. In particular, it is worthwhile to note that |∆µψσi 〉 is directly linked to the derivative
of the wave functions, as can be inferred from Eq. (3.19). Indeed, in insulators dεF/dµ = 0
and θ̃(x) = θ(x), thus Eq. (3.27) becomes:

|∆µψσ1
i 〉 =

∑
σ2

P σ1σ2
c

∣∣∣∣dψσ2
i

dµ

〉
, (3.31)

where:
P σ1σ2
c =

∑
j∈unocc.

∑
σ3

|ψσ1
j 〉 〈ψ

σ3
j |Sσ3σ2 (3.32)

is the projector over the conduction states. Pc is ubiquitous in DFPT, since all the relevant
quantities, such as the charge density response and the force constants (see Section 3.2.5
below), can be expressed in terms of Pc |dψσi /dµ〉 in the NC PPs scheme, a milestone of
DFPT presented in 1987 [42]. This is not strictly true in the US formulation, because the
spin density response contains also the induced augmentation density matrix, ∆µnσσ

′
(r),

which depends on |δµψσi 〉, a quantity reminiscent of the projection of |dψσi /dµ〉 over the
occupied states, non-vanishing only if the orthonormalization constraints are variable.

Here we focus on the contributions to the induced spin density that contain |∆µψσi 〉. In
literature, they have been always written by exploiting the hermiticity of K, which implies
that the two terms are the complex conjugate of each other [43, 46,47,49]:

∑
σ1 σ2

〈∆µψσ1
i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉 =

[∑
σ1 σ2

〈ψσ1
i |Kσσ′

σ1σ2
(r)|∆µψσ2

i 〉

]∗
, (3.33)

therefore Eq. (3.30) has been written as [49]:

dnσσ
′
(r)

dµ
= 2Re

[∑
i

∑
σ1 σ2

〈ψσ1
i |Kσσ′

σ1σ2
(r)|∆µψσ2

i 〉

]
+ ∆µnσσ

′
(r), (3.34)

where Re identifies the real part. Eq. (3.34) is always valid and, in particular, it holds
also for magnetic systems. However, it is not convenient to use when we specialize the
formulation to a phonon perturbation in a non-collinear magnetic system (see Section 3.3
for more details). In this Thesis, we present a different approach which, by exploiting the
properties of the time-reversal operator, allows to write the second term in the induced spin
density (Eq. (3.30)) in terms of the time-reversed wave functions and the time-reversed
responses [128]. The method, based on what has been recently proposed (in the NC scheme)
for the calculation of magnons [52], is necessary to deal with the non-collinear magnetic case
where, after introducing the (complex) spin density response to a perturbation with wave
vector q, the two contributions that depend on the response of the wave functions are not
related to each other. We introduce the time-reversal operator:

T = UK, (3.35)

an antiunitary operator [129] (see also Appendix B for a summary of the properties of
antilinear operators and for a definition of the time-reversal operator, both in the spinless
and the spin-1/2 cases) where:

U = ı̇σy (3.36)



68
Density Functional Perturbation Theory with Fully Relativistic Ultrasoft

Pseudopotentials: the magnetic case

is the unitary part, while K is the complex conjugation operator (an antilinear operator).
Since T is antiunitary, it follows that T †T = 1, which can be inserted in the second term of
Eq. (3.30) to get:

dnσσ
′
(r)

dµ
=
∑
i

∑
σ1σ2

[
〈ψσ1

i |Kσσ′

σ1σ2
(r) |∆µψσ2

i 〉

+
∑
σ3σ4

〈(T ψi)σ1|
(
T σ1σ3 Kσ′σ

σ3σ4
(r) T †σ4σ2 |(T ∆µψi)

σ2〉
)]

+ ∆µnσσ
′
(r).

(3.37)

As a result, the spin density response contains a term with the wave functions |ψσi 〉 and the
response |∆µψσi 〉, and another term with the time-reversed wave functions |(T ψi)σ〉 and the
time-reversed responses |(T ∆µψi)

σ〉. The induced charge density and magnetization density
follow according to Eqs. (3.21) and (3.22). Following the complete derivation reported in
Appendix G (see also Appendix D for an explanation on how to deal with the action of the
time-reversal operator in the US kernel K), they read:

dn(r)

dµ
=
∑
i

∑
σ

∑
σ1 σ2

[
〈ψσ1

i |Kσσ
σ1σ2

(r)|∆µψσ2
i 〉+ 〈(T ψi)σ1 |Kσσ

σ1σ2
(r)|(T ∆µψi)

σ2〉
]

+
∑
σ

∆µnσσ(r), (3.38)

dmα(r)

dµ
= µB

∑
i

∑
σ σ′

∑
σ1 σ2

[
〈ψσ1

i |Kσσ′

σ1σ2
(r)|∆µψσ2

i 〉 − 〈(T ψi)
σ1 |Kσσ′

σ1σ2
(r)|(T ∆µψi)

σ2〉
]
σσσ

′

α

+µB
∑
σσ′

∆µnσσ
′
(r)σσσ

′

α . (3.39)

It is important to notice that the term containing the time-reversed wave functions con-
tributes with a − sign to the induced magnetization density, because the spin changes sign
under the action of the time-reversal.

3.2.4 Sternheimer linear system

When dealing with metals, the response of the wave functions appearing in the induced spin
density has to be generalized by introducing |∆µψσi 〉 (Eq. (3.27)), therefore the Sternheimer
linear system presented above (Eq. (3.16)) has to be generalized accordingly [45]. In the US
case, this has been done in Ref. [47] for the spin-polarized case (in the LSDA formulation).
Later, it has been generalized to the non-collinear FR case in the following way [49]:

∑
σ2

[
H

[B]σ1σ2

KS +Qσ1σ2 − εiSσ1σ2

]
|∆µ

ψσ2
i 〉 = −

∑
σ2σ3

P †σ1σ2

c,i

[
dV

[B]σ2σ3

KS

dµ
− εi

∂Sσ2σ3

∂µ

] ∣∣∣∣ψσ3
i

〉
,

(3.40)
with

P †σ1σ2

c,i = θ̃F,i δ
σ1σ2 −

∑
j

∑
σ3

βij S
σ1σ3 |ψσ3

j 〉 〈ψ
σ2
j | . (3.41)
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Qσ1σ2 in the left-hand side of Eq. (3.40) is an operator, non-vanishing only in the valence
states, that makes the linear system non-singular [45,47,49]:

Qσ1σ2 =
∑
j

∑
σ3 σ4

αj S
σ1σ3 |ψσ3

j 〉 〈ψ
σ4
j |Sσ4σ2 , (3.42)

with
αj = max(εF − 3η − εj, 0), (3.43)

where η is the smearing parameter. If one projects Eq. (3.40) on the unperturbed states, it
follows that by choosing the coefficient βij as

βij = θ̃F,i θi,j + θ̃F,j θj,i + αj
θ̃F,i − θ̃F,j
εi − εj

θj,i, (3.44)

the solution |∆µ
ψσi 〉 is [49]:

|∆µ
ψσ1
i 〉 = |∆µψσ1

i 〉 −
1

2η
δ̃F,i

dεF
dµ

, (3.45)

with |∆µψσi 〉 being the wave functions response given by Eq. (3.27).
In Eq. (3.40), the right-hand side depends on the derivative of the spin-dependent,

self-consistent, Hartree and exchange-correlation potential. Using Eq. (3.17) we can write:

∑
σ3

[
dV

[B]σ2σ3

KS

dµ
− εi

∂Sσ2σ3

∂µ

] ∣∣∣∣ψσ3
i

〉
= |φµ[B]σ2

i 〉+
∑

σ3 σ4 σ5

∫
d3r

dV
[B]σ4σ5

H,xc (r)

dµ
Kσ4σ5
σ2σ3

(r) |ψσ3
i 〉 ,

(3.46)
where |φµ[B]σ

i 〉 is the non-self-consistent part of the induced potential:

|φµ[B]σ2

i 〉 =
∑
σ3

[
∂V

[B]σ2σ3

KS

∂µ
− εi

∂Sσ2σ3

∂µ

] ∣∣∣∣ψσ3
i

〉
. (3.47)

In the alternative approach introduced in this Thesis and discussed for the induced spin
density in Section 3.2.3, we need also the time-reversed response of the wave functions,
|(T ∆µψi)

σ〉, which can be obtained as the solution of the following linear system:

∑
σ2

[
H

[−B]σ1σ2

KS +Qσ1σ2 − εiSσ1σ2

]
|
(
T ∆

µ
ψi
)σ2〉 = −

∑
σ2

Π†σ1σ2

c,i

[
|φµ[−B]σ2

T i 〉

+
∑

σ3 σ4 σ5

∫
d3r

dV
[−B]σ4σ5

H,xc (r)

dµ
Kσ4σ5
σ2σ3

(r)|(T ψi)σ3〉
]
,

(3.48)

which has been obtained by applying T to both sides of the Sternheimer linear system (Eq.
(3.40)), similarly to what proposed in Ref. [52] for the calculation of magnons in the NC
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case. In particular, we introduced the time-reversed non-self-consistent contribution to the
induced potential, represented by the vector:

|φµ[−B]σ2

T i 〉 =
∑
σ3

T σ2σ3 |φµ[B]σ3

i 〉

=
∑
σ3

[
∂V

[−B]σ2σ3

KS

∂µ
− εi

∂Sσ2σ3

∂µ

] ∣∣∣∣ (T ψi)σ3

〉
,

(3.49)

and the time-reversed projector on the conduction manifold [52], namely:

Π†σ1σ2

c,i =
∑
σ3σ4

T σ1σ3P †σ3σ4

c,i T †σ4σ2 , (3.50)

Notably, the effect of the time-reversal operator in Eq. (3.48) is to change sign to every term
that contains a linear coupling with the spin, represented by the Pauli matrices (because
T σαT † = −σα), an effect that can be equivalently achieved by changing sign to the exchange-
correlation magnetic field Bxc. In the Sternheimer linear system, the objects that depend
on Bxc are the KS Hamiltonian, appearing on the left-hand side, and the non-self-consistent
and the self-consistent terms of the induced potential, appearing on the right-hand side. In
particular, we have: ∑

σ3 σ4

T σ1σ3 H
[B]σ3σ4

KS T †σ4σ2 = H
[−B]σ1σ2

KS , (3.51)

∑
σ3 σ4

T σ1σ3
∂V

[B]σ3σ4

KS (r)

∂µ
T †σ4σ2 =

∂V
[−B]σ1σ2

KS (r)

∂µ
, (3.52)

∑
σ3 σ4

T σ1σ3
dV

[B]σ3σ4

H,xc (r)

dµ
T †σ4σ2 =

dV
[−B]σ1σ2

H,xc (r)

dµ
. (3.53)

3.2.5 Second-order energy derivatives: further analysis

The second-order derivative of the total energy may be further manipulated. Starting from
the expression of the terms (a), b, and c presented above (Eqs. (3.9), (3.10), and (3.11),
respectively), we use Eq. (3.26) in d2E

(a)
tot/dµdλ, then we write explicitly the quantity

d/dµ(∂V
[B]σ1σ2

KS /∂λ) appearing in d2E
(c)
tot/dµdλ:

d

dµ

(
∂V

[B]σ1σ2

KS

∂λ

)
=
∂2V

[B]σ1σ2

KS

∂µ∂λ
+
∑
σ3σ4

∫
d3r

dV
[B]σ3σ4

H,xc(r)

dµ

∂Kσ3σ4
σ1σ2

(r)

∂λ
, (3.54)

where the explicit expression of the second-order partial derivative of the KS potential is:

∂2V
[B]σ1σ2

KS

∂µ∂λ
=
∂2V σ1σ2

NL

∂µ∂λ
+
∑
σ3

∫
d3r

∂2Vloc(r)

∂µ∂λ
Kσ3σ3
σ1σ2

(r) +
∑
σ3σ4

∫
d3r V

[B]σ3σ4

LOC (r)
∂2Kσ3σ4

σ1σ2
(r)

∂µ∂λ

+
∑
σ3

[∫
d3r

∂Vloc(r)

∂λ

∂Kσ3σ3
σ1σ2

(r)

∂µ
+

∫
d3r

∂Vloc(r)

∂µ

∂Kσ3σ3
σ1σ2

(r)

∂λ

]
.

(3.55)
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The presence of the fractional occupation numbers can be dealt with by using Eqs. (3.19)
and (3.20), together with further bookkeeping techniques described in Refs. [45] and [47].
Finally, after introducing the two vectors |∆µψσi 〉 and |δµψσi 〉 (Eqs. (3.27) and (3.28)) and the
induced augmentation density matrix ∆µnσσ

′
(r) (Eq. (3.29)), d2Etot/dµdλ can be rewritten

as a sum of the following four terms [49]. The first comes from the expectation value of the
second-order derivative of the KS potential:

d2E
(1)
tot

dµdλ
=
∑
i

∑
σ1 σ2

θ̃F,i

〈
ψσ1
i

∣∣∣∣∂2V
[B]σ1σ2

KS

∂µ∂λ
− εi

∂2Sσ1σ2

∂µ∂λ

∣∣∣∣ψσ2
i

〉
, (3.56)

the second results from the change in the wave functions:

d2E
(2)
tot

dµdλ
=
∑
i

∑
σ1

[
〈φλ[B]σ1

i |∆µψσ1
i 〉+ 〈∆µψσ1

i |φ
λ[B]σ1

i 〉
]
. (3.57)

Finally, the third and the fourth terms are peculiar of the US PPs scheme, and contain the
derivatives of the overlap matrix S and of the kernel K:

d2E
(3)
tot

dµdλ
=
∑
σ1 σ2

∫
d3r

dV
[B]σ1σ2

H,xc (r)

dµ
∆λnσ1σ2(r), (3.58)

d2E
(4)
tot

dµdλ
= −

∑
i

∑
σ1

[
〈δµψσ1

i |φ
λ[B]σ1

i 〉+ 〈δλψσ1
i |φ

µ[B]σ1

i

〉]
. (3.59)

We focus on the term d2E
(2)
tot/dµdλ. Since VKS and S are hermitian operators, we have:∑

σ1

〈∆µψσ1
i |φ

λ[B]σ1

i 〉 =

[∑
σ1

〈φλ[B]σ1

i |∆µψσ1
i 〉

]∗
, (3.60)

whence Eq. (3.57) is tipically written as [43,46,47,49]:

d2E
(2)
tot

dµdλ
= 2Re

[∑
i

∑
σ1

〈φλ[B]σ1

i |∆µψσ1
i 〉

]
, (3.61)

therefore d2E
(2)
tot/dµdλ is computed from the scalar product of |∆µψσi 〉 and the non-self-

consistent part in the right-hand side of the Sternheimer linear system.
As discussed above for the induced spin density, Eq. (3.61) is always valid and holds

also in the non-collinear magnetic case because it follows from the hermiticity of VKS and
S, however it is not convenient to use because it requires both the responses at q and −q.
Here, instead we apply the alternative approach proposed in this Thesis, based on the usage
of the time-reversal operator, to deal with Eq. (3.57) [128]. We insert the identity T †T = 1

in the second term of Eq. (3.57) to get:∑
i

∑
σ1

〈∆µψσ1
i |φ

λ[B]σ1

i 〉 =
∑
i

∑
σ1 σ2 σ3

〈∆µψσ1
i |
(
T †σ1σ2T σ2σ3|φλ[B]σ3

i 〉
)

=
∑
i

∑
σ1 σ2 σ3

[(
〈∆µψσ1

i |T †σ1σ2
) (
T σ2σ3 |φλ[B]σ3

i 〉
)]∗

=
∑
i

∑
σ2

〈φλ[−B]σ2

T i |(T ∆µψi)
σ2〉,

(3.62)
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where the second equality follows by applying the properties of antilinear operators. As a
final result, Eq. (3.57) becomes:

d2E
(2)
tot

dµdλ
=
∑
i

∑
σ1

[
〈φλ[B]σ1

i |∆µψσ1
i 〉+ 〈φλ[−B]σ1

T i |(T ∆µψi)
σ1〉
]
, (3.63)

hence it is computed as the sum of the scalar products of the solutions of the two linear
systems (Eqs. (3.40) and (3.48)) and the non-self-consistent contributions of the perturbation
in the right-hand side of the two linear systems.

3.3 Formulation for lattice dynamics
In this Section, we focus on the particular case of lattice dynamics in extended systems,
briefly introduced in Section 3.1. We introduce λ = uµsα, which represents a generic dis-
placement of the atom s inside the µ-th unit cell along the direction α, and, similarly
µ = uνs′β, and we consider the case of a phonon perturbation of wave vector q.

3.3.1 Induced densities

As before, we start from the calculation of the induced densities. We introduce the spin
density and the augmentation density matrix induced by a phonon perturbation at finite
wave vector q, usα(q) [49]:

dnσσ
′
(r)

dus′β(q)
=
∑
ν

eı̇q·Rν
dnσσ

′
(r)

duνs′β
, (3.64)

∆us′β(q)nσσ
′
(r) =

∑
ν

eı̇q·Rν∆uνs′βnσσ
′
(r). (3.65)

Similarly, after introducing the wave vector k and the band index v on the wave functions,
as appropriate for solids , we define the change on the wave functions induced by a phonon
perturbation in the following way:

|∆us′β(q)ψσ1
kv〉 =

∑
µ

eı̇q·Rµ |∆uνs′βψσ1
kv〉 , (3.66)

thus Eq. (3.37) becomes:

dnσσ
′
(r)

dus′β(q)
=
∑
kv

∑
σ1σ2

[
〈ψσ1

kv|K
σσ′

σ1σ2
(r) |∆us′β(q)ψσ2

kv〉

+
∑
σ3σ4

〈(T ψ−kv)σ1| T σ1σ3Kσ′σ
σ3σ4

(r)T †σ4σ2 |
(
T ∆us′β(−q)ψ−kv

)σ2〉

]
+ ∆us′β(q)nσσ

′
(r).

(3.67)

This result represents an important starting point to understand the difference between
the theoretical formulations for magnetic and non-magnetic systems. We consider a system
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described by the Hamiltonian H [B]
KS , B being the exchange-correlation magnetic field or, in

general, even an external magnetic field: in particular, let us focus on the two self-consistent
KS problems with B and −B. To distinguish the two cases we label the eigenvalues and
the eigenstates with the superscript [B] or [−B] (above, we did not specify such label in
the wave functions, the energies, and the response of the wave functions because we always
considered only the problem with B). By comparing the solutions of the two problems, it
can be proved that:

ε
[B]
−kv = ε

[−B]
kv , (3.68)

|T ψ[B]
−kv〉 = |ψ[−B]

kv 〉 . (3.69)

Similarly, if we extend the argument to the first-order perturbation theory, we have:

|T ∆us′β(−q)ψ
[B]
−kv〉 = |∆us′β(q)ψ

[−B]
kv 〉 . (3.70)

In the non-magnetic case, B = (0, 0, 0), therefore the wave functions at k and −k (and, simi-
larly, their responses at q and−q) are connected via the time-reversal operator and the eigen-
values at k and −k are equal. In particular, |(T ψ−kv)σ〉 = |ψσkv〉 and |

(
T ∆us′β(−q)ψ−kv

)σ〉 =

|∆us′β(q)ψσkv〉, therefore the two terms in square brackets in Eq. (3.67) become identical: in
a practical calculation only the first term is computed, and the induced spin density reads

dnσσ
′
(r)

dus′β(q)
= 2

∑
kv

∑
σ1σ2

〈ψσ1
kv|K

σσ′

σ1σ2
(r) |∆us′β(q)ψσ2

kv〉 . (3.71)

Instead, in magnetic systems the eigenfunctions at k of the KS problem with magnetic field
B can be linked only to the time-reversed eigenfunctions at −k of the KS problem with
magnetic field −B, therefore Eq. (3.67) requires the solutions to two different problems,
already introduced above in Section 3.2.4 and explicitly discussed for lattice dynamics in the
following subsection.

Once the induced spin density is computed, the responses of the charge and magnetization
densities can be obtained by summing, with the appropriate phase factor, Eqs. (3.21) and
(3.22), respectively, for each atomic displacement:

dn(r)

dus′β(q)
=
∑
σ

dnσσ(r)

dus′β(q)
, (3.72)

dmα(r)

dus′β(q)
= µB

∑
σ σ′

dnσσ
′
(r)

dus′β(q)
σσσ

′

α . (3.73)

3.3.2 Linear system

In the magnetic case, the two vectors |∆us′β(q)ψσkv〉 and |
(
T ∆us′β(−q)ψ−kv

)σ〉, appearing in
Eq. (3.67), can be computed by solving two different problems. In particular, similarly to
what reported in Section 3.2.4, they are obtained by adding a term (due to the change of
the Fermi energy) to the solution of a Sternheimer linear system for a phonon perturbation.
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These linear systems follow by adding, with the appropriate phase factor, Eqs. (3.40) and
(3.48), respectively, for each atomic displacement, and read:

∑
σ2

[
H [B]σ1σ2 +Qσ1σ2 − εkv Sσ1σ2

]
|∆us′β(q)

ψσ2
kv〉 = −

∑
σ2

P †σ1σ2

c,kv

[
|φus′β(q)[B]σ2

kv 〉

+
∑
σ3

∑
σ4σ5

∫
d3r

dV
[B]σ4σ5

H,xc (r)

dus′β(q)
Kσ4σ5
σ2σ3

(r) |ψσ3
kv〉

]
,

(3.74)

∑
σ2

[
H [−B]σ1σ2 +Qσ1σ2 − ε−kv Sσ1σ2

]
|(T ∆

us′β(−q)
ψ−kv)

σ2〉 = −
∑
σ2

Π†σ1σ2

c,−kv

[
|φus′β(q)[−B]σ2

T−kv 〉

+
∑
σ3

∑
σ4σ5

∫
d3r

dV
[−B]σ4σ5

H,xc (r)

dus′β(q)
Kσ4σ5
σ2σ3

(r) |(T ψ−kv)σ3〉

]
,

(3.75)

where the expression of the vector |φλ[B]σ
i 〉, appearing in the right-hand side, has been prop-

erly generalized to the case of a phonon perturbation:

|φus′β(q)[B]σ2

kv 〉 =
∑
σ3

[
∂V

[B]σ2σ3

KS

∂us′β(q)
− εkv

∂Sσ2σ3

∂us′β(q)

] ∣∣∣∣ψσ3
kv

〉
, (3.76)

where, similarly to Eqs. (3.64) and (3.65), we defined:

∂V
[B]σ2σ3

KS

∂us′β(q)
=
∑
ν

eı̇q·Rν
∂V

[B]σ2σ3

KS

∂uνs′β
, (3.77)

∂Sσ2σ3

∂us′β(q)
=
∑
ν

eı̇q·Rν
∂Sσ2σ3

∂uνs′β
. (3.78)

We mention that, as a further possible alternative approach, it would be possible to
write the spin density induced by a phonon perturbation starting from Eq. (3.30), without
introducing the time-reversal operator, similarly to what has been done for the calculation of
magnons in Ref. [51]. In that case, at variance with the approach discussed above, the second
set of solutions needed to compute the induced spin density would require the solution of a
Sternheimer linear system with magnetic field B, but on the right-hand side we would have
the responses to a perturbation at −q.

Once more, we remark that instead, in non-magnetic systems, only |∆us′β(q)ψσkv〉 is needed,
therefore only the first linear system, Eq. (3.74), is solved.

3.3.3 Dynamical matrix

Finally, we discuss the calculation of the dynamical matrix (Eq. (3.5)) in DFPT, given
the expression of the second-order derivatives of the total energy reported above for generic
perturbations λ and µ. Among the contributions coming from the four terms discussed in
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Section 3.2.5, we consider that obtained from d2E
(2)
tot/dµdλ, which contains the response of

the wave functions.
We start from Eq. (3.63). If we introduce the quantities defined above, the term Φ

(2)
sαs′β(q)

obtained from d2E
(2)
tot/dµdλ reads:

Φ
(2)
sα
s′β

(q) =
1

N

∑
kv

∑
σ1

[
〈φusα(q)[B]σ1

kv |∆us′β(q)ψσ1
kv〉+ 〈φusα(q)[−B]σ1

T −kv |
(
T ∆us′β(−q)ψ−kv

)σ1〉
]
.

(3.79)
Similarly to the discussion for the induced spin density above, in a time-reversal invariant (i.e.
non-magnetic) system, the two terms in Eq. (3.79) are identical, because |φusα(q)[−B]σ

T −kv 〉 =

|φusα(q)[B]σ
kv 〉 and |

(
T ∆us′β(−q)ψ−kv

)σ〉 = |∆us′β(q)ψσkv〉, and therefore, in a practical imple-
mentation, the second term is not explicitly computed. This leads to the way Eq. (3.79) is
usually presented in the literature (see, e.g. [47] for the LSDA spin-polarized case):

Φ
(2)
sα
s′β

(q) =
2

N

∑
kv

∑
σ1

〈φusα(q)[B]σ1

kv |∆us′β(q)ψσ1
kv〉 . (3.80)

On the other hand, a magnetic system is not time-reversal invariant, hence the two terms in
Eq. (3.79) are different and must be computed separately [128].

3.4 Symmetrization
The induced spin density and, consequently, the induced charge and magnetization densities,
and the dynamical matrix depend on summations over the k-points in the BZ. By exploiting
a symmetrization procedure, it is possible to reduce the number of k-points in the sums,
considering only the points inside the IBZ (thus decreasing the computational cost in prac-
tical calculations), similarly to what previously discussed for the charge and magnetization
densities (see Section 1.7). We consider the symmetry operations {S|f} of the space group of
the crystal. In a magnetic solid, we have to consider also the operations S such that {T S|f}
is a symmetry of the crystal. The full set of symmetries identifies the so-called antiunitary
space group of the crystal.

Since, for a phonon perturbation, the charge (and magnetization) density response and
the dynamical matrix are computed at a given finite wave vector q, we use as symmetry
operations only those NS operations of the antiunitary small space group of q, the subgroup
of the antiunitary space group of the crystal, which contains only the symmetry operations
{S|f} such that:

Sq = q + GS , (3.81)

if {S|f} is a symmetry of the crystal, or:

Sq = −q + GS , (3.82)

if {T S|f} is a symmetry of the crystal. Here, GS is a reciprocal lattice vector that might
appear when q is at zone border. In order to distinguish the two cases we introduce a variable
τ(S) which may take the values τ = 0 or τ = 1 if Eq. (3.81) or Eq. (3.82) holds, respectively.
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We compute the non-symmetrized induced spin density by summing over the Irreducible
Brillouin Zone (IBZ) in Eqs. (3.72) and (3.73), introducing a weight proportional to the
number of elements in the star of q. Then, we calculate the non-symmetrized induced charge
and magnetization densities d̃n

NS
(r)/dus′β(q) and d̃m

NS
δ (r)/dus′β(q) using Eqs. (H.20) and

(H.21). Finally, the complete responses are obtained through the following relationships:

d̃n(r)

dus′β(q)
=

1

NS

∑
{S|f}

Oτ(S)

[∑
γ

Sγβ
d̃n

NS
({S|f}r)

dus̄′γ(q)
eı̇GS−1 ·re−ı̇q·R

S
s′

]
, (3.83)

d̃mδ(r)

dus′β(q)
=

1

NS

∑
{S|f}

(−1)τ(S)Oτ(S)

[∑
γη

S̃−1
δη Sγβ

d̃m
NS
η ({S|f}r)

dus̄′γ(q)
eı̇GS−1 ·re−ı̇q·R

S
s′

]
, (3.84)

where S̃ is the proper part of S, Oτ(S) is the identity if τ(S) = 0, or Oτ(S) = K if τ(S) = 1.
Moreover, RSs′ = Sds′ − ds̄′ , where ds′ identifies the position of the atom s′ with respect to
the origin of its primitive cell, while ds̄′ is obtained by applying the rotation S to the atom
s′ ({S|f}(Rν + ds′) = Rν̄ + ds̄′). Similarly, the dynamical matrix becomes:

Φ sα
s′β

(q) =
1

NS

∑
{S|f}

Oτ(S)

[∑
γδ

Sγα Sδβ ΦNS
s̄γ
s̄′δ

(q)eı̇q·(R
S
s −RSs′ )

]
, (3.85)

where ΦNS
s̄γs̄′δ(q) is obtained summing over the IBZ.

A complete derivation of Eqs. (3.83), (3.84), and (3.85) presented here is reported in
Appendix I.

3.5 Theory validation: applications to fcc Ni and Pt
nanowire

In this section we use the theory described above to compute the phonon dispersions of
ferromagnetic fcc Ni and of a monatomic ferromagnetic Pt nanowire. We validate the theory
by comparing the phonon frequencies obtained by diagonalizing the dynamical matrix (Eq.
(3.5)) with those obtained by the frozen phonon method.

3.5.1 Methods

First-principle calculations were performed within the Local Density Approximation (LDA)
[56] and the Perdew-Burke-Ernzerhof (PBE) [65] schemes, as implemented in the Quantum
ESPRESSO [119–121] and thermo_pw 1. packages. The atoms are described by FR US
PPs [40], with 4s and 3d valence electrons for Ni (PPs Ni.rel-pz-n-rrkjus_psl.0.1.UPF
and Ni.rel-pbe-n-rrkjus_psl.0.1.UPF from pslibrary 0.1) and with 6s and 5d valence
electrons for Pt (PP Pt.rel-pz-n-rrkjus_psl.1.0.0.UPF from pslibrary 1.0.0 [123] 2).

1thermo_pw is a driver of the Quantum ESPRESSO (QE) routines which provides an alternative orga-
nization of the QE work-flow for the most common tasks. For more information see https://dalcorso.
github.io/thermo_pw

2See https://dalcorso.github.io/pslibrary

https://dalcorso.github.io/thermo_pw
https://dalcorso.github.io/thermo_pw
https://dalcorso.github.io/pslibrary
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DFPT calculations on ferromagnetic fcc Ni are at the theoretical LDA and PBE lattice
constants, a = 6.483 a.u. and a = 6.658 a.u., which are 2.6% and 0.02% smaller than
experiment [124] (a = 6.659 a.u.), respectively. The pseudo wavefunctions (charge density)
are expanded in a plane waves basis set with a kinetic energy cut-off of 120 (600) Ry. The
BZ integrations were done using a shifted uniform Monkhorst-Pack [74] k-point mesh of 28×
28×28 points for the phonon calculations at a single wave vector q. The same computational
parameters, except the k-point mesh which has been reduced to 18×18×18 points, have been
used for the phonon dispersions. The dynamical matrices have been computed by DFPT
on a 6 × 6 × 6 q-point mesh, and Fourier interpolated to obtain the complete dispersions.
Phonon frequencies of ferromagnetic Ni with the frozen phonon method, were calculated
with a simple cubic supercell with 4 Ni atoms. The kinetic energy cut-offs used are the
same as for the DFPT calculations, while the BZ integrations were performed on a k-point
mesh of 24 × 24 × 24 points. The presence of a Fermi surface has been dealt with by the
Methfessel-Paxton smearing method [71] with a smearing parameter σ = 0.02 Ry.

DFPT calculations on monatomic ferromagnetic Pt nanowire were done at a stretched
geometry with interatomic distance d = 4.927 a.u.. The wire replicas have been separated
by a vacuum space of 20 a.u.. We have checked that by increasing the vacuum space the
computed frequencies do not change more than 0.2 cm−1. The system has been studied
in a ferromagnetic configuration, with magnetization either parallel or perpendicular to the
wire. The kinetic energy cut-off was 60 (400) Ry for the wave functions (charge density).
The k-point mesh is a shifted uniform Monkhorst-Pack mesh of 300 points. Frozen phonon
calculations were performed with supercells with 2 and 4 Pt atoms, and Monkhorst-Pack
meshes of 150 and 75 k-points, respectively. The smearing parameter was σ = 0.002 Ry.

3.5.2 Fcc Ni

We start our discussion from the computation of the phonon frequencies of ferromagnetic fcc
Ni with the magnetization along [001] (and with a magnitude that turns out to be 0.62µB
per atom), and compare the DFPT and the frozen phonon method at the Y and Z points.
The results obtained are reported in Table 3.1. The frequencies of the transverse modes at
q = (0, 0, 2π/a) (Z) are degenerate with both methods, as a consequence of the tetragonal
magnetic symmetry (D4h(C4h)): indeed both transverse modes have atomic displacements
perpendicular to the magnetization. Instead, the transverse modes at q = (0, 2π/a, 0) (Y)
show a small splitting of 0.04 cm−1. The two modes are actually different because the atomic
displacements are either parallel or perpendicular to the magnetization. A frequency splitting
arises as a consequence of spin-orbit coupling. The DFPT and frozen phonon methods agree
within 0.3 cm−1. The DFPT and the frozen phonon method predict the same splitting,
which however is small compared to the agreement of the absolute values of the frequencies
obtained with the two methods, hence it is not possible to give an accurate quantitative
prediction, but only an order of magnitude. With the kinetic energy cut-offs and k-point
mesh used, the frequencies obtained are converged within 5× 10−3 cm−1, the same order of
magnitude as the errorbar reported in Table 3.1 and due to the fit.

In Fig. 3.1 we show the complete phonon dispersion of fcc Ni obtained by DFPT. Both
LDA and PBE theoretical dispersions are shown, together with inelastic neutron scattering
data [130]. The agreement between the LDA result and the experiment is poor, mainly
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DFPT Frozen phonon
ν(cm−1) ν(cm−1)

T
(0,1,0)
x 232.438 232.691± 0.006

T
(0,1,0)
z 232.397 232.648± 0.006

T
(0,0,1)
{xy} 232.433 232.688± 0.006

Table 3.1: Computed FR LDA phonon frequencies at q = (0, 2π/a, 0) and q = (0, 0, 2π/a)
with DFPT and the frozen phonon method for fcc Ni. The magnetization is oriented along
the z axis. The subscripts indicate the polarization of the phonon modes.
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Figure 3.1: Computed FR LDA (dashed lines) and PBE (solid lines) phonon dispersions
of ferromagnetic fcc Ni, compared to inelastic neutron scattering data (solid diamonds).
Phonon modes are classified using symmetry, but only the operations that do not require T
are used.

because LDA underestimates the lattice constant: the highest frequencies of the dispersion
(e.g. at the X and L points) are about 30 cm−1 higher than the experiment. On the other
hand, the PBE phonon dispersions are in excellent agreement with the experiment. Note
however that this agreement is slightly worsened by temperature effects [131] not included
in the present study.
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q m ‖ x m ‖ z
DFPT Frozen phonon DFPT Frozen phonon
ν(cm−1) ν(cm−1) ν(cm−1) ν(cm−1)

Tx 36.51 37.02± 0.03 45.71 46.10± 0.03
π/a Ty 37.00 37.34± 0.03 45.71 46.10± 0.03

L 113.98 114.21± 0.03 110.30 110.51± 0.03
Tx 25.1 25.5± 0.1 39.17 39.63± 0.03

π/2a Ty 32.1 31.8± 0.1 39.17 39.65± 0.03
L 54.2 53.8± 0.1 62.66 63.14± 0.03

Table 3.2: Computed FR LDA phonon frequencies at q = π/a and q = π/2a with DFPT
and the frozen phonon method for a monatomic ferromagnetic Pt nanowire. The nanowire
is oriented along the z axis. Results are shown with both m ‖ x and m ‖ z. The subscripts
indicate the polarization of the phonon modes.

3.5.3 Pt monatomic wire

In this section we consider a monatomic Pt nanowire, a metal with ferromagnetic ordering.
It has been shown [53, 132] that at its equilibrium geometry (atomic distance d = 4.441
a.u.) the system shows a colossal magnetic anisotropy, since the preferred orientation of
the magnetization is parallel to the wire and the magnetization vanishes when forced to be
perpendicular to the wire. Instead, for stretched geometries with atomic distance higher than
4.913 a.u. a non-zero magnetization perpendicular to the wire is allowed. Here we consider
a stretched geometry with d = 4.927 a.u. and compute the phonon dispersions with both a
magnetization parallel and perpendicular to the wire. In the following the nanowire is along
the z direction. In Table 3.2 we compare the phonon frequencies, at q = π/a and q = π/2a
with m ‖ x and m ‖ z, computed by the DFPT and with the frozen phonon method. With
a magnetization m ‖ z (m = 0.65µB per atom), the frequencies of the transverse modes are
degenerate, while with m ‖ x (m = 0.13µB per atom) at q = π/a the two transverse modes
show a splitting of about 0.5 cm−1, which is of the same order of magnitude as the overall
agreement of the two methods. At q = π/2a this splitting is about 7 cm−1, one order of
magnitude larger than at q = π/a. In both cases the polarization of the transverse mode
with higher frequency is perpendicular to the magnetization. As discussed above for fcc Ni,
the two transverse modes are not equivalent due to the presence of the magnetization and of
spin-orbit coupling. Pt atoms are heavier than Ni and show a stronger spin-orbit interaction:
indeed, the splitting reported for Pt is 1 − 2 orders of magnitudes higher than in Ni. The
DFPT and frozen phonon results agree within 0.4 cm−1 on average. As before, the errorbars
reported in Table 3.2 come from the linear fit. With the kinetic energy cut-offs and the
k-point mesh used all the frequencies reported are converged within 0.03 cm−1

In Fig. 3.2 we show the phonon branches along Γ− Z for a ferromagnetic wire with
magnetization parallel (left panel) or perpendicular to the wire (right panel). The two
dispersions show evident differences: at q = π/a, the longitudinal mode for the wire with
m ‖ z is lower in frequency than for the wire with m ‖ x, while the transverse modes are
higher in frequency. In the central part of the BZ, around q = π/2a, the longitudinal mode
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Figure 3.2: Computed FR LDA phonon dispersions of ferromagnetic Pt nanowire. Left
panel: magnetization parallel to the wire. Right panel: magnetization perpendicular to the
wire.

of the wire with m ‖ z has a higher frequency at the Kohn anomaly than the wire with
m ‖ x, while the transverse modes show a Kohn anomaly only for m ‖ x. We remark that
at the stretched geometry studied (d = 4.927 a.u.) the phonon modes are still stable, but
the range of atomic distances at which both modes are stable is quite narrow.
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Lattice dynamics effects on the
magnetocrystalline anisotropy

energy: application to MnBi

Recently, there has been a significant effort towards the realization of rare-earth-free perma-
nent magnets [133, 134]. Due to its magnetic properties, such as a high Curie temperature,
well above room temperature, and a large uniaxial magnetic anisotropy, the intermetallic
MnBi compound [134–137] has emerged as a promising candidate among the transition-
metal-based materials.

4.1 A brief overview on MnBi: magnetic properties,
magnetocrystalline anisotropy, spin-reorientation
transition

In the low-temperature phase (LTP), MnBi is a ferromagnet and crystallizes in the NiAs
structure (see Fig. 4.1). As reported by C. Guillaud in 1951 [135], the compound remains
ferromagnetic upon heating, up to T ≈ 630 K, whereas a non-vanishing net magnetization
reappears upon cooling at T ≈ 610 K [135]. The presence of a latent heat and the abrupt
drop of the net magnetization (see, e.g., Ref. [138]) suggests that the transition is of the first
order, in contrast with the usual ferromagnetic-paramagnetic second-order phase transitions
1. These experimental evidences have been interpreted in different ways [135, 136, 139, 140].
The current explanation of the LTP-HTP phase is that of Ref. [140], where it was proposed
that the HTP is a separate compound with a chemical formula of Mn1.08Bi: according to

1The estimation of an hypothetical Curie temperature Tc for MnBi would lead to Tc = 680 K [138], ≈ 50
K higher than the transition temperature reported by experiments.

81
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(a)

(b) (c)

Ni
As

Figure 4.1: The NiAs structure. (a) Unit cell. (b) Top view. (c) Side view. The edges of
the unit cell are indicated with black solid lines.

the MnBi phase diagram, the phase transition upon heating is associated with a peritectic
decomposition of MnBi (LTP) into Mn1.08Bi (HTP) and liquid Bi. On the other hand, upon
cooling the HTP undergoes a transformation of solid-solid decomposition of Mn1.08Bi into
MnBi + Mn. In the same work, Ref. [140], a second phase transition occurring at T ≈ 720
K was identified to be a decomposition of Mn1.08Bi into Mn and liquid Bi.

The electronic structure of the LTP MnBi has been studied, e.g., in Ref. [141]. The
bands near the Fermi level are made up of Bi-p and Mn-d orbitals, whereas the Bi-s bands
lie lower in energy and are fully occupied, and the Mn-s bands are empty. With spin-polarized
calculations, the Mn-d bands are split by the exchange interaction: as a consequence, the
majority channel of Mn-d states is fully occupied, while the minority channel is occupied by
≈ 0.8 electrons per Mn, leading to a magnetic moment of approximately 4µB per Mn (see
Table 4.1 for some reference values taken from theoretical and experimental references).

The presence of a relevant spin-orbit coupling in the system, due to the heavy element
Bi, together with a strong ferromagnetism, is responsible for evident magnetocrystalline
anisotropy effects in MnBi, that were reported by experimental studies already in the 50s
[142]. Being an hexagonal crystal, MnBi possesses a single axis of high symmetry (a 6 axis),
hence the magnetocrystalline anisotropy is of the uniaxial type. In a hexagonal crystal, the
magnetocrystalline anisotropy energy (MAE) reads [143]:

EA = K1 sin2 θ +K2 sin4 θ + (K3 +K4 cos 6φ) sin6 θ, (4.1)
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Figure 4.2: Experimental MAE constant Ku as a function of temperature. Experimental
data are reported in Ref. [143].

where θ and φ are the angular polar coordinates that identify the direction of the magne-
tization. A study of the magnetocrystalline anisotropy in the basal plane led to determine
φ = 15◦ [143], hence the term containing K4 in Eq. (4.1) vanishes. The quantity that
is typically reported in experiments is Ku = K1 + K2 + K3, usually referred to as MAE
constant : conceptually, Ku corresponds to the energy difference between the configurations
with magnetization perpendicular to the c axis and magnetization parallel to the c axis,
corresponding to θ = π/2 and θ = 0 in Eq. (4.1), respectively.

The behavior of the MAE as a function of temperature in MnBi is peculiar: at T = 0 K
Ku is negative, its reported experimental value being −0.2 MJ / m3 (≈ −0.12 meV / cell)
with an easy axis in the basal plane [142, 143], and increases with T (see Fig. 4.2), unlike
most magnetic systems [136, 143]. At T ≈ 90 K Ku becomes positive, thus leading to a
spin-reorientation transition: from 90 K to 140 K, the easy axis rotates outside the basal
plane, and above 140 K it is parallel to the c axis [144].

Several studies, both experimental and theoretical, have been carried out during the
decades to understand this intriguing property. In experiments, the spin-reorientation transi-
tion was observed also by neutron diffraction [139,145] and nuclear magnetic resonance [144].
Several other properties of MnBi have been studied, including the thermal expansion. In
particular, the spin-reorientation transition comes together with a small kink in the lattice
parameters (see Fig. 4.3) at T ≈ 90 K [146, 147], which has been interpreted as the sign of
a phase transition. Theoretical calculations, based on DFT within the LDA and the GGA
approximations for the exchange-correlation functional, correctly predict MnBi to be a metal
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Figure 4.3: Experimental thermal expansion data. (a) a and (b) c lattice constants as a
function of temperature. Blue and red dots and lines represent experimental data taken
from Refs. [146,147], respectively.

and a ferromagnet in the low-temperature phase, and to have a negative Ku, in qualitative
agreement with experiments. Yet, they are believed to overestimate the magnitude of Ku by
nearly an order of magnitude and are often not able to reproduce the correct behavior of Ku

as a function of temperature. Refs. [148] and [149] showed that the treatment of correlation
effects by means of the DFT+U approach is important to get the correct behavior of Ku as
a function of temperature. In particular, in Ref. [149] the inclusion of the thermal expansion
effects on Ku allowed to get a spin-reorientation temperature in agreement with experiments
and a theoretical MAE constant in good agreement with experimental results, especially in
the temperature range 150-450 K.

More recently, in Ref. [141] it was suggested that the spin-reorientation phenomenon
might be partially due to lattice dynamics. Such statement was supported by the calcu-
lation of the lattice dynamics contribution to Ku, obtained by averaging the MAE over
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configurations in which the Mn and Bi atoms were displaced according to the mean square
atomic displacements as a function of temperature.

The extension of DFPT for lattice dynamics with FR US-PPs to magnetic materials [150],
presented in Chapter 3, allows to detect differences in the phonon frequencies for different
orientations of the magnetization, thus making possible to evaluate the vibrational free
energy contribution to the MAE.

In this Chapter we study, by means of ab initio techniques, the lattice dynamics of
ferromagnetic MnBi for two different orientations of the magnetization: 1. in-plane; 2. per-
pendicular to the plane. We find that the two phonon dispersions mainly differ in the
high-frequency optical branches, where the phase with magnetic moments pointing in the
out-of-plane direction shows, on average, phonon modes of 2 cm−1 lower in frequency. Start-
ing from the difference of the vibrational density of states of the two phases we compute
the vibrational contribution to MAE. We find that, if the energy contribution to MAE is
computed by the PBEsol exchange-correlation functional, the phonon contribution is of the
same order of magnitude as the ground state MAE, hence it plays a relevant role in the
calculation of Ku and to determine the spin-reorientation transition temperature TSR.

4.2 Methods

First-principle calculations were carried out by means of DFT [34,35] within the LDA [56] and
the Perdew-Burke-Ernzerhof optimized for solids (PBEsol) [66] schemes for the exchange-
correlation functional approximation, as implemented in the Quantum ESPRESSO [119–121]
and thermo_pw 2 packages. The atoms are described by FR US-PPs [40], with 3p, 4s, and 3d
electrons for Mn (PPs Mn.rel-pz-spn-rrkjus_psl.0.3.1.UPF and Mn.rel-pbesol-spn-rr-
kjus_psl.0.3.1.UPF , from pslibrary 0.3.1 [123] 3) and with 6s, 5d, and 6p electrons for Bi
(PPs Bi.rel-pz-dn-rrkjus_psl.1.0.0.UPF and Bi.rel-pbesol-dn-rrkjus_psl.1.0.0.-
UPF, from pslibrary 1.0.0 [123]).

MnBi crystallizes in the NiAs structure (Fig. 4.1), with an hexagonal lattice described
by the point group D6h. The inclusion of magnetism differentiates the structures into a
low-symmetry phase (m ⊥ c henceforth), below TSR, and a high-symmetry phase (m ‖ c
henceforth), above TSR. In particular, the m ‖ c phase is described by the magnetic point
group D6h(C6h), compatible with an hexagonal Bravais lattice, while the m ⊥ c phase has
a magnetic point group D2h(C2h), compatible with a base-centered orthorhombic Bravais
lattice. We checked the relevance of the lattice parameter b, which is not constrained by
symmetry in the m ⊥ c phase, and concluded that it is not crucial to make the structure
more stable than the m ‖ c phase, hence in the rest of the chapter we use the ideal value
b =
√

3a. In Table 4.1 we summarize the data relative to the lattice constants and to the
magnetic moment of Mn atoms, obtained with the LDA and PBEsol functionals, and compare
them with previous theoretical results and with experiments. The LDA geometry is in good
agreement with the theoretical results reported in Ref. [141], but both lattice constants

2thermo_pw is a driver of the Quantum ESPRESSO (QE) routines which provides an alternative organiza-
tion of the QE work-flow for the most common tasks. For more information see https://dalcorso.github.
io/thermo_pw.

3See https://dalcorso.github.io/pslibrary

https://dalcorso.github.io/thermo_pw
https://dalcorso.github.io/thermo_pw
https://dalcorso.github.io/pslibrary
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Exchange-correlation a (Å) c (Å) mMn (µB)
functional

LDA (this work) 4.16 5.57 3.2
LDA (Ref. [141]) 4.20 5.54 3.29

GGA-PBEsol (this work) 4.24 5.67 3.5
GGA-PBEsol (Ref. [141]) 4.28 5.63 3.56
GGA-PBE (Ref. [141]) 4.35 5.76 3.69
GGA-PBE (Ref. [148]) 4.31 5.74 3.45

GGA-PBE + U (Ref. [148]) 4.39 6.12 3.96
exp. (Ref. [146]) 4.27 6.05 3.8-4.2

Table 4.1: Computed (FR LDA and PBEsol), theoretical reference (LDA, PBEsol, PBE,
and PBE+U), and experimental lattice constants and Mn magnetic moments.

underestimate the experimental values: in particular, a is 2 % smaller than experiment,
while c is 8 % smaller than experiment. The PBEsol geometry gives lattice constants slightly
smaller than PBE (reported in Ref. [141]) and experiments: a and c are 0.5 % and 6 % smaller
than experiment, respectively. The m ⊥ c and m ‖ c phases have slightly different lattice
constants a and c, but in Table 4.1 we report only one structure because the differences in the
lattice constants are beyond the significative digits reported. We use the LDA to compute the
phonon frequencies and their contribution to the MAE, while the PBEsol is used to compute
the energy contribution to the MAE and to correct it for thermal expansion effects. The LDA
and the PBEsol (at T = 0 K) calculations are performed at the geometry reported in Table
4.1. The computed Mn magnetic moment mMn is in agreement with previous calculations
reported in literature [141, 148]: mMn is 10 % (20 %) smaller than experiment within the
PBEsol (LDA) approximation.

The pseudowave functions (charge density) have been expanded in a PWs basis set with
a kinetic energy cut-off of 110 Ry (440 Ry). The BZ integrations have been performed
using a shifted uniform Monkhorst-Pack mesh [74] of 12 × 12 × 8 k-points. The presence
of a Fermi surface has been dealt with by the Methfessel-Paxton smearing method [71],
with a smearing parameter σ = 0.015 Ry. The dynamical matrices have been computed on a
uniform 4×4×3 q-points mesh, and a Fourier interpolation was used to obtain the complete
phonon dispersions and the free energy. The latter has been obtained approximating the BZ
integral with a 300× 300× 300 q-points mesh.

4.3 Results and discussion

MnBi is a magnetic binary compound, in which magnetism is carried mainly by the Mn
atoms, while Bi is responsible for a strong spin-orbit interaction. As a consequence, strong
magnetocrystalline anisotropy effects are expected.
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Figure 4.4: (a) BZ of the base-centered orthorhombic Bravais lattice. The high-symmetry
lines are highlighted in red. (b) Computed FR LDA phonon dispersions of MnBi with
magnetic moments oriented in plane (m ⊥ c, black line), and out of plane (m ‖ c, red line).

4.3.1 Phonon dispersions

Here we consider the phonon dispersions of MnBi with two different orientations of the
magnetic moments, m ⊥ c (in-plane) and m ‖ c (out-of-plane), and among all the possible
in-plane orientations m ⊥ c, we choose m ‖ a, a and c being the primitive vectors of the
hexagonal Bravais lattice). The presence of a magnetization leads to a difference in the
Bravais lattice the magnetic point group is compatible with, as discussed in the previous
Section. In order to compare the phonon dispersions in the same BZ, we choose to set the
geometry in the base-centered orthorhombic Bravais lattice, which is compatible with the
low-symmetry phase (magnetic point group D2h(C2h)).

The BZ and the phonon dispersions are illustrated in Fig. 4.4. The phonon modes are
split in two groups, separated by a gap. The low-frequency branches (up to ∼ 100 cm −1)
are dominated by displacements of the heavy element Bi, while the high-frequency branches
(from ∼ 150 cm −1 to ∼ 200 cm −1) are mainly displacements of the Mn atoms. The main
difference between the phonon frequencies of the two phases is a rigid shift: the phonon
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q m ‖ c m ⊥ c

Z

ν (cm −1) degeneracy ν (cm −1) degeneracy

67.135 4 67.212 2
67.231 2

180.245 4 181.263 2
181.340 2

X1

61.427 2 61.554 1
62.503 1

72.461 2 72.467 1
72.577 1

176.735 2 178.156 1
178.556 1

184.374 2 185.195 1
185.395 1

Table 4.2: Computed FR LDA phonon frequencies at high-symmetry points Z and X1 for the
configurations m ‖ c and m ⊥ c. Only the degenerate modes are shown for the configuration
m ‖ c, and how the degeneracy is lowered or lifted if m ⊥ c.

frequencies of the phase with in-plane magnetization are higher than those of the phase with
out-of-plane magnetization. The shift is about 0.5 cm −1 in the low-frequency branches,
while it is about 2 cm −1 in the high-frequency branches. Moreover, there are differences
due to symmetry. The system with in-plane magnetization has lower symmetry and some
modes, degenerate when the magnetization is along c, split. As an example, in Table 4.2
we report the phonon modes at Z and X1. At Z, in the phase with m ‖ c there are two
groups of four-fold degenerate modes, which become four couples of degenerate modes in
the phase m ⊥ c: the splittings are quite small, in the range 0.02-0.08 cm−1. At X1, in the
configuration m ‖ c there are four two-fold degenerate modes, which split from 0.1 cm−1 to
1 cm−1. Similar splittings are found also along the other high-symmetry lines.

4.3.2 MAE

In previous works, the spin-reorientation transition, due to the change of Ku from negative
to positive at TSR ≈ 90 K, has been explained as an effect of thermal expansion of the crystal
parameters a and c.

In Refs. [148] and [149] Kth. exp.
u , the function Ku obtained accounting for thermal expan-

sion effects, has been computed within the LSDA + SO + U scheme using the experimental
lattice constants as a function of the temperature, reported in Refs. [146,147] and finding in
this way a good agreement with experiments. Here instead we compute Kth. exp.

u within the
FR PBEsol scheme. In Fig. 4.5(a) we show K̄u, the contribution to Ku given by the energy
difference of the electronic groundstates, for a mesh of geometries and on top of it we indicate
with black and white points the thermal expansion data added to the theoretical PBEsol
T = 0 K crystal parameters. The resulting Kth. exp.

u is reported in Fig. 4.5(b). Kth. exp.
u is

negative and slightly increases with increasing a and c. Yet, such an increase is not sufficient
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Figure 4.5: Energy contribution to the MAE constant, K̄u, computed in the FR PBEsol
scheme. (a) K̄u as a function of lattice constants. Black and white dashed lines represent
the geometries at different temperatures, obtained from Refs. [146] and [147], respectively,
as explained in the main text. (b) Kth. exp.

u as a function of temperature. Red and blue lines
represent the values of Kth. exp.

u obtained from the black and white dashed lines in panel (a),
respectively.

to cross the value Kth. exp.
u = 0 because the T = 0 K energy difference (≈ −0.73 meV/cell)

is significantly lower than the experimental value (≈ −0.15 meV / cell), similarly to what
found within the LDA and GGA approximations in Refs. [148] and [149], and because the
energy difference landscape shows a local maximum of about −0.4 meV / cell.

In addition to the thermal expansion effect we consider also the effect of the lattice
dynamics on Ku: in fact, since the two phases have slightly different phonon frequencies,
they have different vibrational entropies that give a temperature-dependent contribution to
the MAE defined as the difference of the vibrational free energies of the two phases. We
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Figure 4.6: Experimental magnetization of MnBi as a function of temperature. Experimental
data are reported in Ref. [146].

write the constant Ku as [151]:

Ku = Kth. exp.
u +Kvib

u +Kmag
u , (4.2)

where Kth. exp.
u is the thermal expansion contribution, Kvib

u is the lattice dynamics contribu-
tion, and Kmag

u is the magnon contribution. In our analysis we do not consider Kmag
u , which

should not be crucial to explain the spin-reorientation transition: indeed, if the contribution
of the spin fluctuations is similar to the one computed, e.g., for FePt in Ref. [152], it would
not explain by itself the behavior of Ku as a function of T . Furthermore, it should not be
important at low temperatures because it increases when the magnetization varies rapidly,
which happens at high temperatures (see Fig. 4.6).

In the following we consider the term Kvib
u , which can be computed from the phonon

frequencies using the harmonic approximation:

Kvib
u =

∫ +∞

0

dω
1

2
~ω
[
g⊥(ω)− g‖(ω)

]
+ kBT

∫ +∞

0

dω
[
g⊥(ω)− g‖(ω)

]
ln
(
1− e−~ω/kBT

)
,

(4.3)
where g⊥(ω) (g‖(ω)) is the phonon density of states relative to the phase with m ⊥ c (m ‖ c).

Kvib
u , in Eq. (4.3), is made up of two terms: the first one is the zero-point vibrational

free energy contribution, it is temperature-independent and hence it produces a rigid shift
of the function Ku(T ); the second one is temperature-dependent and stems from the ther-
mal population of the phonon modes. In our case, Kvib

u is positive and increases with
increasing temperature, as shown in Fig. 4.7: its magnitude is comparable with that of
Kth. exp.

u , hence it gives a crucial contribution in determining the MAE constant Ku. In
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Figure 4.7: Vibrational contribution to the MAE constant Ku, computed from the phonon
frequencies within the harmonic approximation (Eq. (1.7)).

particular, the zero-point contribution amounts to 0.5 meV / cell and is dominated by the
high-frequency branches because the weight function is proportional to ω; the thermal con-
tribution is dominated by the low-frequency branches at low temperatures, whereas the
high-frequency branches start to give a relevant contribution at higher temperatures, when
their thermal occupation becomes non-negligible. The huge difference in the thermal pop-
ulation function at low temperatures between the two sets of phonon branches is partially
compensated by the difference in the phonon densities of states, hence the high-frequency
phonon modes give a relevant contribution already at low temperatures, as shown in Fig. 4.8,
where we present the relative contribution of the two groups of modes to the second term
of Kvib

u . As an example, at the spin-reorientation temperature the high-frequency modes
account for about 25 % of the thermal vibrational free energy difference.

In Ref. [141] a first estimate of the vibrational contribution to MAE was given, which
led to TSR ≈ 450 K, far from the experimental value. In this work we find a vibrational
contribution of the same order of magnitude as found in Ref. [141], and we include also the
zero-point vibrational free energy difference, which gives an important contribution. In Figs.
4.9(a)-(b) we show the total Ku defined in Eq. (4.2), and compare it with the experimental
data. By comparison with Fig. 4.5(b), it is clear that the addition of the vibrational
contribution is important. In particular, the zero-point vibrational free energy difference
allows to have a T = 0 K value of Ku in good agreement with experiments and, together
with the thermal contribution (second term of Eq. (4.3)), to get a transition temperature TSR
in reasonable agreement with the experiments (TSR ≈ 90 K and TSR ≈ 110 K with the data
given by Refs. [146] and [147], respectively). We remark that the electronic contribution to
Ku has been computed with the PBEsol functional: the use of other functionals such as LDA
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would give instead a lower value of the MAE at T = 0 K than that predicted by PBEsol
4, and would lead to predict TSR ≈ 500 K. On the other hand, the use of the Hubbard
U correction would result, instead, in a higher value of Ku at T = 0 K [149] and, as a
consequence, we would get Ku > 0 when adding the vibrational contribution, thus the spin-
reorientation transition would not be explained. As shown in Fig. 4.9 (b), the vibrational
contribution allows to have a fair agreement with experimental data [143] in a rather large
temperature range. At variance with Ref. [149], we do not find a maximum in Ku because
the T = 0 K geometry corresponds to the theoretical geometry (and hence our geometries
do not allow to go beyond the local maximum of the MAE landscape reported in Fig. 4.5),
and because the vibrational contribution increases with T . At high temperatures (T > 500
K) our results do not agree with the experiment, suggesting that additional contributions
may become important in this temperature range, in particular the term Kmag

u in Eq. (4.2),
which affects the magnetization (see Fig. 4.6) and can result in a decreasing Ku with T [152].
Moreover, we mention that in the high-temperature limit additional effects not included in
Eq. (4.2), as the magnon-phonon coupling [153,154], might be non negligible.

4One of the reasons is the underestimation of the lattice constants, typical of LDA, together with the
concavity of the electronic MAE landscape as a function of the lattice constants (see Fig. 4.5)
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Summary and Outlook

The work presented in this Ph.D. Thesis falls within the fields of spin-orbit effects in con-
densed matter and the development of ab initio techniques. In particular, our research
activity has been focused on the study of few selected cases and, especially, on the method-
ological development of DFPT for lattice dynamics of magnetic systems, within the FR PPs
approach. In the following, we summarize the main findings and outcomes of the work, and
we mention presently open questions and future perspectives.

In the first part of the project, addressed in Chapter 2, we performed a FR PAW LDA
calculation of the electronic surface states of the clean Os(0001) and Re(0001) surfaces. We
described the nature and localization of the main surface states and resonances analyzing
their charge density contour levels and planar averages. In both surfaces we found a gap in
the PBS at Γ̄, similar to the L-gap typical of the (111) surfaces of the fcc lattice. Like in
Ir(111) [102] and at variance with Au(111), this gap does not host any surface state. Below
the "L-gap", we found two resonances that cross the Fermi energy and show a downward
energy dispersion, as in Ir(111). In Os(0001) it has been possible to fit their energy dispersion
with two Rashba-split parabolas with parameters γSO = (6.1 ± 0.1) × 10−9 eV cm and
m∗/m = −0.280±0.002. Conversely, in Re(0001) it has not been possible to perform a similar
fit because the energy dispersion crossing predicted at Γ̄ has not been found with our slab
thickness: yet, the computed spin texture of the states at the Fermi energy is similar to the
one predicted by the Rashba model. We found and characterized several other surface states,
present also in previously studied surfaces [99, 102], although few of them differ somewhat
from the states found, e.g., in Ir(111). Remarkably, also the so-called S2 surface states show a
Rashba splitting, and we fitted their dispersion with parameters γSO = (0.288±0.003)×10−9

eV cm and m∗/m = (0.732 ± 0.005) in Os(0001) and γSO = (0.200 ± 0.005) × 10−9 eV cm
and m∗/m = (0.661± 0.003) in Re(0001). Moreover we analyzed the magnetization density
of some selected surface states and computed their spin polarization.

In the second part of the project, we extended and implemented DFPT for lattice dynam-
ics with both FR NC and US PPs to deal with magnetic systems, as described in Chapter
3. Moreover, we extended the symmetrization of the induced densities and of the dynamical
matrix to include also the symmetries operations of the antiunitary space group of the crystal
that require the time-reversal operator. We validated the implementation of the theory by
comparing the phonon frequencies computed with DFPT and with the frozen phonon method
for ferromagnetic fcc Ni and for a monatomic ferromagnetic Pt nanowire. The agreement
between the two methods is within 0.5 cm−1. For both systems, we computed by DFPT the
complete phonon dispersions and discussed their features, showing that magnetism together
with spin-orbit coupling may lift the degeneracy of some phonon modes. For our systems
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these splittings range from 10−2 cm−1, in Ni, to a few cm−1, in Pt nanowire. Moreover, we
showed that the phonon frequencies may depend on the orientation of the magnetization, an
effect particularly evident in the Pt nanowire.

The implementation is currently public and available in both the thermo_pw (since version
1.0.0) and Quantum ESPRESSO (since version 6.6) open source packages.

In the final part of the project we applied our developments to study the effect of the
orientation of the magnetization on the phonon frequencies and the vibrational free energy
of a realistic system. In particular, we studied the lattice dynamics of the MnBi ferromagnet
for two orientations of the magnetization, m ⊥ c and m ‖ c, as presented in Chapter 4. We
have shown that the differences in the phonon frequencies give rise to a contribution to the
MAE comparable with the electronic one. We have found that the vibrational contribution
is relevant to explain the behavior of the MAE constant Ku as a function of temperature. We
could also get an estimate of the spin-reorientation temperature TSR in fair agreement with
the experimental value using the PBEsol approximation to evaluate the energy contribution
to the MAE. We mention that in Ref. [141] a first estimate of the vibrational contribution to
MAE was given, which led to TSR ≈ 450 K, far from the experimental value. Our computed
vibrational contribution is of the same order of magnitude as found in Ref. [141], and we
have included also the zero-point vibrational free energy difference, which gives an important
contribution and leads to an estimated spin-reorientation temperature TSR ≈ 100 K, when
used together with the energy MAE given by PBEsol.

The computed Ku as a function of temperature does not reproduce the experimental
results at high temperatures (T > 450 K), a regime where magnon (and, possibly, magnon-
phonon coupling) contributions may become important. The quantitative estimation of the
contribution of magnons to the MAE is presently an open question and certainly represents
an interesting future direction of investigation.

Our work can now be extended along several directions. From a methodological point of
view, we mention the possibility to extend the formulation for the magnetic case to the FR
PAW scheme.

We mention that the magnetic and the mixed magnetoelectric responses of a material can
influence the long-wavelength phonon modes. In particular, in Ref. [155] it has been explained
that, similarly to the dielectric response, they give a contribution (although expected to be
small) to the non-analytic term of the dynamical matrix at Γ. In particular, the additional
term depends on the dynamical magnetic charges, Zm, related to the net magnetization
induced by a phonon mode, and the linear magnetoelectric tensor α [156–158], related to
the magnetic response to an electric field (or, similarly, to the electric response to a magnetic
field). Both Zm and α can be computed in the non-collinear DFPT formalism for magnetic
systems presented in this Thesis. In particular, the dynamical magnetic charges can be
computed by integrating over the unit cell the magnetization density response induced by
a phonon perturbation at Γ, thus avoiding a further frozen phonon calculation. Together
with the calculation of the Born effective charges, already available in Quantum ESPRESSO, it
would be then possible to compute directly also the lattice-mediated contribution to the linear
magnetoelectric tensor. Similarly, the integration of the magnetization density induced by an
electric field would allow to compute the electronic contribution to α [156]. Currently, we are
working to implement in the DFPT code the calculation of Zm, both the lattice-mediated and
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electronic contributions to α, and the magnetic and magnetoelectric non-analytic terms in
the dynamical matrix at Γ, and we are testing the implementation for Cr2O3, a prototypical
example of a magnetoelectric material [159–165].
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ix A
Antilinear operators

A.1 Definition

An operator is antilinear if it is linear and moreover it takes the complex conjugate of the
scalars it is acting on. Briefly, an operator A : |ψ〉 → A |ψ〉 is antilinear if its action on a
given ket provides:

A(α1 |ψ1〉+ α2 |ψ2〉) = α∗1A |ψ1〉+ α∗2A |ψ2〉 . (A.1)

As a consequence, antilinear operators and complex scalars do not commute. In fact, given
a complex constant c, from (A.1) it follows immediately that:

A c = c∗A. (A.2)

The product of operators in which at least one operator is antilinear is defined in the same
way as for linear operators. The product of an antilinear operator with a linear operator is
an antilinear operator, whereas the product of two antilinear operators is a linear operator.
In general, the product of p + q operators, of which p are antilinear and q are linear, is a
linear (antilinear) operator if p is even (odd).

Two operators can commute or not: the commutator and anticommutator are defined in
the same way as for linear operators.

A.2 Action in dual space and definition of the
Hermitian conjugate

The action on a dual space element 〈ψ| is defined in the same way as for the ket, namely:

(〈ψ1|α1 + 〈ψ2|α2)A = (〈ψ1| A)α∗1 + (〈ψ2| A)α∗2. (A.3)
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As a consequence, in the definition of the scalar product 〈φ| A |ψ〉 it is important to specify
whether A acts to the left or to the right. In fact, expressing 〈φ| as a linear combination of
two vectors, namely 〈φ| = 〈φ1|α1 + 〈φ2|α2, if A acts to the right we have:

〈φ| (A |ψ〉) = [〈φ1|α1 + 〈φ2|α2](A |ψ〉) = α1 〈φ1| (A |ψ〉) + α2 〈φ2| (A |ψ〉), (A.4)

while if A acts to the left we have:

(〈φ| A) |ψ〉 = [(〈φ1|α1 + 〈φ2|α2)A] |ψ〉 = α∗1(〈φ1| A) |ψ〉+ α∗2(〈φ2| A) |ψ〉 . (A.5)

Comparing the two expressions it can be seen that if we take the complex conjugate of Eq.
(A.4) we get (A.5), so:

(〈φ| A) |ψ〉 = [〈φ| (A |ψ〉)]∗. (A.6)

As a result, the parenthesis cannot be omitted and one has to specify whether the operator
acts to the left or to the right.

The hermitian conjugate is defined in the same fashion as for linear operators, i.e.:

(A |ψ〉)† = (〈ψ| A†), (A.7)

but, due to Eq. (A.6) we have:

〈φ| (A |ψ〉) = [(〈ψ| A†) |φ〉]∗ = 〈ψ| (A† |φ〉). (A.8)

A.3 Antiunitarity
Finally, we define the antiunitarity property. A given operator U is called antiunitary if it is
antilinear and unitary at the same time. We recall that an operator is unitary if its hermitian
conjugate coincides with its inverse, namely:

U †U = 1, (A.9)

where 1 is the identity.
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ix B
Symmetry operations in state space:

a general discussion

In this section we consider the effects of a given symmetry operation S on wave functions. To
keep the discussion as general as possible we will consider the action on both the space Rn

and the spin space, so we will consider spinors rather than one-component wave functions.
In the following discussion we refer to Complements BVI and AIX of Ref. [166]. We will start
from rotations, then we will include inversion and fractional translations. Finally we will
describe in more detail the time-reversal operation.

B.1 Rotations in state space

The generator of a rotation is the orbital angular momentum, so that the operator associated
with a rotation of angle θ about an axis whose direction is expressed by the unit vector n,
is given by:

Rn(θ) = e−
ı̇
~ θL·n, (B.1)

where L is the orbital angular momentum. Eq. (B.1) is valid for a rotation applied to a
quantum state defined in the conventional vector space R3, that we will call Vr. If the state
is defined also in the spin space, it must be represented by a tensor product of a ket defined
in Vr and a ket defined in the spin space Vs:

|ψ〉 = |φ〉 ⊗ |χ〉 , (B.2)

where |φ〉 ∈ Vr, while |χ〉 ∈ Vs. In this case a rotation defined by the operator Rn(θ) must
act also on the spin part of the state. Consequently, Eq. (B.1) is generalized in the following
way:

Rn(θ) = e−
ı̇
~ θJ·n, (B.3)
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where J is the total angular momentum, defined as J = L + S. Basically, now the rotation
operator is made up of two parts, R(r)

n (θ) = e−
ı̇
~ θL·n, whose action is defined in Vr, and

R(s)
n (θ) = e−

ı̇
~ θS·n, that acts in Vs. The action of Rn(θ) on a given ket |ψ〉 is defined as:

|ψ′〉 = Rn(θ) |ψ〉 = [R(r)
n (θ) |φ〉]⊗ [R(s)

n (θ) |χ〉]. (B.4)

B.2 Rotation of two-component spinors
Let us consider now the specific case of a spin-1/2 particle. Its state is described by the
spinor [ψ](r), whose components are:

ψσ(r) = 〈r, σ|ψ〉 , (B.5)

where σ represents the components in the spin space. Applying a rotation R = R(r) ⊗R(s)

to the spinor [ψ](r), the ket transforms as |ψ′〉 = R|ψ〉 and its components are:

ψ′σ(r) = 〈r, σ|ψ′〉 = 〈r, σ|R |ψ〉 . (B.6)

Inserting the completeness relation relative to the basis {|r, σ〉} we get:

ψ′σ(r) =
∑
σ′

∫
d3r′ 〈r, σ|R |r′, σ′〉 〈r′, σ′|ψ〉 . (B.7)

Since the vectors of the basis {|r, σ〉} are given by tensor products, the matrix elements of
the operator R can be written in the following way:

〈r, σ|R |r′, σ′〉 = 〈r|R(r) |r′〉 〈σ|R(s) |σ′〉 . (B.8)

Since R(r) is unitary we have that 〈r|R(r) |r′〉 = 〈(R(r))−1r|r′〉 = δ[r′ − (R(r))−1r]. Further-
more, calling Rσσ′

1/2 the matrix element 〈σ|R(s) |σ′〉, Eq. (B.7) becomes:

ψ′σ(r) =
∑
σ′

Rσσ′

1/2 ψ
σ′(R−1r), (B.9)

where we dropped the superscript (r) for simplicity.

B.3 Inversion symmetry
The inversion symmetry reverses the sign of all spatial coordinates:

Ir = −r. (B.10)

Since the spin is an angular momentum, it possesses all its properties. In particular it is
an axial vector, which means that it is invariant upon inversion. Consequently, inversion
symmetry does not modify the spin part |χ〉 of a given state |ψ〉, so we must care only about
the action of I on |φ〉. We have:

ψ′σ(r) = 〈r, σ| I |ψ〉 = 〈−r, σ|ψ〉 = ψσ(−r). (B.11)
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The results obtained can be extended to a reflection symmetry, also known as mirror. A
mirror is an improper symmetry obtained by the composition of a proper rotationR with the
inversion I (improper rotation). When applied to a given spinor [ψ](r), the component |φ〉
defined in Vr gets transformed by the whole symmetry operation (i.e. the mirror symmetry),
while the spin part |χ〉 is transformed according to the SU(2) matrix R1/2 representing, in
spin space, the proper rotation R. In general, given a point symmetry operation S, the
spinor [ψ](r) transforms in the following way:

ψ′σ(r) =
∑
σ′

Rσσ′

1/2 ψ
σ′(S−1r). (B.12)

B.4 Space groups
Above we discussed point symmetry operations. Yet, the space group of a crystal may
contain operations for which a fractional translation is required. In the most general case we
represent a symmetry with the symbol {S|f}, where f is the fractional translation associated
to S. The action of {S|f} on a given vector r of R3 is:

{S|f}r = Sr + f . (B.13)

Being a translation, f does not affect the spin, so Eq. (B.12) becomes, in the case in which
also fractional translations are present:

ψ′σ(r) =
∑
σ′

Rσσ′

1/2 ψ
σ′({S|f}−1r). (B.14)

The inverse of {S|f} can be obtained requiring that {Sj|fj}{Si|fi}r = r, where {Sj|fj} =
{Si|fi}−1. We have:

{Sj|fj}{Si|fi}r = {Sj|fj}(Sir + fi)

= SjSir + Sjfi + fj

= r

(B.15)

From the last equality it follows that:

Sj = S−1
i (B.16)

fj = −Sj fi = −S−1
i fi, (B.17)

so {S|f}−1r = S−1r− S−1f . As a result, Eq. (B.14) becomes:

ψ′σ(r) =
∑
σ′

Rσσ′

1/2 ψ
σ′(S−1r− S−1f). (B.18)

B.5 Time-reversal symmetry
Time translations

A well known symmetry operation in the time domain is the time-translation symmetry. We
know from Classical Mechanics that a time-translational-invariant system is conservative: its
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total energy is a constant of motion. In Quantum Mechanics, the time-translation symmetry
implies the possibility to separate the time variable t and the spatial variable r. As a
consequence the time-dependent Schrödinger equation:

ı̇~
∂Ψ(r, t)

∂t
= HΨ(r, t) (B.19)

can be recast into the time-independent one:

Hψ(r) = E ψ(r), (B.20)

by getting
Ψ(r, t) = e−

ı̇
~E t ψ(r) (B.21)

Time-reversal in Classical Mechanics

Physical systems are often not only conservative, but also time-reversal invariant. The time-
reversal operation is defined as a particular time translation such that:

t→ −t, (B.22)

which implies that:

r→ r (B.23)
p→ −p. (B.24)

Since p → −p, time-reversal-invariant systems must be described by an Hamiltonian that
contains only even powers of the linear momentum p. In Classical Mechanics, the time-
reversal operation is completely described by Eqs. (B.22) and (B.24). As a consequence the
time-reversed trajectory of a particle can be obtained by just reversing the time and the
velocity at each point of the trajectory.

Time-reversal in Quantum Mechanics: spinless particle

In Quantum Mechanics the situation is more subtle, since we have to specify how the time-
reversal operator acts on a wave function. Basically, if we want a system to be time-reversal
invariant, the Schrödinger equation must be invariant when the time-reversal operation is
applied. If we change the sign of t in Eq. (B.19) we get:

− ı̇~∂Ψ(r,−t)
∂t

= HΨ(r,−t), (B.25)

that is equal to the Schrödinger equation if we further take the complex conjugate of both
sides (note that in the spinless case H is real):

ı̇~
∂Ψ∗(r,−t)

∂t
= HΨ∗(r,−t). (B.26)
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As a consequence the time-reversed wave function is the complex conjugate of the original
one:

Ψ(r, t)→ Ψ∗(r,−t), (B.27)

which implies that the time-reversal operator T , in the spinless case, is represented by the
complex-conjugation operator K. If we consider the wave function multiplied by a complex
scalar α, we have Kα |Ψ〉 = α∗K |Ψ〉, so K is an antilinear operator. Moreover, K does not
change the norm of the state it acts on, so K is antiunitary. Finally, if we apply K twice the
state is not modified, so K2 = 1. As a result:

K† = K−1 = K. (B.28)

Time-reversal: a general definition

Because of Eq. (B.24), not only p is affected by time-reversal, but also all the quantities
that depend on p or, obviously, on t. Among them we focus on the angular momentum.
Since L = r× p we have:

T †(r× p)T = −(r× p), (B.29)

so L changes sign if time-reversal T is applied. In order to have a more general definition
of the operator T we must define the time-reversed spin variables. Since the spin S is a
particular angular momentum we require that:

T † S T = −S. (B.30)

If we consider T = K, as for a spinless particle, we have:

K SxK = Sx (B.31)
K Sy K = −Sy (B.32)
K Sz K = Sz, (B.33)

so the complex-conjugation operator is not sufficient. To be able to reverse the spin we define
the time-reversal operator in a more general form:

T = U K, (B.34)

where U is a unitary operator. Since T † = KU †, our requirements become:

U † rU = r, (B.35)
U † pU = p, (B.36)
U † Sx U = −Sx, (B.37)
U † Sy U = Sy, (B.38)
U † Sz U = −Sz, (B.39)

therefore U represents a rotation, only for the spin variables, of −π about the Sy axis. Given
the discussion about rotation operators in spin space we can write U = eı̇πSy/~, which, for
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the particular case of a spin-1/2 particle, is eı̇πσy/2. If we write it using a Taylor expansion,
we get:

U =
+∞∑
k=0

1

k!

(
ı̇
π

2
σy

)k
(B.40)

Since σky is equal to 1 (σy) if k is even (odd), we can split the even powers from the odd ones
to have:

U = cos
(π

2

)
+ ı̇ σy sin

(π
2

)
= ı̇ σy, (B.41)

whence the time-reversal operator for a spin-1/2 particle can be written as:

T = ı̇ σy K. (B.42)
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Spin-angle functions

C.1 Dirac Hamiltonian and total angular momentum
We consider the Dirac Hamiltonian, introduced in Section 1.9:

H = cα · p + βmc2 + V. (C.1)

If we take a central external potential V (r), the eigenfunctions of H can be written as the
product of a radial function and an angular part. V commutes with both the orbital angular
momentum L and the spin angular momentum S that, in the relativistic case are defined in
four dimensions in the following way:

L = r× p14×4 (C.2)

S =
~
2

Σ =
~
2

(
σ 0
0 σ

)
. (C.3)

However, the presence of a term linear in the momentum in the Dirac Hamiltonian implies
that H does not commute with L and S separately. Indeed:

[H,L] = −ı̇ ~ cα× p, (C.4)

and
[H,S] = ı̇ ~ cα× p. (C.5)

Eqs. C.4 and C.5 imply that [H,L+S] = 0, hence the Dirac Hamiltonian commutes with the
total angular momentum J = L+S. As a consequence, the angular part of the eigenfunctions
of H must be an eigenfunction of J2 and Jz as well. We identify them as four-component
spinors Y jmj , where j and mj are related to the eigenvalues of J2 and Jz, following the
secular equations:

J2 Y jmj = j(j + 1) ~2 Y jmj (C.6)
Jz Y

jmj = mj ~Y jmj . (C.7)
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C.2 Spin-angle functions
Given the definitions of L and S (Eqs. (C.2) and (C.3)), the four-dimensional total angular
momentum can be written in a diagonal block form, where the two blocks in the diagonal
are equal and correspond to the two-dimensional total angular momentum operator, J2×2.
As a consequence, Y jmj is made up of two two-component spinors corresponding to the
eigenfunctions Y jmj

l1/2 of J2×2 (see below for more details), called spin-angle functions. Given
the eigenstates of S, χsms , that for s = 1/2 read:

χ1/2
1/2

=

(
1
0

)
(C.8)

χ 1/2
−1/2

=

(
0
1

)
, (C.9)

and the eigenstates of L, the spherical harmonics Yl m, the spin-angle functions can be ob-
tained by applying the rules for the addition of angular momenta and read:

Y
jmj
l 1/2 =

∑
mlms

c(l ml, 1/2ms, j mj)Ylml χ1/2ms , (C.10)

where c(l ml, 1/2ms, j mj) are Clebsch-Gordan coefficients. The addition of angular mo-
menta implies that mj = ml + ms and that j runs from |l − s| to l + s: in our case, since
s = 1/2 two different values of j are allowed for each l, namely j = l − 1/2 and j = l + 1/2
(the only exception being the case l = 0, for which only j = 1/2 is allowed). In particular,
Eq. (C.10) provides

Y
jmj
l 1/2 =


(
l +ml + 1

2l + 1

)1/2

Ylml(
l −ml

2l + 1

)1/2

Yl ml+1

 (C.11)

for j = l + 1/2 (here, ml = mj − 1/2), and

Y
jmj
l 1/2 =


(
l −ml + 1

2l + 1

)1/2

Yl ml−1

−
(
l +ml

2l + 1

)1/2

Ylml

 (C.12)

for j = l − 1/2 (here, ml = mj + 1/2).
The eigenfunctions of the four-dimensional total angular momentum J, Y jmj , are built

using two spin-angle functions with the same j and mj, and with orbital numbers l and l′.
A given j can be obtained with different values of l: It can be proved that the large and
the small component of the four-dimensional eigenfunctions of H must have different parity,
hence l = l′ ± 1 and:

Y jmj =

 Y
jmj
l 1/2

Y
jmj
l±1 1/2

 , (C.13)
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C.2.1 Relationship with real spherical harmonics

Eq. (C.10) allows to write the spin-angle functions as a linear combination of spherical
harmonics Ylml . Ylml are complex functions and can, in turn, be written in terms of the real
form of spherical harmonics, Y ′lml (see, for instance, Ref. [167]), that are used in Quantum
ESPRESSO, by means of a unitary matrix U in the following way:

Ylml =
l∑

m′l=−l

U l
mlm

′
l
Y ′lm′l . (C.14)

Eq. (C.10) can then be written as:

Y
jmjσ

l 1/2 =
l∑

ml=−l

cljσmjml Y
′
lml
, (C.15)

where
cljσmjml =

∑
m′lms

c(l m′l, 1/2ms, j mj)U
l
m′lml

χσsms . (C.16)

C.2.2 Effect of the time-reversal operator

We consider the action of the time-reversal operator T = ı̇ σy K (see Appendix B) on the
spin-angle functions, that will be useful when we will discuss the action of T on the US PPs
kernel K below. The spin-dependent part of T , ı̇ σy, acts on the spinors χ1/2ms appearing in
Eq. (C.10). In particular:

ı̇ σy

(
1
0

)
= −

(
0
1

)
(C.17)

ı̇ σy

(
0
1

)
=

(
1
0

)
. (C.18)

Being the Clebsch-Gordan coefficients and the spinors χ1/2ms real quantities, the complex-
conjugation operator K modifies only the spherical harmonics, whose properties imply that:

K Ylml = Y ∗lml = (−1)ml Yl−ml . (C.19)

We start from the case j = l+ 1/2. Using Eqs. (1.38), (1.98), and (1.100), the spin-angle
function Y jmjσ

l 1/2 transforms in the following way:

T Y jmj
l 1/2 = (−1)ml


(
l −ml

2l + 1

)1/2

Yl−ml−1(
l −ml + 1

2l + 1

)1/2

Yl−ml

 . (C.20)

By substituting ml = mj − 1/2, it follows that the spinor on the right-hand side of Eq.
(C.20) is the spin-angle function with −mj (and j = l + 1/2), hence:

T Y jmj
l 1/2 = (−1)ml Y

j−mj
l 1/2 . (C.21)

A similar argument holds for the j = l − 1/2 case as well, therefore Eq. (C.21) is always
valid.
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Effect of time-reversal on the

ultrasoft kernel K

The properties of the spin-angle functions discussed in Appendix C can be used when ap-
plying the time-reversal operator to the US kernel Kσσ′

σ1σ2
, namely:∑

σ3 σ4

T σ1σ3 Kσσ′

σ3σ4
T †σ4σ2 , (D.1)

which appears in the induced spin-density, Eq. (3.37). The explicit form of Kσσ′
σ1σ2

is [40]:

Kσσ′

σ1σ2
(r, r1, r2) = δ(r− r1) δ(r− r2) δσσ1 δσ

′σ2

+
∑
I

∑
τ τ ′

∑
l l′

∑
j j′

∑
mj m′j

1

r2
QI
τlj
τ ′l′j′

(r)Y
∗ Ijmjσ
l 1/2 (Ω)Y

Ij′m′jσ
′

l′ 1/2 (Ω)

× βIτlj(r1)Y
Ijmjσ1

l 1/2 (Ω1) βIτ ′l′j′(r2)Y
∗ Ij′m′jσ2

l′ 1/2 (Ω2).

(D.2)

As a first step, we shall prove that:∑
σ′′ σ′′′

∑
σ1 σ2

Uσσ′′ T σ1σ3 Kσ′′σ′′′

σ3σ4
T †σ4σ2U †σ

′′′σ′ = Kσσ′

σ1σ2
, (D.3)

where U is the unitary part of T . U and T do not affect the quantities QI
τlj
τ ′l′j′

(r), βIτlj(r1),

and βIτ ′l′j′(r2) appearing in Kσ′′σ′′′
σ3σ4

, because they are real and are not spin-dependent. Con-
sequently, in Eq. (D.3) the operators U , U †, T , and T † act only on the four spin-angle
functions contained in Kσ′′σ′′′

σ3σ4
, therefore we consider the product:∑

σ′′ σ′′′

∑
σ3 σ4

Uσσ′′ T σ1σ3 Y
Ijmjσ3

l 1/2 (Ω1)Y
∗ Ijmjσ′′
l 1/2 (Ω)Y

Ij′m′jσ
′′′

l′ 1/2 (Ω)Y
∗ Ij′m′jσ4

l′ 1/2 (Ω2)T †σ4σ2U †σ
′′′σ′ .

(D.4)
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In particular, U and U † act on the two spin-angle functions computed at Ω, the spin-
dependent parts of T and T † act on the spin-angle functions computed at Ω1 and Ω2,
respectively, whereas the complex-conjugation operator contained in T acts on all four spin-
angle functions. Therefore, we can exploit Eq. (C.21) to get:∑

σ′′ σ′′′

∑
σ3 σ4

Uσσ′′ T σ1σ3 Y
Ijmjσ3

l 1/2 (Ω1)Y
∗ Ijmjσ′′
l 1/2 (Ω)Y

Ij′m′jσ
′′′

l′ 1/2 (Ω)Y
∗ Ij′m′jσ4

l′ 1/2 (Ω2)T †σ4σ2U †σ
′′′σ′

= (−1)2(ml+m
′
l) Y

Ij−mjσ1

l 1/2 (Ω1)Y
∗ Ij−mjσ
l 1/2 (Ω)Y

Ij′−m′jσ′

l′ 1/2 (Ω)Y
∗ Ij′−m′jσ2

l′ 1/2 (Ω2).

(D.5)

Since ml and m′l are integers (ml = mj ± 1/2, m′l = m′j ± 1/2 ) we have (−1)2(ml+m
′
l) = 1,

therefore the action of U , U †, T , and T † on Kσ′′σ′′′
σ3σ4

changes the sign of the numbers mj and
m′j in the spin-angle functions. However, since the sums over mj and m′j in Eq. (D.2) run
from −j to j and from −j′ to j′, respectively, the kernel is overall unchanged, which proves
Eq. (D.3).

Finally, we can get the quantity reported in Eq. (D.1) by multiplying Eq. (D.3) by U †
and U on the left and on the right, respectively:∑

σ3 σ4

T σ1σ3 Kσσ′

σ3σ4
T †σ4σ2 =

∑
σ′′ σ′′′

U †σσ
′′
Kσ′′σ′′′

σ1σ2
Uσ′′′σ′ . (D.6)
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Consequences of symmetry on the

charge and magnetization densities
of solids

In this Appendix we apply to a crystalline system the general discussion of Appendix B.
In particular, our aim is to understand the consequences of symmetries on the charge and
magnetization densities associated to a single state or, in a more general fashion, to a group
of degenerate states. We first describe the consequences of a space group symmetry, then we
generalize the discussion including the time-reversal symmetry.

E.1 Bloch states and charge density in the spinless case:
the small group of k

We consider a crystalline system described by the Hamiltonian H and a symmetry opera-
tion {S|f} of the crystal space group. Being a symmety of the crystal, its operator O{S|f}
commutes with the Hamiltonian: [

H,O{S|f}
]

= 0. (E.1)
Given the Schrödinger equation for the crystal:

Hψkn(r) = εknψkn(r), (E.2)

where k identifies the wave vector, we apply O{S|f} on both sides and exploit Eq. (E.1) to
get:

HO{S|f}ψkn(r) = εknO{S|f}ψkn(r), (E.3)
which means that O{S|f}ψkn(r) is an eigenstate of H relative to the same eigenvalue εkn as
ψkn(r). From Appendix B (Eq. (B.18)) we recall that:

O{S|f}ψkn(r) = ψkn(S−1r− S−1f). (E.4)
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Since ψkn(r) is a Bloch state, the right-hand side can be written as ψSkn(r). In the following
we consider only the set of symmetry operations such that Sk = k + G, which defines
subgroup of the crystal space group called small group of k. In this case the relationship
ψkn(S−1r− S−1f) = ψSkn(r) becomes ψkn(S−1r− S−1f) = ψkn(r). As a consequence:

|ψkn(S−1r− S−1f)|2 = |ψkn(r)|2, (E.5)

therefore the symmetries of the charge density associated to a Bloch state with wave vector
k are described by the operations of the small group of k.

It is possible to generalize the previous discussion to the case in which the state ψkn(r)
at k is N -fold degenerate. In this case, if Sk = k + G the application of O{S|f} to ψkn(r)
gives a Bloch state defined in the N -dimensional subspace of Bloch states with wavevector
k, so it can be expressed as a linear combination in the basis of this subspace:

O{S|f}ψkn(r) =
N∑
m=1

Γnm ψkm(r). (E.6)

To analyze the symmetries of the charge density, as discussed above for the non-degenerate
case, we should consider the sum of the contribution to the charge density of each of the
N degenerate states. Indeed, since the basis of the N -dimensional subspace is not unique,
the charge density associated to a single state is physically meaningless. Using Eq. (E.6) we
have:

N∑
n=1

|O{S|f}ψkn(r)|2 =
N∑
n=1

(
N∑
m=1

Γ∗nm ψ
∗
km(r)

)(
N∑

m′=1

Γnm′ψkm′(r)

)

=
N∑
m=1

N∑
m′=1

N∑
n=1

Γ†mn Γnm′ ψ
∗
km(r)ψkm′(r)

=
N∑
m=1

ψ∗km(r)ψkm(r)

=
N∑
m=1

|ψkm(r)|2,

(E.7)

where we used the unitarity of Γ (
∑N

n=1 Γ†mn Γnm′ = δmm′). The same sum of charge densities
can be dealt with using Eq. (E.4). We get:

N∑
n=1

|O{S|f}ψkn(r)|2 =
N∑
n=1

|ψkn(S−1r− S−1f)|2. (E.8)

By comparing the right-hand sides of Eqs. (E.7) and (E.8) we get the final result:

N∑
n=1

|ψkn(r)|2 =
N∑
n=1

|ψkn(S−1r− S−1f)|2, (E.9)

that is the generalization of Eq. (E.5).
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E.2 Magnetization density: the spin-1/2 case
Below we consider the spin-1/2 case. Our goal is to generalize to the magnetization density
the arguments discussed above for the charge density in the spinless case. We recall that the
magnetization density is defined as:

mα(r) = µB

N∑
n=1

∑
σ1σ2

ψ∗σ1
kn (r)σσ1σ2

α ψσ2
kn(r), (E.10)

where α identifies the cartesian component we are considering, σα are the Pauli matrices, and
σ1 = 1, 2, σ2 = 1, 2 identify the components in spin space. Here we are already considering
the more general case of degenerate states. We apply a given symmetry operation {S|f} of
the small group of k. Using Eq. (E.6) we get for the transformed magnetization:

µB

N∑
n=1

∑
σ1σ2

(
O{S|f}ψkn(r)

)∗σ1 σσ1σ2
α

(
O{S|f}ψkn(r)

)σ2

=µB

N∑
n=1

∑
σ1σ2

(
N∑
m=1

Γ∗nm ψ
∗σ1
km (r)

)
σσ1σ2
α

(
N∑

m′=1

Γnm′ ψ
σ2

km′(r)

)

=µB

N∑
m=1

N∑
m′=1

N∑
n=1

∑
σ1σ2

Γ†mn Γnm′ ψ
∗σ1
km (r)σσ1σ2

α ψσ2

km′(r)

=µB

N∑
m=1

∑
σ1σ2

ψ∗σ1
km (r)σσ1σ2

α ψσ2
km(r)

=mα(r).

(E.11)

On the other hand, if we exploit Eq. (B.18) we get:

µB

N∑
n=1

∑
σ1σ2

(
O{S|f}ψkn(r)

)∗σ1 σσ1σ2
α

(
O{S|f}ψkn(r)

)σ2

=µB

N∑
n=1

∑
σ1σ2

∑
σ3σ4

ψ∗σ3
kn (S−1r− S−1f)R†σ3σ1

1/2 σσ1σ2
α Rσ2σ4

1/2 ψσ4
kn(S−1r− S−1f)

=µB

N∑
n=1

∑
β

∑
σ3σ4

ψ∗σ3
kn (S−1r− S−1f) S̃αβ σσ3σ4

β ψσ4
kn(S−1r− S−1f)

=
N∑
n=1

∑
β

S̃αβmβ(S−1r− S−1f),

(E.12)

where S̃ (called R previously in Appendix B) is the proper part of the operation S, and we
used the following relationship:∑

σ1σ2

R†σ3σ1

1/2 σσ1σ2
α Rσ2σ4

1/2 =
∑
β

S̃αβσσ3σ4
β , (E.13)
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whose proof is shown in detail in Appendix F. By comparing the right-hand sides of Eqs.
(E.11) and (E.12) we get the final result:

m(r) = S̃m(S−1r− S−1f). (E.14)

If {S|f} is a symmetry operation of the small group of k when composed with the time-
reversal, we must generalize Eq. (E.14). In particular, Eq. (E.6) holds also if time-reversal
is applied:

T O{S|f}ψkn(r) =
N∑
m=1

Γnmψkm(r). (E.15)

Γ is, as in the previous case, a unitary matrix, so the calculations in Eq. (E.11) can be done
in a similar way, to get:

µB

N∑
n=1

∑
σ1σ2

(
T O{S|f}ψkn(r)

)∗σ1 σσ1σ2
α

(
T O{S|f}ψkn(r)

)σ2 = mα(r). (E.16)

Instead, calculations similar to those in Eq. (E.12) can be performed in the following way:

µB

N∑
n=1

∑
σ1σ2

(
T O{S|f}ψkn(r)

)∗σ1 σσ1σ2
α

(
T O{S|f}ψkn(r)

)σ2

=µB

N∑
n=1

∑
σ1σ2

∑
σ3σ4

[(
O{S|f}ψkn(r)

)∗σ3 T †σ3σ1
]
σσ1σ2
α

[
T σ2σ4

(
O{S|f}ψkn(r)

)σ4
]

=µB

N∑
n=1

∑
σ3σ4

(
O{S|f}ψkn(r)

)σ3

[∑
σ1σ2

T σ1σ3 σ∗σ1σ2
α T ∗σ2σ4

(
O{S|f}ψkn(r)

)∗σ4

]

=µB

N∑
n=1

∑
σ3σ4

(
O{S|f}ψkn(r)

)∗σ4
[
T †σ4σ2 σσ2σ1

α T σ1σ3
(
O{S|f}ψkn(r)

)σ3
]

= − µB
N∑
n=1

∑
σ3σ4

(
O{S|f}ψkn(r)

)∗σ4 σσ4σ3
α

(
O{S|f}ψkn(r)

)σ3

= −
N∑
n=1

∑
β

S̃αβmβ(S−1r− S−1f),

(E.17)

where in the third line we used the properties of antilinear operators, while in the fifth line
we used the relationship T †σαT = −σα, a property of the time-reversal operator discussed
in Appendix B. The last equality in Eq. (E.17) follows from Eq. (E.12). Finally, the
generalization of Eq. (E.14) reads like:

m(r) = ±S̃m(S−1r− S−1f), (E.18)

where the sign depends on the presence of time-reversal in the symmetry considered. In
particular, if S (T S) belongs to the small group of k we must consider the + (−) sign.
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Rotation of Pauli matrices

In this Appendix we consider the rotation in spin space introduced in Appendix B and used
explicitly in Appendix E to compute the transformed magnetization. The proof presented
below is partially based on Problem 9.4 of Ref. [168]. We shall show that:∑

σ1σ2

R†σ3σ1

1/2 σσ1σ2
α Rσ2σ4

1/2 =
∑
β

S̃αβ σσ3σ4
β , (F.1)

or, in a more compact way:
R†1/2σR1/2 = S̃ σ, (F.2)

where σ is a vector whose components are the Pauli matrices σα(α = 1, 2, 3), while S̃ is the
proper rotation associated to the symmetry operation S.

From Appendix B we recall that:

R1/2 = e−
ı̇
~ θS·n = e−ı̇

θ
2
σ·n, (F.3)

where n (a unit vector) represents the rotation axis, while θ is the rotation angle. We
consider the Taylor expansion of R1/2. To compute the quantity (σ ·n)k, we use the following
relationship:

(σ ·A) (σ ·B) = A ·B + ı̇σ · (A×B) , (F.4)

a property of the Pauli matrices, to get:

(σ · n)2 = 1+ ı̇σ · (n× n) = 1, (F.5)

and, as a consequence:

(σ · n)2k = 1, (F.6)
(σ · n)2k+1 = σ · n. (F.7)
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Using Eqs. (F.6) and (F.7) it is possible to separate the even and the odd powers in the
Taylor expansion of R1/2. As a result we get:

R1/2 = 1 cos

(
θ

2

)
− ı̇(σ · n) sin

(
θ

2

)
. (F.8)

Using the expression of R1/2 it is possible to compute R†1/2 σ R1/2. We consider a given
component α of the vector σ:

R†1/2 σαR1/2 =

[
1 cos

(
θ

2

)
+ ı̇(σ · n) sin

(
θ

2

)]
σα

[
1 cos

(
θ

2

)
− ı̇(σ · n) sin

(
θ

2

)]
= cos2

(
θ

2

)
σα − ı̇ sin

(
θ

2

)
cos

(
θ

2

)
[σα (σ · n)− (σ · n)σα]

+ sin2

(
θ

2

)
(σ · n)σα (σ · n). (F.9)

We analyze separately the following two terms: [σα (σ · n) − (σ · n)σα] and (σ · n)σα (σ
· n). We have:

σα (σ · n)− (σ · n)σα =
∑
β

nβ[σα, σβ]

= 2 ı̇
∑
βγ

εαβγ nβ σγ

= 2 ı̇ (n× σ)α,

(F.10)

where εαβγ is the totally antisymmetric Levi-Civita tensor and we used the property of the
Pauli matrices [σα, σβ] = 2 ı̇

∑
k εαβγ σγ. To deal with the second term we recall another

property of the Pauli matrices, namely σασβ = δαβ + ı̇
∑

γ εαβγσγ. We get:

(σ · n)σα (σ · n) =
∑
βγ

nβ nγ σβ σα σγ

=
∑
βγ

nβ nγ σβ δαγ + ı̇
∑
βγδ

nβ nγ εαγδ σβ σδ.
(F.11)

The first term gives nα (n · σ). The second term can be further expanded getting:

ı̇
∑
βγ

nβ nγ εαγβ +
∑
βγ

∑
δη

nβ nγ εαγδ εδβη ση. (F.12)

The first term is −ı̇ (n× n)α = 0, while the second can be rearranged in the following way:∑
γδ

εαγδ nγ
∑
βη

εδβη nβ ση =
∑
γδ

εαγδ nγ (n× σ)δ

= [n× (n× σ)]α

(F.13)

To summarize, we have:

(σ · n)σα (σ · n) = nα (n · σ) + [n× (n× σ)]α . (F.14)
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Finally, in order to complete the rearrangement of the quantity R†1/2σαR1/2 we consider once
more the term

∑
βγ

∑
δη nβ nγ εαγδ εδβη ση, that before we wrote explicitly as [n× (n×σ)]α.

It is possible to compute it in a different way, using the following property of the totally
antisymmetric tensor:

∑
γ εαβγ εγδη = δαδδβη − δαηδβγ. We get:∑

βγ

∑
δη

nβ nγ εαγδ εδβη ση =
∑
βγη

nβ nγ ση (δαβδγη − δαηδβγ)

= nα
∑
γ

nγ σγ − σα
∑
γ

n2
γ

= nα (n · σ)− σα,

(F.15)

from which we can get an expression for the Pauli matrix σα, which multiplies cos2 (θ/2) in
the expression of R†1/2 σαR1/2, Eq. (F.9). In particular, we have:

σα = nα (n · σ)− [n× (n× σ)]α . (F.16)

Finally, we substitute the computed terms in the expression of R†1/2 σαR1/2 and we exploit
the trigonometric identities to reach the following result:

R†1/2 σαR1/2 = nα (n · σ)− cos θ [n× (n× σ)]α + sin θ (n× σ)α. (F.17)

This expression can be further expanded to factor out the Pauli matrices, so that we can write
R†1/2 σR1/2 as a matrix-vector product. By writing explicitly the dot and cross products,
Eq. (F.17) becomes:

R†1/2 σαR1/2 = nα
∑
β

nβ σβ − cos θ
∑
βγ

∑
δη

εαβγ nβ εγδη nδ ση + sin θ
∑
βγ

εαβγnβσγ. (F.18)

The sum over γ in the second term can be computed using the identity
∑

γ εαβγεγδη =
δαδδβη − δαηδβδ, that allows to compute the sums over δ and η as well. The third term can
be slightly rearranged exchanging the indices β and γ in order to have σβ instead of σγ.
Moreover, recalling that

∑
β n

2
β = 1 and collecting the similar terms, we get:

R†1/2 σαR1/2 = nα (1− cos θ)
∑
β

nβ σβ + cos θ
∑
β

δαβ σβ + sin θ
∑
βγ

εαγβ nγ σβ, (F.19)

that can be written as the product of a matrixM and the vector σ, whose entries are the
Pauli matrices. The entries of the matrix can be computed from Eq. (F.19) by inserting
α = 1, 2, 3 and β = 1, 2, 3. The final result is:

M =

 cos θ + n2
x(1− cos θ) nxny(1− cos θ)− nz sin θ nxnz(1− cos θ) + ny sin θ

nxny(1− cos θ) + nz sin θ cos θ + n2
y(1− cos θ) nynz(1− cos θ)− nx sin θ

nxnz(1− cos θ)− ny sin θ nynz(1− cos θ) + nx sin θ cos θ + n2
z(1− cos θ)

 ,

(F.20)
which can be proved to represent a rotation of angle θ about the axis n (see [169] for more
details). This is the proper rotation associated to the symmetry operation S we started from
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in Appendix E. Its form does not depend on the presence of improper rotations (inversion) in
S, because the improper rotations do not affect the spin variables, hence they do not change
the form of R1/2. We can conclude thatM is the proper part of S, therefore:∑

σ1σ2

R†σ3σ1

1/2 σσ1σ2
α Rσ2σ4

1/2 =
∑
β

S̃αβ σσ3σ4
β . (F.21)



A
p

p
e

n
d

ix G
Analysis of the term 〈∆µψ|K|ψ〉 in

the induced spin density

In this Appendix we consider the second term appearing in the induced spin density (Eq.
(3.30)) and discuss how to introduce the time-reversal operator T . Moreover, we explain
how to apply this expression to the induced charge and magnetization densities.

We start our discussion from the induced spin density (Eq. (3.30)), which reads:

dnσσ
′
(r)

dµ
=
∑
i

∑
σ1 σ2

[
〈ψσ1

i |Kσσ′

σ1σ2
(r)|∆µψσ2

i 〉+ 〈∆µψσ1
i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉
]

+ ∆µnσσ
′
(r). (G.1)

We label the first and the second terms with the superscripts (1) and (2), respectively, and
we focus on (dnσσ

′
(r)/dµ)(2). Inserting the identity T †T = 1 between 〈∆µψσi | and K and

between K and |ψσi 〉 we have:

(
dnσσ

′
(r)

dµ

)(2)

=
∑
i

∑
σ1 σ2

〈∆µψσ1
i |Kσσ′

σ1σ2
(r)|ψσ2

i 〉

=
∑
i

∑
σ1 σ2

∑
σ3 σ4

∑
σ5 σ6

〈∆µψσ1
i |
(
T †σ1σ3 T σ3σ4 Kσσ′

σ4σ5
(r) T †σ5σ6 T σ6σ2 |ψσ2

i 〉
)
.

(G.2)

In the bottom line the round brackets are necessary because T is an antilinear operator,
hence it is essential to specify whether it acts to the right or to the left. By applying the
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properties of antilinear operators we can write:(
dnσσ

′
(r)

dµ

)(2)

=
∑
i

∑
σ1 σ2

∑
σ3 σ4

∑
σ5 σ6

[(
〈∆µψσ1

i | T †σ1σ3
) (
T σ3σ4 Kσσ′

σ4σ5
(r) T †σ5σ6 T σ6σ2 |ψσ2

i 〉
)]∗

=
∑
i

∑
σ3 σ4

∑
σ5 σ6

〈(T ψi)σ6|
(
T σ6σ5 Kσ′σ

σ5σ4
(r) T †σ4σ3 |(T ∆µψi)

σ3〉
)
,

(G.3)

where the second line follows from the hermiticity of the kernel K, namely Kσσ′ ∗
σ4σ5

= Kσ′σ
σ5σ4

.
Then we can exploit Eq. (D.6), a property of K discussed in detail in Appendix D. As a
result:(

dnσσ
′
(r)

dµ

)(2)

=
∑
i

∑
σ1 σ2

∑
σ′′ σ′′′

U †σ
′σ′′
[
〈(T ψi)σ1|Kσ′′σ′′′

σ1σ2
(r) |(T ∆µψi)

σ2〉
]
Uσ′′′σ. (G.4)

When computing the contribution to the induced charge and magnetization densities
given by (dnσσ

′
(r)/dµ)(2), Eq. (G.4) implies that:(

dn(r)

dµ

)(2)

=
∑
σ

(
dnσσ(r)

dµ

)(2)

=
∑
σ

∑
σ′′ σ′′′

∑
σ1 σ2

U †σσ
′′
[
〈(T ψi)σ1|Kσ′′σ′′′

σ1σ2
(r) |(T ∆µψi)

σ2〉
]
Uσ′′′σ

=
∑
σ′′

∑
σ1 σ2

〈(T ψi)σ1 |Kσ′′σ′′

σ1σ2
(r) |(T ∆µψi)

σ2〉

(G.5)

for the charge density response. In particular, the bottom line follows from
∑

σ U
σ′′′σ U †σσ

′′
=

δσ
′′′σ′′ (U is a unitary matrix). For the induced magnetization density, instead we have:(

dmα(r)

dµ

)(2)

=
∑
σ σ′

(
dnσσ

′
(r)

dµ

)(2)

σσσ
′

α

=
∑
σ σ′

∑
σ′′ σ′′′

U †σ
′σ′′
[
〈(T ψi)σ1|Kσ′′σ′′′

σ1σ2
(r) |(T ∆µψi)

σ2〉
]
σσσ

′

α Uσ′′′σ

= −
∑
σ′′ σ′′′

[
〈(T ψi)σ1 |Kσ′′σ′′′

σ1σ2
(r) |(T ∆µψi)

σ2〉
]
σσ
′′σ′′′

α ,

(G.6)

where in the last step we used the explicit expression of U (U = ı̇ σy), so that:∑
σ σ′

Uσ′′′σσσσ
′

α U †σ
′σ′′ = (−1)α σσ

′′′σ′′

α

= (−1)α σ∗σ
′′σ′′′

α

= −σσ′′σ′′′α ,

(G.7)

where, in the first line we used the anti-commutation relation {σα, σβ} = 2 δαβ 1, in the
second step we exploited the hermiticity of the Pauli matrices, and in the last step we made
use of the property σ∗σ′′σ′′′α = (−1)α−1 σσ

′′σ′′′
α .
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DFPT in the non-collinear

magnetic case: formulation for
periodic solids

In this Appendix, we write the theory formulated in Chapter 3 in a more explicit way for
periodic solids. From a practical point of view, we will write explicitly the KS potential VKS

(Eq. (1.164)), the kernel K (Eq. (1.162)), and the overlap matrix S (Eq. (1.168)), and we
will exploit Bloch’s theorem to introduce the periodic parts of the wave functions, wherever
possible. The purpose is to write the equations presented in Chapter 3 in a way similar to
how they are implemented in the code. In particular, we will generalize the main equations
reported in Appendix A of Ref. [47].

H.1 Preliminary discussion

H.1.1 Effects of periodicity

As a preliminary information, we discuss the effects of periodicity on the responses to a
phonon perturbation with wave vector q. When computing the response of a quantity F
having the same periodicity as the crystal, it is possible to write it as a lattice-periodic
function modulated by a phase factor eı̇q·r. If F is a local function, this is done in a straight-
forward way. The response of F is defined as:

∂F (r)

∂usα(q)
=
∑
µ

eı̇q·Rµ
∂F (r)

∂uµsα
. (H.1)

We take its Fourier transform:
∂F

∂usα(q)
(k) =

1

V

∫
d3r e−ı̇k·r

∑
µ

eı̇q·Rµ
∂F (r)

∂uµsα
. (H.2)
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The translational invariance of the solid implies that:

∂F (r−Rµ)

∂u0sα

=
∂F (r)

∂uµsα
, (H.3)

which, inserted in the expression of the Fourier component (and after introducing r′ =
r + Rµ), gives:

∂F

∂usα(q)
(k) =

1

V

∫
d3r′

∂F (r′)

∂u0sα

e−ı̇k·r
′∑

µ

eı̇(q−k)·Rµ , (H.4)

that is non-vanishing only if k = q + G. As a consequence:

∂F (r)

∂usα(q)
= eı̇q·r

∑
G

∂F

∂usα(q)
(q + G) eı̇G·r, (H.5)

and the sum over G yields a lattice-periodic function, therefore we can write:

∂F (r)

∂usα(q)
= eı̇q·r

∂̃F (r)

∂usα(q)
, (H.6)

where the tilde symbol ∼ identifies the periodic part of the function. As an example, the
responses of the local and of the Hartree and exchange-correlation potentials become:

∂Vloc(r)

∂usα(q)
= eı̇q·r

˜∂Vloc(r)

∂usα(q)
, (H.7)

∂VH,xc(r)

∂usα(q)
= eı̇q·r

˜∂VH,xc(r)

∂usα(q)
. (H.8)

Instead, if F is a non-local quantity it contains the projectors |βIm〉 (I = {ρ, s′′}) or their
derivatives. In this case, we remark that quantities such as

∑
ρ e

ı̇q·Rρ |βIm〉,∑
ρ e

ı̇q·Rρ |∂βIm/∂uµsα〉, and
∑

ρ e
ı̇q·Rρ |∂2βIm/∂uµsα∂uνs′β〉 can be treated as Bloch sums be-

cause |βIm〉 are localized and centered about the atom I. Then, using Bloch’s theorem they
can be written as the product of a phase factor eı̇q·r and a lattice-periodic function. As an
example,

∑
ρ e

ı̇q·Rρ |βIm〉 becomes:∑
ρ

eı̇q·Rρ |βIm〉 = eı̇q·r |β̃Im〉 . (H.9)

The same argument holds also for the augmentation functions QI
mn(r):∑

ρ

eı̇q·Rρ QI
mn(r) = eı̇q·r Q̃s′′q

mn (r). (H.10)

By exploiting Bloch’s theorem and the consequences of periodicity mentioned above, the
wave function response can be written as the product of a phase factor and a lattice-periodic
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function. In an insulator this is done in a straightforward way: indeed, Bloch’s theorem and
Eq. (H.6) imply that ∣∣∣∣ ∂ψσ1

kv

∂usα(q)

〉
= eı̇(k+q)·r

∣∣∣∣ ∂̃uσ1
kv

∂usα(q)

〉
. (H.11)

In a metal, the wave function response contains also non-local terms (see Eq. (3.27)): using
Eqs. (H.9) and (H.10) we can write it in a way similar to the insulating case, i.e.:

|∆usα(q)ψσ1
kv〉 = eı̇(k+q)·r |∆̃usα(q)uσ1

kv〉 . (H.12)

H.1.2 Remarks on scalar products

When addressing the non-local contributions in the induced densities, in the Sternheimer
linear system, and in the dynamical matrix, we often deal with scalar products of the wave
functions and of the projectors or their derivatives. Such scalar products can be manipulated
and we can extract a phase factor. Following Ref. [47] we have:

〈βIm1
|ψσ1

kv〉 = eı̇k·Rρ βs
′′m1σ1

kv , (H.13)〈
∂βIm1

∂uµsα

∣∣∣∣ψσ1
kv

〉
= eı̇k·Rρ αs

′′αm1σ1
kv , (H.14)〈

∂2βIm1

∂uµsαuνs′β

∣∣∣∣ψσ1
kv

〉
= eı̇k·Rρ γs

′′αβm1σ1

kv . (H.15)

The scalar product of the projectors |βIm1
〉 with the wave function response can be manipu-

lated in a similar way, namely:

〈βIm1
|∆usα(q)ψσ1

kv〉 = eı̇(k+q)·Rρ ∆usα(q)βs
′′m1σ1

kv . (H.16)

H.2 Induced densities
Following the same order as in Chapter 3, we start from the induced spin density, Eq. (3.67),
which may be further manipulated by writing explicitly Kσσ′

σ1σ2
(r). Introducing the periodic

parts of the Bloch functions and of the responses of the wave functions (Eq. (H.12)), we
obtain the periodic part of the induced spin density:

d̃nσσ′(r)

dus′β(q)
=
∑
kv

[
u∗σkv (r) ∆̃us′β(q)uσ

′

kv(r) +
∑
σ1σ2

Uσ′σ1 (T u−kv(r))∗σ1 (T ˜∆us′β(−q) u−kv(r))σ2 U †σ2σ

]

+
∑
s′′

∑
mn

(
Q̃s′′q
mn (r) ∆us′β(q)ρs

′′σσ′

mn

)
+ ∆̃us′β(q)nσσ

′
(r),

(H.17)

where we defined the quantity ∆us′β(q)ρs
′′σσ′
mn as:

∆us′β(q)ρs
′′σσ′

mn =
∑
m1n1

∑
σ1σ2

∑
kv

(
β∗ s

′′m1σ1
kv fσ1σ

m1m
fσ
′σ2

nn1
∆us′β(q)βs

′′n1σ2
kv

+
∑
σ′′σ′′′

β∗ s
′′m1σ1

T −kv fσ1σ′′

m1m
Uσ′′σ′ U †σσ

′′′
fσ
′′′σ2

nn1
∆us′β(−q)βs

′′n1σ2
T −kv

)
,

(H.18)
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where we used the fact that (See Appendix D, Eq. (D.6)):∑
σ3σ4

T σ1σ3 Kσ′σ
σ3σ4
T †σ4σ2 =

∑
σ′′σ′′′

Uσ′σ′′ Kσ′′σ′′′

σ1σ2
U †σ

′′′σ. (H.19)

The periodic part of the induced charge and magnetization densities can be computed from
the periodic part of the induced spin density (Eq. (H.17)) as:

d̃n(r)

dus′β(q)
=
∑
σ

d̃nσσ(r)

dus′β(q)
, (H.20)

d̃mα(r)

dus′β(q)
= µB

∑
σ σ′

d̃nσσ′(r)

dus′β(q)
σσσ

′

α . (H.21)

H.3 Linear system

The periodic parts of the response of the wave functions, | ˜∆us′β(q)uσ1
kv〉 and |(T

˜∆us′β(−q)u−kv)
σ1〉,

are the solutions of the Sternheimer linear systems reported in Eqs. (3.40) and (3.48), which
can be written in an explicit form and in terms of lattice-periodic functions in the following
way:∑

σ2

(
H

[B]σ1σ2

k+q +Qσ1σ2
k+q − εkvS

σ1σ2
k+q

)
|∆̃us′β(q)

uσ2
kv〉 = −

∑
σ2

P †σ1σ2,k+q
c,kv

[
|φ̃us′β(q)[B]σ2

kv 〉

+
∑
σ3

d̃V
[B]σ2σ3

H,xc

dus′β(q)

∣∣∣∣uσ3
kv

〉
+
∑
σ3

∑
s′′

∑
m1n1

3I
us′β(q)[B]σ2σ3

s′′m1n1
βs
′′n1σ3

kv |β̃s′′ k+q
m1

〉

]
,

(H.22)

∑
σ2

(
H

[−B]σ1σ2

k+q +Qσ1σ2
k+q − ε−kvS

σ1σ2
k+q

)
|(T ˜

∆
us′β(−q)

u−kv)
σ2〉 = −

∑
σ2

Π†σ1σ2,−k−q
c,−kv

[
|φ̃us′β(q)[−B]σ2

T −kv 〉

+
∑
σ3

d̃V
[−B]σ2σ3

H,xc

dus′β(q)

∣∣∣∣(T u−kv)σ3

〉
+
∑
σ3

∑
s′′

∑
m1n1

3I
us′β(q)[−B]σ2σ3

s′′m1n1
βs
′′n1σ3
T −kv |β̃

s′′ k+q
m1

〉

]
,

(H.23)

where H [B]σ1σ2

k+q , Sσ1σ2
k+q , and Q

σ1σ2
k+q are defined as:

H
[B]σ1σ2

k+q = e−ı̇(k+q)·rH [B]σ1σ2 eı̇(k+q)·r, (H.24)

Sσ1σ2
k+q = e−ı̇(k+q)·r Sσ1σ2 eı̇(k+q)·r, (H.25)

Qσ1σ2
k+q = e−ı̇(k+q)·rQσ1σ2 eı̇(k+q)·r. (H.26)

3I
us′β(q)[B]σ2σ3

s′′m1n1
in the right-hand side of the linear systems is obtained by generalizing to the

non-collinear FR formulation the integral of the self-consistent part of the response of the
KS potential with the augmentation functions (3I

us′β(q)[B]

s′′mnα in Ref. [47]), namely:

3I
us′β(q)[B]σ2σ3

s′′m1n1
=
∑
mn

∑
σ4σ5

∑
η

fσ2σ4
m1m

Aσ4σ5
η

3I
us′β(q)[B]

s′′mnη fσ5σ3
nn1

, (H.27)
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with
3I
us′β(q)[B]

s′′mnη =

∫
d3r Qs′′

mn(r)
dC

[B]
η (r)

dus′β(q)
, (H.28)

where C[B] = (VH,xc,−µBBxc,x,−µBBxc,y,−µBBxc,z). Moreover, in the right-hand side of the
linear systems we introduced the periodic part of the vector |φus′β(q)[B]σ1

kv 〉, which contains
the non-self-consistent contribution of the perturbation of the KS potential. It reads:

|φ̃us′β(q)[B]σ1

kv 〉 =
∑
σ2

∑
m1 n1

[(
D̃I σ1σ2
m1n1

− εkv qγ(I)σ1σ2
m1n1

)(
βs
′n1σ2

kv

∣∣∣∣ ˜∂βs′ k+q
m1

∂uνs′β

〉
+ αs

′βn1σ2

kv |β̃s′ k+q
m1

〉

)

+
(

1I
uνs′β [B]σ1σ2

m1n1 + 2I
uνs′β σ1σ2

m1n1

)
βs
′n1σ2

kv |β̃s′ k+q
m1

〉

]
+

∂̃Vloc
∂us′β(q)

∣∣∣∣uσ1
kv

〉
,

(H.29)

where the integrals 1I
uνs′β [B]σ1σ2

m1n1 and 2I
uνs′β
m1n1 are properly generalized to the non-collinear FR

case. In particular:
1I
uνs′β [B]σ1σ2

m1n1 =
∑
mn

∑
σ3 σ4

∑
η

fσ1σ3
m1m

Aσ3σ4
η

1I
uνs′β [B]
mnη fσ4σ2

nn1
, (H.30)

with
1I
uνs′β [B]
mnη =

∫
d3r C ′ [B]

η

∂QI
mn(r)

∂uνs′β
, (H.31)

where A and C′ are four-component vectors defined in Section 1.9.2. Similarly:
2I
uνs′β σ1σ2

m1n1 =
∑
mn

∑
σ3

fσ1σ3
m1m

2I
uνs′β
mn fσ3σ2

nn1
, (H.32)

with [47]
2I
uνs′β
m1n1 =

∫
d3r

∂Vloc(r)

∂uνs′β
QI
mn(r). (H.33)

The periodic part of |φus′β(q)[−B]σ1

T −kv 〉 is defined in a similar way. Starting from Eq. (3.49), its
explicit expression is:

|φ̃us′β(q)[−B]σ1

T −kv 〉 =
∑
σ2

∑
m1 n1

[(
D̃I σ1σ2
m1n1

− εkv qγ(I)σ1σ2
m1n1

)(
βsn1σ2
T −kv

∣∣∣∣ ∂̃βsk+q
m1

∂uνs′β

〉
+ αs

′βn1σ2

T −kv |β̃
s′ k+q
m1

〉

)

+
(

1I
uνs′β [−B]σ1σ2

m1n1 + 2I
uνs′β σ1σ2

m1n1

)
βsn1σ2
T −kv |β̃

s′ k+q
m1

〉

]
+

∂̃Vloc
∂us′β(q)

∣∣∣∣(T u−kv)σ1

〉
,

(H.34)

where the coefficients βs
′n1σ2
T −kv and αs

′βn1σ2

T −kv are defined in a similar way to Eqs. (H.13) and
(H.14), but they contain the time-reversed wave functions at wave vector −k:

〈βIm1
|(T ψ−kv)σ1〉 = eı̇k·Rρ βs

′′m1σ1
T −kv , (H.35)〈

∂βIm1

∂uνs′β

∣∣∣∣(T ψ−kv)σ1

〉
= eı̇k·Rρ αs

′′βm1σ1

T −kv . (H.36)
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H.4 Dynamical matrix

Considering the dynamical matrix, defined in Eq. (3.5), the contribution coming from
d2E

(2)
tot/dµdλ is split into three parts. The first one stems from the expectation value of

the mixed derivatives of the electron-ion potential. In the NC case, this term is diagonal in
the atomic indices s, s′. In the US scheme there is a similar term:

Φ
(1a)
sα
s′β

(q) =
1

N

∑
µ

δss′

{∑
kv

θ̃F,kv
∑
I

∑
m1 n1

∑
σ1σ2

[(
D̃I σ1σ2
m1n1

− εkv qγ(I)σ1σ2
m1n1

)
×
〈
ψσ1
kv

∣∣∣∣ ∂2

∂uµsα∂uµsβ

(
|βIm1
〉 〈βIn1

|
) ∣∣∣∣ψσ2

kv

〉]
+

∫
d3r

∂2Vloc(r)

∂uµsα∂uµsβ
n(r)

}

=
1

N

∑
µ

δss′

{∑
kv

θ̃F,kv
∑
m1 n1

∑
σ1σ2

[(
D̃s σ1σ2
m1n1

− εkv qγ(s)σ1σ2
m1n1

)
×
(
γ∗ sαβm1σ1

kv βsn1σ2
kv + β∗ sm1σ1

kv γsαβn1σ2

kv + 2α∗ sαm1σ1
kv αsβn1σ2

kv

)]

+

∫
d3r

∂2Vloc(r)

∂uµsα∂uµsβ
n(r)

}
.

(H.37)

In the US formulation there is also a second term diagonal in s and s′, that contains integrals
of the effective potential (and, similarly, of the exchange-correlation magnetic field) with the
derivatives of the augmentation functions:

Φ
(1b)
sα
s′β

(q) =
1

N

∑
µ

δss′

{∑
kv

θ̃F,kv
∑
I

∑
m1 n1

∑
σ1 σ2

δI,(µ,s)
4Iuµsαβ σ1σ2
m1n1

〈ψσ1
kv|β

I
m1
〉 〈βIn1

|ψσ2
kv〉

+
∑
kv

θ̃F,kv
∑
I

∑
m1 n1

∑
σ1 σ2

[
1Iuµsα σ1σ2
m1n1

〈
ψσ1
kv

∣∣∣∣ ∂

∂uµsβ

(
|βIm1
〉 〈βIn1

|
) ∣∣∣∣ψσ2

kv

〉
+ (α↔ β)

]}

=
1

N

∑
µ

δss′

{∑
kv

θ̃F,kv
∑
m1 n1

∑
σ1 σ2

4Iuµsαβ σ1σ2
m1n1

β∗ sm1σ1
kv βsn1σ2

kv

+
∑
kv

θ̃F,kv
∑
m1 n1

∑
σ1 σ2

[
1Iuµsα σ1σ2
m1n1

(α∗ sαm1σ1
kv βsn1σ2

kv + β∗ sm1σ1
kv αsαm1σ1 ∗

kv ) + (α↔ β)

]}
,

(H.38)

where (α↔ β) is a short-hand notation that indicates the presence of a similar term obtained
by exchanging the indices α and β. The integral 4I

uµsαβ[B]σ1σ2
m1n1 is properly generalized to the

non-collinear FR case, namely:

4Iuµsαβ[B]σ1σ2
m1n1

=
∑
mn

∑
σ3 σ4

∑
η

fσ1σ3
m1m

Aσ3σ4
η

4Iuµsαβ[B]
mnη fσ4σ2

nn1
, (H.39)
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with

4Iuµsαβ[B]
mnη =

∫
d3r C ′ [B]

η

∂2QI
mn(r)

∂uµsα∂uµsβ
, (H.40)

Finally, in the US case the contribution of d2E
(1)
tot/dµdλ to the dynamical matrix shows

also a third term, non-vanishing on the non-diagonal elements as well, which contains inte-
grals of the derivative of the local potential with the augmentation function and its derivative:

Φ
(1c)
sα
s′β

(q) =
1

N

∑
µ ν

e−ı̇q·Rµ

{∑
kv

θ̃F,kv
∑
I

∑
m1 n1

∑
σ1 σ2

[
δI,(µ,s)

5I
uµsαuνs′β σ1σ2

m1n1 〈ψσ1
kv|β

I
m1
〉 〈βIn1

|ψσ2
kv〉

+2Iuµsα σ1σ2
m1n1

〈
ψσ1
kv

∣∣∣∣ ∂

∂uνs′β

(
|βIm1
〉 〈βIn1

|
) ∣∣∣∣ψσ2

kv

〉
+ (uµsα ↔ uνs′β)

]}
eı̇q·Rν

=
1

N

∑
µ ν

e−ı̇q·Rµ

{∑
kv

θ̃F,kv
∑
m1 n1

∑
σ1 σ2

[
5I
uµsαuνs′β σ1σ2

m1n1 β∗ sm1σ1
kv βsn1σ2

kv

+2Iuµsα σ1σ2
m1n1

(α∗ sαm1σ1
kv βsn1σ2

kv + β∗ sm1σ1
kv αsαm1σ1

kv ) + (uµsα ↔ uνs′β)

]}
eı̇q·Rν ,

(H.41)

where
5I
uµsαuνs′β σ1σ2

m1n1 =
∑
mn

∑
σ3

fσ1σ3
m1m

5I
uµsαuνs′β
mn fσ3σ2

nn1
, (H.42)

has been obtained by transforming with the matrices of f coefficients the integral 5I
uµsαuνs′β
mn

defined in Ref. [47]:

5I
uµsαuνs′β
mn =

∫
d3r

∂Vloc(r)

∂uµsα

QI
mn(r)

∂uνs′β
, (H.43)

The other parts of the dynamical matrix are found using the definitions introduced above.
The second term, coming from d2E

(1)
tot/dµdλ, reads:

Φ
(2)
sα
s′β

(q) =
1

N

∑
kv

∑
σ1

[
〈φ̃usα(q)[B]σ1

kv | ˜∆us′β(q)uσ1
kv〉+ 〈φ̃usα(q)[−B]σ1

T −kv |(T ˜∆us′β(−q)u−kv)
σ1〉
]
.

(H.44)
Finally, the third and the fourth term of Φsαs′β(q), which come from the interaction of

the moving augmentation charge with the variation of V [B]σ1σ2

H,xc and from the change in the
orthonormalization constraints, respectively, read:

Φ
(3)
sα
s′β

(q) =
∑
σ1 σ2

∫
d3r

d̃V
[B]σ1σ2

H,xc (r)

dusα(q)
∆̃us′β(q)nσ1σ2(r), (H.45)
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Φ
(4)
sα
s′β

(q) = − 1

N

∑
ν

{∑
kv

∑
k′v′

(
θ̃F,kv θkv,k′v′ + θ̃F,k′v′ θk′v′,kv

)∑
I

∑
m1 n1

∑
σ2 σ3

qγ(I)σ2σ3
m1n1

×
〈
ψσ2

k′v′

∣∣∣∣ ∂

∂uνs′β

(
|βIm1
〉 〈βIn1

|
) ∣∣∣∣ψσ3

kv

〉∑
σ1

〈ψσ1

k′v′|φ
usα(q)[B]σ1

kv 〉

}
eı̇q·Rν . (H.46)

= − 1

N

∑
ν

{∑
k

∑
vv′

(
θ̃F,kv θkv,k+qv′ + θ̃F,k+qv′ θk+qv′,kv

) ∑
m1 n1

∑
σ2 σ3

qγ(s′)σ2σ3
m1n1

×
(
α∗ s

′βm1σ2

k+qv′ βs
′n1σ3

kv + β∗ s
′m1σ2

k+qv′ αs
′βn1σ3

kv

)∑
σ1

〈uσ1

k+qv′|φ̃
usα(q)[B]σ1

kv 〉

}
eı̇q·Rν .
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Symmetrization: induced charge and

magnetization densities, and
dynamical matrix

In this Appendix we present a complete derivation of Eqs. (3.83) and (3.84), which allow to
symmetrize the periodic parts of the induced charge density and magnetization density, and
the dynamical matrix.

I.1 Induced charge density and magnetization density
We consider the symmetry operations {S|f} and {T S|f} of the antiunitary space group of
the crystal. Since

{S|f}(Rν + ds′) = SRν + Sds′ + f

= Rν̄ + ds̄′ ,
(I.1)

the application of the operation S to the atomic displacement uνs′β gives:

uν̄s̄′γ =
∑
α

Sγβ uνs′β. (I.2)

In order to compute the symmetrized induced charge density, we take the derivative of
Eq. (1.82) with respect to uνs′β and, moreover, we apply the chain rule on the right-hand
side:

dn(r)

duνs′β
=

1

NS

∑
{S|f}

∑
γ

dnNS({S|f}r)

duν̄s̄′γ

duν̄s̄′γ
duνs′β

=
1

NS

∑
{S|f}

∑
γ

dnNS(r)

duν̄s̄′γ
Sγβ,

(I.3)
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matrix

where the second line follows from Eq. (I.2). At a second stage, we switch to the response
to a phonon perturbation: in Eq. (I.3) we multiply both sides by the phase factor eı̇q·Rν

and we sum over ν. Moreover, in the right-hand side we insert the phase factors eı̇Sq·Rν̄ and
e−ı̇Sq·Rν̄ 1 and we sum over ν̄:

dn(r)

dus′β(q)
=

1

N

∑
ν ν̄

1

NS

∑
{S|f}

∑
γ

Sγβ
dnNS({S|f}r)

duν̄s̄′γ
eı̇Sq·Rν̄ eı̇q·(Rν−S−1Rν̄). (I.4)

We remark that from Eq. (I.1) it follows that:

Rν − S−1Rν̄ = S−1ds̄′ − S−1f − ds′ , (I.5)

hence the phase factors in the right-hand side of Eq. (I.4) do not depend on ν. As a
consequence, the sum over ν cancels the factor 1/N , while the sum over ν̄ leads to the
response of the non-symmetrized charge density to a phonon perturbation with wave vector
Sq. By introducing the vector RSs′ = Sds′ − ds̄′ , Eq. (I.4) becomes:

dn(r)

dus′β(q)
=

1

NS

∑
{S|f}

∑
γ

Sγβ
dnNS({S|f}r)

dus̄′β(Sq)
e−ı̇Sq·(R

S
s′+f). (I.6)

Finally, we pass to the periodic parts. In particular, dnNS({S|f}r)/dus̄′γ(Sq) can be written
as:

dnNS({S|f}r)

dus̄′γ(Sq)
= eı̇Sq·(Sr+f) d̃n

NS
({S|f}r)

dus̄′γ(Sq)
, (I.7)

therefore Eq. (I.6) becomes:

d̃n(r)

dus′β(q)
=

1

NS

∑
{S|f}

∑
γ

Sγβ
d̃n

NS
({S|f}r)

dus̄′β(Sq)
e−ı̇Sq·R

S
s′ . (I.8)

As explained in Section 3.4, here we consider only the symmetry operations {S|f} such
that:

Sq = q + GS , (I.9)

if {S|f} is a symmetry of the crystal, or:

Sq = −q + GS , (I.10)

if {T S|f} is a symmetry of the crystal, and we introduce the variable τ(S) to distinguish the
two cases. Since q + GS (−q + GS) is equivalent to q (−q), the non-symmetrized induced
charge density appearing in the right-hand side of Eq. (I.6) becomes:

dnNS({S|f}r)

dus̄′γ(Sq)
=

dnNS({S|f}r)

dus̄′γ(±q + GS)

=
dnNS({S|f}r)

dus̄′γ(±q)
,

(I.11)

1The latter will be written as e−ı̇q·S
−1Rν̄ .
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where the ± sign holds if τ(S) = 0 or τ(S) = 1, respectively. Passing to the periodic parts
of the response, we have:

d̃n
NS

({S|f}r)

dus̄′γ(Sq)
=

d̃n
NS

({S|f}r)

dus̄′γ(±q + GS)

= e−ı̇GS ·({S|f}r) d̃n
NS

({S|f}r)

dus̄′γ(±q)

= e−ı̇S
−1GS ·r e−ı̇GS ·f

d̃n
NS

({S|f}r)

dus̄′γ(±q)
.

(I.12)

The vector S−1GS appearing in the first phase factor can be written in a more compact
form. Starting from the τ(S) = 0 case, we write Eq. (I.9) for S−1:

S−1q = q + GS−1 . (I.13)

If we apply S−1 to both sides of Eq. (I.9), we get:

S−1q = q− S−1GS , (I.14)

which implies, by comparing with Eq. (I.13), S−1GS = −GS−1 . Applying the same proce-
dure to Eq. (I.10), we get S−1GS = GS−1 for the τ(S) = 1 case.

As a final step, we introduce Eq. (I.12) in the expression of the symmetrized induced
charge density (Eq. (I.8)). After dropping the phase factor e−ı̇GS ·(R

S
s′+f), that is 1 because

RSs′ + f = SRν −Rν̄ is a direct lattice vector, Eq. (I.8) is finally written as:

d̃n(r)

dus′β(q)
=

1

NS

∑
{S|f}

Oτ(S)

[∑
γ

Sγβ
d̃n

NS
({S|f}r)

dus̄′γ(q)
eı̇GS−1 ·r e−ı̇q·R

S
s′

]
, (I.15)

where the operator Oτ(S) is the identity if τ(S) = 0, or Oτ(S) = K if τ(S) = 1.
The induced magnetization density can be symmetrized in a similar way. Starting from

the derivative of Eq. (1.85) with respect to uνs′β and following the steps described in detail
above for the charge density response, we reach the final result:

d̃mδ(r)

dus′β(q)
=

1

NS

∑
{S|f}

(−1)τ(S)Oτ(S)

∑
γη

S̃−1
δη Sγβ

d̃m
NS
η ({S|f}r)

dus̄′γ(q)
eı̇GS−1 ·r e−ı̇q·R

S
s′

 . (I.16)

I.2 Dynamical matrix
The dynamical matrix can be symmetrized with an approach similar to the one described
above. We start from the total energy of the system perturbed by the atomic displacements
uνs′β. If we consider the second-order derivatives of the total energy with respect to u
(computed at u = 0), exploit the chain rule and make use of Eq. (I.2), similarly to what
done for the induced charge density, we can write:

d2Etot

duµsαduνs′β
=

1

NS

∑
{S|f}

∑
γδ

Sγα Sδβ
d2ENS

tot

duµ̄s̄γduν̄s̄′δ
, (I.17)
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where we introduced the non-symmetrized second-order energy derivative, obtained by sum-
ming over the IBZ in all the expressions that include a sum over k. In order to extend Eq.
(I.17) to the dynamical matrix, we multiply both sides by the factors e−ı̇q·Rµ , eı̇q·Rν , and
1/N , where N is the number of unit cells in the solid, and we sum over µ and ν. Moreover,
in the right-hand side we insert the phase factors e−ı̇Sq·Rµ̄ and eı̇Sq·Rν̄ and we sum over µ̄
and ν̄. As a result:

Φ sα
s′β

(q) =
1

NS

1

N3

∑
{S|f}

∑
µµ̄

∑
νν̄

∑
γδ

[
Sγα Sδβ e

−ı̇Sq·Rµ̄
d2ENS

tot

duµ̄s̄γduν̄s̄′δ
eı̇Sq·Rν̄ e−ı̇q·(Rµ−S−1Rµ̄)

× eı̇q·(Rν−S−1Rν̄)

]
(I.18)

From Eq. (I.5) (and a similar one for Rν−S−1Rν̄), it follows that the phase factors appearing
in the right-hand side do not depend on µ and ν, hence the sums over µ and ν give a factor
N2. By further introducing the vectors RSs (already defined above) and, in a similar way,
RSs′ , Eq. (I.18) becomes:

Φ sα
s′β

(q) =
1

NS

∑
{S|f}

∑
γδ

Sγα Sδβ

[
1

N

∑
µ̄ν̄

e−ı̇Sq·Rµ̄
d2ENS

tot

duµ̄s̄γduν̄s̄′δ
eı̇Sq·Rν̄

]
eı̇Sq·(R

S
s −RSs′ ). (I.19)

The quantity inside the square brackets is the non-symmetrized dynamical matrix at wave
vector Sq. We consider only the symmetry operations of the antiunitary small group of q
and we distinguish the two cases represented by Eqs. (I.9) and (I.10). Moreover, we exploit
the property Φ(−q) = Φ∗(q), following from the definition of the dynamical matrix, and we
introduce the operator Oτ(S) to get the final result mentioned in Section 3.4:

Φ sα
s′β

(q) =
1

NS

∑
{S|f}

Oτ(S)

[∑
γδ

Sγα Sδβ ΦNS
s̄γ
s̄′δ

(q) eı̇q·(R
S
s −RSs′ )

]
. (I.20)
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