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ABSTRACT
I present a new procedure to forecast the Bayes factor of a future observation by computing
the predictive posterior odds distribution. This can assess the power of future experiments to
answer model selection questions and the probability of the outcome, and can be helpful in the
context of experiment design.

As an illustration, I consider a central quantity for our understanding of the cosmological
concordance model, namely, the scalar spectral index of primordial perturbations, nS. I show
that the Planck satellite has over 90 per cent probability of gathering strong evidence against
nS = 1, thus conclusively disproving a scale-invariant spectrum. This result is robust with
respect to a wide range of choices for the prior on nS.

Key words: methods: statistical – cosmology: cosmic microwave background – cosmology:
cosmological parameters – methods: data analysis.

1 I N T RO D U C T I O N

Many interesting questions in cosmology are not about parameter
estimation, but rather about model selection. For example, we might
be interested in assessing whether a new parameter is needed in
our model, or whether a theoretical prediction for the value of a
parameter can be confirmed by data.

These kinds of questions often cannot be satisfactorily answered
in the context of frequentist (sampling theory) statistics, but find
their natural formulation in the framework of Bayesian model se-
lection (see Trotta 2005a; Liddle 2007 and references therein).
Bayesian model selection aims at working out the support that the
data can offer to a model, by balancing the quality of fit that a
more complicated model usually delivers with a quantitative em-
bodiment of Occam’s razor, favouring simpler explanations when-
ever they are compatible with the observations at hand. This is
usually expressed in terms of the Bayes factor between two com-
peting models, which represents the amount by which our rel-
ative belief in the two models has changed after the arrival of
the data. There is a growing body of work in cosmology and as-
trophysics applying various brands of model selection tools to a
broad range of questions (see e.g. Drell, Loredo & Wasserman
2000; Loredo & Lamb 2002; Hobson & McLachlan 2003; Slosar
et al. 2003; Saini, Weller & Bridle 2004; Lazarides, de Austri &
Trotta 2004; Marshall, Rajguru & Slosar 2006; Beltran et al. 2005;
Kunz, Trotta & Parkinson 2006; Magueijo & Sorkin 2006; Parkin-
son, Mukherjee & Liddle 2006; Trotta 2007a,b; Bevis et al. 2007).

The purpose of this paper is to present a new method to
forecast the probability distribution of the Bayes factor for
a future observation, called PPOD (predictive posterior odds
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distribution).1 Posterior odds forecasting was first introduced in
Trotta (2005b), which used a single model to describe the present
data. This has inspired further developments of a similar technique in
Pahud et al. (2006, 2007). In particular, Pahud et al. (2006) pointed
out that the Bayes factor forecasting ought to consider multiple
models and average over them. This approach is used in the present
work. For a different approach to Bayes factor forecasting, see
Mukherjee et al. (2006a), which instead focuses on delineating re-
gions of parameter space where future observations have the ability
of delivering high-odds model selection results.

The use of the method is illustrated on a central parameter of the
cosmological concordance model, namely, the scalar spectral in-
dex for cosmological perturbations, nS, which can be related to the
characteristics of the inflationary potential (see e.g. Leach & Liddle
2003). One interesting question bears on whether the distribution of
fluctuations is scale invariant, that is, whether a model with nS =
1 (the so-called Harrison–Zeldovich (HZ) power spectrum) is sup-
ported by data. Current cosmological observations support the view
that nS �= 1, with odds of about 17:1 (Trotta 2005a) (see also Pahud
et al. 2006, who find odds of 8:1 in favour of nS �= 1). In this paper,
we derive a predictive distribution for nS for the Planck satellite – an
European cosmic microwave background (CMB) satellite due for
launch next year – and present a forecast for the model selection
outcome from Planck observations.

This paper is organized as follows. In Section 2 we briefly review
the main concepts of Bayesian model comparison. We then intro-
duce our PPOD technique in Section 3 and we apply it to derive
the probability distribution for the model selection outcome from

1 The method was called ExPO (expected posterior odds) in a previous ver-
sion of this work (Trotta 2005b). I am grateful to Tom Loredo for suggesting
the new, more appropriate name.
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Planck in Section 4, also discussing the dependence on the choice
of prior. Section 5 is devoted to presenting our conclusions.

2 BAY E S I A N M O D E L C O M PA R I S O N

In this section we briefly review Bayesian model comparison and
introduce our notation.

Bayesian inference (see e.g. Jaynes 2003; MacKay 2003) is based
on Bayes’ theorem, which is a consequence of the product rule of
probability theory:

p(θ | d, M) = p(d | θ, M)π (θ |M)

p(d | M)
. (1)

On the left-hand side, the posterior probability for the parameters θ

given the data d under a model M is proportional to the likelihood
p(d | θ , M) times the prior probability distribution function, π (θ | M),
which encodes our state of knowledge before seeing the data. In the
context of model comparison it is more useful to think of π (θ | M)
as an integral part of the model specification, defining the prior
available parameter space under the model M (Kunz et al. 2006).
The normalization constant in the denominator of (1) is the marginal
likelihood for the model M (sometimes also called the ‘evidence’)
given by

p(d | M) =
∫

�

p(d | θ, M)π (θ | M) dθ, (2)

where � designates the parameter space under model M. In general,
θ denotes a multidimensional vector of parameters and d a collection
of measurements.

Consider two competing models M0 and M1 and ask what is the
posterior probability of each model given the data d. By Bayes’
theorem we have

p(Mi |d) ∝ p(d|Mi )π (Mi ) (i = 0, 1), (3)

where p(d|Mi) is the marginal likelihood for Mi and π (Mi) is the
prior probability of the ith model before we see the data. The ratio
of the likelihoods for the two competing models is called the Bayes
factor:

B01 ≡ p(d|M0)

p(d|M1)
, (4)

which is the same as the ratio of the posterior probabilities of the
two models in the usual case when the prior is presumed to be non-
committal about the alternatives and therefore π (M0) = π (M1) =
1/2. The Bayes factor can be interpreted as an automatic Occam’s
razor, which disfavours complex models involving many parameters
(see e.g. MacKay 2003, for details as well as the discussion in Liddle
et al. 2007). A Bayes factor B01 > 1 favours model M0 and in terms
of betting odds it would prefer M0 over M1 with odds of B01 against
1. The reverse is true for B01 < 1.

It is usual to consider the logarithm of the Bayes factor, for which
the ‘Jeffreys’ scale’ for the strength of evidence offers an empirically
calibrated rule of thumb (Jeffreys 1961; Kass & Raftery 1995).
Different authors use different conventions to describe the strength
of evidence – in this work we use the same convention of Trotta
(2005a), deeming values |ln B01| > 1; > 2.5; > 5.0 to constitute
‘positive’, ‘moderate’ and ‘strong’ evidence, respectively.

Evaluating the marginal likelihood integral of equation (2) is in
general a computationally demanding task for multidimensional pa-
rameter spaces. Several techniques are available in the market, each
with its own strengths and weaknesses: thermodynamic integration
(Slosar et al. 2003; Beltran et al. 2005), nested sampling (introduced
by Skilling 2004 and implemented in the cosmological context by

Bassett, Corasaniti & Kunz 2004a; Mukherjee, Parkinson & Liddle
2006b), or the Savage–Dickey density ratio (SDDR), introduced in
Trotta (2005a). Since the method presented here makes use of the
SDDR, we briefly remind the reader about it, referring to Trotta
(2005a) for further details.

If we wish to compare a two-parameter model M1 with a restricted
submodel M0 with only one free parameter, ψ , and with fixed ω =
ω� and assuming further that the prior is separable (which is usually
the case in cosmology), that is, that

π (ω, ψ | M1) = π (ω | M1)π (ψ | M0), (5)

then the Bayes factor B01 of equation (4) can be written as

B01 = p(ω|d, M1)

π (ω | M1)

∣∣∣∣
ω=ω�

(SDDR). (6)

Thanks to the SDDR, the evaluation of the Bayes factor of two
nested models only requires the properly normalized value of the
marginal posterior at ω = ω� under the extended model M1, which
is a by-product of parameter inference. We note that the derivation
of (6) does not involve any assumption about the posterior distri-
bution, and in particular about its normality. As it has been shown
in appendix C of Trotta (2005a), the SDDR works well if the pa-
rameter value under the simpler model, ω�, is not too far away from
the mean of the posterior under the extended model. The reason
for this is that it becomes increasingly cumbersome to reconstruct
the posterior with enough accuracy in the tails of the distribution.
More specifically, for distributions close to Gaussian, equation (6)
is likely to be reliable if ω� is less than about 3 s.d. values away
from the mean of the posterior.

We now turn to describing our forecast technique allowing to
obtain a probability distribution for the Bayes factor from future
observations.

3 BAY E S FAC TO R F O R E C A S T: P P O D

In designing a new observation, it is interesting to assess its potential
in terms of its power to address model comparison questions. To
this end, we introduce a new technique which combines a Fisher
information matrix forecast with the SDDR formula to obtain a
forecast for the Bayes factor of a future observation. The result is a
PPOD for the future model comparison results.

3.1 The predictive distribution

We are interested in predicting the distribution of future data, from
which the result of a future model comparison can be obtained. The
predicting distribution for future data D is

p(D | d) = ∑1
i=0 p(D | d, Mi )p(Mi | d)

= ∑1
i=0 p(Mi | d)

∫
p(D | θ, Mi )p(θ | d, Mi ) dθ, (7)

where the sum runs over the two competing models we are consider-
ing.2 Generalization to a larger number of models is straightforward.
In the above, p(D | θ , Mi) is the predicted likelihood for future data,
assuming θ is the correct value for the cosmological parameters
(under model Mi). A Gaussian approximation to the future likeli-
hood can be obtained by performing a Fisher matrix analysis (FMA)

2 An earlier version of this work did not carry out the sum over models, but
was restricted to the i = 1 term of equation (7). I am grateful to Andrew
Liddle for bringing this to my attention. This is also mentioned in Pahud
et al. (2006).
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Forecasting the Bayes factor 821

assuming θ as a fiducial model. This yields a forecast of the param-
eters’ covariance matrix C for future data D (for a detailed account,
see e.g. Knox 1995; Kosowsky et al. 1996; Efstathiou & Bond 1999;
Rocha et al. 2004).

The corresponding PPOD for the future Bayes factor, B01, con-
ditional on current data d is then

p(B01 | d) =
∫

p(B01, D | d) dD =
∫

p(B01 | D, d)p(D | d) dD

=
∫

δ(D − B01(D))p(D | d) dD, (8)

where δ denotes the Dirac delta function, and B01(D) denotes the
functional relationship between future data and the Bayes factor,
given in our case by the SDDR, equation (6). The presence of the
delta function comes from the univocal relationship between the fu-
ture data and B01 (see equation 13 below). In other words, the Bayes
factor is simply a derived parameter of the future likelihood.

It is instructive to consider the Gaussian case, whose PPOD can
be written down analytically. We restrict ourselves to the case of
nested models, and we write for the parameter space of the extended
model θ = (ω, ψ), where ω denotes the extra parameter. If the
predicted likelihood covariance matrix C does not depend on ψ (in
other words, if the future errors do not depend on the location in
the subspace of parameters common to both models), it is easy to
see from equation (7) that one can marginalize over the parameters
common to both models, ψ . Thus we can assume without loss of
generality a one-dimensional M1 compared with model M0 with no
free parameters. We take a Gaussian prior on the extra parameter,
centred around 0 and of width equal to unity (this can always be
achieved by suitably rescaling and shifting the variables), which we
denote by

p(ω | M1) = N0,1(ω) (9)

and describe the present-day likelihood as a Gaussian centred on ω

= µ of width σ , where (µ, σ ) are understood to be expressed in
units of the prior width and are thus dimensionless:

p(d | ω, M1) = Nµ,σ (ω). (10)

The predicted likelihood under future data D is also Gaussian dis-
tributed, with mean ω = ν and (constant) s.d. τ :

p(D | ω, M1) = Nν,τ (ω). (11)

Here, the forecasted error τ = √
C11 is taken to be independent of ω,

and is understood to be the marginal error on ω, after marginalizing
over the common parametersψ . Using equations (9)–(11), we obtain
from equation (7) after a straightforward calculation

p(D | d) ∝ p(M0)

τσ
exp

(
−1

2

ν2σ 2 + µ2τ 2

τ 2σ 2

)

+ p(M1)√
τ 2 + σ 2 + τ 2σ 2

exp

[
−1

2

(ν − µ)2 + σ 2ν2 + τ 2µ2

τ 2 + σ 2 + τ 2σ 2

]
,

(12)

where we have dropped irrelevant constants. As a function of the
future mean ν, equation (12) gives the probability of obtaining a
value ω = ν from a future measurement, conditional on the present
data d and on the current model selection outcome. The PPOD can
be obtained from (8) and (12) by using the relation between ν2 and
lnB01 (obtained by applying the SDDR):

ν2 = τ 2(1 + τ 2)

(
ln

1 + τ 2

2πτ 2
− 2 lnB01

)
. (13)

For ν = 0, corresponding to the future observation measuring the
predicted value of ω under M0, equation (13) gives the maximum
odds in favour of model M0 one can hope to gather from a future
measurement with error τ .

In the general case, where the current likelihood is non-Gaussian
and the future likelihood covariance matrix can depend on θ , it is
possible to compute p(D | d) numerically from a series of Monte
Carlo Markov Chain (MCMC) samples. By using a similar manipu-
lation as the one illustrated in appendix B of Trotta (2005a) to obtain
the SDDR formula, we can recast the i = 0 term in sum (7) as

p(M0 | d)

∫
p(D | ψ, M0)p(ψ | d, M0) dψ

= B01
p(M0)

p(d)

∫
p(D | ψ, M0)p(d | ψ, ω�, M1)p(ψ, ω� | M1) dψ.

(14)

Since the constant factor p(d)−1 is common to both terms in the sum
and hence factors out knowledge of the un-normalized posterior
under M1 and of the present-day Bayes factor B01 is sufficient to
compute the predictive data distribution and therefore the PPOD
by employing equation (13). Given N independent samples from
the un-normalized posterior under M1, p(d | ψ , ω, M1)p(ψ , ω | M1),
which can be obtained by standard MCMC techniques, one proceeds
to perform an FMA at every sample, thus obtaining a prediction for
the future covariance matrix at that point in parameter space. Let
us denote the MCMC samples by θ j = (ω j , ψ j ), j = 1, . . ., N. The
predictive data distribution (7) is obtained by averaging the future
likelihood over the samples, that is, using equation (14):

p(D | d) ∝ p(M1)
1

N

N∑
j=1

p(D | ω j , ψ j , M1)

×p(M0)B01
1

K

K∑
k=1

p(D | ω�, ψk, M1), (15)

where K is the number of samples in the chain with ω = ω� or within
a suitably small neighbourhood from ω� and we have dropped an
overall normalization factor p(d)−1. The corresponding PPOD for
B01 can then be obtained using equations (13) and (8).

The predictive distribution of equation (15) does not make any
assumptions regarding the normality of the current posterior, nor of
the prior. However, it does assume that the future likelihood can be
described by a Gaussian distribution, as is implicit in the use of the
FMA. This aspect is not so critical, since FMA errors have proved to
give reliable estimates, especially when using ‘normal parameters’
(Kosowsky, Milosavljevic & Jimenez 2002). The second assumption
is hidden in equation (13), which relates the future Bayes factor
B01 to the future mean, ν. This relation only holds for a Gaussian
prior and assuming that the posterior for future data is accurately
described by a Gaussian, which is likely to break down in the tails of
the distribution, |ν − ω�|/τ � 1. Nevertheless, we can still conclude
that models which have |ν −ω�|/τ � 1 strongly disfavour M0 under
future data, even though we cannot attach a precise value to the
expected odds. This is why we present PPOD results by giving only
the integrated probability within a few coarse regions, as in Table 1.
We notice that one could improve on both of the above assumptions
by using MCMC techniques to sample from the future likelihood
rather than using a Gaussian approximation. This however would
add considerably to the computational burden of the forecast.
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822 R. Trotta

Table 1. Probability of future model comparison results (PPOD) for
the Planck satellite, conditional on present knowledge. There is about
93 per cent probability that Planck will be able to strongly favour nS �=
1. This result is robust even when using only temperature (TT only column)
or only E-polarization information (EE only column).

Spectral index: nS = 1 versus 0.8 �nS �1.2 (Gaussian)
All EE only TT only

Pr(lnB01 < −5) 0.928 0.903 0.926
Pr(−5 < lnB01 < −2.5) 0.005 0.018 0.007
Pr(−2.5 < lnB01 < 0) 0.006 0.023 0.008
Pr(lnB01 > 0) 0.061 0.056 0.059

3.2 Extension to experiment design

Our approach can be extended to the context of Bayesian experi-
ment design, whose goal is to optimize a future observation in order
to achieve the maximum science return (often defined in terms of
information gain or through a suitable figure of merit, see Loredo
2003 and references therein for an overview, Bassett 2004; Bas-
sett, Parkinson & Nichol 2004b; Parkinson et al. 2007 for a more
cosmology-oriented application and Ford 2004 for an astrophysical
application).

The core of the procedure is the quantification of the utility of an
experiment as a function of the experimental design, possibly sub-
ject to experimental constraints (such as observing time, sensitivity,
noise characteristics, etc.). The observing strategy and experiment
design are then optimized to maximize the expected utility of the
observation. The PPOD is a good candidate for an utility function
aimed at model comparison, for it indicates the probability of reach-
ing a clear-cut model distinction thanks to the future observation.
The dependence on experimental design parameters is implicit in
the FMA, and therefore one could imagine optimizing the choice of
experimental parameters to maximize the probability of obtaining
large posterior odds from the future data, integrating over current
posterior knowledge. This is especially interesting since it marginal-
izes over our current uncertainty in the value of the parameters, rather
than assuming a fiducial model as it is usually done in Fisher matrix
forecasts common in the literature.

Since in the present paper we focus on model comparison rather
than experiment design, in the following we fix the experimental
parameters for the Planck satellite to the value used in Rocha et al.
(2004). We leave further exploration of the issue of design optimiza-
tion and PPOD for future work.

4 F O R E C A S T S F O R T H E Planck S AT E L L I T E

In this section we investigate the potential of the Planck satellite in
terms of model comparison results. For other works using a similar
technique, partially inspired by our approach, see Pahud et al. (2006,
2007).

4.1 Parameter space and current cosmological data

As current cosmological data, we use the Wilkinson Microwave
Anisotropy Probe (WMAP) 3-yr temperature and polarization data
(Hinshaw et al. 2006; Page et al. 2006) supplemented by small-scale
CMB measurements (Kuo et al. 2004; Readhead et al. 2004). We add
the Hubble Space Telescope measurement of the Hubble constant
H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001) and the Sloan
Digital Sky Survey data on the matter power spectrum on linear

scales (k < 0.1 h−1 Mpc) (Tegmark et al. 2004). Furthermore, we
shall also consider supernova luminosity distance measurements
(Riess et al. 2004). We make use of the publicly available codes
CAMB and COSMOMC Lewis & Bridle (2002) to compute the CMB
and matter power spectra and to construct MCMCs in parameter
space. We sample uniformly over the physical baryon and cold dark
matter densities, ωb ≡ �bh2 and ωc ≡ �ch2, expressed in units of
1.88 × 10−29 g cm−3; the ratio of the angular diameter distance to the
sound horizon at decoupling, ��, the optical depth to reionization τ r

(assuming sudden reionization) and the logarithm of the adiabatic
amplitude for the primordial fluctuations, ln 1010 AS. When combin-
ing the matter power spectrum with CMB data, we marginalize an-
alytically over a bias b considered as an additional nuisance param-
eter. Throughout we assume three massless neutrino families and
no massive neutrinos, we neglect the contribution of gravitational
waves to the CMB power spectrum and we assume a flat Universe.

4.2 PPOD forecast for the spectral index

From the current posterior we can produce a PPOD forecast for
the Planck satellite3 following the procedure outlined in Section 3.
As motivated in Section 1, we focus on the scalar spectral index
nS and we follow the same set-up as in Trotta (2005a), comparing
an HZ nS = 1 model against a generic inflationary model with a
Gaussian prior of width �nS = 0.2, as motivated by slow-roll infla-
tion. In Trotta (2005a) it was shown that a compilation of present-
day CMB, large-scale structure, supernova and Hubble parameter
measurements yields moderate odds (17:1) in favour of nS �= 1.

The result in terms of the predictive data distribution is shown in
Fig. 1 and the corresponding PPOD for the Bayes factor is given
in Table 1 for our choice of the prior scale, �nS = 0.2 (see be-
low for a discussion of the dependence of our results on the prior
choice). In Fig. 1 we plot p(D | d) for Planck conditional on present-
day information both as obtained numerically from the MCMCs,
via equation (15), and by using the Gaussian approximation with
constant future errors, equation (12), with σ = 0.015/�nS = 0.075,
τ = 0.004/�nS = 0.02 and µ = −0.05/�nS = −0.25 (all these
quantities are expressed in units of the prior width, �nS = 0.2). We
observe that equation (12) is an extremely good approximation to
the full numerical result, obtained from 2000 thinned samples of
an MCMC. This follows from the facts that the current posterior is
close to Gaussian, and that the future errors forecasted for Planck
vary only very mildly over the range of parameter space singled out
by the present posterior. Furthermore, the future errors are almost
uncorrelated with the fiducial value of nS.

We then obtain the PPOD numerically via equation (13) and we
integrate the distribution to get the probability of the model compar-
ison result from future data (given in Table 1). The main finding is
that Planck has a very large probability (Pr(lnB01 < −5) = 0.928)
to obtain a high-odds result strongly favouring a spectral tilt over an
HZ spectrum. This is consequence of the fact that the most proba-
ble models under current data are clustered around nS = 0.95 and
that Planck sensitivity will decrease the error around those models
by a factor of ∼4. The region of the predictive distribution corre-
sponding to decisive odds in favour of nS �= 1 is shown in green
in the inset of Fig. 1, and it extends to all values nS � 0.984. By
contrast, the probability that Planck will overturn the present model
selection result favouring nS �= 1 (currently with odds of about 17:1,
see Trotta (2005a)) is only around 6 per cent. We also find that the

3 See the website http://astro.estec.esa.nl/Planck.
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Forecasting the Bayes factor 823

Figure 1. Predictive data distribution for the Planck satellite nominal mis-
sion, conditional on current (WMAP3 + ext) knowledge. We are plotting the
probability distribution (normalized to the peak) of the future measurement
of the spectral tilt. The bump at nS = 1 corresponds to the probability as-
sociated with the HZ model. The black curve is obtained numerically from
MCMCs (equation 15) while the red is for the Gaussian approximation (equa-
tion 12). In the inset, the shaded areas delimit regions where the Bayes factor
from Planck deliver strong evidence in favour of nS �= 1 (green, lnB01 <

−5.0, this region extending to all smaller nS values), moderate evidence for
nS �= 1 (cyan, −5.0 � lnB01 �−2.5), positive evidence for nS �= 1 (ma-
genta, −2.5 � lnB01 � 0.0) or favour nS = 1 (yellow, lnB01 > 0). The
corresponding probability values are reported in Table 1.

maximum odds by which Planck could favour nS = 1 are of 20:1,
or lnB01 = 3.00 (for our choice of prior width), which would still
fall short of the mark of ‘strong’ evidence. It is interesting to note
from Table 1 that either temperature information or E-polarization
information alone will be enough to deliver a high-odds result with
large probability (around 90 per cent in either case).

The above findings are in good agreement with the conclusions
in Pahud et al. (2006), which were obtained using a more qualitative
version of our procedure. The PPOD procedure presented here im-
proves on several, potentially important aspects with respect to the
method used in Pahud et al. (2006, 2007): PPOD takes into account
the full predictive distribution, and in particular the potentially im-
portant tails of the distribution above nS = 1; it fully accounts for the
possibility that nS = 1 but that Planck will actually end up (wrongly)
favouring the HZ model because of a measurement in the tail of the
predictive distribution for M0; finally, it takes into account the ef-
fect due to the variation of the future error on nS across the current
posterior (even though this aspect has been shown to be negligible
in the present case).

4.3 Dependence on the choice of prior

The prior assignment is an irreducible feature of Bayesian model
selection, as it is clear from its presence in the denominator of
equation (6). In fact, the prior width controls the strength of the
Occam’s razor effect on the extended model, and thus a larger prior
favours the simpler model.

We can assess the impact of a change of prior on our PPOD results
by plotting them as a function of the chosen prior width. In Fig. 2
we show how the probabilities for Planck to obtain different levels

Figure 2. PPOD dependence on the prior width for nS. We plot the PPOD
result computed from the Gaussian approximation of equation (12) as a
function of the width of the prior on nS for the model with nS �= 1. In
order to change the conclusion of this work, namely, that Planck has a large
probability of conclusively measuring nS �= 1, one would have to adopt a
prior larger than about 3.5 (crossing of the green and yellow lines). In this
work, the prior width has been set to 0.2 (dotted, vertical line).

of evidence for or against nS �= 1 change with a change in the choice
of the prior width �nS. It is apparent that our result holds true for
a wide range of prior values: even if the prior is widened to �nS =
1, the probability of a strong (lnB01 < −5, green line) result in
favour of nS �= 1 is still about 80 per cent. The prior width has to
be enlarged to �nS � 3.5 for the simpler model to have more than
50 per cent probability of being favoured (yellow line, depicting the
probability of obtaining lnB01 > 0).

5 C O N C L U S I O N S

We have presented a new statistical technique (PPOD) to produce
forecasts for the probability distribution of the Bayes factor from
future experiments. The use of PPOD can complement the Fisher
matrix forecasts in that it allows to assess the capabilities of a fu-
ture experiment to obtain a high-odds model selection result. Being
conditional on present knowledge, our PPOD technique does not as-
sume a fiducial model, but takes into account the current uncertainty
in the values of the underlying model parameters.

We emphasize that the PPOD forecast, being conditional on the
present posterior, is reliable provided there will be no major system-
atic shift in the parameter determination with respect to present-day
data. In other words, the PPOD only takes into account the statistical
properties of our knowledge, a point hardly worth highlighting (if
we knew the outcome of a future measurement, it would be pointless
to carry it out).

We have applied this method to a central parameter of the con-
cordance model. We have found that the Planck satellite has over
90 per cent probability of obtaining a very strong (lnB01 < −5)
model selection result favouring nS �=1 (for a prior width�nS =0.2),
thus improving on current, moderate odds (of about 17:1 or ln B01 =
−2.86). The probability that Planck will find evidence in favour of
nS = 1 is by contrast only about 6 per cent. These results are quali-
tatively unchanged for a wide range of prior values, encompassing
most reasonable prior choices.
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