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The cortical layer 1 (L1) contains a population of GABAergic interneurons, considered
a key component of information integration, processing, and relaying in neocortical
networks. In fact, L1 interneurons combine top–down information with feed-forward
sensory inputs in layer 2/3 and 5 pyramidal cells (PCs), while filtering their incoming
signals. Despite the importance of L1 for network emerging phenomena, little is known
on the dynamics of the spike initiation and the encoding properties of its neurons. Using
acute brain tissue slices from the rat neocortex, combined with the analysis of an existing
database of model neurons, we investigated the dynamical transfer properties of these
cells by sampling an entire population of known “electrical classes” and comparing
experiments and model predictions. We found the bandwidth of spike initiation to be
significantly narrower than in L2/3 and 5 PCs, with values below 100 cycle/s, but without
significant heterogeneity in the cell response properties across distinct electrical types.
The upper limit of the neuronal bandwidth was significantly correlated to the mean firing
rate, as anticipated from theoretical studies but not reported for PCs. At high spectral
frequencies, the magnitude of the neuronal response attenuated as a power-law, with
an exponent significantly smaller than what was reported for pyramidal neurons and
reminiscent of the dynamics of a “leaky” integrate-and-fire model of spike initiation.
Finally, most of our in vitro results matched quantitatively the numerical simulations of
the models as a further contribution to independently validate the models against novel
experimental data.

Keywords: noise, spike-triggered average, interneuron, layer 1 cortex, dynamical transfer function

INTRODUCTION

Layer 1 (L1) is the most superficial neocortical layer and holds a key role in the hierarchy
of information processing within neocortical networks. It contains a resident population of
interneurons, which are solely GABAergic in the mature neocortex (Hestrin and Armstrong,
1996; Gentet, 2012). They receive afferents from a variety of brain areas, including primary
and higher-order thalamic relays, cortico-cortical projections, as well as neuromodulatory
afferents from subcortical structures. Thanks to this convergence, it was suggested that
L1 interneurons might integrate top–down information with feedforward sensory inputs,
filter out the noise in the incoming signals, and convert them into local inhibition (Larkum,
2013; Schuman et al., 2019). From L1, information is then transferred to pyramidal cells (PCs)

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 118

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2020.00118
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2020.00118&domain=pdf&date_stamp=2020-06-17
https://creativecommons.org/licenses/by/4.0/
mailto:michele.giugliano@sissa.it
https://doi.org/10.3389/fncel.2020.00118
https://www.frontiersin.org/articles/10.3389/fncel.2020.00118/full
https://loop.frontiersin.org/people/946786/overview
https://loop.frontiersin.org/people/432288/overview
https://loop.frontiersin.org/people/444/overview
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Borda Bossana et al. Transfer Function of L1 Interneurons

of layer 2/3 (L2/3) and of layer 5 (L5) via two distinct
microcircuits, which can either promote or inhibit the generation
of dendritic spikes (Jiang et al., 2013). Hence, L1 interneurons
may play a pivotal role in modulating, in a state-dependent
manner, the coincidence detection mechanism that ensures the
amplification and the further processing of attentional signals by
PCs (Larkum and Zhu, 2002; Zhu and Zhu, 2004; D’Souza and
Burkhalter, 2017).

However, as opposed to L2/3 and L5 PCs, the excitable
properties of interneurons have not yet been examined
systematically in terms of dynamical firing regimes (but see
Linaro et al., 2019; Merino et al., 2019). Within neocortical
networks of L2/3 and L5, we already know that information
encoding and transfer feature wide-bandwidth dynamics. These
performances are ensured by the rapid-onset dynamics of
action potentials (APs), which allow neuronal populations
to collectively phase-lock their instantaneous firing rate to
the fast-varying Fourier components of the input signals
(200–1,000 cycle/s; Goriounova et al., 2018; Linaro et al., 2018).
In analogy to electrical filters, the upper limit to such broad
neuronal bandwidth is referred to as cut off frequency (Brunel
et al., 2001; Fourcaud-Trocmé et al., 2003), which has been
experimentally measured in L2/3 and L5 pyramidal neurons
upon identification of the dynamical transfer function of those
cells (Kondgen et al., 2008; Boucsein et al., 2009; Ilin et al., 2013;
Goriounova et al., 2018; Linaro et al., 2018).

For L1, we know that several subpopulations of
L1 interneurons can be distinguished on the basis of their firing
in response to constant amplitude currents (Muralidhar et al.,
2013), displaying quite heterogeneous electrical phenotypes.
Nonetheless, it is still not clear how these different electrical
signatures contribute to the distinct properties in the network
dynamics of information processing within L1.

In this work, by means of whole-cell patch-clamp recordings
in rodent acute brain tissue slices, we examined L1 interneurons
in vitro and identified their electrical phenotype as well as
their dynamical transfer function. We quantified how L1 cells’
firing output is influenced by a temporal modulation of their
input, namely, described in the Fourier domain, the cells’ filter
properties of incoming input signals. Allowing a comparison
with previous studies in principal cells, we specifically adopted a
simple and established experimental protocol (Higgs and Spain,
2009; Ilin et al., 2013). This is equivalent (Tchumatchenko and
Wolf, 2011) to our previous probing strategy of the dynamical
excitable properties of cortical neurons (Kondgen et al., 2008;
Linaro et al., 2018). Importantly, we showed earlier that cut off
frequency and bandwidth are features that are independent
on the parameters of the injected currents and the firing
regimes (Linaro et al., 2018).

Given the impact that L1 interneurons have on the output
of PCs, characterizing their dynamical response properties
is highly relevant and timely to clarify how information
integration, processing, and transfer take place to select
behaviorally relevant signals. Finally, a set of previously
released multicompartmental mathematical models of
L1 interneurons (Markram et al., 2015) was studied under
the same stimulation protocols in vitro, aiming at further

validating them and at supporting the interpretation of the
experimental data.

MATERIALS AND METHODS

Brain Tissue Slice Preparation
Experiments were performed as described previously (Arsiero
et al., 2007; Kondgen et al., 2008) and in accordance with
international and institutional guidelines on animal welfare. All
procedures were approved by the Ethical Committee of the
University of Antwerp (permission no. 2011_87) and licensed by
the Belgian Animal, Plant, and Food Directorate-General of the
Federal Department of Public Health, Safety of the Food Chain,
and the Environment (license no. LA1100469).

Fourteen- to twenty-one days old Wistar rats of either
sex were anesthetized using isoflurane and decapitated. The
brains were rapidly extracted and immersed in bubbled
ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM)
125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2,
1 MgCl2, and 25 glucose saturated with 95% O2 and 5%
CO2, with pH of 7.3 and osmolarity of ∼315 mOsm. Then,
300-µm-thick parasagittal slices were cut from the primary
somatosensory cortex using a vibratome (VT1000 S, Leica
Microsystems GmbH, Germany) and incubated in ACSF at 36◦C
for 30 min.

After recovery, the slices were stored in ACSF at room
temperature in a holding chamber until the recordings were
started. Once placed in the recording chamber, constituting the
stage of an upright microscope, the L1 cells were visualized
with infrared differential interference contrast microscopy
under ×40 magnification. All experiments were performed
in submerged conditions at a temperature of 32◦C under
continuous perfusion with oxygenated ACSF.

Electrophysiology
Layer 1 cells were selected on the basis of their distance from
the pia mater and from the border with L2/3, which was
identified as an increase in the density of cell somata, located
approximately 100 µm away from the pia mater. Within this
region, the whole-cell patch-clamp configuration was established
from the cell soma and the neuronal response properties were
probed in the current-clamp mode. Filamented borosilicate
glass pipettes were prepared using a micropipette horizontal
puller (P-97, Sutter Instruments, Novato, CA, USA) and had
a resistance of 4–7 MΩ when filled with an intracellular
solution containing (in mM) 115 K-gluconate, 20 KCl, 10 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 4 adenosine
triphosphate-Mg, 0.3 Na2-guanosine triphosphate, and 10 Na2-
phosphocreatine, with the pH adjusted to 7.3 with KOH and
osmolarity of ∼290 mOsm. Recordings and intracellular current
stimulation were performed using an Axon Multiclamp 700B
Amplifier (Molecular Devices, San Jose,CA, USA) controlled
by a personal computer running a real-time Linux operating
system (Linaro et al., 2014). For more information on how
to install our real-time software, see Linaro et al. (2015). The
recorded voltage waveforms were sampled at a frequency of
30 kHz and digitized at 16 bit. In order to compensate for
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the glass pipette electrical resistance and capacitance, a digital
non-parametric model was repeatedly identified throughout
the recording sessions by a computer-aided technique, known
as active electrode compensation (Brette et al., 2008). This
allowed us to digitally separate the electrode and the membrane
contributions to the recorded traces, requiring neither the
bridge balance nor the capacitance neutralization circuits of
the amplifier. The adoption of such a technique became a
routine procedure in our laboratory for both conventional and
real-time experiments (Couto et al., 2015; Linaro et al., 2018,
2019). However, while for the dynamic clamp online accurate
‘‘active’’ electrode compensation is necessary to avoid recording
instabilities (Brette et al., 2008; Linaro et al., 2019), for the
current-clamp—in the context of the present work—it is not
strictly required. In fact, on one hand, we focused here on
probing the dynamical transfer function of neurons in the
current-clamp mode by spike-triggered averaging (see below) so
that accurate active electrode compensation was not imperative.
Indeed despite using a single electrode for both stimulation and
recordings, only the times of AP occurrence must be detected
for further analysis (see below). Such detection occurs, by
definition, with a very high signal-to-noise ratio and it usually
does not represent a problem, even with imperfect electrode
compensation. On the other hand, estimating the features of
AP waveforms definitely benefits of a more accurate (non-
parametric) compensation procedure than the (parametric) one
allowed by the electronic amplifier controls. Finally, postponing
the compensation of all acquired traces to an offline automated
procedure ultimately offered us an efficient management of time
during each experiment, while only requiring to periodically run
a ‘‘calibration’’ protocol (Linaro et al., 2015).

Electrical Phenotype Identification
The recorded voltage traces were processed and analyzed offline
in MATLAB (The MathWorks, Natick, MA, USA). Data from
N = 65 L1 interneurons were included in this study, which were
selected on the basis of a healthy cell resting membrane potential
(≤65 mV) and AP peak amplitude (>50 mV). These criteria were
considered to be indicative of a good patch stability and proper
electrical access to the cell. The membrane input resistance,
capacitance, and time constant were estimated by standard
procedures (Kondgen et al., 2008). Briefly, hyperpolarizing
current steps of decreasing amplitudes [i.e., (−200; 0) pA lasting
1 s each] were repeatedly applied and the voltage response was
recorded. The membrane input resistance was then identified
as the slope of the best-fit straight line to the steady-state data
points in the voltage vs. current plane. The membrane time
constant was instead extracted as the slowest time constant of the
best-fit bi-exponential function, describing the recovery of the
membrane potential from 10–ms -long hyperpolarizing pulses of
amplitude−150 pA. The cell capacitance was finally estimated as
the ratio between the time constant and the input resistance of
the membrane.

Each recorded neuron was classified in one of the
five identified subtypes on the basis of their response to
depolarizing current pulses (Muralidhar et al., 2013). Briefly,
a frequency–current curve was first computed upon injecting

current steps of increasing depolarizing amplitudes [i.e., in the
range (0; 300) pA, lasting 1 s]. The voltage responses containing
a train of APs, corresponding to a mean firing rate of 20 spike/s,
were compared to each other as the sequence of successive inter-
spike intervals (ISIs) was plotted (Figure 1A). Sorting each cell
into one of the five classes (i.e., cAC, continuous accommodating;
cNAC, continuous non-accommodating; bNAC, bursting non-
accommodating; cSTUT, continuous stuttering; and cIR,
continuous irregular firing) was performed manually, following
closely (Muralidhar et al., 2013) and according to the following
criteria: cAC, if the slope of the best-fit straight line over the ISI
sequence was larger than 1 ms; cNAC, if the best-fit line was
mostly horizontal (i.e., slope smaller than 1 ms); bNAC, if the
initial 1 to 2 ISIs were shorter than 20 ms and followed by a train
of APs showing no accommodation; cSTUT, if at least one ISI
was equal or larger than 100 ms; and cIR, if the ISI sequence
was irregular, with individual values shorter than 100 ms. The
above criteria led to classifying 11 cells as cAC, 13 as cNAC, 10 as
bNAC, 17 as cSTUT, and 14 as cIR (Figure 1A).

Spike-Triggered Average and Dynamical
Transfer Function
Wide-band input current waveforms i(t) were injected into the
cell soma in order to probe their first-order dynamical transfer
properties, following closely (Ilin et al., 2013; see also Higgs and
Spain, 2009). Under these conditions, neuronal firing is irregular
and subthreshold membrane potential fluctuations resemble the
activity recorded in vivo (Destexhe et al., 2003). The injected
current was defined as the sum of a DC and of a fluctuating
component (Figure 1B):

i(t) = i0 + ση(t) (1)

with η(t) being an independent realization of an
Ornstein–Uhlenbeck stochastic process (Cox and Miller,
1965) with zero mean, unitary variance, and correlation time
τ = 5 ms. η(t) was generated offline, iterating an algebraic
expression (Gillespie, 1996).

By such a definition, σ represents the standard deviation of
the noisy fluctuation in i(t), while i0 is its expected value. In
each experiment, σ was adjusted to obtain membrane potential
fluctuations with 4 mV standard deviation and≈15 mV peak-to-
peak changes. The value of i0 was instead chosen to maintain the
mean firing rate of the neurons in the range of 3–6 spike/s. Each
stimulation trial lasted 60 s and was preceded by brief current
steps, monitoring over time the stability of the recording, i.e., in
terms of resting potential, input resistance, and mean firing rate
as in Kondgen et al. (2008). The stimulation was repeated several
times, with distinct realizations of η(t), until at least 3,500 APs
in total were collected, while allowing sufficient inter-stimulus
recovery intervals of up to 60–100 s, depending on the cell. This
resulted in 18–20 repetitions, corresponding to approximately
40–45 min of recording in total.

We recorded the train of APs fired by the cell in response
to the injected stimulus i(t), evaluating offline the spike-
triggered average sta(t) of such a stimulus waveform. This
analysis allows an estimate of the dynamical transfer function
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FIGURE 1 | Dynamical transfer function identification in L1 cortical interneurons. Distinct subtypes of L1 interneurons can be distinguished (A) from their electrical
response pattern by the sequence of interspike intervals in a 20 spike/s train. These are continuous accommodating, c. non-accommodating, bursting
non-accommodating, c. stuttering, and c. irregular. Regardless of their identity, the neurons were stimulated by a fluctuating current i(t; B) while recording their
voltage response V (t). The spike-triggered average [i.e., sta(t)] of the stimulus and its autocorrelation function [i.e., iac(τ)] were computed (C) and fast
Fourier-transformed (D) to estimate the neuron dynamical transfer function (E). As in electronic filters, the magnitude of this function expresses the intensity of the
output firing rate of the cell across temporal modulations or Fourier components of an input signal, thus revealing the bandwidth of spike initiation dynamics. The
cut off was characterized—above significance (see “Materials and Methods” section)—as the frequency corresponding to a 70% decrease of the response
magnitude of the value taken at 1 cycle/s. The high-frequency profile was finally described as a f−α power-law.

(Kondgen et al., 2008) in biological neurons as well as model
neurons and was performed following closely Ilin et al. (2013).
Briefly, sta(t) was evaluated as the ensemble average of the data
points of i(t) that shortly preceded and followed the peak of each
AP fired, i.e., over the times t1, t2, t3, . . ., tN of AP occurrences
(Figures 1B,C):

sta(t) =<
∑N

k = 1
i(tk − t) > t ∈ [−T;T] (2)

where T = 500 ms is the chosen time interval preceding and
following each AP. This expression can be equivalently rewritten
as an ensemble average of the convolution between i(t) and a
train of Dirac’s delta functions s(t); (i.e., one for each AP):

sta(t) = <

∫
+∞

−∞

s(τ )i(τ − t)dτ >

s(t) =
∑N

k = 1
δ(t − tk ) (3)

Invoking linearity and swapping integral and average
operators, we may derive another expression (Dayan and Abbott,

2005) linking sta(t) to the instantaneous firing rate r(t) associated
to the AP train s(t):

sta(t) =
∫
+∞

−∞

r(τ ) < i(τ − t) > dτ (4)

In the Fourier domain, this convolution integral simplifies
the product of the firing rate transform R(f ) and the average
(complex conjugate) of the input transform I*(f ) :

STA(f ) = R(f ) < I ∗ (f ) > (5)

Finally, as R(f ) is also the product of the first-order dynamical
transfer function H(f ) (Marmarelis and Naka, 1972) times the
average input< I (f )> (Brunel et al., 2001),

R(f ) = H(f ) < I(f ) > (6)

the transfer function H(f ) (Figure 1E) can be computed as the
ratio between the sta(t) (fast) Fourier transform and the power
spectral density of i(t) (Figures 1C,D):

H(f ) = STA(f )/<I(f )I ∗ (f ) > (7)
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where the power spectral density of i(t) is the (fast) Fourier
transform of its autocorrelation function iac(τ) =< i(t)i(t−τ)>.

The profile of the transfer function was considered above the
5% confidence threshold (Figure 1E) generated by a bootstrap
method on surrogate data (Press, 2007). Briefly, these were
obtained upon generating 500 times a random shuffling of the
original interspike intervals and repeating each time the sta(t)
analysis in the Fourier domain. The confidence threshold was
then computed at each frequency as the sum of the mean
(surrogate) transfer function (i.e., over the 500 surrogate trials)
and its (surrogate) standard deviation.

The cut off frequency was then defined as the frequency at
which the magnitude of the transfer function ||H(f )|| (above the
confidence threshold) decreases down to 70% of the value it takes
at 1 Hz (Figure 1E).

For very large Fourier frequencies f, the magnitude of the
transfer functions decayed as a negative power-law, i.e., f−α

(Fourcaud-Trocmé et al., 2003; Kondgen et al., 2008; Linaro et al.,
2018). In order to best describe the input–output transformation
of the neurons in this high spectral domain, the part of the
transfer curves going from the cut off frequency down to 20%
of the cut off value was fitted by a power-law y = bx−α where α

describes the slope of the decay in log–log coordinates.

Rapidness of the Action Potential at Its
Onset
The average waveform of the AP was examined for each cell by
averaging the APs fired during the steady-state response regime
of the recorded voltage responses. The threshold for AP initiation
(in mV) was conventionally calculated as the potential where the
change in voltage over time is 20 mV/ms (Naundorf et al., 2006).
When plotted in the plane dVm/dt vs. Vm, each AP described a
closed trajectory. The AP speed at onset (expressed in ms−1) was
then measured in this plane as the slope of the tangent line to
the AP trajectory at the voltage coordinate corresponding to the
AP threshold.

The dynamic IV curvemethod was also employed to quantify
the AP waveforms, relating the upstroke phase of an AP to the
best-fit equation of a non-linear (i.e., exponential) relationship
between dVm/dt andVm (Brette et al., 2008; Badel et al., 2008a,b).
From the resulting fit, the spike–slope factor ∆T was extracted to
further quantify the rapidness of the AP.

Computer Simulations
The simulation of 69 distinct L1 interneuron models was
performed in NEURON (Hines and Carnevale, 2001; Carnevale
and Hines, 2006) using the publicly available Blue Brain Project
(BBP) database (Markram et al., 2015). Eachmodel was originally
built from experimental data collected from L1 neurons classified
into the same electrical response phenotypes employed in this
work (see also Ascoli et al., 2008).

As close as possible, we mimicked in silico the very same
stimulation protocols and analysis employed in vitro. For the
spike-triggered average estimate, we chose the parameters of the
injected current i(t) by means of an iterative procedure based
on the bisection method (Press, 2007). Given the increased
reproducible character of simulated neuronal responses

compared to experiments, by selecting i0 we could set the firing
rate of the models with higher precision. We then chose three
regimes (3, 5, and 7 spikes/s) to cover the entire range obtained
in our experiments (3–6 spike/s) with increased confidence. We
repeated 60 s-long stimulations in silico until a minimum of
5,000 APs were collected, and we followed closely the analysis
methods described in the previous sections (Figure 2).

Statistical Analysis
All numerical data are presented as mean ± standard deviation.
A statistical analysis of all correlations between parameters was
performed using the Pearson correlation test (Press, 2007), thus
reporting the values of the correlation coefficient ρ and its
p-value. The one-way analysis of variance by Kruskal–Wallis
was employed [i.e., the MATLAB kruskalwallis() command] to
reject the hypothesis, at 1% significance, that the observables
extracted from distinct electrical phenotypes originate from
the same probability density distribution. Finally, qualitative
comparison between the distribution densities of cut off
frequencies, among different electrical phenotypes (Figure 3),
were performed, normalizing the peak amplitudes of smoothed
histograms by the kernel smoothing method [i.e., the MATLAB
histfit() command].

RESULTS

We describe the firing response properties of L1 cortical
interneurons based on a set of whole-cell patch-clamp recordings
in N = 65 cells from slices of the rat somatosensory
cortex. We studied systematically both passive and active
membrane properties, revealing that cells had an input
resistance of 184.40 ± 51.15 M� a membrane capacitance
of 201.51 ± 62.95 nF, and a membrane time constant of
35.77 ± 10.23 ms (see ‘‘Materials and Methods’’ section). When
active response properties were studied, we identified distinct
electrical phenotypes and sorted the cells into five separate classes
(Muralidhar et al., 2013). Such a classification was based on
the analysis of the time course of the ISIs sequence, during ≈
20 spike/s trains of APs in response to a current step lasting 1 s
(Figure 1A).

Encoding Properties of L1 Interneurons
We studied the encoding properties of L1 interneurons
by measuring their dynamical transfer function in the
Fourier domain (Figures 1B–E). Following closely Ilin
et al. (2013), we injected randomly fluctuating current
stimuli into the soma of the cells, mimicking the irregular
and intense synaptic activity present in vivo in an intact
cortex. A DC offset was also superimposed to the injected
current, with its amplitude adapted so that the output
mean firing rate was in the range 3–6 spike/s. Under
these conditions (see ‘‘Materials and Methods’’ section),
cells fired irregularly (Figure 1B) with a coefficient of
variation of 0.53 ± 0.09 for their distribution of ISIs. This
stimulation protocol enabled us to measure the spike-
triggered average waveform of the injected current sta(t)
and compare it to its autocorrelation function iac(t) in the
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of cut off frequencies over the three distinct firing rates.

Fourier domain (Figures 1C,D). In fact, the ratio of the two
quantities in the transformed domain immediately leads to an
estimate of the dynamical transfer function (Figure 1E; see
‘‘Materials and Methods’’ section) arising from the cell’s spike
initiation mechanisms.

The magnitude and the phase of the transfer function,
especially for large spectral frequencies, allow one to predict the
collective dynamics of a neuronal population in response to rapid
external inputs (Fourcaud-Trocmé et al., 2003; Kondgen et al.,
2008) as well as to interpret oscillatory regimes (Wang, 2010).
Here, we quantified the bandwidth of the neuronal transfer
function, expressing the numerical value of the conventional
high-frequency cut off limit (see ‘‘Materials and Methods’’
section). The distribution of the cut off frequencies demonstrates
that, in general, L1 interneurons can encode fast-varying input
signals up to 200 cycles/s (Figure 2A). However, differently from
L2/3 and L5 PCs (Testa-Silva et al., 2014; Linaro et al., 2018), the
majority (i.e.,≈65%) of L1 neurons unexpectedly display a cut off
below 100 cycles/s.

These observations were confirmed in silico by applying
the experimental protocol of Figures 1B–E on a large public
database of 69 detailed multicompartmental models of rat

cortical L1 interneurons (see ‘‘Materials and Methods’’ section).
At a reference mean firing rate of 5 spikes/s, around 78%
of the models display a cut off frequency below 100 cycles/s.
Figure 2B compares experimental and simulated data when
the computer models were set to fire on average at (from
left to right) 3, 5, and 7 spikes/s. Under these conditions, the
coefficients of variation of their respective ISI distributions were
0.74 ± 0.12, 0.65 ± 0.12, and 0.58 ± 0.12, respectively, for 3,
5, and 7 spikes/s mean firing rates. Real cells were thus found
to be in good agreement with the range of cut off frequencies
displayed by the models when their firing rate was sorted in
close intervals.

Electrical Classes and Encoding Properties
When the cells’ electrical classes were explicitly taken into
consideration, we found no preference in the cut off frequency
distributions (Figures 3A,B). Indeed the probability distribution
densities for each group of continuous accommodating (cAC),
c. non-accommodating (cNAC), bursting non-accommodating
(bNAC), c. stuttering (cSTUT), and c. irregular (cIR) showed
a substantial overlap (Figure 3A) and no significant differences
were found (Figure 3B).
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FIGURE 3 | The cells’ electrical phenotype and cut off frequency distributions. When the five distinct electrical classes of L1 interneurons were compared to each
other, their (smoothed) probability density distributions of the cut off frequencies, normalized by their peak values, showed no major differences (A). Quantitatively, the
Kruskal–Wallis statistical test failed to reject, at 1% significance level, the null hypothesis that the cut off frequencies come from the same distribution (B). A similar
trend was largely reproduced in silico for the BBP models (C).

The same analysis was repeated in silico, where the diversity of
electrical (as well as morphological) phenotype is made explicit
a priori by a distinct set of electrotonic and excitable properties
(Markram et al., 2015). The model’s electrical identity played
a role in shaping, to some extent, the probability distribution
densities of the cSTUT and the cNAC classes in particular.

Dependency of Cut Off on the Mean Firing
Rate
Previous theoretical investigations on the dynamical properties
of spike initiation reported that, in integrate-and-fire neuron
models, the cut off frequency is sensitive to the mean firing
rate. Thus, the higher the rate, the wider the bandwidth (Brunel
et al., 2001; Fourcaud-Trocmé et al., 2003). This was examined
experimentally in L5 PCs but failed to be confirmed as the
mean firing rate altered the dynamical transfer function at low,
not high, spectral frequencies (Linaro et al., 2018). Despite the
small range of our experimental firing rates, we asked whether
L1 interneurons behave differently than PCs. We thus studied
the correlation between cut off frequency and the mean firing
rate and found it to be very significantly correlated (ρ = 0.48 and
p < 0.001), as also exemplified in Figure 4A. This implies that

the boundary in the Fourier domain, where fast input signal
components get filtered out, increases considerably even with a
moderate increase in the neuronal firing rate.

When the analysis was repeated in silico, a similar
phenomenon was replicated for the entire population of
multicompartmental neuron models. There we found a similar
correlation with a much stronger significance (ρ = 0.58 and
p < 10−20; Figure 4B). This effect is very apparent in the
simulated experiment reported in Figure 4B as most electrical
types progressively shift their cut off frequency upwards
for increasing firing rates. Such a susceptibility was further
quantified by linear fitting the simulated data points at different
firing rates for each firing type. The slope of this fit was
34.57 cycles/spike for cAC, 11.96 for cNAC, 41.16 for bNAC,
11.43 for cSTUT, and 32.78 for cIR. This indicates that cSTUT
and cNAC models were the least sensitive to their firing rate,
while cAC, bNAC, and cIR were the most sensitive.

Action Potential Rapidity at Onset
The broad bandwidth of the AP initation dynamics has been
related, in both theoretical (Fourcaud-Trocmé et al., 2003) and
experimental works (Testa-Silva et al., 2014; Linaro et al., 2018),
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FIGURE 4 | Mean firing rate modulation of the cut off frequencies. As
suggested by earlier theoretical studies, a significant correlation was
observed between the mean firing rate of a cell and the cut off frequency of
its dynamical transfer function (A). The very same result was reproduced in
silico for the BBP models (B).

to the rapidity of APs at their onset. Thus, neurons with
fast AP onset dynamic keep track of the most rapid spectral
components in the input signals, as demonstrated for L2/3 and
L5 PCs (see also Goriounova et al., 2018). However, when
we examined the correlation between AP rapidity and cut off
frequency in L1 inteneurons, we failed to confirm the
previous reports. In fact, correlations were not significant
(ρ = 0.13 and p = 0.32).

As we repeated the analysis in silico for all L1 model neurons
available, we also observed a lack of significant correlations as in
the experiments (ρ = 0.15 and p = 0.22, ρ = 0.08 and p = 0.32,
and ρ = 0.16 and p = 0.20 at firing rates of 3, 5, and 7 spikes/s,
respectively). Moreover, no clear separation of AP rapidity at
onset was found across the electrical classes of the model cells.
Even when the impact of some morphological features was
considered (as in Eyal et al., 2014; Goriounova et al., 2018), we
found no significant correlations between the AP onset rapidity
and the total dendritic length of the model cells over a broad
range of total dendritic lengths 500–5,400 µm (ρ = 0.11 and

p = 0.38, ρ = 0.10 and p = 0.40, and ρ = 0.11 and p = 0.35 at firing
rates of 3, 5, and 7 spikes/s, respectively). However, unexpectedly,
we found slightly significantly negative correlations between the
total dendritic length and the cut off frequency (ρ = −0.3 and
p = 0.011, ρ = −0.31 and p = 0.011, and ρ = 0.10 at a firing rate
of 3, 5, and 7 spikes/s, respectively).

As the last result was neither anticipated in simulation
studies (Eyal et al., 2014) nor matched with others experimental
reports, we further characterized in vitro and in silico the
AP initiation employing the dynamic IV curve (Badel et al.,
2008a,b). This allowed us to extract an additional quantitative
parameter for AP initiation, known as the slope factor ∆T (see
‘‘Materials and Methods’’ section). Across all our experiments,
∆T took values smaller than 2.5 mV (1.51 ± 0.73 mV), a range
that was confirmed and replicated in silico, consistently with
the larger spike sharpness of interneurons compared to PCs
(Badel et al., 2008a).

While ∆T and the AP onset rapidity showed correlations in
silico (ρ = 0.26 and p = 0.03 at 5 spike/s), their values in vitro had
no significant correlation (ρ =−0.11 and p = 0.37). Importantly,
as the values of ∆T and the cut off frequency were compared
across cells, a significant correlation was finally observed in our
experimental data (ρ = −0.31 and p = 0.012), but not in silico
(ρ =−0.06 and p = 0.06 at 5 spike/s).

Transfer at High Spectral Frequencies
For high spectral frequencies f (i.e., above the cut off ),
the dynamical transfer function is known to decay as f−α

(Kondgen et al., 2008), where the numerical value of the
exponent has been linked to the precise dynamics of AP
initiation at threshold (Fourcaud-Trocmé et al., 2003). In
comparison with standard simplified models of excitability,
such as the integrate-and-fire units (Tuckwell, 1988), previous
results in pyramidal neurons [i.e., α ∈ (1;1.5)] consistently
pointed towards an exponential or polynomial dependency
of the AP initiation on the membrane potential (Kondgen
et al., 2008; Linaro et al., 2018). Unexpectedly, as we
analyzed the transfer properties of L1 neuron at high spectral
frequencies, we found values of α in the range from 0 to
1.4, with the largest majority (i.e., 94%) smaller than 1
(0.57 ± 0.26; Figure 5A). The distribution of α across different
electrical cell types displayed largely overlapping features
(Figure 5A) with no significant differences, thus hinting at
similar transfer behaviors.

These observations were confirmed in silico, where
L1 interneuron models were characterized by α in the range
0.2–1.5, with the majority below 1 (0.51 ± 0.14, 0.44 ± 0.24, and
0.74 ± 0.43 at firing rates of 3, 5, and 7 spike/s, respectively),
matching the values obtained in the experiments (Figure 5B).

DISCUSSION

In this work, we have examined the dynamical signal transfer
properties of L1 cortical interneurons. These cells are likely
to play a major role in cortical computation as they receive
several afferents from a variety of brain regions while establishing
synapses downstream in several cortical columns. Their function
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FIGURE 5 | The distribution of the power-law exponent at high spectral frequencies. Almost all the cells recorded in this work had a power-law exponent lower than
1 for high spectral frequencies (A). Concerning the cell subtypes, the same as for Figure 3B, the Kruskal–Wallis statistical test failed to reject at, 1% significance
level, the null hypothesis that the cut off frequencies come from the same distribution (B). The same trend was quantitatively confirmed in silico for the BBP models
(C). Numerical simulations and experimental data were compared over three distinct ranges of experimental firing rates, where the models were set to fire at
precisely 3, 5, and 7 spike/s (C; from left to right). The histogram overlay displays the model predictions of the horizontal span of the cut off frequencies over the
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of gating and filtering the output spike trains of PCs in other
layers appears clear, although its careful spectral characterization
remained so far unexplored. When an established protocol
(Figure 1) was used to quantify the encoding properties of
L1 interneurons, a markedly lower bandwidth (Figure 2) and a
gentler attenuation at high spectral frequencies were observed
(Figure 5), compared to L2/3 and L5 PCs. Thus, while the rapidly
varying frequency component of their inputs can be tracked,
i.e., up to 200–300 cycle/s, the large majority of L1 interneurons
possesses much lower cut off values, below 100 cycle/s. This
might indicate that L1 outputs may be well suited to filter
incoming information and relay it to PCs, especially in the center
of their own bandwidth (Ilin et al., 2013; Goriounova et al., 2018;
Linaro et al., 2018), particularly where the phase delay introduced
by the PCs transfer function is minimal (Linaro et al., 2018).

The markedly lower cut off frequencies and smaller
power-law attenuation coefficient α in L1 interneurons might
therefore indicate their specialization at keeping track of
slower top–down input modulations (Jiang et al., 2013;
Larkum and Phillips, 2016) compared to bottom–up inputs

reaching directly PCs in L2/3 and L5, while attenuating
less rapidly the components at higher spectral frequencies.
Despite the limited size of our data set, we successfully
sampled all the known electrical subtypes of L1 cells and
found no significant differences in their spectral responses
(Figure 3). This finding is backed up by an extensive database
of accurate multicompartmental models (Markram et al.,
2015) that contains a priori an extensive diversity in cell
response properties.

Our choice of the in vitro protocol and the limited
cell viability during long experimental conditions did not
allow us a systematic exploration of the modulatory effect
of the cell’s mean firing rate on the neuronal bandwidth.
Nonetheless, we could establish that a significant correlation
exists between the cut off frequency and the cell’s firing
rate (Figure 4), as anticipated by the theory (Brunel et al.,
2001; Fourcaud-Trocmé et al., 2003) but not previously
reported for PCs (Linaro et al., 2018). This suggests that
an increase in the mean firing rate of L1 interneurons can
expand their filtering capabilities, perhaps relaying to the
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dendritic compartment of PCs distinct spectral information
during different cortical firing regimes. The simulations also
suggest that some neuronal types should be more susceptible
for the firing rate modulation, such as cAC, bNAC, and
cIR types.

As opposed to previous reports in PCs, when we characterized
the AP waveform and its relevance for the tracking of fast-input
spectral components, we did not observe any correlation with
the values of the cut off frequency, both in vitro and in
silico. Therefore, we suggest that the emerging mechanisms
for spike initiation of L1 interneurons might have some
quantitative differences when compared to those of excitatory
neurons (Ilin et al., 2013; Linaro et al., 2018). In contrast
with other studies (Goriounova et al., 2018), we found a
negative correlation between the total dendritic length and
the cut off frequency in silico. This might be a consequence
of the smaller dendritic length in L1 models than L5 PCs
(i.e., 500–5,400 vs. 8,000 µm and up to 15,000–20,000 µm),
although the values of AP onset speed were in a similar range
as for L5 PCs, both in experiments and in simulations. No
correlation was found between the AP onset speed and the
total dendritic length in the models. However, as the AP slope
factor ∆T was measured, we found similar values as those
obtained for other neocortical types. In silico, an (expected)
negative correlation was found between ∆T and the AP onset
rapidity (Badel et al., 2008a,b), but not in vitro. A correlation
between ∆T and the cut off frequency clearly was detected
in vitro, but not in silico. We speculate that such a mismatch
between theory and experiments might be a consequence of
the reduced repertoire of active membrane mechanism models
(i.e., sodium and potassium currents kinetics), which are shared
by all BBP cortical model neurons (Markram et al., 2015).
While using the same biophysical models for describing all
cell types is a convenient strategy for constraining automated
parameters (Druckmann et al., 2007), we wonder whether
L1 interneurons might be even better described with ‘‘custom’’
kinetic parameters for sodium and potassium currents. In
addition, we think that the excitability of L1 interneurons has
been investigated partially and in less detail when compared to
L5 PCs. The latter have been widely studied as a ‘‘reference’’
cortical neuron by many investigators over the last decades.
Lastly, BBP L1 models have been identified automatically
while extracting only a limited set of features from the
experimental data (e.g., time-to-first AP, width of the AP, AP
frequency, etc.) (Druckmann et al., 2008), and we wonder
whether the use of additional protocols, such as the probing
of the dynamical transfer function, might have increased the
faithfulness of theory–experiments matching. Taken together,
all these results call for further investigation of the AP
initiation mechanisms in L1 interneurons, both experimentally
and numerically.

Finally, as we characterized the transfer properties at high
spectral frequencies, we observed a power-law decay, although
with unexpectedly low absolute values of the exponent α,
both in vitro and in silico. According to Fourcaud-Trocmé
et al. (2003), different reduced models of excitability are
associated to distinct characteristic values of α. In particular,

while the exponential integrate-and-fire unit seems to be
more appropriate to describe PCs, the leaky integrate-and-fire
excitability (i.e., α = 0.5) seems closer to explain the data, both
in vitro (i.e., α = 0.57 on average) and in silico (i.e., in the
range α = 0.44–0.74). This suggests that L1 interneurons indeed
might have distinct spike initiation dynamics when compared
to PCs.

In conclusion, we believe that our results contribute
with timely and relevant observations to the series of
efforts, worldwide, to describe and classify the excitable
properties of neocortical neurons. The spectral characterization
of the bandwidth of spike initiation thus revealed to
be more informative than the standard methods to
quantify neuronal excitability, and the present study
extends such characterization to the population of
L1 interneurons.
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