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ABSTRACT
We present a Bayesian technique based on a maximum-entropy method to reconstruct the

dark energy equation of state (EOS) w(z) in a non-parametric way. This Maximum Entropy

(MaxEnt) technique allows to incorporate relevant prior information while adjusting the degree

of smoothing of the reconstruction in response to the structure present in the data.

After demonstrating the method on synthetic data, we apply it to current cosmological

data, separately analysing Type Ia supernova measurement from the HST/GOODS programme

and the first-year Supernovae Legacy Survey (SNLS), complemented by cosmic microwave

background and baryonic acoustic oscillation data. We find that the SNLS data are compatible

with w(z) = −1 at all redshifts 0 � z � 1100, with error bars of the order of 20 per cent

for the most-constraining choice of priors. The HST/GOODS data exhibit a slight (about 1σ

significance) preference for w > −1 at z ∼ 0.5 and a drift towards w > −1 at larger redshifts

which, however, is not robust with respect to changes in our prior specifications. We employ

both a constant EOS prior model and a slowly varying w(z) and find that our conclusions are

only mildly dependent on this choice at high redshifts.

Our method highlights the danger of employing parametric fits for the unknown EOS, that

can potentially miss or underestimate real structure in the data.

Key words: methods: data analysis – dark matter.

1 I N T RO D U C T I O N

With the confirmation of the accelerated expansion of the Universe

(Riess et al. 1998; Perlmutter et al. 1999; Lange et al. 2001; Hoek-

stra, Yee & Gladders 2002; Riess et al. 2004; Cole et al. 2005;

Astier et al. 2006; Riess et al. 2007; Spergel et al. 2007) comes

the inference that the cosmic dynamics are today dominated by a

component that competes against gravitational collapse of matter

and thus must have negative pressure (Frieman et al. 1995; Peebles

& Ratra 2003): this has been dubbed dark energy. All observations

are presently compatible with dark energy being in the form of Ein-

stein’s cosmological constant �, a new form of matter energy with

equation of state (EOS) w = ρ/p = −1. However, it has been shown

that an EOS which changes with redshift, w(z), can mimic a cos-

mological constant and fit the current data if the parametrization

of w is assumed to be a constant (Linder 2004; Simpson & Bridle

2006). At the same time, an explanation based on the cosmologi-

cal constant still suffers from the so-called ‘coincidence’ and ‘fine

tuning’ problems, and it remains unclear whether selection effects

of the kind embodied by anthropic arguments can offer a solution

(Starkman & Trotta 2006).

Determining whether dark energy is constant in time or has dy-

namical properties is one of the most-pressing outstanding questions

in cosmology, as witnessed by the multiplication of observational

�E-mail: clz@astro.ox.ac.uk (CZ); rxt@astro.ox.ac.uk (RT)

proposals trying to elucidate the question (see e.g. Trotta & Bower

2006, for an overview). We are thus led to question the simple so-

lution of a constant w(z), especially in view of the fact that several

recent works have highlighted the dangers of fitting current data

by assuming a specific parametrization for the dark energy EOS

(Bassett, Corasaniti & Kunz 2004; Linder 2004).

The purpose of this paper is to explore the use of Bayesian statis-

tical techniques based on a maximum-entropy method to investigate

the time dependence of dark energy by imposing minimal assump-

tions on the functional form of w(z). Whenever external (prior) in-

formation is used, its impact is clearly expressed by our formalism,

making the reconstruction totally transparent. To do so we require

information about the expansion of the universe. The quality and

quantity of observational data of cosmological relevance is rapidly

increasing: Type 1a supernova (SNIa) (see e.g. Riess et al. 2004;

Astier et al. 2006) can be calibrated to serve as standard candles

(see Nugent et al. 2006, for a recent proposal of using SNeII-P in-

stead). SNIa observations can thus measure the luminosity distance

as a function of redshift, DL(z),

DL(z) = c

100 h

1

(1 + z)

∫ z

0

1

H (x)
dx (Mpc), (1)

where the present-day Hubble constant is H0 = 100 h km s−1

Mpc−1, c is the speed of light in km s−1 and the redshift-dependent

Hubble function H(z) can be expressed in terms of the present-day

matter energy content of the Universe as (here and in the following
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we assume a spatially flat Universe):

H 2(z) = (1 − �m − �DE) (1 + z)2 + �m(1 + z)3

+ �DE exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

]
. (2)

Here, �m is the density of matter in units of the critical density

today and �DE is the (present-day) dark energy density in units

of the critical density. The dark energy density time-evolution is

determined by its EOS w(z),

ρDE(z) = ρDE(0) exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

]
. (3)

Observations of the luminosity distance find a powerful geometric

complement in the use of ‘standard rulers’ such as the position of

the acoustic peaks in the cosmic microwave background (CMB)

power spectrum (Bennett et al. 2003; Spergel et al. 2007) and the

(transversal) baryon acoustic oscillation (BAO) signature recently

measured in the galaxy matter power spectrum (Cole et al. 2005;

Eisenstein et al. 2005). Such data can be used to constrain the angular

diameter distance DA(z)

DA(z) = (1 + z)2 DL(z). (4)

Apart from its geometrical impact on the angular diameter and lu-

minosity distance relations, the properties of dark energy also in-

fluence the growth of structures and can therefore be constrained

through weak lensing (see e.g. Hu 2002; Hoekstra et al. 2006; Jarvis

et al. 2006) and cluster counts data. In order to constrain w(z) from

measurements of either DL(z) or DA(z), we need to perform two

derivatives, as it is evident from equations (2) and (3). This is prob-

lematic if we consider the increase in the noise that accompanies

each derivative. In addition to information loss through this indirect

determination of w(z), the current data tend to be sparse with a large

sample variance.

For these reasons, it seems timely and relevant to shift attention

to establishing more powerful statistical methods to extract in the

most-efficient and faithful way the information on w(z) contained

in present and upcoming large data sets. The development of a tech-

nique that can cope with the patchy distribution in redshift space

while making minimal assumptions on the time properties of dark

energy is the logical next step towards improving our understand-

ing of dark energy. In this paper, we apply a modified Maximum

Entropy (MaxEnt) technique that has been diversely used to success-

fully reconstruct images and spectra under unfavourable conditions

(for applications to astrophysical problems, see e.g. Bridle et al.

1998; Marshall et al. 2002; Maisinger, Hobson & Lasenby 2004).

With a firm basis in probability theory, the method can be tailored

to the needs of dark energy reconstruction from present data. Our

application of MaxEnt aims at reconstructing the dark energy EOS

while minimizing our assumptions regarding the form of w(z).

This paper is organized as follows. We firstly outline the statistical

framework of our technique in Section 2. We then proceed to test

our reconstruction method on synthetic data in Section 3 and then

apply it to present cosmological data in Section 4. We offer our

conclusions in Section 5.

2 M A X I M U M - E N T RO P Y R E C O N S T RU C T I O N
T E C H N I QU E

2.1 Motivation

When attempting to constrain the nature of dark energy, a procedure

common in the literature is to Taylor expand the quantity ρDE(z) or

w(z) around z = 0, and then constraining the expansion coefficients

through the data (Efstathiou 1999; Huterer & Turner 2001; Weller

& Albrecht 2002). An example of such a parametrization that is

commonly employed is w(z) = w0 + (1 − a) w1 where a = 1
(1+z)

(Chevallier & Polarski 2001; Linder 2003). Alternatively, one might

prefer to parametrize the time dependence of the EOS using some

smooth function (such as the ones used in Dick, Knox & Chu 2006),

that is hoped will encapsulate the essential features of the dynamics

one wishes to constrain. Both procedures are not free from the risk

of giving misleading results, since they impose artificial assump-

tions on the form of the EOS, which often have no basis in any

physical mechanism. Bassett et al. (2004) highlight the dangers of

implementing such parametrizations. Moreover, this will only be

sensitive to departures from a constant density within a restricted

set of models (Dick et al. 2006).

Huterer & Starkman (2003) introduced a Principal Component

Analysis (PCA) of the function w(z), with the aim of adopting a

parametrization appropriate to the data sets used (see also Dick et al.

2006; Simpson & Bridle 2006 for related issues). These PCA modes

are argued to form a natural basis in which to characterize dark en-

ergy evolution and by using only the first few well-determined eigen-

vectors in the reconstruction one tries to exclude noisy modes and

thereby gain accuracy in the reconstruction. However, the method

has the disadvantage of introducing an ill-controlled bias at high red-

shifts, that is, the removal of strongly oscillating (and noisy) modes

may mislead one to the conclusion that the EOS reverts to the fidu-

cial model at large redshift with artificially small error bars. While

we recognize the merits of the PCA method, we wish to improve

on it in this last respect by making the assumptions that will control

the behaviour of the reconstructed w(z) at large redshifts explicitly

clear.

The MaxEnt technique we employ has parallels with the well-

known maximum-likelihood (ML) approach, but introduces new

features ensuring that in the case where insufficient information is

available the most likely distribution is the most uniform, that is, the

one with maximum entropy (or minimum information content). For

an overview of the connection between entropy and information con-

tent, see, for example, Trotta (2005) and Kunz et al. (2006). In other

words, where ML merely maximizes the likelihood, often unneces-

sarily overfitting the noise in the data, MaxEnt seeks the optimum

trade-off between a smooth, maximally entropic distribution and

the rough distribution mapped out by the data. The most-important

characteristic is that the MaxEnt method is auto-regulating, that

is, the amount of smoothness (or raggedness) in the reconstruction

is consistently determined through the data themselves (see Sec-

tion 2.2.4 below). In our Bayesian perspective, extra information

coming from prior beliefs or theoretical prejudice can be naturally

incorporated in the reconstruction via the MaxEnt prior. As we show

below, this gives MaxEnt the power to cope with situations where

the dimensionality of the parameter space potentially exceeds the

number of data points, a difficult reconstruction problem that is ill

defined under ML techniques. This feature clearly makes MaxEnt

highly applicable to the case of dark energy reconstruction.

2.2 The MaxEnt formalism

The task at hand is to determine the EOS of dark energy from sparse

data on DL, DA and, to a limited extent, on H(z) (as encapsulated by

today’s detection of BAO). We consider a piecewise constant w(z)

in N bins out to a maximum redshift zmax. Let wj be the value of

the EOS in the jth bin, 1 � j � N. In analogy with the treatment

given in Skilling (1989) for the case of image reconstruction, we

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 865–876

 at Im
perial C

ollege L
ondon on A

ugust 23, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Reconstructing dark energy with maximum entropy 867

gather all the EOS bins values in an ‘image vector’ w. We seek to

determine the posterior distribution of w, given the observed data

D, Pr(w | D). This is obtained through Bayes’ theorem as

Pr(w | D) = Pr(D | w)Pr(w)

Pr(D)
. (5)

The quantity Pr(w) is the prior probability representing all the in-

formation about the distribution w before the data D have been

collected; Pr(D | w) is the likelihood and describes the underlying

statistical process and Pr(D) is the model likelihood (‘evidence’),

which is relevant for model selection questions but that is unim-

portant in this case. We will therefore neglect this proportionality

constant in the following.

2.2.1 The MaxEnt prior

The principle of MaxEnt is employed to determine a prior Pr(w)

that encapsulates all the external information about w(z) we wish

to specify in the absence of the data. Following Skilling (1989), we

adopt the principle that the least-biased model that encodes any given

prior information is the one which maximizes the entropy of the

distribution while remaining consistent with the information. This

prior is appealing for its characteristic of maximizing the uncertainty

(entropy) of the distribution thus making minimal assumptions. The

MaxEnt prior (Skilling 1989) takes the form

Pr (w | α, m) = exp (αS(w, m))

ZS
(6)

where S (w, m) is the entropy of w relative to the model m and α

is a regularizing constant. The model m defines the image vector to

which w reverts in the absence of any data, and as such it defines

a measure on the DE parameter space. The information entropy is

analogous to the thermodynamic entropy in statistical mechanics,

which is given by the logarithm of the number of states by which one

can arrive at a given macroscopic constraint. In the same way, the

information entropy can be described as the logarithm of the number

of ways in which one can arrive at a particularw in a Poisson process

when starting with the model m (Silver, Sivia & Gubernatis 1990).

The entropy S for an N-dimensional discrete parameter space is

(Skilling 1989):

S(w, m) =
N∑

j=1

[
w j − m j − w j log

(
w j

m j

)]
. (7)

The log term is reminiscent of the Kullback–Leibler divergence

between w and m, encoding the amount of information present in w
with respect to the model m. In our case, we do not apply the entropy

to the values of w directly, but rather to the space of coefficients of

an expansion ofw in a series of basis functions (that we choose to be

top-hat functions in redshift space, see Section 2.3 for details). We

can think of the coefficients of the expansion as a series of weights

that encode how much each basis function contributes to the total

w(z). We can then apply the MaxEnt prior on the space of these

weights, by thinking of them as expressing the relative contribution

of each basis function – in other words, in a phenomenological

way we take the weights to represent relative probabilities for the

presence of each basis function in the final w(z). Below, we will use

the notation w as a shortcut to indicate the vector of weights of the

dark energy expansion. The same applies to the model m, that in

the entropy term is represented by its expansion coefficients in the

chosen basis functions.

Evidently, S(w) (for a fixed m) is a convex function which reaches

a maximum for w= m with a value S = 0. Thus in the absence of

any information from the data, the entropy term reverts to the model.

The normalizing partition function for the entropy is given by

ZS =
∫

exp αS(w) det[g]1/2 dNw. (8)

The measure is defined as the invariant volume det g1/2 of the metric

g defined on the space where gii = 1/wi and gi j = 0 for i �= j (also

known as the Fisher information matrix). By expanding to second

order around the model w= m (at the maximum S = 0), we obtain

the partition function in the Laplace approximation:

ZS =
(

α

2π

)N/2

, (9)

where N is the number of parameters, in our case the number of

expansion coefficients for w(z).

2.2.2 The likelihood

The likelihood is defined as the probability of the data, given the
parameters,

Pr(D | w) = exp(−L(w))

ZL

, (10)

and is the probability that the observed data D could have been

generated from a given w. For data D subject to Gaussian noise the

likelihood function is

L(w) = 1

2
(D − f (w))T[C−1](D − f (w)), (11)

where C is the data covariance matrix and f (w) denotes the func-

tional dependence of the observable on the DE parameters in our

case, f = H or f = DA (DA and DL being simply related through the

redshift, see 4). In the case of independent data points with uncor-

related noise, the covariance matrix is diagonal with the non-zero

elements being the variances of each measurement, denoted by σ 2
i ,

i = 1, . . . , ND . The normalizing partition function for L is

ZL =
∫

exp (L(w)) dND D. (12)

Using the identity for the normalized probability distribution, we

obtain

ZL = (2π)ND/2

√
det[C−1]

. (13)

2.2.3 The posterior probability

From the likelihood in equation (10) and the prior in equation (6),

we obtain from Bayes’ theorem the posterior probability for the DE

parameters w:

Pr(w | D, α, m) ∝ exp(αS(w) − L(w)). (14)

Given that L(w) is quadratic in wand S(w) is a convex function, the

above is well constrained with the peak of the posterior for w being

determined by a competition between S andL, mediated by the value

of α. We thus see that the MaxEnt prior will be useful in the case

where the parameter space dimensionality exceeds the size of the

data set in that the entropy is incorporated as a regularization to avoid

overfitting, while retaining maximum flexibility in the underlying

parametrization of w(z). S penalizes the excess ‘structure’ in the

data, with the regularizing parameter α dictating the degree of this

smoothing. The choice of α is thus very important: a small value
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of α produces little smoothing and the likelihood will dominate,

resulting in a reconstructed distribution where the noise might be

mistaken as real structure. Alternatively, too large a value for α

leads to information loss, with the entropic prior overriding the

information coming from the data.

2.2.4 The regularization parameter α

In order to select the correct value of α, we add it to the hypothesis

space as an additional parameter and let the data select the optimum

value. Using once more Bayes’ theorem we have

Pr (α | D, m) ∝ Pr (α) Pr(D | α, m), (15)

where Pr(α) is the prior on α. The joint posterior probability is then

(up to irrelevant constants):

Pr (w, α, D|m) ∝ Pr(α)Pr(w | α)Pr(D | w)

= Pr(α)
exp (αS(w) − L(w))

ZS(α)ZL

. (16)

We adopt a Jeffreys’ prior on α, which is flat in γ = log α, reflecting

ignorance of the scale of the variable, within the range −10 � γ �
10. This corresponds to choosing Pr(α) ∝ 1/α. In the final inference

onwwe marginalize over the nuisance parameter α, even though the

distribution of α is usually fairly strongly peaked and thus marginal-

ization is almost equivalent to maximization (i.e. simply fixing α to

the value of the peak of the posterior).

2.2.5 Model specification

The joint posterior in equation (16) is conditional on the specific

choice of model m, to which the reconstructed w defaults in the

absence of data. The entropic prior distribution is introduced to

penalize the posterior for unwarranted complexity. Given that the

model is the vector to which w should revert in the absence of data,

it must represent maximal smoothness. We need to establish what

distribution m will encompass this in the context of the EOS of

dark energy. In image reconstruction the default model is usually

taken to be a flat surface equal to the mean of the data. When the

data are then included via the likelihood, variation about this mean

is introduced. In our case, this means choosing a constant model,

m = constant that is uniform in redshift space. There is, however, no

obvious choice for the magnitude of this constant. There are various

possible choice of m, reflecting different prior beliefs about the dark

energy EOS. One can thus usefully think of m as encapsulating a

fiducial, reference model we want to test the observations against.

One possibility is to set m = −1 at all redshifts, thus representing

a cosmological constant. This is recommended if we are testing for

deviations from w(z) = −1: if significant deviations from the model

are found in the reconstructed EOS, then this is an indication that the

data are informative enough to override the entropic pull towards

the model, and thus that such deviations are likely to reflect real

structure in the data. A more skeptical attitude towards dark energy

might be encapsulated by choosing a constant model m = 0, which

corresponds to a pressureless, dust-like fluid. In this case, if the

reconstructed w(z) assumes values below 0, this can be interpreted as

a strong indication for the presence of a fluid with negative pressure,

with data being strong enough to dominate the entropic tendency

for a pure matter Universe. In principle, a theoretical prejudice in

the form of a particular redshift dependence of m could also be

implemented easily in the same fashion.

Finally, one can also employ Bayes’ theorem to take m into the

joint posterior, by writing

Pr(w, D, α, m) ∝ Pr(m)Pr(w, D, α | m) (17)

and marginalizing over m in the left-hand-side, after specifying a

prior over the model space, Pr(m). In this work we take all the

model vectors to be constant over the whole redshift range; thus,

the specification of the model amounts to the choice of the value of

the constant. We restrict our considerations to the range −1 � m �
0, and when performing a marginalization over the model we will

take a flat prior in this range, that is, Pr(m) = constant.

2.3 Dark energy parametrization and reconstruction

As motivated above, we decompose w(z) into a weighted sum of

orthogonal functions in redshift space, with the parameters being

given by the weights encoding the amount that each function con-

tributes to the overall w(z). There are, of course, several different

meaningful expansion functions such (e.g. principal components,

Chebychev functions, etc.) but we make use of the simplest option,

decomposing w(z) is into a series of N step-functions 	i (z):

w(z) = −2 +
N∑

i=1

Ci	i (z), (18)

where 	i (z) = 1 for zi − 
z/2 < z < zi + 
z/2 and 	i (z) = 0 every-

where else. Since the least-stringent limits we will impose on w(z)

are −2 � wi � 0, the above ensures that the expansion coefficients

Ci (i = 1, . . . , N) are positive numbers, a necessary requirement for

our entropic prior. The parameter space w is thus constructed from

the coefficients Ci themselves, which are allowed to vary within

the range 0 � Ci � 2. An advantage of this piecewise parametriza-

tion of w(z) is that it will be possible to capture a sharp change

in the EOS, provided the binning is sufficient. In order to capture

different features of the time-evolution of the EOS, other expansion

functions may be more appropriate. We experimented with

Chebychev functions and found that their oscillatory behaviour was

not helpful in reconstructing sharp changes in the EOS. Such smooth

functions might be more useful if one wants to test quintessence

models exhibiting a gentle evolution of w(z).

In the bulk of recent analyses, the limit −1 � w� 0 is imposed;

the lower limit stemming from the null energy condition which must

be satisfied for dark energy to be stable (Alcaniz 2004). Although

models of dark energy that allow w < −1 violate the weak energy

condition in the context of general relativity, these ‘phantom’ com-

ponents have been studied by many authors (Caldwell 2002). There

have been claims that such phantom behaviour is unstable when

regarded as a quantum field theory (Carroll, Hoffman & Trodden

2003). From a phenomenological perspective, it makes sense both

to restrict the range of our reconstruction to lie within −1 � w �
0, and to extend the parameter space to values below w = −1 to

check the stability of the reconstruction. We will thus present re-

sults also for the case where the EOS can attain values as low as

w= −2.

In this work we assume flat spatial sections, and thus �m = 1 −
�DE. The parameters included in the hypothesis space are summa-

rized in Table 1. These are �DE, the Hubble parameter today, H0

in km s−1 Mpc−1, and the coefficients of the DE decomposition,

Ci , as described by equation (18). This generic characterization re-

quires the number of expansion functions (which can be effectively

characterized as top-hat bins) to be sufficiently large for this to be

a suitable description of w(z). As described above, we also include
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Table 1. Priors on cosmological and nuisance parameters

used in the analysis. We employ a Jeffreys’ prior on α,

that is, we take the prior to be flat in γ = log α to reflect

ignorance on the scale of the regularizing parameter α.

Parameter Prior

�DE 0.0. . .1.0 Top hat

�κ 0 Flatness imposed

Ci 0. . . 2 Top hat

γ = log (α) −10 . . . 10 Top hat

m −1 . . . 0 Top hat

the nuisance parameters γ = log α and the value of the model EOS,

m, whenever this is marginalized over.

Assuming uncorrelated Gaussian noise, the log-likelihood of a

point in parameter space is given by

−2 logL(w) =
ND∑
i=1

[
Di − f (zi ,w)

σi

]2

, (19)

where for each datum i at redshift zi we have f (zi , w) ≡ H(zi ) for fu-

ture radial baryonic oscillation measurements, f (zi , w) ≡ DA(zi ) for

present and future transversal baryonic oscillation data and CMB

data and f (zi ,w) ≡ DL(zi ) for SNIa data. Furthermore, σ 2
i is the mea-

surement variance. The Hubble parameter as a function of redshift

is obtained via equation (2), where the energy density is calculated

using, for za falling within the ith bin,

ρDE(za)

ρDE(0)
=

(
1 + za

1 + zi − 
zi/2

)3(1+wi )

× �i−1
j=1

(
1 + z j + 
z j/2

1 + z j − 
zi/2

)3(w j +1)

. (20)

From the above, the angular diameter distance DA(za) can then be

computed using equations (1) and (2). For piecewise constant w(z),

we employ the trapezoid rule to approximate the integral, obtaining

DA(za) = 1

1 + za

{
δz

4

1

H0

+ 1

H (za)

+
a−1∑
j=2

δz

2

[
1

H (z j−1)
+ 1

H (z j )

]}
. (21)

The binning of the integral, defined by δz, is determined based on

a fixed level of fractional accuracy for the integration, that we set

to 10−11 as determined by the extrapolation error estimate. Finally,

the entropy of a vector wwith respect to a model m is given by

S(w) =
N∑

i=1

[
Ci − Mi − Ci log

(
Ci

Mi

)]
, (22)

where the Mi , i = 1, . . . , N are the coefficients of the model m in

expansion (18).

To sample the posterior probability distribution efficiently, we use

a Monte Carlo Markov Chain (MCMC) which employs a Metropolis

algorithm. For more details about MCMC, see, for example, Neal

(1992) and Lewis & Bridle (2002). Since the MaxEnt method is

designed to achieve the optimal reconstruction independently of the

number of degrees of freedom in the parametrization of w(z), we

expect that the number of basis functions N will not affect greatly

the reconstruction, as long as N is chosen large enough to cap-

ture the possible structure in the data. In the following we choose

N = 10 but we have checked that the results do not vary much if

one uses N = 5 or 20 instead.

When using actual data, we divide the redshift range spanned by

either the Supernovae Legacy Survey (SNLS) or the HST/GOODS

SN measurements into N = 10 equally spaced bins, corresponding

to the N basis functions for w(z). We then extend the last bin to

cover all of the redshift range to last scattering when computing

the angular diameter distance to the CMB. In other words, we take

w(z) to be constant (but not fixed to −1) between the redshift of

the highest SN in the samples and z = 1089. This extrapolation is

weaker than the ‘strong’ prior used in the analysis of Riess et al.

(2007), which assumed that w = −1 at z > 1.8.

3 D E M O N S T R AT I O N O F T H E M A X E N T
M E T H O D

We now proceed to test our MaxEnt reconstruction method with

synthetic data. Our benchmark data set consists of ND = 10 mea-

surements of H(z) and ND = 10 of DA(z) [or equivalently, DL(z)]

distributed uniformly in the redshift range 0 � z � 1. Although

the actual measurements will in reality be less homogeneous, this

does not represent a problem for our reconstruction algorithm, as

we show below. Existing measurements of DL(z) out to z ∼ 2 will

be vastly improved when future surveys such as DES or LSST will

be able to observe thousands of SNeIa per year (Abbott et al. 2005;

Tyson 2006) and space-based projects such as SNAP (Aldering et al.

2004), ADEPT or DUNE will provide observations at redshifts be-

yond z ∼ 0.8. Future spectrographic surveys such as the Wide-Field

Multi-Object Spectrograph (WFMOS) or HETDEX ought to deliver

constraints on DA(z) of 1 per cent at z ∼ 1 and 1.5 per cent at z ∼
3 (1σ ) and H(z ∼ 1) to 1.2 per cent (Glazebrook et al. 2005; Kelz

et al. 2006), with better performance still to be expected when the

Square Kilometer Array will come online (Blake et al. 2004).

We add Gaussian noise to our synthetic data as a fixed percentage

of the true value of the measured quantity. We use an optimistic

noise level of 1 per cent. Although it is beyond the scope of this

paper to make quantitative predictions about the performance of

future surveys in reconstructing the EOS, our benchmark data set

roughly reflects the potentiality of future observations. We also test

the performance of the method when the signal-to-noise ratio level

is degraded by a factor of 10, in order to check for bias in the

reconstruction due to our entropic prior when the quality of the data

are poor. In this case, we use a noise level of 10 per cent in the

luminosity distance and Hubble function measurements.

We show in Fig. 1 the reconstructed EOS for our benchmark sce-

nario with high-quality observations (σ = 1 per cent, ND = 20

observations). In all three panels, we have marginalized over the

prior model m. We note that the reconstruction is satisfactory in all

three cases. We have checked that the w extracted when marginal-

izing over the prior model m has comparable accuracy to the case

of a fixed model m. The bottom panel shows how the method deals

with gaps in the redshift range of the observations: the smoothing

effect of the entropic term enlarges the errors in the region where

no data are available, while the reconstructed EOS tracks the true

value at small and large redshifts, where the data are clustered. Here

we have employed a 10-dimensional w, but we have checked that

increasing the number of elements to N = 20 does not lead to any

significant change in the reconstruction. As expected, the error bars

in the regions where w(z) is well constrained by observations are

considerably smaller.

We now turn to the case where the data are noisy, and hence

we expect our entropic prior to play a more important role in the
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Figure 1. Reconstructed EOS w (black error bars showing 1σ poste-

rior constraints) using our MaxEnt method for high-quality synthetic data

(ND = 20, σ = 1 per cent, location shown by the blue diamonds) in the

redshift range 0 � z � 1. Top panel: the true EOS (blue, dotted line) is taken

to be a step function. Middle panel: the true EOS shows a sharp peak at

z ∼ 0.4. Lower panel: the true EOS is slowly evolving with redshift, and

the synthetic data are now clustered at low and high redshift. Despite the

absence of data points at intermediate redshifts, the high-z reconstruction

tracks the true function with reasonable accuracy, while the intermediate-

redshift errors increase correspondingly. In all three cases, the value of the

prior model m for w(z) has been marginalized over and the MaxEnt recon-

struction satisfactorily recovers the true EOS. We have plotted horizontal

lines at w = 0 and −1 to guide the eye.

reconstruction. The top panel of Fig. 2 shows the reconstructed

EOS for a noisy data set of ND = 20 measurements with noise

σ = 10 per cent and a slowly evolving true EOS, w (z) = 1 −
ln(1 + z). In the top panel, we show the result when employing as

prior model values the two liming cases of w with strong theoreti-

cal prejudice: m = −1 (cosmological constant, red error bars) and

Figure 2. Reconstructed EOS w (error bars showing 1σ posterior con-

straints) for noisy synthetic data (ND = 20, σ = 10 per cent, location shown

by the blue diamonds). Top panel: the reconstructed EOS for a model m =
−1 (red error bars) has collapsed towards the model due to the entropic prior

for redshifts z � 0.3, while the reconstruction with m = 0 (blue error bars)

tracks better the true EOS (blue, dotted line). Bottom panel: after marginal-

ization over the model value, the bias in the reconstruction has disappeared,

but the error bars have become suitably larger.

m = 0 (Einstein–de Sitter universe, blue error bars). In the high-

z bins the reconstruction becomes increasingly mismatched with

the underlying true EOS. Because the dependence of the data on

the EOS requires integrating the EOS over redshift, any error in the

reconstruction at low redshift is accumulated as z increases. As a re-

sult the entropy tends to dominate over the likelihood and the mean

parameter values collapse towards the model at higher redshift, es-

pecially for the case where m = −1. Even though the reconstruction

has appeared to degrade for the m = 0 case, it is encouraging that

the mean values of the parameters in the lower redshift bins (z �
0.3) are reasonably close to the true values.

Evidently the choice of prior model m does have some bearing

on the reconstructed value of the parameters at high redshift (given

that the entropy dominates the posterior for poorly informative data)

and this must be kept in mind when interpreting the results when

dealing with noisy data. This example highlights the problem of

distinguishing a genuine affinity for a certain function that happens

to closely resemble the model from a strong default towards the

model on account of noisy observations, that is, how will we interpret

a result very close to w(z) = −1? In this case, there are two options:

the observational evidence is noisy and uninformative, leading to

entropy domination, or the data are good and favour an actual value

close to −1. In the latter case, attempting a reconstruction with

m = 0 will allow to test the strength of the data in pulling w(z)

towards the cosmological constant value. An alternative means of
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recovering w(z) in a truly model-independent way is to include the

elements of the model vector in the hypothesis space, as discussed

in Section 2.2.5. Marginalizing over m then amounts to selecting

the optimum distribution at each sampled point. The model still

represents the most entropic distribution given that it is uniform in

z-space. The result of this procedure is shown in the bottom panel of

Fig. 2, where marginalization over the model has cured the skew in

the reconstruction observed above, albeit at the price of delivering

larger error bars.

4 A P P L I C AT I O N TO P R E S E N T- DAY DATA

We now apply our reconstruction procedure to actual data, encom-

passing CMB observations, baryonic acoustic oscillation measure-

ments, determination of the present value of the Hubble parameter

and two different SNIa samples.

4.1 Data sets

4.1.1 Baryon acoustic oscillations

The comoving sizes along the line of sight, r|| (in redshift space),

and in the traverse directions, r⊥, of a feature sitting at a redshift z
are related to the redshift range 
z covered and the angle subtended


�, respectively, by

r|| = c
z

H (z)
and r⊥ = (1 + z)DA(z)
�. (23)

If the absolute values of r⊥ and r|| are known, they become standard

rulers giving us a handle on H(z) and DA(z). If only the relative sizes

are known, then the standard rulers are expressed in units of H0. If

only the ratio r||/r⊥ is known, this becomes the Alcock–Paczynski

test. The BAO phenomenon can be used as such a standard ruler.

After recombination, when the Universe becomes neutral and

photons free stream from the cosmic plasma, the driving force of

the harmonic oscillation is removed and the sound speed of the

now-neutral medium essentially falls off to zero, ending wave prop-

agation. The spatial distribution of the baryons at this stage will

then reflect the characteristic scale of the acoustic waves. Seeing as

the perturbations in the baryon and cold dark matter distributions

seed the formation of large-scale structure, we expect to see acous-

tic peaks in the late-time matter power spectrum (Eisenstein et al.

2005). This becomes a standard ruler because the scale of these

acoustic oscillations is self-calibrated under standard recombina-

tion (Hu 2005). It depends solely on the photon–baryon ratio and

radiation–matter ratio at recombination which are determined with

excellent precision in the CMB power spectrum from the CMB peak

morphology (Eisenstein & White 2004). The change in the appar-

ent size of this scale from recombination to the present will depend

on the expansion history of the universe through projection effects.

These acoustic features appear as rings in angular and redshift space

(Hu & Haiman 2003). The actual measurement from the SDSS LRG

sample is of the dilation factor, defined as

DV(z) =
[

D2
A(z)

cz

H (z)

]1/3

, (24)

where the comoving angular diameter distance DA is taken as the

transverse dilation and the line-of-sight measurement of this scale
cz

H (z)
is taken to be the radial dilation. The observed correlation scale

constrains a function of the dilation factor, and a single data point

is reported in Eisenstein et al. (2005):

A ≡ DV(0.35)

√
�m H 2

0

0.35c
= 0.469 ± 0.017. (25)

(see also Cole et al. 2005, for a similar detection of the acoustic

feature in the 2dF catalogue). The above assumes �bh2 = 0.027.

The log-likelihood for the BAO data is given by

χ 2
BAO = (A − 0.469)2

0.0172
. (26)

4.1.2 The Type Ia supernova data

SNeIa are good candidates for standard candles and are useful in de-

termining distances on extragalactic scales. Due to the complexity

of the physics involved, the SNeIa are not perfect standard can-

dles, having a dispersion of 0.3–0.5 mag in their peak magnitudes

(Straumann 2006). However, the peak brightnesses appear to be

tightly correlated to the time-scale of their brightening and fading

and one can extract an empirical relation between absolute peak

luminosity and the morphology of the light curves to constrain the

absolute brightnesses, and thus obtain measurements of DL(z).

The first group of SNe, termed the ‘gold’ set, are from the

HST/GOODS programme (Riess et al. 2004), complemented by

the recently discovered higher redshift SNe, reported in Riess et al.

(2007), while the second sample is taken from the SNLS (Astier et al.

2006). As discussed in, for example, Wang & Mukherjee (2006), it

appears that there are systematic differences between these two data

sets that arise from differences in the data processing. It is therefore

necessary to consider the two data sets separately, and compare the

results as a consistency check.

(i) The ‘gold’ sample. The distance modulus μ is defined as the

difference between the apparent magnitude m and the absolute mag-

nitude M:

μ = m − M = 5 log10

[
DL(z)

10 pc

]
. (27)

Given that the absolute magnitude M is a unknown, we consider the

following distance modulus μi (δM):

μi (δM) = μd
i − δM . (28)

Here δM is the difference between the mean of the true absolute

magnitudes and the estimated absolute magnitude, while μd
i are

the observed magnitudes after dust corrections and recalibration

through the shape of the luminosity evolution function. The quantity

δM is the difference between the true mean absolute magnitude and

the estimated absolute magnitude of the SNe and is marginalized

over.

(ii) The SNLS sample. The SNIa data from the SNLS are reduced

in a different manner in that the light curves provide constraints on

various parameters which are then used to calculate the effective

apparent magnitude. For a description of the calculation of μi , see

Dick et al. (2006). From the observed μi with variances σ 2
μ,i for

each set of SNeIa, we perform an analytical marginalization over

the absolute magnitude M. Defining the quantities

f0 =
N∑

i=1

5 log10 DL − μi

σ 2
μ,i

, (29)

c =
N∑

i=1

1

σ 2
μ,i

(30)
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and

f1 =
N∑

i=1

(5 log10 DL(zi ) − μi )
2

σ 2
μ,i

, (31)

the M-independent log-likelihood for the SNeIa is calculated as

χ 2
SN = f1 − f 2

0

c
. (32)

4.1.3 CMB and HST data

The WMAP three-year measurement of the CMB shift parameter

describing the location of peaks in the CMB power spectrum serves

to constrain the angular diameter distance to last scattering (Spergel

et al. 2007). This is independent of most assumptions of the form

of dark energy, and is given by Wang & Mukherjee (2006):

R = �1/2
m H0

∫ zCMB

0

dz

H (z)
= 1.70 ± 0.03, (33)

where zCMB is the redshift to last scattering, taken in our case to be

1089.

We also include the constraint on the present value of the Hubble

constant obtained by the HST Key Project (Freedman et al. 2001),

by using a Gaussian likelihood with mean and standard deviations

given by H0 = 72 ± 8 km Mpc s−1.

4.2 Results

We plot in Fig. 3 the results of our reconstruction from the SNIa

data from the SNLS and from the HST/GOODS programmes. In

both cases we have added the CMB, HST and BAO measurements,

and we have marginalized over the model, in order to be as conser-

vative as possible. Furthermore, the maximum range for the EOS

has been taken to be −2 � w � 0. We plot regions encompassing

68 per cent of posterior probability for each w bin – note that since

these are marginalized values, their magnitude is independent of the

correlations between reconstructed points (the issue of correlations

is addressed in detail below, see Fig. 4).

We do not find any significant deviation from a cosmological con-

stant behaviour from the SNLS data (see top panel of Fig. 3) at all

redshifts. Our posterior constraints in this case are rather conserva-

tive, as a consequence of the assumptions made in the reconstruction

(i.e. largew range and marginalization over the model). When using

the HST/GOODS data, the recovered w in the first bin agrees with

that found for the SNLS data. Given that a number of the SNIa in this

bin are common to both surveys, this provides a consistency check.

The reconstructed EOS from the HST/GOODS data are, however,

found to prefer slightly higher values in the third bin (z 	 0.5),

excluding the cosmological constant value to a little bit more than

1σ significance. The significance of this rise, however, has to be as-

sessed with care, especially if we recall that the constraining power

of the SNIa data degrades in this region (Simpson & Bridle 2006).

At redshifts above z ∼ 0.5, the mean of the reconstruction settles

around w ∼ −0.7, although we note that the best-fitting points re-

main very close to w = −1 (red triangles in Fig. 3). The implied

early-time behaviour of dark energy is consistent with the result of

w = −0.8+0.6
−1.0 found in Riess et al. (2007) for z > 1, using what they

call their ‘strong’ prior. If instead the EOS is assumed to be constant

over the entire redshift space (i.e. if we reduce the number of w com-

ponents to N = 1), then we obtain from the HST/GOODS data w =
−0.89 ± 0.07, in agreement with usual results (see e.g. Riess et al.

2007). This clearly demonstrates the danger of assuming w(z) to be

Figure 3. Reconstructed EOS (marginalized error bars encompassing 68 per

cent of posterior probability) from SNLS data (top panel) and HST/GOODS

data (bottom panel), including CMB, HST and BAO measurements, as well

(note that the redshift range is different for the two panels). The prior model

m is constant in redshift and has been marginalized and the assumed range of

the EOS is −2 �w� 0 (both are conservative choices). The horizontal lines

indicate the upper bounds of the allowedw range (solid) and position of w =
−1 (dotted) in order to guide the eye. The SNLS data do not show significant

deviations from w = −1 over the whole redshift range. The reconstruction

from the HST/GOODS data is also consistent with a cosmological constant,

although it appears to slightly prefer a higher value at redshift z ∼ 0.5. The

best-fitting points are all very close to w = −1.

time-independent, as one would miss in this way possible features

in the data.

The use of the entropic prior introduces correlations among the

reconstructed points (see Huterer & Cooray 2005, for a technique

to extract uncorrelated band power estimates of the EOS). The cor-

relation coefficients from the posterior distribution over the w pa-

rameters are shown for both data sets in Fig. 4. We note that cor-

relations are in general relatively mild, flattening around the level

of ∼20 per cent for correlations with bins at larger redshifts, where

the entropic prior becomes more important. The strongest correla-

tions (at the level of ∼50 per cent) are observed among parameters

in the second and third redshift bins, where the BAO measurement

strongly constrains the EOS and due to the fact that the observables

are integrated over redshift, we expect a negative correlation among

the well-constrained value at the position of the BAO measurement

and the w values at lower redshift.

We now investigate the case where we impose that w � −1 on our

parameter space. The results are shown in Fig. 5, where the recon-

structed EOS using the SNLS tracks the cosmological constant value

at all redshifts, with 1-tail 1σ errors of the order of 0.2 at all z values.

Because of the reduced freedom in w, the reconstruction collapses
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Figure 4. Correlation matrix for the reconstructed EOS parameters from

HST/GOODS (upper left-hand panel) and SNLS (lower right-hand panel)

data sets, including CMB, HST and BAO measurements. The strongest

(anti)correlations are between values in bins 2 and 3 which roughly coincide

with the redshift position of the BAO measurement.

Figure 5. Reconstructed EOS (marginalized error bars encompassing

68 per cent of posterior probability) from SNLS data (top panel) and

HST/GOODS data (bottom panel), marginalizing over a constant prior model

but restricting the w range to −1 � w � 0. The horizontal lines indicate

the upper and lower bounds of the allowed w range (solid) in order to guide

the eye. We find no significant deviation from w = −1 for the SNLS data

set. For the HST/GOODS sample the reconstruction tends to drift to larger

values at higher redshift.

to the lower limit of the allowed w range, even after marginaliza-

tion over the model values. In the case of the HST/GOODS data,

a gentle rise of w(z) away from −1 is again observed. The larger

error bars suggest that the entropy becomes important and that the

Figure 6. Reconstructed EOS from SNLS data (top panel) and HST/

GOODS data (bottom panel), assuming an entropic prior model m = −1

and a w range −2 � w � 0. The horizontal lines indicate the upper bound

of the allowed w range (black lines) and the model m (red lines). The SNLS

data are compatible with the model and show error bars of the order of 20

per cent at all redshifts. The slight bump at z ∼ 0.5 for the HST/GOODS

data survives the entropic prior.

value w ∼ −0.8 to which the reconstruction tends at redshifts z �
0.5 is mediated by the mean value of the prior model m. As before,

the best-fitting points remain very close to w = −1 at all redshifts.

We can increase the amount of prior information by considering

the case where a constant prior model value m = −1 is used, see

Fig. 6. This is helpful in assessing whether the structure observed

in the HST/GOODS sample is strong enough to override our en-

tropic prior. The reconstruction from the SNLS data remains close to

w= −1 with error bars of the order of 20 per cent at all redshifts.

One has, however, to keep in mind that the tightness of the errors is

partially helped by the supplementary information provided by the

entropic prior. This demonstrates how the use of cosmological con-

stant as the model can be problematic as one cannot say conclusively

whether this indicates that the data are very strong or alternatively

overridden by the entropy if no significant deviations from the model

are observed. The result from the HST/GOODS data shows again a

high value of w(z) being favoured in the third bin and subsequent

collapse towards to the model m at higher redshifts. The persistence

of a deviation towards w > −1 at redshift z ∼ 0.5 in the presence

of the strong prior favouring the cosmological constant suggests it

is a real feature of the data.

Finally, we also investigated the stability of the reconstruction

against a change in the number of reconstructed components. Since

the MaxEnt technique is designed to automatically deal with the

structure in the data by adjusting the degree of smoothness of the
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Figure 7. Reconstructed EOS from the HST/GOODS data with five com-

ponents in the reconstructed w. Compare with the bottom panel of Fig. 3.

reconstruction, we do not expect that a change in the number of

bins would make a large difference in the reconstructed EOS. This

is demonstrated in Fig. 7, where the reconstruction analogous to

the bottom panel of Fig. 3 has been performed by halving the num-

ber of bins to N = 5, without appreciable differences in the end

result.

Lastly, we investigate the dependency of our results on the model

one chooses for the entropic prior. Up until this point we have as-

sumed the prior model m to be constant with redshift such that it

introduces a suitable degree of smoothing of time-dependent noisy

features in the data. This choice reflects a specific belief in the true

form of the EOS and given the large range of dark energy models on

the market, it is important to assess the impact of a different prior

model m. Another popular class of models are given by an EOS that

is a smooth varying function of redshift, such as

m(z) = w0 + w1

z

(1 + z)
. (34)

Here the assumption is that the true EOS is a function of time and

evolves sufficiently slowly such that it may be effectively charac-

terized in a phenomenological way by the two parameters w0 and

w1 (Sahni & Starobinsky 2006). This particular function is a good

approximation to many dark energy models but clearly it is lim-

ited to how well it can cope with a rapidly evolving EOS (Liddle

et al. 2006). Following, for example, Ichikawa & Takahashi (2006),

we impose the further constraint that the early Universe is matter-

dominated, that is, we impose the condition w0 + w1 < 0 on the

prior model. In order to be as conservative as possible, we again

marginalize over both prior model parameters, w0 and w1, as fol-

lows. The expression for the entropy is again given by equation (22),

but the model coefficients are now given by

Ci = (
Cm

0 − 2
) + (

Cm
1 − 2

) zi

(1 + zi )
+ 2. (35)

Here Cm
0 and Cm

1 are the coefficient representing the prior model

parameters. They are included in the hypothesis space, and then

marginalized over.

We display our results using this slowly-evolving prior model in

Fig. 8 (with the model parameters marginalized over). This is to

be contrasted with the analogous case of Fig. 3, where the entropic

model m is constant in redshift space. At low redshifts the recon-

structions for different prior models do not differ appreciably, with

the most-notable difference being a shift towards slightly higher

values of w for the case of the SNLS data set. For the GOODS/HST
programme data set, the peak in the third bin is recovered but is

Figure 8. Reconstructed EOS (marginalized error bars encompassing

68 per cent of posterior probability) from the SNLS data (top panel) and

the HST/GOODS data (bottom panel) marginalizing over a prior model of

the type (w0, w1). The horizontal lines indicate the upper bound of the al-

lowed w range (solid lines) and position of w = −1 (dotted lines) in order

to guide the eye. A comparison with Fig. 3, where a constant prior model

was used, indicates that the results from both data sets are robust against the

choice of the prior model while exhibiting a mild dependence on this choice

at higher redshift, where the constraining power of the data degrades and

entropic domination sets in.

lower than in the previous constant m case. Again, the reconstructed

EOS prefers higher values in the last few bins. At high redshifts,

due to the accumulation of error, we expect more entropic dom-

ination and hence a stronger weight of the prior model choice.

However, in this region dark energy becomes progressively less

important and the ability of data to constrain the time-depedence

of the EOS thus degrades considerably. It is encouraging, however,

that the low redshift behaviour of the reconstructed EOS agrees

well for both marginalized prior models. This further strength-

ens our conclusions regarding the power and robustness of our

technique.

5 C O N C L U S I O N S

Given that the dark energy models on the market are predominantly

phenomenological, a reconstruction technique that does not require

specifying a parametric form for w(z) would be an advantage. We

presented such a method based on maximum entropy to reconstruct

the EOS of dark energy within a Bayesian framework. The princi-

ple of maximum entropy is invoked when assigning the Bayesian

prior. This means that in the absence of genuine signal, the model
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w(z) that is most smooth, or that maximizes the information en-

tropy is favoured, with the extent of this bias being determined by

a regularizing constant that is automatically adjusted to the data. In

our analysis we decompose w(z) into a sum of weighted orthogo-

nal step-functions to facilitate the reconstruction of sharp features

(provided binning is sufficient). Extensions of our analysis could

easily include using alterative expansion functions to see whether

other properties of the time-evolution of dark energy are detected

or constrained.

We find that the reconstruction of a dynamical w(z) using artifi-

cial data sets of H(z) and DA(z) is very promising at low redshifts

but suffers from a bias towards the chosen default model at higher z.

To combat this effect, the prior model was incorporated into our hy-

pothesis space allowing the reconstruction of a model-independent

distribution of w, with a manageable loss of accuracy. Once the

technique was established and demonstrated, it was applied to a

combinations of the current cosmological data sets and two popu-

lar choices of prior models, namely a constant EOS and a mildly

evolving w(z).

Using a data set including the current WMAP3 measurement of

the CMB shift parameter, the BAO measurement and the HST Key

project measurement of the Hubble parameter in conjunction with

the SNIa data from the SNLS project, we found that w = −1 in

the redshift range 0 � z � 1100, with error bars depending on the

prior and model assumptions. In the most-optimistic case, where

the data are supplemented by an entropic prior around w = −1,

the error is of the order of 20 per cent at all redshifts. When the

same data set was instead supplemented by the SN sample from

the HST/GOODS program, the results agree at low (z � 0.3) red-

shift. We found, however, that the reconstruction tends to prefer

a value w > −1 around z ∼ 0.5 with a significance between 1

and 2σ , depending on assumptions. This shows the dangers of fit-

ting a parametric form of w(z) to the data, in which case one is

bound to miss possibly significant features in the measurements.

The high-redshift behaviour of the EOS becomes increasingly dom-

inated by the entropic prior and thus exhibits a mild dependence

on the choice of prior model. We have investigated the correlation

properties of our reconstruction, and identified a moderate anti-

correlation among the first few redshift bins of our reconstructed

points.

The MaxEnt technique presented here improves on other methods

designed to minimize noise artefacts in that the amount of informa-

tion taken from the data is not determined by the analyst but rather

dictated by the data themselves. The presence of real structure rather

than noise-induced complexity is indicated by the size of the error

bars. The entropic prior adjusts the error bars when the information

provided by the data is unreliable. Secondly, in the absence of real

information the reconstruction tends towards our most-intuitive es-

timate of w(z) with suitably large variance. In conclusion the merits

of this technique are that it is self-regulating in the sense that it al-

lows the data to determine the amount of structure that is included.

More importantly, it does not require an inherent assumption of the

functional form of the true EOS.

We hope that this technique will prove useful in deriving even

stronger, model-independent constraints on the dark energy history

from future, high-quality data.
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