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Abstract: We present statistically convergent profile likelihood maps obtained via global

fits of a phenomenological Minimal Supersymmetric Standard Model with 15 free param-

eters (the MSSM-15), based on over 250M points. We derive constraints on the model

parameters from direct detection limits on dark matter, the Planck relic density mea-

surement and data from accelerator searches. We provide a detailed analysis of the rich

phenomenology of this model, and determine the SUSY mass spectrum and dark matter

properties that are preferred by current experimental constraints. We evaluate the impact

of the measurement of the anomalous magnetic moment of the muon (g−2) on our results,

and provide an analysis of scenarios in which the lightest neutralino is a subdominant com-

ponent of the dark matter. The MSSM-15 parameters are relatively weakly constrained by

current data sets, with the exception of the parameters related to dark matter phenomenol-

ogy (M1, M2, µ), which are restricted to the sub-TeV regime, mainly due to the relic density

constraint. The mass of the lightest neutralino is found to be < 1.5TeV at 99% C.L., but

can extend up to 3TeV when excluding the g − 2 constraint from the analysis. Low-mass

bino-like neutralinos are strongly favoured, with spin-independent scattering cross-sections

extending to very small values, ∼ 10−20 pb. ATLAS SUSY null searches strongly impact

on this mass range, and thus rule out a region of parameter space that is outside the reach

of any current or future direct detection experiment. The best-fit point obtained after in-

clusion of all data corresponds to a squark mass of 2.3TeV, a gluino mass of 2.1TeV and a

130GeV neutralino with a spin-independent cross-section of 2.4×10−10 pb, which is within

the reach of future multi-ton scale direct detection experiments and of the upcoming LHC

run at increased centre-of-mass energy.
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1 Introduction

The Large Hadron Collider (LHC) has delivered ∼ 20 fb−1 of integrated luminosity at√
s = 8 TeV, but evidence for new physics beyond the Standard Model (SM) is still lacking.

In particular, the data contain no signature of Supersymmetry (SUSY), which is the most

widely studied theory of physics beyond the SM, as it may offer a solution to the hierarchy

problem and to the dark matter problem of the universe. In light of the lack of a signal in

direct searches for SUSY, the ATLAS and CMS collaborations have placed strong bounds

on gluinos and squarks with masses . 1 TeV. On the other hand, the recent discovery of

a SM-like Higgs boson with a mass mh ∼ 125GeV requires very large top squark sector

masses, generally of several TeV. This excludes generic supersymmetric theories in which

all the superpartners have masses below ∼ 1 TeV.

The simplest SUSY realization, the Minimal Supersymmetric Standard Model

(MSSM), has 126 Lagrangian parameters, including complex phases, which makes its phe-

nomenological study impractical. If one applies a concrete mechanism that mediates SUSY

breaking to the observable sector, then the number of parameters can be reduced signif-

icantly. This is for instance the case for models like the constrained MSSM (cMSSM) in

which one demands universal scalar masses, gaugino masses and the trilinear couplings at a

high energy scale. The cMSSM is certainly the most studied model in the literature and its

viability with respect to the relevant available data has been assessed using several meth-

ods; from grid and random scans to — more recently — statistically convergent methods

(both Bayesian and profile likelihood).

The LHC data have severely constrained this model, so much that it is in tension with

the naturalness of the electroweak breaking at the correct scale since the SUSY-breaking

parameters are pushed to large values. One exception is the focus point region where

the weak scale is insensitive to variations in these parameters. However, this region is

becoming increasingly constrained by direct dark matter searches, such as the XENON100

and LUX experiments. This conclusion also applies to less constrained models such as the

non-universal Higgs mass model (NUHM) [1, 2], the non-universal gaugino mass model

(NUGM) [3] and the non-universal gaugino and Higgs mass model (NUGHM) [4].

One approach to address this issue is to avoid explicitly assuming a SUSY break-

ing mechanism. Instead, one can reduce the 126 MSSM parameters to 19 parameters

by using phenomenological constraints, that define the so-called phenomenological MSSM

(pMSSM) [5]. In this scheme, one assumes that: (i) All the soft SUSY-breaking parameters

are real, therefore the only source of CP-violation is the CKM matrix. (ii) The matrices

of the sfermion masses and the trilinear couplings are diagonal, in order to avoid FCNCs

at the tree-level. (iii) First and second sfermion generation universality to avoid severe

constraints, for instance, from K0 − K̄0 mixing.

– 2 –
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The pMSSM has been studied in the past using random scans [6–8], as well as Bayesian

methods [9–12]. Both approaches have limitations. While appearing uniformly distributed

in 1D and 2D projections, random scans in large-dimensional parameter spaces are actu-

ally highly concentrated in a thin shell of the hypersphere inscribed in the scan box (the

“concentration of measure” phenomenon). This means that only a negligible fraction of the

pMSSM parameter space is explored by random scans. Furthermore, such scans typically

only retain points within e.g. 2σ cuts of the observed experimental constraints. Without

the explicit use of a likelihood function, random scans have no way of directing the explo-

ration towards more interesting regions of parameter space, i.e. regions where the likelihood

is larger. The Bayesian approach is much more efficient, but the prior dependence of the

posterior distribution can be very strong, especially for high-dimensional models such as

the pMSSM with a large number of effectively unconstrained parameters.

In this paper, we adopt a Bayesian approach to scanning (using a full likelihood func-

tion and an algorithm that generates samples from the posterior distribution), but then

derive profile likelihood maps — which are in principle prior-independent — for a more

robust statistical interpretation. We perform a profile likelihood analysis of a simplified

version of the pMSSM with 15 parameters, which we refer to as the MSSM-15. The number

of model parameters is reduced by some reasonable assumptions which retain the most rele-

vant phenomenological aspects of the pMSSM in terms of collider and dark matter searches.

Our likelihood includes all available accelerator constraints and a newly developed tech-

nique to approximate joint constraints from inclusive searches at the LHC. We also adopt

cosmological (from Planck) and astro-particle physics constraints (from direct detection

experiments) that apply to the lightest neutralino, discussing both the case where it con-

stitutes the entirety or just part of the dark matter in the universe (see e.g. refs. [13–15]

and references therein).

This paper is organised as follows. We introduce our theoretical model and statistical

approach in section 2. In section 3 we present the profile likelihood maps from our scans,

both with and without LHC constraints. Section 4 contains our conclusions. In the ap-

pendix, we describe our approach to approximating the likelihood for ATLAS 0-lepton and

3-lepton inclusive searches, and we demonstrate the statistical convergence of our profile

likelihood maps.

2 Theoretical and statistical framework

2.1 Theoretical model

If one is mainly interested in the phenomenology of the MSSM the number of parameters

can be significantly reduced using a number of reasonable simplifying assumptions. In this

paper, we study such a phenomenological version of the MSSM that is described by 15

model parameters, which we call the MSSM-15. This is motivated by the present lack

of experimental evidence for SUSY: while highly constrained models as the cMSSM are

under pressure in the light of the recent negative sparticle searches at the LHC, there is no

experimental indication that one requires the full freedom of the 19-dimensional pMSSM

at present.

– 3 –
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The sfermion soft-masses are defined as in the pMSSM. Namely, the sfermion mass

sector is completely described by the first and second generation squark mass mQ, the third

generation squark masses mQ3
, mU3

and mD3
, the first and second generation slepton mass

mL and the third generation slepton masses mL3
and mE3

(where mU3
, mD3

and mE3
are

the superpartners of the right-handed third-generation quarks and leptons, respectively).

The trilinear couplings of the sfermions enter in the off-diagonal parts of the sfermion

mass matrices. Since these entries are proportional to the Yukawa couplings of the re-

spective fermions, we can approximate the trilinear couplings associated with the first and

second generation fermions to be zero. Furthermore, due to the large top Yukawa coupling,

the trilinear coupling of the top At is in general more relevant than the trilinear couplings of

the other third generation couplings. Therefore, we assume unification of the bottom and

tau trilinear couplings at the GUT scale, so that both are described by the same parameter

A0 ≡ Ab = Aτ .
1

After the application of the electroweak symmetry breaking conditions, the Higgs sector

can be fully described by the ratio of the Higgs vacuum expectation values tanβ and the

Higgs masses m2
Hi
. Instead of the Higgs masses, we choose to use the higgsino mass

parameter µ and the mass of the pseudoscalar Higgs mA as input parameters, as they are

more directly related to the phenomenology of the model. The final ingredient of our model

are the three gaugino masses: the bino massM1, the wino massM2 and the gluino massM3.

The above parameters describe a 15-dimensional realisation of the pMSSM which en-

capsulates all phenomenologically relevant features of the full model that are of interest

for dark matter and collider experiments. The model parameters are displayed in table 1,

along with their prior ranges (see next section). All of the input parameters are defined at

the SUSY scale
√
mt̃1

mt̃2
, with the exception of A0, which is defined at 1016GeV and run

to the SUSY scale using the RGEs.

In this scenario, in principle, there are five arbitrary phases embedded in the param-

eters Mi(i = 1, 2, 3), µ and the one corresponding to the trilinear couplings provided we

assume that the trilinear matrices are flavour diagonal. However, one may perform a U(1)-

R rotation on the gaugino fields to remove one of the phases of Mi. For consistency with

the literature we choose the phase of M2 to be zero. Note that this U(1)R transformation

affects neither the phase of the trilinear couplings, since the Yukawa matrices being real

fixes the phases of the same fields that couple to the trilinear couplings, nor the phase of

µ. Therefore in the CP-conservation case M1, M3, µ and the trilinear couplings can be

chosen both positive and negative.

2.2 Scanning algorithm and profile likelihood maps

We adopt a Bayesian approach to sample the MSSM-15 parameter space, and then use the

resulting posterior samples to produce profile likelihood maps. This is because the large

dimensionality of the MSSM-15 and the relatively weak constraints imposed by experimen-

tal data result in a (Bayesian) posterior distribution suffering from severe prior-dependent

volume effects. These would make the interpretation of the Bayesian posterior problematic.

1This is equivalent to the assumption of bottom-tau Yukawa unification, as motivated for example by

SU(5) models. For recent reviews see [16, 17].
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MSSM-15 parameters and priors

Flat priors Log priors

M1 [TeV] (-5, 5) sgn(M1) log |M1|/GeV (−3.7, 3.7)

M2 [TeV] (0.1, 5) logM2/GeV (2, 3.7)

M3 [TeV] (-5, 5) sgn(M3) log |M3|/GeV (−3.7, 3.7)

mL [TeV] (0.1,10) logmL/GeV (2, 4)

mL3
[TeV] (0.1,10) logmL3

/GeV (2, 4)

mE3
[TeV] (0.1,10) logmE3

/GeV (2, 4)

mQ [TeV] (0.1,10) logmQ/GeV (2, 4)

mQ3
[TeV] (0.1,10) logmQ3

/GeV (2, 4)

mU3
[TeV] (0.1,10) logmU3

/GeV (2, 4)

mD3
[TeV] (0.1,10) logmD3

/GeV (2, 4)

At [TeV] (-10, 10) sgn(At) log |At|/GeV (−4, 4)

A0 [TeV] (-10,10) sgn(A0) log |A0|/GeV (−4, 4)

µ [TeV] (-5,5) sgn(µ) log |µ|/GeV (−3.7, 3.7)

mA [TeV] (0.01, 5) logmA/GeV (1, 3.7)

tanβ (2, 62) tanβ (2, 62)

Mt [GeV] (170.6, 175.8) Mt [GeV] (170.6, 175.8)

Table 1. MSSM-15 parameters and top mass value used in this paper and prior ranges for the two

prior choices adopted in our scans. “Flat priors” are uniform on the parameter itself (within the

ranges indicated), while “Log priors” are uniform in the log of the parameter (within the ranges

indicated).

We therefore focus on the profile likelihood (PL) for one or two parameters at the

time. The profile likelihood is obtained by maximising the likelihood function over the

parameters that are not displayed. For example, for a single parameter of interest θi
the other parameters Ψ = {θ1, . . . , θi−1, θi+1, . . . , θn} are eliminated from the 1D profile

likelihood by maximising over them:

L(θi) = max
Ψ

L(θi,Ψ) = L(θi, ˆ̂Ψ), (2.1)

where L(θi,Ψ) is the full likelihood function. Our samples of the MSSM-15 parameter space

are distributed according to the posterior pdf, but we simply ignore their density in pro-

ducing profile likelihood maps by maximising over the hidden variables. Confidence inter-

vals/regions from the resulting 1D/2D profile likelihood maps are determined by adopting

the usual Neyman construction with the profile likelihood ratio λ(θi) as test statistics:

λ(θi) =
L(θi, ˆ̂Ψ)

L(θ̂i, Ψ̂)
, (2.2)

– 5 –
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where
ˆ̂
Ψ is the conditional maximum likelihood estimate (MLE) of Ψ with θi fixed and

θ̂i, Ψ̂ are the unconditional MLEs. Values of the ∆χ2 = −2 lnλ(θi) corresponding to 68%,

95% and 99% confidence intervals are obtained from Wilks’ theorem. The generalisation

to 2D PL maps is straightforward.

We have upgraded the publicly available SuperBayeS-v1.5 package [19–22] to a new

version, SuperBayeS-v2.0, which will shortly be released to the public.2 This latest version

of SuperBayeS is interfaced with SoftSUSY 3.3.10 [23, 24] as SUSY spectrum calculator,

MicrOMEGAs 2.4 [25, 26] to compute the abundance of dark matter, DarkSUSY 5.0.5 [27,

28] for the computation of σSI
χ̃0
1
−p

and σSD
χ̃0
1
−p

, SuperIso 3.0 [29, 30] to compute δaSUSY
µ

and B(D) physics observables, SusyBSG 1.5 for the determination of BR(B̄ → Xsγ) [31,

32] and FeynHiggs 1.9 [33] to compute the Higgs production cross-sections and decay

amplitudes. For the computation of the electro-weak observables described in section 2.5

we have implemented the complete one-loop corrections and the available MSSM two-loop

corrections as well as the full Standard Model results [34].

SuperBayeS-v2.0 is interfaced with the publicly available code MultiNest v2.18 [35,

36], which we use to obtain samples from the posterior distribution. As a multi-modal

implementation of the nested sampling algorithm [37], MultiNest is an extremely efficient

scanning algorithm that can reduce the number of likelihood evaluations required for an

accurate mapping of the Bayesian posterior probability distribution function by up to

two orders of magnitude with respect to conventional MCMC methods. This Bayesian

algorithm, originally designed to compute the model likelihood and to accurately map

out the posterior, is also able to reliably evaluate the profile likelihood, given appropriate

settings, as demonstrated in [38].

As motivated above, we use the posterior samples to extract 1D and 2D (prior-

independent) profile likelihood maps by maximising the likelihood over all other parameter

dimensions. This however requires a much larger number of samples than marginalization

of the posterior [38], as well as dedicated settings of the MultiNest code. We adopt the

recommendations of ref. [38], and use a tolerance parameter tol = 10−4 and a number

of live points Nlive = 2 × 104. To further increase the resolution of our profile likelihood

maps, we store the likelihood and parameter values of all likelihood evaluations performed

by MultiNest. This includes all samples that would usually be discarded because they

do not lie above the iso-likelihood contour in the replacement step in the nested sampling

algorithm. This increases the number of likelihood values by a factor > 20, and allows for a

higher-resolution profile likelihood mapping, especially in the tails of the profile likelihood,

at no additional computational cost.

2.3 Prior choices and ranges

In our approach, the prior becomes a device to concentrate the scan in certain regions

of parameter space. We adopt two very different prior distributions: “Flat priors” are

uniform on all model parameters, while “Log priors” are uniform in the log of all model

parameters, except for tanβ, on which a uniform prior is chosen (see table 1). Flat priors

2Visit the webpage superbayes.org to download the new version.
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Figure 1. 1D prior distributions for our two choices of priors for the three gaugino masses and the

first and second generation squarks (top row). The bottom row depicts the implied distribution

for some observable of interest, namely the relic abundance, the neutralino mass, the gluino

mass and the spin-independent neutralino-proton scattering cross-section. The distributions were

obtained from a scan including no experimental constraints; unphysical points were discarded.

When samples from both priors are merged in our profile likelihood analysis, we obtain a detailed

sampling of the entirety of the parameter space.

tend to concentrate sampling towards large values of the parameters (as most of the prior

volume lies there), while log priors concentrate the scan in the low-mass region (as every

decade in the parameter values is given the same a priori probability under this metric).

We then merge the chains resulting from the flat and log prior scans to achieve a reliable

mapping of the (prior-independent) profile likelihood function, as advocated in ref. [38].

Our profile likelihood maps, which we obtain from merging the samples gathered with

both priors, explore in detail both the low-mass and the high-mass region, for a more thor-

ough scanning of the entire parameter space. This is demonstrated in figure 1, which shows

the 1D prior distributions (marginalised) for a few representative quantities, obtained from

a scan that does not include any experimental constraints (constant likelihood function).

As in previous analyses (e.g. refs. [22, 39, 42]) we assign a zero likelihood to unphysical

points in parameter space, that do not fulfil the conditions of radiative electroweak sym-

metry breaking or lead to tachyonic states. Additionally, we discard all points for which

the lightest neutralino is not the LSP. The distributions shown in figure 1 were obtained

after discarding such unphysical points, and thus can appear non-flat even in the variables

on which a flat prior has been imposed.

In terms of prior ranges, we set the upper limit for the gaugino masses, µ and mA to

5TeV. For the squark and slepton masses and trilinear couplings we choose an upper prior

boundary of 10TeV, to allow for large stop masses as favoured by the Higgs mass mea-

– 7 –
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surement. For consistency, the same upper boundary is applied to the trilinear couplings

At and A0. All of the above choices for the upper boundary can be justified by considering

that the profile likelihood becomes approximately flat below the boundaries, which implies

that further increasing the range would have no qualitative impact on our results. For

the ratio of the Higgs vacuum expectation values we chose a prior range tanβ = [2, 62],

ensuring that the Yukawa couplings do not become non-perturbatively large.

In accordance with previous analyses (see ref. [39]), we run 10 different MultiNest scans

for the “All data” case and 5 scans for each of the “without g − 2” and “Planck upper

limit” cases. We compared the best-fit points and profile likelihood function resulting from

the different scans and found consistent results (within numerical noise). This verifies

that a reliable exploration of the MSSM-15 parameter space is achieved and confirms the

robustness of our profile likelihood results.

The profile likelihood maps presented in this work are obtained from a combined total

of 261M (all data), 124M (excluding the g−2 constraint) and 91M (relaxing the requirement

that the neutralino is the only dark matter component) likelihood values. We estimate that

the total computational effort expended for these analyses is approximately 105 CPU years.

2.4 Nuisance parameters and astrophysical quantities

Residual uncertainties on the measured value of the top mass,3 Mt = 173.2±0.87 GeV [18],

can have a significant impact on the results of SUSY analyses [20]. Therefore, in ad-

dition to the model parameters described above we include Mt as a nuisance parame-

ter in our scans. We adopt a flat prior for this quantity, and include a Gaussian like-

lihood function on Mt, with mean and standard deviation chosen according to recent

experimental measurement above (see table 2 below). Uncertainties in other SM pa-

rameters, namely the bottom mass mb(mb)
M̄S = 4.18 ± 0.03 [41], the electroweak cou-

pling constant [αem(MZ)
M̄S ]−1 = 127.944 ± 0.014 [41] and the strong coupling constant

αs(MZ)
M̄S = 0.1184 ± 0.0007 [41], can also have an impact on the results of SUSY anal-

yses [20]. However, this effect is subdominant compared to the impact of the top mass.

Therefore, in order to keep the dimensionality of the scanned parameter space as small as

possible to ensure statistical convergence of our results, we fix these three SM quantities

to their experimentally measured values.

In previous analyses of lower dimensional SUSY models, we included additional nui-

sance parameters in the analysis to account for residual (potentially large) uncertainties

in astrophysical and nuclear physics quantities entering the likelihood for direct detection

searches. A detailed discussion of the relevant uncertainties, and our parameterisation of

the local astrophysical and nuclear physics was given in ref. [22]. As shown explicitly in

refs. [22, 42], the effect of marginalizing or maximising over these uncertainties is relatively

small, and the main conclusions remain qualitatively unchanged when excluding the corre-

sponding nuisance parameters from the scans. Therefore, we choose to fix these quantities

in this analysis, again for the sake of limiting the dimensionality of our parameter space.

3As this paper was being finalised, a new top mass determination was presented [40], stemming from a

joint analysis of ATLAS, CMS, CDF and D0 data, giving Mt = 173.34 ± 0.76 GeV, which is compatible

with the value used here.
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The relevant astrophysical quantities are the local dark matter density, ρloc, and three

quantities entering the weakly interactive massive particle (WIMP) velocity distribution.

Following our previous work [22, 39, 42], for the WIMP velocity distribution we use the

parameterisation given in eq. (3.3) of ref. [22]. The three velocities entering this equation

are the escape velocity vesc = 544 km/s, the local circular velocity vlsr = 30 km/s and the

velocity dispersion vd = 282 km/s. In this work, we fix these velocities to the above values,

as well as the local dark matter density to ρloc = 0.4GeV/cm3, following refs. [22, 43].

The most important hadronic uncertainties arise in the computation of the WIMP-

proton scattering cross-sections from the SUSY input parameters. The cross-section for

spin-independent elastic scattering of neutralinos off atomic nuclei depends on the hadronic

matrix elements fTu , fTd
and fTs , which parameterise the contributions of the light quarks

to the proton composition fTq ∝ 〈N |q̄q|N〉. These matrix elements can not directly be

measured, but instead there are two different approaches to calculate the values of these

quantities: they can either be calculated directly using lattice QCD calculations, or derived

from experimental measurements of the pion-nucleon sigma term, that can be extrapolated

to zero momentum exchange, as required for the calculation of σSI
χ̃0
1
−p

, using chiral pertur-

bation theory.

For fTu and fTd
estimates from the two approaches are in reasonably good agreement,

so that we use the recent results presented in ref. [44] and fix them to the experimental

central values: fTu = 0.0457±0.0065 [44], fTd = 0.0457±0.0065 [44]. The strange content

of the nucleon is much more uncertain, and different groups have found very different results

for the scalar strange-quark matrix element fTs . While there still exist strong differences

in the results of different groups extracting fTs from π − N scattering data using chiral

perturbation theory, recent results from various lattice QCD computations of fTs tend to

be in good agreement both with each other, and with a recent analysis of pion-nucleon

scattering data from the CHAOS group [45]. Therefore, in this work we use a recently

determined average of various lattice QCD calculations fTs = 0.043± 0.011 [46].

The spin-dependent neutralino-proton scattering cross-section depends on the contri-

bution of the light quarks to the total proton spin ∆u, ∆d and ∆s. For these quantities, we

use results from a lattice QCD computation presented in [47], namely ∆u = 0.787± 0.158,

∆d = −0.319 ± 0.066, ∆s = −0.02 ± 0.011 [47]. As above, we fix all quantities to their

central values. These results are in agreement with experimental measurements, with the

possible exception of ∆s, which however gives a sub-dominant contribution to the total

cross-section. For a recent discussion of the discrepancy between the two approaches and

the impact of the resulting uncertainties on predictions for the detectability of SUSY with

direct and indirect detection experiments, see ref. [48].

2.5 Experimental constraints

We implement experimental constraints with a joint likelihood function, whose logarithm

takes the following form:

lnLJoint = lnLEW + lnLB(D) + lnLg−2 + lnLΩχh2 + lnLDD + lnLHiggs + lnLSUSY, (2.3)
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where LEW represents electroweak precision observables, LB(D) B and D physics constraints,

Lg−2 measurements of the anomalous magnetic moment of the muon, LΩχh2 measurements

of the cosmological dark matter relic density, LDD direct dark matter detection constraints,

LHiggs LHCmeasurements of the properties of the Higgs boson and LSUSY ATLAS sparticles

searches. We discuss each component in turn. The values used are also summarised in

table 2.

2.5.1 Electroweak precision observables

Constraints on several observables obtained from Z-pole measurements at LEP [49] are in-

cluded: the constraint on the effective electroweak mixing angle for leptons sin2 θeff, the to-

tal width of the Z-boson ΓZ , the hadronic pole cross-section σ0
had, as well as the decay width

ratios R0
l , R

0
b , R

0
c . We do not include the constraints on the asymmetry parameters Al, Ab,

Ac and A0,l
FB, A

0,b
FB, A

0,c
FB in the analysis, since we found that supersymmetric contributions

to their value were very small and well below the experimental error. Due to the strong

correlation between these parameters and sin2 θeff, the inclusion of these constraints would

qualitatively not change the profile likelihood contours. In addition, we also use the mea-

surement of the mass of the W boson mW from the LEP experiment [49]. We apply a Gaus-

sian likelihood for all of these quantities, with mean and standard deviation as in table 2.

2.5.2 B and D physics constraints

Several B and D physics constraints are applied with a Gaussian likelihood, as summarised

in table 2. We include a number of results obtained by the Heavy Flavor Averaging Group,

including the measurement of the branching fraction of the decay BR(B̄ → Xsγ), the

ratio of the measured branching fraction of the decay Bu → τν to its branching fraction

predicted in the SM, and the decay branching fraction BR(Ds → τν) [50]. Additionally,

we include the ratio of the measurement of the B0
s − B̄0

s oscillation frequency to its SM

value R∆MBs
= 1.04 ± 0.11 [51, 52]. We also include the constraint on the integrated

forward-backward asymmetry AFB(B → K∗µ+µ−) in the bin q2 ∈ [1, 6] GeV2, which has

been shown to have a powerful impact on simple SUSY models [53].

In addition, we include the latest measurement of the rare decay BR(Bs → µ+µ−)

from the LHCb experiment at the LHC. Using a combination of 1.0 fb−1 data at
√
s =

7TeV collision energy and 1.1 fb−1 data at
√
s = 8TeV collision energy, collected in 2011

and 2012, the LHCb collaboration reported an excess of decay events with respect to the

background expectation, leading to the value BR(Bs → µ+µ−) = (3.2+1.5
−1.2)× 10−9 with a

3.5σ signal significance [54].4 We apply this constraint as a Gaussian likelihood function

with a conservative (symmetric) experimental uncertainty of 1.5 × 10−9 and a theoretical

error of 0.38× 10−9 [57].

Finally, we include a measurement of the isospin asymmetry between B0 and B+ decay

widths from the radiative decay B → K∗γ. We combine results from three different groups

4This constraint is in good agreement both with the CMS measurement of this quantity, BR(Bs →

µ+µ−) = (3.0+1.0
−0.9)×10−9 [55], and with the updated LHCb value BR(Bs → µ+µ−) = (2.9+1.1

−1.0)×10−9 [56],

which became available at a later date and are thus not included in the analysis.
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to obtain the constraint ∆0− = (3.1± 2.3)× 10−2 [58–60] and we adopt a theoretical error

of 1.75× 10−2 [30].

2.5.3 Cosmological relic abundance

We include the Planck constraint on the dark matter relic abundance in our analysis. When

assuming that the neutralino makes up all of the dark matter in the universe, we apply the

result from Planck temperature and lensing data Ωχh
2 = 0.1186 ± 0.0031 as a Gaussian

likelihood in the analysis [61]. We also add a (fixed) theoretical uncertainty, τ = 0.012, in

quadrature, in order to account for the numerical uncertainties entering in the calculation

of the relic density from the SUSY parameters.

When we allow for the possibility that neutralinos are a sub-dominant dark matter

component, then the Planck relic density measurement is applied as an upper limit. As

shown in the appendix of [62], the effective likelihood for this case is given by the expression

LΩχh2 = L0

∫ ∞

Ωχh2/σPlanck

e−
1

2
(x−r⋆)2x−1dx, (2.4)

where L0 is an irrelevant normalization constant, r⋆ ≡ µPlanck/σPlanck and Ωχh
2 is the

predicted relic density of neutralinos as a function of the model parameters.

When neutralinos are not the only constituent of dark matter, the rate of events in a

direct detection experiment is proportionally smaller as the local neutralino density, ρχ, is

now smaller than the total local dark matter density, ρDM. The suppression is given by

the factor ξ ≡ ρχ/ρDM. Following [63], we assume that ratio of local neutralino and total

dark matter densities is equal to that for the cosmic abundances, thus we adopt the scaling

Ansatz

ξ ≡ ρχ/ρDM = Ωχ/ΩDM. (2.5)

For ΩDM we adopt the central value measured by Planck, ΩDM = 0.1186 [61].

2.5.4 Direct detection constraints

We include the latest constraints from the XENON100 direct detection experiment, ob-

tained from 224.6 live days and 34 kg fiducial volume [64]. The data set contained two

candidate WIMP scattering events inside the signal region, compatible with the expected

number of background events b = 1.0 ± 0.2. The resulting XENON100 exclusion limits

currently places tight limits in the plane of WIMP mass mχ vs. spin-independent cross-

section σSI
χ̃0
1
−p

, as well as in the (mχ, σ
SD
χ̃0
1
−n

) plane, and also places competitive constraints

on σSD
χ̃0
1
−p

as a function of WIMP mass [64, 65]. We use an approximate XENON100 likeli-

hood function to incorporate these data in our analysis. For a detailed description of our

approximate XENON100 likelihood function we refer the reader to refs. [22, 39].

In previous studies of the cMSSM [39, 42] and the NUHM [39] we neglected the con-

tribution of spin-dependent neutralino-nucleon scattering to the total number of events,

since in these constrained models this contribution was always subdominant compared to

the spin-independent event rate, and in the favoured regions the number of events from

spin-dependent scattering was much smaller than 1. However, in models like the MSSM-15

– 11 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
1

considered here there are regions of parameter space in which the spin-dependent scatter-

ing event rate can exceed the spin-independent contribution. Therefore, we now include

the spin-dependent contribution to the event rate, and calculate the constraints by using

Rtot = RSD+RSI. For the axial-vector structure functions entering into the spin-dependent

differential WIMP-nucleus cross-section we use the results by ref. [66], as recommended by

the XENON100 collaboration [65].

While this work was being finalised, the LUX collaboration reported results from a

search for WIMPs based on 85.3 live days of data and 118 kg fiducial volume [67]. No

significant excess above the background expectation was observed, and new limits on the

WIMP properties were derived. The resulting limit on the spin-independent WIMP-proton

interaction improved on the XENON100 limits used here, by a factor of ∼ 2 for WIMP

masses mχ & 50 GeV and by a larger factor for lighter WIMPs. We do not implement

the LUX results in this paper, but notice that their impact is comparatively small given

the many orders of magnitude spanned by the predictions of the MSSM-15 in the relevant

spin-independent vs mass plane (see figure 7, upper left panel).

2.5.5 Anomalous magnetic moment of the muon

The experimentally measured value of the anomalous magnetic moment of the muon [68]

aµ ≡ (g − 2)/2 shows a 3.6σ discrepancy with the value predicted in the SM. There-

fore, a strong supersymmetric contribution is required in order to explain the discrepancy

δaSUSY
µ = (28.7± 8.2)× 10−9, where experimental and theoretical errors have been added

in quadrature. However, there remain strong theoretical uncertainties in the computation

of the SM value of the muon anomalous magnetic moment, most importantly in the com-

putation of the hadronic loop contributions. Additionally, the discrepancy between the

experimental measurement and the SM value is reduced to 2.4σ when relying on τ data

instead of e+e− data [68].

In previous global fits analyses of constrained MSSM scenarios, such as the cMSSM [39,

42] and the NUHM [39], it was found that the constraint on g − 2 can play a dominant

role in driving the profile likelihood results. In order to evaluate the dependence of the our

results on this somewhat controversial constraint, we repeat our analysis after excluding

the g − 2 constraint from the likelihood.

2.5.6 Higgs properties

Both ATLAS and CMS have recently reported new results for the measurement of the

mass of the Higgs boson. CMS reported a measured value of mh = 125.8± 0.4± 0.4GeV,

where the first error is statistical and the second error is systematic [71]. This result was

derived from a combination of 5.1 fb−1 data at
√
s = 7TeV collision energy, and 12.2 fb−1

data at
√
s = 8TeV collision energy. The ATLAS collaboration found a value mh =

125.5±0.2+0.5
−0.6GeV, derived from a combination of 4.8 fb−1 √

s = 7TeV data and 20.7 fb−1

√
s = 8TeV data [72]. We use a weighed average of the ATLAS and CMS measurements,

resulting inmh = 125.66±0.41GeV. We add a theoretical error of 2GeV [73] in quadrature.

The observation of the Higgs boson in several channels has allowed the measurement of

some of its couplings with relatively good accuracy. The standard way to infer the couplings
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of the produced Higgs boson is to consider their deviation from the SM expectation. For

a given channel this is parametrized through the signal strength parameter µ. For the

h → XX channel one has

µXX =
σ(pp → h)×BR(h → XX)

σ(pp → h)SM ×BR(h → XX)SM
. (2.6)

This quantity is compared directly with experimental measurements. Note that from here

on what we call “Higgs” in the MSSM context, we are referring to the lightest CP-even

Higgs.

The channels considered in the likelihood function are listed in table 2. We apply the

experimental constraints obtained by the CMS collaboration. For the γγ [74], W+W− [75],

ZZ [76] and τ+τ− [77] decay modes the constraints were derived from datasets correspond-

ing to an integrated luminosity of ∼ 5 fb−1 at
√
s = 7TeV collision energy and ∼ 19 fb−1 at√

s = 8TeV collision energy. The constraint on the h → bb̄ [78] decay channel was derived

from ∼ 5 fb−1 integrated luminosity at
√
s = 7TeV and ∼ 12 fb−1 integrated luminosity at√

s = 8TeV collision energy.

2.5.7 ATLAS SUSY searches

The SUSY searches constraints applied come from bounds on SUSY masses from LEPII

and Tevatron for which we apply the likelihood as outlined in [19] and from LHC searches

looking for 0-lepton and multi-jets with missing transverse energy and 3-leptons with miss-

ing transverse energy in the ATLAS experiment, both with data recorded at
√
7TeV and

a total integrated luminosity of 4.7 fb−1 [79, 80]. Details about the construction and val-

idation of the LHC likelihood function associated with these two channels are given in

appendix A and appendix B, respectively. The likelihood implementation has been done

in the ROOT framework through the RooFit/RooStats packages.

For each likelihood evaluation, we simulate the SUSY kinematical distributions of 104

events with PYTHIA 6.4 [81] using the ATLAS MC09 tune [82]. The parton distribu-

tion functions are obtained from the CTEQ6L1 set [83]. The SUSY cross-sections for

gluino and squarks production are normalized by NLO K-factors in the strong coupling

constant, including the resummation of soft gluon emission at next-to-leading-logarithmic

(NLO+NLL) accuracy with NLL-fast 1.2 [84–87] and outside the available NLL-fast grid

by PROSPINO2 [88, 89] at NLO. For the electroweakino production we use PROSPINO2

which provides a NLO calculation. The detector simulation employed is DELPHES3 [90].

Details about the efficiencies validation are provided in appendix B.

3 Results

In the following sections we present the combined impact of all present day constraints

shown in table 2 on the MSSM-15. In addition to the analysis including all available

data, we also show results for two other cases. In particlar, we present results for an

analysis excluding the g−2 constraint, in order to evaluate the impact of this controversial

measurement on our profile likelihood results. In a third analysis we relax the requirement
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Observable Mean value Standard deviation Ref.
µ σ (exper.) τ (theor.)

Mt [GeV] 173.2 0.87 - [18]
MW [GeV] 80.385 0.015 0.01 [49]
sin2 θeff 0.23153 0.00016 0.00010 [49]
ΓZ [GeV] 2.4952 0.0023 0.001 [49]
σ0
had [nb] 41.540 0.037 - [49]

R0
l 20.767 0.025 - [49]

R0
b 0.21629 0.00066 - [49]

R0
c 0.1721 0.003 - [49]

#A0,l
FB 0.0171 0.001 - [49]

#A0,b
FB 0.0992 0.0016 - [49]

#A0,c
FB 0.0707 0.0035 - [49]

#Al(SLD) 0.1513 0.0021 - [49]
#Ab 0.923 0.02 - [49]
#Ac 0.670 0.027 - [49]
δaSUSY

µ × 1010 28.7 8.0 2.0 [68]
BR(B̄ → Xsγ)× 104 3.55 0.26 0.30 [50]
R∆MBs

1.04 0.11 - [51, 52]
BR(Bu→τν)

BR(Bu→τν)SM
1.63 0.54 - [50]

∆0− × 102 3.1 2.3 1.75 [58–60]
#BR(B→Dτν)

BR(B→Deν) × 102 41.6 12.8 3.5 [69]
#Rl23 0.999 0.007 - [70]
AFB(B → K∗µ+µ−) -0.18 0.063 0.05 [53]
BR(Ds → τν)× 102 5.44 0.22 0.1 [50]
#BR(Ds → µν)× 103 5.54 0.24 0.2 [50]
#BR(D → µν)× 104 3.82 0.33 0.2 [50]
BR(Bs → µ+µ−)× 109 3.2 1.5 0.38 [54]
Ωχ̃0

1
h2 0.1186 0.0031 0.012 [61]

mh [GeV] 125.66 0.41 2.0 [71, 72]
†µγγ 0.78 0.27 15% [74]
†µW+W− 0.76 0.21 15% [75]
†µZZ 0.91 0.27 15% [76]
†µbb̄ 1.3 0.65 15% [78]
†µτ+τ− 1.1 0.4 15% [77]

Limit (95% C.L.) τ (theor.) Ref.
Sparticle masses LEP, Tevatron. As in table 4 of ref. [19]. [19]
†0-lepton SUSY search ATLAS,

√
s = 7TeV, 4.7 fb−1 [79]

†3-lepton SUSY search ATLAS,
√
s = 7TeV, 4.7 fb−1 [80]

mχ − σSI
χ̃0
1
−p

XENON100 2012 limits (224.6× 34 kg days) [64]

mχ − σSD
χ̃0
1
−p

XENON100 2012 limits (224.6× 34 kg days) [65]

Table 2. Summary of experimental constraints used in the likelihood. Upper part: measured

observables, modelled with a Gaussian likelihood of mean µ, and standard deviation (σ2 + τ2)1/2,

where σ is the experimental and τ the theoretical uncertainty. Lower part: observables for which

only limits currently exist. See text for further information on the explicit form of the likelihood

function. Experimental constraints tagged with # have been found to contribute an approximately

constant value to the log-likelihood and hence have been omitted. Observables tagged with † are

applied via post-processing of the samples.
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that the lightest neutralino is the only dark matter component, by adopting the Planck

measurement of the dark matter relic density as an upper limit.

We start by presenting 1D and 2D profile likelihood results for all three cases excluding

LHC constraints on the sparticle masses and the Higgs production cross-sections (note

however that the LHC measurement of the Higgs mass, mh, is included in all of the results).

Since this paper presents the first high-resolution profile likelihood analysis of the MSSM-

15, we discuss in detail the favoured model phenomenology, in particular the different

neutralino compositions that can be achieved throughout the parameter space and the

dark matter detection prospects. In the final section we present the impact of constraints

from LHC SUSY searches and Higgs signal strengths measurements on this parameter

space, obtained with a simplified statistical treatment. A full profile likelihood analysis of

the MSSM-15 including all LHC constraints is beyond the scope of this paper, and is the

focus of a dedicated work [91].

3.1 Global fits from all data and excluding g − 2

We begin by showing in figure 2–4 the combined impact of the present day constraints shown

in table 2, with the exception of the LHC constraints on SUSY and the Higgs production

cross-sections (which are discussed separately below). We compare results for the analysis

including all data (red), and for the analysis excluding the g − 2 constraint (purple); the

encircled crosses show the corresponding best-fit points. For observable quantities, the

applied likelihood function is shown in black. Figure 2 shows the 1D profile likelihood

results for the 15 input model parameters and the top mass, figure 3 shows results for the

relevant observables and figure 4 shows results for some SUSY quantities of interest. From

here on we will refer to the lightest neutralino as “neutralino”, for brevity.

3.1.1 Profile likelihood for the MSSM-15 parameters

Figure 2 shows that most of the MSSM-15 model parameters are relatively weakly con-

strained. We start by discussing the 1D profile likelihood (PL) functions for the parameters

entering at tree level into the electro-weakino (EWK) sector, namely M1, M2, µ and tan β.

The bino mass |M1| shows a clear preference for relatively low values, peaking at

∼ 50 GeV. In this region, the neutralino is bino-like and annihilates mainly into a pair of

fermions through Z/h-funnels in the early universe. When |M1| takes values of O(100 GeV)

the neutralino gets some mixing with higgsinos, so that its relic density is reduced to the

experimentally measured value by co-annihilations with the second lightest neutralino and

the lightest chargino. Notice that at low mχ̃0
1
the degree of mixing can be at most of a

few percent, otherwise the relic density would fall below the Planck measurement and the

neutralino nucleon spin-independent cross-section would be in tension with the XENON100

limit. Additionally, the relic density can be reduced by efficient annihilation to a pair

of fermions via the exchange of relatively light sleptons and squarks (the so-called bulk

region), and co-annihilations with sleptons of the first and second generation. Note that

the A-funnel region is suppressed in this mass range due to the preference for mA > 1TeV

(see below). For heavier binos the 1D PL drops abruptly due to the fact that it can not

mix sizeably and therefore the wino mass M2 and the higgsino mass µ are pushed to large
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Figure 2. 1-D profile likelihood global fits results including all data except LHC SUSY searches

and Higgs couplings (red) and further excluding the g−2 constraint (purple), for the input MSSM-

15 parameters. Encircled crosses represent the best-fit points. The black curve in the top mass

panel is the applied prior distribution.
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values, in tension with the muon g−2 constraint and, to a lesser extent, with several flavor

physics observables, such as BR(B̄ → Xsγ), ∆0− and AFB(B → K∗µ+µ−).

The wino mass M2 is only mildly constrained from below by the LEP constraint on the

chargino mass [92], and it peaks at values around a few hundred GeV. Above this value,

we observe a moderate decrease of the PL towards the boundary of the prior. The shape of

the 1D PL forM2 is mostly driven by the muon g−2 constraint, whose MSSM contributions

are dominated by chargino-sneutrino and neutralino-smuon loop diagrams. One can write

the chargino-sneutrino contribution, which often is the dominant one, as follows [93]

δaµ(W̃ , H̃, ν̃µ) ∼ 15× 10−9

(

tanβ

10

)(

(100 GeV)2

M2µ

)(

fC
1/2

)

, (3.1)

where fC is a loop function with maximum value fC = 1/2 when the masses in the

loop are degenerate. When M2 and µ are of O(100 GeV) and tan β of O(10), the

contribution becomes O(10−9), which can explain the muon g−2 “anomaly” provided that

sgn(M2, µ) > 0 and the smuon/sneutrino soft-masses, which we assume to be universal,

are O(100 GeV). The degree of decoupling allowed depends on the value of tan β (note

that values above & 60 are forbidden by imposing the perturbativity of the bottom

Yukawa coupling). While in general winos with masses & 1 TeV are decoupled, the

neutralino-smuon contribution can still give a large contribution to g − 2 and thus give a

good fit. Since we have set M2 > 0, µ > 0 is favoured. Notice that the best-fit point fulfils

this condition. It is worth mentioning that the wino mass can also play an important role

in new physics contributions to the Wilson coefficient C7 which is a fundamental quantity

in the most relevant flavor observables entering into our analysis [94].5

The 1D PL for the higgsino mass |µ| shows an almost symmetrical distribution about

zero. Like the wino-mass, |µ| is constrained from below by the LEP constraint on the

chargino mass [92]. Relatively small values |µ| . 1TeV are strongly favoured, while large

values of |µ| are disfavoured. This is because the SM predictions for flavour physics ob-

servables such as ∆0− and AFB(B → K∗µ+µ−) are discrepant with the experimental

measurement at ∼ 1− 2σ level, and thus require rather large new physics contributions to

C7. Note that, in contrast, for BR(B̄ → Xsγ) the discrepancy is below 1σ. For intermedi-

ate/large tan β values the leading SUSY corrections scale as 1/m2
χ, so that light higgsinos

are preferred. It is worth noticing that the PL drops much faster for larger values of the

higgsino mass than for the wino mass. This is due to the fact that the higgsinos mass

enters in both the chargino-sneutrino and the neutralino-smuon diagrams that contribute

to δaµ. Moreover, one can see that there is not a full decoupling at O(1 TeV) higgsino

masses for the negative branch, due to an enhancement of the pure-bino contribution for

large higgsino masses as a result of a large left-right mixing in the smuon mass matrix.

One can write this contribution as follows

δaµ(µ̃L, µ̃R, B̃) ∼ 1.5× 10−9

(

tanβ

10

)

(

(100 GeV)2

m2
µ̃L

m2
µ̃R

/(M1µ)

)

(

fN
1/6

)

, (3.2)

5The Wilson coefficient C9 is also potentially important, though within the MSSM its role is diluted [95].
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where fN is a loop function with maximum value fN = 1/6 when the masses in the loop are

degenerated. A sizeable contribution can be achieved provided that sgn(M1µ) > 0. While

the chargino-sneutrino contribution to g−2 in eq. (3.1) prefers µ > 0, large positive µ tend

to lead to tachyons in the Higgs sector due to the fact that the sign of µ enters into the

RGE of the bilinear soft breaking term, resulting in a subtle preference for negative values

of µ. Recall that the boundary conditions are applied at the scale
√
mt̃1

mt̃2
and there is

a running to mZ which is where the SUSY thresholds corrections are applied. The sign of

the associated β function tends to be positive and large unless the pseudoscalar mass mA is

not too large and/or the gaugino mass M3 > 0 is large. Note that the 1D PL for negative

µ is shifted to slightly larger values compared to the positive branch, as very small values

of |µ| for µ < 0 would lead to a sizeable negative contribution to g − 2 from eq. (3.1).

The 1D PL for tan β is suppressed below ∼ 10, mainly due to the Higgs mass mea-

surement, since at tree level mh ≤ mZ |cos2β|. Values close to the upper prior boundary

are also slightly disfavoured as they are close to the non-perturbativity limit of the bot-

tom Yukawa coupling. This effect is stronger when the SUSY threshold corrections to the

bottom mass are large, which occurs mainly for a low-mass SUSY spectrum.

The 1D PL for the pseudoscalar Higgs mass, mA, is severely suppressed for values

. 1 TeV, mainly due to the Higgs mass measurement, but also due to the LHCb measure-

ment of BR(Bs → µ+µ−), which is in good agreement with the SM expectation. Since

SUSY contributions enter as ∝ tan6 β/m2
A and larger values of tanβ are favoured, heavier

pseudoscalars masses are preferred. It implies that mA ≫ mZ and the SUSY decoupling

regime [96] is favoured in the model which leads to mH ≃ mH± ≃ mA, up to corrections

of O(m2
Z/m

2
A).

We now turn to the discussion of the sfermion sector. The 1D PL for the first and

second generation slepton mass, mL, shows a clear preference for relatively low values when

g− 2 is included, as follows from the discussion above. Such a preference is almost entirely

driven by the g − 2 constraint, as is clear from the comparison with the corresponding PL

for the analysis excluding the constraint on the anomalous magnetic moment of the muon.

Both of the third generation slepton soft-masses mL3
and mE3

remain essentially uncon-

strained, as their PL functions are almost flat. The slight preference for low values is due

to the impact of relatively light staus in the electroweak precision observables (EWPOs).

Similarly, relatively small mQ, mU3
and mD3

are somewhat preferred, as low values of these

quantities lead to greater freedom to satisfy the constraints on several constrained flavour

observables. In contrast, the 1D PL for mQ3
is almost flat up to ∼ 6TeV, as in general

TeV-scale values of mQ3
are required to achieve a good fit to the constraint on the lightest

Higgs mass.

The top trilinear coupling At shows a symmetric PL around 0. We have checked

that the peaks correspond to the maximal mixing scenario where |Xt/MS | =
√
6 with

Xt ≡ (At−µcotβ) andM2
S ≡ 1/2(m2

t̃1
+m2

t̃2
). In the maximal mixing region, mh ∼ 125GeV

can be achieved even for relatively small stop masses, which in general are preferred by the

SM precision observables.

Finally, the gluino mass |M3| is constrained from below due to the Tevatron lower limit

mgluino > 289GeV [97]. Above this, the distribution is nearly flat with a slight suppression

– 18 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
1

near the prior boundary. Very large gluino masses are expected to be disfavoured because

they tend to induce the presence of tachyons in the staus and sbottoms, due to the RGE

running of the trilinear coupling A0. Notice that the gluino plays a role both in higher loop

corrections to flavor physics observables and at the level of the RGEs of SUSY parameters.

Exclusion of the muon g−2 constraint has a strong impact on the electroweakino sector,

in particular on the 1D PL for the wino massM2 and the universal slepton massmL, both of

which enter in the contribution from the chargino-sneutrino loop in eq. (3.1). The 1D PL for

the bino and higgsino masses M1 and µ are also affected, albeit to a lesser extent. Dropping

the g−2 constraint makes the data more compatible with heavier winos, and hence heavy bi-

nos are less disfavoured in this scenario. Additionally, upon exclusion of the g−2 constraint

the positive branch of µ is no longer favoured, and indeed negative values of µ are preferred.

The most remarkable difference in the PL for the sfermion soft-masses occurs for the

mass parameters related to the stop spectrum. Namely, the 1D PL for mQ3
and mU3

peak at small values, while large masses are significantly suppressed. As mentioned above,

the Wilson coefficient C7 plays a fundamental role in the most relevant flavor observables

entering into our analysis, most importantly the isospin asymmetry ∆0−. As can be seen in

figure 3 below, after exclusion of the g−2 constraint the 1D PL for ∆0− peaks much closer

to the experimentally measured value. Removing the g − 2 constraint from the analysis

leads to greater freedom to satisfy the experimental constraint on ∆0−. In particular,

Higgsino-stop loops can lead to a sizeable contribution to C7 [98]

δC7 ∝
M2

t µAt

2m4
Q3

tanβf7

(

µ2

m2
Q3

,
µ2

m2
U3

)

, (3.3)

where f7 is a loop function. For small mQ3
, medium mU3

and sizeable tanβ, δC7 becomes

large. Additionally, for sgn(µAt) < 0, the sign of this loop contribution is opposite to the

SM contribution [98], and values of ∆0− in good agreement with the experimental constraint

can be achieved. The requirement that sgn(µAt) < 0 also explains the preference for the

peak in the positive branch of At, which is clearly favoured with respect to negative values.

We point out that C7 also enters in a range of other flavour observables, in particular

BR(B̄ → Xsγ). In contrast to the isospin asymmetry, the measurement of this quantity is

in excellent agreement with the SM predictions, so that large SUSY contributions to C7 are

disfavoured by this constraint. Note that we use the SusyBSG code for the computation of

BR(B̄ → Xsγ), while SuperIso is used to computed ∆0−. We caution that, for some fine-

tuned points, the simultaneous achievement of a good fit to BR(B̄ → Xsγ) and ∆0− (and

other flavour observables) can be a numerical effect, related to differences in the numerical

implementation of the C7 calculation in these codes.6

3.1.2 Profile likelihood for observable quantities

The 1D profile likelihood for the observables, shown in figure 3, generally agree well with

the likelihood functions imposed on these quantities (shown in black). In contrast to the

6In particular, SusyBSG implements the full gluino two-loop contributions to the Wilson coefficient C7

within the minimal flavour violation scenario [99], while SuperIso implements those in the heavy gluino

limit [100], which does not necessarily hold in all regions of the MSSM-15 parameter space.
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Figure 3. 1-D profile likelihood global fits results including all data except LHC SUSY searches

and Higgs couplings (red) and further excluding the g− 2 constraint (purple), for observable quan-

tities. Encircled crosses represent the best-fit points. Black lines are the likelihood function for the

corresponding observable.

tension that is observed in simpler SUSY models, such as the cMSSM and the NUHM,

the experimentally measured values of δaSUSY
µ and BR(B̄ → Xsγ) can simultaneously be

achieved in the MSSM-15. The Planck measurement of the relic density is also well fit.

The EWPOs most sensitive to SUSY effects within the MSSM-15 are mW , sin2 θeff
and ΓZ , with the most important role played by t̃/b̃ and — to a lesser extent — by the

chargino and neutralino sectors. Their dependence on the top mass is also significant [34].
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The SM prediction for mW and ΓZ is marginally (at 1σ level) below the experimental

value, assuming the current central value of the top mass. Since SUSY contributions

are constructive, light squarks and/or light EWKinos are required to fit the experimental

values of mW and ΓZ , as also favoured by other experimental constraints. This leads to

a good match between the 1D PL and the likelihood function for these quantities. The

sin2 θeff case is different since SUSY corrections are destructive for this observable and the

SM prediction is compatible at 1σ level with the measurements. Therefore a low SUSY

spectrum pushes the predictions below the measurement which is what we observed in the

PL. The other EWPOs considered in our analysis, namely σ0
had, Rl, Rb and Rc, are mostly

insensitive to SUSY effects, so that their PL peak at the values predicted in the SM.

The relevant flavour observables are generally well fit. A notable exception is the

isospin asymmetry ∆0−, which requires very large SUSY contributions (see ref. [39] for a

discussion of the discrepancy between the experimental measurement of ∆0− and the values

favoured in simple SUSY models). Note however that, for the reasons pointed out above, a

good fit to this quantity can be obtained in the analysis excluding the g− 2 constraint. As

expected, the 1D PL for δaSUSY
µ becomes essentially flat when this constraint is dropped

from the analysis.

3.1.3 Profile likelihood for the SUSY mass spectrum

The 1D PL for several SUSY masses are displayed in figure 4. The mass of the lightest Higgs

boson measured by the LHC can easily be satisfied in the MSSM-15. This is a reflection of

the large number of degrees of freedom of the model, which allow to maximize the tree-level

contribution to the Higgs mass by pushing tan β to large values, while at the same time

maximizing the leading 1-loop corrections either via heavy stops or maximal stop mixing.

The mass of the neutralino LSP is shown in the top-central panel. For the analysis

including all data, the neutralino mass is constrained to mχ̃0
1
< 1.5TeV at 99% confidence

level. In contrast, the 1D PL for the analysis excluding the g − 2 constraint reaches

significantly larger masses mχ̃0
1
≤ 3.0TeV. In both cases, the PL peaks at low values,

where the neutralino is bino-like, with an almost identical best fit at mχ̃0
1
≈ 60GeV (see

table 3 below). The bump in the neutralino PL around ∼ 1 TeV corresponds to a higgsino-

like neutralino (see section 3.5 below for further details), and it is more pronounced for the

case without g − 2, as expected from the above discussion. In the latter case, the small

bump at mχ̃0
1
∼ 2 TeV in the PL corresponds to a wino-like neutralino.

The 1D PL for the mass of the lightest chargino stretches to large values, close to the

prior boundary around ∼ 5TeV imposed by the prior on the input parameters. Never-

theless, similarly to what was observed for the neutralino mass, small chargino masses are

favoured. In contrast, the 1D PL for the average squark mass, the lightest stop mass and

the gluino mass remain almost unconstrained. The shape of the 1D PL for these quantities

is a direct consequence of the 1D PL for the corresponding soft masses and M3, respectively

(discussed above).
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Figure 4. 1-D profile likelihood global fits results including all data except LHC SUSY searches

and Higgs couplings (red) and further excluding the g − 2 constraint (purple) for some relevant

SUSY quantities. Encircled crosses represent the best-fit points. For quantities constrained in the

scan, the likelihood function applied is shown in black. Recall that these analyses does not include

null SUSY searches at the LHC (see section 3.6).

3.2 Relic density as an upper limit

We now discuss the case where the Planck measurement of the relic density is applied as an

upper limit, i.e. where the cosmological dark matter (DM) consists of multiple components

(one of which is the neutralino LSP). While the 1D PL for the observables are slightly

broader than for the analysis implementing the Planck measurement as a constraint, most

of the 1D PL are qualitatively very similar for the two cases. Therefore, we focus on

discussing the results for a few selected quantities that illustrate the phenomenological

differences between these two analyses.

In figure 5 we show the 1D PL for several quantities of interest, comparing the analysis

in which the Planck constraint is applied as an upper limit (blue) and in which it is applied

as a constraint (red). With the exception of the parameters related to the electroweakino

sector, the differences with respect to the single-component DM scenario are small. The top

row of figure 5 shows results for M1, M2 and µ. The bino mass M1 now becomes essentially

unconstrained over the entire prior range. The relaxation of the DM relic abundance con-

straint allows higher neutralino annihilation rates, so that light wino-like and higgsino-like
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Figure 5. Comparison of 1-D profile likelihood results between the case including all data (red)

and using the Planck Ωχ̃0

1

h2 measurement as an upper limit (blue).

neutralinos are now allowed, leading to heavier binos on average. Additionally, mixed neu-

tralinos states (bino-higgsino, wino-higgsino and bino-wino-higgsino, so-called well-temped

neutralinos [101]) are now allowed, as shown explicitly in section 3.5 below.

The 1D PL for the wino mass, M2, is almost identical for the two cases shown. Dif-

ferences in the 1D PL for the higgsino mass, µ are found in the negative branch, for which

larger (more negative) values are now allowed. This is because, for larger bino masses,

large |µ| help to fit the muon g − 2 constraint (for sgn(M1µ) > 0), as discussed in the

previous section.

In the bottom row of figure 5 we show the 1D PL for the relic density, the lightest

neutralino mass and the lightest chargino mass. As expected, the 1D PL for Ωχh
2 differs

strongly for the two shown cases. When the Planck constraint is applied as an upper limit,

the 1D PL stretches to very small values, almost five orders of magnitude below the mea-

sured dark matter relic density. While very small values Ωχh
2 . 10−3 are somewhat dis-

favoured, the PL peaks at Ωχh
2 ∼ 10−3 and is almost flat in the range 10−3 < Ωχh

2 < 10−1.

The 1D PL for the mass of the neutralino LSP and the lightest chargino mass are

now confined to significantly lower values than for the analysis requiring that Ωχ ∼ ΩDM.

The reason is that relatively light winos are allowed in the multi-component dark matter

scenario, which makes it easier to fulfil the experimental constraints on a range of SM
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Figure 6. Contribution to the best-fit χ2 from various observables, before including Higgs proper-

ties and LHC SUSY searches data. Once those data sets are added, the χ2 values become 1054.32

(all data), 9.44 (without g − 2) and 267.52 (Planck as upper limit). Thus the overall pre-LHC

best-fit point becomes ruled out, while the one obtained without g − 2 remains viable. Recall that

the non-Gaussian likelihoods are normalised in such a way that −2 lnL = 0 when there are no

constraints for that observable.

precision observables, most importantly g− 2, ∆0− and AFB(B → K∗µ+µ−). The experi-

mentally measured values of these quantities are in disagreement with the SM predictions

at 1 − 3σ level, and, upon relaxing the relic density constraint, play a dominant role in

driving the profile likelihood results. In particular, low neutralino and chargino masses

can lead to values of ∆0− and AFB(B → K∗µ+µ−) that are in reasonably good agreement

with the observations, while at larger values of mχ̃±

1
and mχ̃0

1
these quantities approach

their SM-like values, which are discrepant with the experimental constraints.

3.3 Best-fit points

In table 3 we show the coordinates of the best-fit points, as well as the best-fit values of

several of the observables, for each of our three analyses. For the “All data” and “Planck
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All data w/o g - 2 Planck upper limit

Input parameters

M1 [GeV] -61.76 -136.09 59.70 -724.07 -130.06

M2 [GeV] 150.23 149.98 123.96 147.96 814.37

M3 [GeV] 1191.2 2000.09 2967.70 -1833.39 1294.62

mL [GeV] 438.34 152.35 351.99 449.03 142.26

mL3
[GeV] 286.68 1995.54 964.28 486.61 447.86

mE3
[GeV] 389.88 1250.89 3850.93 1823.49 542.16

mQ [GeV] 351.33 2234.41 1628.26 358.87 5860.04

mQ3
[GeV] 2408.24 658.41 696.35 3573.49 396.24

mU3
[GeV] 1579.95 1495.69 1341.55 804.81 1751.30

mD3
[GeV] 503.38 332.04 920.19 262.12 141.28

At [GeV] 3025.88 2380.81 2219.57 -3131.92 1962.58

A0 [GeV] -35.41 6396.91 1498.37 -11.78 3827.41

µ [GeV] 219.54 -778.01 -224.60 158.52 -582.89

mA [GeV] 2297.46 1550.08 1298.28 3731.24 1676.59

tanβ 21.82 17.82 21.85 20.75 14.93

Mt [GeV] 173.34 173.30 173.19 173.11 173.06

Observables

mh [GeV] 125.78 125.52 125.16 125.61 125.41

δaSUSY
µ × 1010 27.98 30.18 -43.91 28.63 27.87

msquark [GeV] 489.57 2253.08 1554.61 497.96 5904.73

mstop1 [GeV] 1568.78 588.55 166.32 943.63 443.04

mgluino [GeV] 1256.10 2050.19 2834.23 1883.16 1463.97

mχ̃0
1
[GeV] 58.48 134.16 57.95 106.32 128.37

mχ̃±

1
[GeV] 130.26 159.29 118.10 109.17 578.25

σSI
χ̃0
1
−p

[pb] 3.56× 10−11 2.35× 10−10 3.86× 10−11 4.40× 10−8 1.03× 10−9

σSD
χ̃0
1
−p

[pb] 2.34× 10−5 2.14× 10−7 4.79× 10−5 9.78× 10−4 8.78× 10−7

σSD
χ̃0
1
−n

[pb] 3.48× 10−5 2.57× 10−7 4.63× 10−5 1.02× 10−3 8.35× 10−7

Ωχh
2 0.1194 0.1186 0.1174 8.84× 10−4 5.20× 10−2

χ2 values

Pre-LHC 8.18 8.64 7.79 8.18 8.91

Post-LHC 1054.32 9.45 9.44 267.52 9.68

Table 3. Best-fit values of the MSSM-15 input parameters and several observables of interest. For

the cases “All data” and “Planck upper limit”, we show both the overall pre-LHC best-fits in the

second and fifth column (those points are ruled out by ATLAS data) and the best-fitting point

surviving the addition of ATLAS constraints and Higgs boson properties data (third and sixth

column). The bottom section gives the corresponding χ2 values. Notice that the “Pre-LHC” data

do include the Higgs mass measurement.
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upper limit” cases, the pre-LHC best-fit values become ruled out once the ATLAS null

SUSY searches are added to the likelihood (see section 3.6), as a consequence of their low

squark masses, which are excluded by the 0-lepton search. For those two cases, we also

show the coordinates of the best-fitting points that survive the inclusion of ATLAS data

at the post-processing stage.

We do not provide an interpretation of the best-fit χ2 value in terms of goodness of

fit. This is because our likelihood function receives contributions from experimental limits

that are not Gaussian distributed, hence asymptotic distributions for the ensuing χ2 that

assume Gaussian data do not apply. The determination of the quantitative goodness of fit

of our best-fit points would require detailed Monte Carlo realisations of the data sets.

In figure 6 we display the contribution of each observable to the best-fit χ2, for the

analysis including all data (red), excluding the g− 2 constraint (purple) and including the

Ωχh
2 measurement as an upper limit (blue). In general, the largest contributions to the

best-fit χ2 result from the same observables for each of the three analyses, namely σ0
had,

BR(Bu → τν)/BR(Bu → τν)SM , BR(Ds → τν) and, to a lesser extent, R0
l (as already

discussed in section 3.1). Another large contribution to the best-fit χ2 for the analyses

including the g−2 constraint results from the isospin asymmetry ∆0−. In contrast, for the

analysis excluding the g − 2 constraint, the experimentally measured value of ∆0− can be

reproduced (see the discussion in section 3.1), leading to a much smaller χ2 contribution.

Largely as a consequence of this difference, the overall χ2 achieved by the analysis excluding

g − 2 is slightly reduced compared to the other two analyses.

Upon post-processing with the LHC data sets, the χ2 values of the pre-LHC best-

fit points become 1054.32 (all data), 9.44 (without g − 2) and 267.52 (Planck as upper

limit). Thus the overall pre-LHC best-fit point becomes ruled out, while the best-fit point

obtained from the scans excluding g−2 remains viable. On one hand, this is a consequence

of the larger best-fit values of the gluino (2.83TeV) and squark (1.55TeV) mass for this

case, which are the main quantities constrained by the ATLAS 0-lepton search. On the

other hand, even though the production cross-section of the lightest chargino and the

second lightest neutralino is of O(1 pb), their branching ratios to leptons are only of a few

percent, leading to a signal prediction for all the signal regions of the ATLAS 3-lepton

search analysis compatible with the data at the 1σ level. The characteristics of the best-fit

points surviving the inclusion of the LHC data sets are discussed in section 3.6 below.

3.4 Implications for direct detection

Within the MSSM the dominant contribution to the spin-independent (SI) cross-section

amplitude is generally the exchange of the two neutral Higgs bosons, although in some cases

the contributions of the squark exchange and loop corrections are substantial. When mH <

mh

√
tanβ, the heavy Higgs is usually the dominant one. As we have seen in section 3.1,

values ofmA . 1 TeV are disfavoured, which in turn implies that values ofmH & 1 TeV are

preferred. Thus we expect that the light Higgs exchange dominates. The SI cross-section

for H/h exchange in the SUSY decoupling limit with moderate to large tan β values is

∝ |(N12−N11 tan θw)|2|N13/14|2/m4
H/hf

2
q , where θw is the electroweak mixing angle, N1i rep-

resent the neutralino composition and fq are the quark-nucleon matrix elements. Therefore,
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a larger SI cross-section is expected in the “well-tempered” neutralino scenario, i.e. when

the neutralino is a bino-higgsino, wino-higgsino or bino-wino-higgsino mixture. In fact, a

sizeable SI cross-section is obtained as long as the higgsino fraction is larger than O(0.1).

For the squark exchange, at tree level only the exchange of the u, d and s squarks

contributes, though one can still consider heavy quarks in the effective field theory approach

provided that mq̃ ≫ (mχ0 +mq) . Otherwise, a one-loop treatment has to be considered to

account for them [102]. As the expression for the amplitude is lengthly we do not write it

here explicitly (for details see for instance [102]). It consists of two parts, one coming from

gaugino-higgsino mixing and a second one proportional to sin 2θq̃, in which pure binos or

mixed bino-winos are involved, where θq̃ is the squarks mixing angle. Of course, both are

proportional to the propagator 1/(m2
q̃ − (mχ0 +mq)

2).

After this brief review of the anatomy of the contributions involved at tree-level in the

SI cross section, we turn to the discussion of figure 7, which shows the two-dimensional

profile likelihood functions in the planes of neutralino mass vs. the cross section for

spin-independent neutralino-proton (left panels), spin-dependent neutralino-proton (cen-

tral panels) and spin-dependent neutralino-neutron (right panels) scattering. From top

to bottom, the panels show the results for the analysis including all data, excluding the

g − 2 constraint, and using the Planck relic density measurement as an upper limit. In

each panel, the 68%, 95% and 99% confidence regions are shown. In the top and central

left-hand panels we also show the current 90% exclusion limits from the XENON100 exper-

iment (red) and the LUX collaboration (blue, not included in the analysis). As described

in section 2.5, when applying the Planck constraint on the relic density as an upper limit,

the local dark matter density is rescaled with the scaling Ansatz of eq. (2.5). Therefore,

the XENON100 and LUX exclusion limits, that were computed for a fixed local density

ρχ̃0
1
= 0.3GeV/cm3, are not shown in the bottom left panel of figure 7.

We start by discussing the 2D profile likelihood results for spin-independent neutralino-

proton scattering (left-hand panels). Multiple modes of high likelihood can be identified.

For each of the three analyses we observe a narrow area at mχ̃0
1
∼ 50GeV spanning almost

15 orders of magnitude in σSI
χ̃0
1
−p

that is favoured at 68% C.L. A second region that is

strongly favoured is found at WIMP masses of several hundred GeV, and stretches from

cross-sections just below the XENON100 limit down to σSI
χ̃0
1
−p

∼ 10−20 pb. Additionally,

the 95% region for the analysis excluding the g−2 constraint also includes a sizeable region

at larger neutralino masses 1TeV . mχ̃0
1
. 1.5TeV, that spans a large cross-section range

10−20 pb . σSI
χ̃0
1
−p

. 10−7 pb. This region in fact also appears in the top left panel (for the

analysis including all data), albeit only at very large cross-sections. Finally, a small region

favoured at 95% C.L. is visible at very large mχ̃0
1
& 2TeV in the panel for the analysis

excluding the g − 2 constraint.

In the (σSI
χ̃0
1
−p

, m0
χ) plane, the 68% C.L. region corresponds to a bino-like neutralino

LSP. Since the lightest Higgs mass is fixed to ∼ 126 GeV by the LHC measurement, and

mA ≫ mZ , one would expect σSI
χ̃0
1
−p

to be O(10−9 pb), which is realised at the top of the

narrow, vertical strip found at a neutralino mass ∼ 50 GeV. Heavier bino-like neutralinos

can acquire some mixing with higgsinos, which further enhances the SI cross-section. The
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degree of higgsino mixing is limited by the XENON100 constraint. On the other hand, can-

cellations among the different contributions might occur [103], leading to values as low as ∼
10−25 pb within the 95 % C.L. Such cancellations require unexpected relationships between

the parameters in the Higgs and squark sectors, the parameters determining the neutralino

composition and the nuclear matrix elements — something that in constrained SUSY mod-

els is quite unlikely to happen. We also observe a region favoured at the 95% C.L. that corre-

sponds to ∼ 1 TeV higgsino-like neutralinos. This region is disfavoured relative to the low-

mass regions because a heavy higgsino-like neutralino forces the EWKinos and sfermions

to be heavy, which is in tension with the constraints on several observables, namely the

muon g − 2 constraint, ∆0− and AFB(B → K∗µ+µ−) (see the discussion in section 3.1).

Note that, for higgsino-like dark matter, the neutralino mass is strongly constrained

to mχ̃0
1
∼ 1TeV by the Planck constraint on the dark matter relic abundance. However,

co-annihilations with the second lightest neutralino and the lightest chargino can further

reduce the dark matter relic abundance, so that higgsino-like dark matter with mχ̃0
1
.

1.4TeV remains favoured at 95% C.L. (see also figure 4).

Excluding the muon g − 2 data leads to a sizeable difference in the neutralino mass

favoured at the 95% C.L. First, in the higgsino-like neutralino region (m0
χ ∼ 1 TeV), σSI

χ̃0
1
−p

extends to significantly lower values, both because the neutralino becomes an increasingly

pure Higgsino state, and due to cancellations between the Higgs sector contributions to

σSI
χ̃0
1
−p

. Secondly, a region at large neutralino masses mχ̃0
1
∼ 2− 3 TeV is now favoured at

95% level. In this region, which was previously disfavoured by the g − 2 constraint, the

neutralino is wino-like (see also figure 9 below).

The bottom-left panel depicts the SI cross-section for multi-component DM scenarios.

Now larger cross-sections are not penalized because the scaling factor ξ reduces the pre-

dicted number of recoil events, thus weakening the impact of the XENON100 constraint.

As mentioned above, the lowest neutralino masses correspond to bino-like neutralinos.

Heavier neutralinos can be both well-tempered and almost pure wino-like or higgsino-like.

Neutralinos with an admixture of wino and/or higgsino annihilate very efficiently via coan-

nihilations, providing a relic abundance well below the Planck upper limit. This effect is

largest for light neutralinos. Compared to the analysis assuming that neutralinos make up

all dark matter in the universe, the contours are shifted towards smaller neutralino masses.

As explained above, this is mainly a consequence of the flavour observables ∆0−, AFB(B →
K∗µ+µ−), and the g− 2 constraint, which play a dominant role in driving the profile like-

lihood results when relaxing the Planck constraint on the neutralino relic density.7

Similar patterns can be observed for spin-dependent neutralino-proton and neutralino-

neutron scattering (central and right-hand panels). The narrow region at low mχ̃0
1
is clearly

visible in the mχ̃0
1
−σSD

χ̃0
1
−p

plane for all three analyses, and also shows up in the mχ̃0
1
−σSD

χ̃0
1
−n

7In principle, the 95% contours might also include the regions at high neutralino masses favoured at 95%

level in the analysis requiring that Ωχ ∼ ΩDM. However, these points correspond to strong fine-tuning of

the parameters in order to obtain an acceptable fit to observables such as ∆0−, AFB(B → K∗µ+µ−), and

g − 2. In the absence of the relic density constraint, which drives the scan towards these regions, the scan

spends less time tuning the observables in this region. A dedicated investigation of the profile likelihood

coverage in this parameter space is the subject of future work.
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Figure 7. 2-D profile likelihood results in the variables relevant for direct detection experiments.

From top to bottom: including all data, excluding the g − 2 constraint, and applying the Ωχh
2

measurement as an upper limit. The encircled cross gives the location of the best fit. Recall that

these analyses does not include null SUSY searches at the LHC (see section 3.6).
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plane for the analysis excluding the g−2 constraint. Likewise, the extended region at dark

matter masses mχ̃0
1
∼ O(100)GeV can easily be identified in both planes, and spans a large

range in σSD
χ̃0
1
−p

and σSD
χ̃0
1
−n

for both the analyses including all data and the analysis allowing

for a relic density smaller than the value measured by Planck. Instead, for the analysis

excluding the g − 2 constraint, this region only inhabits an area at large spin-dependent

cross-sections, and is disfavoured at 99% C.L. even at intermediate cross-section values

σSD
χ̃0
1
−p

∼ 10−11 pb and σSD
χ̃0
1
−n

∼ 10−9 pb. Regions observed at large mχ̃0
1
> 1TeV in the

mχ̃0
1
− σSI

χ̃0
1
−p

plane for the analyses including all data and excluding g − 2 also appear for

spin-dependent scattering, although the two different high-mass regions observed in the

spin-independent plane for the latter analysis are difficult to identify as separate regions.

In general, the dominant contribution to the spin-dependent (SD) cross-section is the

Z exchange contribution. Since the bino and wino are both SU(2) singlets, they do not

couple to the Z boson, so that the SD cross-section is largely determined by the higgsino

content of the neutralino. The Z exchange contribution (and hence the SD cross-section)

is proportional to the higgsino asymmetry (|N13|2 − |N14|2)2. The squark exchange contri-

butions has a similar structure to the SI case.

In the top central (right-most) panel the (σSD
χ̃0
1
−p(n)

, m0
χ) plane is displayed. For the

spin-dependent neutralino-proton interaction, the shape of the PL contours is similar to the

results for the SI cross-section. This can be understood by the fact that the squark-exchange

contribution follows a similar pattern and the Z exchange contribution is non-negligible as

long as the neutralino is well-tempered. In the absence of degeneracies between parameters

in the neutralino mass matrix and if mZ can be treated as a perturbation, the asymmetry

|N13|2 − |N14|2 ∝ cos 2β/(µ2 − Mi) for |M1|, |µ|, |µ| − |Mi| > mZ and Mi → ∞, with

i = 1, 2. From this one recovers the limits of pure gaugino/Higgino in which the higgsino

asymmetry vanishes. The asymmetry is maximized when either the binos and higgsinos

or winos and higgsinos are close in mass, i.e. for well-tempered neutralinos. One expects

a suppression when the Z and squark exchange contributions cancel against one another,

which requires fine-tuned relationships between the model parameters and the nuclear

matrix elements. This is typically not the case for the scattering off both protons and

neutrons simultaneously, which explains the differences between the results for the proton

and neutron SD scattering cross-section.

In the middle central and right-most panel we display the “w/o g-2” case. The most

remarkable difference with respect to the “All data” case (upper panels) occurs for neu-

tralino masses O(100 GeV) where the SD cross-section is on average larger. The effect is

more pronounced for masses ∼ 100 GeV, where the neutralino, although bino-like, acquires

a sizeable higgsino fraction, as required to fulfil the Planck measurement of the dark matter

relic density. Recall that in the “All data” case, in addition to acquiring a sizeable higgsino

content, bino-like neutralinos may annihilate through both the exchange of light sleptons

and through co-annihilations, while keeping their pure bino character. This suppresses the

higgsino asymmetry factor and thus the SD cross-section. Additonally, at neutralino masses

of a few hundred GeV, one can find the bulk region with relatively light sbottoms/stops,

as outlined in section 3.1. As a result, the SD cross-section covers a large range of val-
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ues. For masses ∼ 1 TeV, the neutralino is higgsino-dominated and can exhibit either an

enhancement or a suppression in the SD cross-section, depending on its purity degree.

Finally the bottom central and right-most panels show the multi-component DM sce-

nario. Here, the main difference with respect to the upper panels is that in this case the

neutralino is mostly either wino-like or a wino-higgsino mixed state. A wino-like neutralino

has an enhancement with respect to the bino-like state due to the larger SU(2) gauge cou-

pling relative to the U(1) one. In this case the PL contours for the proton and neutron SD

cross-sections are almost identical.

In figure 8 we show the 2D profile likelihood in the plane of spin-independent

neutralino-proton cross-section vs. the neutralino relic density. As mentioned above, we

assume that the local neutralino density scales with the cosmological abundance. As a

result, the XENON100 limit is shifted towards larger cross-section values for points in pa-

rameter space that lead to a relic density smaller than the value measured by Planck. This

translates into a negative correlation visible in figure 8 for large values of the scattering

cross-section. For small values of Ωχ̃0
1
h2 the most favoured region of parameter space is

a narrow band stretching along the currently largest allowed cross-section values, within

reach of future direct detection searches. In this region, the neutralino is a mixed wino-

higgsino state (see section 3.5 below), so that co-annihilation effects are maximized, and

very small neutralino relic densities can be achieved.

For 10−5 . Ωχ̃0
1
h2 . 10−4 a second region, favoured at 95% C.L., shows up at slightly

lower cross-section values σSI
χ̃0
1
−p

∼ 10−10 pb. This is a consequence of light pure-gaugino

neutralinos with masses of O(100 GeV) still annihilating efficiently, but leading to a sup-

pressed SI cross-section with respect to the wino-higgsino case. For higgsino- (wino-)like

neutralinos, annihilation remains efficient up to m0
χ . 1(2) TeV. This leads to a low relic

abundance, a scenario that corresponds to the region 10−4 . Ωχ̃0
1
h2 . 10−1. Finally

when the neutralinos are either bino-like (with masses from ∼ 50 GeV to a few hundred

GeV), higgsino-like (with mχ̃0
1
∼ 1 TeV), or wino-like (with mχ̃0

1
∼ 2 TeV) the relic den-

sity matches the Planck constraint. In this cases the SI cross-section reaches lower values

because of the great purity of the neutralino. In figure 8 the largest values of Ωχ̃0
1
h2 corre-

spond to bino-like neutralinos, due to the preference for relatively small mχ̃0
1
in the analysis

allowing for multi-component dark matter (cf. figure 7). The cutoff at large Ωχ̃0
1
h2 is due

to the Planck upper limit on the relic density.

3.5 Dark matter composition

We now discuss the neutralino compositions favoured in different regions of the MSSM-15

parameter space. The neutralino composition in the plane of neutralino mass vs. spin-

independent cross-section is shown in figure 9, for the analysis including all data (left panel)

and when using the Planck relic density constraint as an upper limit (right panel). The

neutralino composition for the analysis excluding the g − 2 constraint is not shown, as it

is qualitatively very similar to the “All data” case.

We define the neutralino to be bino-like if it has a bino fraction bf > 80%, wino-like

for a wino fraction wf > 80% and higgsino-like for a higgsino fraction hf > 80%. A mixed

(B,W) neutralino has both a sizeable bino and wino fraction (bf , wf > 20%), and similarly
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Figure 8. 2-D profile likelihood in the plane of spin-independent neutralino-proton cross-section

vs dark matter relic density for the case where the relic density measurement is applied as an upper

limit. The encircled black cross is the best-fit point.
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Figure 9. Composition of neutralino dark matter in the mass vs. spin-independent scattering

cross-section plane. For reference, the PL contours from figure 7 are shown in black (notice that

the horizontal axis is on a linear scale to better show the region at larger neutralino masses).

for mixed (B,H) and mixed (W,H) neutralinos. Neutralinos that do not fit into any of the

above categories are considered mixed (B,W,H) states. For reference, we also show the

68%, 95% and 99% 2D PL contours in this plane (black, empty), as well as the best-fit

points (circled black crosses).

For the analysis including all data (left-hand panel) three dominant dark matter com-

positions can be identified. At low masses, mχ̃0
1
. 600GeV, the neutralino is bino-like. Pure

bino dark matter tends to lead to relic densities that overclose the universe. However, for
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low and intermediate and neutralino masses, pole-resonances with Z/h or co-annihilation

effects with light sleptons reduce the relic density sufficiently to achieve Ωχ̃0
1
h2 ∼ O(0.1).

Additionally, in this mass range the neutralino can acquire a non-negligible higgsino frac-

tion, leading to a relic density in agreement with the values measured by Planck. In the

mass range 0.8TeV . mχ̃0
1
. 1.6TeV the neutralino LSP is higgsino-like. For pure hig-

gsino dark matter, annihilation in the early universe is very efficient, so that small values of

µ ∼ O(100)GeV lead to relic densities much smaller than the Planck constraint. However,

for large values µ ∼ 1TeV (and thus mχ̃0
1
∼ 1TeV) the correct dark matter density can be

achieved, so that higgsino-like dark matter is favoured at neutralino masses ∼ 1TeV. At

very large masses mχ̃0
1
& 1.6TeV the neutralino becomes predominantly wino-like. Wino-

like dark matter annihilates even more efficiently than higgsino-like states, so that very

large wino masses M2 & 2TeV are required to reproduce the Planck measurement of the

dark matter density. As a result, wino-like dark matter is favoured at mχ̃0
1
& 2TeV. Finally,

we observe a small region of bino-like neutralinos atmχ̃0
1
∼ 3TeV. In this region, the correct

relic density is achieved via gluino co-annihilations, a phenomenological feature appearing

in models without gaugino mass unification, as pointed out in [104]. Small islands of mixed

(B,H) dark matter show up in the transition region from bino-like to higgsino-like neu-

tralinos. Additional small islands of mixed (W,H) neutralinos can be found at large masses

and large spin-independent cross-sections. Mixed (B,W ) and (B,W,H) states are rare.

The neutralino composition when the Planck relic density constraint is applied as an

upper limit (right-hand panel) is largely driven by the SM precision observables, namely

∆0−, AFB(B → K∗µ+µ−), and the g − 2. The bulk of the parameter space corre-

spond to wino-like neutralinos, with the exception of a narrow area at very low masses

mχ̃0
1
∼ 100GeV and a narrow diagonal area at the lowest allowed cross-sections (as a func-

tion of mχ̃0
1
) that correspond to bino-like dark matter. Higgsino-like neutralinos are now

disfavoured, and only show up as isolated islands in different regions of parameter space.

A second interesting feature is a pronounced region of mixed (W,H) neutralinos that is

found at large spin-independent cross-sections and stretches along almost the entire allowed

neutralino mass range. Other mixed states ((B,H),(B,W ),(B,W,H)) are rare. Note that,

for low mass neutralinos, a large range of different neutralino compositions are possible.

3.6 Impact of LHC Higgs properties and ATLAS SUSY searches

We now turn to the discussion of the impact of ATLAS null searches for SUSY and CMS

measurements of the Higgs properties on the favoured regions of the MSSM-15 parameter

space.

The evaluation of the full LHC likelihood described in the appendix is numerically

very demanding. We estimate that post-processing of all the samples gathered for the

above analysis would require approximately 400 CPU-years. This considerable task is

the subject of a dedicated work [91]. For the more limited purpose of this paper, we

adopt an intermediate approach, which gives an indication of the extra constraining power

from LHC SUSY searches and Higgs signal strengths measurements. In what we call the

“mini-chains” approach, we first produce profile likelihood maps from our full chains for

several 2D planes of interest. Given typical binning sizes, this leads to approximately 104
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profile likelihood values for each 2D plane. For each of those values, we then compute the

combined χ2 contribution from LHC constraints on the Higgs production cross-sections

and LHC SUSY searches (0-lepton and 3-lepton), according to the procedure described

and validated in the appendix. We add the extra χ2 value to the pre-LHC χ2 obtained

from all other experimental data sets.

We stress that this is not a fully consistent statistical approach, and that the ensuing

maps cannot be interpreted probabilistically as PL maps (as the full likelihood has not been

maximised out in the dimensions not shown). However, it does allow to draw some useful

conclusions regarding the impact of LHC SUSY searches and measurements of the Higgs

properties: mini-chain points that remain viable after inclusion of the LHC constraints

would not be ruled out even under a full PL approach. In this sense, our approach gives an

indication of the maximal possible constraints (in the plane under consideration) resulting

from the included LHC data sets. Furthermore, this procedure allows us to investigate

whether the best-fit points found in the above global fits analysis remain viable in the light

of the LHC constraints.

In figure 10 and figure 11 we show the impact of the ATLAS null searches for SUSY

in the 0-lepton and 3-lepton channels, and of the CMS measurements of the Higgs boson

properties. Bins that are almost unaffected by the LHC constraints (impact < 1σ) are

shown in cyan, bins that are disfavoured with a significance > 1σ and < 4σ level are shown

in pink, and bins that are ruled out by the LHC (impact > 4σ) are displayed in grey. Note

that we only show bins that were included in the 99% C.L. region before post-processing

the mini-chains with the LHC constraints.

Figure 10 shows the LHC impact for the analysis including all data (top row) and

the analysis excluding the g − 2 constraint (bottom row). Results for the “Planck upper

limit” analysis (not shown) are qualitatively very similar to the “All data” case. From

left to right the plots show the LHC impact in the planes of gluino mass vs. average

squark mass, lightest chargino mass vs. lightest neutralino mass and neutralino mass vs.

SI cross-section. As can be seen in the left-hand panels, the LHC 0-lepton search has a

strong impact on the favoured regions of the MSSM-15, both for the analysis including and

excluding the g−2 constraint, ruling out gluino and squark massesmgluino,msquark . 1TeV.

In addition, the measurements of the Higgs production cross-sections have a strong effect.

In particular, in the regions most strongly affected by the Higgs signal strengths data we

observe a suppression of the bb̄ signal strength (and, to a lesser extent, the τ+τ− signal

strength). As a consequence of this suppression, the other signal strengths are enhanced,

in conflict with the experimental measurements. In particular, the constraint on µW+W−

leads to a significant contribution to the total χ2, as the central value is below the SM

prediction at ∼ 1σ level, and the experimental error on this quantity is relatively small.

At tree-level, one would expect that the Higgs couplings are approximately SM-like,

as mA & 1 TeV for all points considered. However this argument breaks down when

considering higher-order corrections. In fact, ref. [105] shows how SUSY QCD (SQCD)

corrections to the hbb̄ coupling can still be large in this limit, provided one or both of the

sbottoms lie below the TeV scale (we have verified that this is the case for the regions most
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Figure 10. Scatter plots from the 2D mini-chains, showing the impact of the LHC (SUSY searches

and constraints on the Higgs decay cross-sections) on the chi-square of the best-fit point in each bin.

The top (bottom) row shows results for the scans including all data (except the g − 2 constraint).

The encircled black cross indicates the best-fit point prior to inclusion of the LHC constraints; for

the scans including all data, this point is ruled out by the LHC results, hence we also show the next

best-fit point that survives the LHC constraints (cross inscribed in the square). The best-fit point

for the analysis excluding g − 2 (bottom panels) remains viable after LHC data are included.

strongly affected by the Higgs couplings data). In this case, sizeable deviations from the

SM prediction may arise.

The effect of full decoupling can be seen in the narrow vertical band of cyan bins with

mgluino ∼ 5 TeV, where all SUSY masses are large. For the analysis including all data,

on the right-hand side of this band there is a narrow strip in which the full decoupling is

not fulfilled. This particular region corresponds to very large values tan β ∼ 50, for which

the onset of decoupling is delayed [105]. As a result, even though the gluino is heavy,

the approach to decoupling is significantly slower. In general, the pink bins correspond to

relatively larger values of tan β than the cyan bins, for which full decoupling is not achieved.

Note that, for the analysis including all experimental constraints, there is a region at

relatively low values of msquark and mgluino (but above the ATLAS 0-lepton limits), which

is significantly disfavoured by the LHC constraints. In this region, tan β∼ 10, so that

the Higgs couplings data have a smaller impact. Instead, the ATLAS 3-lepton search (see

below) impacts quite strongly on this region. The above discussion applies broadly also to

the central and right-hand panels (for both the analysis including all data and excluding

– 35 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
1

the g − 2 constraint), in which the impact of the Higgs production cross-sections data

follows a similar pattern.

In general, the impact of the 3-lepton channel search, which imposes constraints in the

lightest chargino mass vs. lightest neutralino mass plane (central panels) is relatively weak

compared to the 0-lepton channel. This is true in particular for the analysis excluding the

muon g− 2 constraint, for which larger neutralino masses are favoured (cf. figure 4 above).

The impact of the constraint on the Higgs production cross-sections is again clearly visible,

significantly disfavouring points that lead to strong deviations from the SM prediction for

a large range of different values of mχ̃0
1
and mχ̃±

1
.

The impact of the LHC SUSY and Higgs searches in the plane of neutralino mass vs.

spin-independent scattering cross-section is shown in the right-hand panels of figure 10. The

main impact of the LHC in this plane is to rule out points at low/intermediate neutralino

masses that were previously strongly favoured, mainly as a consequence of the 0-lepton

channel search. Therefore, for small mχ̃0
1
. 300GeV, the LHC is extremely powerful,

ruling out cross-sections orders of magnitudes below the reach of present and future direct

detection experiments (and indeed below the “ultimate” limit represented by the solar

neutrino background). For the analysis excluding the g − 2 constraint, a much smaller

fraction of points is affected by the LHC, and several points at small mχ̃0
1
are still allowed.

This is largely a result of the 0-lepton search having less of an impact on the analysis

excluding g − 2 (as very small squark masses are disfavoured for this analysis). Note that

for mχ̃0
1
& 500GeV the MSSM-15 parameter space is largely unaffected by constraints

from LHC SUSY searches, but can be constrained by precise measurements of the Higgs

production cross-sections.

In figure 11 we show the impact of the LHC in the plane of spin-independent cross-

section vs. neutralino relic density for the case when the Planck relic density measurement

is taken as an upper limit (i.e., multi-component dark matter scenarios are allowed; the

relic density is connected to the local density via the scaling Ansatz in eq. (2.5)). The

LHC has a strong impact in this plane, ruling out a large range of different relic densities

and spin-independent cross-sections. Most of these points correspond to squark masses of

O(100 GeV), and are thus ruled out at high significance by the ATLAS 0-lepton search.

A narrow region at very large cross-sections, stretching along almost all allowed values

of Ωχ̃0
1
h2 is less affected by the LHC, especially at large relic density values. Likewise, a

narrow horizontal region at large Ωχ̃0
1
h2 ∼ O(0.1) and intermediate cross-sections 10−15

pb . σSI
χ̃0
1
−p

. 10−8 pb is unaffected by LHC SUSY searches, and only receives significant

χ2 contributions from LHC constraints on the Higgs production cross-sections. Finally,

a large selection of points that survive all LHC constraints is found at intermediate and

small relic density and cross-section values.

The pre-LHC best-fit point from the “w/o g - 2” analysis remains viable in light of the

LHC data, while the best-fit points for the “All data” and “Planck upper limit” analyses are

strongly disfavoured (see section 3.3). The best-fit points in the mini-chains after inclusion

of the LHC constraints for the “All data” and “Planck upper limit” cases are given in

table 3. Pre-LHC, those points have a χ2 value within 1σ of the overall best-fit, and thus
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Figure 11. Scatter plot from the 2D mini-chains, showing the impact of the LHC (SUSY searches

and constraints on the Higgs decay cross-sections) on the chi-square of the best-fit point in each

bin. The plot shows results for the scans including all data, with the Planck constraint applied as

an upper limit. The encircled black cross indicates the best-fit point prior to inclusion of the LHC

constraints (which is ruled out by the LHC), while the cross inscribed in the square indicates the

next best-fit point that survives the LHC constraints.

are perfectly viable. After adding the contributions from LHC SUSY null searches and

constraints on the Higgs properties, their χ2 increases by 0.81 (“All data”) and by 0.76

(“Planck upper limit”). respectively. This indicates that they remain in good agreement

with all experimental data sets considered in this analysis.

Compared to the pre-LHC best-fit points, we observed a shift of the squark mass to the

multi-TeV region (2.3TeV and 5.9TeV, respectively), a slight increase in the neutralino

mass (134GeV and 128GeV, respectively) and a gluino mass in the 1-2TeV region. A

squark mass of 2.3TeV with gluinos in the 1-2TeV range will be accessible to the LHC

searches in the upcoming high energy runs [106]. For the “All data” case, the best-fit

SI cross-section shifts to a value of 2.3 × 10−10 pb, which is within the reach of the next

generation of multi-ton scale direct detection experiments.

Notice that in some panels in figures 10–11, the post-LHC best-fit points appear to

be located in bins that are excluded according to the colour coding (grey). This is a

consequence of the limitations of the mini-chains approach adopted here: as explained

above, the mini-chain results have been obtained by post-processing the 2D PL values in

each of the 2D planes separately. The post-LHC best-fit points, on the other hand, have

been selected from the joint mini-chains encompassing PL values from all 4 2D planes

shown in figure 10–11 (in particular, in both cases the post-LHC best-fit point was taken

from the msquark−mgluino mini-chain). Therefore, the post-LHC best-fit points may appear

to be excluded in some 2D projections since the latter have not been maximised over the

entire parameter space with LHC data.
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The above results are suggestive of the constraints that a full analysis of our entire

MSSM-15 sample with our LHC likelihood would provide. As mentioned above, results from

the mini-chains approach are indicative, but should not be interpreted probabilistically as

PL maps. A thorough profile likelihood analysis of the LHC impact on the MSSM-15 will

be presented in a future work [91].

4 Conclusions

We have presented global fits of a phenomenological Minimal Supersymmetric Standard

Model with 15 free parameters, including all available accelerator constraints, as well as

constraints from cosmology and direct detection experiments. We have obtained high-

resolution profile likelihood maps of the model parameter space, and discussed implica-

tions for the collider phenomenology and detection prospects in astro-particle physics ex-

periments. We have discussed and compared the results for both the case in which the

neutralino LSP is the only component of the dark matter in the universe, and the case in

which it may be a subdominant dark matter component. We have also provided a detailed

assessment of the impact of the g − 2 constraint on the MSSM-15 profile likelihood maps.

We summarise here the main results of our work:

• Constraints on input parameters. Most of the input parameters remain almost

unconstrained by current experimental results. However, relatively stringent con-

straints are placed on the parameters related to the dark matter phenomenology,

M1, M2 and µ, which are significantly affected by the relic density constraint, direct

detection data, and several of the flavour observables, leading to a preference for

small values of these quantities.

• Constraints on SUSY mass spectrum. In all considered cases, the profile

likelihood function for the mass of the neutralino LSP peaks at very small values

mχ̃0
1
. 100GeV. For single-component dark matter scenarios, a bino-like neutralino

LSP with a mass of ∼ 60GeV is strongly favoured, although higgsino-like dark mat-

ter with mχ̃0
1
∼ 1TeV is allowed at lower confidence. For the case excluding the g−2

constraint, the profile likelihood for the neutralino mass extends to significantly larger

values, pushing the maximum value from 1.5TeV to about 3TeV. In this case, wino-

like dark matter with mχ̃0
1
∼ 2TeV is favoured at 95% level. The profile likelihood

functions for the squark and gluino masses are almost flat within the investigated

parameter ranges.

• Direct dark matter searches. Direct detection constraints are found to be com-

plementary to accelerator searches. Whereas upcoming experiments will allow to

probe high neutralino scattering cross-sections, the very long tails in the parameter

space extending to extraordinarily small cross-section values further strengthen the

case for a combined analysis of astro-particle and accelerator data. Our current best-

fit point, however, is within reach of the next generation of multi-ton scale direct

detection experiments, exhibiting a spin-independent cross-section of 2.3× 10−10 pb.
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• Neutralino composition. The rich phenomenology of the MSSM-15 manifests

itself in a broad range of neutralino compositions. We have provided a detailed

discussion of the phenomenological consequences of the different compositions, and

noticed in particular that in the case where the relic density constraint is applied

as an upper limit, the favoured neutralino compositions are substantially different

from the other cases, with the bulk of the favoured parameter space corresponding

to wino-like (instead of bino-like) states.

• Impact of LHC searches. We have demonstrated the strong impact of LHC SUSY

searches, which provide stringent constraints in regions of the parameter space cor-

responding to very low values of σSI
χ̃0
1
−p

, which are not accessible with astro-particle

physics experiments in the foreseeable future. Furthermore, we highlighted the sig-

nificant impact of constraints on the Higgs signal strengths on the MSSM-15.

The full implementation of the LHC likelihood described in the appendix is numerically

very demanding: post-processing of all samples gathered for the above analysis would

require approximately 400 CPU-years, even with our approximate likelihood based on fast

simulations. We have adopted here an intermediate approach, which gives an indication

of the extra constraining power from LHC searches and Higgs properties on the 2D profile

likelihood maps. We will provide profile likelihood maps including the full LHC constraints

in an upcoming dedicated work [91].
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Signal region: A A’ B C D E

Emiss
T [GeV]> 160

1st jet pT [GeV]> 130

2nd jet pT [GeV]> 60

3rd jet pT [GeV]> - - 60 60 60 60

4th jet pT [GeV]> - - - 60 60 60

5th jet pT [GeV]> - - - - 40 40

6th jet pT [GeV]> - - - - - 40

∆φ(jeti,E
miss
T )min >

0.4 (i=1,2,(3)) 0.4 (i=1,2,3)

- - - 0.2 (for all jets pT> 40 GeV)

Emiss
T /meff(Nj) > 0.3 (2j) 0.4 (2j) 0.25 (3j) 0.25 (4j) 0.2 (5j) 0.15 (6j)

meff(incl.) [TeV] > 1.9/1.4/- -/1.2/- 1.9/-/- 1.5/1.2/0.9 1.5/-/- 1.4/1.2/0.9

Table 4. Requirements for the inclusive channels A-E for the ATLAS 0-lepton analysis with an

integrated luminosity of 4.7 fb−1. For meff(incl.) the limits are given in the order tight/medium/loose

(from [79]).

A ATLAS likelihood

In this section we describe the construction adopted for the ATLAS likelihood. We adopt an

approximate construction to exploit 0-lepton and 3-lepton inclusive searches from ATLAS

data, as explained below.

A.1 ATLAS 0-lepton and 3-lepton signal regions

The ATLAS 0-lepton analysis [79] has 6 channels which are used to construct between one

and three signal regions with “tight”, “medium” and/or “loose”meff(incl.) selections, giving

in total 11 signal regions. The different channels have been constructed for different SUSY

particle production mechanisms. Signal region A is designed for squark-squark production,

signal region A’ especially for models with low mass splittings. Signal region B is designed

for squark-gluino production whereas signal regions C-E are constructed for gluino-gluino

production with high jet multiplicities.

The selection criteria for each signal region are shown in table 4. As the name implies

there is a general veto on events containing leptons. The used selection variables are the

minimum required number of jets and their respective transverse momentum, the missing

transverse energy Emiss
T , the effective massmeff calculated as the scalar sum of all transverse

jet momenta larger than 40GeV and the missing transverse energy, the ratio of Emiss
T to

meff (where meff only includes the required number of jets), the minimum angle between

the required jets and the missing energy vector ∆φ(jeti,E
miss
T )min. For the signal region C-

E an additional criterium is applied, a cut on ∆φ(jeti,E
miss
T )min for all jets with transverse

momenta larger than 40GeV.
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Signal region: 1a 1b 2

lepton charge, flavour at least one SFOS pair with mll > 20GeV

Emiss
T [GeV]> 75

mSFOS [GeV] < 81.2 or > 101.2 81.2− 101.2

No. of b-jets 0 0 any

mT [GeV] any > 90 > 90

pT of all leptons [GeV]> 10 30 10

Table 5. Requirements for the signal regions 1a, 1b and 2 for the 3-lepton ATLAS analysis with

an integrated luminosity of 4.7 fb−1. In addition, the number of reconstructed leptons has to be

three (from [80]).

The ATLAS 3-lepton analysis [80] consists of 3 signal regions. Signal regions 1a and 1b

include a Z-veto, signal region 2 is designed for a on-shell Z boson. All signal regions require

exactly three leptons, two of them form the same flavour opposite sign (SFOS) lepton pair.

The selection criteria are shown in table 5. The transverse mass mT is calculated using the

missing transverse energy and the third lepton.

Altogether, we thus have a total of 14 signal regions (11 from the 0-lepton analysis

and 3 from the 3-lepton analysis).

A.2 The likelihood function

The likelihood for each bin in a signal region i (i = 1, . . . , 14) is given by

Li(ni|s, b,θ) = Poiss(ni|λs(s, b,θ))× LC(θ), (A.1)

where the first factor reflects the Poisson probability of observing a number of events n in

the signal region given the signal (background) expected value s (b). The Poisson expec-

tation value λs also depends on the nuisance parameters θ that parameterize systematic

uncertainties, such as luminosity or jet energy scale. Those uncertainties are constrained

via the likelihood term LC(θ), which is taken to be a multivariate Gaussian distribution

around the nominal value θ = 0, with diagonal covariance matrix entries given by the

quoted nominal uncertainties in each of the systematic factors. Then we write the Poisson

expectation value as

λs = s(1 + ∆sθs) + b(1 + ∆bθb), (A.2)

where s and b are the nominal values of the signal and background, ∆s and ∆b are their

relative uncertainties and θs and θb are nuisance parameters, so that θ = {θs, θb}.
Experimental analyses provide the overall uncertainty in the background expectation

in the signal region, ∆b. For the systematic uncertainty on s we can use the fact that

s = Lσǫ, (A.3)
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where L is the integrated luminosity, σ is the SUSY cross-section and ǫ is the acceptance

times the detector efficiency. The errors on each of the terms above can then be propagated

linearly to obtain

∆s

s
=

√

(

∆L

L

)2

+

(

∆σ

σ

)2

+

(

∆ǫ

ǫ

)2

. (A.4)

The theoretical uncertainties involved in the SUSY cross-sections determination, ∆σ, are

computed at each point of the parameter space of the model under consideration for the

0-lepton analysis via the NLL-fast 1.2 package [84–87], while they are neglected for the

3-lepton analysis. The relative error in the efficiency can be determined by comparing the

official efficiencies maps from the ATLAS collaboration with ours (see below). The value

of ∆L is subdominant compared with the other uncertainties, and hence can be neglected.

We further neglect uncertainties that are subdominant compared to the ones affecting the

efficiencies, such as the jet energy scale.

We then obtain an effective likelihood, Leff,i, by eliminating the above nuisance pa-

rameters θ via marginalisation as follows:

Leff,i(ni|s, b) =
∫

Li(ni|s, b,θ)p(θ)dθ, (A.5)

where the prior over θ is uniform around θ = 0 and of length 6 standard deviations on

either side.

A.3 Approximate joint likelihood for inclusive searches

The method for combining different SUSY analyses depends on whether the analyses are

exclusive (i.e., without overlapping data samples), or inclusive (i.e., with overlapping data

samples).

For exclusive analyses the corresponding data samples are statistically independent,

whether they are signal regions or control samples to constrain the background prediction.

However, the combined likelihood of two exclusive analyses cannot be constructed as the

simple product of the two individual likelihoods, as the systematics term LC is in general

correlated between the two searches. Every (fully) correlated systematic uncertainty must

use the same nuisance parameter in both analyses, and only one constraint on this single

parameter should be used in LC .

For analyses with statistically overlapping data samples or signal regions that are not

exclusive (i.e., “inclusive” analyses), the likelihoods for different signal regions are not

statistically independent, hence a joint likelihood is difficult to construct. In this case,

for each value of s we want to test, we select the best signal region based on the median

(expected) value of the likelihood P (qs|s + b), where qs denotes the test statistics (as

appropriate for setting upper limits)

qs =

{

−2 lnλ(s) if ŝ < s,

0 if ŝ > s.
(A.6)

In the above test statistics, we have defined the profile likelihood ratio
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λ(s) ≡ L(s, ˆ̂θ)
L(ŝ, θ̂)

, (A.7)

where
ˆ̂
θ denotes the conditional ML estimator for the nuisance parameters, θ, ŝ is the

unconditional MLE for s and θ̂ the unconditional MLE for θ. The distribution of the

likelihood is obtained from Monte Carlo simulations (assuming the alternative s+ b). The

best signal region is the one leading to a median likelihood with the smallest p-value. This

procedure thus selects the signal region that is expected to give the strongest upper limits

for each value of s.

We then evaluate the likelihood using the observed number of events in that optimal

signal region, P (nobs|s + bfit), where nobs is the observed number of events and ‘fit’ refers

to the data-constrained background value.

This approach however would in general lead to a discontinuity in the value of the

likelihood whenever one crosses regions in parameter space where the best signal region

changes. This is because there is no reason why absolute values of the likelihood function

for different signal regions should be continuous across optimal signal regions boundaries.

We solve this problem by defining the full likelihood as

L = Lobs
i

∏

j 6=i

E[Lj ], (A.8)

where Lobs
i is the observed likelihood for the signal region selected by the above procedure,

while E[Lj ] is the expected likelihood in signal region j 6= i (i.e., in all the other signal

regions that are less optimal for the given s being tested).

B Validation via simulations

B.1 Likelihood validation

We validate the likelihood (A.1) and the approach of eq. (A.8) in the case of non-overlapping

signal regions as follows. For every signal region i (i = 1, . . . , 14) in the analyses used, the

number of expected events in the signal region under the null hypothesis (s = 0) is given by

the number of expected background events bi ± σbi . In order to not bias ourselves towards

any particular SUSY model or particular number of expected signal events si in general,

we generate 10,000 toy events around the background expectation only.

To take into account systematic and statistical fluctuations, the number of toy observed

events is generated according to

ntoyi = Poisson(Normal(bi, σbi)), (B.1)

where the extra Gaussian smearing approximately accounts for systematic effects. For

σbi we adopt the uncertainty on the background prediction as given by ATLAS. We then

compute the joint likelihood of eq. (A.8) for the simulated events for each non-exclusive

signal region i.
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Figure 12. Log likelihood results for toy data in each signal region in the ATLAS 0-lepton inclusive

analysis. All curves can be seen to follow the same distribution, which validates our approach.
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The results of the validation studies are shown in figure 12, for the 11 signal regions

of the 0-lepton analysis (the case of the 3-lepton analysis is similar). We can see that the

distribution’s shapes are identical, up to an irrelevant normalisation factor. The spikes are

a normalisation issue, due to the fact that for regions with a small number of events the

number of possible values for Lobsi(n = ntoyi) is smaller than it is for regions with high nbj .

We can conclude from this validation study that our procedure to use the most powerful

signal region for each sampled value of the MSSM-15 parameter space while normalising

the likelihood via the expected value of the other signal regions leads to no large bias.

B.2 Signal simulation validation

For the validation of the event and detector simulations we adopted two different ATLAS

analyses. For both analyses we cross-checked the resulting event selection efficiencies of our

simulation done with PYTHIA 6.4 [81] and DELPHES3.1 [90] against the corresponding

ATLAS acceptance times efficiency values.

To cover a broad spectrum of signals the ATLAS SUSY searches with zero leptons [79]

and with 3 leptons [80] were chosen. Both analyses use a total integrated luminosity of

4.7 fb−1 of data taken at
√
s = 7TeV.

B.3 Comparison of efficiencies

To validate our simulation setup the relative efficiency difference

∆ε

ε
=

(Aε)ATLAS − (Aε)Sim
(Aε)ATLAS

(B.2)

between our setup and the official ATLAS analyses was determined. Here (Aε)ATLAS is the

acceptance times efficiency of the ATLAS analyses. A negative value of ∆ε
ε corresponds to

an overestimation of the efficiency by the simulation, a positive value to an underestimation.

For the validation the default ATLAS detector card supplied with DELPHES 3.1 was

modified. For both analyses the value of the jet cone parameter R of the anti-kt jet

algorithm was set to 0.4. For the 3-lepton analysis the lepton efficiencies were increased

and the lepton isolation value set to 0.7.

For the ATLAS 0-lepton analysis the validation was done in a cMSSM-grid with

tanβ = 10, while m0 runs from 100GeV to 4180GeV, m1,2 from 60GeV to 750GeV.

The comparison was done for each signal region individually. The results are shown in

figures 13–15. The minimum value was fixed for all plots due to some large deviations in

regions with efficiencies close to zero, as indicated by the color scale. Grid points with

values below the minimum are shown in white. For the large areas with value zero in the

upper and lower right corner no data points were given by the ATLAS analyses.

For the 3-lepton analysis the validation was done for a simplified model where only

the masses of the neutralinos, charginos and sleptons are free parameters and the χ̃±
1 and

χ̃0
2 decay to W and Z bosons. The employed grid has values of 70GeV to 350GeV for mχ̃±

1

and 0GeV to 200GeV for mχ̃0
1
. The results are presented in figure 16. As error estimation

the mean value of ∆ε
ε and its standard deviation were computed for each efficiency bin.

The results are presented in figures 17–20. Those values have then been used as estimates
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Figure 13. ∆ε
ε of the ATLAS and simulation setups for signal region A medium/loose and A’ of

the 0-lepton analysis.

Figure 14. ∆ε
ε of the ATLAS and simulation setups for signal region B tight and C

loose/medium/tight of the 0-lepton analysis.

for ∆ε
ε in the likelihood, eq. (A.4) assuming that the ∆ε

ε can be parameterized as a function

of the efficiency.

B.4 Comparison with official ATLAS result for the cMSSM case

For completeness, we also validated our likelihood construction in the cMSSM framework

and compared it with the results of the ATLAS Collaboration.

We computed the C.L.s to estimate the observed exclusion limits using the prescription

outlined in ref. [107] which uses the concept of Asimov data and Wilk’s theorem for its

efficient evaluation. The results are shown in the left-panel of figure 21. The continuous-

red line represents our estimated exclusion limits at 95% C.L., whereas the region between

the dash-dotted gray lines gives the ATLAS Collaboration exclusion limit, accounting for
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Figure 15. ∆ε
ε of the ATLAS and simulation setups for signal region D and E loose/medium/tight

of the 0-lepton analysis.

Figure 16. ∆ε
ε of the ATLAS and simulation setups for signal region 1a, 1b and 2 of the 3-lepton

analysis.

Figure 17. Mean efficiency value with estimated standard deviation for signal region A

medium/loose and A’ of the 0-lepton analysis.
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Figure 18. Mean efficiency value with standard deviation for signal region B tight and C

loose/medium/tight of the 0-lepton analysis.

Figure 19. Mean efficiency value with standard deviation for signal region D and E

loose/medium/tight of the 0-lepton analysis.
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Figure 20. Mean efficiency value with standard deviation for signal region 1a, 1b and 2 of the

3-lepton analysis.

Figure 21. In the left panel, we show the 95% C.L. observed exclusion limit for the 0-lepton

analysis in the cMSSM from our likelihood construction (red line) and the C.L.s method, which is

in remarkably good agreement with the ATLAS result [79]. The band limited by the gray dash-

dotted lines is the exclusion limit by the ATLAS collaboration, accounting for uncertainties in the

SUSY production cross-section. On the right, we show the normalized full log-likelihood.

uncertainties in the determination of the SUSY production cross section. The agreement

is very satisfactory, indicating that both the signal prediction procedure and the likelihood

construction we adopted work remarkably well.

In the right-panel of figure 21 we display the shape of the full-log likelihood function

in our setup.

C Statistical convergence

By describing our profile likelihood maps as “statistically convergent” we mean that our

scans can be considered to have converged to a stable, robust mapping of the PL confidence

levels. We do not intend to attach any coverage property to our PL intervals, as this would

require a dedicated study well beyond the scope of the present paper.

In order to demonstrate the stability of our CL, and in particular the stability of the

best-fit point on which CL are predicated, we have split our combined sample for the “All

data case” into 5 sub-samples, of the same size. We have performed a separate PL analysis

of each subsample, and compared it with the PL obtained from the total sample. The

purpose is to investigate whether the PL obtained from different subsample is comparable
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Figure 22. Comparison of 1D PL derived from all samples (black, thick line) and subsets of 20% of

the samples (coloured, thin line) for a few selected quantities of interest for the global fits analysis

including all data except LHC SUSY searches and Higgs couplings. The black encircled cross is the

global best-fit (from all the samples combined). Top row: “All data case”; middle row: “without

g−2”; bottom row: “Planck upper limit”. To highlight the comparison into the tails, we plot minus

twice the log profile likelihood (i.e., the effective chi-squared).

(within numerical noise) with the one from the total sample. If this is the case, then we

can conclude that increasing the sample size by a factor of 5 (from each subsample to the

total sample) does not appreciably alter our statistical results, and hence we can deem our

scans to be “converged” (in this heuristic sense).

The comparison is displayed in figure 22 for the three gaugino masses, the relic density

and the neutralino mass (as representative quantities of the many variables in our scan),

for the three scans considered in the paper (“All data”, “without g−2” and “Planck upper

limit”). To highlight the comparison of the PL into the tails, we plot minus twice the

log profile likelihood (i.e., the effective chi-squared). Each curve has been normalised to

the maximum value of the profile likelihood for that subset of samples (i.e., the effective

chi-squared for each case has a minimum at 0).

We observe that the PL obtained from each of the 5 subsamples (coloured, thin lines) is

very close to the one obtained from the global sample (black, thick line), within numerical

noise. In particular, inferences obtained from each of the 5 subsamples are comparable with

what is obtained from the global sample. For variables that are directly constrained by the

likelihood (such as the relic abundance in the “All data” and “without g−2” cases, on which
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a Gaussian likelihood is imposed), we can see that there is hardly a difference between the

global samples PL and the PL obtained from each subsample. For other variables, which

are only indirectly constrained (such has the neutralino mass), the subsamples and the

global samples remain very close, albeit with a slightly larger numerical noise in the tails

(roughly, beyond the 3σ level).

One might naively expect that the PL from all the samples (black, thick line) —

having been profiled over all samples included in each of the subsamples — ought to

always be the absolute minimum with respect to the PL obtained from the subsamples.

This is generally the case, although occasionally the effective chi-squared from a subsample

happens to dip below the global sample effective chi-squared (e.g., M2 for the “without

g − 2 case”). This can be understood by recalling that the PL for each of the subsamples

is determined with respect to the best-fit chi-squared value for that subsample alone. If

the best-fit chi-squared from a subsample is slightly worse (i.e., higher in value) than the

global best fit, the effective chi-squared for that subsample can dip below the global value.

This however only happens in cases where the PL is very flat, which makes it more prone

to numerical fluctuations in the subsamples.

Finally, we have checked that the best-fit coordinates obtained from each of the 5

subsamples is always within the 1σ CL obtained from the global PL (one dimension at the

time). This indicates that the best-fit value is stable with respect to the sample size.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[27] P. Gondolo, J. Edsjö, P. Ullio, L. Bergstrm̈, M. Schelke, E.A. Baltz, T. Bringmann and G.

Duda, DarkSUSY webpage, http://www.darksusy.org/.

– 52 –

http://dx.doi.org/10.1103/PhysRevD.74.103521
http://arxiv.org/abs/hep-ph/0602187
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0602187
http://dx.doi.org/10.1103/PhysRevD.81.095012
http://arxiv.org/abs/0904.2548
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2548
http://dx.doi.org/10.1103/PhysRevD.87.115012
http://arxiv.org/abs/1211.0999
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0999
http://dx.doi.org/10.1007/JHEP06(2013)113
http://arxiv.org/abs/1303.5386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5386
http://dx.doi.org/10.1016/0370-1573(95)00058-5
http://arxiv.org/abs/hep-ph/9506380
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9506380
http://dx.doi.org/10.1142/S0217751X04018154
http://arxiv.org/abs/hep-ph/0309346
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309346
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://arxiv.org/abs/hep-ph/0404175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404175
http://arxiv.org/abs/hep-ph/9911272
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911272
http://dx.doi.org/10.1088/0034-4885/67/5/R04
http://arxiv.org/abs/hep-ph/0401155
http://inspirehep.net/search?p=find+EPRINT+HEP-PH/0401155
http://arxiv.org/abs/1305.3929
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3929
http://dx.doi.org/10.1088/1126-6708/2006/05/002
http://arxiv.org/abs/hep-ph/0602028
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0602028
http://dx.doi.org/10.1088/1126-6708/2007/07/075
http://arxiv.org/abs/0705.2012
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2012
http://dx.doi.org/10.1088/1126-6708/2008/12/024
http://arxiv.org/abs/0809.3792
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3792
http://dx.doi.org/10.1088/1475-7516/2012/01/015
http://arxiv.org/abs/1107.1715
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1715
http://projects.hepforge.org/softsusy/
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://arxiv.org/abs/hep-ph/0104145
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0104145
http://lapth.in2p3.fr/micromegas/
http://dx.doi.org/10.1016/j.cpc.2006.11.008
http://arxiv.org/abs/hep-ph/0607059
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607059
http://www.darksusy.org/


J
H
E
P
0
9
(
2
0
1
4
)
0
8
1

[28] P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties

numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

[29] SuperIso webpage, http://superiso.in2p3.fr/.

[30] F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in

supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

[31] SusyBSG webpage, http://slavich.web.cern.ch/slavich/susybsg/.

[32] G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a fortran code for BR[B → Xsγ] in the

MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759

[arXiv:0712.3265] [INSPIRE].

[33] FeynHiggs webpage, http://www.feynhiggs.de/.

[34] S. Heinemeyer, W. Hollik, A.M. Weber and G. Weiglein, Z pole observables in the MSSM,

JHEP 04 (2008) 039 [arXiv:0710.2972] [INSPIRE].

[35] F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative

to MCMC methods for astronomical data analysis,

Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

[36] F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian

inference tool for cosmology and particle physics,

Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].

[37] J. Skilling, Nested sampling for general Bayesian computation, Bayesian Anal. 1 (2006) 833.

[38] F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri and R. Trotta, Challenges of profile

likelihood evaluation in multi-dimensional SUSY scans, JHEP 06 (2011) 042

[arXiv:1101.3296] [INSPIRE].

[39] C. Strege et al., Global fits of the CMSSM and NUHM including the LHC Higgs discovery

and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].

[40] ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC

measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

[41] Particle data group webpage, http://pdg.lbl.gov/.

[42] C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and

Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].

[43] M. Pato et al., Complementarity of dark matter direct detection targets,

Phys. Rev. D 83 (2011) 083505 [arXiv:1012.3458] [INSPIRE].

[44] X.-L. Ren, L.S. Geng, J. Martin Camalich, J. Meng and H. Toki, Octet baryon masses in

next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory,

JHEP 12 (2012) 073 [arXiv:1209.3641] [INSPIRE].

[45] J. Stahov, H. Clement and G.J. Wagner, Evaluation of the pion-nucleon sigma term from

CHAOS data, Phys. Lett. B 726 (2013) 685 [arXiv:1211.1148] [INSPIRE].

[46] P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD,

Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].

[47] QCDSF collaboration, G.S. Bali et al., Strangeness contribution to the proton spin from

lattice QCD, Phys. Rev. Lett. 108 (2012) 222001 [arXiv:1112.3354] [INSPIRE].

– 53 –

http://dx.doi.org/10.1088/1475-7516/2004/07/008
http://arxiv.org/abs/astro-ph/0406204
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0406204
http://superiso.in2p3.fr/
http://dx.doi.org/10.1016/j.cpc.2009.02.017
http://arxiv.org/abs/0808.3144
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3144
http://slavich.web.cern.ch/slavich/susybsg/
http://dx.doi.org/10.1016/j.cpc.2008.06.012
http://arxiv.org/abs/0712.3265
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,179,759
http://www.feynhiggs.de/
http://dx.doi.org/10.1088/1126-6708/2008/04/039
http://arxiv.org/abs/0710.2972
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.2972
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://arxiv.org/abs/0704.3704
http://inspirehep.net/search?p=find+J+Mon.Not.Roy.Astron.Soc.,384,449
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/0809.3437
http://inspirehep.net/search?p=find+J+Mon.Not.Roy.Astron.Soc.,398,1601
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.1007/JHEP06(2011)042
http://arxiv.org/abs/1101.3296
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.3296
http://dx.doi.org/10.1088/1475-7516/2013/04/013
http://arxiv.org/abs/1212.2636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2636
http://arxiv.org/abs/1403.4427
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4427
http://pdg.lbl.gov/
http://dx.doi.org/10.1088/1475-7516/2012/03/030
http://arxiv.org/abs/1112.4192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4192
http://dx.doi.org/10.1103/PhysRevD.83.083505
http://arxiv.org/abs/1012.3458
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3458
http://dx.doi.org/10.1007/JHEP12(2012)073
http://arxiv.org/abs/1209.3641
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3641
http://dx.doi.org/10.1016/j.physletb.2013.09.018
http://arxiv.org/abs/1211.1148
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1148
http://dx.doi.org/10.1103/PhysRevD.87.114510
http://arxiv.org/abs/1301.1114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1114
http://dx.doi.org/10.1103/PhysRevLett.108.222001
http://arxiv.org/abs/1112.3354
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3354


J
H
E
P
0
9
(
2
0
1
4
)
0
8
1
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