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ABSTRACT
The question of determining the spatial geometry of the Universe is of greater relevance than
ever, as precision cosmology promises to verify inflationary predictions about the curvature of
the Universe. We revisit the question of what can be learnt about the spatial geometry of the
Universe from the perspective of a three-way Bayesian model comparison. By considering two
classes of phenomenological priors for the curvature parameter, we show that, given the current
data, the probability that the Universe is spatially infinite lies between 67 and 98 per cent,
depending on the choice of priors. For the strongest prior choice, we find odds of the order
of 50:1 (200:1) in favour of a flat Universe when compared with a closed (open) model. We
also report a robust, prior-independent lower limit to the number of Hubble spheres in the
Universe, NU � 5 (at 99 per cent confidence). We forecast the accuracy with which future
cosmic microwave background (CMB) and baryonic acoustic oscillation (BAO) observations
will be able to constrain curvature, finding that a cosmic variance-limited CMB experiment
together with an Square Kilometer Array (SKA)-like BAO observation will constrain curvature
independently of the equation of state of dark energy with a precision of about σ ∼ 4.5 × 10−4.
We demonstrate that the risk of ‘model confusion’ (i.e. wrongly favouring a flat Universe in the
presence of curvature) is much larger than might be assumed from parameter error forecasts for
future probes. We argue that a 5σ detection threshold guarantees a confusion- and ambiguity-
free model selection. Together with inflationary arguments, this implies that the geometry of
the Universe is not knowable if the value of the curvature parameter is below |�κ | ∼ 10−4.
This bound is one order of magnitude larger than what one would naively expect from the size
of curvature perturbations, ∼10−5.
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1 IN T RO D U C T I O N

Constraints on the total energy density of the Universe, �tot, have
improved spectacularly in the last two decades. Before the onset of
precision cosmology, the total matter energy content of the Universe
was known only with order-of-magnitude precision. The determi-
nation of the angular scale of the first acoustic peak in the cosmic
microwave background (CMB) was a major milestone towards de-
termining the spatial curvature. The location of the first peak, � ∼
220, together with estimates of the Hubble constant, implies that
the Universe is close to flat. While 10 years ago this statement could
be made with an accuracy of the order of 10 per cent (de Bernardis

�E-mail: mva@astro.ox.ac.uk (MV); r.trotta@imperial.ac.uk (RT);
silk@astro.ox.ac.uk (JS)

et al. 2000), more refined measurements of the CMB power spec-
trum by the Wilkinson Microwave Anisotropy Probe (WMAP) and
other experiments have reduced the statistical uncertainty to sub-
percent precision in recent years (Komatsu et al. 2009). In turn, this
has allowed us to tighten constraints around a flat Universe with no
spatial curvature, �κ = 1 − �tot ∼ 0. This spectacular increase by
over a factor of 100 in accuracy in less than two decades reflects
huge steps forward in detector technology, telescope design and
computing power.

As there are only three discrete possibilities for the underlying
geometry in a Friedmann–Robertson–Walker Universe1 [namely,

1 Although the space of models could be extended to include non-trivial
topologies, in this paper we shall keep with the simplest option, namely that
the Universe’s topology is trivial, as searches for non-trivial topologies have
been unsuccessful to date (Cornish et al. 2004).
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flat, close and open; see, however, Mersini-Houghton et al. (2008)
for a landscape-motivated alternative with an oscillatory curvature
term], the question of which one of these three models is the correct
description for our Universe is particularly well suited to be phrased
in terms of model comparison. In his pioneering application of the
Bayesian model comparison framework to cosmology, Jaffe (1996)
found that the determination of the Hubble parameter using the
Cepheid variable method coupled with a lower limit to the age
of the Universe already allowed one to infer that a Universe with
vanishing curvature and non-zero cosmological constant was the
preferred model (albeit only with modest odds of about 7:1). More
recently, the WMAP 3-year data implied that the odds in favour of
a flat Universe increased to between 29:1 (Trotta 2007a) and 48:1
(Kunz, Trotta & Parkinson 2006) when comparing a flat Universe
with curved models (both open and closed).

Unlike many dark energy models that are mostly phenomenologi-
cal, models predicting curvature are rooted in fairly well understood
physics, a feature which helps in setting physically motivated priors
on the model parameters. For example, the possibility of a flat, �κ ∼
0 Universe has long been favoured by theoretical prejudice, as a flat
or close-to-flat Universe is a generic prediction of the inflationary
scenario, which appears to have been confirmed by observations to
date. With the prospect of even more vigorous observational cam-
paigns coming up in the next decade, it is timely to ask to which point
the accuracy in �κ can and should be pushed before the question
about the flatness of the Universe becomes irrelevant, uninteresting
or undecidable. Determining curvature is also important in order to
avoid mistaking a non-flat Universe for an indication of an evolving
dark energy density (see e.g. Knox, Song & Zhan 2006, Clarkson,
Cortes & Bassett 2007, Virey et al. 2008).

In this paper, we address the capability of future CMB and bary-
onic acoustic oscillation (BAO) observations to constrain curvature,
both from the point of view of parameter constraints and from the
perspective of a three-way Bayesian model comparison. We are
primarily interested in the accuracy that can be achieved using the
acoustic scale as a standard ruler, although complementary observa-
tions [e.g. supernova Type Ia (SNIa) or weak lensing observations]
will help to break existing degeneracies between curvature and the
dark energy equation of state (Clarkson et al. 2007), thereby im-
proving the statistical power. A fundamental limit to our ability
to determine curvature is set by the order of magnitude of local
fluctuations in the spatial curvature, ��tot ∼ 10−5. We investigate
how this translates in terms of model selection and, crucially, model
confusion, and show that the size of the fluctuations means that the
question of curvature becomes statistically undecidable for |�κ | �
10−4, i.e. about one order of magnitude above the naive expectation,
and this is regardless of the amount of data gathered.

This paper is organized as follows. In Section 2, we introduce the
data we use and our forecast procedure, while we briefly review rel-
evant aspects of Bayesian model selection in Section 3, where our
prior choices are discussed. We present the evidence from current
data in Section 4, while Section 5 gives the results of our fore-
cast for future probes and discusses model confusion. We give our
conclusions in Section 6.

2 SE T U P A N D M E T H O D O L O G Y

2.1 Measuring the acoustic scale

The acoustic peaks in the CMB power spectrum measure the pro-
jected sound horizon at recombination. The comoving sound hori-

zon at decoupling is given by

rs(zdec) = c

H0

∫ ∞

zdec

cs

H (z)
dz, (1)

where H0 is the Hubble constant today, zdec is the redshift of de-
coupling and cs is the sound speed of the coupled photon-baryon
fluid,

cs = 1√
3(1 + R)

, (2)

with R = 3ρb/ργ ≈ [670/(1 + z)](�bh
2/0.022). Here, ρb and ργ

are the time-dependent energy densities of baryons and photons,
respectively, while �b is the energy density parameter for baryons
today. The function H(z) is given by

H 2(z) =
[
�m(1 + z)3 + �r(1 + z)4 + �κ (1 + z)2

+ �de exp

(
3

∫ z

0

1 + w(x)

1 + x
dx

) ]
,

(3)

where the dark energy time evolution is described by the present-
day dark energy density in units of the critical density, �de, and
by its equation of state, w(z). The energy density parameter for
radiation (photons and neutrinos, taken here to be massless) is �r =
π2

15 [1 + (21/8)(4/11)4/3]T 4
CMB/h2 ≈ 4.13 × 10−5/h2, while

�κ = − κc2

a2
0H

2
0

(4)

is the curvature parameter (a0 is the scale factor today). The curva-
ture constant κ determines the geometry of spatial sections: κ = 0
for a flat Universe, κ = +1 for a closed Universe and κ = −1 for
an open Universe.

The comoving distance to an object at redshift z is given by

χ (z) = c

H0a0

∫ z

0

dx

H (x)
. (5)

Given knowledge of the comoving length λ of an object at redshift z,
a measurement of the angle subtended by it on the sky, θ , determines
its angular diameter distance, DA(z)

DA(z) = λ(a/a0)

θ
= a0Sκ (χ )

1 + z
, (6)

where Sκ (y) is y, sin(y) or sinh(y) for κ = 0, +1, −1, respectively. A
number of authors (Bond, Efstathiou & Tegmark 1997; Melchiorri
& Griffiths 2001; Bowen et al. 2002; Kosowsky, Milosavljevic &
Jimenez 2002; Jimenez et al. 2004) have pointed out that the mor-
phology of the acoustic peaks in the CMB power spectrum is largely
controlled by the baryon density �b h2 and by two ‘shift parameters’

la ≡ πχ (zdec)/rs(zdec), (7)

R ≡
√

�mH 2
0 χ (zdec)/c. (8)

In the context of the recent interest in dark energy, the usefulness of
employing both shift parameters (and their correlations) as a handy
summary of CMB constraints has been brought into sharp focus by
Wang & Mukherjee (2007). In this work, we follow their method
of employing ‘distance priors’ as constraints on (la, R, zdec) for a
summary of the information given by the CMB on the expansion
history of the Universe.

At lower redshift, the acoustic signature has been recently
detected in the distribution of galaxies (Eisenstein et al. 2005;
Percival et al. 2007; Gaztanaga, Cabre & Hui 2008), thereby pro-
viding further constraints on the recent expansion history of the
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Universe. Future large galaxy surveys are expected to considerably
improve present-day accuracy, by simultaneously determining the
angular diameter distance and the Hubble function H(z), which can
be obtained by measuring the acoustic scale in the radial direction
if spectroscopic data are available. This is because the radial extent
of a feature along the line of sight is related to the redshift range �z

by

r‖ = c�z

H (z)
, (9)

hence a measurement of r‖ allows a direct reconstruction of H(z).

2.2 Parameters and data sets

In this paper, we consider cosmologies containing baryons, cold
dark matter, dark energy and a possible curvature term. The radi-
ation density is fixed to the appropriate value for three families of
massless neutrinos throughout. Dark energy is taken to be either
in the form of a cosmological constant, w = −1, or is described
in terms of an effective equation of state weff 	= −1, which is
taken to be constant with redshift. Of course, more complex pa-
rameterizations are possible, and in particular one could consider
an evolving dark energy equation of state which changes with red-
shift (for constraints on such models, see e.g. Zunckel & Trotta
2007). A particularly popular phenomenological parameterization
of a time-evolving dark energy is to describe the equation of state
as w(z) = w0 + z

1+z
wa , with two free parameters (w0, wa). We

comment below on the impact that adopting such a more general
dark energy model would have on our results.

We employ a Metropolis–Hastings Markov chain Monte Carlo
procedure to derive the posterior distribution for the parameters
in our model. We take flat priors on the following quantities:
�mh2, �b h2, la, R, weff (whenever the latter is not fixed to −1).
The prior bounds on the first three parameters are irrelevant, as the
posterior is well constrained within the prior. For weff , we take a
prior range −2 ≤ weff ≤ −1/3, with the lower bound cutting off
some of the posterior for some of our data combinations (see be-
low). Finally, the choice of the prior for �κ is fundamental for the
model comparison part, and we discuss it in detail in Section 3.2.

When considering present-day data, we include the WMAP
5-year data (Dunkley et al. 2008) via their constraints on the shift
parameters and the baryon density, following the method employed
in Komatsu et al. (2009). We also include the Sloan Digital Sky
Survey (SDSS) baryonic acoustic scale measurement as an addi-
tional datum at redshift z = 0.35 by adding a Gaussian distributed
measurement of the quantity

A =
[
χ 2(zbao)

czbao

H (zbao)

]1/3
√

�mH 2
0

czbao
, (10)

where zbao = 0.35. We employ the mean value A = 0.474 with
standard deviation σ A = 0.017 (Eisenstein et al. 2005). We also
add the Hubble Key Project determination of the Hubble constant
today, as a Gaussian datum with mean H 0 = 72 km s−1 Mpc−1 and
standard deviation σH0 = 8 km s−1 Mpc−1 (Freedman et al. 2001).
SNIa data are included in the form of the Supernovae Legacy Survey
(SNLS) sample (Astier et al. 2006).

2.3 Future data

We now turn to describe our procedure for simulating constraints
from future CMB and BAO observations.

2.3.1 CMB data: Planck and CVL experiment

We consider two types of future CMB measurements, one from the
Planck satellite (due for launch early in 2009), which will measure
the temperature power spectrum with cosmic variance accuracy up
to � ∼ 2000, and will considerably improve current precision in the
ET and EE power spectra. We also consider a hypothetical cosmic
variance limited (CVL) experiment, which would measure the TT,
EE and ET spectra with cosmic variance precision up to � = 2000.
This is meant to represent the ultimate precision obtainable from
measurements of the acoustic scale at recombination (although of
course extra information on the expansion history will be available,
e.g. via the integrated Sachs–Wolfe effect or CMB lensing. As
mentioned above, we are concerned with the accuracy achievable
by ‘geometric’ means alone.)

We start by choosing a fiducial value of the cosmological param-
eters around which to generate simulated CMB data. We employ
�b h2 = 0.02268, �cdm h2 = 0.1081, �κ = 0, weff = −1, which are
in good agreement with the current best-fit from WMAP and other
CMB observations (the values of the spectral tilt and perturbation
normalization are irrelevant for our analysis as we only employ
effective distance measures to the last scattering surface from the
CMB). The corresponding CMB power spectra are computed using
the CAMB code (Lewis, Challinor & Lasenby 2000). We then add
noise according to the procedure described in Lewis (2005), with
noise levels appropriate for either Planck or the CVL experiment
(which has no noise up to � = 2000). Finally, a modified version of
COSMOMC (Lewis & Bridle 2002) is employed to fit the resulting
noisy power spectra and to recover the covariance matrix for the
parameters (R, la, zdec), following the method described in Komatsu
et al. (2009), which shows that constraints on this set of parame-
ters are essentially equivalent to constraints on (R, la, �bh

2). Li
et al. (2008) have analysed in detail the loss of information in-
volved in going from the full CMB data analysis to the use of the
constraints on the set (R, la, zdec) and have found that the covariance
matrix method represents accurately the information contained in
the CMB. Mukherjee et al. (2008) investigated the application of
this formalism to Planck priors, and found a significant correlation
between the shift parameters and the spectral tilt, nS. In this work,
we do not include the tilt in the description of Planck data, on the
basis that we never use Planck data alone to derive our constraints
on the curvature parameter. Thus, the degeneracy between nS and
the shift parameters can be assumed to be effectively broken when
including non-CMB observations, in particular data on the matter
power spectrum which, by extending very considerably the lever
arm of the CMB, are expected to be able to reduce the uncertainty
on nS to a level which does no longer impact on the accuracy of the
shift parameters.

The fiducial values for our reference choice of parameters are (R,
la, zdec) = (302.06, 1.709, 1090.46). The corresponding covariance
matrices for Planck and the CVL experiment are given in Table 1.

In obtaining the covariance matrix for Planck and the CVL ex-
periment, the curvature parameter has been allowed to vary (with a
flat prior over a suitably large range so that the posterior is much
narrower than the prior), in order to obtain errors that correctly
account for degeneracies in �κ . On the other hand, the equation
of state parameter has been fixed at w = −1 when computing the
covariance matrix. This is expected to be irrelevant as the whole
point of using CMB ‘distance priors’ of this sort is precisely that
they are largely independent of the assumed dark energy model (at
least as long as the contribution of dark energy in the early Universe
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Table 1. Covariance matrices for the distance parameters (la,
R, zdec) for Planck (top) and the CVL experiment (bottom).

Planck
la R zdec

la 5.96 · 10−3 1.96 · 10−4 1.02 · 10−2

R 2.15 · 10−5 1.06 · 10−3

zdec 6.90 · 10−2

Cosmic variance limited (CVL)
la R zdec

la 8.12 · 10−4 3.89 · 10−5 1.35 · 10−3

R 6.23 · 10−6 2.52 · 10−4

zdec 1.47 · 10−2

is negligible, which is the case here since we never fit evolving dark
energy models).

This covariance matrix is then used as the CMB high-redshift con-
straint. Note that although the simulated data are obtained around a
flat fiducial model, we can safely use the resulting covariance matrix
to represent CMB distance priors even when the fiducial model is
slightly changed to �κ 	= 0 (as long as the change is not too large as
to radically modify degeneracy directions), as we do below, where
we employ fiducial models with |�κ | ≤ 5 × 10−3.

2.3.2 BAO data: WFMOS and SKA-like experiment

Regarding future BAO measurements, we adopt two benchmark
experiments. One is the Wide-Field Multi-Object Spectrograph
(WFMOS), a proposed instrument for the 8-m Subaru telescope
which will employ a fibre-fed spectrograph to carry out a low
(z ∼ 1) and a deep (z ∼ 3) survey to determine the acoustic os-
cillation scale both in the transverse and in the radial direction
(Bassett, Nichol & Eisenstein 2005). WFMOS could be operating
around 2015. We also consider a more futuristic type of measure-
ment of the kind that could be delivered by the Square Kilometer
Array (SKA) radiotelescope around 2020 by performing a full-sky
survey of HI emission.

In modelling the accuracy of these observations, we closely fol-
low the treatment of Blake et al. (2006), to which we refer for full
details. In summary, we employ the following fitting formula for
the fractional accuracy of the determination of the transverse and
radial acoustic scale:

x = x0

√
V0

V

[
1 + neff

n

D(z0)2

b2
0D(z)2

]
f (x), (11)

with f (z) = (zm/z)γ for z < zm and f (z) = 1 otherwise. Here, x is
the fractional accuracy in the determination of either χ (z)/r s(zdec)
(transversal direction) or cH (z)−1/r s(zdec) (radial direction) which
can be obtained by a spectroscopic survey of volume V , measuring
a galaxy density n at redshift z. In the above equation, D(z) is the
growth factor, (V 0, z0, b0) are the values for a reference survey while
(x0, neff , zm, γ ) are fitted parameters obtained via a simulation study
by Blake et al. (2006), which depend on whether one is considering
a measurement of the acoustic scale in the radial or tangential direc-
tion. We employ the values given in table 1 of Blake et al. (2006) for
a spectroscopic survey, as appropriate for WFMOS and the SKA. In
equation (11), we recognize a term ∝ 1/

√
V representing the scal-

ing of the number of available Fourier modes with volume, a term
∝ 1/(nD2) representing shot noise and a redshift-dependent cut-
off term ∝ 1/zγ below zm = 1.4 that suppresses non-linear modes
[which, however, might also be included in a full non-linear anal-

ysis, thereby considerably increasing the BAO constraining power
(see e.g. Crocce & Scoccimarro 2008].

The WFMOS parameters are taken from the results of the detailed
optimization study by Parkinson et al. (2007). Although Parkinson
et al. (2007) optimized WMFOS experimental parameters for dark
energy constraints in a flat Universe, we expect that their general
preference for a low redshift bin with as large as possible an area
would still hold true even in an optimization scenario where curva-
ture is allowed to vary. For definiteness, we adopt the values given
in table 2, column B of Parkinson et al. (2007). This gives a wide bin
at low redshift, covering an area of Alow = 5600 deg2 at a median
redshift zlow = 1.08, a redshift width �zlow = 0.35 and a number
density of galaxies nlow = 7.1 × 104 (h3 Mpc−3). The high-redshift
bin has parameters Ahigh = 150 deg2, zhigh = 3.15, �zhigh = 0.13
and nlow = 0.13 × 104 (h3 Mpc−3). We have found that essentially
all of the constraining power of this configuration comes from the
z ∼ 1 bin, in agreement with the results of other studies.

The SKA is still in the design phase, hence its precise perfor-
mance is somewhat uncertain at the moment (see e.g. Blake et al.
2004 for an overview). We choose to represent its capabilities by
assuming measurements of both the transverse and radial acoustic
scales equally spaced in four redshift bins at z = 1, 2, 3, 4, each of
width �z = 0.4. We further assume that the SKA will survey the
whole sky (A = 20 000 deg2) and that the density of galaxies will
be large enough as to be able to neglect the shot noise term (i.e.
nP > 3, where P is the power of the fluctuations). Some of these
choices are somewhat optimistic, and further detailed modelling is
required in order to be able to verify the capability of the SKA to
achieve these specifications. However, we have taken here the SKA
to represent a sort of ‘ultimate’ BAO measurement, which provides
with a flavour of what the ultimate level of accuracy of the method
might be.

Of course, we are only dealing with statistical uncertainties here,
and the issue of systematics will at some point have to be addressed
in detail, as the statistical error becomes smaller. However, BAOs
are particularly promising in this respect, thanks to the very low
level of systematics expected (e.g. Trotta & Bower (2006)).

3 C U RVAT U R E A N D BAY E S I A N M O D E L
C O M PA R I S O N

Determining whether the Universe is flat or not is one of the most
interesting questions in modern cosmology. This is, however, not a
problem of parameter constraints, but rather of model comparison.
In this section, we briefly describe Bayesian model comparison and
its use in forecasting the power of future observations (for more
details, see e.g. Trotta 2008; Trotta et al. 2008). We then discuss
the choice of priors on �κ and motivate it in the light of theoretical
considerations.

3.1 Model comparison

From Bayes’ theorem, the probability of model M given the data,
p(M|d), is related to the Bayesian evidence (or model likelihood)
p(d|M) by

p(M|d) = p(d|M)p(M)

p(d)
, (12)

where p(M) is the prior belief in model M, p(d) =∑
i p(d|Mi)p(Mi) is a normalization constant and

p(d|Mi) =
∫

dθ p(d|θ,Mi)p(Mi) (13)
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Table 2. Empirical scale for evaluating the strength of evidence
when comparing two models, M0 versus M1 (so-called ‘Jeffreys’
scale’). The right-most column gives our convention for denoting
the different levels of evidence above these thresholds.

|ln B01| Odds Strength of evidence

<1.0 �3:1 Inconclusive
1.0 ∼3:1 Weak evidence
2.5 ∼12:1 Moderate evidence
5.0 ∼150:1 Strong evidence

is the Bayesian evidence. Given two competing models M1,M2,
the Bayes factor B01 is the ratio of the models’ evidence

B01 ≡ p(d|M0)

p(d|M1)
, (14)

where large values of B01 denote a preference for M0, whereas
small values of B01 denote a preference for M1. The ‘Jeffreys’
scale’ (Table 2) gives an empirical scale for translating the values
of ln B01 into strengths of belief [following the prescription given
in Gordon & Trotta (2007) for denoting the different levels of ev-
idence]. Recently, the framework of model comparison has been
extended to include the possibility of ‘unknown models’ discovery
(Starkman, Trotta & Vaudrevange 2008).

Given two or more models, it is straightforward (although often
computationally challenging) to compute the Bayes factor. Several
numerical algorithms are available today to compute the Bayesian
evidence. Recently, a very effective algorithm, called ‘nested sam-
pling’ (Skilling 2004, 2006), has become available, which has been
implemented in the cosmological context by Bassett, Corasaniti
& Kunz (2004), Mukherjee, Parkinson & Liddle (2006), Shaw,
Bridges & Hobson (2007), Feroz & Hobson (2008) and Bridges
et al. (2007). Here, we are interested in the simpler scenario where
the two models are nested, i.e. where the more complicated model
reduces to the simpler one for a specific choice of the extra param-
eter. In our case, the extra parameter is the curvature, �κ , with a
curved Universe reverting to a flat one for �κ = 0. Writing for the
extended model parameters θ = (ψ , �κ ), where the simpler (flat)
model M0 is obtained by setting �κ = 0, and assuming further that
the prior is separable (which is the case here), i.e. that

p(ψ,�κ |M1) = p(�κ |M1)p(ψ |M0), (15)

the Bayes factor can be written in all generality as

B01 = p(�κ |d,M1)

p(�κ |M1)

∣∣∣∣
�κ = 0

. (16)

This expression is known as the Savage–Dickey density ratio
(SDDR; see Verdinelli & Wasserman 1995, and references therein).
For cosmological applications, see Trotta (2007a). The numerator
is simply the marginal posterior for �κ , evaluated at the flat Uni-
verse value, �κ = 0, while the denominator is the prior density for
the model with �κ 	= 0, evaluated at the same point. This tech-
nique is particularly useful when testing for one extra parameter
at a time, because then the marginal posterior p(�κ |d,M1) is a
one-dimensional function, and normalizing it to unity probability
content only requires an one-dimensional integral, which is com-
putationally simple to do.

3.2 A three-way model comparison

We consider each possible choice of the curvature parameter κ as
defining a separate model. This means that we perform a three-

way model comparison between a flat (κ = 0), an open (κ = −1)
and a closed (κ = +1) Universe. It is obvious that we might want
to distinguish between a flat Universe and non-flat alternatives.
However, it is also convenient to separate the positive and negative
curvature scenarios as two different models. This will allow us
to make statements on the probability that the Universe is finite
(corresponding to the closed case), and also to consider in a natural
way a prior on �κ that is flat in the log of the curvature parameter,
as motivated below.

For the prior probability assigned to each of the three possible
geometries, we make a non-committal choice of assigning equal
probabilities to each, i.e. p(Mi) = 1/3 (i = −1, 0, +1), where the
labels of the models give in each case the value of κ . Of course,
different choices are possible: for example, if one feels that inflation
strongly motivates an almost flat Universe, this might be reflected by
increasing the value of p(M0) (we comment further on this below).
It is straightforward to include such a theoretical preference by
recalibrating our results if one wanted to.

From the definition of the model’s posterior probability (equation
12) and as a consequence of our assumption of equal prior prob-
abilities for our models, we obtain for the posterior probability of
the flat model the handy expression

p(M0|d) = 1

1 + B−1
01 + B−1

0−1

. (17)

The posterior probabilities of the κ 	= 0 models can easily be ob-
tained by suitably exchanging the indexes of the Bayes factors.

Each one of the models is described by a six-parameter vanilla
�CDM model (or a seven-parameter dark energy model with weff 	=
−1). In principle, we need to specify the priors on these parameters
too, but since they are common parameters to all models, their priors
effectively cancel, as shown above by equation (16). Whenever we
include the extra parameter weff 	= −1, we always add it to all
models at the same time, therefore the model comparison is always
only about the curvature.

Model selection relies on a choice of prior for the extra parameter
in the more complex model, which controls the strength of the
Occam’s razor effect, in our case �κ . Such a choice should be
motivated by physical considerations, ideally stemming from the
theoretical properties of the model under scrutiny (see Efstathiou
2008 for a critical view). We, therefore, need to consider carefully
the prior distribution for the value of the parameter describing the
curvature of spatial sections for the non-flat models.

3.3 Priors on the curvature parameter

A possible parameterization of the spatial curvature is given by the
curvature parameter today (equation 4). A flat Universe (�κ = 0)
would, therefore, appear to be a point null hypothesis, to be tested
against a more complex alternative model (with �κ 	= 0). In the
context of inflation, however, the geometry need not be exactly
flat. Indeed, the whole point of inflation is precisely to provide a
mechanism to avoid such an implausible fine tuning. For κ 	= 0,
inflation ensures that the curvature scale tends to zero:

|�κ | ≈ exp(−2Nb), (18)

where Nb is the number of e-folds before our current comoving
Hubble volume exited the horizon (see e.g. Tegmark 2005). If we
had a measure for the parameter space of inflationary potentials
(e.g. from string theory), we could in principle convert the proba-
bility distribution for the potential into a prior on Nb, and from here
into a prior on �κ . This is not necessary in practice, because local
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fluctuations in our Hubble volume limit the precision to which we
can observe deviations from �κ = 0 to ∼10−5 [see Waterhouse &
Zibin (2008) for a more rigorous motivation of this result]. There-
fore, provided N b � 5.8, inflationary predictions are observationally
indistinguishable from a flat Universe. Given that Nb could be any-
thing between 0 and ∞, it appears to be a reasonable approximation
to neglect models with N b < 5.8 [see Tegmark (2005) for a justi-
fication], although such cases could be considered as a particular
class of models if one wanted. For definiteness, in the following we
will take the inflationary prediction to correspond to |�κ | < 10−5,
thereby extending the point null hypothesis that κ = 0 to include
such small values of the curvature parameter. Because of the fun-
damental limitation of cosmic variance, we argue that it is pointless
to consider the prior distribution of �κ below the threshold value of
10−5.

In summary, we describe a generic inflationary prediction as
being |�κ | < 10−5 (with no free parameters) and a prior model
probability p(M0) = 1/3. The latter assignment could of course
be amended if one felt that inflation is compellingly motivated by
its ability to solve other problems such as the homogeneity and
monopole problems, in which case the prior probabilities for non-
inflationary models would have to be correspondingly reduced.2

However, this is not essential for what follows, as we will mostly
quote Bayes factors which give the change in degree of relative
belief between two models in the light of the data. This means
that the model’s prior specification has no influence on the Bayes
factor. In any case, it is straightforward to propagate a change in the
models’ prior probability to the model posterior probabilities that
we give below.

The model comparison is then fully defined once we choose a
prior pdf for the extra parameter in the curved models, for values
|�κ | > 10−5. The prior should reflect our state of belief on the pos-
sible values of the relevant parameter before we see the data. We
adopt two different prior choices for deviations from flatness, repre-
senting two different states of beliefs about the locus of possibilities
for the geometry of the Universe.

3.3.1 Flat prior on �κ : the ‘astronomer’s prior’

This prior is motivated by considerations of consistency with mildly
informative observations on the properties of the Universe. Re-
quiring that the Universe is not empty gives �κ > −1, barring
the exotic case of a negative cosmological constant. The age of a
Universe containing only matter can be approximated by t0H 0 =
(1 + �0.6

tot /2)−1, which means that a positively curved Universe is
increasingly at odds with the age of the oldest objects, requiring
t0 � 10 Gyr. A positive cosmological constant helps to solve the
age problem, but if �tot � 2, then t0 � 8h Gyr even in a de Sitter
Universe. So unless h � 1, a Universe with �κ � 1 is too young
even in the presence of �. The lower limit for the curvature pa-
rameter is given by |�κ | = 10−5 as discussed above. However, on
a linear scale this is effectively equivalent to setting the lower limit

2 An important point is that we are here neglecting the possibility of in-
flationary models predicting, for example, closed Universes with sizeable
values of the curvature parameter (see e.g. Lasenby & Doran 2005 for such
a model). So what we describe as a generic inflationary prediction is re-
ally only a subclass of possible inflationary scenarios. It would be simple
to extend the model comparison to include other subclasses of inflationary
models if one wanted to.

to 0. These considerations, therefore, lead to the prior choice:

pA(�κ |M1) = 1 for −1 ≤ �κ ≤ 0 (19)

and

pA(�κ |M−1) = 1 for 0 ≤ �κ ≤ 1, (20)

where the subscript A denotes that this prior is based on the astro-
nomical considerations sketched above

3.3.2 Flat prior on ln �κ : the ‘curvature scale prior’

Alternatively, we might consider the curvature scale today:

a0 = c

H0

[
κ

�tot − 1

]1/2

. (21)

Clearly, a flat prior on �κ does not correspond to a flat prior on a0,
as the two pdfs are related by

p(a0) = p(�κ )

⏐⏐⏐⏐ d�κ

da0

⏐⏐⏐⏐. (22)

Hence, a flat prior on �κ gives an informative prior on the curvature
scale, p(a0) ∝ a−3

0 , which prefers more strongly curved Universes.
A flat prior on ln �κ represents a state of belief which is indifferent
with respect to the order of magnitude of the curvature parameter.
It is easy to see that this implies a similar state of indifference on
the order of magnitude of the curvature scale, since a flat prior
on ln �κ is flat on ln a0 as well. Furthermore, such a prior is also
flat in the number of e-folds, as a consequence of equation (18).
The upper cut-off for the prior can be established by requiring that
the curvature scale be larger than the Hubble horizon radius, H−1

0 .
Furthermore, we are free to choose the basis in which the logarithm
is taken, and in the following we shall employ base 10 logarithms.
We thus define the variable

oκ ≡ log10 |�κ |. (23)

These considerations lead to the prior choice

pC(oκ |Mκ ) = 1/5 for −5 ≤ oκ ≤ 0 (24)

for κ = −1, 1 and where the subscript C denotes that this prior is
based on a state of indifference with respect to the curvature scale.

When employing the SDDR to evaluate the Bayes factor between
a flat and a curved model for the curvature scale prior, we evaluate
the marginal posterior and the prior of equation (16) at the value
oκ = −5 (corresponding to |�κ | = 10−5), since this is the value at
which the curved models revert to a flat Universe for our choice of
priors.

Other choices of parameterization for curvature (and the associ-
ated priors) are certainly possible and might be well motivated from
a theoretical point of view. For example, Adler & Overduin (2005)
introduce a constant flatness parameter ε given by the ratio of two
fundamental constants determining the dynamics of the expansion,
and show that the value of ε is in many ways a better indicator of
‘fine tuning’ than |�κ |. Again, if one had access to the distributional
properties of the fundamental constants and from there to the distri-
bution of ε, one could imagine building a physically motivated prior
on that quantity instead. However, since presently we are unable to
predict from first principles the distributional properties of such
quantities, we prefer to adopt a semiphenomenological approach,
informed by the physical reasoning sketched above.
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3.4 Implications for the number of Hubble spheres
and the size of the Universe

For closed Universes (i.e. for M1), it is interesting to translate the
probability distribution for �κ or oκ into the corresponding posterior
for the number of particle horizon volumes that fit into the current
spatial slice. Following Scott & Zibin (2006), we thus define

NU ≡ 2π

2χ − sin(2χ )
(25)

as the ratio of the present volume of the spatial slice to the apparent
particle horizon (assuming radiation domination into the infinite
past), where χ is the comoving radial distance defined in equation
(5), and for closed models 0 ≤ χ ≤ π. Given our choice of priors,
we can easily translate the results of the previous section into the
posterior for NU. Clearly, under either the flat or open models (M0

orM−1), the volume of the spatial slice is infinite and hence NU goes
to infinity. In the Bayesian framework, we can give the probability
that this is the case, namely that we live in an infinite Universe. For
our choice of model priors, it follows that

p(NU = ∞|d) = p(M0|d) + p(M−1|d) (26)

= p(M0|d)

(
1 + 1

B0−1

)
, (27)

where p(M0|d) is given by equation (17). For other choices of
model priors (e.g. p(M0) � 1/3, representing a stronger degree of
theoretical prejudice in favour of inflation), one should rescale the
posteriors accordingly.

3.5 Model comparison forecasting

When considering the capability of future probes, it is custom-
ary to quantify their expected performance in terms of a ‘figure
of merit’ (FOM). Several FOMs exist, but they mostly focus on
the parameter constraint capabilities of future observations (e.g.
Bassett 2005). However, many (and indeed perhaps most) questions
of interest are actually about model comparison: for example, deter-
mining whether dark energy is a cosmological constant, or whether
the Universe is flat are clearly model comparison problems. FOMs
geared for parameter constraint capabilities do not necessarily re-
flect the model comparison potential of a future probe (see Liddle
et al. 2007 for details).

A few techniques have been put forward to assess the model
comparison capability of future observations: Trotta (2007b) has
introduced a technique called PPOD, which computes the probability
distribution of the outcome of a future model comparison; Pahud
et al. (2006, 2007) have looked at the ability of Planck to obtain a
decisive model selection result regarding the spectral index; Liddle
et al. (2006) have applied a similar technique to the problem of
distinguishing between an evolving dark energy and a cosmological
constant.

Here, we adopt a procedure similar in spirit to Liddle et al.
(2006). We want to quantify the ability of future CMB and BAO
measurements to obtain a correct model selection outcome about the
geometry of the Universe. We, therefore, simulate data as explained
above for three different fiducial values of �κ : for a flat model,
�∗

κ = 0, and for two different closed models, �∗
κ = −10−3 and

�∗
κ = −5 × 10−3. From the posterior distribution obtained from

simulated data, one can compute the corresponding Bayes factor
via the SDDR, equation (16). Once interpreted against the Jeffreys’
scale, the future Bayes factor then allows us to determine whether

the experiment will be accurate enough to correctly identify the true
model, and if so with what strength of evidence. Our procedure is
thus similar to the one adopted in Pahud et al. (2007, 2006).

In principle, one could repeat the forecast for several other val-
ues of �∗

κ , thus more densely covering the range of possible fiducial
values. However, we found that these three cases are representative
of three interesting possibilities. The case �κ = −5 × 10−3 has
been chosen because it lies just below current combined limits from
CMB, BAO and SNIa, and within reach of the next generation of
CMB and BAO probes. The case �κ = −10−3 is a factor of 5 below,
and still a factor of 100 above the absolute lower limit of �κ ∼ 105.
Yet we will demonstrate that this scenario already presents very
considerable challenges in terms of model confusion. Finally, the
flat case allows us to investigate whether future probes can correctly
determine (in a model selection sense) if the inflationary prediction
is correct. In the following, we focus on the closed Universe case,
because this has the added interest of a finite Universe, and, there-
fore, it allows to investigate the question of whether the Universe’s
spatial extent is infinite or not. In terms of parameters constraints
and model selection outcomes, the conclusions are expected to hold
almost unchanged for the case of fiducial Universes with �κ > 0,
i.e. for the open case.

4 R ESULTS

4.1 Current evidence for flatness

In this section, we present our model comparison analysis from
present-day data. Our results (obtained using a modified version
of the COSMOMC code; Lewis & Bridle 2002) are presented in
Table 3.

Starting with the astronomer’s prior case, we find moderate evi-
dence for a flat Universe when compared with a closed model (ln
B01 ≈ 4 for all cases but the WMAP5 + BAO data combination
with w 	= −1, which is discussed below). This corresponds to pos-
terior odds of about 54:1. The evidence in favour of a flat model is
stronger when it is compared with the open case, as a consequence
of the fact that the posterior for �κ is slightly skewed towards values
�κ < 0, giving odds of the order of 200:1 in favour of the flat ver-
sus the open model. When compared against each other, the closed
model is preferred over the open model with odds of about 4:1. Al-
though the odds in favour of a flat Universe versus a closed one are
of the same order as found in previous works [e.g. Kunz et al. (2006)
found odds of 48:1 from WMAP 3-year data and other constraints],
one has to bear in mind that we are performing a three-way model
comparison, while previous analyses have compared the flat model
with arbitrarily curved ones (both open and closed). If we use the
same priors as Kunz et al. (2006), we find a Bayes factor between
the flat and curved models ln B = 4.4 (ln B = 4.6), for w = −1
(weff 	= −1). This translates in odds of approximately 90:1 in favour
of flatness when compared with a generic curved model. Thus, the
latest data have improved the model comparison outcome roughly
by a factor of 2. The posterior probability for an inflationary, infinite
Universe is about 98 per cent, up from the initial 33 per cent from
our prior choice. The above results hold true even if one relaxes the
assumption of a cosmological constant for the most constraining
data combination, namely the one including SNIa. However, the
evidence is favour of flatness weakens considerably if one only em-
ploys WMAP5, SNIa and BAO while at the same time allowing for
a non-constant dark energy equation of state (ln B01 = 1.0). This
is because the inclusion of BAO data skews the posterior for �κ

to considerably negative values, thus preferring a closed Universe.
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Table 3. Outcome of a three-way Bayesian model selection for the curvature of the Universe from current data and two choices of priors.
For a prior choice motivated by astronomical considerations (astronomer’s prior), the posterior probability for a flat, infinite inflationary
model (p(M0|d) column) increases from the initial 33 per cent to about 98 per cent for the most constraining data combination, even if the
assumption of a cosmological constant is dropped. On the contrary, the ‘curvature scale prior’ returns an inconclusive model comparison,
because in this case the Occam’s razor effect is much reduced. The column p(NU = ∞|d) gives the probability of the Universe being
infinite.

Data sets and models ln B01 ln B0−1 p(M0|d) p(NU = ∞|d) Notes

Astronomer’s prior (flat in �κ )

WMAP5 + BAO (w = −1) 4.1 5.3 0.98 0.98 Moderate evidence for a flat, infinite Universe
WMAP5 + BAO + SNIa (w = −1) 4.2 5.3 0.98 0.98 Moderate evidence for a flat, infinite Universe

WMAP5 + BAO (w 	= −1) 1.0 6.1 0.74 0.74 Weak evidence for flatness
WMAP5 + BAO + SNIa (w 	= −1) 3.9 5.3 0.98 0.98 Moderate evidence for flatness

Curvature scale prior (flat in oκ )

WMAP5 + BAO (w = −1) 0.4 0.6 0.45 0.69 Inconclusive
WMAP5 + BAO + SNIa (w = −1) 0.4 0.6 0.45 0.69 Inconclusive

WMAP5 + BAO (w 	= −1) −0.8 0.5 0.26 0.42 Inconclusive
WMAP5 + BAO + SNIa (w 	= −1) 0.3 0.6 0.44 0.67 Inconclusive

Note that for this prior the probability of a flat Universe (p(M0|d))
and of an infinite Universe (p(NU = ∞|d) ) essentially coincide, for
the Occam’s razor effect acts strongly against open models, as we
have seen, and therefore most of the models’ posterior probability
is concentrated in the flat Universe.

If instead we consider the case of the curvature scale prior (flat
in oκ ), then the Occam’s razor effect penalizing non-flat models
is much weaker. This comes about because the posterior becomes
flat for oκ � −2 and stays flat all the way to oκ = −5, since
for such small values of the curvature parameter, present-day data
do not provide any constraint. Therefore, this prior choice can be
seen as more conservative in that it presents a reduced Occam’s
razor penalty for non-flat models. From the results in Table 3, we
see that for this prior choice the preference for flatness is much
reduced, although ln B01 remains mostly positive, thus signalling
a preference for the flat case. For example, the odds in favour of
flatness versus closed (open) models are reduced to the order of 3:2
(9:5), barring the case of w 	= −1 and WMAP5, SNIa and BAO.
However, these values are now below even the ‘weak evidence’
threshold, and therefore the model comparison is inconclusive with
this prior. Indeed, the posterior probability for the inflationary model
(i.e. M0) is now only about 45 per cent (up from 33 per cent from
the prior), while the probability of us living in an infinite Universe
remains almost unchanged at 69 per cent (from about 67 per cent in
the prior). This happens because in the light of the data, the models’
probability is redistributed in such a way that the sum of the flat
and open models’ probability remains almost constant, despite the
fact that the flat model’s probability has risen and the open model’s
probability has been reduced (down to about 24 per cent from the
initial 33 per cent).

4.2 Constraints on the number of Hubble spheres

For values NU < ∞ (i.e. for closed models), the posterior probabil-
ity distribution p(NU|d,M1) is shown in Fig. 1 for both choices of
priors as a function of log10(NU). Within the class of closed models,
we read off Fig. 1 that the number of Hubble spheres is constrained
to lie below NU ∼ 106 for the astronomer’s prior and less than
NU ∼ 107 for the curvature scale prior. The sharp drop in the proba-
bility density for large values of NU is a reflection of the lower cut-off
value chosen for the priors, |�κ | > 10−5, while the difference in the
upper limit is a consequence of the different volume of parameter

Figure 1. Posterior probability distribution (normalized to the peak) for the
number of Hubble spheres contained in a spatial slice (for a closed Universe)
from present-day CMB + BAO + SNIa data, for the more conservative case
weff 	= −1 and assuming the astronomer’s prior (solid) or the curvature scale
prior (dashed).

space enclosed by the two priors. The exact value of the 99 per cent
lower limit slightly depends on the prior, as different priors allocate
a different probability mass to low curvature, i.e. to large NU. For
the astronomer’s prior, we find a 99 per cent lower limit (one-tail)
NU � 4.8, while for the curvature scale prior this slightly increases
to NU � 6.2 (both figures for the more conservative case where
weff 	= −1). So we conclude that, at the 99 per cent level, the value
NU � 5 can be taken to be a robust lower limit to the number of
Hubble spheres in the Universe. This is in good agreement with the
results of the simpler analysis presented in Scott & Zibin (2006),
which estimated NU � 10.

One could also report model-averaged constraints on NU, by
taking into account the spread of posterior probability between the
three models:

p(NU|d) = p(M1|d)p(NU|d,M1), (28)
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where the closed model probability, p(M1|d), can be computed
from the Bayes factors reported in Table 3, using the relationship

p(M1|d) = 1

1 + B01 + B−1
0−1

. (29)

For the astronomer’s prior, we obtain p(M1|d) = 0.02 while for
the curvature scale prior p(M1|d) = 0.35 for the most constraining
data combination (and allowing for w 	= −1). Because the bulk of
the model probability lies with the models where the Universe is
infinite, we expect that model-averaged lower limits on NU would
be more stringent than the robust limit we reported above, but also
more strongly prior dependent [A similar effect is observed for
model-averaged constraints on the dark energy equation of state
by Liddle et al. (2006).] For this reason, we prefer not to report
model-averaged limits in this case.

5 FUTURE PROSPECTS

We now turn to the investigation of the accuracy that future CMB
and BAO probes will achieve on �κ , both from the point of view
of parameter constraints and, crucially, from the model selection
perspective. Many studies have recently evaluated observational
prospects using a variety of probes (Knox 2006; Knox et al. 2006;
Mao et al. 2008). Here, we improve on past works by analysing the
results from a Bayesian model comparison viewpoint.

We assume three different fiducial values for �κ : a flat Uni-
verse (�∗

κ = 0) and two possibilities for a closed Universe, namely
�∗

κ = −10−3 (about one order of magnitude below current con-
straints) and a more optimistic �∗

κ = −5 × 10−3. We then simulate
future CMB and BAO observations as described above. An impor-
tant point is that we simulate data around the true value of the fiducial
model’s parameters. This is consistent with what one would expect
to obtain from the average of many data realizations, and analogous
to what is usually assumed with Fisher matrix forecasts. However,
from the point of view of performance prediction and model com-
parison, it is important to stress that this choice is optimistic, in that
it ignores the extra uncertainty due to the realization noise of the
specific data realization that one happens to observe.

5.1 How flat can you get?

We first focus on the flat fiducial model, in which case no devia-
tion from flatness should be observed (with the important caveat
of realization uncertainty given above) and future probes will fur-
ther tighten constraints around �κ = 0. In Table 4, we report the
projected posterior 1σ constraint on �κ as well as the 99 per cent

Figure 2. Future constraints on curvature and the dark energy effective
equation of state from various combinations of future probes, for the as-
tronomer’s prior. Contours delimit 68 and 95 per cent joint credible regions,
the cross gives the fiducial value.

(2.58σ ) one-tail lower limit on �κ . This quantity would be the
appropriate figure to report in the case that no deviation from flat-
ness is found and one wanted to constrain positively closed models
at the 99 per cent level. This limit can also be translated into the
corresponding 99 per cent lower bound on the number of Hubble
spheres, NU, which is also given in Table 4. Combination of future
CMB data with WFMOS BAO determinations will constrain cur-
vature at the ∼10−3 level, with the degradation in accuracy coming
from dropping the assumption of a cosmological constant being
about a factor of 2. Interestingly, once Planck data are available,
there is not much to be gained in terms of curvature constraints
from a CVL CMB experiment. An SKA-like BAO experiment will
further tighten constraints by a factor of about 5, and reduce the
dependency of the marginal curvature accuracy on the assumptions
about the dark energy equation of state. Constraints in the (�κ ,
weff ) plane for the flat prior case are depicted in Fig. 2, showing
how SKA will essentially eliminate the correlation between the two
parameters, leading to independent constraints on the curvature and
the effective dark energy equation of state.

This result could potentially be weakened if one allowed for a
more general dark energy time dependence than we have consid-
ered here. However, Knox et al. (2006) showed that WFMOS BAO
constraints on �κ are remarkably robust even if one allows for an

Table 4. Posterior constraints on the curvature parameter �κ from future CMB and BAO probes, taking a fiducial value �
∗
κ = 0 and for a flat prior on �κ .

Probe 1σ error on �κ 99 per cent one-tail lower limit
�κ NU

w = −1

Planck + WFMOS 1.76 · 10−3 −4.17 · 10−3 392
CVL + WFMOS 1.60 · 10−3 −3.85 · 10−3 443
Planck + SKA 5.64 · 10−4 −1.34 · 10−3 1970
CVL + SKA 4.58 · 10−4 −1.07 · 10−3 2732

w 	= −1
Planck + WFMOS 2.22 · 10−3 −4.58 · 10−3 284
CVL + WFMOS 2.08 · 10−3 −4.40 · 10−3 293
Planck + SKA 6.38 · 10−4 −1.50 · 10−3 1676
CVL + SKA 4.58 · 10−4 −1.05 · 10−3 2723
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Table 5. Outcome of Bayesian model selection from future data,
generated from a flat Universe. The table gives values of ln B01, the
Bayes factor between a flat and a closed model, using a flat prior
on �κ (astronomer’s prior) or a flat prior on oκ (curvature scale
prior). The analysis with a flat prior on �κ gives strong evidence in
favour of the flat model even when the assumption of a cosmological
constant is relaxed (w 	= −1 column), while using a flat prior on oκ

the strength of evidence is just above the ‘weak’ threshold even for
the most powerful probe (CVL + SKA).

(�
∗
κ = 0.0) Astronomer’s prior

Curvature scale
prior

Probe w = −1 w 	= −1 w = −1 w 	= −1

Planck + WFMOS 6.0 5.9 0.7 0.7
CVL + WFMOS 6.2 5.9 0.8 0.7
Planck + SKA 7.1 6.2 1.0 1.0
CVL + SKA 7.5 6.3 1.1 1.1

evolving dark energy of the form w(z) = w0 + wa
z

1+z
. This is

mainly due to the extra constraining power coming from the high-
redshift bin, which in our analysis played a subdominant role since
we assumed that the effective equation of state is constant with red-
shift. Even for the more general (w0, wa) parameterization, Knox
et al. (2006) found that WFMOS-like constraints on �κ are only
degraded by about 50 per cent w.r.t. our result (see below for further
comments about the impact on model confusion). We note that our
forecast for SKA-like BAO data is of the same order of the accuracy
that could be achieved by a combination of weak lensing and BAO
observations by the Large Synoptic Survey Telescope (LSST) when
marginalizing over a more general (w0, wa) (Zhan 2006). However,
if one models the dark energy equation of state as a continuous func-
tion, then constraints on curvature are very considerably degraded.
Even a combination of weak lensing and BAO observations by the
LSST will only achieve a relatively modest accuracy ∼0.017 on �κ

(Zhan, Knox & Tyson 2009).
In terms of constraining the number of Hubble spheres, WFMOS

data would increase the current lower limit NU � 5 by almost
two orders of magnitude to NU � 300–400, while SKA-like BAO
observations would further improve this by one order of magnitude
to NU � 2000–3000 (all figures are given before model-averaging).

We now turn to the model selection question of whether future
experiments will be able to determine unambiguously that the Uni-
verse is flat, should this be the case. Results are shown in Table 5,
which gives value of ln B01, the Bayes factor between the (correct)
flat model and the closed model (recall that ln B01 > 0 favours the
flat model). The values of ln B0−1 are within a few percent from the
ones given in the table, and hence are not displayed (the small differ-
ence comes from the fact that the dependency of the observables is
not precisely symmetric in �κ around �κ = 0). Our findings show
that all of the experiments will be able to return strong evidence
(ln B01 > 5) for the case of a flat prior on �κ . This results holds true
even if we relax the assumption that dark energy is in the form of a
cosmological constant.

However, the strength of evidence is much reduced if instead
one employs a prior that is flat on oκ , as shown in the right-hand
side of Table 5 (curvature scale prior). Even the most constraining
experiments (CVL + SKA) will struggle to gather weak evidence
(ln B01 > 1.0) in favour of flatness. This comes about for two rea-
sons. First, evidence accumulates only proportionally to the inverse
error on the parameter of interest, hence in the Bayesian framework
it is much easier to disprove a model (where the evidence goes ex-
ponentially in the number of sigma discrepancy with the prediction)

Figure 3. Normalized posterior on oκ assuming a fiducial value �∗
κ = 0,

reconstructed using a flat prior on oκ and assuming w = −1, for different
combinations of future data. From right to left: Planck + WFMOS (solid),
CVL + WFMOS (dotted), Planck + SKA (short-dashed), CVL + SKA
(long-dashed).

than to confirm it. Second, the Occam’s razor effect penalizing non-
flat models is much reduced under the assumption of a flat prior
in oκ , as the net result of two opposite effects. Fig. 3 shows the
posterior pdf on oκ for the different probes (assuming w = −1). It
is clear that for values of oκ � −3 the posterior becomes essentially
flat, reflecting the inability of the experiment to measure a curvature
value much below that threshold. At the same time, the volume of
parameter space enclosed by a prior flat in log space is increased
with respect to the case of a linear scale. This ought to favour the
simpler (flat) model. But the posterior volume is also increased,
and therefore the net effect is to reduce the overall Occam’s razor
penalty term (which goes as the log of the ratio between the two
volumes), hence the strength of evidence in favour of flatness is
reduced.

5.2 The danger of model confusion

We now turn to the case where the fiducial model is closed, and
evaluate the resulting evidence from future data. In this case, a
successful model comparison should return a preference for the
closed model.

We start with the more optimistic case of a relatively large fidu-
cial value for the curvature parameter, �∗

κ = −5 × 10−3, roughly
a factor of 2 below present-day constraints. We give results in
Table 6, which show that the flat prior on oκ always returns the
correct model comparison (negative values of ln B01 in the table).
However, the astronomer’s prior incorrectly penalizes curved mod-
els when the constraining power of the data is insufficient to overturn
the Occam’s razor effect (positive values in the table). This ‘model
confusion’ effect is worse when the equation of state of dark energy
is allowed to change, in which case, for example, Planck + WFMOS
would incorrectly gather moderate evidence in favour of flatness.
With CMB and WFMOS data, the analysis is subject to model am-
biguity, i.e. the result depends on the choice of prior. In order to
recover the correct model selection outcome unambiguously, one
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Table 6. Outcome of Bayesian model selection from future data,
generated from a closed Universe, �

∗
κ = −5 × 10−3. The table

gives values of ln B01, the Bayes factor between a flat and a closed
Universe. Negative values correctly favour the closed case, while
positive values wrongly favour the flat case, giving rise to model
confusion. SKA-quality BAO data are required to overcome model
confusion independently of the choice of prior.

(�
∗
κ = −5 × 10−3) Astronomer’s prior

Curvature scale
prior

Probe w = −1 w 	= −1 w = −1 w 	= −1

Planck + WFMOS 1.3 2.6 −3.5 −1.7
CVL + WFMOS 0.4 2.0 −4.5 −2.0
Planck + SKA −34 −22 −50 −40
CVL + SKA −55 −50 −65 −58

Table 7. As in Table 6, but for a fiducial value �∗
κ = −10−3. For

such a small value of the curvature, only the CVL + SKA data com-
bination achieves the correct model selection (albeit with undecided
odds) and this only when employing the curvature scale prior. All
other cases are subject to model confusion.

(�∗
κ = −10−3) Astronomer’s prior

Curvature scale
prior

Probe w = −1 w 	= −1 w = −1 w 	= −1

Planck + WFMOS 5.6 5.5 0.6 0.6
CVL + WFMOS 5.6 5.2 0.4 0.6
Planck + SKA 5.0 5.2 0.0 0.1
CVL + SKA 4.4 4.4 −0.6 −0.6

needs SKA-quality BAO data to complement the CMB distance
probes (negative values of ln B01 for both priors).

The danger of model confusion becomes stronger, the smaller the
fiducial value one chooses for �∗

κ . We illustrate this by considering
our third fiducial model, namely a closed Universe with �∗

κ =
−10−3, which is about one order of magnitude below current limits
but still two orders of magnitudes above the fundamental fluctuation
limit. The model comparison outcome is given in Table 7, which
shows that this case results in widespread model confusion for
the astronomer’s prior, for which the flat Universe is incorrectly
preferred with moderate to strong evidence by all combinations of
probes. For the curvature scale prior, instead, the outcome is always
inconclusive, even though the CVL + SKA combination does reach
the correct conclusion, albeit with evidence which falls short even
of the ‘weak’ threshold.

Some comments are in order about the robustness of those re-
sults with respect to changes in the assumed dark energy model. In
particular, an evolving dark energy component could mimic to an
extent the effect of curvature (Clarkson et al. 2007), and this would
lead to increased uncertainty in the curvature parameter and thus
to increased model confusion. To estimate the impact of this effect,
we have repeated the analysis for a subset of the cases discussed
above, but marginalizing over a two-parameter dark energy equa-
tion of state of the form w(z) = w0 +wa

z

1+z
. In this case, the values

of ln B01 are reduced by ∼10–20 per cent with respect to the case
where a weff 	= −1 model was assumed. This change is not large
enough to modify in a significant way the outcome of model selec-
tion reported in Tables 5–7. Therefore, we conclude that assuming
a more general dark energy equation of state does not impact very
strongly on our results about the danger of model confusion.

5.3 Avoiding model confusion

In the light of the findings in the previous section, it is interesting to
estimate the required accuracy on �κ in order to ensure that future
probes will not be subject to model confusion. For a given fiducial
value of |�κ | > 10−5, we wish to estimate the accuracy needed so
that the model comparison correctly favours the closed model over
a flat one independently of the choice of prior.

This can be achieved by using a Gaussian approximation to the
future likelihood and employing the SDDR to estimate the Bayes
factor between the closed and open model that a future experiment
would obtain. We start by considering the case of the astronomer’s
prior. We assume that the marginal likelihood of �κ is approxi-
mately described by a Gaussian with mean �∗

κ (i.e. centred on the
fiducial value3) and variance �2. Then, adopting the astronomer’s
prior, the Bayes factor between the flat and the closed model is
given by, from equation (16),

ln B01 ≈ − ln
�

��
− fA(�∗

κ , �) − 1

2

(�∗
κ )2

�2
, (30)

where ��= 1 is the width of the astronomer’s prior on the curvature
parameter and the last term of the right-hand side is defined as

fA(�∗
κ , �) ≡ ln

√
π

2

[
Erf

(
�� − |�∗

κ |√
2�

)
+ Erf

( |�∗
κ |√

2�

)]
(31)

and Erf(x) denotes the error function,

Erf(x) ≡ 2

π

∫ x

0
exp(τ 2)dτ. (32)

The function f A accounts for the upper and lower limits in the
astronomer’s prior distribution when computing the evidence. It is
easy to see that when the posterior is sharply localized within the
prior, i.e. for �∗

κ/� � 1 it follows that fA(�∗
κ , �) → 1

2 ln 2π. Thus,
in equation (30), the first two terms on the right-hand side represent
the Occam’s razor effect (note that −ln �/�� > 0, thus favouring
the flat model), while the last term describes the relative quality of fit
between the closed and flat model. We have checked the accuracy
of the approximation of equation (30) against the full numerical
results in Tables 6 and 7 adopting the error estimates given in
Table 4 and we have found it to be excellent, with an accuracy of a
few percent.

The result is plotted in Fig. 4, where the red, thick line is the con-
tour level ln B01 = 0 which separates the region where the model
comparison correctly favours a closed Universe (bottom right cor-
ner, in white) from the ‘model confusion’ region, where the flat
Universe is incorrectly preferred due to the Occam’s razor effect
(shaded region above the red line). For a given value of the cur-
vature parameter on the horizontal axis, the red line thus gives the
required marginal accuracy on �κ to avoid model confusion. We
will come back below to discussing what this means in terms of the
required discovery threshold. The unfilled contours below the red
line denote values ln B01 = −1.0, −2.5, −5.0 (weak, moderate and
strong evidence for curvature, respectively, from top to bottom in
the figure). Because the evidence against the null hypothesis of a flat
Universe grows exponentially in the tails of the distribution, those
contours are relatively close to the ln B01 = 0 threshold. This means
that a relatively modest increase in accuracy can lead to ‘strong’

3 As discussed above, this neglects the realization noise and is, therefore,
equivalent to an ensemble-averaged forecast, analogous to what is usually
done for Fisher matrix forecasts. However, numerical investigations suggest
that realization noise is a subdominant source of uncertainty in this context
(Andrew Liddle, private communication).
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Figure 4. Bayes factor from future data for the astronomer’s prior as a func-
tion of the true value of the curvature parameter �∗

κ and the future marginal
accuracy on �κ , �. The red, thick line separates regions of model confusion
(above the line, shaded, ln B01 > 0, wrongly favouring a flat Universe) from
regions of correct model selection (ln B01 < 0 white, correctly returning
a preference for a closed Universe). The contours denote increasing levels
of evidence, with values of ln B01 as labelled. The contours below the red
line delimit regions of weak, moderate and strong preference for the closed
Universe (from top to bottom).

evidence in favour of curvature. The situation is not symmetric with
respect to the null hypothesis: the evidence increases only linearly
with the accuracy in case of a null result, hence it takes a much
larger accuracy to accumulate evidence in favour of the null. This
is reflected by the larger spacing between the evidence contours in
the model confusion region.

Turning now to the case of the curvature scale prior, the Bayes
factor can be computed in an analogous fashion, by replacing the
flat prior on �κ by the prior equivalent to a flat prior on oκ , namely
p(�κ ) = M/�κ (for −1 ≤ �κ ≤ −10−5) and M is a normalization
constant. The Bayes factor can then be computed numerically using
the SDDR (equation 16). The resulting outcome for model selection
is shown in Fig. 5, where the blue, thick line again separates region
of correct model selection from regions of model confusion, as a
function of the fiducial value for the curvature and of the marginal
accuracy. By comparing with Fig. 4, we note that the curvature
scale prior is less subject to model confusion than the astronomer’s
prior, since for the former the strength of evidence in favour of a
flat Universe is lower in the model confusion region and it barely
reaches the ‘moderate’ evidence threshold. Furthermore, the blue
line is always above the red line (see Fig. 6), which means that
model confusion for the curvature scale prior is avoided with less
stringent requirements on the marginal accuracy � than for the
astronomer’s prior.

5.4 Limits to the knowability of the geometry

The comparison between the two priors is further investigated in
Fig. 6, where we plot the contours separating the model confusion
region for both priors (red for the astronomer’s prior and blue for
the curvature scale prior). The dark shaded region labelled ‘model
confusion’ leads to an erroneous model comparison result for both

Figure 5. As in Fig. 4, but for the curvature scale prior. The blue, thick
line separates regions of model confusion (above the line) from regions of
correct model selection (ln B01 < 0). The shaded areas denote regions of
increasing model confusion, from light to dark.

Figure 6. The red (blue) line delimits regions of model confusion (above
the line) for the astronomer’s prior (curvature scale prior). The light-shaded
region between the red and blue lines is a zone of ‘model ambiguity’, where
the model comparison results depends on the prior. The diagonal, dotted lines
denote approximate regions of 3σ and 5σ (from top to bottom) discovery for
a given true value of the curvature parameter, �∗

κ . A 5σ discovery threshold
guarantees an ambiguity- and confusion-free model comparison outcome.
The horizontal lines give the expected accuracy of future CMB and BAO
probes.

priors, while the light shaded region between the two lines is a zone
of ‘model ambiguity’ – where the outcome of model comparison
depends on the choice of prior. In such a case, better data (i.e.
smaller �) are required in order to resolve the ambiguity. It is inter-
esting to investigate the accuracy necessary to obtain an ambiguity-
and confusion-free model selection. In Fig. 6, the diagonal, dashed
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Table 8. Required accuracy on the marginal error on �κ to avoid model confusion and to achieve different thresholds
of evidence in favour of a closed Universe for the two priors considered in the text (absolute value and relative number
of σ in parenthesis). A 5σ discovery threshold guarantees an ambiguity- and confusion-free model comparison
outcome down to �

∗
κ = 10−4.

True value Astronomer’s prior Curvature scale prior
Moderate evidence Strong evidence Moderate evidence Strong evidence

�
∗
κ = −5 × 10−3 1.23 × 10−3 (4.06σ ) 1.06 × 10−3 (4.66σ ) 1.57 × 10−3 (3.16σ ) 1.26 × 10−3 (3.95σ )

�
∗
κ = −10−3 2.23 × 10−4 (4.42σ ) 2.00 × 10−4 (4.97σ ) 3.12 × 10−4 (3.17σ ) 2.50 × 10−4 (3.95σ )

�
∗
κ = −10−4 2.00 × 10−5 (4.48σ ) 1.82 × 10−5 (4.93σ ) 2.79 × 10−5 (3.22σ ) 2.26 × 10−5 (3.99σ )

lines represent approximately 3 and 5σ detection thresholds (from
top to bottom). We can see that, except for fairly large values of
�∗

κ � 0.1, a 3σ ‘detection’ is subject to both model ambiguity and
model confusion. On the other hand, a 5σ detection leads to an
unambiguous and correct model choice all the way down to �∗

κ �
7 × 10−5.

This is further substantiated by the results tabulated in Table 8,
giving the required accuracy (both in absolute value and number
of σ discovery) to achieve moderate or strong evidence under both
priors, for a few representative choices of the fiducial curvature
value. Under the astronomer’s prior, moderate evidence in favour
of curvature requires a ∼4σ detection, while for strong evidence
a ∼5σ detection is necessary. As mentioned above, the curvature
scale prior is less demanding due to its reduced Occam’s razor effect:
moderate evidence is achieved with a ∼3.2σ detection threshold,
while strong evidence is obtained at ∼4σ . This of course comes at
the price of a much reduced evidence in favour of a flat Universe if
that is indeed the true model, as discussed in connection with the
results presented in Table 5.

In conclusion, our results imply that a 5σ detection threshold
ought to be recommended in order to obtain a secure and ambiguity-
free model selection. It is perhaps amusing that a full Bayesian
treatment of the problem concludes that the 5σ detection threshold
traditionally used in particle physics (with its frequentist frame-
work) ought to be employed.

Finally, we can revise the conclusion about the fundamental limit
to the knowability of the geometry of the Universe. It is usually
argued that this is of the order of |�κ | ∼ 10−5, because this is the
typical size of curvature fluctuations due to primordial inhomo-
geneities. However, Fig. 6 shows that model confusion sets in for
value of the curvature |�∗

κ | � 10−4, which means that if the true
value of the curvature is below this threshold, we will not be able
to gather evidence for it. We conclude that the fundamental limit to
our ability to detect the curvature of the Universe (if present) is of
the order of |�κ | ∼ 10−4, which is an order of the magnitude greater
than previous estimates. Below that value, the Occam’s razor argu-
ments inbuilt into Bayesian model selection imply that we ought to
revert to preferring a flat Universe. Therefore, if the curvature is in
the ‘undecidable interval’ 10−5 ≤ |�κ | � 10−4, no amount of data
will be able to determine that the Universe is non-flat.

6 C O N C L U S I O N S

We have subjected the geometry of the Universe to a detailed
scrutiny from a model comparison perspective, performing a three-
way model selection with two physically motivated priors. We found
that present-day data provide up to moderate evidence in favour of
flatness (maximum odds of 66:1) for a specific choice of prior (the
astronomer’s prior) and assuming that dark energy is a cosmological
constant. A curvature scale prior and a relaxation of the assump-

tion on the nature of dark energy weaken this result considerably,
giving only inconclusive odds of less than 3:2 in favour of flatness.
Correspondingly, the probability that the Universe is infinite lies in
the range from 67–98 per cent, depending on assumptions. If the
Universe is not infinite, we have found a robust lower limit to the
number of Hubble spheres, NU � 5.

We have discussed the prospects for future CMB and BAO probes
to determine with strong evidence the geometry of the Universe.
CMB data coupled with WFMOS BAO observations will achieve an
accuracy on �κ of the order of ∼1–2 × 10−3, while SKA-like BAO
data will further increase the accuracy to ∼4–6 × 10−4. Allowing
for the effective equation of state of dark energy to be different from
−1 (although constant in redshift) will not significantly decrease the
accuracy with which CMB + SKA data will determine �κ .

Finally, we have shown that a model selection perspective places
much more taxing requirements on the accuracy of future data
sets than one would naively assume. In particular, a 5σ detection
threshold is recommended in order to avoid both model confusion
and model ambiguity in the determination of the geometry. How-
ever, if the value of the curvature parameter is smaller than ∼10−4,
we found that no amount of observations will be able to decide on
the true geometry of the Universe. Achieving this lower limit will
require an improvement of another factor of 20 over what a CVL
CMB experiment with an SKA-like BAO probe will obtain. This
might be feasible once other, orthogonal data sets such as weak
lensing and SNIa observations are added to the likelihood, although
it will be a formidable challenge to control systematics at this level
of statistical accuracy.
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