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Abstract

We consider the three-dimensional Ising model slightly below its critical temperature, with boundary 
conditions leading to the presence of an interface. We show how the interfacial properties can be deduced 
starting from the particle modes of the underlying field theory. The product of the surface tension and the 
correlation length yields the particle density along the string whose propagation spans the interface. We 
also determine the order parameter and energy density profiles across the interface, and show that they are 
in complete agreement with Monte Carlo simulations that we perform.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The notion of interface plays an important role in different areas of physics. In statistical 
systems, the separation of different phases is characterized through the formation of an interface. 
In particle physics, the simplest description of confinement is in terms of a flux tube (a string) 
that connects the quarks and whose time propagation spans an interface. Lattice discretization 
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establishes a direct connection between the two problems when duality relates a spin model to a 
lattice gauge theory, with the Ising model providing the basic example [1]. Effective descriptions 
adopting interfacial fluctuations as the basic degrees of freedom result into capillary wave theory 
[2] on one side, and effective string actions [3,4] on the other.

In this paper we consider the three-dimensional Ising model in its scaling limit below the 
critical temperature Tc, where it is described by field theory, and use the asymptotic particle 
states of the bulk field theory as the basis on which to perform expansions in momentum space. 
Introducing boundary states that induce the presence of an interface, the formalism allows us to 
determine the interfacial properties, including the magnetization and energy density profiles at 
leading order in the linear size R of the interface. We then numerically determine the profiles 
through Monte Carlo simulations for different values of the temperature T and of the size R, and 
exhibit complete agreement with the analytic results, in absence of adjustable parameters.

The paper is organized as follows. In the next section, we introduce the boundary state setup 
and use it to determine the interfacial free energy and the expression of one-point functions, 
from which we then obtain the magnetization and energy density profiles. Section 3 is devoted to 
Monte Carlo simulations of the near-critical Ising model on the cubic lattice and to comparison 
with the analytic results for the profiles. Finally, in section 4 we discuss several implications of 
our results and point out lines of further development.

2. From particles to the interface

We consider the Ising model with reduced Hamiltonian

H = − 1

T

∑
<i,j>

sisj , (1)

where si = ±1 is the spin variable located at the site i of a cubic lattice, and the sum is performed 
over all pairs of nearest neighboring sites. We focus on the case of temperatures T < Tc , in which 
the spin reversal Z2 symmetry of the Hamiltonian is spontaneously broken, i.e.

M ≡ |〈si〉| �= 0 ; (2)

as usual, 〈· · · 〉 denotes the average over spin configurations weighted by e−H. More precisely, we 
restrict our attention to the temperature range slightly below Tc, where the correlation length ξ
becomes large and the system is described by a three-dimensional Euclidean field theory, which 
in turn is the continuation to imaginary time of a quantum field theory in (2 +1) dimensions. This 
amounts to consider the scaling region below Tc, and our analytic results quantitatively hold as 
long as the temperature dependence of the observables is ruled by the Ising critical exponents. As 
we detail in section 3, this scaling regime is distant above the roughening transition temperature 
Tr [5] below which the fluctuations of the interface are suppressed. In the continuum we will 
denote by r = (x, y, z) a point in Euclidean space, z being the imaginary time direction, and by 
s(r) the spin field. We refer to this translationally and rotationally invariant theory as the bulk
theory.

We then focus on the case in which the system is finite in the z direction, with z ∈
(−R/2, R/2) and R � ξ , while the size in the x and y directions is kept infinite in the theo-
retical analysis. The boundary conditions at z = ±R/2 are chosen in such a way that si = 1 for 
x < 0 and si = −1 for x > 0; the spins are left unconstrained for x = 0. It follows that for z = 0
and R large, the magnetization 〈s(r)〉+− tends to the bulk value M as x → −∞, and to −M
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Fig. 1. Geometry considered for the Ising model below Tc , with L → ∞ in the theoretical analysis. Boundary spins on 
the top and bottom surfaces are fixed to 1 (red) for x < 0 and to −1 (blue) for x > 0, and left free for x = 0, so that an 
interface (one configuration is shown) runs between the axes x = 0 on these surfaces. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

as x → ∞; we denote by 〈· · · 〉+− configurational averages with the boundary conditions we 
have fixed. The two pure phases for x large and negative and x large and positive are separated 
around x = 0 by an interfacial region spanned by the fluctuations of an interface running between 
the straight lines x = 0 at z = ±R/2 (Fig. 1). It is our goal to determine the expectation value 
〈�(x, y, 0)〉+− of a field �(r).

The fact that the scaling region around the critical temperature is described by a field theory is 
well known and widely used, in particular for the perturbative determination of the Ising critical 
exponents [1]. On the other hand, a field theory admits a particle description (see e.g. [6]), and it 
is this description that we will exploit for our study of the interface. Non-translationally invariant 
states of the system correspond to field theoretical states with nonzero energy and momentum. 
Energy and momentum are carried by the particles of the bulk field theory.1 They evolve in two 
spatial dimensions (the x and y directions of Fig. 1) and one imaginary time dimension (the z
direction). The analytic continuation to imaginary (or Euclidean) time z = it is the usual way 
[1,6] to exploit the fact that a near-critical statistical system at thermal equilibrium in d spatial 
dimensions can be mapped onto a quantum system in d − 1 spatial dimensions and one time 
dimension. In our case d = 3, and the rotational invariance (isotropy) of the statistical system 
in three Euclidean dimensions is mapped into relativistic invariance of the quantum system in 
(2 +1) dimensions. It follows that the energy Ep of a particle mode with momentum p = (px, py)

1 It is worth stressing that the particles we refer to throughout the paper describe the collective excitation modes of the 
system, and should not be confused with the individual molecules of a fluid whose near-critical properties are described 
by the field theory.
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and mass m obeys the relativistic dispersion relation Ep = √
p2 + m2. The asymptotic n-particle 

states |p1, p2, . . . , pn〉 of the bulk field theory provide a basis on which generic excitations of 
the system can be expanded. They are eigenstates of the energy and momentum operators with 
eigenvalues 

∑n
i=1 Epi

and 
∑n

i=1 pi , respectively.
The boundary conditions that we impose at z = ±R/2 correspond in the field theory to bound-

ary states |B(±R/2)〉 = e± R
2 H |B(0)〉 of the Euclidean time evolution, with H denoting the 

energy operator (Hamiltonian) of the (2 + 1)-dimensional quantum system. A boundary state 
can be expanded on the basis of asymptotic states of the bulk field theory. For our boundary 
conditions below Tc, the boundary states correspond to an excitation (a string) extending for all 
values of y, and whose propagation in the z direction spans the interface. It follows that the num-
ber of particles entering the states in the expansion has to be extensive in the y direction, and 
is therefore infinite. In order to regulate our expressions, we write this number as N ∝ L → ∞, 
and this limit will be understood in the following. We then write

|B(±R/2)〉 = 1√
N !

∫ N∏
i=1

dpi

(2π)2Epi

f (p1, . . . ,pN) e± R
2

∑N
i=1 Epi δ

(
N∑

i=1

py,i

)

× |p1, . . . ,pN 〉 + . . . , (3)

where f (p1, . . . , pN) is an amplitude, particle states are normalized as 〈p′|p〉 = (2π)2Ep δ(p −
p′), and the delta function enforces translation invariance in the y direction. m is the mass of 
the lightest particle in the spectrum of the spontaneously broken phase of the bulk field theory. 
It enters the large distance decay of the spin-spin correlator as 〈s(r)s(0)〉 ∼ e−m|r|. Comparison 
with the definition of the correlation length yields

ξ = 1/m . (4)

States involving heavier particles also enter the expansion (3) in the part that we do not write 
explicitly. As we will immediately discuss, they produce only subleading corrections in the large 
R limit we are interested in.

The partition function Z+− corresponding to our boundary conditions is given by the overlap 
between the two boundary states, which implements the sum over configurations of particles 
propagating between the bottom and top surfaces. Then we have

Z+− = 〈B(R/2)|B(−R/2)〉 = 〈B(0)|e−RH |B(0)〉

∼ L

2π
|f0|2

∫ N∏
i=1

dpi

(2π)2m
δ

(
N∑

i=1

py,i

)
e
−R

(
Nm+∑N

i=1
p2
i

2m

)

= L|f0|2e−RNm

(2π)2(N+1)

(
2π

R

)N
√

2πR

Nm
, (5)

where we used the fact that the large R limit forces all momenta to be small, defined f0 =
f (0, . . . , 0), exploited 2πδ(p) = ∫

eiupdu, and regularized δ(0) as L/2π , so that here and in 
the following formulae L → ∞ is the size of the system in the y direction. Here and below 
the symbol ∼ indicates omission of terms subleading for large R. It appears from (5) how the 
contribution to Z+− of a state in which a particle of mass m is replaced by one of mass m′ > m

is further suppressed at large R by a factor e−(m′−m)R .
The interfacial free energy, i.e. the contribution to the free energy due to the presence of 

the interface, is Finterface = − lnZ+−. The interfacial tension σ is defined as the interfacial free 
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energy per unit area, Finterface/LR, for both L and R going to infinity. Hence, it follows from (5)
and (4) that it is given by2

σ = − lim
R→∞

1

LR
lnZ+− = κ m2 = κ

ξ2 , (6)

where

κ = Nξ

L
. (7)

The reason for introducing κ is that, being dimensionless, it is a universal number, namely a 
number that near criticality is the same for different lattice discretizations. It also follows that 
N/L, the number of particles per unit length along the string, can be written as N/L = σξ ; 
equivalently, there are κ particles per correlation length in the y direction. Notice that, since the 
energy of the state is the sum of the particle energies, in (3) the interaction among the particles 
is taken into account by the amplitude f (p1, . . . , pN). In the large R limit that we consider this 
function is projected to the constant f0, which only corresponds to the arbitrary normalization of 
the boundary state and can be set, in particular, to one. We deduce that the large R limit is one 
of weakly interacting, and then (in average) widely separated, particles. This conclusion fully 
agrees with the fact that the known Monte Carlo value κ = 0.1084(11) [7] corresponds to an 
average interparticle distance in the y direction of about ten correlation lengths. It is particularly 
interesting that the particle description provides insight on a measurable and universal quantity 
like κ .

Notice also that, while N and L enter our formulae as regulators that go to infinity, measurable 
quantities like (6) only depend on the finite ratio (7). This internal consistency of the theory is 
further illustrated by the one-point functions (i.e. expectation values of local observables) that 
we now compute. It is also worth stressing how, since the initial expression (3) includes all 
fluctuations (sum over all particle excitations and all momenta), the large R asymptotics that we 
derive are exact.

The one-point functions at z = 0 are given by

G�(x) ≡ 〈�(x,y,0)〉+− = 1

Z+−
〈B(R/2)|�(x,y,0)|B(−R/2)〉

∼ |f0|2
Z+−N !

∫ N∏
i=1

(
dpi

(2π)2m

dqi

(2π)2m

)
δ

(
N∑

i=1

py,i

)
δ

(
N∑

i=1

qy,i

)

× F�(p1, . . . ,pN |q1, . . . ,qN) e
− R

2

(
2Nm+∑N

i=1

(
p2
i

2m
+ q2

i
2m

))
+ix

∑N
i=1

(
px,i−qx,i

)
, (8)

where we again consider the large R limit, the vanishing of the y component of the total momen-
tum yields y-independence, and the matrix element

F�(p1, . . . ,pN |q1, . . . ,qN) = 〈p1, . . . ,pN |�(0)|q1, . . . ,qN 〉 (9)

= 〈p1, . . . ,pN |�(0)|q1, . . . ,qN 〉c + (2π)2mδ(p1 − q1)〈p2, . . . ,pN |�(0)|q2, . . . ,qN 〉c
+ . . .

2 Since the limit L → ∞ is understood, in (6) we only indicate the limit R → ∞.
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is evaluated for small momenta. In the second line we take into account its decomposition in 
connected and disconnected parts, the latter originating from annihilation of particles on the left 
with particles on the right [6]; the subscript c denotes connected matrix elements, and the dots 
indicate that all possible annihilations have to be included. It follows from (8) that each power of 
momentum in the integral contributes a factor R−1/2 to the one-point function. Since each anni-
hilation in (9) produces a delta function δ(pi − qj ), and then a factor R, the leading contribution 
to (8) for large R is obtained maximizing the number of annihilations. Since N annihilations 
leave an x-independent term C�, the interesting term is that with N − 1 annihilations. Taking 
also into account that there are N !N ways of performing N − 1 annihilations, we finally obtain

G�(x) ∼ C� + κR

(2π)2m

∫
dpdq δ(py − qy)F c

�(p|q) e− R
4m

(p2+q2)+ix(px−qx) . (10)

If Fc
�(p|q) ≡ 〈p|�(0)|q〉c behaves as momentum to the power α�, the x-dependent part of (10)

behaves as

R−(1+α�)/2 . (11)

We also have that the integral term in (10) is even (resp. odd) in x when Fc
�(p|q)|py=qy is even 

(resp. odd) under exchange of px and qx .
The fact that the magnetization profile Gs(x) has to be an odd function of x interpolating 

between M and −M fixes Cs = 0 and αs = −1. This leads to3

Fc
s (p|q)|py=qy = cs

px − qx

, px, qx → 0 . (12)

Upon insertion in (10) the pole in px −qx is conveniently canceled by differentiation with respect 
to x. Performing the momentum integrations and integrating back in x we obtain

Gs(x) ∼ −M erf(η) , (13)

η =
√

2

Rξ
x , (14)

and cs = −2iM/κ . The error function entering the magnetization profile (13) already appears in 
the exact result in two dimensions [9–11], a circumstance that we will discuss in section 4.

The energy density profile Gε(x) has to be an even function of x, but the value of αε is not 
obvious a priori and remains as a parameter. We then write

Fc
ε (p|q) = cε

[
(p + q)2]αε/2

, p,q → 0 . (15)

The integrations in (10) are easily performed passing to the variables p ± q and yield the result

Gc
ε(x) ≡ Gε(x) − Cε ∼ bε ξ−Xε

(R/ξ)(1+αε)/2
e−η2

, (16)

where we exploited the fact that the result must have the scaling dimension Xε of the energy 
density field to express the temperature dependence of the prefactor of the Gaussian in terms of 
the correlation length; bε is then a dimensionless constant depending on the normalization of 

3 A suitable extension of (12) to generic small momenta appears to be Fc
s (p|q) = cs

[
(p − q)2]−1/2. For qy = py

it yields cs/
√

(px − qx)2, and (12) is the way of extracting the sign from the square root compatible with the usual 
analyticity requirements [8] for the matrix elements, which do not allow for absolute values.
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ε(x). Equation (14) shows that the width of the Gaussian in (16), i.e. the width of the interfacial 
fluctuations around the pinning position x = 0, is infinite for R = ∞. This accounts for the 
vanishing of the magnetization profile (13) for R = ∞: due to the infinite fluctuation width, the 
interface can be found with equal probability to the right or to the left of any point along the 
x-axis, and the average yields a zero magnetization. However, for R finite, no matter how large, 
translation invariance along the x-axis is broken.

3. Comparison with Monte Carlo simulations

We now compare the theoretical predictions with Monte Carlo simulations of the Ising model 
on the simple cubic lattice. Most of the numerical data for the bulk quantities entering our anal-
ysis are given, for example, in [12] with an accuracy sufficient for our purposes. In particular, 
we have 1/Tc = 0.2216544(3) (corresponding to Tc � 4.51153), ν = 1/(3 − Xε) = 0.6310(15), 
β = 0.3270(6). The critical exponents ν and β rule the behavior of the correlation length and 
spontaneous magnetization for T → T −

c as (see e.g. [1])

ξ � ξ0 (Tc − T )−ν , (17)

M � B (Tc − T )β , (18)

respectively. The critical amplitude ξ0 can be obtained from a fit of the data listed in Table 3 of 
[12] and reads ξ0 � 0.668. For the bulk magnetization, the numerical approximation [13]

M � t0.32694(1.6919 − 0.34357 t0.50842 − 0.42572 t) (19)

is available, which also estimates the first corrections to (18) for small t = (Tc − T )/Tc and fits 
very well the data in the temperature range of our interest [12,13].

We shall focus on the numerical determination, by Monte Carlo techniques, of the profiles for 
the magnetization and the energy density for which we derived the analytic expressions (13) and 
(16). The system is simulated on the simple cubic lattice in the volume x ∈ (−L/2, L/2), y ∈
(−L/2, L/2), z ∈ (−R/2, R/2), with L sufficiently larger than R in order to take into account 
that we want to compare with theoretical results corresponding to infinite L. The boundary spins 
are fixed as previously described for z = ±R/2, and are left free on the other boundaries.

As in our recent Monte Carlo simulations for two-dimensional Potts models [14] and three-
dimensional XY model [15], the standard Metropolis algorithm [16] turned out to be useful. In 
particular, to test the predictions of the theory and to study finite size effects, we varied the lattice 
sizes and the temperature. The linear dimension R ranged from 11 to 47, with L ranging from 55 
to 121 (the lengths are expressed in units of the lattice spacing). Data were taken at temperatures 
above the roughening transition, Tr � 2.45 (see [17]), and below Tc � 4.51 of the Ising model 
on the cubic lattice, concentrating on the region 4.1 � T < Tc, where the bulk correlation length 
shows the scaling behavior (17). This is the scaling region in which the Monte Carlo results 
can be compared with our analytical results. Specifically, we analyzed the temperature interval 
between T = 4.2 and 4.4. As usual, to obtain numerical results of high quality, we varied the 
length of the Monte Carlo runs, in between 105 and 5 · 107 Monte Carlo steps per site (MCS). 
Studying lattices of finite size below the critical point, we then performed simulations with 107

MCS. Thermal averages were taken for the quantities of interest of the theory, the magnetization 
and energy density profiles in the center of the lattice. To test and determine the accuracy of the 
simulation data, we averaged over, at least, four independent Monte Carlo runs, using different 
random numbers in each realization. The resulting error bars normally did not exceed the size 
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Fig. 2. Analytic result (13) for the magnetization profile (continuous curve) and the corresponding Monte Carlo results 
(data points). The latter are obtained for T = 4.2, R = 17, L = 55 (squares), T = 4.3, R = 31, L = 91 (circles), and 
T = 4.4, R = 41, L = 121 (pentagons). The scaling variable η is given by (14).

Fig. 3. Analytic result (16) for the energy density profile (continuous curve) and the corresponding Monte Carlo results 
(data points). The data symbols refer to the same temperatures and sizes as in Fig. 2.

of the symbols in Figs. 2 and 3, where final Monte Carlo results together with the theoretical 
predictions are shown.

The magnetization and the energy density are local observables and their determination below 
Tc can be ordinarily performed as in the bulk case (see [12]). The difference in our case is that the 
boundary conditions that we adopt induce the x-dependence that we determined in (13) and (16)
starting from the particle description of the interface. The simulations are necessarily performed 
for L finite, but for L sufficiently larger than R the Monte Carlo data are expected to reproduce 
the infinite L analytical results (13) and (16), in which the profiles flatten on the constant bulk 
values for |x| large. This is fully confirmed by the comparisons between theory and data in Figs. 2
and 3.

The profiles are determined along the axis y = z = 0, with |x| sufficiently far from the bound-
aries. Fig. 2 shows that the Monte Carlo data that we obtain for the magnetization for different 



G. Delfino et al. / Nuclear Physics B 958 (2020) 115139 9
values of T and R exhibit the theoretically predicted collapse on a single curve once divided by 
M and plotted as a function of the scaling variable (14). While the observation of this scaling 
behavior is in itself a notrivial confirmation of the theory, the figure also shows that the numeri-
cally determined profile agrees very well with the analytical result −erf(η), see (13). It is worth 
stressing that the comparison contains no adjustable parameter.

For the energy density, which on the lattice corresponds to εi = ∑
j∼i sisj , with the sum 

running over the nearest neighbors of site i, we consider the profile Gc
ε(x), which we obtain 

subtracting the plateau (bulk) value that we read from the data. Fig. 3 shows that the Monte 
Carlo data for Gc

ε(x)/Gc
ε(0) exhibit the expected collapse when plotted against η; agreement 

with the analytic result e−η2
is also very good, again without free parameters.

It is worth stressing that, as confirmed by the comparison with Monte Carlo data in Figs. 2 and 
3, the results (13) and (16) are the answer to the specific problem that we studied, namely that 
of temperatures in the scaling region below Tc and interpinning distance R as the only finite size 
variable. These specifications correspond to the goal of this paper: describing the near-critical 
system with an interface starting from the particle modes of the bulk field theory, and doing 
so in an analytically exact way that allows for a parameter-free comparison with Monte Carlo 
simulations of the system on a lattice. Different system specifications are expected to lead to 
expressions for the profiles qualitatively similar to (13) and (16) from the point of view of the 
x-dependence, but differing from them in the functional form and/or parameter dependence.

4. Discussion

In this paper we have considered the three-dimensional Ising model slightly below the critical 
temperature Tc, with boundary conditions enforcing the presence of an interface running between 
two straight lines separated by a distance R much larger than the bulk correlation length ξ . We 
have shown analytically how the interface emerges from the study of the bulk field theory sup-
plemented with the required boundary conditions. In particular, we showed how the string whose 
imaginary time propagation spans the interface is related to the particle modes of the field the-
ory, and how the interfacial tension is expressed in terms of the particle density along the string. 
We then determined the order parameter and energy density profiles, and exhibited the complete 
agreement of these analytical results with the Monte Carlo simulations that we performed.

The analytic derivation was performed within the field theory that describes the scaling limit 
of the three-dimensional Ising model in its broken phase. As usual, this limit is described by the 
φ4 field theory in the vicinity of its nontrivial renormalization group fixed point [1]. We exploited 
the particle description of this field theory, in which the particles describe the near-critical exci-
tation modes. We showed that in the large R limit that we considered the interfacial fluctuations 
are produced by particles that are in average largely separated, and then weakly interacting. This 
allowed us to obtain the exact large R results (13) and (16), in which the information (critical ex-
ponents and amplitudes) associated to the nontrivial fixed point is contained in the magnetization 
M and correlation length ξ as specified by (17) and (18). We could then rely on the numerical 
values of the critical data available in the literature to perform the parameter-free comparison 
between analytic and Monte Carlo results shown in Figs. 2 and 3.

The theoretical derivation shows that the interface exhibits Gaussian fluctuations that are not 
due to displacements of the interface as a whole (which would require an infinite amount of 
energy), but to localized excitations that, at leading order in 1/R, involve single-particle modes.4

4 Multi-particle modes yielding subleading terms in 1/R can also be derived from (8).
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These excitations propagate in the (2 + 1)-dimensional space (both momentum components px

and py are non-zero), but the configurational average distributes them along the surface in such 
a way to finally yield the translational invariance of the profiles in the y direction required by the 
boundary conditions.

This mechanism, which involves the connectedness structure of the matrix elements of local 
fields on particle states, effectively implements a form of dimensional reduction in the large R
limit of the configurational average. This is why the magnetization profile (13) is analogous to 
that in two dimensions, i.e. in absence of the y axis in Fig. 1. The profile in two dimensions was 
obtained from the lattice solution of the Ising model in [9] (see also [10]), and more recently in 
field theory in [11]. The dimensional interplay holds up to an important difference: the factor 

√
2

in (14) is absent in two dimensions. The origin of this difference is easy to understand in field 
theory. In two dimensions the particle modes of the Ising model below Tc have a topological 
nature – they are kinks [6] – and the spin field couples only to topologically neutral states, of 
which the kink-antikink state is the lightest one5 (see [19]). This is why in two dimensions the 
relation (4) is replaced by ξ = 1/2m. It follows that in three dimensions the variance of the 
interfacial fluctuations expressed in terms of ξ – the measurable length scale of the statistical 
system – is half of that in two dimensions.

The emergence of these mechanisms implies, in particular, the relevance in three dimensions 
of results recently obtained in two dimensions. These include those of [11] for the relation be-
tween subleading corrections in 1/R and the internal structure of the interface, those of [20,21]
for interfacial wetting [22], those of [23–25] for the effects of system geometry, and those of [26]
for the long range correlations induced by the presence of the interface. The detailed investigation 
of these points will provide relevant directions of further development.

In the realm of mathematically rigorous results, the three-dimensional Ising model with the 
boundary conditions of Fig. 1 has been constantly studied (see [27] and references therein) for 
sufficiently low temperatures (lower than the roughening temperature Tr) since the proof of the 
“rigidity” of the interface in this regime [28]. In two dimensions, several properties of Ising inter-
faces have been proved in recent years, for T < Tc in the Ornstein-Zernike framework (see [29]
and references therein), and for T = Tc [30] in the framework of Schramm-Loewner evolution 
(SLE) [31]. Our results may stimulate the mathematically rigorous investigation of the separation 
of phases in the three-dimensional Ising model for T → T −

c .
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