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Abstract

This thesis deals with Index theorems and Soft theorems for gravitini.
In the first part, we derive the Atiyah-Patodi-Singer (APS) index theorem using

supersymmetric quantum mechanics. We relate the APS η-invariant to the temper-
ature dependence of the noncompact Witten index. It turns out that the temper-
ature derivative of the Witten index depends solely on the asymptotic boundary
of the noncompact target space. We also compute the elliptic genus of some non-
compact superconformal field theories, namely N = (2, 2) cigar and N = (4, 4)

TaubNUT. This elliptic genera is the completion of a mock Jacobi form. The holo-
morphic anomaly of this mock Jacobi form again depends on the boundary theory
as in the case of the Witten index. We show that the APS index theorem can then
be related to the completion of a mock Jacobi form via noncompact Witten index.

In the second part, we derive the leading order soft theorem for multiple soft
gravitini. We compute it in an arbitrary theory of supergravity with an arbitrary
number of finite energy particles. Our results are valid at all orders in perturba-
tion theory in more than three dimensions. We also comment on the infrared (IR)
divergences in supergravity. It turns out that the leading order soft theorem is
unaffected by the IR divergences.
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ing publications:

1. A. Dabholkar, D. Jain and A. Rudra, APS η-invariant, path integrals, and
mock modularity, JHEP 11 (2019) 080 [arXiv:1905.05207].

2. D. Jain and A. Rudra, Leading soft theorem for multiple gravitini, JHEP 06
(2019) 004, [arXiv:1811.01804].

https://arxiv.org/abs/1905.05207
https://arxiv.org/abs/1811.01804


vii

Contents

Abstract iii

Acknowledgements iv

Preface vi

Part I 1

1 Introduction 2

2 Index theorems and Supersymmetry 7
2.1 Index Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Dirac Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Regulating the Index . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Supersymmetric Quantum Mechanics . . . . . . . . . . . . . . . . . . 11
2.3 Derivation of Atiyah Singer index theorem . . . . . . . . . . . . . . . 14

2.3.1 Fermionic normalization . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Fluctuation determinant . . . . . . . . . . . . . . . . . . . . . . 16

Appendices 19
2.A (1, 1) SUSY from superspace . . . . . . . . . . . . . . . . . . . . . . . . 19

2.A.1 SUSY lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.A.2 Central Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Atiyah-Patodi-Singer Index Theorem 23
3.1 APS Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 APS Index Theorem and η-invariant . . . . . . . . . . . . . . . . . . . 26
3.3 APS index theorem & SQM . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Noncompact Witten index . . . . . . . . . . . . . . . . . . . . 28
3.3.2 APS index & Non-compact Witten index . . . . . . . . . . . . 32
3.3.3 Scattering theory and the APS theorem . . . . . . . . . . . . . 33

3.4 The η-invariant and path integrals . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Supersymmetric worldpoint integral . . . . . . . . . . . . . . 38
3.4.2 Callias index theorem and the η-invariant . . . . . . . . . . . 41
3.4.3 The η-invariant of a finite cigar . . . . . . . . . . . . . . . . . . 43



viii

Appendices 49
3.A Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.B Scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.C Error function and incomplete Gamma function . . . . . . . . . . . . 54

4 Mock Modularity & Elliptic Genera 55
4.1 Mock Jacobi forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Jacobi forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.3 Mock Modular forms . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.4 Mock Jacobi forms . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Elliptic genera for Gauge theories . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Elliptic Genus of N = (2, 2) theories . . . . . . . . . . . . . . . 62

4.3 NLSM from Gauge theories . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 NLSM’s with compact target space . . . . . . . . . . . . . . . . 63
4.3.2 NLSM’s with noncompact target space . . . . . . . . . . . . . 64

4.4 Holomorphic Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Holomorphic anomaly of N = (2, 2) Cigar . . . . . . . . . . . . . . . . 69

4.5.1 SQM computation . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 GLSM computation . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.3 GJF Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Holomorphic anomaly of N = (4, 4) Taub-NUT . . . . . . . . . . . . . 78
4.6.1 GLSM computation . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 GJF anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendices 86
4.A (2, 2) Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.B Eta and theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Conclusions and Outlook 91

Part II 93

5 Introduction 94

6 Feynman Rules 97
6.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Soft gravitino - Matter Vertex . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Gravitino - Graviton - Gravitino Vertex . . . . . . . . . . . . . . . . . 100
6.4 Gravitino - Graviphoton - Gravitino Vertex . . . . . . . . . . . . . . . 101



ix

7 Soft Gravitino Theorem 103
7.1 Note on Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Single soft gravitino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Two soft gravitini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 Some properties of Su andMuv . . . . . . . . . . . . . . . . . 109
7.3.2 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.3 Order of the soft limit . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Three soft gravitini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Arbitrary number of soft gravitini . . . . . . . . . . . . . . . . . . . . 118
7.5.1 Re-arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5.2 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 Soft theorems in the presence of Central Charge . . . . . . . . . . . . 122
7.6.1 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Presence of soft graviton . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendices 126
7.A Notation and convention . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.A.1 Gamma matrix and spinor convention . . . . . . . . . . . . . . 126
7.A.2 Majorana spinor . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Infrared Divergences 128
8.1 Infrared divergences in D ≥ 5 . . . . . . . . . . . . . . . . . . . . . . . 128
8.2 Infrared divergences in D = 4 . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Single real soft gravitino in the presence of virtual graviton . 130
8.2.2 Single real soft gravitino in presence of virtual graviphoton . 134
8.2.3 Massless matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Conclusions and Outlook 136
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138





PART I

Index theorems
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Chapter 1

Introduction

In this part of the thesis, we establish a connection between three distinct fields:
topology, number theory, and physics. In particular, we relate the Atiyah-Patodi-
Singer η-invariant [1] with mock Jacobi forms [2] and supersymmetric path inte-
grals. The link between these three is provided by the temperature-dependent Witten
index of a noncompact theory.

For a supersymmetric quantum field theory in a D-dimensional spacetime, the
Witten index [3] is defined by

W (β) := Tr
H

[
(−1)F e−βH

]
(1.1)

where β = 1/T is the inverse temperature, H is the Hamiltonian, F is the fermion
number (which is zero for bosons and one for fermions) andH is the Hilbert space
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of the theory. This trace can be related to a supersymmetric Euclidean path integral
with periodic boundary conditions for all fields in the Euclidean time direction as
in §2.3.

If the quantum field theory is compact in the sense that the spectrum of the
Hamiltonian is discrete, then the Witten index is independent of the inverse tem-
perature β. We elaborate on this in §2.2. The states with nonzero energy come
in Bose-Fermi pairs and do not contribute to the Witten index [3]. Only the zero
energy states graded by (−1)F contribute, and consequently, the Witten index is in-
dependent of β. More precisely, it is a topological invariant of the target space. This
is the case, for example, for a supersymmetric sigma model with a compact target
space. If the field space is noncompact and the spectrum is continuous, then the
above argument can fail because now instead of a discrete indexed sum, one has
an integral over a continuum of scattering states. In general, the bosonic density of
states in this continuum may not precisely cancel the fermionic density of states,
and the noncompact Witten index can be temperature-dependent. This tempera-
ture dependence helps us to relate it to the η-invariant and to mock Jacobi forms.

It was shown in [4, 5] that for an appropriate sigma model on a compact target
space, the Witten index in the zero temperature (β → ∞) limit can be related to
some of the well-known topological invariants such as the Euler character or the
Dirac index of the target manifold. We define these topological invariants in §2.1.
We review their argument and re-derive the Dirac index of a compact manifold
without boundary in §2.3. Since for a compact target space, the Witten index is
temperature independent; one can evaluate it in a much simpler high temperature
(β → 0) limit. In this limit, one can use the heat kernel expansion to prove the
Atiyah-Singer index theorem (index theorem for differential operators on a com-
pact manifold without boundary) [6]. Evaluating the path integral correspond-
ing to the Witten index in this high-temperature semiclassical limit gives another
derivation of the index theorem [4, 5].

For a compact target space with boundary, the boundary conditions play an im-
portant role and there is a correction to the index theorem. This correction is known
as the APS η-invariant. We relate the index on a compact manifold with a bound-
ary to the Witten index on a noncompact manifold. We use the temperature de-
pendence of this noncompact Witten index to compute the APS η-invariant. The
temperature-dependent piece is no longer topological but is nevertheless ‘semi-
topological’ in the sense that it is independent of any deformations that do not
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change the asymptotics of the target space. This yields a new proof of the APS in-
dex theorem. The η-invariant is nonzero precisely because the noncompact Witten
index is temperature-dependent.

The relation to mock modularity arises similarly as a consequence of the non-
compactness of the target manifold for a superconformal field theory on a base
space Σ, which is a 2-torus with a complex structure parameter τ . The elliptic genus
of an SCFT is a generalization of the Witten index that counts the right-moving
ground states with arbitrary left-moving excitations. It is a priori a function of τ and
τ̄ . For a compact SCFT, by an argument similar to the above, it is independent of the
‘right-moving temperature’ and hence of τ̄ , and is a (weakly) holomorphic Jacobi
form. Once again, for a noncompact SCFT with M̂ as the target space, this argu-
ment fails. There is a ‘holomorphic anomaly’ because the right-moving bosonic
density of states does not precisely cancel the right-moving fermionic density of
states. In this case, the elliptic genus is no longer a Jacobi form but is rather a com-
pletion of a mock Jacobi form—a new mathematical object introduced in [2]. The
holomorphic anomaly is once again governed by the temperature dependence of
the ‘noncompact right-moving Witten index’, which depends solely on the asymp-
totics of the target space. Hence it can also be related to the torus one-point function
of the super-current in the asymptotic boundary theory [7]. We use this relation to
compute the holomorphic anomaly for certain examples.

An advantage of mapping the APS index to the Witten index on the noncom-
pact manifold M̂ is that it becomes easier to obtain its path integral representation.
Defining a path integral measure on a target space with a boundary is, in general,
rather complicated. Even for a very simple system like a particle in a box, the path
integral formulation was achieved relatively recently [8–13]. For a path integral
on a manifold M̂ without a boundary, even if it is noncompact, one can use the
canonical measure. The path integral facilitates computations using supersymmet-
ric localization. We derive the APS result for certain type of manifolds by relating
it to a Callias-Bott-Seeley [14, 15] index theorem as we explain in §3.4.2. A path in-
tegral representation also makes the modular invariance manifest making it easier
to see the connection with mock modularity.

Apart from their intrinsic importance in differential topology, the index the-
orems play an important role in physics. The Dirac index on a manifold M is
related to the Chiral anomaly for fermions living on that manifold [16]. Hence by
computing the Dirac index, one can tell if the chiral symmetry can be gauged or
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not. Index theorems are also used in finding the dimension of instanton moduli
space [17]. The η-invariant also has a number of interesting physics applications,
for example, in the analysis of global gravitational anomalies [18], in fermion frac-
tionization [19, 20] , in relation to spectral flow in quantum chromodynamics [21,
22], and more recently in the description of symmetry-protected phases of topo-
logical insulators (see [23] for a recent review). Similarly, apart from their intrinsic
interest in number theory [24, 25], mock modular forms and their cousins have
come to play an important role in the physics of quantum black holes, quantum
holography and wall-crossing [2, 26–34], in umbral moonshine [35, 36], in the con-
text of WRT invariants [37–40] , and more generally in the context of elliptic genera
of noncompact SCFTs [41–46]. We expect our results will have useful implications
in these diverse contexts.

This part of the thesis is organized as follows. In Chapter 2, we review the
mathematical definition of the Dirac index, and the supersymmetric quantum me-
chanics (SQM) on a compact target space. We then re-derive the Dirac index using
path integral in SQM. In Chapter 3, we describe the Atiyah-Patodi-Singer construc-
tion for a compact manifold with a boundary. We explain the APS boundary con-
ditions and relate the APS index to the noncompact Witten index. Then we use
this formalism to present a proof of the APS theorem in §3.3.3. As an example,
we compute the η-invariant for a finite cigar. We then move on to superconfor-
mal field theories with a two-dimensional base space in Chapter 4. We review the
definitions of mock Jacobi forms in §4.1 and discuss their connection with noncom-
pact non-linear sigma models (NLSM). We then review the renormalization group
flow of gauged linear sigma models (GLSM) to non-linear sigma models in §4.3.
We focus on the noncompact NLSM’s which arise in the RG flow of GLSM’s with
Stückelberg fields. In the end, we compute the holomorphic anomaly for certain
examples, namely N = (2, 2) cigar SCFT and N = (4, 4) TaubNUT SCFT, using dif-
ferent methods. First, we compute it by taking the τ̄ derivative of the elliptic genus
computed from GLSM, and then we perform a direct computation in the boundary
theory and use the Gaiotto Johnson-Freyd (GJF) anomaly equation.

The examples considered in this work are simple but sufficiently nontrivial and
illustrative. Our results indicate that these interesting connections are a rather gen-
eral consequence of noncompactness. Supersymmetric methods have been used
successfully to obtain a path integral derivation of the Atiyah-Singer index theo-
rem for a compact target manifold without boundary, but to our knowledge, no
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such derivation exists for a manifold with a boundary1. Using our formulation in
terms of a noncompact Witten index, it should be possible to obtain a more com-
plete path integral derivation of the APS index theorem, for example, even for the
manifolds that do not have product form near the boundary [48] and the manifolds
with torsion [49]. In such cases, the continuum touches zero modes, and hence the
separation of contributions from discrete states and continuum becomes difficult.
We would like to address this issue in future works.

We also make some comments on the relation between mock modularity and
the presence of Stückelberg field in the GLSM. It would be nice to make this con-
nection more precise.

1Indeed, this was posed by Atiyah a decade ago as a problem for the future [47].
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Chapter 2

Index theorems and Supersymmetry

In this chapter, we first define various index theorems and then set up the notation
for supersymmetric quantum mechanics (SUSY QM). We later give a derivation of
the Atiyah-Singer (AS) index theorem using supersymmetric quantum mechanics.
This will set up the stage for the next chapters, where we derive Atiyah-Patodi-
Singer (APS) index theorem using SUSY QM. Since we are interested in deriving
the results from a physics perspective, we will not dive deeply into mathematical
technicalities.

2.1 Index Theorems

A generic differential operator D on a manifold M, is defined as a map between
sections of vector bundles. The differential operators D and its dual D† are defined
as:

D : Γ(M, E)→ Γ(M, F ) (2.1)

D† : Γ(M, F )→ Γ(M, E) (2.2)

whereE, F are vector bundles overM and Γ(M, E), Γ(M, F ) are sections of vector
bundles E and F respectively. For the index theorems, we will be interested in the
zero eigenvectors (kernels) of these operators:

KerD ≡ {s ∈ Γ(M, E);Ds = 0} (2.3)

KerD† ≡ {s ∈ Γ(M, F );D†s = 0} (2.4)
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The index is defined as:

IndD = dim KerD − dim KerD† (2.5)

This analytical index is well-defined for the elliptic operators 1 which satisfy Fred-
holm condition2. An elliptic operator whose kernel and co-kernel are finite-dimensional
is known as Fredholm operator. It is well-known that the elliptic operators on a
compact manifoldM are Fredholm operators. Some of the examples of such oper-
ators are: Laplacian, Dirac operator, de-Rham operator, etc.

It has been proved that this analytical index on compact manifolds without
boundary, is a topological quantity; more precisely, it can be expressed in terms of
integral of certain characteristic class overM. This interplay between analysis and
topology is the main ingredient of the index theorems.

The index theorems can be broadly classified into three categories depending
on the manifoldM:

• Atiyah-Singer index theorem (AS): These are the index theorems defined for
differential operators that live on a compact manifoldM without boundary
[6]. In this chapter, we will review this case.

• Atiyah- Patodi-Singer index theorem (APS): These are the index theorems
defined for differential operators that live on a compact manifold M with
boundary [50, 51]. In such cases, boundary conditions play a significant role.
We will discuss these in chapter 3.

• Callias index theorem: These are the index theorems defined for differential
operators that live on a non-compact manifoldM. In these cases, imposing
Fredholm condition turns out to be a bit tricky. The index of the Dirac op-
erator has been defined and calculated for only a few types of non-compact
manifolds [14].

1Elliptic operators are defined by the condition that the coefficients of the highest-order deriva-
tives appearing in that operator, are positive. Hence the principal symbol is invertible.

2For non-Fredholm operators, the index becomes a difference between two-infinite quantities
and hence is not well-defined.
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2.1.1 Dirac Index

In this thesis, we will only consider the index of Dirac operator ( /D = γµDµ). To de-
fine the Dirac index, we consider a spin bundle over a compact, even-dimensional
(2n), orientable manifold M. The spin-group is generated by 2n dimensional γ-
matrices satisfying:

(γi)† = γi (2.6)

{γi, γj} = −2gij (2.7)

γ̄ = inγ1γ2....γ2n =

(
−In×n 0

0 In×n

)
(2.8)

(γ̄)2 = I2n×2n (2.9)

Since (γ̄)2 = I, the eigenvalues of γ̄ are±1. It is called chirality matrix. Consider
a Dirac spinor Ψ(x) living on sections ∆(M) of the spin bundle. In the basis in
which γ̄ is diagonal, it can be written as:

Ψ =

(
Ψ−

Ψ+

)
, (2.10)

where the ± denote the chiralities i.e. γ̄Ψ± = ±Ψ±. Using this, the sections ∆(M)

can also be separated into two eigenspaces:

∆(M) = ∆+(M)⊕ ∆−(M) (2.11)

such that ψ± ∈ ∆±(M). The Dirac operator in curved space is given by:

γµDµΨ = γµ
(
∂µ +

1

4
ωµabγ

aγb
)

Ψ (2.12)

where ωµab is the spin connection and γa = γµeaµ. Here we have introduced or-
thonormal basis eaµ. In even dimensions, we can choose γ-matrices such that the
Dirac operator can be written as:

/D =

(
0 L

L† 0

)
(2.13)
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where

L : ∆+(M)→ ∆−(M) (2.14)

L† : ∆−(M)→ ∆+(M) (2.15)

The index I of the Dirac operator on the manifoldM is then defined as:

I = dim KerL− dim KerL† = n+ − n− (2.16)

where n+ is the number of zero modes of L with positive chirality and n− is the
number of zero modes of L† with negative chirality. The AS index theroem [6]
states that the index of Dirac operator is given by:

I =

∫
M
α(x)|Vol. =

∫
M

n∏
α=1

1
2
xα

sinh(1
2
xα)

(2.17)

where xα are the skew eigenvalues of the matrix Rij which is a two-form con-
structed out of Riemann tensor i.e. Rij = 1

4π
Rijkldx

k ∧ dxl. In particular, in 4D we
obtain:

I = − 1

24

∫
M

tr R ∧R
16π2

(2.18)

where tr is the trace over the indices i, j of the two-form Rij .

Regulating the Index

We note that the equation (2.16) can be re-written as follows:

I = dim KerL− dim KerL† (2.19)

= dim KerL†L− dim KerLL† (2.20)

= lim
β→∞

Tr
(
e−βL

†L − e−βLL†
)

(2.21)

= lim
β→∞

Tr
(
γ̄e−β /D

2
)

(2.22)

where we have introduced a regulator β. In the second last equation, we use the
fact that in the β → ∞ limit, only the zero modes of LL† and L†L will contribute.
The last equation is obtained by using the fact that γ̄ commutes with /D

2 and it has
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eigenvalues ±1. Notice that (2.22) is the quantity one computes to calculate the
Chiral Anomaly in a quantum field theory.

We note that on a compact manifoldM without boundary, the index is a topolog-
ical quantity and is independent of the regulator β. Using this, one can evaluate it
in the much simpler β → 0 limit using the heat kernel expansion. But this regulator
independence fails on a non- compact manifold. This β dependence plays a key role
in deriving the APS index theorem, which is the subject matter of Chapter 3.

2.2 Supersymmetric Quantum Mechanics

In 1983, the Atiyah-Singer index theorem was proved using Supersymmetric Quan-
tum Mechanics (SQM) [3–5]. We will go through that proof in detail in the next
section. In this section, we introduce SQM and the Witten index, which will be
crucial in deriving the AS index theorem.

Consider a particle moving on a compact manifold M with the lagrangian
given by:

L =
1

2

∫
dt

[
gij(x)

dxi

dt

dxj

dt

]
(2.23)

where gij is the metric onM, which we refer to as target space. Here xi’s are the
maps from the worldline (t) to the target space (M). We can now supersymmetrize
the system i.e. we add a fermionic super-partner ψi corresponding to every bosonic
coordinate xi. The Lorentzian action of this system is given by:

I =
1

2

∫
dt

[
gij(x)

dxi

dt

dxj

dt
+ i ψa

(
δab
dψb

dt
+ ωakb

dxk

dt
ψb
)]

, (2.24)

This can be obtained as a specialization of the worldsheet action (2.65) which we
derive using (1, 1) superspace in Appendix 2.3.2, with Q+ = Q− and by setting

F i = 0 , h = 0 , ψa− = 0 ,
∂

∂σ
= 0 , ψa+ = ψa . (2.25)

We have defined ψa = eaiψ
i using the vielbein and ωakb is the spin connection on

M. The conjugate variables are

πa :=
∂L

∂ψ̇a
=
i

2
ψa pi :=

∂L

∂ẋi
= ẋi +

i

2
ψaωiabψ

b (2.26)
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where the dot refers to t-derivative. The nonvanishing canonical commutation re-
lations are

{ψa, ψb} = δab , [xi, pj] = iδij . (2.27)

The Hilbert spaceH furnishes a Dirac representation of 2n-dimensional γ-matrices
with

√
2ψj = −iγj . The chirality matrix γ̄ defined in (2.9) can be identified with

(−1)F where F is the fermion number. It acts on the fields as follows:

(−1)Fxi = xi (−1)Fψi = −ψi (2.28)

For a review see [52] which uses slightly different conventions.
Above lagrangian is invariant under the following supersymmetry transforma-

tions:

δxi = iεψi , δψi = −εẋi . (2.29)

where ε is the Grassmann variable parametrizing SUSY transformations. This sys-
tem has one real supercharge, in other words, it is N = 1/2 SUSY QM. The corre-
sponding Noether supercharge is given by:

εQ = −ε
√

2ψiẋi , (2.30)

Upon quantization, we get

Q = γiDi = /D with Di = ∂i +
1

4
ωiabγ

aγb . (2.31)

which is the Dirac operator on manifold M. The canonical commutations imply
the commutation relations

{Q,Q} = 2H , [H,Q] = 0 , {Q, (−1)F} = 0 (2.32)

where H is the worldline Hamiltonian. Since the worldline supercharge takes the
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same form as the Dirac operator on the target spaceM, there is a one to one corre-
spondence between the worldline quantities and the target space ones.

/D ↔ Q

/D
2 ↔ H

γ̄ ↔ (−1)F

Hence positive and negative chirality spinors on the target space correspond to
positive and negative eigenstates of the operator (−1)F in the Hilbert space H of
SQM. The Dirac index I is then naturally identified with the Witten index of the
supersymmetric quantum mechanics i.e.

I = lim
β→∞

Tr
(
γ̄e−β /D

2
)
↔ lim

β→∞
Tr
H

(−1)F exp−βH = lim
β→∞

W (β) (2.33)

For a compact manifold the eigenvalues of H are discrete. It then follows from
(2.32) that if |E,+〉 is a bosonic eigenstate with energy eigenvalue E > 0, then

1√
E
Q|E,+〉 := |E,−〉 is a fermionic eigenstate with the same energy eigenvalue.

Hence, eigenstates with non-zero eigenvalues of H come in Bose-Fermi pairs and
cancel out in the trace. The Witten index, in this case, receives contribution only
from the ground states and is a topological invariant [3, 6]. Hence W (β) is inde-
pendent of β when the target space is compact.
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2.3 Derivation of Atiyah Singer index theorem

We have already introduced all the basic ingredients required to give a physicist’s
derivation of the Atiyah-Singer index theorem. We will now compute the Witten
index in SUSY QM introduced above, with an even-dimensional3 (2n) target space
M. The Witten index of the worldline theory has a path integral representation

W (β) =

∫
dx 〈x|(−1)F e−βH |x〉

=

∫
PBC

[dX] exp (−S[X, β]) , (2.34)

where the path integral is over superfield configurations that are periodic in Eu-
clidean time with period β, hence the Euclidean base space Σ is a circle of radius
β. The measure [dX] is induced from the supermeasure4 on the supermanifold sM
introduced after (2.64). The Euclidean time τ is related to the Lorentzian time t as
usual by Wick rotation t = −iτ and the Euclidean action is:

S[X, β] =
1

2

∫ β

0

dτ

[
gij(x)

dxi

dτ

dxj

dτ
+ ψa

(
δab
dψb

dτ
+ ωkab

dxk

dτ
ψb
)]

(2.35)

=
1

2

∫ β

0

dτ

[
gij(x)

dxi

dτ

dxj

dτ
+ gij(x)ψi

(
d

dτ
ψj + Γjkl

dxk

dτ
ψl
)]

(2.36)

where Γjkl are the Christoffel symbols given by:

Γjkl =
1

2
gjm

(
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

)
As we already argued, the Witten index on a compact target space is independent
of β, we can compute the above path integral in β → 0 limit. The path integral can
be evaluated by following the steps given below:

1. In β → 0 limit, the path integral is dominated by the saddle points deter-
mined by the following equations:

dxi

dτ
= 0 =

dψi

dτ
3In odd dimensions, the Dirac index vanishes. This can be seen from equation (2.54).
4It is well-known that the supermeasure is flat even if the manifold M is curved because the

factor of
√
g in the bosonic measure dx := d2nx

√
g cancels against a similar factor in the fermionic

measure dψ := d2nψ 1√
g .
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2. We then compute the quadratic action for small fluctuations around the sad-
dle point.

3. Lastly, we integrate over small fluctuations to evaluate the full path integral.

Since we restrict ourself to the constant modes of both fermions(ψ0) and bosons
(x0). The calculation is much easier in Riemann normal coordinates (RNC), defined
by,

gij(x0) = δij , ∂kgij(x0) = 0 . (2.37)

Considering small fluctuations around the constant path and expanding the fields
in RNC,

xi(τ) = xi0 + ξi(τ) , ψi(τ) = ψi0 + ηi(τ) . (2.38)

We can now compute the Lagrangian up-to terms quadratic in fluctuations:

gij(x)ẋiẋj = gij(x0)ξ̇iξ̇j

gij(x)ψiψ̇j = gij(x0)ηiη̇j

gijψ
iΓjklξ̇

kψl = δij∂mΓjklξ
mξ̇kψi0ψ

l
0

=
1

2
δij(∂mΓjkl − ∂kΓjml)ξmξ̇kψi0ψl0

=
1

2
Rilmkξ

mξ̇kψi0ψ
l
0

Hence the Lagrangian (upto quadratic terms in fluctuations) is given by:

L =
1

2
ξ̇iξ̇i +

1

2
ηiη̇i +

1

4
Rijklψ

i
0ψ

j
0ξ
kξ̇l (2.39)

The Witten index then becomes,

W (β) = Nf
∫ 2n∏

i=1

dxi0dψ
i
0 FD(xi0, ψ

i
0) (2.40)

where Nf is the fermionic normalization, 2n is the dimension of the manifoldM
and FD(xi0, ψ

i
0) denotes the fluctuation determinant computed in §2.3.2
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2.3.1 Fermionic normalization

The chirality matrix γ̄ can be expressed in terms of the fermionic zero modes using√
2ψi0 = −iγi. Hence we obtain:

γ̄ = inγ1 . . . γ2n = (−2i)nψ1
0 . . . ψ

2n
0 (2.41)

Also, Trγ̄2 = Tr1 = 2n. Hence,

Trγ̄2 = Tr(−1)F (−2i)nψ1
0 . . . ψ

2n
0

2n = Nf
∫ 2n∏

i=1

dψi0(−2i)nψ1
0 . . . ψ

2n
0

=⇒ Nf = (−i)n = (−i)D/2 (2.42)

where D = 2n is the dimension of the target space and we have used the conven-
tion given in (2.58) for Grassmann integrals. Notice that even though we derive
this normalization for only even D but it can be used to define normalization for
arbitrary D. For D = 1, we do not get any -ve sign from the Grassmann integral
and hence we get Nf = (i)1/2.

2.3.2 Fluctuation determinant

We have periodic boundary conditions for all the fields along the Euclidean time
direction i.e

ξi(τ + β) = ξi(τ) ηi(τ + β) = ηi(τ) (2.43)

Hence, we can mode expand the fluctuations as follows:

ξi(τ) =
∑
m6=0

ξim exp

[
2πi

β
mτ

]
, ηi(τ) =

∑
m6=0

ηim exp

[
2πi

β
mτ

]
(2.44)

The fluctuation determinant is given by:

FD(xi0, ψ
i
0) =

2n∏
i=1

∏
m 6=0

∫
dξim dη

i
m exp

[
−SE(ξim, η

i
m;xi0, ψ

i
0)
]

(2.45)
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Using these expansion, the bosonic part of action (2.39) can be expressed as follows:

Sb = −
n∑

α=1

∑
m>0

[
ξ2α+1
−m ξ2α+2

−m

] [ (2πm)2

β
yα(2πm)

−yα(2πm) (2πm)2

β

][
ξ2α+1
m

ξ2α+2
m

]
(2.46)

where yα(α = 1, · · · , n) are the skew-eigenvalues of Rij := 1
2
Rijklψ

k
0ψ

l
0. The bosonic

fluctuation determinant then becomes:

Zb =

∫ 2n∏
i=1

∏
m 6=0

dξimexp
−
∑n
α=1

1
2
ξTAαξ (2.47)

=
2n∏
i=1

∏
m>0

n∏
α=1

(det(Aα/2π))−1 (2.48)

where Aα is the matrix given in (2.46). Finally we obtain

Zb =
2n∏
i=1

n∏
α=1

∞∏
m=1

(
2πm2

β

)−2(
1−

(1
2
yαβ)2

π2m2

)−1

(2.49)

=
2n∏
i=1

1√
2πβ

n∏
α=1

i
2
yαβ

sinh( i
2
yαβ)

(2.50)

where we have used zeta function regularization to compute the first product. The
fermionic part of fluctuations give:

Zf =

∫ 2n∏
i=1

∞∏
m=1

dηimdη
i
−m e

− 1
2

(2πim)ηmη−m = 1 (2.51)

Here again, we have used zeta function regularization to compute the determinant.
Plugging in all the factors, we obtain the following expression for the Witten index:

W (β) = (−i)n
∫ 2n∏

µ=1

dxi0√
2πβ

dψi0

n∏
α=1

i
2
yαβ

sinh( i
2
yαβ)

(2.52)

Since yα’s are bilinear in ψ0, and the integrand is even under yα → −yα, the Taylor
series of the integrand only contain terms with even powers of yα. Hence, the
number of ψ0’s is a multiple of 4, and the integral vanishes unless the dimension of
the manifold is a multiple of 4. Due to the fermionic zero-mode integral, only one
term from the expansion of sinh contributes.

Let us consider manifoldsMwith dimension 2n = 4k. The term in Taylor series
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that contributes to the integral contains in. This combined with i from the fermionic
normalization gives, i2n, and since n is even, this gives 1. We may as well replace,(

− i

2πβ

)n i
2
yαβ

sinh( i
2
yαβ)

−→ yα/4π

sinh(yα/4π)
(2.53)

Here we explicitly demonstrate that the answer is independent of the regulator β
which matches with the general argument given above. The Witten index/ Dirac
index is given by:

W (β) =

∫
M

n∏
α=1

yα/4π

sinh(yα/4π)
(2.54)

which matches (2.17). Notice that the definition of xα and yα differ by 1/2π.
In this way the Dirac index can be derived by computing the Witten index in

a SQM. One can compute various other topological indices of the target manifold
by computing different quantities in SQM. Below we list such topological indices/
signatures and the corresponding quantities to be computed in the SQM :

Index computation from SQM

Index Number of Supercharges
(complex)

Expression (to be com-
puted in SUSY)

Euler number N = 1 Tr(−1)F e−βH

Hirzebruch signature N = 1 TrQ5e
−βH 5

Dirac operator N = 1/2 Tr(−1)F e−βH

Dolbeault index N = 2 Tr(−1)F e−βH

G-index (dλ = d+ iλ(K)) N =1 with central charge Tr(−1)F e−βH

5The operator Q5 implements ψiα → (γ̄ψiα) symmetry.
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Appendix

2.A (1, 1) SUSY from superspace

We were interested in the supersymmetric path integrals for D-dimensional quan-
tum field theories with D = 2, 1, 0. In this appendix, we write down the most
general action for a system with (1, 1) SUSY in 1 + 1 D. The worldline and world
point actions can be obtained by taking various limits of the action derived in this
appendix.

We use indices {α, β, . . .} with values in {0, 1} to label the components of a
worldsheet vector and {A,B, . . .}with values in {+,−} to label the components of
a worldsheet spinor. On the field space, we use 1 ≤ i, j, . . . ≤ 2n as the coordinate
indices 1 ≤ a, b, . . . ≤ 2n as the tangent space indices. We use the worldsheet metric
to be ηαβ = diag(−,+).

A convenient basis for the two dimensional Dirac matrices is

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i

i 0

)
(2.55)

which satisfy {ρα, ρβ} = −2ηαβ . The worldsheet chirality ρ̄ and charge conjugation
matrix C are

ρ̄ = −ρ0ρ1 =

(
−1 0

0 1

)
CAB = ρ0

AB (2.56)

A two-dimensional Majorana spinor is a two-component real spinor. A Majorana
spinor is obeys ψ̄ = ψ†C where C = ρ0 in our case. Hence we obtain:

ψ =

(
ψ−

ψ+

)
ψ = ψ∗ (2.57)

We use the superspace sΣ with real superspace coordinates {σα, θA} to write down
the supersymmetric lagrangian. We use the following convention for superspace
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derivatives and integrals

∂

∂θA
θB = δBA ,

∂

∂θ̄A
θ̄B = δBA and

∫
dθdθ̄ θ̄θ = 1. (2.58)

The supercharge here is a two-dimensional Majorana spinor.

Q =

(
Q−

Q+

)
Q = Q∗ (2.59)

In superspace, the components of the supercharge are given by

QA =
∂

∂θ̄A
+ i(ραθ)A∂α (2.60)

which satisfy the N = (1, 1) supersymmetry algebra

{QA, QB} = 2i(ρα∂α)AB (2.61)

To write actions invariant under the supersymmetry, one needs a supercovariant
derivative. Supercovariant derivative is invariant under supersymmetry and it is
defined by:

DA =
∂

∂θ̄A
− i(ραθ)A∂α (2.62)

It satisfies the following anticommutations

{DA,DB} = −2i(ρα∂α)AB (2.63)

2.A.1 SUSY lagrangian

We consider non-linear sigma models with Euclidean base space Σ, which can be
a 2-torus T 2, a circle S1, and a point. We refer to these as the worldsheet, world-
line, and world point respectively. All our examples can be obtained by reductions
of Euclidean Wick-rotated version of a 1 + 1 dimensional worldsheet with (1, 1)

supersymmetry, which we describe below.
Consider real superfields {X i(σ, θ)}with the following superspace expansion

X i(σ) = xi(σ) + θ̄ψi(σ) +
1

2
θ̄θF i(σ) (2.64)
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where {xi} are the coordinates of 2n dimensional real target manifold M, ψiA are
real Grassmann fields and F i are auxiliary fields. The components of the superfield
can be thought of as the coordinates of a supermanifold sM. The Lorentzian action
is given by:

I(X) = − 1

2πα′

∫
sΣ

d2σ d2θ

[
1

2
gij(X)D̄X iDXj + 2h(X)

]
(2.65)

where gij(x) is the metric onM, h(X) is the superpotential, andD is the superspace
covariant derivative on the (base) superspace. We have introduced α′ for easy com-
parison with other normalizations in the literature. The action is invariant under
diffeomorphisms in the target spaceM. It is also invariant under translations of t
generated by the Hamiltonian H and translations of σ generated by P as well as
under the Z2 action of (−1)F :

ψi→− ψi , xi → xi . (2.66)

Moreover, it is invariant under the (1, 1) supersymmetry generated by a real con-
stant spinor εA under which the superfield transforms as δX = (ε̄Q)X and its com-
ponents transform as

δxi = ε̄ψi

δψi = (−iγα∂αxi + F i)ε (2.67)

δF i = −iε̄γα∂αψi .

With α′ = 1, the action (2.65) in superfield components is given by

I = − 1

2π

∫
Σ

d2σ
[1

2
gij
(
∂αx

i∂αxj − iψ̄i /∇ψj − F iF j
)

+
1

4
∂k∂lgij(x)(ψ̄kψl)(ψ̄iψj) − 1

4
∂kgijψ̄

iψjF k +
1

4
∂kgij(F

iψ̄j + F jψ̄i)ψk

+
∂h

∂xi
F i − 1

2

∂2h

∂xi∂xj
(ψ̄iψj)

]
(2.68)

where the covariant derivative

∇αψ
i = ∂αψ

i + Γijk ∂αx
jψk (2.69)
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is defined using the Christoffel symbols Γijk(x) in the target space. When the su-
perpotential is zero, eliminating the auxiliary fields yield the familiar quadratic
fermionic term involving the Riemann curvature tensor [53, 54]. It is convenient to
introduce an orthonormal basis of forms, ea = eaidx

i, using the vielbein eai and the
inverse vielbein eia. The metric can then be expressed as gij = eaie

b
jδab, and one can

define the spin connection ωakb associated with the Christoffel symbols.

2.A.2 Central Extension

In the presence of a central charge, the SUSY algebra modifies as follows:

{Q̂A, Q̂B} = 2i(ρα∂α)AB + 2i(ρ̄)AB (2.70)

where ρ̄AB is symmetric. The super-charge and the covariant derivative then be-
come:

Q̂A = QA + i(ρ̄ θ)AZ , D̂A = DA − i(ρ̄ θ)AZ (2.71)

The presence of the Killing vector in the target space allows a central term in
the supersymmetry algebra. The central charge is related to the Killing vector as
Ki(x(σ)) = Zxi(σ), where xi is the scalar field sitting in the chiral superfield . The
action (2.68) modifies to

I −→ I +
1

2π

∫
d2σ

(
gijK

iKj + iψ̄iDjKiρ̄ψj
)

(2.72)

where Dj is a covariant derivative onM [53]. For an off-shell formulation see [54].
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Chapter 3

Atiyah-Patodi-Singer Index Theorem

In this chapter, we derive one of the main results of this thesis. We derive the
Atiyah-Patodi-Singer index theorem using Supersymmetric Quantum Mechanics.
In the next section, we elaborate on the APS index theorem and η-invariant, and
then in the subsequent sections, we will give a new proof of APS index theorem
using SQM.

3.1 APS Boundary Conditions

Consider a compact manifoldMwith a single boundary1 ∂M = N whereN is
a compact, connected, oriented manifold with no boundary as shown below:

M

FIGURE 3.1.1: ManifoldMwith a collar N × I shown in red.

We wish to compute the index of Dirac operator on such a manifold. To have
a well- defined index, we need to impose boundary conditions that preserve both
self-adjointness of the Dirac operator and the chirality of the eigenvectors. Usual
local boundary conditions like Dirichlet or Neumann do define a self-adjoint Dirac

1It is easy to generalize the analysis to a manifold with multiple boundaries.
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operator. However, because of the reflection at the boundary, such local boundary
conditions mix the positive and negative chirality modes and do not allow one
to define the index. To preserve chirality, it is necessary to impose the nonlocal
Atiyah-Patodi-Singer boundary conditions [1] explained below.

We assume that M has a product metric in the ‘collar’ region N × I near the
boundary (Figure 3.1.1). We define local coordinates {ym ;m = 1, 2, . . . , 2n − 1} on
N and u ≤ 0 on the interval I and the boundary is located at u = 0. The metric,
near the boundary takes the form:

ds2 = du2 + gmn|N dymdyn , (3.1)

The Dirac operator near the boundary becomes

/D = γu∂u + γmDm . (3.2)

where m = 1, ...2n− 1. It can be expressed as

/D = γu(∂u + γ̄B) (3.3)

where γ̄ is the chirality matrix onM and B = γ̂mDm is the boundary Dirac operator
with γ̂m defined by

γm = (γuγ̄)γ̂m (3.4)

which satisfy the same Clifford algebra as the original γ matrices:

{γm, γn} = −2 gmn , {γ̂m, γ̂n} = −2 gmn . (3.5)

The eigenvalue equation for the Dirac operator near the boundary takes the form(
0 L

L† 0

)(
Ψ−

Ψ+

)
=
√
E

(
Ψ−

Ψ+

)
(3.6)

where L = ∂u + B. The eigenfunctions can be written as

Ψ−(u, y) =
∑
λ

Ψλ
−(u) eλ(y) (3.7)

Ψ+(u, y) =
∑
λ

Ψλ
+(u) eλ(y) (3.8)
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where {eλ(y)} are the complete set of eigenmodes of B with eigenvalue {λ}. For
each mode we obtain: (

d

du
+ λ

)
Ψλ

+(u) =
√
EΨλ

−(u)(
− d

du
+ λ

)
Ψλ
−(u) =

√
EΨλ

+(u) . (3.9)

To motivate the APS boundary conditions consider a noncompact ‘trivial’ ex-
tension M̂ obtained by gluing a semi-infinite cylinder N × R+ (where R+ is the
half line u ≥ 0) to the original manifold (Figure 3.1.2). Near the boundary, the zero

M̂

FIGURE 3.1.2: The noncompact M̂ is a trivial extension ofM obtained
by gluing N × R+.

energy solutions of (3.9) onM have the form:

Ψλ
±(u) = exp (∓λu)Ψλ

±(0) (3.10)

One can ask which of these solutions can be extended to square-integrable or L2-
normalizable solutions on the noncompact manifold M̂. Since u is positive on
the semi-infinite cylinder, the solutions are normalizable if the argument of the
exponent is negative. This is consistent with the APS boundary condition [50]. One
sets the exponentially growing mode to zero which amounts to Dirichlet boundary
condition for half the modes:

Ψλ
+(0) = 0 ∀ λ < 0

Ψλ
−(0) = 0 ∀ λ > 0 . (3.11)
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For the remaining half, one uses Robin boundary conditions obtained by using
equations (3.9) and (3.11):

dΨλ
+

du
(0) + λΨλ

+(0) = 0 ∀ λ > 0

−
dΨλ
−

du
(0) + λΨλ

−(0) = 0 ∀ λ < 0 . (3.12)

These boundary conditions are consistent with supersymmetry as one can see from
(3.9). By construction, imposing the APS boundary condition onM is equivalent to
requiring L2-normalizability for the solutions of Dirac equation on the noncompact
extension M̂.

3.2 APS Index Theorem and η-invariant

The APS index theorem states that the index of Dirac operator with APS boundary
conditions on the compact Riemannian manifoldMwith boundaryN is given by

I =

∫
M
α(x)− 1

2
(η ± h) (3.13)

where
∫
M α(x) is the Atiyah-Singer term which is present also in the compact case,

η is the Atiyah-Patodi-Singer η-invariant and h is the number of zero modes of the
boundary operator B.

The η-invariant is a measure of the spectral asymmetry which is equal to the
regularized difference in the number of modes with positive and negative eigen-
values of the boundary operator B on N . Let {λ} be the set of eigenvalues of B,
then

η =
∑
λ 6=0

sgn(λ) . (3.14)

Here sgn is the sign function which is defined as

sgn(λ) = 1 for λ > 0

sgn(λ) = −1 for λ < 0 (3.15)

sgn(λ) = regulator dependent for λ = 0
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The zero eigenvalue of B can be treated by slightly deforming the boundary oper-
ator but the answer depends on the direction in which one approaches zero. This
sign ambiguity (the sign in front of h) is also present in the original APS formula in
equation (3.13). The η-invariant for a large class of boundary manifolds have been
computed by Hitchin in [55].

This infinite sum can be regularized in many ways. A natural regularization
that arises from the path integral derivation is (3.35)

η̂(β) :=
∑
λ 6=0

sgn(λ) erfc
(
|λ|
√
β
)
. (3.16)

Another regularization used in the original APS paper [1] is the ζ-function regular-
ization

ηAPS(s) =
∑
λ6=0

λ

|λ|s+1
=
∑
λ 6=0

sgn(λ)

|λ|s
. (3.17)

The two regularization schemes are related by a Mellin transform

ηAPS(s) =
s
√
π

Γ( s+1
2

)

∫ ∞
0

dββ
s
2
−1η̂(β) . (3.18)

The APS η-invariant (ηAPS(s)) for an operator B can be expressed in terms of the
Riemann zeta function as follows [56]:

ηAPS =
ζ1(s)− ζ2(s)

2−s − 1
(3.19)

where ζ1(s) and ζ2(s) are the Riemann zeta functions corresponding to the opera-
tors 3

2
|B|+ 1

2
B and 3

2
|B| − 1

2
B respectively. So naviely it looks that ηAPS has a pole at

s = 0 but it can be checked that for the boundary Dirac operator, the residue at this
pole vanishes [50]. Hence ηAPS(s) is analytic near s = 0 and the η-invariant can be
defined as:

η = lim
s→0

ηAPS(s) . (3.20)

It is expected that the answer is independent of the regularization up to local
counter-terms that are implicit in the definition of a path integral.

The factor of half in front of η in (3.13) has the following consequence. As one
varies the metric on N , the eigenvalues of B can pass through a zero, and η would
change by ±2. The index then changes by ∓1 as expected for an integer. It also
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shows that neither the index nor the η-invariant are strictly topological and can
change under smooth deformations of the boundary. They are nevertheless semi-
topological, in the sense, they change only if the asymptotic data near the boundary
is changed to alter the spectrum of B.

3.3 APS index theorem & SQM

As shown in the last chapter, the index I of the Dirac operator equals the Witten
index of SQM in the zero temperature limit i.e. in β →∞ limit:

I := W (∞) . (3.21)

For a compact manifoldMwithout boundary or with a boundary and APS bound-
ary conditions, the Dirac operator is self-adjoint. It has a discrete spectrum, and its
eigenvectors span the Hilbert spaceH. As a result, the Witten index is independent
of β and, in particular,

W (∞) = W (0) . (3.22)

This equality is an essential step in the proofs of both the Atiyah-Singer and the
Atiyah-Patodi-Singer index theorems because one can then evaluate the Witten in-
dex in the much simpler β → 0 limit using the high-temperature expansion of heat
kernels.

For a compact target space without a boundary, the Witten index has a path
integral representation, which is the starting point to obtain a derivation of the AS
index theorem. Similarly, for a manifold with boundary, one would like to find a
path integral representation, so as to apply localization. But there is an obvious
difficulty in this case. In general, path integral formulation is much more subtle
for a target space with a boundary. For this reason, it is convenient to map the
problem to the computation of the Witten index Ŵ of a noncompact manifold M̂
without boundary. This will also lead to a ‘spectral theoretic’ reformulation of the
APS theorem.

3.3.1 Noncompact Witten index

The APS boundary conditions imply that for every solution of the Dirac operator
on M, there is a L2-normalizable solution of the extended Dirac operator on M̂.
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One can, therefore, aim to express the Dirac index in terms of the noncompact Wit-
ten index Ŵ (∞) at zero temperature, which admits a more straightforward path
integral representation. One immediate problem with this idea is that the spectrum
of Dirac Hamiltonian Ĥ onM is expected to contain delta-function normalizable
scattering states with a continuous spectrum in addition to the L2-normalizable
states. It is not clear then that the operator (−1)F e−βĤ is ‘trace class’ in the conven-
tional sense because it may not have a convergent trace after including the scatter-
ing states. Thus, even before developing the path integral for Ŵ (β), it is necessary
to give a proper definition for it in the canonical formulation that correctly gener-
alizes (1.1).

A natural formalism for this purpose is provided by ‘rigged Hilbert space’ or
‘Gel’fand triplet’ which generalizes the Von Neumann formulation of quantum me-
chanics based on a Hilbert space [57, 58]. An advantage of this formalism is that
one can discuss the spectral theory of operators with a continuous spectrum with
‘generalized’ eigenvectors, which may not be square-integrable. We review some
of the relevant concepts as they apply in the present context.

The first Von Neumann axiom states that every physical system is represented
(up to a phase) by a vector in a Hilbert spaceHwith the unit norm. This is essential
for the Born interpretation because the total probability of outcomes of measure-
ments for any physical system must be unity. The second axiom requires that every
physical observable corresponds to a self-adjoint operator on H. This, however, is
not always possible. A simple counterexample is a free particle on a line R with the
Hamiltonian H = p2. The self-adjoint operator corresponding to H on H has no
normalizable eigenvectors, so the set of eigenvalues of this operator is empty. On
the other hand, on physical grounds, one expects the free particle to have continu-
ous energy with a sensible classical limit. To deal with such more general physical
situations, it is necessary to relax the second axiom and represent physical observ-
ables by operators defined on a domain in a rigged Hilbert space using a Gel’fand
triplet rather than on a domain in a Hilbert space.

For a quantum particle on a real line, the Gel’fand triplet consists of a Hilbert
space H, the Schwartz space S, and the conjugate Schwartz space S×. The Hilbert
space H is isomorphic to the space L2(dx,R) of square-integrable wave functions
on R:

H = {|ψ〉} with 〈ψ|ψ〉 :=

∫
dxψ∗(x)ψ(x) <∞ ; (3.23)
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The Schwartz space is the space of infinitely differentiable ‘test functions’ with ex-
ponential fall off. The conjugate Schwartz space S× is the set {|φ〉} such that

|φ〉 ∈ S× if 〈ψ|φ〉 <∞ ∀ |ψ〉 ∈ S . (3.24)

The Gel’fand triplet provides a rigorous way to define the bra and ket formulation
of Dirac and offers a way to discuss the spectral theory of operators with continu-
ous eigenvalues [57, 58]. The notion of the Schwartz space is motivated by the fact
that it is left invariant by unbounded operators like the position operator x. The
conjugate Schwartz space S× is where objects like the Dirac delta distribution δ(x)

and plane waves eipx reside. The elements of S× need not have finite inner prod-
uct with themselves and hence may not be square-integrable, but they have finite
overlap with ‘test functions’ belonging to S.

Consider now a self-adjoint Hamiltonian H defined on a domain S ⊂ H. One
can define the conjugate Hamiltonian H× acting on |φ〉 ∈ S× by the equation

〈ψ|H×|φ〉 = 〈Hψ|φ〉 ∀ |ψ〉 ∈ S (3.25)

With this definition, the eigenvalue equation for H×

H×|E〉 = E|E〉 , |E〉 ∈ S× (3.26)

should be interpreted in terms of the overlap with test functions:

〈ψ|H×|E〉 = E〈ψ|E〉 ∀ |ψ〉 ∈ S . (3.27)

A ‘generalized eigenvector’ |E〉 may lie outside the Hilbert space H and may not
be normalizable. This means that it cannot be prepared in any experimental setup.
Nevertheless, the set {|E〉} provides a complete basis in the sense that any state in
H can be expanded in terms of {|E〉}. This is the content of the Gel’fand-Maurin
spectral theorem [58, 59].

For the example of a free particle discussed earlier, the operator H× has the
same formal expression as H as a differential operator:

H× = − d2

dx2
. (3.28)
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However, the domainD(H×) is much larger than the domainD(H). This extension
of the Hamiltonian is diagonalizable in the larger space S× with generalized eigen-
functions {eipx} and eigenvalues {p2}. In any laboratory with a finite extent, one
can never experimentally realize an exact plane wave but only a wave packet that
is sufficiently close to the energy eigenfunction. Nevertheless, the plane waves
form a complete basis in the sense that a square-integrable function in H can be
Fourier-expanded in terms of plane waves. We denote the total space of gener-
alized eigenvectors of H× by Sp, which may contain both the square-integrable
bound states with discrete energies as well as nonnormalizable scattering states
with continuous energies.

Usually, one can gloss over these niceties essentially because of the locality. A
particle on an infinite line is an extreme idealization in a universe which may be
finite. One expects that measurements of local quantities such as scattering cross-
sections in a particle physics experiment in a laboratory should not be affected by
boundary conditions imposed at the end of the universe. One should arrive at
the same physical conclusions whether one uses periodic or Dirichlet boundary
conditions in a large box, as one indeed finds in textbook computations.

In the present situation, we are interested in global properties that depend sen-
sitively on the boundary conditions. For example, one cannot impose Dirichlet
boundary conditions while preserving supersymmetry. The Gel’fand triplet pro-
vides an appropriate formulation to discuss the scattering states without the need
to put any boundary conditions to ‘compactify’ space. With these preliminaries,
one can define the noncompact Witten index by

Ŵ (β) := Tr
Sp(Ĥ)

[
(−1)F e−βĤ

]
(3.29)

On the face of it, this definition is still not completely satisfactory. Even though the
spectrum Sp over which one traces now has a precise meaning, it is not clear that
the trace thus defined actually converges. For example, for a free particle, the heat
kernel is well-defined2

K(x, y; β) = 〈x|e−βH |y〉 =
1√
4πβ

exp

[
−(x− y)2

4β

]
. (3.30)

2In what follows, we will use H instead of H× when there is no ambiguity to unclutter the
notation.
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However, if we try to define a trace then there is the usual ‘volume’ divergence:∫
dx〈x|e−βH |x〉 =

1√
4πβ

∫
dx→∞ . (3.31)

One might worry that the noncompact Witten index is also similarly divergent.
Fortunately, the Witten index is a supertrace or, equivalently, a trace over the differ-
ence between two heat kernels corresponding to the bosonic and fermionic Hamil-
toniansH+ andH− respectively. If there is a gap between the ground states and the
scattering states, then the difference between two Hamiltonians vanish as r → ∞.
As a result, the volume divergent contribution cancels in the supertrace. In the path
integral representation, this corresponds to the fact that the supertrace involves in-
tegrals over the ‘fermionic zero modes’ in addition to the ‘bosonic zero-mode’ x.
Under suitable conditions, the fermionic Berezin integration localizes the bosonic
integral to a compact region on the real line to yield a finite answer. In particular,
the path integral receives vanishing contribution from the asymptotic infinity in
field space. We elaborate on this point in §3.4.1.

3.3.2 APS index & Non-compact Witten index

Using the above framework, one can now express the index of the Dirac operator
on the original manifold M with a boundary in terms of a noncompact Witten
index Ŵ (β) on M̂. Assuming that the continuum states in Sp are separated from
the ground states by a gap, at zero temperature only the L2-normalizable ground
states contribute to Ŵ (∞). Since these states are in one-one correspondence with
the states in the original Hilbert spaceH onMwith APS boundary conditions, we
conclude

I = Ŵ (∞) . (3.32)

In the limit of β → 0, one can evaluate the Witten index by using the short proper
time expansion of the heat kernels to obtain a local expression. It must correspond
to the Atiyah-Singer term but now evaluated over M̂:

Ŵ (0) =

∫
M̂
α =

∫
M
α (3.33)
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where the second equality follows from the fact that the topological index density
vanishes on the half-cylinder N × R+. We can therefore write

I = Ŵ (0) + (Ŵ (∞)− Ŵ (0)) . (3.34)

The term in the parenthesis is no longer zero and is in fact related to the η-invariant
as will show in §3.3.3. It is convenient to consider a regularized quantity

η̂(β) = 2(Ŵ (β)− Ŵ (∞)) (3.35)

which in the limit β → 0 reduces to the bracket in (3.34). This provides a natural
regularization described earlier in (3.16). With these identifications, equation (3.34)
can be viewed as the statement of the APS theorem; the discussion above together
with §3.3.3 can be viewed as a derivation of the APS result. The noncompact Witten
index is, in general, β-dependent because at finite temperature, the scattering states
also contribute. The bosonic and fermionic density of states in this continuum may
not be exactly equal and need not cancel precisely. The η-invariant of the bound-
ary manifold N thus measures the failure of the Witten index of the noncompact
manifold Ŵ to be temperature independent3.

3.3.3 Scattering theory and the APS theorem

There is a simpler way to compute Ŵ (0) that makes this connection with the bulk
Atiyah-Singer term (3.33) more manifest and easier to relate it to a path integral.
One can simply double the manifold to M by gluing its copy as in Figure 3.3.1
as was suggested in [1]. Since M is a compact manifold without a boundary, its
index does not have any contribution from the η-invariant. Moreover, by the rea-
soning before (3.33) the β → 0 expansion is local and gives the Atiyah-Singer index
density. In summary,

Ŵ (0) =
1

2
W (0) =

∫
M
α (3.36)

To prove the APS theorem, we would like to show that the term in the paren-
theses in (3.34) equals the η-invariant. We note that the spectrum Sp(H) of the
Hamiltonian on M̂ is a direct sum of the discrete spectrum of bound states Spb(H)

3This was noticed earlier in [60] in a particular example.
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M

FIGURE 3.3.1: The doubled compact manifoldMwithout boundary.

and the continuum spectrum of scattering states Sps(H). Therefore the Witten in-
dex admits a spectral decomposition

Ŵ (β) = Tr
SPb

[
(−1)F e−βĤ

]
+ Tr

SPs

[
(−1)F e−βĤ

]
(3.37)

Since the continuum of states is separated from the zero energy states, it is clear
that the first term can be identified with Ŵ (∞). To prove (3.35), we thus need to
show that the contribution from the continuum equals the η-invariant:

2Tr
SPs

[
(−1)F e−βĤ

]
= η̂(β) . (3.38)

We show this by relating the supertrace to the difference in the density of bosonic
and fermionic scattering states4 on M̂which in turn can be related to the difference
in phase shifts.

Asymptotically, the metric on M̂ has the form (3.1) with 0 < u <∞. We can use
separation of variables to first diagonalize the operator B on N with eigenvalues
{λ}. The Dirac operator on manifold M̂ can be expressed in terms of eigenvalues λ
of the boundary operator B as in (3.9). Here, we assume that the boundary operator
does not have any zero eigenvalue. The asymptotic form of the scattering wave

4Index theory on non-compact manifold and its relation to scattering theory has been considered
earlier to compute threshold bound states [61–64] without making the connection to APS index
theorem and η-invariant. The relation between η-invariant and scattering theory was observed
earlier in special cases in [65–67].
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functions is then

ψλk+ (u) ∼ cλ+

[
eiku + eiδ

λ
+(k)−iku

]
ψλk− (u) ∼ cλ−

[
eiku + eiδ

λ
−(k)−iku

]
(3.39)

where δλ±(k) are the phase shifts. The trace (3.38) over scattering states can be ex-
pressed as

2
∑
λ

∫
dk
[
ρλ+(k)− ρλ−(k)

]
e−βE(k) (3.40)

where ρλ+(k) and ρλ−(k) are the densities of bosonic and fermionic states of the the-
ory in λ subsector. Using a standard result (3.128) from scattering theory, which we
review in §3.B, we can relate the difference in the density of states to the difference
in phase shifts

ρλ+(k)− ρλ−(k) =
1

π

d

dk

[
δλ+(k)− δλ−(k)

]
. (3.41)

In general, the individual phase shifts and density of states are nontrivial functions
of k that depend on the details of the manifold M̂. After all, they contain all the
information about the S-matrix. The exact form of the scattering states similarly
has a complicated functional dependence on u. Generically, it would be impossi-
ble to compute any of them exactly. Remarkably, the difference between the phase
shifts is determined entirely by the asymptotic data as a consequence of super-
symmetry relation (3.9) in the asymptotic region. By substituting the asymptotic
wave-functions (3.39) into (3.9) we obtain

cλ+
√
E
[
eiku + ei2δ

λ
+ e−iku

]
= cλ−

[
(−ik + λ)eiku + ei2δ

λ
− (ik + λ)e−iku

]
(3.42)

with E = k2 + λ2. This implies

cλ+
cλ−

=
(−ik + λ)√

E
,

ei2δ
λ
+

ei2δ
λ
−

= −(ik + λ)

(ik − λ)
(3.43)

and therefore,

2δλ+(k)− 2δλ−(k) = −i ln
(
ik + λ

ik − λ

)
+ π (3.44)
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in each eigensubspace with eigenvalue λ. Now we use the equation (3.44) in (3.128)
to obtain:

ρλ+(k)− ρλ−(k) = − λ

π(k2 + λ2)
(3.45)

After summing over all λ we obtain

2Tr
SPs

[
(−1)F e−βĤ

]
=

∑
λ

∫ ∞
0

dk
[
ρλ+(k)− ρλ−(k)

]
e−β(k2+λ2)

=
∑
λ

sgn(λ) erfc

(
|λ|
√
β

2

)
(3.46)

This is precisely the regulated expression (3.35) for the η-invariant of the boundary
operator. We have thus proven

I = Ŵ (0) + (Ŵ (∞)− Ŵ (0)) =

∫
M
α− 1

2
η (3.47)

which is the Atiyah-Patodi-Singer index theorem.

3.4 The η-invariant and path integrals

Given the definition of the noncompact Witten index in §3.3.1, one can use its path-
integral representation and use localization methods to compute it. In §3.4.3, we
show how this works for a two-dimensional finite cigar with a boundary by relat-
ing its index to the Witten index of the infinite cigar. In this simple example, one
can explicitly evaluate the Witten index using localization and compare it with the
η-invariant obtained from operator methods.

In this section, we will formulate a path integral that directly computes the η-
invariant without the bulk Atiyah-Singer piece. This can be achieved as follows. As
we have observed in §3.3.3, given a manifold with boundaryM such that its metric
is of the product form near the boundary, we can trivially extend the manifold to
a noncompact manifold M̂. In M̂, the η-invariant gets contribution only from the
scattering states of M̂. Since the scattering states just depend on asymptotics, the
scattering states of M̂ are the same as those of R+ ×N with APS boundary condi-
tion at the origin. We use this physical picture to find a path integral representation
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to compute η-invariant. First, we will explain the space-time picture, and then we
will map it to a worldline computation.

The Dirac operator on the half line is given by /̃D = γu(∂u + γ̄B). We can
diagonalize the boundary operator as in (3.7), (3.8). Effectively, for each eigenvalue
λ of the boundary operator B, we have a supersymmetric quantum mechanics on a
half line. The APS boundary condition is essentially Dirichlet boundary condition
for one chirality and Robin boundary condition for the other chirality. To obtain a
path integral representation with these boundary conditions, it is more convenient
to ‘double’ the manifold R+×N to obtain a noncompact cylinder M̃ := R×N (see
Figure 3.4.1) without any boundary. We extend it in a manner that is consistent
with the APS boundary conditions. The manifold M̃ := R × N possess parity
symmetry

P : u→ −u , ψ± → −ψ± (3.48)

that is consistent with supersymmetry and leaves the supercharge invariant. The
path integral on the original manifold R+ ×N with APS boundary conditions can
thus be obtained by considering the path integral on the manifold M̃ := R × N
projected onto P invariant states. This is obtained by the insertion of the following
operator

1

2

[
1 + P

]
(3.49)

in the path integral. Here P is the parity operator. Invariance under the reflection
of u keeps only parity-even wave functions in the trace for one chirality, effectively
imposing Dirichlet boundary condition on the half-line. Supersymmetry ensures
that the other chirality satisfies the Robin boundary condition as required by the
APS boundary conditions. See, for example, [10, 68] for a more detailed discussion.

Since we are interested in the operator /̃D = γu(∂u + γ̄B) on the half-line, the ex-
tension of this operator should transform as an eigen-operator under parity. Given
u transform as in (3.48) we are left with the choice

B → −B. (3.50)

This ensures that Dirac operator as a whole is invariant. The extended Dirac oper-
ator on the doubled cylinder thus takes the form

/̃D = γu(∂u + ε(u)γ̄B) (3.51)
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M̃

FIGURE 3.4.1: The doubled noncompact cylinder M̃ = N × R.

instead of (3.2) where ε(u) is a step function with a discontinuity at u = 0. One can
also take ε(u) to be a smooth smearing function which interpolates between−1 to 1

as u varies from−∞ to +∞ to obtain a smooth Dirac operator. One example of such
function is tanh(au). This does not change our conclusions because the η-invariant
does not change under deformations that do not change the asymptotics.

Now we return to the worldline picture. For each eigenvalue of B, we can map
this problem to a worldline path integral problem. The effect of the eigenvalue of
the boundary operator can be incorporated by adding a superpotential h(u) in the
Hamiltonian, whose derivative w.r.t. u is given by:

h′(u) = ε(u)λ

Notice that we need at least two real supercharges in the theory to add a super-
potential term. Hence, in this case, we will be working with N = 1 SUSY (one
complex supercharge). It reduces the problem to computing Witten index W̃ (β)

for an SQM with a superpotential h′(u) = ε(u)λ on a target space R. The Witten in-
dex can now be computed using path integral. With this construction, we conclude

η̂(β) = η̃(β) = 2(W̃ (β)− W̃ (∞)) (3.52)

It is straightforward to write a path integral representation for η̃(β) on the non-
compact cylinder M̃which is much simpler than the path integral on M̂. In §3.4.2,
we compute it using localization and relate it to Callias index [14, 15].

3.4.1 Supersymmetric worldpoint integral

Some of the essential points about a noncompact path integral can be illustrated by
a ‘world point’ path-integral where the base space Σ is a point and the target space
M is the real line −∞ < u <∞. We discuss this example first before proceeding to
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localization. The supersymmetric worldpoint action is given by

S(u, F, ψ−, ψ+) =
1

2
F 2 + iF h′(u) + ih′′(u)ψ−ψ+ (3.53)

where
h′(u) :=

dh

du
, h′′(u) =

d2h

du2
. (3.54)

The action can be obtained from the Euclidean continuation5 of (2.68) by setting

∂

∂τ
=

∂

∂σ
= 0 , g11(u) = 1 . (3.55)

The SUSY transformations can also be obtained from (2.67) by setting above terms
to zero. Notice that in this case we have two real supercharges Q+ and Q−.

The path integral is now just an ordinary superintegral with flat measure

W (β) = −i
∫ ∞
−∞

du

∫ ∞
−∞

dF

∫
dψ− dψ+ exp [−βS(U)] . (3.56)

where−i comes from fermionic normalization as expalined in (2.42). A particularly
interesting special case is

h′(u) = λ tanh(au) , (3.57)

for real λ. Integrating out the fermions and the auxiliary field F gives

W (β) = −
√

β

2π

∫ ∞
−∞

dx h′′(u) exp

[
−β

2
(h′(u))2

]
(3.58)

One can change variables

y =

√
β

2
h′(u) , dy =

√
β

2
h′′(u)dx (3.59)

As u goes from−∞ to∞, y(u) is monotonically increasing or decreasing depending
on if λ is positive or negative; the inverse function u(y) is single-valued, and the

5Note that in the Euclidean continuation F → iF . So, the limit ∂
∂τ = 0 of the Euclidean and the

Lorentzian actions gives different actions for the supersymmetric integral.
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integral reduces to

W (β) = − 1√
π

∫ √β
2
λ

−
√

β
2
λ

dy e−y
2

= −sgn(λ) erf

(√
β

2
|λ|

)
(3.60)

where erf(z) is the Error-function given by (3.130), not to be confused with the
complimentary Error function erfc(z).

This world point integral illustrates several important points.

1. The integral has a volume divergence without the fermionic integrations be-
cause h′(u) is bounded above for large |u|. The inclusion of fermions effec-
tively limits the integrand to the region close to the origin where h′(u) varies
and makes the integral finite.

2. In the limit λ → 0, the action reduces to that of a free superparticle. In this
case, the integral is of the form ∞ × 0 and is ill-defined. Regularizing with
λ yields different answers depending on whether we approach 0 from the
positive or negative side. This is related to the jump in η-invariant when an
eigenvalue of the boundary operator B crosses a zero in a spectral flow, as
explained before figure 3.4.2.

3. The answer depends only on the asymptotic behavior of h′(u) at ±∞ and
is independent of any deformations that do not change the asymptotics. In
particular, one would obtain the same result in the limit a → ∞ in (3.57),
when h′(u) can be expressed in terms of the Heaviside step function:

h′(u) = λ
[
θ(u)− θ(−u)

]
. (3.61)

4. The error function (3.60), which appears naturally in this integral, makes its
appearance in the proof of the APS theorem [1, 50] and also in the defini-
tion of the completion (4.12) of a mock modular form and, in particular, in
(4.59). This is not a coincidence. The two turn out to be related through a
path integral which localizes precisely to the ordinary super integral consid-
ered above. For this reason, this example is particularly important for our
discussions of the η-invariant and its connection to mock modularity.
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The world point integral does not have an operator interpretation in terms of a
trace over a Hilbert space. To see the connection with the canonical formalism,
we consider in §3.4.2 the worldline version corresponding to the path integral for
a supersymmetric quantum mechanics, and relate it to Callias-Seeley-Bott index
theorem [14, 15] . After localization, the worldline path integral will reduce to the
world point integral considered above.

3.4.2 Callias index theorem and the η-invariant

In this section, we compute the η-invariant by computing path integral for SQM
with target space M̃. As discussed in §3.3.3 we can use separation of variables
to first diagonalize the operator B on N with eigenvalues {λ} but now for the
entire manifold M̃. For each eigenvalue λ, the problem reduces to a supersymmet-
ric quantum mechanics with a one-dimensional target space and a superpotential
h(u). The path integral for this problem can be readily written down and has been
considered earlier in [69]. The action for SQM can be obtained as a specialization
of (2.68) with target space R and by setting

∂

∂σ
= 0 . (3.62)

The Euclidean action for the components of the superfield U is

S =

∫ β

0

dτ

[
1

2
u̇2 +

1

2
ψ−ψ̇− +

1

2
ψ+ψ̇+ +

1

2
F 2 + ih′(u)F + ih′′(u)ψ−ψ+

]
(3.63)

with h′(u) = λ tanhu (where λ 6= 0). The SUSY transformations for this case
can again be obtained from (2.67) by taking appropriate limits. To compute the
η-invariant we need to evaluate the projected Witten index (3.49)

W̃ (β) =
1

2
tr
[
(−1)F (1 + P (−1)F )

]
=

1

2
tr
[
(−1)F

]
+

1

2
tr [P ]

=
1

2
W̃1(β) +

1

2
W̃2(β) (3.64)

The path integral for the first term is the same as before with periodic boundary
conditions for bosons and fermions. In the path integral for the second term both
the bosons and the fermions are anti-periodic because of the insertion of P (−1)F .
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Given a path integral representation for the Witten index (2.34), one can use a
technique called supersymmetric localization to compute it. We elaborate on this
technique in the appendix 3.A. To use localization, we deform the lagrangian by
adding Q+V (where Q+ is a real supercharge) to it and V is given by:

V = ψ+(Q+ψ+) = iψ+u̇

Q+V = u̇2 + ψ+ψ̇+

Q2
+V = 0

After using localization, the path intergal localizes to the solutions of Q+V = 0 i.e.
the constant modes of u and ψ+. Fluctuations around the constant modes are given
by

u = u0 +
1√
ξ
ũ ψ+ = ψ+0 +

1√
ξ
η (3.65)

with ũ and η satisfying periodic boundary conditions. So we have,

W̃1(β) = −i
∫
du0[dF ][dũ][dψ−]dψ+0[dη] exp

(
−S[X0, β]− ξ(Q+V )[2]

)
where (Q+V )[2] are the quadratic fluctuations around the localization locus. Ex-
panding the ψ− in modes and after evaluating the non-zero mode integrals we
obtain

W̃1(β) = −i
∫

du0√
2πβ

dψ−0 dψ+0 exp

(
−β

2
(h′(u0))2 − iβ(h′′(u0)ψ−0ψ+0

)
(3.66)

The factor of 1√
2πβ

comes from the determinants. The integral (3.66) is identical to
the world point superintegral (3.58). Hence we obtain

W̃1(β) = −sgn(λ) erf

(
|λ|
√
β

2

)
(3.67)

We use localization to compute the second piece as well. In this case, the path-
integral localizes to u = 0 = ψ+. Small fluctuations around the saddle point are
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given by

u = 0 +
1√
ξ
ū ψ+ = 0 +

1√
ξ
η̄ (3.68)

Here ū and η̄ satisfy anti-periodic boundary condition.

W̃2[β] = −i
∫

[dF ][dū][dψ−][dη̄] exp
(
−S[X0, β]− ξ(Q+V )[2]

)
= 1 (3.69)

So the full answer is given by (3.64)

W̃ (β) = −1

2
sgn(λ) erf

(
|λ|
√
β

2

)
+

1

2
(3.70)

We have performed the computation for a single eigenvalue λ. We get (3.70) for
each eigenvalue. From (3.52) we obtain the η-invariant to be

η̃(β) =
∑
λ

sgn(λ)

[
1− erf

(
|λ|
√
β

2

)]
=
∑
λ

sgn(λ)erfc

(
|λ|
√
β

2

)
(3.71)

which reproduces the expression (3.46) for η̂(β) obtained from scattering theory.
Hence

η̃(β) = η̂(β) (3.72)

In conclusion, the Witten index for the worldline quantum mechanics is temperature-
dependent as a consequence of the noncompactness of the target manifold and this
temperature dependence helps to compute the η-invariant.

3.4.3 The η-invariant of a finite cigar

It is instructive to apply the general formulation developed in earlier sections to
an explicit computation for a simple and illustrative example where M is a two
dimensional finite cigar with metric

ds2 = k (dr2 + tanh2 r dθ2) (3.73)

where θ is a periodic with period 2π and 0 ≤ r ≤ rc. The manifold has a boundary
at r = rc with a product form N × I where N is the circle parametrized by θ with
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radius
√
k. The non-zero Christoffel symbols are

Γrθθ = −1

2
k ∂r(tanh2 r) Γθθr = Γθrθ =

1

2
k ∂r(tanh2 r) (3.74)

The orthonormal forms and the nonzero vielbeins are

e1 =
√
kdr e2 =

√
k tanh(r)dθ

e1
r =

√
k e2

θ =
√
k tanh(r) (3.75)

The cigar has a Killing isometry under translations of θ with the Killing vector

Ki = (0, 1) Ki = gijK
j = (0, k tanh2 r) . (3.76)

The N = (0, 1) supersymmetric action can be obtained from (2.68) by setting

F i = 0 ψi− = 0 ψ+ = ψi . (3.77)

The Lorentzian action is given by:

I =
1

4π

∫
d2σ gij

(
∂τX

i∂τX
j − ∂σX i∂σX

j + iψiDτ−σψ
j

)
(3.78)

We dimensionally reduce along the worldsheet σ direction to convert the action
on the 2-torus to a collection of actions on a circle. Scherk-Schwarz reduction [70]
along the sigma direction using the Killing vector gives

X i(σ + 2π) = X i(σ) + 2πwKi (3.79)

where w is the winding number. We have

∂σX
i = wKi and ∂σψ

i = −w∂jKiψj (3.80)

where the derivative of ψi is deduced from the transformation of the superfield
X i = xi + θ̄ψi + θ̄θF i under the Killing symmetry. Using (3.80) in action (4.92) and
integrating over the σ direction we obtain the following Euclidean action after a
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Wick rotation:

S =
1

2

∫
dτ

(
Gij∂τX

i∂τX
j +Gijw

2KiKj +Gijψ
iDτψ

j − iwψiKijψ
j

)
(3.81)

After plugging (3.73) in the action (3.81) we get:

S[β; k, w] =

∫ β

0

dτ
1

2

(
kṙ2 + k tanh2 rθ̇2 + w2k tanh2 r + kψrψ̇r − kψr∂r(tanh2 r)θ̇ψθ

+k tanh2 rψθψ̇θ − iwψθ∂r(k tanh2 r)ψr
)

(3.82)

Our goal is to evaluate the path integral on the infinite cigar and then connect it
to the η-invariant for a finite cigar. We use localization to compute the Witten index
of infinite cigar. To perform localization, we deform the action by adding QV to it,
where V is given by:

V = Grrψ
rδψr = kψrṙ (3.83)

This localizes the integral to constant modes of r and ψr. We have:

Ŵ (β) = −i
∫
dr0dψ

r
0[dθ][dψθ] exp

[
−
∫ β

0

dτL(r0, ψ
r
0, θ, ψ

θ)− ξ
∫ β

0

QV [2]

]
(3.84)

where QV [2] are the quadratic fluctuations around the localization locus. We ex-
pand

r = r0 +
1√
ξ
χ ψr = ψr0 +

1√
ξ
ηr (3.85)

so that the quadratic fluctuations are given by

ξ

∫ β

0

dτ QV [2] =

∫ β

0

dτ(kχ̇2 + kηrη̇r) . (3.86)

The transformation (3.85) has a unit Jacobian. We can now mode expand θ and ψθ

and we have

θ(τ) =
2πpτ

β
+
∑
m

θme
2πimτ/β ψθ(τ) = ψθ0 +

∑
m

ψθme
2πimτ/β (3.87)
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After integrating out the fluctuations and non-zero modes of θ and ψθ, we obtain:

Ŵ (β; k, w) = − 2πi

2πβ

∫
dr0dθ0dψ

r
0dψ

θ
0

∑
p

exp

[
−
∫ β

0

dτ S(r0, ψ
r
0, ψ

θ
0)

]
= − i

β

∑
p

∫ ∞
0

dr0
1

2
k∂r(tanh2 r)

∣∣∣
r0

(
−iw +

2πp

β

)
e−

1
2
βk tanh2(r0)(( 2πp

β
)2+w2)

(3.88)

The factor of 1
2πβ

comes from the determinants as before. Substituting y = 1
2
βk tanh2 r0,

we obtain

Ŵ (β; k, w) = − i
β

∑
p 6=0

∫ 1
2
βk

0

[dy]

(
−iw +

2πp

β

)
exp

[
−y

((
2πp

β

)2

+ w2

)]

= − i
β

∑
p 6=0

1

(iw + 2πp
β

)

[
e−

1
2
βk(( 2πp

β
)2+w2) − 1

]
(3.89)

Notice that the second term is log-divergent. This happens because at the tip
of the cigar an infinite number of winding modes become massless leading to a
divergence for this term. This is a consequence of the fact that winding number
is strictly not a conserved quantum number at r = 0 as we have assumed. We
can deal with it by regularizing the Witten index Ŵ (2πτ2) near r = 0 by putting
an ε cutoff in the r integral in (3.88) and then taking ε → 0 in the end. With this
regularization, the contribution from the last term in (3.89) vanishes. After Poisson
resumming the first term, with respect to p (see equation (3.136)) we obtain,

Ŵ (β) =
∑
n

e−βnw
[

−1

2
sgn

(n
k
− w

)
erfc

(√
kβ

2

∣∣∣n
k
− w

∣∣∣)+ sgn(βn) Θ
[
w
(n
k
− w

)]
(3.90)

where Θ is the Heaviside step function 6. It is easy to check that Ŵ (∞) vanishes.
Using (3.35), we formally obtain

η̂(0) = 2(Ŵ (0)− Ŵ (∞)) =
∑
n

sgn
(
w − n

k

)
(3.91)

6The e−βnw is due to the presence of the non-zero central charge of cigar supersymmetric quan-
tum mechanics.
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which can be regularized as in (3.16).
It is instructive to compare this result with a target space computation of the

spectral asymmetry of the boundary operator B living on the boundary located
at r = rc. Using the inverse vielbeins from (3.75), the Dirac operator near the
boundary takes the form

i /D = γr(i∂r − wKr) + γθ(i∂θ − wKθ)

= iγr
[
∂r −

1

tanh r

(
−1 0

0 1

)
(i∂θ − w k tanh2 r)

]
(3.92)

For large rc, the boundary manifold is a circle S1. Identifying r with u and compar-
ing with (3.2) we find the boundary operator

B = −(i∂θ − w k) . (3.93)

Here we assume that wk is not an integer in order to avoid zero eigenvalue of the
boundary operator. The η-invariant of this operator can be computed readily. Since
θ direction is periodic, the eigenfunctions are given by the set

{e−inθ|n ∈ Z} (3.94)

with eigenvalues
{wk − n|n ∈ Z} (3.95)

The radius of the cigar is
√
k. As long as k is not an integer, the boundary operator

B has no zero modes. The η-invariant is then given by:

η =
∑
n∈Z

sgn(w k − n) =
∑
n∈Z

sgn
(
w − n

k

)
(3.96)

where in the last step we have used the fact that k is positive. This matches with
the η invariant computed from the path integral (3.91).

In the infinite sum (3.96), one can absorb the integer part bwkc of wk into n, and
hence the η-invariant is expected to depend only on the fractional part 〈wk〉 of wk
defined by

〈wk〉 = wk − bwkc
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where bwkc is the greatest integer less than wk. The regularized version of the
η-invariant is

η(s) = −
∞∑
n=1

1

(n− 〈wk〉)s
+
∞∑
n=0

1

(n+ 〈wk〉)s
. (3.97)

The η-invariant can now be expressed in terms of the modified ζ function

ζ(s, q) =
∞∑
n=0

1

(n+ q)s
, ζ(0, q) = −q +

1

2
(3.98)

to obtain
η(0) = −ζ(0, 1− 〈wk〉) + ζ(0, 〈wk〉) = 1− 2〈wk〉 (3.99)

wk

FIGURE 3.4.2: Spectral asymmetry

Note that for k and w both integers, the η-invariant vanishes. As one varies k,
the η-invariant changes, and every time k crosses an integer, it jumps by −2. This
is as expected from level-crossing because when k is an integer, the boundary op-
erator has a zero eigenvalue. There is an ambiguity in the APS theorem about the
sign of the contributions from zero (see discussion below (3.15) ). This behavior is
plotted in Figure 3.4.2 with η on the y-axis and wk on the x-axis.

Hence we conclude that the APS index theorem consists of two pieces, the AS
piece and the η-invariant piece. Both these pieces can be computed using different
SUSY QM.

• The AS piece can be computed using a N = 1/2 SQM with target space given
byM as shown in figure 3.3.1.

• The η-invariant piece can be computed using a N = 1 SQM with target space
R and a superpotential h(u).
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Appendix

3.A Localization

Here we review the technique of localization to compute supersymmetric path in-
tegrals. Our discussion is restricted to supersymmetric quantum mechanics though
it can be extended to supersymmetric quantum field theories.

Consider a SUSY partition function given by:

Z[β] =

∫
PBC

[DΦ] e−SE (3.100)

SE[Φ] =

∫ β

0

dτ

∫
[dθ]LE (3.101)

where Φ is a superfield and PBC implies we impose the periodic boundary condi-
tion for all fields along the τ direction. SE the Euclidean action and the measure
[DΦ] are both invariant under SUSY. Now we deform the above path integral by a
Q- exact term i.e.

Z[β, t] =

∫
[DΦ] e−S[Φ]−tQV[Φ] (3.102)

We assume :

• QV ≥ 0, so that adding QV to the action does not blow up the path integral.

• Q2V = 0

If the Q exact term satisfies above conditions, one can show that if the field space
is compact without boundary, (3.102) is independent of t. When the field space is
non-compact or have a boundary, there is a subtlety (we will comment about this
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later). More precisely, the derivative w.r.t t is given by:

d

dt
Z[t] =

∫
[DΦ]QV [Φ] e−S[Φ]−tQV [Φ]

=

∫
[DΦ]Q

[
V [Φ] e−S[Φ]−tQV[Φ]

]
where in the second step we have used the fact that QS[Φ] = 0 and Q2V = 0.
Now we have

d

dt
Z[t] =

∫
[DΦ]Q [A(Φ)] , A(Φ) ≡ V [Φ] e−S[Φ]−tQV[Φ] (3.103)

Now

Q [A(Φ)] =

[
d

dΦ
A(Φ)

]
QΦ =

d

dΦ

[
A(Φ)QΦ

]
−A(Φ)

[ d
dΦ

(QΦ)
]

(3.104)

Now under infinitesimal transformation

Φ→ Φ′ = Φ + εQΦ (3.105)

Hence the jacobian of this transformation

dΦ′

dΦ
= 1 + ε

d

dΦ
(QΦ) (3.106)

If the symmetry generated by Q is non-anomalous then the jacobian should be 1

and hence

d

dΦ
(QΦ) = 0 (3.107)

and hence

Q [A(Φ)] =
d

dΦ

[
A(Φ)QΦ

]
(3.108)

i.e.

d

dt
Z[t] =

∫
[DΦ]

d

dΦ

[
V [Φ] e−S[Φ]−tQV [Φ]QΦ

]
(3.109)
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If the field space is compact without boundary, then the above integral vanishes.

d

dt
Z[t] = 0 (3.110)

Z[t] is independent of t i.e.
Z[t = 0] = Z[t =∞]

In the limit t → ∞, only the configurations for which QV = 0 contribute. So an
infinite dimensional path integral gets localized to finite dimensional integral. We
obtain

Z =

∫
Dϕ0 e

−S[ϕ0] 1

SDet
(3.111)

where SDet comes from the quadratic fluctuations around QV = 0 configurations.
Basically, the saddle point approximation becomes exact.

One canonical choice for V is

V =
∑

(Qψi)†ψi (3.112)

Then the fixed points are essentially

Qψ = 0 , (Qψ)† = 0 (3.113)

These are essentially BPS configurations.
When the field space has a boundary:

In the case when field space is compact with boundary, we can use localization if we
choose boundary condition in such a way that the t-derivative vanishes i.e.[

(ψ†Q†ψ) e−S[Φ]−tQV [Φ]QΦ

]∣∣∣∣∣
x=b

x=a

= 0 (3.114)

When the field space is noncompact:
In the case when field space is non-compact, we can use localization when t-derivative
vanishes, this can be obtained by choosing V such that:

V|Φ→∞ = 0 (3.115)
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3.B Scattering theory

Here we review the relation between density of states and the phase shifts in a
scattering theory. Consider the scattering problem for the following Hamiltonian
(See for example [71])

H = H0 + V e−ε|t| (3.116)

where we have added an adiabatic switching factor for the interaction V so that in
the far past and and in the far future one obtains the free HamiltonianH0. The time
evolution operator in the Dirac picture is given by

UD(t, t′) = eiH0t U(t, t′) e−iH0t′ (3.117)

where U(t, t′) is the time evolution operator of the Heisenberg picture. The Dirac
evolution operator satisfies the Schrödinger equation

i
d

dt
UD(t, t′) = VD(t)UD(t, t′) , with VD(t) = eiH0t V e−ε|t| e−iH0t (3.118)

with the initial condition UD(t, t) = 1. The solution is given by

UD(t, t′) = 1− i
∫ t

t′
dt′′V (t′′)UD(t′′, t′) (3.119)

We can now define the ‘Möller operators’

U± = UD(0,±∞) (3.120)

Consider an energy eigenstate |φE〉 of the free Hamiltonian H0. Using the Möller
operators one can obtain the eigenstate of the full Hamiltonian:

|ψ±E〉 = U±|φE〉 (3.121)

where |ψ−E〉 are the in-states that resemble the free eigenstates in the far past and
|ψ−E〉 are the out-states that resemble the free eigenstates in the far future. Solving
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(3.119) recursively gives the Dyson series expansion

U±|φE〉 = |φE〉+
V

E −H0 ∓ iε
|φE〉+

(
V

E −H0 ∓ iε

)2

|φE〉+ . . . (3.122)

This geometric series can be easily summed to obtain

U±|φE〉 =
E −H0 ∓ iε
E −H ∓ iε

|φE〉 (3.123)

It follows that |ψ±E〉 satisfy the Lippman-Schwinger equations

|ψ±E〉 = |φE〉+
V

E −H0 ∓ iε
|φE〉 . (3.124)

The S-matrix in the interaction picture is just the time evolution operatorUD(∞,−∞)

which can be expressed in terms of the Möller operators as

S = U †+ U− . (3.125)

The derivative of the S-matrix is given by

d lnS
dE

= S−1 dS

dE
= S†

dS

dE
(3.126)

and using the above formula it is possible show that

d lnS
dE

= 2πiρ(E) = 2πi
[
δ(E −H)− δ(E −H0)

]
(3.127)

The density of states is then given by the so called ‘Krein-Friedel-Lloyd’ formula:

ρ(E) =
1

2πi
Tr
(
S†
dS

dE

)
. (3.128)

If the S-matrix is diagonal, then in each one-dimensional subspace we obtain

S(E) = ei2δ(E) , ρ(E) =
1

π

dδ(E)

dE
. (3.129)
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3.C Error function and incomplete Gamma function

The error function and the complementary error functions are defined by

erf(z) :=
2√
π

∫ z

0

dy e−y
2

, erfc(z) :=
2√
π

∫ ∞
z

dy e−y
2

. (3.130)

They satisfy the following relation

erfc(z) = 1− erf(z) (3.131)

Note that erf(z) is an odd function in z i.e.

erf(−z) = −erf(z) . (3.132)

For the purpose of this paper it is convenient to use the expression

erf(z) = sgn(z) erf(|z|) ,

erfc(z) = 1− sgn(z) erf(|z|) (3.133)

for z ∈ R to make contact with the η-invariant.
The upper incomplete Gamma function is defined by

Γ(s, x) =

∫ ∞
x

ts−1 e−t dt , x ≥ 0 . (3.134)

A special case that we encounter is

Γ

(
1

2
, x

)
=
√
π erfc(

√
x) . (3.135)

One of the integrals (involving error function) which is useful in our computation
is the following

f(m) = − i
β

∫
dp

1

(iw + 2πp
β

)

[
exp

− 1
2
βk

(
(2πp)2

β2

)
−2πin·p

]

= −1

2
sgn

(n
k
− w

)
erfc

(√
βk

2

∣∣∣w − n

k

∣∣∣) e−βnw+βk
2
w2

+ sgn(βn) Θ
[
w
(n
k
− w

)]
e−βnw

(3.136)
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Chapter 4

Mock Modularity & Elliptic Genera

In this chapter, we discuss the relationship between elliptic genus of SCFT’s in 2D
with noncompact target space and well-known mathematical objects called mock
Jacobi forms. We also notice that the modular completion of these objects have the
same structure as the APS index theorem derived in the last chapter. Hence we
observe a relation between number theory (mock modular forms) and topology
(index theorems). We also review the derivation of holomorphic anomaly equation
for non-linear sigma models [7] on noncompact target space. We then use these
results to compute the holomorphic anomaly for various examples.

In the section below, we introduce the basic mathematical objects required for
the discussions in subsequent sections. We follow the notations of [2].

4.1 Mock Jacobi forms

Before introducing mock Jacobi forms, it is useful to recall the definitions of mod-
ular forms and Jacobi forms. In the following subsections, we give definitions and
transformation properties of these objects.

4.1.1 Modular forms

A modular form f(τ) of weight k is a holomorphic function on H (the upper half
plane) that transforms as:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ∀

(
a b

c d

)
∈ SL(2,Z) (4.1)
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where τ ∈ H and SL(2,Z) is a group of matrices with integer entries satisfying
ad−bc = 1. From the above definition one can see that f(τ) is periodic in τ → τ+1,
hence it can be expanded as:

f(τ) =
∞∑

n=−∞

anq
n with q := e2πiτ (4.2)

It is bounded as Im(τ) → ∞. If a0 = 0, then the modular form vanishes at infinity
and is known as cusp form. If the Fourier coefficients of f(τ) have the behavior
an = 0 for n < −N with N ≥ 0 such that at infinity, f(τ) grows as O(q−N), such a
function is known as a weakly holomorphic modular form.

We will denote the vector space over C of holomorphic modular forms of weight
k by Mk.

Some important examples of modular forms of half-integral weights, that will
be useful later are:

ϑ(τ) =
∑
n∈Z

ε(n)qλn
2

ε is some even periodic function (4.3)

ϑ(1)(τ) =
∑
n∈Z

nε(n)qλn
2

ε is some odd periodic function (4.4)

where λ ∈ Q+. The first series is called theta series and it is a modular form of
weight 1/2 under some congruence subgroup Γ of SL(2,Z). The second one is
called unary theta series and it is a modular form of weight 3/2 under Γ.

4.1.2 Jacobi forms

A Jacobi form of weight k and index m is a holomorphic function ϕ(τ, z) from H×C
to C which is modular in τ and elliptic in z. It transforms under the modular group
as:

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πimcz2

cτ+d ϕ(τ, z) ∀

(
a b

c d

)
∈ SL(2,Z) (4.5)

and under the translations in z by Zτ + Z as;

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z) ∀ λ, µ ∈ Z (4.6)
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From above equations we notice that ϕ(τ, z) is periodic in both τ → τ + 1 and
z → z + 1. Hence it can be Fourier expanded as follows:

ϕ(τ, z) =
∑
n,r

c(n, r)qnyr, q := e2πiτ , y := e2πiz. (4.7)

Equation (4.6) is then gives:

c(n, r) = C(4nm− r2, r) where C(∆, r) depends only on r (mod 2m). (4.8)

where ∆ = 4nm − r2. A Jacobi form is called weakly holomorphic Jacobi form if it
satisfies the condition that c(n, r) = 0 unless n ≥ n0 for some negative integer n0.

Jacobi forms admit an important expansion in terms of theta functions which
will be useful later. Due to transformation property (4.6), a Jacobi form ϕ(τ, z) has
the following Fourier expansion

ϕ(τ, z) =
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z) (4.9)

where

ϑm,`(τ, z) :=
∑
n∈Z

q(`+2mn)2/4my`+2mn (4.10)

is weight 1/2, index m Jacobi theta-function and h` is a modular form of weight
k − 1/2.

4.1.3 Mock Modular forms

A mock modular form of weight v ∈ 1
2
Z is the first member of a pair of functions

(h, g) where

• h is a holomorphic functions in τ with exponential growth at all cusps but it
is not modular.

• The function g(τ) is a holomorphic modular form of weight 2− v. It is called
the shadow of h.

• The sum ĥ(τ, τ̄) = h(τ)+g∗(τ, τ̄) transforms like a modular function of weight
v. It is called the completion of h.
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Here the function g∗ is the solution of following differential equation:

(4πτ2)v
∂g∗

∂τ̄
= −2πi g(τ) (4.11)

Given that g(τ) has the Fourier expansion g(τ) =
∑

n≥0 bn q
n, we fix the choice of

g∗ by setting

g∗(τ, τ̄) = b̄0
(4πτ2)−v+1

v − 1
+
∑
n>0

nv−1 b̄n Γ(1− v, 4πnτ2) q−n , (4.12)

where τ2 = Im(τ) and Γ(1− v, x) denotes the incomplete gamma function defined
in (3.134), and where the first term must be replaced by −b̄0 log(4πτ2) if v = 1.

Note that the series in (4.12) converges despite the exponentially large factor
q−n because Γ(1− v, x) = O(x−ve−x) . If we assume either that v > 1 or that b0 = 0,
then we can define g∗ alternatively by the integral

g∗(τ, τ̄) =

(
i

2π

)v−1
∫ i∞

−τ̄
(z + τ)−v g(−z̄) dz . (4.13)

It is called the non- holomorphic Eichler integral. Notice that this integrand is holo-
morphic in z, hence the integral is independent of the path chosen.

Since h is holomorphic in τ , equation (4.11) implies that the completion satisfies:

(4πτ2)v
∂ĥ

∂τ̄
= −2πi g(τ) (4.14)

This is also known as the holomorphic anomaly equation.
Notice that the equation for the completion of a mock modular form ĥ(τ, τ̄) =

h(τ)+g∗(τ, τ̄) looks very similar to the APS index theorem I =
∫
α+η. In both cases,

the first piece is present for the compact target space as well and is independent of
β (τ̄ ) and the second piece contains the β (τ̄ ) dependence. As we will show later,
the second piece in both cases, depends only on the asymptotic boundary.

4.1.4 Mock Jacobi forms

A pure mock Jacobi from of weight v and index m is a holomorphic function ϕ on
H×C that satisfies the elliptic transformation property (4.6) and hence has a Fourier
expansion in terms of ϑ-functions as in (4.9). But the modular property is now
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weakened. The coefficients h` appearing in the ϑ- expansion (4.9) now are mock
modular forms rather than modular forms of weight v− 1

2
. We can again complete

this mock Jacobi form such that it transforms nicely under modular transforma-
tions. The completed function is given by:

ϕ̂(τ, z) =
∑

`∈Z/2mZ

ĥ`(τ)ϑm,`(τ, z) (4.15)

If g` denotes the shadow of h`, then we have:

ϕ̂(τ, z) =
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z) +
∑

`∈Z/2mZ

g∗` (τ)ϑm,`(τ, z) (4.16)

where the first term is the mock Jacobi form ϕ. The holomorphic anomaly equation
in this case is given by:

(τ2)v−1/2 ∂

∂τ̄
ϕ̂(τ, τ̄ , z) =

∑
`∈Z/2mZ

g`(τ)ϑm,`(τ, z) (4.17)

The objects that will appear in the computations in this chapter are a general-
ization of the mock Jacobi forms known as mixed mock Jacobi forms 1. A completion
of a mixed mock Jacobi form admits the following theta expansion:

φ̂(τ, τ̄ |z) = f(τ, z)
∑

`∈Z/2mZ

ĥ`(τ, τ̄)ϑm,`(τ |z) (4.18)

where f(τ, z) is a Jacobi form of weight u and index α. The theta coefficients are
the completion of a vector valued mock modular form of weight (v − u− 1

2
). Using the

completion of ĥ`, (4.18) can be written as

φ̂(τ, τ̄ |z) = φ(τ, z) + f(τ, z)
∑

`∈Z/2mZ

g∗` (τ, τ̄)ϑm,`(τ |z) (4.19)

where
φ(τ, z) = f(τ, z)

∑
`∈Z/2mZ

h`(τ)ϑm,`(τ |z) (4.20)

1Our definitions are a slight variant of the definitions in [2].
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4.2 Elliptic genera for Gauge theories

Elliptic genus (EG) is a generalization of the Witten index to theories with 2D base
space. When the two-dimensional theory has a geometric description, the elliptic
genus also gives topological information of the target space. For a theory with
N = (2, 2) supersymmetry on a worldsheet, it is defined as:

χ(τ, z, u) = TrRR(−1)F qHL q̄HRyJL
∏
a

xKaa (4.21)

where the trace is taken over Ramond-Ramond sector i.e. we have periodic bound-
ary conditions for the fermions, F is the fermion number and q = e2πiτ where τ is
the modular parameter of the worldsheet torus. Here HR and HL are the right
and left moving hamiltonians respectively, they are given by: 2HL = H + iP and
2HR = H−iP whereH and P generate time and space translations respectively. JL
is the generator of left-moving R symmetry and Ka are the generators of flavour
symmetry. Since HL and HR are related to the hamiltonian and the momentum
generators, the EG has a path integral representation. The presence of additional
insertions has the effect of twisting the boundary conditions along the time direc-
tion for the fields charged under JL and Ka. We also have:

y = e2πiz , xa = e2πiua . (4.22)

where z and ua are related to the background gauge fields associated with R-
symmetry (AR) and the flavor symmetry (Aa) respectively.

z =

∮
t

AR − τ
∮
σ

AR , ua =

∮
t

Aa − τ
∮
σ

Aa . (4.23)

where t, σ are the temporal and spatial cycles of the worldsheet torus.
In a superconformal field theory, HL = L0− c/24 and HR = L̄0− c̄/24 and hence

the elliptic genus is given by:

χ(τ, z) = Tr
H

(−1)F qL0− c
24 q̄L̄0− c̄

24yJL
∏
a

xKaa (4.24)

where L0 and L̄0 are the left and right-moving Virasoro generators respectively, c
and c̄ are the central charges. The fermion number can be written as FR+FL where
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FL and FR are the right and left moving fermion numbers respectively. Since JL
and Ka commute with the right-moving fermion number FR, the elliptic genus can
be thought of as a right-moving Witten index multiplied with contributions from
the left moving excited states.

Since the elliptic genus has a path integral formulation, for N = (2, 2) theory, it
can be computed using localization. In this thesis, we only consider 2D gauge linear
sigma models (GLSM) with U(1) vector, chiral and stuckelberg multiplets. Our
notations and conventions for 2D supersymmetric gauge theories are explained in
Appendix 4.A. For N = (2, 2) theories with vector and chiral multiplets, the EG
was computed in [72, 73]. We will not dwell on the details of the computation; we
will summarize their results below.

For these theories, the action of vector and chiral multiplets is Q-exact, and
hence using the argument used in §3.A for localization, one can show that the path
integral is independent of the gauge coupling. Hence we can compute it in the
e → 0 limit, and in this limit, we can minimize the actions of the vector and the
chiral multiplet and compute the fluctuations around it. For the theories with U(1)

gauge fields, after localization, we obtain:

χ = −
∑
ui∈M+

∮
u=ui

duZ1-loop(u) =
∑
ui∈M−

∮
u=ui

duZ1-loop(u) (4.25)

where u is the holonomy of the gauge field (A) given by:

u =

∮
t

Atdt− τ
∮
σ

Aσdσ (4.26)

We get a loop integral over u instead of the integral over the whole plane
∫
d2u

because the integral over the gaugino zero modes give a total derivative in ū. The
integral over the auxiliary fieldD determines the contour of the loop integral. More
details about this computation can be found in [72, 73]. Z1−loop is the contribution
from one-loop determinants of fluctuations of various multiplets around the local-
izing saddle. It receives contributions from both vector and chiral multiplets. As
we will see below, the determinants coming from the chiral multiplets have poles
in the u variable. To compute the EG, we sum over a certain set of poles ui. For the
U(1) case, this set is determined by the sign of the charge of the chiral superfield
under the gauge group. The set of poles Msin split into two groups: M+ for Qi > 0
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and M− for Qi < 0 i.e.
Msin = M+ ∪M− (4.27)

For higher rank groups, one computes the Jeffrey-Kirwan residues. For more details,
look at [73]. The one-loop determinants for various multiplets are summarized
below.

4.2.1 Elliptic Genus of N = (2, 2) theories

We considerN = (2, 2) theories with a U(1) vector multiplet and chiral multiplet Φi

with R-charge R and flavor charge Q. After localization, we need to integrate over
zero modes and compute the contributions from one-loop determinants. Various
contributions are listed below:

Vector multiplets
The (2, 2) vector multiplet consists of a gauge field (v), a complex scalar (σ), a
Dirac fermion (λ+, λ−) and an auxillary field (D) i.e. V = (vµ, σ, σ̄, λ+, λ−, D). The
zero modes of the gauge field will give integration over holonomies u. The gauge
field in 2D have no dynamical degree of freedom (gauge field in d dim has d − 2

dynamical d.o.f). So we do not have any contributions from vµ in the partition
function. Other way to see this is that the contribution due to ghosts cancels the one
from vµ. Hence the one-loop contributions from the scalar σ which is not charged
under the R-symmetry and the fermion (the left moving fermion λ has an R-charge
−1) is given by: (

iη3(τ)

θ1(τ, y−1)

)
where η(τ) and ϑ1 is defined in Appendix 4.B.

Chiral Multiplet:
The (2, 2) chiral multiplet consists of a complex scalar (φ), a Dirac fermion (ψ+, ψ−)
and auxillary field (F ) i.e. Φ = (φ, φ̄, ψ+, ψ−, F, F̄ ). The contribution from a chiral
multiplet Φ with R-charge R and flavor charge Q is:

∏
m,n

(m+ nτ + (1−R/2)z +Qu)(m+ nτ + (R/2)z̄ +Qū)

|m+ nτ + (R/2)z +Qu|2 + iQD
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For D = 0 it becomes:
θ1(τ, yR/2−1xQ)

θ1(τ, yR/2xQ)

where Qu =
∑

aQ
aua. We have R/2 instead of R because of the normalization of

the R-current. We follow the notations of [72]. Also if the scalar has an left-moving
R- charge R/2, the left moving fermion will have R-charge R/2 − 1 and the right
moving fermion will have R-charge R/2 .

4.3 NLSM from Gauge theories

In this section, we will review the RG flow of 2D GLSM’s to nonlinear sigma mod-
els on a certain class of manifolds. This was first studied in [74]. The NLSM in
the IR can be found by solving for the supersymmetric vacua and then by look-
ing at fluctuations around it. In the infrared, all the massive modes decouple, and
classical theory reduces to that of the massless modes only. It can be shown that
this theory is a nonlinear sigma model with the target space given by the vacuum
manifold. The target space in these cases can either be compact or noncompact. In
this chapter, we will be mostly interested in the latter case, but for the sake of com-
pleteness, we will discuss the compact case below.

4.3.1 NLSM’s with compact target space

We will only consider GLSM’s without any superpotential for matter fields turned
on. These models give us NLSM’s on toric manifolds. We will not dwell on the
general details but will show this using a simple example. More details can be
found in [75]. Consider N = (2, 2) GLSM consisting of N chiral superfields Φi, k
abelian gauge superfields Va. As shown in (4.103) of Appendix 4.A, the lagrangian
is given by:

L =

∫
d4θ

(
N∑
i=1

Φ̄ie
∑k
a=1 Q

a
i VaΦi −

1

2e2

k∑
a=1

Σ̄aΣa

)
+

1

2

(∫
d2θ̃

k∑
a=1

−taΣa + c.c

)
(4.28)

where Σa is the twisted chiral superfield associated to the field strength of Va and
ta = ra − iϑa where ra is the FI parameter and ϑa is the theta angle for gauge field
Va. Here Qa

i is the charge of ith chiral superfield under the gauge field Va.
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The supersymmetric vacua can be found by minimizing the potential energy,
which is given by:

U =
k∑
a=1

 N∑
i=1

|σa|2|φi|2 +
e2

2

(
N∑
i=1

Qa
i |φi|2 − ra

)2
 (4.29)

For ra > 0, U is minimized by :

σa = 0 ,
N∑
i=1

Qa
i |φi|2 = ra (4.30)

where φi is the scalar fields sitting in chiral multiplet. This is equivalent to solving
the constraints imposed by setting D-terms to zero. The set of all supersymmetric
vacua modulo the gauge group action forms the vacuum manifold. In this case,
the vacuum manifold is a toric manifold given by:

Xvac =

{
(φ1, ...., φn) |

N∑
i=1

Qa
i |φi|2 = ra(∀a)

}/
U(1)k (4.31)

For k = 1, Qa
i > 0 : The vacuum manifold is CPN−1.

When the chargesQa
i are either all positive or negative, from (4.31), one can con-

clude that the vacuum manifold will be compact but when the some of the charges
Qa
i are positive, and some are negative, the vacuum manifold will be noncompact.

The modes φi along the vacuum manifold are massless. The gauge field and
the modes transverse to the vacuum manifold acquire mass equal to e

√
2ra. In the

limit e → ∞, all the massive modes decouple, and the classical theory reduces to
that of massless modes only. It can be identified as a nonlinear sigma model with
the vacuum manifold as the target space.

4.3.2 NLSM’s with noncompact target space

As we saw in the previous subsection, we can obtain an NLSM with a noncompact
target space when some of the chiral superfields are positively charged, and some
are negatively charged under the gauge field. The elliptic genus in such cases is
well defined only when some fugacities are turned on. It turns out to be a vector-
valued Jacobi form, for example, for C/Z2 as the target space [33]. After turning on
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the fugacities, the spectrum of right moving Hamiltonian becomes discrete and
hence we obtain a holomorphic result.

There is another way to obtain noncompact vacuum manifolds, i.e., by adding
Stückelberg fields to the GLSM [33]. The (2, 2) actions with Stückelberg fields is
derived in the Appendix 4.A. As we will see in the examples below, the elliptic
genus of these theories falls in the category of mock Jacobi forms.

ConsiderN = (2, 2) GLSM consisting ofN chiral superfields Φi, k abelian gauge
superfields Va and M Stückelberg superfields (where M ≤ k) Pl. The lagrangian is
given by:

L =

∫
d4θ

(
N∑
i=1

Φ̄ie
∑k
a=1Q

a
i VaΦi −

1

2e2

k∑
a=1

Σ̄aΣa +
M∑
l=1

kl
4

(Pl + P̄l + Vl)
2

)

+
1

2

(∫
d2θ̃

k∑
a=M+1

taΣa + c.c

)
(4.32)

Notice that the FI parameter for the gauge fields that couple to Stückelberg field
can be absorbed in the definition of Pl and ϑa can be removed by a U(1) R-rotation.
Therefore, a takes values fromM+1 to k in the last term of the action. The vacuum
manifold of the above GLSM can be found by solving D-term equations. The D-
term equations give:

N∑
i=1

Qa
i |φi|2 = −kaRe(pa) a = 1, 2....M (4.33)

N∑
i=1

Qa
i |φi|2 = ra a = M + 1, ...., k (4.34)

where φi and pa are the scalar fields sitting in chiral and Stückelberg superfield
respectively.

As an example, let us focus on the case with N = (2, 2) SUSY and the following
field content : one U(1) vector superfield, one chiral superfield with charge +1

under the gauge field and one Stückelberg superfield which transforms additively
under the gauge field. Hence we have N = k = M = 1 in (4.32). In this case,
equations (4.33) give:

|φ|2 = −kRe(p) (4.35)

We will only derive the scalar kinetic term so that we can read-off the target space
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metric. The fermionic counterpart can be derived using supersymmetry. Since
scalar of the vector multiplet is set to zero in the vacuum manifold, we are left with
the following scalar terms in the GLSM action:

−Dµφ̄Dµφ+D|φ|2 − k

2
DµP̄DµP +

k

2
D(P + P̄ ) +

1

2e2
D2 (4.36)

where Dµφ = ∂µφ + ivµφ but DµP = ∂µP + ivµ. Notice that here P is the lowest
component (scalar) of the Stückelberg superfield. Using φ = ρeiθ and P = p + iη

the kinetic term becomes:

Dµφ̄Dµφ = (∂µ − ivµ)ρe−iθ(∂µ + ivµ)ρeiθ

= ∂µρ∂µρ+ ρ2(∂µθ + vµ)2

k

2
DµP̄DµP =

k

2
((∂µ(p− iη)− ivµ)(∂µ(p+ iη) + ivµ))

=
k

2
(∂µp∂µp+ vµvµ)

where in the last step we used gauge transformation to set η = 0. Notice that under
gauge transformations, various fields transform as follows:

vµ → vµ − ∂µα θ → θ + α P → P + iα (4.37)

The D = 0 equation and the E.O.M of vµ gives:

ρ2 = −kp vµ = − 2ρ2∂µθ

(2ρ2 + k)

Substituting these in the kinetic terms we get:

∂µρ∂µρ+
k

2
∂µp∂µp = (∂µρ)2 +

k

2

(
4ρ2

k2
(∂µρ)2

)
= (∂µρ)2

(
1 +

2ρ2

k

)
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ρ2(∂µθ + vµ)2 +
k

2
vµvµ = ρ2(∂µθ)

2

(
1− 1

1 + k/2ρ2

)2

+
k

2
(∂µθ)

2

(
1

1 + k/2ρ2

)2

=

(
∂µθ

1 + k/2ρ2

)2(
k2

4ρ2
+
k

2

)
=

ρ2

1 + 2ρ2

k

(∂µθ)
2

Finally the bosonic action of massless modes is given by:

S = − 1

2π

∫
d2x

(
1 +

2ρ2

k

)
(∂µρ)2 +

ρ2

1 + 2ρ2

k

(∂µθ)
2 (4.38)

which is a NLSM with the target space metric given by:

ds2 =

(
1 +

2ρ2

k

)
dρ2

2
+

ρ2dθ2

2
(

1 + 2ρ2

k

) (4.39)

If one sets ρ =
√

k
2

sinh r, we obtain:

ds2 = k (cosh2 rdr2 + tanh2 r dθ2) (4.40)

As r → ∞, the above metric approaches a cylinder. It topologically looks like
semi-infinite cigar. It is still not conformal and it undergoes further RG flow. As
explained in [76], at the end of RG flow we obtain a SL(2,R)k/U(1) coset SCFT
with central charge c = 3 + 6

k
. The target space metric is given by:

ds2 = k (dr2 + tanh2 r dθ2) (4.41)

This is same as the metric of cigar given in (3.73) for which we computed η-invariant
in the last chapter. We also have a non-trivial background ‘spacetime’ dilaton

Φd(r) = Φd0 − log cosh r (4.42)

which ensures that the theory is conformal even though the target space is not Ricci
flat.

Similarly, one can obtain a whole class of noncompact NLSM’s by adding mul-
tiple Stückelberg fields. In such cases, the elliptic genus is expected to be a higher
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depth mock modular form [33], which is outside the scope of this thesis.

4.4 Holomorphic Anomaly

In this chapter, we will only concentrate on the gauge theories which flow to su-
perconformal field theories (SCFT) in the infrared as elaborated in the previous
section.

For a compact SCFT with central charge c, the elliptic genus is ‘modular in τ ’
and ‘elliptic in z’. The modular invariance of the elliptic genus follows from its path
integral representation. The path integral is diffeomorphism invariant when regu-
lated covariantly using a covariant regulator, such as a short proper time cutoff. It
is also Weyl invariant for a conformal field theory on the flat worldsheet. Conse-
quently, it is invariant under the mapping class group SL(2,Z), which is the group
of global diffeomorphisms of the torus worldsheet modulo Weyl transformations.
Similarly, the elliptic transformation properties of the elliptic genus follow from the
spectral flow [77] of the left-moving superconformal field theory. Hence the elliptic
genus is a weak Jacobi form of weight w = 0 and index m = c/6. The theta expansion
(4.9) can be understood [78] physically by bosonizing the U(1) R-symmetry current
JL.

For an SCFT with compact target space, the spectrum of L̄0 is discrete and is
paired by supersymmetry. Hence elliptic genus can be thought of as the right mov-
ing Witten index multiplied by left moving oscillators. Because of supersymmetry,
only the right-moving ground states contribute to the elliptic genus, and hence it
is independent of τ̄ . This is essentially the same argument we used to show that
the Witten index is independent of β. The holomorphic elliptic genus thus counts
right-moving ground states with arbitrary left-moving oscillators.

For a noncompact target space, this argument fails. Therefore, the noncompact
elliptic genus need not be holomorphic. However, it is clear from its path integral
representation that it must nevertheless have modular and elliptic transformation
properties of a Jacobi form. As we will see in subsequent sections, the elliptic genus
is given instead by the completion of mock Jacobi form.

The holomorphic anomaly equation or the τ̄ derivative of the elliptic genus for
noncompact NLSM was derived in [7]. We will review the derivation below. Con-
sider an NLSM with a noncompact target spaceM whose asymptotic boundary is
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a compact manifold N . The τ̄ derivative of the elliptic genus is given by:

∂

∂τ̄
χM = −〈2πiT̄ (z)〉M (4.43)

where T̄ is the energy momentum tensor of the base space (worldsheet). Since the
worldsheet theory is a supersymmetric theory, the energy momentum tensor can
be related to the supercurrent Ḡ i.e. 2iT̄ = {Q, Ḡ}. Hence we obtain:

∂

∂τ̄
χM = −〈π{Q, Ḡ(z)}〉M = − eiπ/4√

4τ2α′η(τ)
〈Ḡ(z)〉N (4.44)

where in the last equality we have used the fact that the supercharge acts as an
exterior derivative and later we used Stokes theorem. We will call this equation as
the ’GJF Anomaly’ equation. The normalization factors were explained in [79], they
can be understood as follows:

The nonlinear sigma model on the full manifoldM has an extra boson φ⊥which
describes the direction normal to the boundary N and the corresponding fermion
ψ⊥. When we use the Stokes theorem, we need to take these fields into account
separately. The left moving part of φ⊥ gives a factor of 1/η(τ), and its right moving
part cancels the contribution due to ψ⊥. The integration of zero-mode of ψ⊥ gives
a factor of

√
i = eiπ/4 as explained in (2.42). The zero-mode of φ⊥ (momentum

integral) gives 1√
4τ2α′

. For a compact target space without boundary, the holomor-
phic anomaly (4.44) vanishes due to the Stokes theorem. Hence the elliptic genus
is holomorphic in τ .

In the next two sections, we will compute the holomorphic anomaly for some
noncompact target spaces. We will use different methods discussed above to do
these computations and will compare their results.

4.5 Holomorphic anomaly of N = (2, 2) Cigar

In this section we will look at our first example: N = (2, 2) SCFT with cigar target
space whose metric is given in (4.41). As we saw in §4.3.2, this theory appears in
the IR limit of a N = (2, 2) GLSM with U(1) gauge multiplet, a chiral multiplet and
a Stückelberg field. This SCFT also has a representation as a coset conformal field
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theory2 of SL(2,R)/U(1) WZW model at level k. The elliptic genus of this theory
was first computed in [42] and for the ZN -orbifold of this theory was computed in
[41, 80] using the path integral for the coset theory. It was re-derived in [46, 68]
using canonical methods and in [44, 45] using localization in the GLSM.

We will compute the holomorphic anomaly of this theory using three different
methods. Firstly, we will use the Witten index of SQM with cigar target space
computed in §3.4.3 to compute the elliptic genus and the holomorphic anomaly
of the SCFT. Secondly, we will review the computation of the elliptic genus and
the anomaly from the GLSM [44, 45]. Finally, we will compute the holomorphic
anomaly directly by computing 〈Ḡ〉 in the boundary theory [7] and using (4.44).

4.5.1 SQM computation

The computation of η-invariant for a finite cigar can be used to compute the full
elliptic genus for a N = (2, 2) SCFT on an infinite cigar 3. Notice that for the cigar
case, the R-symmetry generator JL appearing in the definition of elliptic genus
(4.21) commutes with the right moving supercharge. We do not turn on any addi-
tional flavor symmetries, so xa = 1. Hence for the right movers, the computation
reduces to computing the noncompact Witten index computed in §3.4.3. We show
that our results match with the ones obtained in [42]. The full elliptic genus is given
by

χ̂(τ, τ̄ |z) = Tr
H

(−1)F e−2πτ2(L0+L̄0)e2πiτ1(L0−L̄0)e2πizJL

= Ŵ (2πτ2) · Zoscill e
2πiτ1mw e2πizJL (4.45)

where Ŵ (2πτ2) is the Witten index with β = 2πτ2, Zoscill is the contribution coming
from left-moving oscillators and n, w are KK momenta and winding respectively
along the cigar θ direction. The contribution coming from the oscillators is given
by

Zoscill =
∞∏
n=1

[
(1− qny)(1− qny−1)

(1− qn)2

]
(4.46)

2For the noncompact SL(2,R) WZW model, the parameter k need not in general be an integer.
3Since the dilaton couples to the worldsheet curvature; it plays no role if the worldsheet is a

torus as in our case.
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We get a contribution of (2i sin πz) from the zero modes of left moving fermions
since they are charged under U(1)R. Finally we obtain:

i
θ1(τ, z)

η(τ)3
(4.47)

Using equation (3.90) and the contribution from left movers, we conclude that the
elliptic genus for the cigar is given by

χ̂(τ, τ̄ |z) = −iϑ1(τ, z)

η3(τ)

∑
w

∑
n

[
1

2
sgn

(n
k
− w

)
erfc

(√
kπτ2

∣∣∣w − n

k

∣∣∣)
−sgn(βn) Θ

[
w
(n
k
− w

)] ]
q−(n−wk)2/4kq(n+wk)2/4kyJL (4.48)

To obtain the above expression we have dropped the last term in (3.90) using the
following reasoning. At the tip of the cigar an infinite number of winding modes
become massless leading to a divergence for this term. This is a consequence of the
fact that winding number is strictly not a conserved quantum number at r = 0 as
we have assumed. We can deal with it by regularizing the Witten index Ŵ (2πτ2)

near r = 0 by putting an ε cutoff in the r integral in (3.88) and then taking ε → 0

in the end. With this regularization, the contribution from the last term in (3.90)
vanishes and we get (somewhat surprisingly) the correct answer by this slightly
heuristic procedure. In any case, this affects only the holomorphic piece and not the
holomorphic anomaly which is our main interest. Since the holomorphic anomaly
is determined by the scattering states, winding-number in the asymptotic region is
a good quantum number for our purposes. As a result the holomorphic anomaly
is not affected by this regularization.

Note that on the cigar, the R-current is given by

JL = i

√
1

k
∂θ − iψrψθ (4.49)

and as a consequence not only the fermions but bosons are also charged under
R-symmetry. With this normalization4 [42], the left-moving fermions have charge
−1 and the bosons have charge 1/k. In terms of the left moving momenta, the R-
current is given by JL =

√
1/k pL. The left and right moving momentas are given

4We use α′ = 1 so that asymptotic radius R of the cigar is
√
k while [42] uses α′ = 2.
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by:
pL =

( n
R

+ wR
)

, pR =
( n
R
− wR

)
(4.50)

The expression for the elliptic genus is non-holomorphic, but it is modular if k is
an integer. More precisely, it transforms as a completion of a mock Jacobi form.

The second piece of (4.48) is the holomorphic piece. It can be re-written as:

χ̂h(τ, τ̄ |z) = i
ϑ1(τ, z)

η3(τ)

[∑
w≥0

∑
n−wk≥0

−
∑
w<0

∑
n−wk<0

]
qnwy

n+wk
k (4.51)

Notice that
` = (n+ wk) = (n− wk) mod 2k . (4.52)

Or equivalently

n− wk = `+ 2ks , n+ wk = `+ 2ks′ . (4.53)

Hence the holomorphic piece can be written as

χ̂h(τ, z) = i
ϑ1(τ, z)

η3(τ)

[∑
w≥0

∑
`≥0

−
∑
w<0

∑
`<0

]
qw

2k+w`y
`+2kw
k = −iϑ1(τ, z)

η3(τ)
A1,k

(
τ,
z

k

)
(4.54)

where A1,k is the Appell-Lerch sum given by:

A1,k(τ, z) =
∑
t∈Z

qkt
2
y2kt

1− y qt
. (4.55)

Above result matches with the one obtained in [42].
To find the shadow, let us focus only on the non-holomorphic piece χ̂nh(τ, τ̄ |z)

which can be re-written by replacing the sum over by n and w by the sum over s
and s′ using (4.5.1)

−iϑ1(τ, z)

η3

∑
`∈Z/2kZ

∑
s,s′

1

2
sgn (`+ 2ks) erfc

(
|`+ 2ks|

√
πτ2

k

)
q−(`+2ks)2/4kq(`+2ks′)2/4ky

`+2ks′
k

= −iϑ1(τ, z)

η(τ)3

∑
`∈Z/2kZ

∑
r=`+2kZ

1

2
sgn (r) erfc

(
|r|
√
πτ2

k

)
q−r

2/4kϑk,`

(
τ,
z

k

)
(4.56)
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Combining the holomorphic (4.54) and non-holomorphic (4.56) contribution, the
EG of the cigar is given by

χ̂(τ, τ̄ |z) = −iϑ1(τ, z)

η3(τ)
Â1,k

(
τ,
z

k

)
(4.57)

where Â1,k (τ, z) is the completion of the Appell-Lerch sum and is given by

Â1,k (τ, τ̄ ; z) = A1,k (τ, z) +
∑

Z/2mZ

g∗` (τ, τ̄)ϑk,l (τ, z) (4.58)

with

g∗` (τ, τ̄) = −1

2

∑
r=`+2kZ

sgn (r) erfc
(
|r|
√
πτ2

k

)
q−r

2/4k (4.59)

Comparing (4.56) and (4.19) we conclude that our elliptic genus is a mixed mock
Jacobi form with

f(τ, z) = −iϑ1(τ, z)

η3(τ)
(4.60)

and with w = 0 u = −1 and hence v = 1/2. The total index is m = 1
2

+ 1
k

which
matches5 with the expected indexm = c/6 where c is the central charge of the coset.

We can now compute the holomorphic anomaly by taking the τ̄ derivative of
(4.57). We obtain:

(4πτ2)1/2 ∂χ̂(τ, τ̄ |z)

∂τ̄
= −

√
π

2k

ϑ1(τ, z)

η3(τ)

∑
`∈Z/2kZ

ϑ
(1)
k,`(τ)ϑk,`

(
τ,
z

k

)
(4.61)

where ϑ(1)
k,` is the unary theta function which is defined as

ϑ
(1)
k,`(τ) =

1

2πi

d

dz
ϑk,`(τ, z)

∣∣∣∣
z=0

=
∑

r≡` (mod 2k)

r qr
2/4k (4.62)

Hence we find that shadow vector is given by:

g`(τ) = − 1√
8πk

ϑ
(1)
k,`(τ) (4.63)

The shadow vector {g`(τ)} is an unary theta series as in (4.62). In this case with

5Note that Â1,k(τ, z) is a Jacobi form with index k but Â1,k

(
τ, zk

)
has index 1

k because of the
rescaling of z. The theta function ϑ1(τ, z) transforms with index 1

2 .
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v = 1
2
, the incomplete gamma function in (4.12) can be expressed in terms of the

complementary error function erfc(x) using (3.135).

4.5.2 GLSM computation

In this subsection, we will compute the holomorphic anomaly for cigar SCFT by
computing the elliptic genus of the UV GLSM. This computation was first done in
[45]. We will re-derive those results below. Since the elliptic genus is a topological
quantity, both the IR and the UV theories are expected to give the same results.

As we saw in §4.3.2, N = (2, 2) GLSM with a U(1) gauge multiplet (V ), a chiral
multiplet (Φ) with charge +1 under the gauge symmetry and a Stückelberg multi-
plet (P ) flow to cigar SCFT in the IR. We can now compute the elliptic genus of the
GLSM using localization as explained in §4.2.1.

Stückelberg Multiplet:
The presence of the Stückelberg multiplet changes some of the details of the

localization computation. This happens because the action of this multiplet is not
Q-exact and hence we cannot naively minimize it. But we can still take the e → 0

limit because the action of the vector multiplet is Q-exact. After integrating over
the vector multiplet, we are essentially left with a P - multiplet coupled to the zero
modes (u, λ0

−) of the vector multiplet. Its action is given by6:

S =
1

4π

∫
d2σ

k

2
((−∂µp̄− iuµ)(∂µp+ iuµ) + iχ̄−(∂0 + ∂1)χ− + iχ̄+(∂0 − ∂1)χ+

+D(p+ p̄) + |FP |2 + iχ0
+λ

0
− + iχ̄0

+λ̄
0
−
)

(4.64)

Notice that there are no left moving zero modes because they are charged under
the R-symmetry and hence the boundary conditions for the left moving fermions
are twisted and they do not allow any zero modes.

We can now perform the integral over fermion zero-modes, but the answer now
differs from the one discussed in §4.2.1. Due to the coupling of zero-modes χ0

+ of
the P -multiplet with the gaugino zero modes, we get a factor of k2/4 from the
fermion zero mode integral and hence we are still left with the u-plane integral∫
d2u. Let us now look at contributions from various multiplets.

6We are using α′ = 1 units as compared to α′ = 2 units usually used in the literature [45]. Also,∫
d2σ =

∫
dσ1dσ2, where σ1 and σ2 parametrize the worldsheet time and space directions.
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Consider the zero modes of the boson p. From (4.64), we notice that the zero
mode of Re(p) couples to D and integral over it gives δ(D)/kτ2. The zero-mode of
ϕP =

√
kIm(p) lives on a circle of radius

√
k and is additively charged under the

gauge field. It satisfies periodic boundary conditions i.e.

ϕP (σ1 + 2π, σ2) = ϕP (σ1, σ2) + 2πw
√
k +

2πz

k
(4.65)

ϕP (σ1 + 2πτ1, σ
2 + 2πτ2) = ϕP (σ1, σ2) + 2πm

√
k +

2πz

k
(4.66)

where w,m ∈ Z and the 2πz
k

comes from the twist in the boundary conditions due
to the R symmetry. Notice that Im(p) carries 1

k
charge under the R-symmetry to

cancel the anomaly in the R-symmetry[76].
Hence we can mode expand it as follows:

ϕP (σ1, σ2) = σ1w
√
k + σ2

(
m+

z

k
− wτ1

) √k
τ2

(4.67)

The bosonic and fermionic oscillators of the P - multiplet give:

i
ϑ1(τ, z)

η(τ)3

After taking into account the normalizations due to fermionic and bosonic zero
modes, the full contribution from the P -multiplet is given by:

i
k

τ2

ϑ1(τ, z)

η(τ)3
δ(D)

∑
m,w∈Z

e
− πk

2τ2
|m+wτ+u+ z

k
|2 (4.68)

Vector multiplet: From (4.2.1), we see that the U(1) vector multiplet gives:

iη3(τ)

θ1(τ, y−1)
= − iη3(τ)

θ1(τ, z)

Chiral multiplet: In this theory we have one chiral multiplet with charge +1

under the gauge symmetry and the boson is uncharged under the R-symmetry.
This implies that the left moving fermion has R-charge −1. Using this in (4.2.1) we
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obtain: ∏
m,w

(m+ wτ + z + u)(m+ wτ + ū)

|m+ wτ + u|2 + iD

Using (4.5.2), (4.5.2) and (4.5.2) and integrating over the auxillary field D, we
obtain:

χ(τ, z) = −ik
∫
d2u

τ2

θ1(τ,−z + u+m+ wτ)

θ1(τ, u+m+ wτ)

(∑
m,w

e
− kπ

2τ2
|m+wτ+u+ z

k
|2
)

(4.69)

The factor of−i comes from the normalization of fermionic zero modes. The above
integrand is invariant under u → u + m + wτ where m,w ∈ Z. We can use this to
reduce the integration over the whole plane to coset E = C/(Zτ + Z).

χ(τ, z) = −ik
∫
E

d2u

τ2

θ1(τ,−z + u)

θ1(τ, u)

(∑
m,w

e2πizwe
− kπ

2τ2
|m+wτ+u+ z

k
|2
)

=

∫
E

dudū

iτ2

ϕ(τ, z, u)Hk(τ, u), (4.70)

where

ϕ(τ, z, u) =
θ1(τ,−z + u)

θ1(τ, u)
Hk(τ, u, z) = k

∑
m,w

e2πizwe
− kπ

2τ2
|m+wτ+u+ z

k
|2(4.71)

where the e2πizw factor comes by using transformation properties of the ϑ-function
given in (4.114).

Holomorphic Anomaly
Now we have the full elliptic genus, we can take the τ̄ derivative to obtain the
holomorphic anomaly equation. Notice that in equation (4.70), the τ̄ dependence
just sits in the factor Hk(τ, u). Naively, it looks that the measure also contains τ̄
dependence, but that’s not the case. We can write u = u1 + τu2 where u1, u2 ∈ [0, 1],
then the measure becomes

dudū

iτ2

=
(du1 + τ1du2 + iτ2du2) ∧ (du1 + τ1du2 − iτ2du2)

iτ2

= 2du1du2

Hence there is no τ̄ dependence in the measure. Using the fact that Hk obeys the
heat equation ∂τ̄Hk(τ, aτ + b) = i

2πk
∂2
ūHk(τ, u)|u=aτ+b. Hence we get,
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∂τ̄χ =
i

2πk

∫
E

dudū ∂ū

(
1

iτ2

ϕ(τ, z, u)∂ūHk(τ, u, z)

)
(4.72)

=
1

2πk

∮
∂E

du
1

τ2

ϕ(τ, z, u)∂ūHk(τ, u, z) (4.73)

The above integrand has a pole at u = 0. After computing the residue at the pole,
we obtain:

∂τ̄χ =
ik

4τ 2
2

ϑ1(τ, z)

η(τ)3

∑
m,w

(
m+ τw +

z

k

)
e2πizwe

− kπ
2τ2
|m+τw+ z

k |
2

(4.74)

After poisson resumming w.r.t. m, we obtain:

∂τ̄χ(τ, τ̄ |z) = − 1

2
√

2kτ2

ϑ1(τ, z)

η(τ)3

∑
n,w

(n− wk)q
(n+wk)2

4k q̄
(n−wk)2

4k y
n
k

+w

(4πτ2)1/2 ∂χ(τ, τ̄ |z)

∂τ̄
= −

√
π

2k

ϑ1(τ, z)

η(τ)3

∑
`∈Z/2kZ

ϑ
(1)
k,`(τ)ϑk,`

(
τ,
z

k

)
(4.75)

As expected, this answer matches equation (4.61), the anomaly obtained from the
SQM related to the IR theory.

4.5.3 GJF Anomaly

In this subsection, we will compute the holomorphic anomaly of the cigar SCFT di-
rectly without computing the full elliptic genus. We will use equation (4.44) which
relates the holomorphic anomaly to the expectation value of supercurrent in the
boundary theory [7]. From (3.73), we observe that the target space of the cigar
SCFT at asymptotic infinity (r → ∞) looks like R × S1, where the radius of S1

is
√
k. We can now compute the expectation value of the supercurrent 〈Ḡ〉 in the

boundary theory i.e. the NLSM with S1 target space. The supercurrent is given by:

Ḡ(z) =
√

2iψθ∂̄θ (4.76)

There are following contributions in 〈Ḡ〉:

• Zero mode integral dψθ0 is soaked by ψθ appearing in Ḡ and hence we just get
a factor of

√
i due to fermionic normalization.
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• Non-zero modes of ψθ and the S1 boson give:

i
ϑ1(τ, z)

η(τ)2

• Zero mode of the S1 boson, contributes to ∂̄θ and gives:

〈∂̄θ〉 = 〈−ipR
2
〉 = − i

2
√
k

∑
n,w

(n− wk)q
(n+wk)2

4k q̄
(n−wk)2

4k y
n
k

+w

where we get y
n
k

+w because theU(1)R symmetry acts as translation symmetry along
the θ direction. Finally we obtain

〈Ḡ〉 = −
√
i
i√
2k

ϑ1(τ, z)

η(τ)2

∑
n,w

(n− wk)q
(n+wk)2

4k q̄
(n−wk)2

4k y
n
k

+w (4.77)

Using (4.44) we obtain:

∂τ̄χ = − 1
√

4τ2

√
2k

ϑ1(τ, z)

η(τ)3

∑
n,w

(n− wk)q
(n+wk)2

4k q̄
(n−wk)2

4k y
n
k

+w

(4πτ2)1/2 ∂χ(τ, τ̄ |z)

∂τ̄
= −

√
π

2k

ϑ1(τ, z)

η(τ)3

∑
`∈Z/2kZ

ϑ
(1)
k,`(τ)ϑk,`

(
τ,
z

k

)
(4.78)

which matches (4.61) and (4.5.2).

4.6 Holomorphic anomaly of N = (4, 4) Taub-NUT

In this section we will look at another example where mock modularity plays an
important role. We consider N = (4, 4) GLSM which in the IR flows to SCFT with
TaubNUT target space. The Dirac index for TaubNUT was computed in [81]. We
will compute the holomorphic anomaly of this model first by computing the elliptic
genus of the GLSM [29] and then by using GJF anomaly equation.

4.6.1 GLSM computation

In this section, we describe the N = (4, 4), U(1) gauged linear sigma model that
flows to a non-linear sigma model with TaubNUT target space in the IR. This model
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is discussed in [29, 82]. The field content of this theory, written in N = 2 language,
is as follows:

• Vector Multiplet: We have a N = (4, 4) U(1) vector multiplet which decom-
poses into a N = (2, 2) vector multiplet V = (vµ, σ, λ±) and a neutral chiral
multiplet Φ = (φ, λ̃±).

• Hypermultiplet: This multiplet is charged under the gauge group U(1) and
it decomposes into two N = (2, 2) chiral multiplets Q = (q, ψ) and Q̃ = (q̃, ψ̃)

with electric charges +1 and −1.

• Twisted hypermultiplet: It is not charged under the gauge group and it de-
composes into a N = 2 chiral multiplet Ψ = (r1, r2, χ±) and a Stückelberg
chiral multiplet Γ = (r3, γ, χ̃±).

This theory has 8 real supercharges (4 left moving and 4 right moving). It has
the R-symmetry group SU(2)1 × SU(2)2 × SU(2)3. The supercharges (Qaα

− , Q
aα̇
+ )

transform in (2, 1, 2)− ⊕ (2, 2, 1)+ representation. Let us write {Q1, Q2, QR} for the
Cartan generators of the R-symmetry group and Qf for the Cartan of U(1)f flavour
symmetry. It turns out that there are two right moving supercharges which are
neutral under Q1 − Q2, QR and Qf . Hence we can define an EG, which preserves
right-moving super-symmetry as follows:

χ(τ, z, ξ1, ξ2) = TrRR(−1)F qL0 q̄L̄0e−2πizQRe−2πiξ1Qf e−2πiξ2(Q1−Q2) (4.79)

The elliptic genus of this GLSM was computed in [29] using localization 7. It is
given by:

χ(τ, ξ1, ξ2, z) = g2

∫
E(τ)

dudū

τ2

ϑ1(τ, u+ ξ1 + z)ϑ1(τ, u+ ξ1 − z)

ϑ1(τ, u+ ξ1 + ξ2)ϑ1(τ, u+ ξ1 − ξ2)

∑
n,w

e
− g

2π
2τ2
|u+n+τw|2

=

∫
E(τ)

dudū

τ2

ϕ(τ, z, u+ ξ1, ξ2)Hg(τ, u), (4.80)

where

ϕ(τ, z, u, ξ2) =
ϑ1(u+ z)ϑ1(u− z)

ϑ1(u+ ξ2)ϑ1(u− ξ2)
Hg(τ, u) = g2

∑
n,w

e
− g

2π
2τ2
|u+n+τw|2 (4.81)

where g2 is the coupling in front of twisted hypermultiplet. The ratio of ϑ- func-
tions comes from the N = (2, 2) chiral multiplets sitting in the vector, hyper and

7Our notations are a bit different from the one in [29], they use α′ = 2.
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twisted hypermultiplets. The exponential part comes from the zero-mode contri-
bution of the boson in the Stückelberg multiplet. The oscillator contribution from
(2, 2) vector and the Stückelberg multiplet cancel each other as in the cigar case.
We will now compute the holomorphic anomaly. It was also computed in [29] but
there is a small error in their computation which we correct below.

Holomorphic Anomaly
To compute the holomorphic anomaly, we compute the τ̄ derivative of (4.80). No-
tice that in equation (4.80), the τ̄ dependence just sits in the factor Hg(τ, u). The
measure is independent of τ̄ as shown in (4.5.2). Similarly to the cigar case, Hg

obeys the heat equation ∂τ̄Hg(τ, aτ + b) = i
2πg2∂

2
ūHg(τ, u)|u=aτ+b. Hence we get,

∂τ̄χ =
i

2πg2

∫
Eε(τ)

dudū ∂ū

(
1

τ2

ϕ(τ, z, u+ ξ1, ξ2)∂ūHg(τ, u)

)
(4.82)

∂τ̄χ =
i

2πg2

∮
∂Eε(τ)

du
1

τ2

ϕ(τ, z, u+ ξ1, ξ2)∂ūHg(τ, u) (4.83)

The above integrand has two poles at u = −ξ1− ξ2 and u = −ξ1 + ξ2. The contribu-
tion from both the residues is computed below:
Residue at u = −ξ1 − ξ2 :

1

2π

ϑ1(−ξ2 + z)ϑ1(−ξ2 − z)

η(τ)3ϑ1(−2ξ2)
∂ūHg(τ, u)|u=−ξ1−ξ2

=
1

2π

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)

(
−g

4π

τ2

∑
n,w

(−ξ1 − ξ2 + n+ τw)e
− g

2π
2τ2
|−ξ1−ξ2+n+τw|2

)

Residue at u = −ξ1 + ξ2 :

− 1

2π

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)

(
−g

4π

2τ2

∑
n,w

(−ξ1 + ξ2 + n+ τw)e
− g

2π
2τ2
|−ξ1+ξ2+n+τw|2

)

Finally we obtain

∂τ̄χ =
g2

4τ 2
2

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)

(∑
n,w

(−ξ1 − ξ2 + n+ τw)e
− g

2π
2τ2
|−ξ1−ξ2+n+τw|2−

(−ξ1 + ξ2 + n+ τw)e
− g

2π
2τ2
|−ξ1+ξ2+n+τw|2

)
(4.84)
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Poisson resumming w.r.t variable n gives:

∂τ̄χ =
i

2g
√

2τ2

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)∑
m,w

(−m+ wg2)q
(m+wg2)2

4g2 q̄
(m−wg2)2

4g2
(
e2πi(−ξ1−ξ2)m + e2πi(ξ1−ξ2)m

)
(4.85)

Notice that the above equation has a pole in ξ2 → 0 limit. For g2 = 1 i.e. at the
self-dual radius, we can replace the sum over by m and w by the sum over s and s′

by noting that
` = (w +m) = (w −m) mod 2 . (4.86)

Or equivalently

w −m = `+ 2s , w +m = `+ 2s′ . (4.87)

Hence we have

∂τ̄χ =
i

2
√

2τ2

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)

∑
`∈Z/2Z

∑
s,s′

(l + 2s)q
(`+2s′)2

4 q̄
(`+2s)2

4

(
e−2πi(ξ1+ξ2)(s′−s) + e2πi(ξ1−ξ2)(s′−s)

)
(4.88)

The first term in the bracket can be expressed as follows:

e−2πi(ξ1+ξ2)(s′−s) = e−2πi( ξ1+ξ2
2 )((l+2s′)−(l+2s)) = yl+2s′

1 ȳl+2s
1 (4.89)

where y1 = eπi(−ξ1−ξ2) and the fugacities ξ1 and ξ2 are real. Hence the holomorphic
anomaly equation can be expressed as follows:

∂τ̄χ =
i

2
√

2τ2

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)

∑
`∈Z/2Z

ϑ1,`

(
τ,
−ξ1 − ξ2

2

)
ϑ

(1)
1,`

(
τ,
−ξ1 − ξ2

2

)

+ϑ1,`

(
τ,
ξ1 − ξ2

2

)
ϑ

(1)
1,`

(
τ,
ξ1 − ξ2

2

)
(4.90)

where ϑ(1)(τ, ξ) = ∂zϑ(τ, z)|z=ξ. For a generic g2 ∈ Z, the answer does not seem to
decompose into the products of ϑ(τ, z) and θ(1)(τ, z).
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4.6.2 GJF anomaly

TheN = (4, 4) GLSM described above flows to an NLSM with the Taub-NUT target
space. This can be seen by minimizing the scalar potential to find the vacuum
manifold as in §4.3.2. By minimizing the scalar potential, we get the following
constraints [82]:

F01 = σ = φ = 0 , |q|2 − |q̃|2 = r3 , r1 + ir2 = 2qq̃ . (4.91)

The low energy physics is described by a NLSM on the vacuum moduli space.
Notice that we have four complex scalars (q, q̃, r1 + ir2, r3 + iγ) in the matter mul-
tiplets of the GLSM. We get three real equations (4.91) by minimizing the scalar
potential and one degree of freedom is eliminated using U(1) gauge symmetry.
Hence in the IR, we obtain a N = (4, 4) supersymmetric theory with four dimen-
sional target space (TaubNUT) parametrized by these four bosons. The target space
metric in radial coordinates, is given by:

ds2 =

(
r −m
r +m

)
dr2 + (r2 −m2)(dθ2 + sin2θdφ2) + 4m2

(
r −m
r +m

)
(dψ2 + cosθdφ)2

(4.92)
where |q|2 + |q̃|2 = r =

√
r2

1 + r2
2 + r2

3 , ψ ∈ [0, 4π), θ ∈ [0, π) and φ ∈ [0, 2π) and
m is related to the coupling of Stückelberg field in the GLSM i.e. g2 = 16m2. As
we can see from (4.92), the radius of S1 (of periodicity 2π) at infinity is 4m, hence
g2 is the radius-squared at infinity. The charges {Q1 −Q2, QR, Qf} of various fields
that describe the IR physics, are given in 4.6.1. Notice that unlike the cigar case, the
Stückelberg field in this case is not charged under the R symmetry. This is because
sum of charges of chirals vanish and hence there is no anomaly in the R symmetry.
The flavor symmetries act on ψ direction of Taub-NUT as shift symmetries.

We can use the GJF anomaly equation (4.44) to compute the anomaly directly
without computing the full elliptic genus. For this, we need to compute the torus
one-point function of the supercurrent 〈Ḡ〉 in the boundary theory. The supercur-
rent is given by:

Ḡ(z) = i
√

2gijχ̄
i∂̄Xj (4.93)

The target space (4.92) in r → ∞ limit, looks like R × S2 × S1 where the radius of
S2 grows with r and it goes to infinity as r →∞, giving us R3 × S1. In such cases,
the elliptic genus is usually not well-defined if we do not turn on any fugacities.
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fields Q1 −Q2 QR Qf

q -1 0 +1
q̃ -1 0 -1
ψ+ -1 0 +1
ψ− 0 -1 +1
ψ̃+ -1 0 -1
ψ̃− 0 -1 -1
r1 -2 0 0
r2 -2 0 0
r3 0 0 0
γ 0 0 0
χ+ -2 0 0
χ̃+ 0 0 0
χ− -1 -1 0
χ̃− -1 1 0

TABLE 4.6.1: Charges of various fields of TaubNUT GLSM.

We turn on global charges, and the elliptic genus is now defined as (4.79). Since the
chiral superfields are charged under Q1 − Q2 and QR, the boundary of the target
space is now two copies of R2 × S1. These global symmetries lift the bosonic zero
modes along R2. Hence we are effectively left with S1 boundary and oscillator
contributions from other modes.

The fugacities ξ1 and ξ2 twist the boundary conditions for two of the boundary
fermions and hence they do not have any zero mode. We have only one fermionic
zero mode in the boundary theory (the super-partner of the boundary S1). After
integrating the fermionic zero mode, we get

〈Ḡ〉|boundary = i
√

2Zoscill.〈gψψ∂̄ψ〉 (4.94)

whereZoscill. is the contribution coming from bosonic and fermionic non-zero modes.
Various contributions are given below:

• Oscillator contribution from fermions χ−

∏
n

(1− qne−2πiξ2e−2πiz)(1− qne2πiξ2e2πiz)
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• Oscillator contribution from fermions χ̃−

∏
n

(1− qne−2πiξ2e2πiz)(1− qne2πiξ2e−2πiz)

• Oscillator contribution from fermions χ+

∏
n

(1− q̄ne−2(2πiξ2))(1− q̄ne2(2πiξ2))

• Oscillator contribution from fermions χ̃+

∏
n

(1− q̄n)

• Oscillator contribution from boson along R2

∏
n

1

1− qne−2(2πiξ2)

1

1− qne2(2πiξ2)

1

1− q̄ne−2(2πiξ2)

1

1− q̄ne2(2πiξ2)

• Oscillator contribution from boson along S1

∏
n

1

1− qn
1

1− q̄n

After adding the zero mode contributions of these fermions and bosons, total con-
tribution from s2 modes is given by :

(i)3/2i
ϑ1(τ, z + ξ2)ϑ1(τ, z − ξ2)

ϑ1(τ, 2ξ2)η(τ)2
(4.95)

where i3/2 comes from the normalization of three boundary fermions. We can now
compute the contribution due to boundary S1’s. We have two copies of S1 because
both chirals have different charges under the flavor symmetries. These give the
following contribution to the supercurrent.

• Zero modes of one S1:

〈∂̄ψ〉 = 〈−ipR
2
〉 =

1

2g

∑
m,w

(m− wg2)q
(m+wg2)2

4g2 q̄
(m−wg2)2

4g2 e2πi(−ξ1−ξ2)n
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• Zero modes of second S1:

〈∂̄ψ〉 =
1

2g

∑
m,w

(m− wg2)q
(m+wg2)2

4g2 q̄
(m−wg2)2

4g2 e2πi(ξ1−ξ2)n

The e2πi(ξ1−ξ2)n factor appears because we are computing flavored elliptic genus
and the fugacities ξ1 and ξ2 act as shift symmetries of the boundary S1 and
hence they couple to the momentum pL + pR.

Putting all the contributions together and using (4.44), we obtain:

∂χ

∂τ̄
= − eiπ/4√

4τ2η(τ)
i
√

2
1√
2g

(i)3/2iϑ1(τ, z + ξ2)ϑ1(τ, z − ξ2)

ϑ1(τ, 2ξ2)η(τ)2∑
m,w

(m− wg2)q
(m+wg2)2

4g2 q̄
(m−wg2)2

4g2
(
e2πi(−ξ1−ξ2)n + e2πi(ξ1−ξ2)n

)
(4.96)

∂χ

∂τ̄
= − i

2g
√

2τ2

ϑ1(z − ξ2)ϑ1(z + ξ2)

η(τ)3ϑ1(2ξ2)∑
m,w

(m− wg2)q
(m+wg2)2

4g2 q̄
(m−wg2)2

4g2
(
e2πi(−ξ1−ξ2)m + e2πi(ξ1−ξ2)m

)
(4.97)

As expected, this matches the GLSM result (4.6.1).
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Appendix

4.A (2, 2) Supersymmetry

Here we review our conventions for superfields in N = (2, 2) superspace 8 We
follow the same conventions as [75]. We denote the bosonic coordinates by x0,
x1 and the fermionic coordinates by θ+, θ−, θ̄+ and θ̄−. The spinors θ+ are right-
moving and θ− are left moving. The bosonic coordinates span flat Minkowski space
with metric diag(−1, 1). The fermionic coordinates are related to each other by
complex conjugation i.e. (θ±)† = θ̄±. The supersymmetry generators are given by:

Q± =
∂

∂θ±
+ iθ̄±∂± , Q̄± = − ∂

∂θ̄±
− iθ±∂± (4.98)

where ∂± = (∂0 ± ∂1)/2. The SUSY generators obey:

{Q±, Q̄±} = −2i∂± (4.99)

We also define the following superspace derivatives

D± =
∂

∂θ±
− iθ̄±∂± , D̄± = − ∂

∂θ̄±
+ iθ±∂± (4.100)

which anticommute with Q±, Q̄±. We can now define various superfield and their
supersymmetric lagrangians:

Chiral Superfield: It is defined as:

D̄±Φ = 0

Hence, it can be expanded as:

Φ = φ(y±) + θαψα(y±) + θ+θ̄+F (y±)

8These conventions differ from the one’s used in Appendix 2.3.2.
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where y± = x± − iθ±θ̄± . Here φ is a complex boson and ψ± is a right (left)-moving
weyl fermion and F is an auxiliary field. The action is given by:

Schi
kin =

1

4π

∫
d2xd4θ Φ̄Φ (4.101)

where Φ̄ is the complex conjugate of chiral superfield and it obeys D±Φ̄ = 0. It
is known as anti-chiral superfield. We can also add a superpotential term to the
action which is obtained by integrating a holomorphic function (W (Φ)) of the chiral
superfield on half superspace i.e.

Schi
W =

∫
d2xd2θW (Φ) + c.c. (4.102)

A twisted chiral superfield U is a superfield that satisfies:

D̄+U = D−U = 0

Vector Superfield: It is a real scalar superfield V which transforms as

V → V + i(Ā− A)

under gauge transformation. Here A is a chiral superfield. We can use the gauge
transformation to eliminate some degrees of freedom and expand V in Wess-Zumino
gauge as follows:

V = θ−θ̄−(v0 − v1) + θ+θ̄+(v0 + v1)− θ−θ̄+σ − θ+θ̄−σ̄

iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) + iθ̄+θ̄−(θ−λ− + θ+λ+) + θ−θ+θ̄+θ̄−D

where vµ is a 2d gauge field, λ± are right (left) moving fermions, σ is a complex
scalar and D is an auxiliary field. In the Wess-Zumino gauge, we still have a resid-
ual gauge symmetry:

vµ(x)→ vµ(x)− ∂µα(x)

where αµ(x) is the lowest component of the chiral superfield A. Under the gauge
transformations, the chiral superfield of charge q transforms as:

Φ→ eiqAΦ
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The field strength Σ is a twisted chiral superfield given by:

Σ = D̄+D−V

= σ(ỹ) + iθ+λ̄+(ỹ)− iθ̄−λ−(ỹ) + θ+θ̄−(D(ỹ)− iv01(ỹ))

where ỹ± = x± ∓ iθ±θ̄± and v01 is the gauge field strength given by:

v01 = ∂0v1 − ∂1v0

The supersymmetric lagrangian of a chiral superfield with charge q under the vec-
tor superfields is given by:

L =

∫
d4θ

(
Φ̄eqV Φ− 1

2e2
Σ̄Σ

)
+

1

2

(
−t
∫
d2θ̃Σ + c.c

)
(4.103)

where the last term is the twisted superpotential term with t = r− iϑ. Here r is the
Fayet-Iliopoulous (FI) parameter and ϑ is the theta angle for gauge field V .

After integrating out the fermionic superspace coordinates and the auxiliary
fields we finally obtain:

L = −Dµφ̄Dµφ+ iψ̄−(D0 +D1)ψ− + iψ̄+(D0 −D1)ψ+

−e
2

2
(|φ|2 − r)2 − |σ2||φ|2 − ψ̄−σψ+ − ψ̄+σ̄ψ−

−iφ̄λ−ψ+ + iφ̄λ+ψ− + iψ̄+λ̄−φ− iψ̄−λ̄+φ+ θv01

1

2e2
(−∂µσ̄∂µσ + iλ̄−(∂0 + ∂1)λ− + iλ̄+(∂0 − ∂1)λ+ + v2

01) (4.104)

where Dµ = ∂µ + iqvµ.
Stückelberg superfield: It is a chiral superfield P which transforms additively

under the gauge transformation i.e.

P → P + iA , P̄ → P̄ − iĀ (4.105)

and has the following action:

Sstu =
1

4π

∫
d2xd2θ

k

4
(P + P̄ + V )2 (4.106)

The FI term and the ϑ term can now be absorbed in P . We take the gauge group to
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be U(1), and from (4.105), we observe that ImP is periodically identified. The full
supersymmetric Lagrangian with a chiral superfield Φ of charge q, a Stückelberg
superfield P , and a U(1) gauge superfield V is given by:

L =

∫
d4θ

(
Φ̄eqV Φ− 1

2e2
Σ̄Σ +

k

4
(P + P̄ + V )2

)
(4.107)

The chiral superfield P can be gauged away entirely, and we are left with Φ and a
massive vector superfield V . Alternatively, we can choose the Wess-Zumino gauge
for V and retain P . In this case, after integrating out the fermionic coordinates, we
obtain:

L = −Dµφ̄Dµφ+ iψ̄−(D0 +D1)ψ− + iψ̄+(D0 −D1)ψ+D|φ|2 + |F |2

−|σ2||φ|2 − ψ̄−σψ+ − ψ̄+σ̄ψ− − iφ̄λ−ψ+ + iφ̄λ+ψ− + iψ̄+λ̄−φ− iψ̄−λ̄+φ
1

2e2
[−∂µσ̄∂µσ + iλ̄−(∂0 + ∂1)λ− + iλ̄+(∂0 − ∂1)λ+ + v2

01 +D2]

k

2
[(−∂µp̄+ ivµ)(∂µp+ ivµ) + iχ̄−(∂0 + ∂1)χ− + iχ̄+(∂0 − ∂1)χ+ +D(p+ p̄)

+|FP |2 − |σ|2 + iχ+λ− + iχ̄+λ̄− − iχ−λ+ − iχ̄−λ̄+

]
(4.108)

4.B Eta and theta functions

The Dedekind eta function is a modular form of weight 1/2 which is defined as:

η(τ) = q1/24

∞∏
n=1

(1− qn)

where q = e2πiτ and τ ∈ H. Due to its modular properties, it satisfies:

η(τ + 1) = eiπ/12η(τ) , η(−1

τ
) =
√
−iτη(τ) . (4.109)
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In the computation of elliptic genus, the Jacobi theta function plays an important
role. It has the following product representation:

ϑ1(τ |z) = −iq
1
8y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1) (4.110)

= −iq
1
8y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn)(1− y−1)

= −iq
1
8 (y

1
2 − y−

1
2 )
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn) (4.111)

where y = e2πiz. There are various variations in the definition of ϑ-functions. In
some cases, there is no−i factor in front. We use the above definition. It has another
representation:

ϑ1(τ |z) = −i
∑
n∈Z

(−1)nyn+ 1
2 q

1
2

(n+ 1
2

)2

(4.112)

We list some of the useful properties of ϑ1 below:

ϑ1(τ |z + nτ +m) = (−1)n+mq−
n2

2 y−nϑ1(τ |z) (4.113)

where n,m ∈ Z. Using this we obtain:

ϑ1(τ |z +m+ wτ)

ϑ1(τ |m+ wτ)
= e−2πiwzϑ1(τ |z)

ϑ1(τ)
(4.114)

The modular properties of ϑ1(τ |z) give:

ϑ1(τ + 1|z) = eπi/4ϑ1(τ |z) , ϑ1(−1

τ
|z
τ

) = −i
√
−iτeiπ

z2

τ ϑ1(τ |z) . (4.115)

Also,
θ1(−z; τ) = −θ1(z; τ)

The first derivative at z = 0 is useful:

1

2πi

∂

∂z
ϑ1(τ |z)|z=0 = −iq

1
8

∞∏
n=1

(1− qn)3 = −iη(τ)3 (4.116)
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Conclusions and Outlook

In this part of the thesis, we re-derived the Dirac index theorem for manifolds
with boundary and explored its relation with mock modularity. The main results
are summarized as follows:

• The Atiyah-Patodi-Singer (APS) index theorem for manifolds with a product
metric near the boundary can be derived by computing the Witten index for
a non-compact target space. This non-compact manifold is obtained by triv-
ially extending the original manifold with boundary as explained in Chap-
ter3.

• The APS index theorem consists of two terms: the Atiyah- Singer (AS) piece
and the η-invariant piece. Both of these pieces can be computed using differ-
ent supersymmetric quantum mechanics (SQM).

– The AS piece is derived using an N = 1/2 SQM with target spaceM as
shown in figure 3.3.1.

– The η-invariant is determined by using an N = 1 SQM with target space
R and a superpotential h(u) which depends on the eigenvalues of the
boundary operator. Hence the η-invariant piece depends only on the
boundary.

• The η-invariant is also related to the temperature dependence of the non-
compact Witten index, and hence it is related to the difference in density of
states of bosons and fermions. This difference in the density of states, in turn,
is connected to the scattering theory.

• The elliptic genus of a superconformal field theory (SCFT) with a non-compact
target space is non-holomorphic in τ . The τ̄ dependence is related to the tem-
perature dependence of the Witten index of the right-movers. Similarly to the
Witten index, it also depends only on the asymptotic boundary of the target
space.

• We computed the holomorphic anomaly for the N = (2, 2) Cigar SCFT and
the N = (4, 4) TaubNUT SCFT using different methods: First from the GLSM
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and then from the boundary theory of the NLSM using the GJF anomaly equa-
tion. For the cigar case, we also compared the results with the SQM compu-
tation.

There are certain unanswered questions yet to be explored. Some of them are
listed below:

• We re-derived the APS index theorems for manifolds with a product metric
near the boundary. For the manifolds with a non-product metric near the
boundary, there is a correction in the APS index theorem [48]. We do not have
a derivation of this correction term from SQM. In this case, the main issue is
that the continuum touches the zero modes, and hence the contributions from
the discrete states and the scattering states cannot be separated as in (3.37). It
will be interesting to understand this issue.

• We noticed that the elliptic genus for SCFT’s whose target space has a non-
product metric at asymptotic infinity vanishes unless some fugacities are
turned on. After turning on the fugacities, not all non-compact manifolds
give mock objects. In the examples we explored, only the GLSM’s with Stück-
elberg fields seem to give non-zero holomorphic anomaly. It would be inter-
esting to explore this co-relation and make a more precise statement.

• It would also be interesting to recover different examples of mock modular
forms such as higher depth mock modular forms [31, 34, 83–85] just by look-
ing at GLSM’s with multiple Stückelberg fields.
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Soft theorems for Gravitini
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Chapter 5

Introduction

The study of soft theorems in quantum field theory has a long history dating back
to work done by Bloch, Nordsieck, and Low [86–88]. In 1965, Weinberg extended
this work to show that infrared divergences in a quantum theory of gravity can be
removed in the same way as in quantum electrodynamics [89]. A particle whose
momenta in the center of mass frame is much lower than other particles is called a
soft particle in a scattering event. Soft theorems demonstrate the relation between
the S-matrix of hard particles with and without soft particles. Soft theorems cap-
ture certain universal features of the theory.

In the last few years, the interest in soft theorems has been renewed because
of its connection to asymptotic symmetries. Asymptotic symmetries are the sym-
metries whose action on fields does not vanish at infinity. This is why they are
also known as "large gauge symmetries". In the early 2010s, Strominger and his
collaborators [90–94] found that soft theorems are essentially the Ward identities
associated with asymptotic symmetries. Further studies revealed an interesting re-
lation between the Bondi–Metzner–Sachs (BMS) group (the asymptotic symmetry
group corresponding to large diffeomorphisms) and the gravitational memory ef-
fect [95]. These studies established the relation between three seemingly different
phenomena - Asymptotic symmetry, soft theorems, and memory effect. In subse-
quent papers, the study of asymptotic symmetry was extended to higher than four
dimensions [94, 96, 97] but the understanding of the same in arbitrary dimensions
is far from being complete.

There is an approach to derive soft theorems independently of the spacetime
dimension. It relies on Feynman diagrammatic techniques. In this approach, one
starts from a specific Lagrangian and then computes only a subclass of Feynman
diagrams, contributing to the (sub-)leading soft theorem(s). The new impetus to
this direction is Sen’s work [98, 99]. His method relies on covariantization of one
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particle irreducible (1PI) effective action with respect to the soft field and computes
the diagrams which contribute to the soft theorem. This powerful method was
used to compute the sub-sub-leading soft graviton theorem [100] and also to com-
pute multiple (sub-)leading soft graviton theorem [101]. It has been noted that the
soft-photon theorem is universal at leading order [89, 102], and the soft-graviton
theorem is universal, not only in the leading order but also in the sub-leading order
[103]. Much work has been done on soft theorems with multiple soft particles, soft
theorems in string theory, and memory effect in the last decade [98, 104–111].

In this part of the thesis, we derive soft theorems for gravitini. One of the pri-
mary motivations for this work is that in four and higher dimensions, the theo-
ries of massless particles are severely constrained by Coleman-Mandula theorem
[112]. Massless particles with spin > 2 cannot couple minimally; they only couple
through the field strength. So the only particles which possess gauge invariance
and can have minimal coupling have spin 1, 3/2 and 2. We already have a com-
plete understanding of soft photon and soft graviton theorem. However, we still
do not have many results about soft gluon and soft gravitino theorem. Hence we
tried to attack the latter problem.

These computations involve a subtlety because the leading soft factors do not
commute, and their commutator is also leading order in soft momenta. At the level
of complexity, the soft gravitino theorem is more subtle than soft photon or gravi-
ton but significantly less subtle than that of the gluon. This is because even though
the commutator of two soft factors is non-vanishing, the commutator of three soft
factors vanishes in the case of a gravitino but not in the case of a gluon. However,
for specific types of theories, the soft gluon theorem can be conveniently computed
using Cachazo, He, and Yuan (CHY) formalism [113–116]. This advantage is not
currently available for soft gravitino/photino. In this work, we derived the leading
order soft theorem for gravitino in a general quantum field theory with local super-
symmetry and in an arbitrary number of dimensions. The soft gravitino operator
is a fermionic soft operator. Though a lot is known about bosonic soft theorems,
the available literature for the fermionic soft theorem is significantly little. Single
Soft photino theorem was computed in [117].

The soft theorems for the case of a single and double soft gravitino for four-
dimensional supergravity theories were computed for a particular model in [118–
120]. The result for single soft gravitino in D = 4 can also be obtained from asymp-
totic symmetry [121, 122]. We generalize the result to the case with an arbitrary
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number of soft gravitini. In our work, we follow Sen’s covariantization approach
[98–100]. This method’s advantage is that it is valid for arbitrary theories, to all
orders in perturbation theory and in arbitrary dimensions, as long as there is no
infrared divergence.

This part of the thesis is organized as follows: In Chapter 6, we set up the no-
tation and derive the Feynman rules required to compute the leading soft gravitini
theorem. In Chapter 7, we explicitly derive the soft theorem with one, two, and
three external soft gravitini. We then use these results to get a soft theorem for an
arbitrary number of soft gravitini. In Chapter8, we look at the possible infrared
divergences that can affect our results. It turns out that our results are valid for
D ≥ 4.
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Chapter 6

Feynman Rules

In this chapter, we derive the relevant Feynman rules for computing the leading
order soft gravitini theorem.

6.1 Set-up

Our starting point is a globally supersymmetric Lagrangian invariant under some
number of Majorana supersymmetry 1. So the usual (dimension-dependent) re-
striction for the existence of a globally supersymmetric Lagrangian applies. The
matter content of the theory is some reducible super-multiplet. We do not assume
anything about the multiplet in which matter fields are sitting.

Let Φm be any quantum field that transforms under some reducible represen-
tation of the Poincare group, supersymmetry, and the internal symmetry group(s).
The transform of the fields under the global supersymmetry is given by

Φm −→ (Qα)m
nΦn (6.1)

Qα are supersymmetry generators. They satisfy the following algebra

{Qα, Qβ} = −1

2
γµαβPµ (6.2)

Here Pµ is the momentum generator. The indices α, β are the collection of all pos-
sible spinor indices, not the indices for the minimal spinor (of that dimension). So,
in a theory of more than one supersymmetry, Qα are the collection of all the super-
charges. Gamma matrices are in Majorana representation and are symmetric in the
spinor indices.

1From Coleman-Mandula theorem, the maximum number of super-charges is 32.
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We start with the 1PI effective action. The kinetic term is given by:

S =
1

2

∫
ddp1

(2π)D
ddp2

(2π)D
Φm(p1)Kmn(p2)Φn(p2)(2π)Dδ(D)(p1 + p2) (6.3)

where Kmn(p2) is a combination of derivative operators. The kinetic term is invari-
ant under global supersymmetry transformation. This implies

Km1m3(Qα)m3

m2 +Km3m2(Qα)m3

m1 = 0 (6.4)

6.1.1 Propagator

Let us assume the propagator has the following form:

Ξ(q)(q2 +M2)−1 (6.5)

where Ξ(q) is defined as

Ξ(q) = i(q2 +M2)K−1(q) (6.6)

and M is some arbitrary mass parameter 2 . From (6.4) we get,

Ξm1m3(Qα)m3

m2 + Ξm3m2(Qα)m3

m1 = 0 (6.7)

We write down two more relations which would be useful later

Km1m2(−p)Ξm2m3(−p) = i(p2 +M2) δm1
m3

∂Km1m2(−p)
∂pµ

Ξm2m3(−p) = −Km1m2(−p)∂Ξm2m3(−p)
∂pµ

+ 2ipµ δm1
m3 (6.8)

6.1.2 Covariant derivative

In super-gravity theories, the super-covariant derivative [123] is given by

Da = Ea
µ

(
∂µ − i κΨµ

αQα − i κ
1

2
ωµ

cdJcd
)

(6.9)

2We have already used M for number of soft-particles. Since the mass-parameter does not ap-
pear extensively, we also M for mass-parameter.
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Here κ is the gravitational coupling constant, ωcdµ is the spin connection and Jcd are
the angular momentum generators. The local-supersymmetry transformation of
the vielbein eaµ (the inverse of Eµ

a appearing above) and the gravitino Ψµα are given
by

δeaµ =
1

2
θγaΨµ (6.10a)

δΨµα = Dµ θα = ∂µ θα +
1

4
ωµabγ

abθα (6.10b)

Here θα is the local supersymmetry parameter. Now consider a small fluctuation

Ea
µ = δa

µ − ζaµeik·x (6.11a)

Ψµ
α = εµ

αeik·x (6.11b)

So at the linear order of fluctuations, we get the following expression for the super-
covariant derivative

Da = ∂a − κ ζaµ∂µ − iκ εαaQα − i
κ

2
ωa

cdJcd (6.12)

6.2 Soft gravitino - Matter Vertex

The coupling of one soft gravitino to the matter fields at linear order can be found
by covariantizing the derivative in (6.3). Due the interaction with gravitino, the
momenta of hard particle changes by δq = −κ εαµQα.

The coupling of gravitino with the matter field can then be found just from the
quadratic part of the 1PI effective action by making the following changes in (6.3)
[100]:

• δ(D)(p1 + p2) gets replaced by δ(D)(p1 + p2 + k) where k is the momenta of soft
gravitino.

• The change in kinetic operator Kmn due to shift in momenta has to be substi-
tuted.



100 Chapter 6. Feynman Rules

So we get

S(L) =
1

2

∫
ddp1

(2π)D
ddp2

(2π)D
Φm(p1)

[
−∂K(p2)

∂p2µ

κεαµQα

]mn
Φn(p2)(2π)Dδ(D)(p1 + p2 + k)

(6.13)
So the Φm − εαµ − Φn vertex is given by:

−
[
iκ
∂K(pi)

∂ piµ
εαµQα

]mn
(6.14)

Since we compute only the S-matrix elements, all the particles satisfy on-shell
and transversality condition . The external particle of polarization εi,m and mo-
menta pi satisfies the following conditions:

εi,mKmn(q) = 0 (6.15a)

p2
i +M2

i = 0 (6.15b)

6.3 Gravitino - Graviton - Gravitino Vertex

When we have more than one soft gravitino, we need to consider the minimal
coupling of gravitino with graviton. At the leading order, the graviton coupling to
any matter field can be again be found by covariantizing the derivatives appearing
in the kinetic operator. From equation (6.12), we see that there are two changes in
the kinetic operator: one due to the shift in momenta due to κζµa ∂µ term and the
other due to the spin connection term. Hence we have:

S(L) =
1

2

∫
dDk1

(2π)D
dDk2

(2π)D
(2π)Dδ(D)(k1 + k2 + p)

Φm(k1)

[
−ζµνkν2

∂

∂k2µ

Kmn(k2) +
1

2
(pbζaµ − paζbµ)

∂

∂k2µ

Kmp(k2)(J ab)p
n
]

Φn(k2)

(6.16)

where ζµν is the graviton polarization.
The kinetic term for the gravitino, in the harmonic gauge, is given by

Kµα;νβ(p) = (pργ
ρ)αβηµν (6.17)
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The angular momentum generator is

(J ab)µ,α
ν,β

= (J ab
V

)µ
ν
δα

β + (J ab
S

)α
β
δµ
ν (6.18)

where J ab
V

and J ab
S

are angular momentum generator in vector and spinor repre-
sentations respectively.

(J ab
V

)µ
ν

= δaµη
bν − δbµηaν (6.19a)

(J ab
S

)α
β

= −1

2
(γab)α

β
γab ≡ 1

2
(γaγb − γbγa) (6.19b)

Our gamma matrix convention is given in (7.67). Our convention is that all the
particles are incoming; the gravitino has momentum k1 and k2 and the graviton
has momenta p. The momentum conservation implies

p+ k1 + k2 = 0 (6.20)

Substituting equations (6.17) and (6.18) in the equation (6.16), we find that the
gravitino-graviton-gravitino vertex (Vµν;µ1µ2)αβ is given by

−iκ
[
kµ2

2 (γµ1)αβηµν+
1

4
(pd δ

µ2
c −pc δ

µ2

d )(γµ1γcd)αβηµν+(pµηνµ2−pνηµµ2)(γµ1)αβ
]

(6.21)

6.4 Gravitino - Graviphoton - Gravitino Vertex

In case of extended supersymmetries, one can have central charges in the super-
symmetry algebra. The supersymmetry algebra in (6.2) modifies to{

Qα, Qβ

}
= −1

2
γµαβPµ −

1

2
Zαβ U (6.22)

U is (are) the generator(s) ofU(1) symmetry(-ies) generated by the central charge(s).
As explained below equation (6.2), α, β are some (ir-)reducible spinor indices. In
this language the existence of central charge is equivalent to the condition that
there exists an element(s) Zαβ in the Clifford algebra such that, Zαβ satisfies

Zαβ = Zβα (6.23)
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In general, there can be higher form central charges. For example, in D = 11, the
supersymmetry algebra is of the form{

Qα, Qβ

}
= −1

2
γµαβPµ + γµ1µ2µ3

αβ Aµ1µ2µ3 (6.24)

But for our purpose, we ignore any higher form central charges. This is because
the higher form central charges can only minimally couple to extended objects (of
appropriate dimensions), whereas here we are considering the scattering of point-
like states only.

In this case the commutator of two soft operators in (7.19) is modified as follows

[Su,Sv] = −κ
2

2

N∑
i=1

[
ε(u);α
µ (/pi;αβ + eiZαβ)ε(v);β

ν

pµi
pi · ku

pνi
pi · kv

]
(6.25)

When we gauge the global supersymmetry with a central charge to get super-
gravity, we get a U(1)N gauge symmetry generated by spin 1 bosons (graviphoton)
present in the graviton multiplet. These graviphotons couple to the gravitino and
to any matter which carries the central charge. The coupling of the graviphoton to
gravitino is entirely fixed by supersymmetry and is related to that of the graviton.

The gravitino-gravitino-graviphoton three point function (Ṽµν;µ1)αβ is given by

−iκ
[
kµ1

2 (Z)αβηµν
]
− iκ

2

[
[(k1 + k2)c δ

µ1

d ](Zγcd)αβηµν
]

+ iκ
[
(kµ2 η

µ1ν − kν1 ηµ1µ)(Z)αβ
]

(6.26)
We have now derived all the relevant vertices required to compute the leading

order soft theorem for gravitini. In the next chapter, we will explicitly compute the
soft factors.
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Chapter 7

Soft Gravitino Theorem

We have now reached a point where we can use the Feynman rules derived in the
previous chapter to compute the leading soft theorems for gravitini. In this chapter,
we explicitly compute the leading soft theorem for one, two, and three external
gravitini. We then use these results to write down the expression for soft theorem
with multiple external soft gravitini. Before dwelling into the computation, there
is a brief note on Feynman diagram conventions.

7.1 Note on Feynman diagrams

We use a red double-arrowed line for soft-gravitino, a blue wavy line to denote soft
gravitons, a violet wavy line for graviphoton, Cyan double arrowed1 line for hard
fermionic particles (including hard gravitini) and black line to denote hard bosonic
particles.

Hard bosonic particle

Hard fermionic particle

Soft gravitino

Soft graviton

Soft gravi-photon

FIGURE 7.1.1: Conventions for Feynman diagrams

1We use a double arrowed line for Majorana particles because they are their own anti-particle;
they only have Z2 charge.
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7.2 Single soft gravitino

In this section, we compute the leading order contribution to the soft gravitino
theorem due to one soft gravitino. This result for D = 4 was first derived in [119]
and was reproduced from the analysis of asymptotic symmetries in [121, 122]. The
only diagram that contributes to this process is depicted in figure 7.2.1.

(εµα, k)

pi

FIGURE 7.2.1: Feynman diagram for single soft gravitino

The expression for the propagator is given in equation (6.5). In this diagram,
the propagator carries momenta pi + k and Mi is the mass of the i-th particle. Let
us denote the corresponding propagator by Ξmini(pi+k). The contribution to figure
7.2.1 is given by:

Γm1..mN
N+1 ({pi}, k) =

[
iκ

N∑
i=1

(
∂K(−pi)
∂piµ

εαµQα

)mini Ξniñi
(pi + k)2 +M2

i

]
Γ
m1..mi−1ñimi+1..mN
N ({pi})

=

[
iκ

N∑
i=1

(
∂K(−pi)
∂piµ

εαµQα

)mini Ξniñi
(2 pi · k)

]
Γ
m1..mi−1ñimi+1..mN
N ({pi}) (7.1)

where in the second step, we have used the on-shell condition (6.15b) for external
hard particle and the fact that gravitino is soft. Now we will use (6.7) and (6.8) to
simplify the expression(
∂K(−pi)
∂piµ

εαµ Qα

)mini
Ξniñi = εαµ

(
∂K(−pi)
∂piµ

Qα Ξ

)mi
ñi = −εαµ

(
∂K(−pi)
∂piµ

ΞQα

)mi
ñi

= −εαµ
(
−K(−pi)

∂ Ξ

∂piµ
Qα + 2 i pµi Qα

)mi
ñi (7.2)

From first step to second step we have used (6.7) and from second step to third step
we have used (6.8). Now the first term drops out because of the on-shell condition
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(6.15a). Hence we obtain [119]

Γm1...mN
N+1 ({pi}, k) =

[
κ

N∑
i=1

(
pµi ε

α
µ

pi · k
Qα

)mi
ñi

]
Γ
m1...mi−1ñimi+1...mN
N ({pi}) (7.3)

Soft operator We define the soft operator Su [119] as

Su = κ
N∑
i=1

(
pµi ε

(u)α
µ

pi · ku
Qα

)
(7.4)

where u labels the soft gravitino. So the above result can be re-written as:

Γm1...mN
N+1 ({pi}, k) =

[
S mi ñi

]
Γ
m1...mi−1ñimi+1...mN
N ({pi}) (7.5)

7.2.1 Gauge invariance

As a consistency check, we check the gauge invariance of equation (7.3). We put
pure gauge polarization for the gravitino

εαµ = kµ θα (7.6)

Here θα is a Majorana spinor. For pure gauge gravitino the amplitude should van-
ish. From (7.3), we obtain

θα
N∑
i=1

(Qα)mi ñiΓ
m1...mi−1ñimi+1...mN
N (pi) = 0 (7.7)

This is the Ward-identity for the global super-symmetry.

7.3 Two soft gravitini

Now we will consider the amplitude with N hard particles and two soft gravitini.
In this case, the order of soft limits can affect the result. In this work, we took the
simultaneous soft limit. More about this is explained in subsection 7.3.3.

There are essentially four different types of Feynman diagrams which can con-
tribute in this case:
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1. The class of diagrams where the two soft gravitini are attached to different ex-
ternal legs (figure 7.3.1). These diagrams are easy to evaluate. The computa-
tion for these type of diagrams is essentially the same as single soft gravitino.

(ε
(1)
µα, k1) (ε

(2)
νβ , k2)

pi pj

FIGURE 7.3.1: Feynman diagram for double soft gravitini - I

The contribution from figure 7.3.1 is given by

κ2

N∑
i=1

ε
(1);α
µ pµi
pi · k1

Qα

N∑
j=1;j 6=i

ε
(2);β
ν pνi
pj · k2

Qβ Γ({pi}) (7.8)

2. The class of diagrams where both of the soft gravitini are attached to the same
external leg. There are three types of such diagrams - (figure 7.3.2, figure
7.3.3, figure 7.3.4). Figure 7.3.2, Figure 7.3.3 denote the diagrams where the
soft gravitino directly attaches the same hard-particles. These two diagrams
differ only in the order of attaching to the hard particle. Figure 7.3.4 captures
the process when the soft gravitini combine to give a soft graviton, and then
the soft graviton attaches to the hard particles.

(ε
(1)
µα, k1)(ε

(2)
νβ , k2)

pi

FIGURE 7.3.2: Feynman diagram for double soft gravitini - II
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The contribution from the Feynman diagram in figure 7.3.2 is given by

Γ
(1)
N+2 = κ2

N∑
i=1

∂Kmp(−pi)
∂piµ

[ε
(1);α
µ QαΞ(−pi − k1)]pq

(2pi · k1)

∂Kqr(−pi − k1)

∂piν

[ε
(2);β
ν Qβ Ξ(−pi − k1 − k2)]rs

(2pi · (k1 + k2))
ΓN({pi}) (7.9)

Using (6.7) and (6.8) we can simplify this expression and we get

κ2

N∑
i=1

ε
(1);α
µ pµi
pi · k1

ε
(2);β
ν pνi

pi · (k1 + k2)
QαQβ ΓN({pi}) (7.10)

The second diagram is given by:

FIGURE 7.3.3: Feynman diagram for double soft gravitini - III

The contribution due to figure 7.3.3 can obtained from equation (7.9) by inter-
changing 1←→ 2

Γ
(2)
N+2({pi}, k1, k2) = κ2

N∑
i=1

ε
(2);β
ν pνi
pi · k2

ε
(1);α
µ pµi

pi · (k1 + k2)
QβQα ΓN({pi})

= κ2

N∑
i=1

ε
(1);α
µ pµi
pi · k2

ε
(2);β
ν pνi

pi · (k1 + k2)

[
QαQβ +

1

2
(/pi)αβ

]
ΓN({pi})

(7.11)

The final contribution comes from figure 7.3.4. This diagram denotes the pro-
cess when two soft gravitini interact first to produce a soft graviton which then at-
taches to any of the external legs. The contributions from these kinds of processes



108 Chapter 7. Soft Gravitino Theorem

FIGURE 7.3.4: Feynman diagram for double soft gravitini - IV

are given by

Γ
(3)
N+2({pi}, k1, k2) = −

[
ε(1)α
µ (Vµν;µ1µ2)αβ ε

(2)β
ν

] [( i
2

)
ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1 − 2

D−2
ηµ1µ2ην1ν2

2(k1 · k2)

]
[
−iκ pν1

i

∂K
∂piν2

Ξ

2pi · (k1 + k2)

]
ΓN({pi}) (7.12)

where the first square bracket denotes gravitino-gravitino-graviton vertex, the sec-
ond one is the graviton propagator and the third one is the matter- soft graviton
-matter vertex. Using the expression for (Vµν;µ1µ2)αβ from (6.21) and simplifying
the above expression, we get

Γ
(3)
N+2({pi}, k1, k2) =

κ2

2

N∑
i=1

ε(1)α
µ (/pi)αβ

[
1

(pi · (k2 + k1))(k1 · k2)

]
[
−ηµνpi · k2 −

1

2
ηµν(k1 + k2)d pieγ

de + (kµ2p
ν
i − kν1p

µ
i )

]
ε(2)β
ν ΓN({pi})

(7.13)

After simplifying the second term and using gamma-traceless condition for grav-
itino, we get

Γ
(3)
N+2 = κ2

[
N∑
i=1

C12(pi)
1

(pi · (k2 + k1))

]
ΓN({pi}) (7.14)

where we have introduced C12 and Cuv(pi) is defined as follows

Cuv(pi) =
1

2
ε(u)
µ /piε

(v)
ν

[
1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv p

ν
i − kνup

µ
i )

ku · kv

]
(7.15)
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From the property of the gamma matrices it follows that Cuv(pi) is symmetric in its
particle indices

ε(u)
µ /piε

(v)
ν = −ε(v)

µ /piε
(u)
ν =⇒ Cuv(pi) = Cvu(pi) (7.16)

Total contribution Now we add the contributions from (7.8), (7.10), (7.11) and
(7.14) to get the full answer for two soft gravitini. The total contribution can be
written as

ΓN+2({pi}, k1, k2) =
[
S1 S2 +M12

]
ΓN({pi}) (7.17)

we have already defined Su in (7.4).Muv is defined as follows

Muv = κ2

N∑
i=1

1

2

ε
(u)
µ /piε

(v)
ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv p

ν
i − kνup

µ
i )

ku · kv

]
(7.18)

7.3.1 Some properties of Su andMuv

• Two soft operators do not commute

[Su,Sv] = −κ
2

2

N∑
i=1

[(
ε(u);α
µ /pi;αβε

(v);β
ν

) pµi
pi · ku

pνi
pi · kv

]
(7.19)

• While writing the result for two soft gravitini, we could have chosen the other
ordering of soft factors but both results should match i.e.

Su Sv +Muv = Sv Su +Mvu (7.20)

Above equation can be explicitly verified by noting that:

Mvu −Muv = κ2

N∑
i=1

ε(u) · pi
pi · ku

ε(v) · pi
pi · kv

(
−1

2
/pi

)
(7.21)

We already computed Su Sv − Sv Su in (7.19). Hence (7.20) is satisfied.

• Three soft operators satisfy Jacobi identity.

[Su, [Sv,Sw]] + [Sv, [Sw,Su]] + [Sw, [Su,Sv]] = 0 (7.22)
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In this particular case, each term in the above equation is individually zero.

[Su, [Sv,Sw]] = 0 (7.23)

This is not true for soft gluon operator(s). Though (7.22) is true for soft gluon
operator, (7.23) does not hold for soft gluon operator. This fact makes the
computation of the soft factors for multiple soft gluon even more cumber-
some.

• Some more properties ofMuv are listed below

Muv 6= ±Mvu (7.24a)

Mu1v1Mu2v2 = Mu2v2Mu1v1 (7.24b)

SwMuv = Muv Sw (7.24c)

7.3.2 Gauge invariance

As a consistency check, we check the gauge invariance of the result obtained in
(7.17). The right-hand side should vanish when one puts any of the gravitini as a
pure gauge. Here we will put ε(2) as a pure gauge and check if RHS vanishes or
not.

ε(2)α
µ = k2µ θ

α
2 (7.25)

So for pure gauge, the first term in (7.17) vanishes becauseQβ directly hits ΓN({pi})
and gives zero due to supersymmetry ward-identity (7.7). The second piece gives:

M12(εµα1 , kµ2 θ
α
2 ) = κ2

N∑
i=1

1

2

ε
(1)
µ /piθ

(2)

pi · (k1 + k2)

[
pµi pi · k2

pi · k2

+
1

2

kµ2pi · (k1 − k2)

k1 · k2

+
(kµ2 (k2 · pi)− k2 · k1p

µ
i )

k1 · k2

]
= κ2

N∑
i=1

1

2
ε(1)
µ /piθ

(2)

[
1

2

kµ2
k1 · k2

]
= 0 (7.26)

where in the last step we have used momentum conservation
∑N

i=1 pi = 0.
One should be able to show the gauge invariance when ε(1) is pure gauge. But in
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this case, first term in (7.17) does not give ward-identity directly and alsoM12 term
does not vanish. But one can check that the sum is gauge invariant. Alternative we
can use (7.20) to express the amplitude in the other ordering of soft factors

ΓN+2({pi}, k1, k2) =
[
S2 S1 +M21

]
ΓN({pi}) (7.27)

In this representation, it is obvious that the RHS vanishes for pure-gauge ε(1). In
general,

Muv(ε
µα
u , kµv θ

α
v ) = 0 (7.28a)

Muv(k
µ
u θ

α
u , ε

µα
v ) 6= 0 (7.28b)

At this point, we would like to emphasize that the combined contribution from
figure 7.3.2 and 7.3.3 is not gauge-invariant. Only after adding the contribution
from figure 7.3.4 the answer becomes gauge invariant. A different way to state the
same result is that massless spin 3/2 particles that interact with other fields at low
momenta requires an interacting massless spin 2 particle at low energy. This point
was first elucidated in [119].

Symmetrized form the amplitude The expression for the soft factor in (7.17) is
not manifestly symmetric on the gravitini. That form was useful to prove gauge
invariance. Now we use (7.22) and (7.23) to write the answer in a form which is
manifestly symmetric on the gravitini

ΓN+2({pi}, k1, k2)

=
1

2

[
S1 S2 + S2 S1 +M12 +M21

]
ΓN({pi}) (7.29)

=

[
1

2
(S1 S2 + S2 S1)

+κ2

N∑
i=1

1

pi · (k1 + k2)

[
C12(pi) +

1

4
(pi · ε(1))/pi(ε

(2) · pi)
pi · (k1 − k2)

(pi · k2)(pi · k1)

]]
ΓN

Apart from the last term, other terms are clearly symmetric under the exchange
1←→ 2.
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7.3.3 Order of the soft limit

When there are more than one soft particles, there are various ways in which one
can take the soft limit. Consider the amplitude with N hard particles with mo-
menta {pi} and two soft particles with momenta k1 and k2 (ΓN+2({pi}, k1, k2)).

The consecutive soft limit is then defined as the limit in which the momenta are
taken to be soft one after another. So for two soft particles, this can be done in two
different ways

lim
k1→0

lim
k2→0

ΓN+2({pi}, k1, k2) , lim
k2→0

lim
k1→0

ΓN+2({pi}, k1, k2) (7.30)

Alternatively, one can take simultaneous limit where one takes both k1 and k2 to
zero keeping k1/k2 fixed

lim
k1, k2→0

ΓN+2({pi}, k1, k2) (7.31)

In this work, we have focused on the simultaneous limit in all cases. If the sin-
gle soft factors mutually commute (i. e. if the generators of the gauge symmetry
commute), then the simultaneous limit is the same as the consecutive limit. For
example, in the case of a photon, these two limits give the same answer. However,
if the symmetry generators do not commute, then these two limits differ. In our
case, the supersymmetry generators do not commute. For example, if we take the
consecutive limit by taking k1 to be soft first, then the Feynman diagram in figure
7.3.3 does not contribute because the soft particle (with momentum k1) in figure
7.3.3 is emitted from an internal line. Hence the total contribution, in this case, is
different from the case when we take simultaneous soft limits.

7.4 Three soft gravitini

In this section, we present the explicit computation for three external soft gravitini.
This computation is instructive to understand the soft factor for multiple gravitini,
described in the next section. In this section, we denote the amplitude with the
soft gravitini by ΓN+3, and similarly, we write ΓN instead of ΓN({pi}) to denote the
amplitudes involving only the hard-particles. For three soft gravitini, the different
contributions are as follows:
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• We first consider the Feynman diagrams where all three gravitini attach to
separate external legs (figure 7.4.1). In this case, the contribution will be just
the multiplication of individual soft factors.

FIGURE 7.4.1: Feynman diagram for three soft gravitini - I

Hence we obtain

Γ
(1)
N+3 = κ3

N∑
i=1

pµi ε
(1);α1
µ

pi · k1

Qα1

N∑
j=1,j 6=i

pµj ε
(2);α2
µ

pj · k2

Qα2

N∑
k=1,k 6=i,j

pµkε
(3)α3
µ

pk · k3

Qα3 ΓN({pi})

(7.32)

• Next case is when two gravitini attach to the same leg and the third one on
different leg as shown in figure 7.4.2.

FIGURE 7.4.2: Feynman diagram for three soft gravitini - II

The contribution from such configurations is given by

Γ
uv|w;1
N+3 = κ3

N∑
i=1

pµi ε
(u)αu
µ

pi · ku
Qαu

pµi ε
(v)αv
µ

pi · (ku + kv)
Qαv

N∑
j=1,j 6=i

pµj ε
(w)αw
µ

pj · kw
QαwΓN({pi})

(7.33)
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where u, v, w can take values 1, 2, 3. We can have different contributions de-
pending on the order in which gravitini attach.

• The third possibility consists of the diagrams when all gravitini are being
attached to the same external leg (figure 7.4.3).

(ε
(1)
µα, k1)

(ε
(2)
νβ , k2)

(ε
(3)
νγ , k3)

FIGURE 7.4.3: Feynman diagram for three soft gravitini - III

This contribution is given by:

ΓuvwN+3 = κ3

N∑
i=1

ε
(u)αu
µ pµi
pi · ku

ε
(v)αv
ν pνi

pi · (ku + kv)

ε
(w)αw
ρ pρi

pi · (ku + kv + kw)
QαuQαvQαwΓN({pi})

(7.34)
We get six such diagrams which can be obtained by interchanging the exter-
nal soft gravitini.

• Now we consider the diagrams in which any two soft gravitini combine to
give a soft graviton, and then this soft graviton attaches to the external leg,
the leftover (lonely !) third gravitini directly attaches to the external leg. This
can also give rise to two scenarios, i.e., the internal soft graviton and the left-
over lonely gravitino can attach to the same hard particles or different hard
particles.

In the case when they attach on separate legs as shown in figure 7.4.4, we just
have the multiplication of two factors:

Γ
uv|w;2
N+3 = κ3

N∑
i=1

[
Cuv(pi)

pi · (ku + kv)

] N∑
j=1,j 6=i

ε
(w)αw
µ pµj
pj · kw

QαwΓN({pi}) (7.35)
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FIGURE 7.4.4: Feynman diagram for three soft gravitini - IV

Since any two gravitini can combine to give the internal soft graviton (and
the third one will attach to the separate leg), there are three possibilities.

Now we can have the case when both the internal soft graviton and the left-
over soft gravitino attach to same external leg as shown in figure 7.4.5.

FIGURE 7.4.5: Feynman diagram for three soft gravitini - V

This diagram gives the following contribution:

Γ
uv|w;3
N+3 = κ3

N∑
i=1

[
ε

(w)αw
µ pµj
pj · kw

Qαw

Cuv(pi)
(pi · (k1 + k2 + k3))

]
ΓN({pi}) (7.36)

We will have another diagram in which the graviton attaches to the external
leg first and then the gravitino attaches to the external leg i.e.

which gives us:

Γ
uv|w;4
N+3 = κ3

N∑
i=1

[
Cuv(pi)

pi · (ku + kv)

ε
(w)αw
µ pµj

pi · (k1 + k2 + k3)
Qαw

]
ΓN({pi}) (7.37)
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FIGURE 7.4.6: Feynman diagram for three soft gravitini - VI

Adding the contributions from (7.35), (7.36) and (7.37), we get

Γ
uv|w;4
N+3 = Γ

uv|w;2
N+3 + Γ

uv|w;3
N+3 + Γ

uv|w;4
N+3

= κ2

[[
N∑
i=1

Cuv(pi)
(pi · (ku + kv))

]
Sw

]
ΓN({pi}) (7.38)

To write down the contributions from six diagrams shown in figure 7.4.3 we
choose a particular ordering i.e. we choose Qγ (the supercharge appearing
with the third gravitini) to be the right-most. The Γ123

N+3 remains the same

Γ123
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(2)β
ν pνi

pi · (k1 + k2)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)
QαQβQγ ΓN({pi}) (7.39)

We can bring any other expression into this particular ordering by using (6.2).
For example,

Γ132
N+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(3)γ
ν pνi

pi · (k1 + k3)

ε
(2)β
ρ pρi

pi · (k1 + k2 + k3)
QαQγQβ ΓN({pi})

= κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(2)β
ν pνi

pi · (k1 + k3)

ε
(3)γ
ρ pρi

pi · (k1 + k2 + k3)

[
QαQβQγ +

1

2
(/pi)βγQα

]
ΓN({pi})

(7.40)
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Adding all such contributions, we get:

ΓexN+3 = κ3

N∑
i=1

ε
(1)α
µ pµi
pi · k1

ε
(2)β
ν pνi
pi · k2

ε
(3)γ
ρ pρi
pi · k3

QαQβQγΓN(pi)

+
κ3

2

N∑
i=1

[
ε

(1)α
µ pµi
pi · k1

(/pi)βγQα
ε

(2)β
ν pνi

pi · (k2 + k3)
− ε

(1)α
µ pµi

pi · (k1 + k3)

ε
(2)β
ν pνi
pi · k2

(/pi)αγQβ

− ε
(1)α
µ pµi

pi · (k3 + k2)

ε
(2)β
ν pνi
pi · k2

(/pi)αβQγ

]
ε

(3)γ
ρ pρi
pi · k3

ΓN({pi}) (7.41)

Finally, the full result can be written as:

ΓN+3({pi}, {ku}) =
[
S1 S2 S3 +M12 S3 +M23 S1 +M13 S2

]
ΓN({pi}) (7.42)

where Su and Muv is defined in (7.4) and (7.18) respectively. The above answer
matches with the proposed answer (7.45) with M = 3.

Rearrangement

We have written the answer for a particular ordering (1-2-3). In this case, we ex-
plicitly demonstrate the rearrangement. Let us say that we want to write in the
order 1-3-2. We apply the identity (7.20) for u = 2, v = 3

ΓN+3({pi}, {ku}) =
[
S1(S3S2 −M23 +M32) +M12 S3 +M23 S1 +M13 S2

]
ΓN({pi})

=
[
S1 S3 S2 +M12 S3 +M32 S1 +M13 S2

]
ΓN({pi}) (7.43)

7.4.1 Gauge invariance

The gauge invariance of (7.42) is the easiest to show if we put pure gauge polariza-
tion for the last one, for example, the third gravitino in (7.42) and the second one in
(7.43). Because the answer can always be rearranged to any particular ordering, we
can always bring any particular gravitino to be the last entry. Hence it is sufficient
to show the gauge invariance for the pure gauge polarization of the last one.

Let us consider (7.42) and pure gauge polarization for the third gravitino. The
first and the second term vanish as in equation (7.7) and the third & the fourth term
vanish because of (7.28a).
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Symmetric form: We can write the answer (7.43) in the form which is manifestly
symmetric in all the gravitini

ΓN+3({pi}, {ku}) =

[
1

3!
S(1 S2 S3) + κ2

∑
r 6=u6=s

N∑
i=1

1

pi · (kr + ku)(
(ε(r) · pi)/pi(ε(u) · pi)pi · (kr − ku)

4(pi · kr)(pi · ku)
+ Cur(pi)

)
Ss

]
ΓN({pi})

(7.44)

7.5 Arbitrary number of soft gravitini

In this section, we generalize the above results to write down the expression for
soft theorem with an arbitrary number of external soft gravitini. In this case, the
following type of diagrams can contribute:

• Some of the soft gravitini attach on one external leg and some on another
external leg(s), but none of them form pairs to give soft graviton, as shown in
figure 7.5.1(a).

... ...

(a)

... ...

(b)

...

(c)

... .... ....

(d)

FIGURE 7.5.1: Feynman diagram for multiple soft gravitini
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• Next is the case when some of the soft gravitini attach on one external leg and
some on another external leg(s) and some form pairs to give soft graviton as
shown in figure 7.5.1(b).

• All gravitini attach on the same external leg, but none of them form pairs to
give soft graviton as shown in figure 7.5.1(c).

• Some gravitini form pairs and give a soft graviton while some attach directly
to external leg as shown in figure 7.5.1(d).

By looking at the pattern followed in two and three soft gravitini case, we pro-
pose the following expression for M -soft gravitini.

ΓN+M({pi}, {kui}) =

 M∏
i=1

Sui +

bM/2c∑
A=1

A∏
i=1

Muivi

M−2A∏
j=1

Srj

ΓN({pi}) (7.45)

where bM/2c denotes the greatest integer which is less than or equal to M/2. Vari-
ous terms appearing in the above expression are explained below:

1. The first term is very similar to the leading soft factor for multiple soft pho-
tons or multiple soft gravitons. The other terms are there because of the fact
that soft gravitino factors do not commute. We always write the first factor in
a particular order, for example, Su1 , ....,SuM u1 < u2... < uM and the particular
form of the second term depends on the choice of ordering for the first term.
This way of writing in a particular order is also convenient to check gauge
invariance.

2. In the second term, A counts the number of pairs of gravitini giving soft
gravitons. For each pair, we have a factor of Cuv coming from the gravitino-
graviton-gravitino vertex, which combines with a factor coming from the
anti-commutation relation (which is used to bring the first term in particular
order), to give Muv. The subscripts {rj, ui, vi} can take values from 1, ...,M

and vi > ui and rj’s are also ordered with the largest rj appearing on the
right.

The disadvantage of the expression (7.45) is that it depends on the ordering of the
external soft gravitini. This expression does not look invariant under change of
the ordering, but we show below that it is invariant under rearrangement. We can
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go to any particular ordering starting from any other ordering. Our strategy is as
follows:

1. We first show that any two consecutive entries can be interchanged.

2. By repeating this operation (of interchanging any two consecutive entries)
many times, we can obtain any ordering starting from any other ordering2.

7.5.1 Re-arrangement

In this subesection, we show that any two consecutive terms of equation (7.45) can
be interchanged. Consider the ith and (i + 1)th particle. We write the expression
(7.45)

ΓN+M({pi}, {ku}) =

[
Su1 ...SuiSui+1

...SuM +Mu1u2 Su3 ...SuiSui+1
...SuM

Mu2u3 Su1 ...SuiSui+1
...SuM−1

SuM + ....+Mu1uiSu2 ...Sui+1
...SuM−1

SuM
Mu2ui Su1 ...Sui+1

...SuM−1
SuM + ...+Muiui+1

Su1 ...SuM−1
SuM +

...+Mu1u2 ...Muiui+1
...MuM−1uM

]
ΓN({pi})

(7.46)

Here the ith and (i+ 1)th particle can appear only in three different ways

• Possibility I: Both the ith and (i+ 1)th gravitini appear in the S factor[
ASuiSui+1

B
]
ΓN({pi}) (7.47)

where A and B involves all the other M − 2 gravitini. The other gravitioni
appear as ordered multiplications of Su andMvw’s in all possible ways.

• Possibility II: Both the ith and (i+ 1)th gravitino appear inMuv together[
ÃMuiui+1

B̃
]
ΓN({pi}) (7.48)

Here Ã and B̃ involves all the otherM−2 gravitini. Again the other gravitions
appear as ordered multiplications of Su andMvw’s in all possible ways. This

2Theorem 2.1 in this note gives a proof of the above statement.

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf
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would imply

A = Ã , B = B̃ (7.49)

So same A and B appear in (7.47) and in (7.48). Adding (7.47) and (7.48) we
get [

A(Sui Sui+1
+Muiui+1

)B
]
ΓN({pi}) (7.50)

• Possibility III: At least one of them appears asM and if both of them appear
inMuv, they do not appear together. The possibility of both of them to appear
together inMuv has already been taken into account in possibility II.

N∑
j=1,j 6=i,i+1

[
MujuiCi+1(εui+1

) +Mujui+1
Ci(εui)

]
ΓN({pi}) (7.51)

Here Ci+1(εui+1
) is the all possible arrangements of all the gravitini except uj

and ui and similarly Ci(εui) is the all possible arrangements of all the gravitini
except uj and ui+1.

Now if we started with an ordering in which ui+1 appeared before ui then we can
repeat the same analysis. Equation (7.51) is same in both cases, but in (7.46) and in
(7.47) i and i+ 1 will get interchanged (i.e. i←→ i+ 1). Hence instead of (7.50) we
would get [

A
(
Sui+1

Sui +Mui+1ui

)
B
]
ΓN({pi}) (7.52)

But now we can use (7.20) to see that (7.50) and (7.52) a essentially the same. Hence
the final answer is same irrespective of ordering of the soft factors.

7.5.2 Gauge invariance

We have already proved that the expression for multiple soft gravitini can be re-
arranged to any particular ordering. Using this, we can bring any gravitino to be
the rightmost. We will show the gauge invariance of the expression only when the
rightmost gravitino is pure gauge.

The rightmost gravitino can appear only in two ways:
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1. It can appear in Su. Since it is the rightmost gravitino, it will directly hit the
hard-particle’s amplitude, and hence it gives zero by (7.7).

2. It can appear inMuv. Again it will always appear as the 2nd index. However,
this vanishes because of (7.28a).

7.6 Soft theorems in the presence of Central Charge

As noticed in chapter 6, in the presence of central charge, we get a U(1)N gauge
symmetry generated by graviphotons. These graviphotons also couple to the soft
gravitini and whenever we have more than one soft gravitini, the vertex in (6.26)
contributes. In particular, consider the case of two soft gravitini. We already eval-
uated it in section 7.3. In presence of the central charge(s) we have a new contribu-
tion from the diagram 7.6.1.

FIGURE 7.6.1: Feynman diagram for double soft gravitini - V

The evaluation of this diagram very similar to the evaluation of the figure 7.3.4
. It is given by:

Γ
(4)
N+2({pi}, k1, k2) =

[
ε(1)α
µ (Ṽµν;µ1)αβ ε

(2)β
ν

] [ iηµ1µ2

2k1 · k2

]
[−2κ ei p

µ2

i ]

[
1

2pi · (k1 + k2)

]
ΓN({pi})

(7.53)

Here the first square bracket denotes gravitino-gravitino-graviphoton vertex, the
second one is the graviphoton propagator and the third one is the matter- soft
graviphoton -matter vertex and the last one is the internal propagator. Now we
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can substitute the explicit expression for (Ṽab;µ)αβ from equation (6.26) to obtain

Γ
(4)
N+2 =

(−iκ)2

2

N∑
i=1

ei ε
(1)
µα(Z)αβ

[
ηµνpi · k2 +

1

2
ηµν(k1 + k2)d pieγ

de − (kµ2p
ν
i − kν1p

µ
i )

]
ε

(2)
νβ[

1

(pi · (k2 + k1))(k1 · k2)

]
ΓN({pi}) (7.54)

After some simplification we get:

Γ
(4)
N+2({pi}, k1, k2) =

κ2

2

N∑
i=1

ei ε
(1)
µα(Z)αβ

[
−ηµνpi · k2 +

1

2
ηµνpi · (k1 + k2) + (kµ2p

ν
i − kν1p

µ
i )

]
ε

(2)
νβ[

1

(pi · (k2 + k1))(k1 · k2)

]
ΓN({pi}) (7.55)

When we add this contribution to the original result, the definition of Cuv(pi) in
(7.15) will be modified as follows:

C̃uv(pi) = Cuv(pi) +
κ2

2
ei ε

(u)
µ Zε(v)

ν

[
1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv p

ν
i − kνup

µ
i )

ku · kv

]
(7.56)

In equation (7.16) we show that Cuv is symmetric in its particle indices. The same
property holds for C̃uv

C̃uv(pi) = C̃vu(pi) (7.57)

We add the contribution from (7.56) to (7.17) to get the final answer. It is given by

ΓN+2({pi}, k1, k2) =
[
S1 S2 + M̃12

]
ΓN({pi}) (7.58)

Here we have introduced M̃uv. It is defined as

M̃uv =Muv +
κ2

2

N∑
i=1

ei
ε

(u)
µ Zε(v)

ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv p

ν
i − kνup

µ
i )

ku · kv

]
(7.59)

Note that the relations in equations (7.24a), (7.24b), (7.24c) remain the same if we
replaceMuv with M̃uv. In this particular case we have:

Su Sv − Sv Su = −M̃uv + M̃vu (7.60)
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7.6.1 Gauge invariance

As explained in the section 7.3.2, it is easier to prove gauge invariance if we put
pure gauge polarization for the gravitino adjacent to ΓN . So we consider pure
gauge polarization for the second gravitino

εµα2 = kµ2 θ
α
2 (7.61)

For pure gauge

M̃uv =
κ2

2

N∑
i=1

1

pi · (ku + kv)

[
ε(u)
µ /piθ

(v) + ei ε
(u)
µ Zθ(v)

]
[
pµi pi · kv
pi · kv

+
1

2

kµv pi · (ku − kv)
ku · kv

+
(kµv kv · pi − kv · kup

µ
i )

ku · kv

]

=
κ2

2

N∑
i=1

1

pi · (ku + kv)

[
ε(u)
µ /piθ

(v) + ei ε
(u)
µ Zθ(v)

] [1

2

kµv
ku · kv

]
= 0 (7.62)

where in the last step we have used momentum conservation and (central-)charge
conservation

N∑
i=1

pi = 0 ,
N∑
i=1

ei = 0 (7.63)

7.7 Presence of soft graviton

Following [98–100] it is easy to include soft graviton into this computation. The
vertex for the leading soft graviton (ζµνP µP ν) commutes with the vertex for soft
gravitino and also commutes with the vertex for any other soft graviton. So, in the
presence of M1 soft gravitini and M2 soft gravitons equation (7.45) is modified as
follows

ΓN+M1+M2({pi}, {kr}) =

[
M2∏
j=1

S̃uj

]M1∏
i=1

Sui +

bM1/2c∑
A=1

A∏
i=1

Muivi

M1−2A∏
j=1

Srj

ΓN({pi})(7.64)
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S̃u is the leading soft factor for graviton, given by:

S̃u = κ

N∑
i=1

ζ
(u)
µν p

µ
i p

ν
i

pi · ku
(7.65)

We also notice that the leading order soft gravitini theorem is universal i.e., it
is independent of the details of the lagrangian. It has been observed previously
that the leading and sub-leading soft factors for multiple gravitons are universal
[100]. Notice that these three soft theorems must be inter-related by supersymme-
try. One way to argue this is to observe that all these three soft theorems follow
from covariantizing the action with respect to the soft field. In supergravity, the
structure of the covariant derivative is uniquely fixed by supersymmetry. Hence
these theorems must be related to each other by supersymmetry.
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Appendix

7.A Notation and convention

Our notation is as follows

Curved space indices µ, ν, ρ, σ

Tangent space indices a, b

SO(d, 1) spinor indices α, β

Soft-particle indices u, v

Hard-particle indices i, j

Number of Soft-particles M

Number of Hard-particles N

Polarization of the graviton ζµν

Polarization of the gravitino εµα

7.A.1 Gamma matrix and spinor convention

We use the following the gamma matrix convention

{γa, γb} = −2 ηab (7.67)

and we get

[γa, γbc] = −2ηabγc + 2ηacγb (7.68)

The spinors have the following index structure

ψα (7.69)
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and the gamma matrix index structure is

(γµ)α
β (7.70)

We raise and lower the indices as follows (NW-SE convention)

ψα = Cαβψβ , ψα = ψβCβα (7.71)

Here Cαβ satisfies

CαβCγβ = δαγ CβαCβγ = δγα (7.72)

(γµ)αβ is given by

γµαβ = (γµ)α
γ Cγβ (7.73)

7.A.2 Majorana spinor

For two Majorana spinors ψ1 and ψ2

(ψ1)α(ψ2)α = (ψ2)α(ψ1)α (7.74)
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Chapter 8

Infrared Divergences

In this chapter, we briefly discuss infrared divergences in supergravity theories. In
the computation of soft theorems, we used 1PI effective action, but this approach
fails when 1PI vertices have IR divergences. The massless particles in loops can po-
tentially give rise to these divergences, hence in the supergravity theories, graviton,
gravi-photon, and gravitino1 can contribute to these divergences. We show below
that there are no IR divergences in the 1PI effective action for D ≥ 5. We will also
show that the virtual gravitino does not give rise to IR divergence in any dimen-
sion. Hence in D = 4, 1PI vertices suffer from IR divergences only due to graviton
and graviphoton. However, a more careful analysis shows that the IR divergences
do not alter the leading soft gravitino factor.

First, we discuss the case of D ≥ 5. Then we discuss the case of D = 4, which
needs more careful analysis. We show that the IR divergences do not alter the
leading soft gravitino theorem.

8.1 Infrared divergences in D ≥ 5

In this section, we wish to check if the approach based on 1PI effective action re-
mains valid in D ≥ 5 even after taking the soft limit for the external gravitino.

Consider the Feynman diagram in figure 8.1.1(a). If the external momenta are
finite, then by naive power-counting, we can see that the amplitude does not have
IR divergence for D ≥ 4. Basically, we have three powers of ` in the denominator,
one from each of the propagators with momenta pi + `, pj − ` and `. The last prop-
agator gives one power of ` because it is a fermionic particle. In D dimensions,
we have D powers of ` in the numerator due to the loop integral, and hence the

1If there is a massless matter multiplet then in principle it can also contribute to infrared diver-
gence
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amplitude goes like `D−3 for small loop momentum `. So the diagram is free of IR
divergence in D ≥ 4. Hence any virtual gravitino does not give rise to IR diver-
gences. But when the momenta k → 0, then the propagator carrying momentum
pi + k + ` gives another power of ` and makes the result logarithmically divergent
in D = 4 but there is no additional divergence in D ≥ 5. So our results are still
valid for D ≥ 5.

`

pi + `pi
k

pi + k + `

pj

pj − `

(a)

`

pi + `pi
k

pi + k + `

pj

pj − `

(b)

FIGURE 8.1.1: Infrared divergence in supergravity I

Next we consider the Feynman diagram in figure 8.1.1(b). In this case, the inter-
nal massless particle is graviton (it can also be photon/graviphoton). We see four
powers of ` in the denominator from power-counting, one from each of the propa-
gators with momenta pi + `, pj − ` and two powers of ` coming from the graviton
propagator. Now in k → 0 limit, the propagator carrying momentum pi+k+` gives
another power of ` and the diagram is logarithmic divergent in D = 5. However,
the leading order answer is O(k−1), and hence it still holds for D ≥ 5.

8.2 Infrared divergences in D = 4

In D = 4, the 1PI effective action suffers from IR divergences due to the presence of
graviton and photon in the loop (We already argued that there is no IR divergence
in the 1PI vertex due to the presence of gravitino in the loop). So we cannot use it
to compute the S-matrix. Nevertheless, one can use the tree level action to derive
soft theorems order by order in the perturbation theory. So in four dimensions, we
use the tree level action instead of 1PI action in equation (6.3).
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`

pi + k

pi
k

pi + k + `

pj

pj − `

(a)

`

pi + `pi
k

pi + k + `

pj

pj − `

(b)

pi
k

pj

(c)

FIGURE 8.1.2: Infrared divergence in supergravity II

Now the question is whether loop corrections can alter the results of leading
soft theorems. In the case of the soft graviton (and photon 2), it has been shown
that even though the amplitudes with and without soft particles suffer from IR di-
vergences but at leading order, when one sum over diagrams, the divergence fac-
torizes out and cancels from both sides [89]. In this section, we show that the same
result holds for soft gravitino. We will show that the IR divergence due to graviton
and graviphoton is the same for amplitudes with and without soft gravitino.

8.2.1 Single real soft gravitino in the presence of virtual graviton

In this subsection, we consider the loop corrections to the soft gravitino factor in
D = 4 in the presence of a graviton running in the loop. We denote the contribu-
tions from these diagrams as Γ

(i;j,k)
N+1 (k, {pi}); here the superscripts j and k denote

the legs to which the virtual graviton attaches and i denote the one to which the
soft gravitino attaches. The total contribution is given by

ΓN+1(k, {pi}) =
N∑
i=1

N∑
j=1

N∑
k=1;k 6=j

Γ
(i;j,k)
N+1 (k, {pi}) (8.1)

2with massive matter
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First we evaluate Γ
(i;i,j)
N+1 (k, {pi}). It is given by

Γ
(i;i,j)
N+1 (k, {pi}) =

[
Ã1(pi, pj; k) + Ã2(pi, pj; k)

]
ΓN({pi}) (8.2)

Ã1(pi, pj; k) and Ã2(pi, pj; k) are contributions from diagram (a) and (b) respectively
in fig 8.1.2. In small k and small ` limit, these contributions are given by

`

pi

pi + `

pj

pj − `

FIGURE 8.2.1: Infrared divergence in Supergravity III

Ã1(pi, pj; k) = κ3βij (pi · εαQα)

∫
d4`

(2π)4

1

`2

1

pi · `
1

pj · `
1

pi · (k + `)
(8.3)

Ã2(pi, pj; k) = κ3βij (pi · εαQα)

∫
d4`

(2π)4

1

`2

1

pi · k
1

pj · `
1

pi · (k + `)
(8.4)

where βij is given by

βij =

(
i

2

) [
2(pi · pj)2 − p2

i p
2
j

]
(8.5)

Adding the contributions from (8.3) and (8.4), we get

Γ
(i;i,j)
N+1 (k, {pi}) = κ2βij

∫
d4`

(2π)4

1

`2

κ pi · εαQα

pi · k
1

pj · `
1

pi · `
ΓN({pi}+O(k0)

= A(pi, pj)
κ pi · εαQα

pi · k
ΓN({pi}) +O(k0) (8.6)

where A(pi, pj) is the IR divergence that appears in diagram without soft gravitino
which is depicted in fig. 8.2.1. It is given by:

A(pi, pj) = κ2βij

∫
d4`

(2π)4

1

`2

1

pi · `
1

pj · `
(8.7)
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The contribution from diagram (c) in fig 8.1.2 is given by [89]

Γ
(i;j 6=i,k 6=i)
N+1 (k, {pi}) = A(pj, pk)

[
κpi · εαQα

pi · k

]
ΓN({pi}) (8.8)

Putting (8.6) and (8.8) in (8.1), we obtain

ΓN+1(k, {pi}) =

[
κ

N∑
i=1

pi · εαQα

pi · k

][
N∑
j=1

N∑
k=1, 6=j

A(pj, pk)

]
ΓN({pi}) (8.9)

Hence we find that the soft gravitino factor factors out from the IR divergent
integral.

Next, we will compute the two loop contributions to IR divergence. The corre-
sponding Feynman diagrams are given in figure 8.2.2.

`1

`2

k

pi

pj

`1

`2

k

pi

pj

`1

`2

k

pi

pj

FIGURE 8.2.2: Infrared divergence in Supergravity IV

The contribution from these diagrams are given by

Γ
(i;i,j)
N+1 (k, {pi}) =

[
6∑

a=1

∫
d4`1d

4`2 I
(a)

]
[κ pi · εαQα] ΓN({pi}) (8.10)
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where I(α) with α = 1, 2, 3 are the integrands obtained from the three diagrams
shown above. The other three integrands are obtained from the non-planar dia-
gram. The explicit expressions for these integrands are given by

I(1) = κ2 1

pi · k
βij
`2

2

1

pi · (k + `2)

βij
`2

1

1

pi · (k + `1 + `2)

1

pj · `2

1

pj · (`1 + `2)

I(2) = κ2βij
`2

2

1

pi · l2
1

pi · (k + `2)

βij
pi · (k + `1 + `2)

1

pj · `2

1

`2
1

1

pj · (`1 + `2)

I(3) = κ2 βij
pi · `2

βij
pi · (`1 + `2)

1

pi · (k + `1 + `2)

1

pj · `2

1

`2
1

1

`2
2

1

pj · (`1 + `2)
(8.11)

Adding the three contributions above and the contributions from the non-planar
diagrams we obtain,

I(pi, pj; k) =
1

pi · k

∫
d4`1d

4`2 I(pi, pj; `1, `2) (8.12)

where I(pi, pj; `1, `2) is given by

I(pi, pj; `1, `2) = κ2 1

pi · (`1 + `2)

1

pi · `2

1

pj · `2

βij
`2

1

βij
`2

2

1

pj · `1

(8.13)

which is the same two loop integrand we get when there is no soft gravitino. There
are other two loop diagrams that we have not depicted here, for example, the dia-
grams in which two virtual gravitons attach to different legs etc. Adding contribu-
tion from those loop diagrams we obtain

ΓN+1(k, {pi}) =
1

2

[
N∑
j=1

N∑
k=1;6=j

A(pj, pk)

]2 [
κ

N∑
i=1

pi · εαQα

pi · k

]
ΓN({pi}) (8.14)

Note that the soft factor appears just as a multiplicative factor with the infrared di-
vergent piece. One can show that the contribution due to N - virtual soft-gravitons
and an external soft gravitino comes out to be

ΓN+1(k, {pi}) =

[
κ

N∑
i=1

pi · εαQα

pi · k

] ∞∑
N=0

1

N !

[
N∑
j=1

N∑
k=1;k 6=j

A(pj, pk)

]NΓN({pi})

(8.15)
This implies the soft theorem is not affected by the IR divergence.
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8.2.2 Single real soft gravitino in presence of virtual graviphoton

In the presence of graviphoton, there are new IR divergent diagrams due to gravipho-
ton running in the loops. These diagrams can be obtained by replacing graviton
with graviphoton in the fig 8.1.2 and in the fig 8.2.2. The computation is very simi-
lar to the one presented in subsection 8.1. The infrared divergence due to gravipho-
ton is given by [

∞∑
N=0

1

N !
[B(pi, pj)]

N

]
(8.16)

where B(pi, pj) is given by

B(pi, pj) = κ2eiej

∫
d4`

(2π)4

1

`2

1

pi · `
1

pj · `
1

pi · (k + `)
(8.17)

In presence of graviphoton, equation (8.18) will be replaced by the following equa-
tion

ΓN+1(k, {pi}) =

[
κ

N∑
i=1

pi · εαQα

pi · k

] ∞∑
N=0

1

N !

[
N∑
j=1

N∑
k=1;k 6=j

(A(pj, pk) +B(pj, pk))

]NΓN({pi})

(8.18)

Again we can see that the soft factor is not affected by the IR divergence.

8.2.3 Massless matter

Now we concentrate on the particular case when some (or all) of the matter fields
are massless 3. Weinberg in [89] showed that in the presence of massless matter,
the IR divergence due to virtual graviton cancels. However, there are irremovable
IR divergences in QED with the massless charged matter.

In this case, the IR divergence comes from the presence of virtual graviton and
virtual graviphoton. The ones due to virtual graviton cancel due to Weinberg’s
argument. However, in the presence of graviphoton, there might be some non-
removable IR divergences. Graviphoton gauges the symmetries generated by the
central charge. The central charge puts a lower bound on the mass of the particle

3We are thankful to the unknown referee for pointing out this issue
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(the BPS bound). The graviphoton only couples to matter with non-zero central
charge and hence with non-zero mass. So there is no irremovable IR divergence in
this case.

In the presence of both the vector multiplet(s) and the massless matter multi-
plet(s) charged under the vector multiplet(s), there are irremovable IR divergences
in D = 4 due to the photon/gluon (of the vector multiplet) running in the loop.
Since there is no vector multiplet in N = 8 supergravity, our analysis implies that
there are no irremovable IR divergences in N = 8 supergravity (and in type II
string theory).
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Conclusions and Outlook

In this part of the thesis, we have computed the leading order soft gravitini
theorem for an arbitrary theory of supergravity. We also observe that the leading
order soft factor for multiple gravitini is universal, i.e., it is independent of the
specific supergravity lagrangian.

Our main result is equation (7.45) which is elaborated below:

ΓM+N({pi}, {ku}) =

 M∏
i=1

Sui +

bM/2c∑
A=1

A∏
i=1

Muivi

M−2A∏
j=1

Srj

ΓN({pi}) +O(1/kM−1)

(8.19)
where ΓM+N({pi}, {ku}) is the amplitude for M soft gravitini and N any other hard
particles, pi are the momenta of hard particles and ku are momenta of soft particles.
Various terms appearing in the RHS of are explained below:

1. Su is the soft factor for single soft gravitino. It is given by

Su = κ
N∑
i=1

(
ε

(u)α
µ pµi
pi · ku

Qα

)
(8.20)

Here κ is the gravitational coupling constant. ε(u)α
µ is the polarization of the

gravitino. The gravitino polarization (in the harmonic gauge) satisfies the
transversality condition and gamma traceless condition:

(ku)
µε(u)α
µ = 0 , γµαβε

(u)β
µ = 0 (8.21)

Qα are the supersymmetry charges/generators. Since Su is a product of two
grassmann odd quantities, it is grassmann even. Two single soft factors do
not commute with each other:

Su Sv 6= Sv Su (8.22)

2. Whenever there is more than one gravitino, they can combine pairwise to
give a soft graviton which in-turn couples to the hard particles andMuv en-
codes these type of contributions. The gravitino-graviton-gravitino vertex is



8.2. Infrared divergences in D = 4 137

crucial to make the two soft gravitini amplitude gauge-invariant. A different
way to state the same result is that, a massless spin 3/2 particle that inter-
acts with other fields at low momenta requires an interacting massless spin 2

particle at low energy. The explicit expression forMuv is given by

Muv = κ2

N∑
i=1

1

2

ε
(u)
µ /piε

(v)
ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv p

ν
i − kνup

µ
i )

ku · kv

]
(8.23)

3. Since the single soft factors for gravitino do not commute, the final expres-
sion for arbitrary soft gravitino depends on the choice of ordering. In §7.5.1,
we demonstrate that any ordering can be obtained from any other order-
ing. However, our expression is not manifestly symmetric on the various
soft gravitini.

4. The first term is the product of single-soft gravitino factors. The single-soft
factors appear in a particular order, and the explicit form of the second piece
changes depending on the ordering of soft factors because two soft factors do
not commute.

5. In the second term, bM/2c denotes the greatest integer, which is less than
or equal to M/2 and A counts the number of pairs of gravitini giving a soft
graviton. The subscripts {rj, ui, vi} take values 1, ...,M and vi > ui and rj’s
are also ordered with the largest rj appearing on the right.

6. The supersymmetry algebra may have a non-vanishing central charge. In this
case, the gravitino super-multiplet contains a graviphoton. In presence of the
central charge, there are additional contributions toMuv due to graviphoton
couplings. In this case, the expression ofMuv is modified as follows

M̃uv =Muv+
κ2

2

N∑
i=1

ei
ε

(u)
µ Zε(v)

ν

pi · (ku + kv)

[
pµi p

ν
i

pi · kv
+

1

2

ηµνpi · (ku − kv)
ku · kv

+
(kµv p

ν
i − kνup

µ
i )

ku · kv

]
(8.24)

ei is the charge of the ith external state under the symmetry generated by the
graviphoton. Z is an element of the Clifford algebra such that Zαβ commutes
with all other element of the Clifford algebra.

In presence of a soft graviton, we have to multiply the above expression by soft
factors of the graviton. For M1 soft gravitini and M2 soft gravitons equation (8.2.3)
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ΓN+M1+M2({pi}, {kr}) =

[
M2∏
j=1

S̃uj

]M1∏
i=1

Sui +

bM1/2c∑
A=1

A∏
i=1

Muivi

M1−2A∏
j=1

Srj

ΓN({pi})

(8.25)
where S̃u is the leading soft factor for graviton. It is given by

S̃u = κ

N∑
i=1

(
ζ

(u)
µν p

µ
i p

ν
i

pi · ku

)
(8.26)

here ζµν is the polarization of soft graviton.
We also observe that the infrared divergences do not affect the leading order

results. Hence our results are valid in D ≥ 4.
There are certain directions in which this work can be extended. Some of them

are listed below:

• One is to understand the structure of the sub-leading soft gravitino theorem
and its relation to that of sub-leading and sub-subleading soft graviton theo-
rem.

• The approach used in above chapters can also be applied to compute the soft
photino theorem in the presence of gravitino, photon, and graviton.

• Another interesting question is to derive the result for multiple soft gravitini
from the analysis of asymptotic symmetries and from the CFT living on I±

following [124–127].
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