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ABSTRACT
We present a general Bayesian formalism for the definition of figures of merit (FoMs) quan-
tifying the scientific return of a future experiment. We introduce two new FoMs for future
experiments based on their model selection capabilities, called the decisiveness of the exper-
iment and the expected strength of evidence. We illustrate these by considering dark energy
probes and compare the relative merits of stages II, III and IV dark energy probes. We find
that probes based on supernovae and on weak lensing perform rather better on model selection
tasks than is indicated by their Fisher matrix FoM as defined by the Dark Energy Task Force.
We argue that our ability to optimize future experiments for dark energy model selection goals
is limited by our current uncertainty over the models and their parameters, which is ignored
in the usual Fisher matrix forecasts. Our approach gives a more realistic assessment of the
capabilities of future probes and can be applied in a variety of situations.
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1 IN T RO D U C T I O N

As cosmology becomes increasingly dominated by results emerg-
ing from large-scale observational programmes, it is imperative to
be able to justify that resources are being deployed as effectively
as possible. In recent years, it has become standard to quantify the
expected outcome of cosmological surveys to enable comparison, a
procedure exemplified by the figure of merit (FoM) introduced by
Huterer & Turner (2001) and later used by the Dark Energy Task
Force (DETF) for dark energy surveys (Albrecht et al. 2006, 2009).
Still in its infancy, however, is the topic of survey design, where an
experiment is optimized, within design or cost constraints, to gen-
erate the best scientific outcome (Bassett 2005; Bassett, Parkinson
& Nichol 2005; Parkinson et al. 2007, 2010).

Both in quantifying and in optimizing survey capability, it is
important to identify the scientific questions one hopes to answer.
The DETF FoM measures the expected parameter constraints on a
two-parameter dark energy model, using a Fisher matrix approach;
this is an example of a parameter estimation FoM, in which the
correct cosmological model is assumed to be known and the task is
to estimate its parameter values (see also e.g. Mortonson, Huterer
& Hu 2010). However, many of the most pressing questions in cos-
mology concern not parameters but models, i.e. the identification
of the correct set of parameters to describe our Universe. Examples
are whether cosmic acceleration is due to a cosmological constant,
quintessence or modified gravity, and whether or not the Universe
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has zero spatial curvature. These are model selection questions;
hence, forecasts of the capabilities of future probes should be as-
sessed by their power to answer such questions, rather than the more
limited question of the error they will be able to achieve assuming
that a given model is true (i.e. the usual Fisher matrix forecast).
Alternative FoMs, which quantify the ability of experiments to an-
swer model selection problems, have been previously discussed by
Mukherjee et al. (2006), Trotta (2007b) and Trotta et al. (2010).1

In this paper we present a comprehensive formalism for the con-
struction of survey FoMs, incorporating both model and parameter
uncertainty in light of the present observational situation. In or-
der to do so, we build on the methodology introduced in Trotta
et al. (2010). We construct two new model selection FoMs, the de-
cisiveness and the expected strength of evidence, which quantify
the expected capability of an experiment to perform model com-
parison tests. For illustration we focus on the case of dark energy
observations, though our formalism is broadly applicable.

2 BAY E S I A N FR A M E WO R K FO R
PERFORMANCE FORECASTI NG

2.1 Expected utility of an experiment

In order to build up towards the definition of our FoMs, we need to
consider the different levels of uncertainty that are relevant when

1 For an alternative, essentially frequentist, perspective on this issue, see
Amara & Kitching (2010).
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predicting the probability of a certain model selection outcome from
a future probe. These can be summarized as follows.

(i) Level 1: current uncertainty about the correct model (e.g. is it
a cosmological constant or a dark energy model?).

(ii) Level 2: present-day uncertainty in the value of the cosmo-
logical parameters for a given model (e.g. present error on the dark
energy equation-of-state parameters assuming an evolving dark en-
ergy model).

(iii) Level 3: realization noise, which will be present in future
data even when assuming a model and a fiducial choice for its
parameters.

The commonly used Fisher matrix forecast (see e.g. Tegmark, Tay-
lor & Heavens 1996) ignores the uncertainty arising from levels
1 and 2, as it assumes a fiducial model (level 1) and fiducial pa-
rameter values (level 2). It averages over realization noise (level 3)
in the limit of an infinite number of realizations. Furthermore, in
the Fisher matrix formalism the likelihood is approximated by con-
struction as a Gaussian, which might be inaccurate for parameter
spaces exhibiting curving degeneracies and/or multimodal distribu-
tions. Clearly, the Fisher matrix procedure provides a very limited
assessment of what we can expect for the scientific return of a fu-
ture probe, as it ignores the uncertainty associated with the choice
of model and parameter values.

The Bayesian framework allows improvement on the usual Fisher
matrix error forecast, thanks to a general procedure which fully
accounts for all three levels of uncertainty given above. This will
allow us to define a new type of FoM which represents in a more
realistic way the uncertainties involved in making predictions.

Following Loredo (2003), we think of future data Df as outcomes,
which arise as consequence of our choice of experimental param-
eters e (actions). For each action and each outcome, we define a
utility function U(Df, e). Formally, the utility only depends on the
future data realization Df . However, as will become clear below,
the data Df are realized from a fiducial model and model parameter
values. Therefore, the utility function implicitly depends on the as-
sumed model and parameters from which the data Df are generated.
The best action is the one that maximizes the expected utility, i.e.
the utility averaged over possible outcomes:

EU (e) ≡
∫

dDfp(Df |e, d)U(Df, e). (1)

Here, p(Df |e, d) is the predictive distribution for the future data,
conditional on the experimental set-up (e) and on current data (d).
For a single fixed model, the predictive distribution is given by

p(Df |e, d) =
∫

dθ p(Df, θ |e, d)

=
∫

dθ p(Df |θ, e, d)p(θ |e, d)

=
∫

dθ p(Df |θ, e)p(θ |d), (2)

where the last line follows because p(Df |θ , e, d) = p(Df |θ , e) (con-
ditioning on current data is irrelevant once the parameters are given)
and p(θ |e, d) = p(θ |d) (conditioning on future experimental param-
eters is irrelevant for the present-day posterior). So we can predict
the probability distribution for future data Df by averaging the like-
lihood function for the future measurement (level 3 uncertainty)
over the current posterior on the parameters (level 2 uncertainty).
The expected utility then becomes

EU (e) =
∫

dθp(θ |d)
∫

dDfp(Df |θ, e)U(Df, e). (3)

So far, we have tacitly assumed that only one model was being
considered for the data. In practice, there will be several models
that one is interested in testing (level 1 uncertainty), and typically
there is uncertainty over which one is best. This is in fact one
of the main motivations for designing a new dark energy probe.
If N models {M1, . . . ,MN } are being considered, each one with
parameter vector θ i (i = 1, . . . , N), the current posterior can be
further extended in terms of model averaging (level 1), weighting
each model by its current model posterior probability, p(Mi |d),
given by

p(Mi |d) = p(d|Mi)p(Mi)

p(d)
, (4)

where p(d|Mi) is the Bayesian evidence for model Mi , p(Mi)
is the model’s prior and p(d) a normalizing constant. Using equa-
tion (3), this gives the model-averaged expected utility

EU (e) =
N∑

i=1

p(Mi |d)
∫

dθip(θi |d,Mi)

×
∫

dDfp(Df |θi, e,Mi)U(Df, e,Mi). (5)

This expected utility is the most general definition of an FoM for a
future experiment characterized by experimental parameters e. As
we show below, the usual Fisher matrix forecast is recovered as
a special case of equation (5), as are other FoMs that have been
defined in the literature (e.g. Bassett 2005; Wang 2008; Amara &
Kitching 2010). Therefore, equation (5) gives us a formalism to
define in all generality the scientific return of a future experiment.
This result clearly accounts for all three levels of uncertainty in
making our predictions: the utility function U(Df, e,Mi) (to be
specified below) depends on the future data realization, Df (level
3), which in turn is a function of the fiducial parameter value,
θ i (level 2), and is averaged over present-day model probabilities
(level 1).

2.2 Figures of merit from expected utility

The expected utility of equation (5) provides the most general for-
malism for the evaluation of the scientific return of an experiment.
It reduces to previously used FoMs for specific choices of pri-
ors and utility functions. For example, the DETF advocated using
the inverse of the area of the future probe covariance matrix on
the dark energy parameters as an FoM quantifying the strength
of the statistical constraints from the experiment. This FoM can
be recovered by setting N = 1 in equation (5) (only one fidu-
cial model is considered), taking a Dirac delta function for the
current posterior, p(θ |d,M) = δ(θ − θ�) (only the fiducial pa-
rameter vector θ� is considered), assuming no realization noise or,
equivalently, averaging over many future data realizations, so that
p(Df |θ, e,M) = δ[Df − D(θ�)], where D(θ�) describes a no-noise
data realization around the fiducial parameter values, and defining
the utility function as the determinant of the future Fisher matrix,
evaluated at the fiducial parameter values, θ�.

Another example is the Gaussian linear model considered by
Trotta et al. (2010), where the utility function was chosen to be the
inverse of the marginal error on the parameters of interest. It is a
property of the Gaussian linear model that the error ellipse does not
depend on the fiducial model nor data realization, but only on the
design matrix (Kunz, Trotta & Parkinson 2006). Therefore, in this
case the integration over future data Df gives unity in equation (5),
and the same expression is recovered as in Trotta et al. (2010).
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Mukherjee et al. (2006) defined two model selection FoMs, each
of which considers two models, a cosmological constant model
and a two-parameter dark energy model. One FoM quantifies the
strength with which the dark energy model will be excluded if the
cosmological constant is correct; the current posterior is therefore
taken to be that model and the FoM is the Bayes factor (defined
below) in favour of the cosmological constant. The other FoM is
the opposite, quantifying whether the cosmological constant can be
ruled out if the dark energy model is correct. The current posterior
is now the dark energy model space, and the FoM measures in
how much of that space the cosmological constant model could
be excluded (e.g. the inverse parameter area above a certain Bayes
factor threshold, by analogy to the DETF FoM above).

Trotta (2007b) introduced a methodology to compute the pre-
dicted posterior odds distribution (PPOD) for a model comparison
from a future experiment. A PPOD-based FoM is another special
case of our general formalism: it is obtained from equation (5) by
assuming no realization noise, p(Df |θ, e,M) = δ[Df −D(θ�)], and
adopting as utility function the tail probability of the Bayes factor
obtainable by a future probe.

For a given experimental configuration e, the expected utility can
be evaluated as follows.

(i) Draw a uniformly weighted sample for the fiducial value for
the parameters, θ�, from a Monte Carlo Markov chain distributed
according to the present, model-averaged, posterior p(θ |d) =∑

i p(Mi |d)p(θi |Mi , d) (levels 1 and 2).
(ii) Generate pseudo-data Df for the future probe, assuming θ�

as fiducial parameter values.
(iii) Evaluate the utility function from the future data (to be de-

fined below).
(iv) Loop back to (i) and average the utility function over the

so-obtained samples.

In general, the above procedure is computationally very expen-
sive, as it involves two nested averages, one over the fiducial param-
eters (step i) and one over future pseudo-data realizations (step ii).
Furthermore, in the context of model-selection-oriented FoMs to be
introduced below, the evaluation of the utility (step iii) requires the
computation of Bayes factors from the pseudo-data, which again are
costly. If one wanted to use Markov chain Monte Carlo techniques,
one would typically need ∼104 samples in step (i) and another
∼105 samples to obtain a reliable estimate of the utility function
in steps (ii) and (iii). Therefore, the typical number of likelihood
evaluations required would be of the order of ∼109, which is at the
limit of what can be achieved today unless one adopts highly accel-
erated inference methods (Fendt & Wandelt 2006; Auld, Bridges &
Hobson 2008; Frommert et al. 2010; Bridges et al. 2011). There-
fore, we shall make some simplifying assumptions that reduce this
computational burden very considerably.

First, we will consider only N = 2 competing models. Secondly,
we will work in the Gaussian likelihood approximation, i.e. we
will assume that both the present-day and the future likelihood are
well approximated by Gaussian distributions. This is the same kind
of approximation involved in the usual Fisher matrix forecast. The
assumption of Gaussianity further allows us to side-step the pseudo-
data generation step: for a given value of the fiducial parameters, θ�,
the maximum likelihood estimate θ̂f from future data Df generated
from θ� is distributed as a Gaussian with mean θ� and covariance
matrix given by the inverse of the likelihood Fisher matrix for the
future probe. As a consequence, we do not need to generate pseudo-
data at all in step (ii), and we can instead work directly in parameter

space, by drawing θ̂f directly from a Gaussian distribution centred
on θ�.

Having made the above simplifications, we now turn to using the
expected utility to define two new FoMs based on model selection.

3 FI G U R E S O F M E R I T F O R M O D E L
SELECTI ON

To assess the science return of proposed missions in terms of their
model selection capabilities, we propose to adopt the expected util-
ity of equation (5) as an FoM for experiment e, after defining an
appropriate utility function U(Df, e,Mi). There are many ways to
do this, and we introduce here two proposals. The first one is named
decisiveness, and it gives the probability that the proposed experi-
ment will achieve a decisive outcome for model selection. A good
experiment should be as decisive as possible. A complementary ap-
proach, named expected strength of evidence, is to compute by how
much the experiment is expected to prefer one or the other model
on average. Again, a good experiment will be able to prefer one of
the models strongly.

In a two-way Bayesian model comparison, the key Bayesian
statistic is the Bayes factor B01, which is formed from the ratio of
the Bayesian evidences of the two models being considered:

B01 = p(d|M0)

p(d|M1)
, (6)

where the Bayesian evidence is the average of the likelihood under
the prior in each model:

p(d|Mi) =
∫

dθip(d|θi,Mi)p(θi |Mi). (7)

The Bayes factor updates the prior probability ratio of the models
to the posterior one, indicating the extent to which the data have
modified one’s original view on the relative probabilities of the two
models. The Bayes factor can be evaluated by a general numeri-
cal method such as nested sampling (Bassett, Corasaniti & Kunz
2004; Skilling 2004; Parkinson, Mukherjee & Liddle 2006; Feroz,
Hobson & Bridges 2009) or, if one model is nested within the other,
by the Savage–Dickey density ratio (SDDR; Trotta 2007a, 2008).
The Bayes factor is usually interpreted on Jeffreys’ scale shown in
Table 1 (Jeffreys 1961; Gordon & Trotta 2007).

3.1 ‘Decisiveness’ figure of merit

A ‘decisive’ experiment is one that is able to gather strong evidence
in favour of one of the competing models. Therefore, its utility
function is 0 (1) if the Bayes factor it will obtain is below (above)
the ‘strong’ threshold for the evidence, ln B = 5 (see Table 1) (this

Table 1. Empirical scale for evaluating the
strength of evidence when comparing two
models, M0 versus M1 (Jeffreys’ scale).
The rightmost column gives our convention
for denoting the different levels of evidence
above these thresholds.

| lnB01| Odds Strength of evidence

<1.0 �3:1 Inconclusive
1.0 ∼3:1 Weak evidence
2.5 ∼12:1 Moderate evidence
5.0 ∼150:1 Strong evidence
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level of evidence is sometimes called ‘decisive’, hence the name of
the FoM). Therefore, we are led to the following utility function:

U(Df, e,Mi) =
{

1 if | lnB01| > 5
0 otherwise,

(8)

where B01 is the Bayes factor between the two models, obtained
by the future experiment e. The best experiment is the one that
maximizes this quantity, i.e. the one whose probability of obtaining
a strong model selection outcome for either of the models is max-
imized. We thus define the decisiveness D of an experiment e as
its expected utility, equation (5), with the utility function (8). We
note that D as an FoM is especially resilient to the scatter in the
Bayes factor coming from averaging over data realizations and the
unknown fiducial parameter values (Jenkins & Peacock 2011). In
fact, our formalism takes this scatter into full account, and if too
many realizations are scattered out of the ‘decisive’ region (e.g. due
to large noise on the measurements from the future probe), then this
will lead to a lower FoM. Therefore, using D to optimize the design
of an experiment is particularly useful to guard against this effect.

3.2 ‘Expected strength of evidence’ figure of merit

Instead of the discrete utility function above given above, we can
adopt one that is more gradual in assessing the merit of the future
probe. Such a utility function is

U(Df, e,Mi) = (−1)i lnB01, (9)

which describes the strength of the model selection result from the
future probe. By plugging this utility function into equation (5), we
obtain an FoM that we call the ‘expected strength of evidence’ and
denote by E . The rationale is that for every given fiducial value of
the parameters and for every data realization, the best experiment is
the one that maximizes the support to the true model (i.e. the model
out of which the data actually come from), even though it might
be that the experiment in question is not strong enough to achieve
decisiveness.

The factor (−1)i in equation (9) is to ensure that the utility only
rewards support for the correct model; for example, under the more
complex model (M1), we want to maximize − lnB01, the odds
in favour of M1. Bayes factors can occasionally favour the wrong
model; for example, if the true model were a dark energy model with
w = −0.999, anything other than an extraordinarily precise exper-
iment is likely to favour the more predictive cosmological constant
model. Nevertheless, support for the wrong model will happen only
in a small parameter space region and will be overwhelmed when the
average over the current posterior is carried out, making the above
nearly equivalent to the simpler choice U(Df, e,Mi) = | lnB01|.
We have found in the dark energy application presented below that
for all future dark energy probes the difference in the FoM between
these two choices is less than about 5 per cent, so in practice it is
almost negligible.

It might seem at first glance that an experiment that maximizes
the expected strength of evidence is also the one that minimizes
the error ellipse in the parameter space of interest. If this was true,
then the ranking of probes obtained with the expected strength
of evidence would be the same as the one from the DETF FoM.
However, consider the SDDR expression for nested models (Trotta
2007a):

B01 = p(φ|Df, e, d,M1)

p(φ|M1)
|φ=φ0 , (10)

where φ are the extra parameters of interest for the more com-
plicated model, which reduces to the simpler model for φ = φ0.

The odds against M0 are maximized when the marginal posterior
on the extra parameters is as small as possible at the location in
parameter space predicted by the simpler model. This means that
maximizing − lnB01 requires minimizing the posterior error along
the direction connecting the fiducial value of (w0, wa) to (−1, 0)
[if we restrict our consideration to the dark energy example, where
φ = (w0, wa)]. In other words, the expected strength of evidence
FoM favours experiments that deliver error ellipses whose most
tightly constrained principal direction points towards the location
of the simpler model in parameter space, hence minimizing model
confusion. If instead the data come from M0, then the utility func-
tion requires that the height of the posterior at the location of the
true model be as large as possible. Since the posterior is normalized,
this requires the posterior to be as tightly constrained around the
true value as possible, which is obviously desirable.

To summarize, the decisiveness FoM 0 ≤ D ≤ 1 can be un-
derstood as an absolute scale measuring the model selection ca-
pabilities of an experiment, with D = 1 denoting the maximum
possible performance in terms of model comparison utility (i.e. an
experiment that is guaranteed to achieve a decisive model selection
result). On the other hand, many probes might still be interesting to
build but may fall short of the achieving strong evidence anywhere
in parameter space; hence, such experiments would all have D = 0.
Yet it is still a relevant question to try and rank them according to
their merits. This can be done by looking at the expected strength
of evidence, which always returns a non-zero value. Therefore, the
expected strength of evidence E can be regarded as a relative scale
of the capabilities of the probes.

4 A P P L I C AT I O N TO FU T U R E DA R K
ENERGY PROBES

We now apply our newly defined model selection FoMs to a set of
representative proposals for future dark energy probes. We consider
a � cold dark matter (�CDM) model with dark energy in the form
of a cosmological constant versus an evolving dark energy model
where the equation of state is w(z) = w0 + waz/(1 + z), described
by the two parameters (w0, wa). This is a case of nested models, i.e.
where the simpler model (the cosmological constant) is obtained
as a special case of the evolving dark energy model by setting w0

= −1, wa = 0. The other cosmological parameters (common to
both models) are the baryonic density, the dark matter density, the
spatial curvature, the amplitude of scalar adiabatic fluctuations and
the spectral index of perturbations. We include curvature in our
analysis as this impacts strongly on the constraints on evolving
dark energy models (Clarkson, Cortes & Bassett 2007; Wang &
Mukherjee 2007).

The current posterior is obtained using the following data sets:
Wilkinson Microwave Anisotropy Probe 5 (Dunkley et al. 2009),
Acbar07 (Kuo et al. 2007), Cosmic Background Imager (CBI) (Siev-
ers et al. 2007), BOOMERanG 03 (Jones et al. 2006) for the cosmic
microwave background, Sloan Digital Sky Survey (SDSS) Lumi-
nous Red Galaxies (LRG) Data Release 4 (DR4) (Tegmark et al.
2006) for P(k), the Hubble Key Project determination of H0 (Freed-
man et al. 2001), big bang nucleosynthesis limits on �bh2 (Kirkman
et al. 2003) and the Union supernova (SN) Ia compilation (Kowalski
et al. 2008). The priors on the common parameters are irrelevant
as they cancel from the Bayes factor between the two models [as
long as these priors are sufficiently wide to include the maximum
likelihood and uncorrelated with the dark energy priors; see Trotta
(2007a)], so the only important prior is the one on (w0, wa). We
choose a Gaussian prior centred on w0 = −1, wa = 0 with Fisher
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matrix � = diag(1, 1/2). With this prior and the above data sets,
we obtain a Bayes factor B01 = 13.7 in favour of the �CDM model
(representing moderate evidence against an evolving dark energy).
This means that 93 per cent of samples from the current posterior
will be drawn from a �CDM model and 7 per cent from a model
with evolving dark energy.

4.1 Future dark energy probes

We use a selection of future missions based on the DETF classifi-
cation (Albrecht et al. 2006), using Fisher matrices provided by the
DETFAST package (Dick & Knox 2006). This package provides only
the Fisher matrices evaluated at a fixed fiducial �CDM cosmology,
so we have to assume that the Fisher matrices do not vary sig-
nificantly for different fiducial parameters drawn from the current
posterior. In other words, we take the Fisher matrix for the future
experiment at a fiducial �CDM point and translate it in parameter
space, without recomputing it for each new sample of θ�. This is
clearly an oversimplification, but since the dark energy parameters
are the most important ones for this application, and since 93 per
cent of points drawn from the current posterior belong to the �CDM
case, we expect that the results are not too strongly biased. We in-
tend to study the impact of this assumption and to provide a more
comprehensive study of the power of future dark energy probes in
future work, while using the simplified approach as an illustration
of our new FoMs here.

The DETF has classified the dark energy probes in stages, with
stage II being those that are currently ongoing or completed, stage
III being medium-term projects and stage IV future large projects
(optical Large Survey Telescopes, ‘LST’; space-based missions, ‘S’;
and the Square Kilometre Array, ‘SKA’). The probes that we con-
sider here include weak lensing (WL), Type Ia SN, baryon acoustic
oscillations (BAOs), cluster counts (CL) and combinations of sev-
eral probes (ALL). A suffix ‘-o’ and ‘-p’ denotes optimistic and
pessimistic assumptions about systematic errors, respectively. The
‘p’ in the names of the stage III experiments signals the use of pho-
tometric redshifts while an ‘s’ is used for spectroscopic surveys (that
tend to cover a much smaller area). For further, detailed information
consult the DETF report.

The utility function computation proceeds as follows. In order to
evaluate the decisiveness, equation (8), and the expected strength of
evidence, equation (9), we need the Bayes factor lnB01 for the future
experiment. This is obtained analytically via the SDDR formula
(10):

lnB01 = 1

2
ln

|�|
|Fφ | − 1

2
(φ̄ − φ0)tFφ(φ̄ − φ0), (11)

where φ = (w0, wa) are the dark energy parameters of interest, �

is their prior Fisher matrix and Fφ is the marginal posterior Fisher
matrix for φ. We have defined φ0 = (−1, 0), and φ̄ is the posterior
mean from both current and future data. This can be obtained as
the φ components of the posterior mean vector in the full parameter
space:

θ̄ = F −1
(
Lf θ̂f + Lθ̂ + �θ0

)
. (12)

In the above, Lf is the future probe likelihood Fisher matrix, L
is the current constraints’ Fisher matrix, θ 0 is the prior mean, θ̂f

is the future maximum likelihood location while θ̂ is the present
constraints’ maximum likelihood point. The Fisher matrix from the
future and present data, F, is given by

F = Lf + L + �. (13)

The prior used in equation (11) is the same as the one adopted
for the analysis of the present-day data. This is because the prior
in the context of Bayesian model selection should be understood
as representing the a priori plausible parameter values under the
model. Therefore, we do not update the prior to the posterior from
the present-day inference step when evaluating the future Bayes
factor. The likelihood is obtained from the Fisher matrix formalism,
with the above-mentioned additional assumption that the future
likelihood Fisher matrix is independent of the fiducial parameter
value adopted.

Some of the dark energy probes can achieve a very strong model
selection in favour of an evolving dark energy model in parts of the
parameter space, often obtaining lnB01 � −100. This would cor-
respond to a detection of a non-constant equation of state at many-
sigma confidence level. However, we do not expect our Gaussian
approximation to the likelihood to hold true so far into the tails of

Table 2. Results for FoMs of various dark energy
probes. D is the decisiveness given in equation (8)
and E is the expected strength of evidence given in
equation (9).

Experiment DETF FoM D E

CL-II 0.13 0 2.3
SN-II 1.4 × 10−2 2.0 × 10−3 2.7
WL-II 0.7 4.3 × 10−3 2.8

BAO-IIIp-p 7.1 × 10−5 2.0 × 10−4 2.5
BAO-IIIs-p 0.87 1.2 × 10−3 2.7
BAO-IIIs-o 1.0 1.5 × 10−3 2.7
CL-IIIp-p 0.56 2.9 × 10−3 2.7
CL-IIIp-o 8.5 1.5 × 10−2 3.4
SN-IIIp-p 4.9 × 10−3 1.5 × 10−3 2.7
SN-IIIp-o 2.0 × 10−3 8.5 × 10−3 3.1
SN-IIIs 4.2 × 10−2 5.9 × 10−3 2.9
WL-IIIp-p 6.4 9.9 × 10−3 3.2
WL-IIIp-o 17 1.6 × 10−2 3.5
ALL-IIIp-p 59 2.7 × 10−2 4.1
ALL-IIIp-o 150 0.53 5.1
ALL-IIIs-p 130 0.38 4.8
ALL-IIIs-o 200 0.58 5.3

BAO-IVLST-p 1.8 × 10−2 1.2 × 10−3 2.6
BAO-IVLST-o 4.0 × 10−2 1.6 × 10−3 2.7
BAO-IVSKA-p 1.3 4.3 × 10−3 3.0
BAO-IVSKA-o 3.4 9.0 × 10−3 3.3
BAO-IVS-p 1.4 3.7 × 10−3 3.0
BAO-IVS-o 3.4 7.0 × 10−3 3.2
CL-IVS-p 0.50 3.1 × 10−3 2.8
CL-IVS-o 9.5 1.6 × 10−2 3.5
SN-IVLST-o 0.32 1.4 × 10−2 3.4
SN-IVS-p 0.65 9.9 × 10−3 3.2
SN-IVS-o 0.76 1.6 × 10−2 3.5
WL-IVLST-p 15 1.3 × 10−2 3.5
WL-IVLST-o 170 0.77 6.0
WL-IVSKA-p 4.6 1.9 × 10−2 3.6
WL-IVSKA-o 280 0.81 6.3
WL-IVS-p 83 0.37 4.7
WL-IVS-o 140 0.67 5.5
ALL-LST-p 180 0.54 5.1
ALL-LST-o 900 0.89 6.9
ALL-SKA-p 160 0.49 5.0
ALL-SKA-o 950 0.90 7.0
ALL-IVS-p 480 0.81 6.2
ALL-IVS-o 900 0.90 6.9
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the distribution. Therefore, in order to be conservative, we impose
a floor at lnB01 = −20 when computing the expected strength of
evidence from equation (9): any value of lnB01 below this floor is
remapped to the floor value.

4.2 Results

The results for the future probes are presented in Table 2 and plotted
in Fig. 1, where we compare the DETF FoM with our new model
selection FoMs. We notice that the decisiveness FoM separates the
sample into two distinct groups, those with D � 0.1 (single probes
up to level III and several pessimistic single probes at level IV,
together with BAO-IVS-o) that are unlikely to provide a decisive
answer to the question whether dark energy is dynamical or not
and the rest with D � 0.1. This division is not apparent in E and

the DETF FoM, and it leads to critical values of E ≈ 4 and DETF
FoM ≈ 70 below which an experiment is unlikely to obtain a strong
model selection result.

The ranking of the experiments between D and E is almost the
same, while the DETF FoM gives a similar but not always identical
ranking. Looking at the right-hand panels in Fig. 1, we notice that
the WL and SN probes tend to lie above the trend line (are more
likely to provide a decisive model selection result than would be
expected from the DETF FoM) while spectroscopic BAO probes lie
below.

In Fig. 2, we show the distribution of ln (B01) for 106 outcomes
for the ALL-SKA-o probe (the most powerful probe considered
here). The red bars on the right hand side are for data drawn from a
�CDM model, for which this probe often but not always achieves
a decisive outcome. The blue bar on the left shows that the probe

Figure 1. Comparison of our model selection FoMs to the DETF FoM (left-hand panels) and the ranking of dark energy probes derived from them (right-hand
panels).
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Figure 2. Histogram of ln(B01) values for the ALL-SKA-o DETF case.
Red bars (on the right, values above 0) show cases drawn from a �CDM
model (93 per cent of cases according to the current posterior) and the blue
bar (on the far left) show cases with an evolving dark energy fiducial model
[7 per cent of cases, capped at ln(B01) = −20 as described in the text].

will deliver very powerful results if the dark energy is actually
evolving (given the priors adopted and the current knowledge on
dark energy parameters). It is not surprising that the model selection
outcomes against �CDM tend be stronger than those that support
it; it is always more difficult to strongly support a nested model, as
the simpler model only ‘profits’ from its predictiveness (thanks to
Occam’s razor effect), but can never provide a better fit.

5 C O N C L U S I O N S

We have presented a general Bayesian formalism for the definition
of FoMs encapsulating the expected scientific return of future exper-
iments. Our method fully accounts for all sources of uncertainties
involved in the prediction, including present-day model and param-
eter uncertainties, and realization noise. It thus improves on the
usual Fisher matrix methods by producing more realistic forecasts
for the possible distribution of future experimental outcomes.

We used this framework to define two FoMs for probes that mea-
sure the dark energy equation of state in order to test the �CDM
paradigm: the decisiveness D , which quantifies the probability that
a probe will deliver a decisive result in favour or against the cos-
mological constant, and the expected strength of evidence E , which
returns a measure of the expected power of a probe for model selec-
tion. We compared these quantities to the widely used DETF FoM
for a range of probes and found that the rankings agree reasonably
well, but that WL and SN probes have a higher than expected model
selection power relative to their DETF FoM ranking. We also found,
for our choice of prior, that there is a critical DETF FoM of around
70 below which probes are very unlikely to obtain a strong model
selection result.

An additional advantage of the formalism presented in this paper,
and of any FoMs that use it, is the possibility to include further
observations, for example those that constrain the growth history or
the presence of effective anisotropic stresses. One just extends the
likelihood based on the predictions of the underlying models, but
the procedure is unchanged, and the interpretation of the results is
unchanged as well. There is therefore no need to define new FoMs
as data analysis goals for future probes evolve.

The methodology presented here is widely applicable to a vari-
ety of forecasting and optimization problems. Our application to
the model selection capabilities of future dark energy missions is
but a first step towards a fully Bayesian approach to performance
forecast.
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