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7.4. Nilpotent caustic of the orbit space J (Ã1) 127
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CHAPTER 1

Introduction

Dubrovin Frobenius manifold is a geometric interpretation of a remarkable system of differ-

ential equations, called WDVV equations [12]. Since the beginning of the nineties, there has

been a continuous exchange of ideas from fields that are not trivially related to each other, such

as: Topological quantum field theory, non-linear waves, singularity theory, random matrices

theory, integrable systems, and Painleve equations. Dubrovin Frobenius manifolds theory is a

bridge between them.

1.1. Topological quantum field theory

The connections made by Dubrovin Frobenius manifolds theory work because all the men-

tioned theories are related with some WDVV equation. In [12], Dubrovin showed that many

constructions of Topological field theories (TFT) can be deduced from the geometry of Dubrovin-

Frobenius manifolds. For instance, one of the main objects to be computed in TFT are correlation

functions, which are mean values of physical quantities. Since in TFT it is possible to have

infinite many correlation functions, an efficient way to compute all of them is encoding all the

correlators in a single function, called partition function. In [21], Konsevitch proved that a

partition function of a specific Quantum gravity theory can be obtained from the solution of

KdV hierarchy, which is an example of integrable hierarchy, i.e. an infinitely list of integrable

partial differential equations. This discovery opened a new field of research in mathematical

physics, because for this case, it was found an effective way to compute exactly all the correlation

functions due to its integrable system nature. In [16], Dubrovin and Zhang constructed a method

to derive an integrable hierarchy from the data of Dubrovin Frobenius manifold, furthermore, in

many important examples, they were able to relate these integrable hierarchies with partition

functions of some TFT.

1.2. Orbit space of reflection groups and its extensions

In [12], Dubrovin points out that, WDVV solutions with certain good analytic properties are

related with partition functions of TFT. Afterwards, Dubrovin conjectured that WDVV solutions

with certain good analytic properties are in one to one correspondence with discrete groups.

This conjecture is supported in ideas which come from singularity theory, because in this setting
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there exist an integrable systems/ discrete group correspondence. Furthermore, in minimal

models such as Gepner chiral rings there exist a correspondence between physical models and

discrete groups. In [20], Hertling proved that a particular class of Dubrovin-Frobenius manifold,

called polynomial Dubrovin-Frobenius manifold is isomorphic to orbit space of a finite Coxeter

group, which is a space such that its geometric structure is invariant under the finite Coxeter

group. In [8], [9],[11], [12], [14], [15], [35], there are many examples of WDVV solutions that

are associated with orbit spaces of natural extensions of finite Coxeter groups such as extended

affine Weyl groups, and Jacobi groups. Therefore, the construction of Dubrovin Frobenius

manifolds on orbit spaces of reflection groups and their extensions is a prospective project of

the classification of WDVV solutions. In addition, WDDV solutions arising from orbit spaces

may also have some applications in TFT or some combinatorial problem, because previously

this relation was demonstrated in some examples such as the orbit space of the finite Coxeter

group A1, and the extended affine Weyl group A1 [13], [16].

1.3. Hurwtiz space/ Orbit space correspondence

There are several other non-trivial connections that Dubrovin Frobenius manifolds theory

can make. For example, Hurwitz spaces is the one of the main source of examples of Dubrovin

Frobenius manifolds. Hurwitz spaces Hg,n0,n1,..,nm are moduli space of coverings over CP1 with

a fixed ramification profile. More specifically, Hg,n0,n1,..,nm is moduli space of pairs

{Cg, λ : Cg 7→ CP1}

where Cg is a compact Riemann surface of genus g, λ is meromorphic function with poles in

λ−1(∞) = {∞0,∞1, ..,∞m}.

Moreover, λ has degree ni+1 near∞i. Hurwitz space with a choice of specific Abelian differential,

called quasi-momentum or primary differential, gives rise to a Dubrovin Frobenius manifold, see

chapter 3 for details. In some examples, Dubrovin Frobenius structures of Hurwitz spaces are

isomorphic to Dubrovin Frobenius manifolds associated with orbit spaces of suitable groups.

For instance, the orbit space of the finite Coxeter group An is isomorphic to the Hurwitz space

H0,n, furthermore, orbit space of the extended affine Weyl group Ãn and of the Jacobi group

J (An) are isomorphic to the Hurwitz spaces H0,n−1,0 and H1,n respectively. Motivated by

these examples, we construct the following diagram

H0,n
∼= Orbit space of An H0,n−1,0 ∼= Orbit space of Ãn

H1,n
∼= Orbit space of J (An) H1,n−1,0 ∼=?

1

2 4

3

2



From the Hurwitz space side, the vertical lines 2 and 4 mean that we increase the genus by 1,

and the horizontal line means that we split one pole of order n+ 1 in a simple pole and a pole

of order n. From the orbit space side, the vertical line 2 means that we are doing an extension

from the finite Coxeter group An to the Jacobi group J (An), the horizontal line 1 means that

we are extending the Orbit space of An to the extended affine Weyl group Ãn. Therefore, one

might ask if the line 3 and 4 would imply an orbit space interpretation of the Hurwitz space

H1,n−1,0. The main goal of this thesis is to define a new class of groups such that its orbit space

carries Dubrovin-Frobenius structure of H1,n−1,0. The new group is called extended affine Jacobi

group An, and denoted by J (Ãn). This group is an extension of the Jacobi group J (An), and

of the extended affine Weyl group Ãn.

1.4. Thesis results

The main goal of this thesis is to derive the Dubrovin Frobenius structure of the Hurwitz

space H1,n−1,0 from the data of the group J (Ãn). First of all, we define the group J (Ãn).

Recall that the group An acts on Cn by permutations, then the group J (Ãn) is an extension

of the group An in the following sense:

Proposition 1.4.1. The group J (Ãn) 3 (w, t, γ) acts on Ω := C⊕Cn+2 ⊕H 3 (u, v, τ) as

follows

w(u, v, τ) = (u,w • v, τ)

t(u, v, τ) = (u− < λ, v >Ãn −
1

2
< λ, λ >Ãn τ, v + λτ + µ, τ)

γ(u, v, τ) = (u+
c < v, v >Ãn

2(cτ + d)
,

v

cτ + d
,
aτ + b

cτ + d
)

(1.1)

where w ∈ An acts by permutations in the first n+1 variables of Cn+2 3 v = (v0, v1, .., vn, vn+1),

t = (λ, µ) ∈ Z2n+4,(
a b

c d

)
∈ SL2(Z),

< v, v >Ãn=
n∑
i=0

v2i

∣∣∣∣∣∑n
i=0 vi=0

− n(n+ 1)v2n+1.

See section 8.1 for details.

In order to define any geometric structure in the orbit space of J (Ãn), first it is necessary to

define a notion of invariant J (Ãn) sections of the orbit space of J (Ãn). For this purpose, we

generalise the ring of invariant functions used in [8], [9] for the group J (An), which are called

Jacobi forms. This notion was first defined in [18] by Eichler and Zagier for the group J (A1),

and further it was generalised for the group J (An) in [34] by Wirthmuller. Furthermore, an
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explicit base of generators were derived in [8], [9] by Bertola. The Jacobi forms used in this

thesis are defined by

Definition 1.4.1. The weak J (Ãn) -invariant Jacobi forms of weight k ∈ Z, order l ∈ N,

and index m ∈ N are functions ϕ on Ω = C⊕Cn+2⊕H 3 (u, v0, v1, ..., vn+1, τ) = (u, v, τ) which

satisfy

ϕ(w(u, v, τ)) = ϕ(u, v, τ), An invariant condition

ϕ(t(u, v, τ)) = ϕ(u, v, τ)

ϕ(γ(u, v, τ)) = (cτ + d)−kϕ(u, v, τ)

Eϕ(u, v, τ) := − 1

2πi

∂

∂u
ϕ(u, v, τ) = mϕ(u, v, τ), Euler vector field

(1.2)

Moreover, the weak Ãn -invariant Jacobi forms are meromorphic in the variable vn+1 with

poles on a fixed divisor, in contrast with the Jacobi forms of the group J (An) ,which are

holomorphic in each variable, see details in the definition 8.2.1. The ring of weak Ãn -invariant

Jacobi forms gives the notion of Euler vector field. Indeed, the vector field E defined in the last

equation of (1.2) measures the degree of a Jacobi form, which coincides with the index. The

differential geometry of the orbit space of the group J (Ãn) should be understood as the space

such that its sections are written in terms of Jacobi forms. Then, in order for this statement to

make sense, we prove a Chevalley type theorem, which is

Theorem 1.4.2. The trigraded algebra of weak J (Ãn) -invariant Jacobi forms J
J (Ãn)
•,•,• =⊕

k,l,m J
Ãn
k,l,m is freely generated by n+ 1 fundamental Jacobi forms (ϕ0, ϕ1, , ϕ2, .., , ϕn) over the

graded ring E•,•

(1.3) J
J (Ãn)
•,•,• = E•,• [ϕ0, ϕ1, , ϕ2, .., , ϕn] ,

where

E•,• = J•,•,0 is the ring of coefficients.

More specifically, the ring of function E•,• is the space of coefficients f(vn+1, τ) such that for

fixed τ , the functions vn+1 7→ f(vn+1, τ) is an elliptic function.

Moreover, (ϕ0, ϕ1, , ϕ2, .., ϕn) are given by

Corollary 1.4.2.1. The functions (ϕ0, ϕ1, .., ϕn) obtained by the formula

λÃn = e2πiu
∏n
i=0 θ1(z − vi + vn+1, τ)

θn1 (z, τ)θ1(z + (n+ 1)vn+1)

= ϕn℘
n−2(z, τ) + ϕn−1℘

n−3(z, τ) + ...+ ϕ2℘(z, τ)

+ ϕ1 [ζ(z, τ)− ζ(z + (n+ 1)vn+1, τ) + ζ((n+ 1)vn+1)] + ϕ0

(1.4)

are Jacobi forms of weight 0,−1,−2, ..,−n, respectively, of index 1, and of order 0. Here θ1 is

the Jacobi theta 1 function, ζ is the Weiestrass zeta function, and ℘ is the Weiestrass p function.
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The corollary 1.4.2.1 realises the functions (ϕ0, ϕ1, , ϕ2, .., , ϕn, vn+1, τ) as coordinates of the

orbit space of J (Ãn). The unit vector field, with respect the Frobenius product defined in

theorem 1.4.7 see below, is chosen to be

(1.5) e =
∂

∂ϕ0
,

because ϕ0 is the basic generator with maximum weight, see the sections 8.2, 8.3 for details.

The last ingredient we need to construct is the flat pencil metric associated with the orbit space

of J (Ãn), which is two compatible flat metrics g∗ and η∗ such that

g∗ + λη∗

is also flat, and the linear combination of its Christoffel symbols

Γijk g∗ + λΓijk η∗

is the Christoffel symbol of the flat pencil of metrics (see section 4.4 for the details). The natural

candidate to be one of the metrics of the pencil is the invariant metric of the group J (Ãn).

This metric is given by

(1.6) g∗ =
∑
i,j

A−1ij
∂

∂vi
⊗ ∂

∂vj
− n(n+ 1)

∂

∂vn+1
⊗ ∂

∂vn+1
+

∂

∂τ
⊗ ∂

∂u
+

∂

∂u
⊗ ∂

∂τ
,

where

Aij =



2 1 1 ... 1

1 2 1 ... 1

1 1 2 ... 1

1 1 1 ... 1

1 1 1 ... 2


This metric is called intersection form. The second metric is given by

η∗ := Lieeg
∗,

and it is denoted by Saito metric due to K.Saito, who was the first to define this metric for

the case of finite Coxeter group [28]. One of the main technical problems of the thesis is to

prove that the Saito metric η∗ is flat. For this purpose, we construct a generating function for

the coefficients of the metric η∗ in the coordinates (ϕ0, ϕ1, , ϕ2, .., , ϕn, vn+1, τ). We prove the

following.

Corollary 1.4.2.2. Let η∗(dϕi, dϕj) be given by

η∗(dϕi, dϕj) :=
∂g∗(dϕi, dϕj)

∂ϕ0
.(1.7)
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The coefficient η∗(dϕi, dϕj) is recovered by the generating formula

n+1∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
η̃∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πi(Dτλ(v) +Dτλ(v′)) +
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[
dλ(v′)

dv′
− dλ(v)

dv
]

− 1

n(n+ 1)

∂

∂ϕ0

(
∂λ(p)

∂vn+1

)
∂λ(p′)

∂vn+1
− 1

n(n+ 1)

∂λ(p)

∂vn+1

∂

∂ϕ0

(
∂λ(p′)

∂vn+1

)
+

1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂

∂ϕ0

(
∂ϕj
∂vn+1

)
∂ϕk
∂vn+1

+
1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂ϕj
∂vn+1

∂

∂ϕ0

(
∂ϕk
∂vn+1

)
,

(1.8)

where

η̃∗(dϕi, dϕj) = η∗(dϕi, dϕj), i, j 6= 0,

η̃∗(dϕ0, dϕj) = η∗(dϕi, dϕj) + 4πikjϕj .
(1.9)

See section 8.4 for the definition of Dτ and for further details. Thereafter, we extract the

coefficients η∗(dϕi, dϕj) from the generating function (1.8)

Theorem 1.4.3. The coefficients η∗(dϕi, dϕj) can be obtained by the formula,

η̃∗(dϕi, dϕj) = (i+ j − 2)ϕi+j−2, i, j 6= 0

η̃∗(dϕi, dϕ0) = 0, i 6= 0, i 6= 1,

η̃∗(dϕ1, dϕj) = 0. j 6= 0,

η̃∗(dϕ1, dϕ0) = ℘((n+ 1)vn+1)ϕ1.

(1.10)

Inspired by the construction of the flat coordinates of the Saito metric done in [28], we

construct explicitly the coordinates t0, t1, t2, .., tn, vn+1, τ by the following formulae

tα =
n

n+ 1− α
(ϕn)

n+1−α
n (1 + Φn−α)

n+1−α
n ,

t0 = ϕ0 −
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕ1 + 4πig1(τ)ϕ2,

(1.11)

where

(1 + Φi)
n+1−α

n =
∞∑
d=0

(n+1−α
n

d

)
Φd
i ,

Φd
i =

∑
i1+i2+..+id=i

ϕ(n−i1)

ϕn
....
ϕ(n−id)

ϕn
.

(1.12)

The Theorem 1.4.3 together with the formulae (1.11), and some extra auxiliary technical lemmas,

implies the flatness of the Saito metric η.
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Theorem 1.4.4. Let (t0, t1, t2, .., tn) be defined in (1.11), and η∗ the Saito metric. Then,

η∗(dtα, dtn+3−β) = −(n+ 1)δαβ, 2 ≤ α, β ≤ n

η∗(dt1, dtα) = 0,

η∗(dt0, dtα) = 0,

η∗(dti, dτ) = −2πiδi0,

η∗(dti, dvn+1) = − δi1
n+ 1

.

(1.13)

Moreover, the coordinates t0, t1, t2, .., tn, vn+1, τ are the flat coordinates of η∗. See details in

sections 8.5 and 8.6.

A remarkable fact to point out is that, even though the intersection form g∗ and their Levi

Civita connection are J (Ãn) invariant sections, its coefficients gij , Γijk are not Jacobi forms,

but they live in an extension of the Jacobi forms ring. Hence, we have the following lemma

Lemma 1.4.5. The coefficients of the intersection form gαβ and its Christoffel symbol Γαβγ

on the coordinates t0, t1, .., tn, vn+1, τ belong to the ring Ẽ•,•[t
0, t1, .., tn, 1

tn ], where Ẽ•,• is a

suitable extension of the ring E•,•.

This lemma 1.4.5 is important because it gives a tri-graded ring structure for the coefficients

gαβ and Γαβγ . In particular, the lemma 1.4.5 implies that gαβ and Γαβγ are eigenfunctions of the

Euler vector field given by the last equation (1.2). Using this fact, one can prove that gαβ and

Γαβγ are at most linear in the variable t0, and this fact together with Theorem 1.4.4 proves that

g∗, η∗ form a flat pencil of metrics, and consequently we can prove

Lemma 1.4.6. Let the intersection form be (1.6), the unit vector field be (1.5), and the Euler

vector field be given by the last equation of (1.2). Then, there exists a function

(1.14) F (t0, t1, t2, .., tn.vn+1, τ) = −(t0)2τ

4πi
+
t0

2

∑
α,β 6=0,τ

ηαβt
αtβ +G(t1, t2, .., tn, vn+1, τ),

such that

LieEF = 2F + quadratic terms,

LieE

(
Fαβ

)
= gαβ,

∂2G(t1, t2, .., tn, vn+1, τ)

∂tα∂tβ
∈ Ẽ•,•[t1, t2, .., tn,

1

tn
],

(1.15)

where

(1.16) Fαβ = ηαα
′
ηββ

′ ∂F 2

∂tα′∂tβ′
.

Using the lemma 1.4.6 with some more technical results, we obtain our final result
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Theorem 1.4.7. A suitable covering of the orbit space
(
C⊕ Cn+1 ⊕H

)
/J (Ãn) with

the intersection form (1.6), unit vector field (1.5), and Euler vector field given by the last

equation of (1.2) has a Dubrovin Frobenius manifold structure. Moreover, a suitable covering of

C⊕ Cn+1 ⊕H/J (Ãn) is isomorphic as Dubrovin Frobenius manifold to a suitable covering of

the Hurwitz space H1,n−1,0.

See section 8.11 for details. In particular, in chapter 6, we derive explicitly the WDVV

solution associated with the orbit space of J (Ã1),which is given by

(1.17) F
(
t1, t2, t3, t4

)
=

i

4π

(
t1
)2
t4 − 2t1t2t3 −

(
t2
)2

log

(
t2
θ′1
(
0, t4

)
θ1 (2t3, t4)

)
.

The results of this thesis are important because of the following

(1) The Hurwitz spaces H1,n−1,0 are classified by the group J (Ãn), hence we increase the

knowledge of the WDVV/ discrete group correspondence. In particular the WDVV

solutions associated with this orbit spaces contains a kind of elliptic function in an

exceptional variable, which is exotic in theory of WDVV solutions, since most of the

known examples are polynomial or polynomial with exponential function. Recently,

the case J (Ã1) attracted the attention of experts due to its application in integrable

systems [17], [19], [26].

(2) It is well known that Hurwitz spaces are related to matrix models, then, if one derives

the associated matrix model of the Hurwitz spaces H1,n−1,0, we would immediately

classify it by the group J (Ãn).

(3) Even though the orbit space of J (Ãn) is locally isomorphic as Dubrovin Frobenius

manifold to the Hurwtiz space H1,n−1,0, these two spaces are not necessarily the same.

Indeed, the Dubrovin Frobenius manifold associated to Hurwtiz spaces is a local

construction, because it is defined in a domain of a solution of a Darboux-Egoroff

system. On another hand, orbit spaces are somehow global objects, because their ring

of invariant function are polynomial over a suitable ring. In addition, the notion of

invariant functions gives information about the non-cubic part of the WDDV solution

associated with the orbit space, see the last equation of (1.15) for instance.

(4) The orbit space construction of the group J (Ãn) can be generalised to the other

classical finite Coxeter groups such as Bn, Dn. Hence, these orbit spaces could give rise

to a new class of Dubrovin Frobenius manifolds. Furthermore, the associated integrable

hierarchies of this new class of Dubrovin Frobenius manifolds could have applications

in Gromov Witten theory and combinatorics.

The thesis is organised in the following way. In chapter 2, we recall the basics definitions

of Dubrovin-Frobenius manifolds. In chapter 3, we recall the Dubrovin Frobenius manifold
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construction on Hurwitz spaces. In chapter 4, the construction of Dubrovin Frobenius mani-

folds on the orbit space of the finite Coxeter group An is considered in order to give a gentle

introduction to this framework. In chapter 5, based in the work done in [8] and [9], we consider

a Dubrovin Frobenius manifolds arising from more involved group called Jacobi groups, from

the section 5.4 to section 5.9, we use an alternative approach, which is more closely related

with the methods done in [28] and [11], to construct the Dubrovin Frobenius structure in the

orbit space of Jacobi groups. In chapter 6, we defined extended affine Jacobi group J (Ã1)

and , we construct Dubrovin-Frobenius structure on the orbit spaces of J (Ã1) and compute

its Free-energy. Furthermore, we show that the orbit space of the group J (Ã1) is isomor-

phic ,as Dubrovin-Frobenius manifold, to the Hurwitz-Frobenius manifold H̃1,0,0 [12], [17]

,[29]. See theorem 6.3.4 for details. In chapter 7, we describe Dubrovin Frobenius manifold of

the orbit space J (Ã1). In chapter 8, we generalise the results of chapter 6 for the group J (Ãn).

9



CHAPTER 2

Review of Dubrovin-Frobenius manifolds

2.1. Basic definitions

We recall the basic definitions of Dubrovin Frobenius manifold, for more details [12].

Definition 2.1.1. A Frobenius Algebra A is an unital, commutative, associative algebra

endowed with an invariant non degenerate bilinear pairing

η(, ) : A ⊗A 7→ C,

invariant in the following sense:

η(A •B,C) = η(A,B • C),

∀A,B,C ∈ A .

Definition 2.1.2. M is smooth or complex Dubrovin-Frobenius manifold of dimension n

if a structure of Frobenius algebra is specified on any tangent plane TtM at any point t ∈M ,

smoothly depending on the point such that:

(1) The invariant inner product η(, ) is a flat metric on M. The flat coordinates of η(, ) will

be denoted by (t1, t2, .., tn).

(2) The unity vector field e is covariantly constant w.r.t. the Levi-Civita connection ∇ for

the metric η(, )

(2.1) ∇e = 0

(3) Let

(2.2) c(u, v, w) := η(u • v, w)

(a symmetric 3-tensor). We require the 4-tensor

(2.3) (∇zc)(u, v, w)

to be symmetric in the four vector fields u, v, w, z.

(4) A vector field E must be determined on M such that:

(2.4) ∇∇E = 0

10



and that the corresponding one-parameter group of diffeomorphisms acts by conformal

transformations of the metric η, and by rescalings on the Frobenius algebras TtM .

Equivalently:

(2.5) [E, e] = −e,

LEη(X,Y ) := Eη(X,Y )− η([E,X], Y )− η(X, [E, Y ])

= (2− d)η(X,Y ),
(2.6)

LEc(X,Y, Z) := Ec(X,Y, Z)− c([E,X], Y, Z)− c(X, [E, Y ], Z)

− c(X,Y, [E,Z]) = (3− d)c(X,Y, Z).
(2.7)

The Euler vector E can be represented as follows:

Lemma 2.1.1. If the grading operator Q := ∇E is diagonalizable, then E can be represented

as:

(2.8) E =
n∑
i=1

((1− qi)ti + ri)∂i

We now define scaling exponent as follows:

Definition 2.1.3. A function ϕ : M 7→ C is said to be quasi-homogeneous of scaling

exponent dϕ, if it is a eigenfunction of Euler vector field:

(2.9) E(ϕ) = dϕϕ

Definition 2.1.4. The function F (t), t = (t1, t2, .., tn) is a solution of WDVV equation if its

third derivatives

(2.10) cαβγ =
∂3F

∂tα∂tβ∂tγ

satisfy the following conditions:

(1)

ηαβ = c1αβ

is constant nondegenerate matrix.

(2) The function

cγαβ = ηγδcαβδ

is structure constant of associative algebra.

(3) F(t) must be quasi-homogeneous function

F (cd1t1, .., cdntn) = cdFF (t1, .., tn)

for any nonzero c and for some numbers d1, ..., dn, dF .

Lemma 2.1.2. Any solution of WDVV equations with d1 6= 0 defined in a domain t ∈ M
determines in this domain the structure of a Dubrovin-Frobenius manifold. Conversely, locally

any Dubrovin-Frobenius manifold is related to some solution of WDVV equations.
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2.1.1. Intersection form.

Definition 2.1.5. Let x = η(X, ), y = η(Y, ) ∈ Γ(T ∗M) where X,Y ∈ Γ(TM). An induced

Frobenius algebra is defined on Γ(T ∗M) by:

x • y = η(X • Y, ).

Definition 2.1.6. The intersection form is a bilinear pairing in T ∗M defined by:

(ω1, ω2)
∗ := ιE(ω1 • ω2)

where ω1, ω2 ∈ T ∗M and • is the induced Frobenius algebra product in the cotangent space. the

intersection form will be denoted by g∗ .

Remark 1: Let x = η(X, ), y = η(Y, ) ∈ Γ(T ∗M). Then:

g∗(x, y) = η(X • Y,E) = c(X,Y,E).

Remark 2: It is possible to prove that the tensor g∗ defines a bilinear form on the tangent

bundle that is almost everywhere non degenerate [12].

Proposition 2.1.3. The metric g∗ is flat, and ∀λ ∈ C, the contravariant metric η∗(, )+λg∗(, )

is flat, and the contravariant connection is ∇η + λ∇g, where ∇η,∇g are the contravariant

connections of η∗ and g∗ respectively. The family of metrics η∗(, ) + λg∗(, ) is called Flat pencil

of metrics.

Lemma 2.1.4. The induced metric η∗ on the cotangent bundle T ∗M can be written as Lie

derivative with respect the unit vector field e of the intersection form g∗. i.e

(2.11) η∗ = Leg
∗.

Lemma 2.1.5. The correspondent WDVV solution F (t1, .., tn) of the Dubrovin-Frobenius

manifold works as potential function for g∗. More precisely:

(2.12) g∗(dti, dtj) = (1 + d− qi − qj)∇(dti)]∇(dtj)]F.

where the form (dtj)] is the image of dtj by the isomorphism induced by the metric η.

2.1.2. Reconstruction. Suppose that given a Dubrovin-Frobenius manifold M, only the

following data are known: intersection form g∗, unit vector field e, Euler vector field E. From

the previous lemmas we can reconstruct the Dubrovin-Frobenius manifold by setting:

(2.13) η∗ = Leg
∗.

Then, we find the flat coordinates of η as homogeneous functions, and the structure constants

by imposing:

(2.14) g∗(dti, dtj) = (1 + d− qi − qj)∇(dti)]∇(dtj)]F.

12



Therefore, it is possible to compute the Free-energy by integration. Of course, we may have

obstructions when, 1 + d = qi + qj .

2.1.3. Monodromy of Dubrovin-Frobenius manifold. The intersection form g of a

Dubrovin-Frobenius manifold is a flat almost everywhere nondegenerate metric. Let

Σ = {t ∈M : det(g) = 0}

Hence, the linear system of differential equations determining g∗-flat coordinates

gαε(t)
∂2x

∂tβ∂tε
+ Γαεβ (t)

∂x

∂tε
= 0

has poles, and consequently its solutions xa(t
1, .., tn) are multivalued, where (t1, .., tn) are flat

coordinates of η. The analytical continuation of the solutions xa(t
1, .., tn) has monodromy

corresponding to loops around Σ. This gives rise to a monodromy representation of π1(M \ Σ),

which is called Monodromy of the Dubrovin-Frobenius manifold.

2.1.4. Dubrovin Connection. In the theory of Dubrovin Frobenius manifold, there is

another way to associate a monodromy group on it. Consider the following deformation of the

Levi-Civita connection defined on a Dubrovin Frobenius manifold M

(2.15) ∇̃uv := ∇uv + zu • v, u, v ∈ Γ(TM),

where ∇ is the Levi-Civita connection of the metric η, • is the Frobenius product, and z ∈ CP1.

Then, the following connection defined in M × CP1

∇̃uv := ∇uv + zu • v,

∇̃ d
dz

d

dz
= 0, ∇̃v

d

dz
= 0,

∇̃ d
dz
v = ∂zv + E • v − 1

z
µ(v).

(2.16)

where µ is the diagonal matrix be given by

µαβ = (qα −
d

2
)δαβ.(2.17)

The monodromy representation arise by considering the solutions of the flat coordinate systems

∇̃dt̃ = 0.(2.18)

After doing some Gauge transformations in the system (2.18), and writing it in matricidal form.

The system 2.18 takes the form

dY

dtα
= zCαY,

dY

dz
=
(
U +

µ

z

)
Y,

(2.19)
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where

Cα
γ
β = cγαβ, Uγβ = Eεcγβε.(2.20)

2.2. Semisimple Dubrovin Frobenius manifolds

Definition 2.2.1. A Frobenius algebra is called semisimple if it does not have nilpotent, i.e.

if a 6= 0 implies

(2.21) am 6= 0, for any m ∈ Z.

Lemma 2.2.1. [12] Let A be a semisimple Frobenius algebra, then there exist a base

e1, e2, .., en of A, such that the Frobenius product • in this base is described by

(2.22) ei • ej = δijei.

Definition 2.2.2. A point in a Dubrovin Frobenius manifold is called semisimple, if the

Frobenius algebra in its tangent space is semisimple.

Remark 2.2.1. Note that semisimplicity is an open condition.

Lemma 2.2.2. [12] In a neighbourhood of a semi semisimple point, there exist local coordi-

nates (u1, u2, .., un) such that

(2.23)
∂

∂ui
• ∂

∂uj
= δij

∂

∂ui
.

The coordinates (u1, u2, .., un) are called canonical coordinates.

Lemma 2.2.3. [12] Let M a semisimple Dubrovin Frobenius manifold, on the canonical

coordinates (u1, u2, .., un) the intersection form, Euler vector field, and unit vector field can be

written as

gii = uiη
iiδij ,

e =
n∑
i=1

∂

∂ui
,

E =
n∑
i=1

ui
∂

∂ui
.

(2.24)

Proposition 2.2.4. [12] In a neighborhood of a semisimple point all the roots (u1, u2, .., un)

of the characteristic equation

(2.25) det(gαβ − uηαβ) = 0

are simple. They are canonical coordinates in this neighbourhood . Conversely, if the roots of

the characteristic equation are simple in a point p ∈M , then p ∈M is a semisimple point on

the Frobenius manifold and (u1, u2, .., un) are canonical coordinates in the neighbourhood of

this point.
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Definition 2.2.3. [12] A diagonal metric on a n-dimensional manifold

(2.26) η =

n∑
i=1

ηiidu
2
i

is called potential, if there exist a function U(u1, u2, .., un) such that

(2.27) ηii =
∂U

∂ui
.

Definition 2.2.4. [12] A potential diagonal flat metric η on a n-dimensional manifold is

called Darbou-Egoroff metric.

Lemma 2.2.5. [12] Let be η a diagonal potential metric on a n-dimensional manifold

(2.28) η =
n∑
i=1

ηiidu
2
i .

Then, the metric (2.28) is Darboux-Egoroff iff its rotational coefficients βij

(2.29) βij =
∂j
√
ηii

√
ηjj

satisfy the system of equations

∂kβij = βikβkj ,

n∑
k=1

∂kβij = 0.
(2.30)
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CHAPTER 3

Review of Dubrovin-Frobenius manifold on Hurwitz spaces

3.1. Hurwitz spaces

The main reference of this section are [12] and [29].

Definition 3.1.1. The Hurwitz space Hg,n0,...,nm is the moduli space of curves Cg of genus

g endowed with a N branched covering, λ : Cg 7→ CP 1 of CP 1 with m+ 1 branching points over

∞ ∈ CP 1 of branching degree ni + 1, i = 0, ...,m.

Definition 3.1.2. Two pairs (Cg, λ) and (C̃g, λ̃) are said Hurwitz-equivalent if there exist

an analytic isomorphic F : Cg 7→ C̃g such that

(3.1) λ ◦ F = λ̃.

Roughly speaking, Hurwitz spaces Hg,n0,...,nm are moduli spaces of meromorphic functions

which realise a Riemann surface of genus g Cg as covering over CP 1 with a fixed ramification

profile.

Example 1:

A generic point of the Hurwitz space H0,n is

(3.2) H0,n = {λ(p, x0, x1, x2, .., xn) =
n∏
i=0

(p− xi) :
n∑
i=0

xi = 0}

Example 2:

A generic point of the Hurwitz space H0,n−1,0 is

(3.3) H0,n = {λ(p, a2, a3, .., an+1, an+2) = pn + a2p
n−2 + ...+ anp+ an+1 +

an+2

p
.}

Example 3:

A generic point of the Hurwitz space H1,n is

(3.4) H1,n = {λ(p, u, v0, v1, .., vn, τ) = e−2πiu
∏n
i=0 θ1(p− vi, τ)

θn+1
1 (v, τ)

:
n∑
i=0

vi = 0}

here θ1 is the Jacobi theta function, see (3.25).
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Example 4:

A generic point of the Hurwitz space is H1,n−1,0 is

(3.5)

H1,n−1,0 = {λ(p, u, v0, v1, .., vn, vn+1, τ) = e−2πiu
∏n
i=0 θ1(p− vi, τ)

θn1 (v, τ)θ1(v + (n+ 1)vn+1, τ)
:

n∑
i=0

vi = −(n+1)vn+1}

The covering H̃ = H̃g,n0,...,nm consist of the set of points

(Cg;λ; k0, ..., km; a1, ..., ag, b1, ..., bg) ∈ H̃g,n0,...,nm

where Cg, λ are the same as above, a1, ..., ag, b1, ..., bg ∈ H1(Cg,Z) are the canonical symplectic

basis, and k0, ..., km are roots of λ near ∞0,∞1, ...,∞m of the orders n0 + 1, n1 + 1, ..., nm + 1.

resp.,

kni+1
i (P ) = λ(P ), P near ∞i.

3.2. Bidifferential W

Definition 3.2.1. [29] Let P,Q ∈ Cg. The meromorphic Bidifferential W is given by

(3.6) W (P,Q) = dPdQ logE(P,Q),

where E(P,Q) is the prime form on the Riemann surface Cg. Alternatively, it can be characterised

by the following properties

(1) symmetric meromorphic differential in Cg ×Cg, with second order pole on P = Q with

biresidue 1

(2) ∫
ak

W (P,Q) = 0;∫
bk

W (P,Q) = 2πiωk(P )

(3.7)

where {ωk(P )} are the normalized base of holomorphic differentials, i.e.
∫
aj
ωk(P ) = δij

The dependence of the bidifferential W on branch points of the Riemann surface is given by

the Rauch variational formulas

∂W (P,Q)

∂ui
=

1

2
W (P, Pi)W (Pi, Q),(3.8)

where W (P, Pi) is the evaluation of W (P,Q) at Q = Pj with respect to the standard local

parameter xj(Q) =
√
λ− λ(Q)

W (P, Pi) =
W (P,Q)

dxj(Q)

∣∣∣∣
Q=Pj

(3.9)

A remarkable consequence of the Rauch variational formula is that it induce a flat metric in the

Hurwitz space. Indeed,
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Proposition 3.2.1. [29] Let be the metric

(3.10) ds2W =
n∑
i=1

(∮
l
h(Q)W (Q,Pi)

)2

(dui)
2,

where l is a smooth contour in the Riemann surface such that Pi /∈ l, and h(Q) is a smooth

function independent of {ui}. Then, the rotational coefficients of (3.10) satisfies a Darboux-

Egoroff system in lemma 2.2.5.

For particular choices of the function h(Q) the metrics (3.10) coincides with the metrics

induced by the primary differentials see section 3.3 and [12] for details. This fact is remarkable,

because, it shows that from only the data of the Hurwtiz space, one can construct a flat metric

for the desired Dubrovin Frobenius manifold.

3.3. Reconstruction of Dubrovin Frobenius manifold

Over the space H̃g,n0,...,nm , it is possible to introduce a Dubrovin-Frobenius structure by

taking as canonical coordinates the ramification points (u1, u2, ..un) of Hg,n0,...,nm . The Dubrovin-

Frobenius structure is specified by the following objects:

(3.11) multiplication ∂i • ∂j = δij∂i,where ∂i =
∂

∂ui
,

(3.12) Euler vector field E =
∑
i

ui∂i,

(3.13) unit vector field e =
∑
i

∂i,

and the metric η defined by the formula

(3.14) ds2φ =
∑

resPi
φ2

dλ
(dui)

2,

where φ is some primary differential of the underlying Riemann surface Cg. Note that the

Dubrovin-Frobenius manifold structure depends on the meromorphic function λ, and on the

primary differential φ. The list of possible primary differential φ is in [12].

Consider a multivalued function p on C by taking the integral of φ

p(P ) = v.p

∫ P

∞0

φ

The principal value is defined by omitting the divergent part, when necessary, because φ may be

divergent at ∞0, as function of the local parameter k0. Indeed the primary differentials defined

on [12] may diverge as functions of ki.

φ = dp.
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Let H̃φ be the open domain in H̃ specifying by the condition

φ(Pi) 6= 0.

Theorem 3.3.1. [12] For any primary differential φ of the list in [12] the multiplication

(3.11), the unity (3.13), the Euler vector field (3.12), and the metric (3.14) determine a structure

of Dubrovin Frobenius manifold on H̃φ. The corresponding flat coordinates tA, A = 1, ..., N

consist of the five parts

(3.15) tA = (ti,α, i = 0, ..m, α = 1, .., ni; p
i, qi, i = 1, ..,m; ri, si, i = 1, ..g)

where

(3.16) ti,α = res∞ik
−α
i pdλ i = 0, ..m, α = 1, .., ni

(3.17) pi = v.p

∫ ∞i

∞0

dp i = 1, ..m.

(3.18) qi = −res∞iλdp i = 1, ..m.

(3.19) ri =

∫
ai

dp i = 1, ..g.

(3.20) si = − 1

2πi

∫
bi

λdp i = 1, ..g.

Moreover, function λ = λ(p) is the superpotential of this Dubrovin Frobenius manifold, i.e.

we have the following formulas to compute the metric η = 〈, 〉, the intersection form g∗ = (, )

and the structure constants c.

(3.21) 〈∂′, ∂′′〉 = −
∑

resdλ=0
∂′(λ)∂′′(λ)

dλ
dp

(3.22) (∂′, ∂′′) = −
∑

resdLogλ=0
∂′(Logλ)∂′′(Logλ)

dLogλ
dp

(3.23) c(∂′, ∂′′, ∂′′′) = −
∑

resdλ=0
∂′(λ)∂′′(λ)∂′′′(λ)

dλ
dp

Remark 3.3.1. The Dubrovin Frobenius structure on Hurwitz spaces depend on a choice of

suitable primary differentials. Dropping this suitable choice implies that we typically lose the

quasi homogeneous condition of the WDVV equation or the fact the unit is covariant constant.
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3.3.1. Example H̃1,0,0. H1,0,0 is the space of elliptic functions with 2 simple poles, i.e:

(3.24) λ(p, a, b, c, τ) = a+ b

[
θ′1(p− c|τ)

θ1(p− c|τ)
− θ′1(p+ c|τ)

θ1(p+ c|τ)

]
where

(3.25) θ1(v, τ) = 2

∞∑
n=0

(−1)neπiτ(n+
1
2
)2 sin((2n+ 1)v)

We take the holomorphic primary differential dp. Applying the Theorem (3.3.1) in this case we

get that the flat coordinates for the metric η are exactly (a, b, c, τ). Furthermore, using formula

(3.23) we get the following formula (page 28 of [13]).

(3.26) F (a, b, c, τ) =
i

4π
a2τ − 2abc− b2 log(b

θ′1(0, τ)

θ1(2c, τ)
)

Remark: There is a typo in the last term of the expression in the paper [13]. The expression

(3.26) in a correct form can be found in [17], and [19]. Further, we derive the expression (3.26)

by using orbit space techniques, see section 6.3.
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CHAPTER 4

Review of Dubrovin Frobenius manifolds on the orbit space of

An

The main goal of this section is to introduce the construction of Dubrovin Frobenius manifolds

on orbit spaces. For this purpose, we start with the orbit space of the finite Coxeter group An.

This example is particularly important, because:

(1) It gives a intrinsic description of the differential geometry of the universal unfolding of

the simple singularity λ = pn+1 [11]

M = {λ(p, a2, a3, .., an+1) = pn+1 + a2p
n−1 + a3p

n−2 + ..+ anp+ an+1}

or equivalently to of Hurwitz space H0,n.

(2) It describes the topological minimal model associated with the An group [11].

This section is a resume of [11] and [28] which will works as gentle introduction to the orbit

space construction. Indeed, the techniques used in this section will be further adapted to be

applied in Chapter 6 and 8.

4.1. Finite Coxeter group An

Step 1:

The first step of the orbit space construction is the definition of the desired group action. In

this particular case, the definition of the An action on Cn.

Let An be a finite Coxeter group that acts on a lattice

(LAn , <,>An) with a bilinear form <,>An , where LAn is defined below

LAn = {z = (z0, z1, .., zn) ∈ Zn+1 :
n∑
i=0

zi = 0},

The bilinear pairing <,>An is the Euclidean metric restricted to the condition
∑n

i=0 zi = 0.

More explicitly,

< z, z >An = zT



2 1 1 ... 1

1 2 1 ... 1

1 1 2 ... 1

1 1 1 ... 1

1 1 1 ... 2


z = 2

n−1∑
i=0

z2i + 2
∑
i>j

zizj
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Recall that An acts on LAn by permutations:

wi(z0, z1, z2, .., zn) = (zi0 , zi1 , ..., zin).

Moreover, the An group acts on the complexification of LAn , <,>An

LAn ⊗ C = {v = (x0, x1, .., xn) ∈ Zn+1 :
n∑
i=0

xi = 0},

by permutation.

Note that, we can identify LAn ⊗ C with Cn by the maps

(v0, .., vn−1) 7→ (v0, .., vn−1,−
n∑
i=0

vi),

(v0, .., vn−1, vn) 7→ (v0, .., vn−1).

4.2. Invariant ring of An

Step 2: The second step consist in the description of a suitable ring of invariant functions.

In this particular case, the ring of invariant functions is the ring of polynomials which are

invariant under the An action. The main result of this section is the Chevalley theorem. This

theorem realise the ring of the An invariant polynomials as the finite generated ring of the

symmetric polynomials a2, a3, ..., an+1 in the variables v0, v1, v2, .., vn. In practice, this fact allow

us to use a base of symmetric polynomials as coordinates for the orbit space, furthermore, it

gives a global description of the orbit space of the An, by considering as

SpecC[a2, a3, .., an.an+1] = Cn.

Definition 4.2.1. The Invariant ring of An are homogeneous polynomials g on Ω = Cn 3
(v0, v1, .., vn) satisfying

g(w(v0, v1, .., vn)) = g(v0, v1, .., vn), w ∈ An (An invariant condition)(4.1)

Examples:

The elementary symmetric polynomials

a1(v0, v1, .., vn) =
n∑
i=0

vi = 0,

a2(v0, v1, .., vn) =
n∑
i=0

vivj

∣∣∣∣∣∑n
i=0 vi=0

,

.

.

an+1(v0, v1, .., vn) =
n∏
i=0

vi

∣∣∣∣∣∑n
i=0 vi=0

.
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Theorem 4.2.1. Chevalley theorem[10] The Invariant ring of An is free module of rank

n+ 1 over C, with generators a2, a3, .., an+1. Namely:

Invariant An polynomials = C[a2, a3, .., an.an+1]

Remark 4.2.1. The basis for generators is not unique, indeed fixing a base, one could derive

another base by doing a weighted polynomial transformation. However, the degree di of the

homogeneous polynomials are invariant, in particular they are called Coxeter numbers.

Theorem 4.2.2. There exist a formula for a specific basis of generators given by

λAn(p) =
n∏
i=0

(p− vi) = pn+1 + a2p
n−1 + ...+ anp+ an+1,(4.2)

where
∑n

i=0 vi = 0.

Remark 4.2.2. It is well-know that one can associated any generating function with a

recursive operator. In the case of (4.2), the recursive operator can be obtained by the following

obeservation

λAn(p) =

[
ep

∂
∂x

(
n∏
i=0

(x− vi)

)]∣∣∣∣∣
x=0

Then, we can obtain a2, .., an+1 by doing the following transformation in an+1

an+1 =
n∏
i=0

vi

∣∣∣∣∣∑n
i=0 vi=0

7→ ân+1 =
n∏
i=0

(p− vi)

∣∣∣∣∣∑n
i=0 vi=0

,

and by applying the recursive operator ∂
∂x in ân+1 in the following sense

ân+1|x=0 = an+1,

∂

∂x
(ân+1)

∣∣∣∣
x=0

= an,

∂2

∂x2
(ân+1)

∣∣∣∣
x=0

= an−1,

.

.

∂n−1

∂xn−1
(ân+1)

∣∣∣∣
x=0

= a2,

∂n

∂xn
(ân+1)

∣∣∣∣
x=0

= a1 = 0,

∂n+1

∂xn+1
(ân+1)

∣∣∣∣
x=0

= 1,
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Note that the operator ∂
∂x can be interpreted as a vector field in a enlargement of the orbit

space of An on the coordinates (v0, v1, .., vn, x). Sometimes is also useful write this vector field
∂
∂x the following coordinates

zi = vi + x,

as

∂

∂x
=

n∑
i=0

∂

∂zi
.(4.3)

The relation (4.3) will be useful in the next chapter.

4.3. Geometric structure of the orbit space of An

Step 3: In this section, we introduce the minimal geometric data to reconstruct a Dubrovin

Frobenius manifold structure as it was already announced in the subsection 2.1.2. The geometric

structure on a orbit space of An must be invariant An sections, therefore, we need to construct

an intersection form, Euler vector field, and unit vector field which are An invariant.

Definition 4.3.1. The metric g is the following tensor:

g =
n∑
i=0

dv2i
∣∣∑n

i=0 vi=0
dvidvj = gijdvidvj ,(4.4)

where gij is

(4.5) (gij) =



2 1 1 ... 1

1 2 1 ... 1

1 1 2 ... 1

1 1 1 ... 1

1 1 1 ... 2


Definition 4.3.2. The intersection form g∗ is given by

g∗ = gij
∂

∂vi
⊗ ∂

∂vj
(4.6)

where gij = gij
−1.

Proposition 4.3.1. The intersection form (4.6) is An invariant.

Proof. The intersection form (4.6) is An invariant iff (4.4) also is. But is a particular

restriction of the Euclidean metric, which is clearly An invariant.

Definition 4.3.3. Let be di the degree of the polynomial ai, then the Euler vector field E

is given by

(4.7) E =
∑

diai
∂

∂ai
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Definition 4.3.4. The Unit vector field e is given by

(4.8) e =
∂

∂an+1

Lemma 4.3.2. The unit vector field (4.8) and Euler vector field (4.7) are An invariant

sections.

Proof. Both (4.8) and (4.7) are written in terms of invariant An polynomials.

4.4. Differential geometry preliminaries

In order to derive the Dubrovin Frobenius manifolds, we recall some results related with

Riemannian geometry of the contravariant ”metric” gij . By metric, I mean symmetric, bilinear,

non-degenerate. In coordinates, let the metric

gijdx
idxj

and its induced contravariant metric

gij
∂

∂xi
⊗ ∂

∂xj

The Levi Civita connection is uniquely specified by

(4.9) ∇kgij = ∂kgij − Γskigsj − Γskjgis = 0,

or

(4.10) ∇kgij = ∂kg
ij − Γiksg

sj − Γjksg
is = 0,

and

(4.11) Γkij = Γkji.

The Christoffel symbol can be written as

Γkij = gks (∂igsj + ∂jgis − ∂sgij) .

But, for our purpose it will be more convenient to use

(4.12) Γijk := −gisΓjsk.

Then, the equations (4.9), (4.10), and (4.11) are equivalent to

∂kg
ij = Γijk + Γjik ,

gisΓjks = gjsΓiks .
(4.13)

Introducing the operators

∇i = gis∇s,

∇iξk = gis∂sξk + Γisk ξs.
(4.14)
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The curvature tensor Rlijk of the metric measures noncommutativity of the operators ∇ior,

equivalently ∇i

(∇i∇j −∇j∇i) ξk = Rlijkξl(4.15)

where

Rlijk = ∂iΓ
l
jk − ∂jΓlik + ΓlisΓ

s
jk − ΓljsΓ

s
ik(4.16)

We say that the metric is flat if the curvature of it vanishes. For a flat metric local

flat coordinates p1, ..., pn exist such that in these coordinates the metric is constant and the

components of the Levi-Civita connection vanish. Conversely, if a system of flat coordinates for

a metric exists then the metric is flat. The flat coordinates are determined uniquely up to an

affine transformation with constant coefficients. They can be found from the following system

∇i∂kp = gis∂s∂kp+ Γisk ∂sp = 0.(4.17)

The correspondent Riemman tensor for the contravariant metric gij can be written as

Rijkl := gisgjtRkstl = gis
(
∂sΓ

jk
l − ∂lΓ

jk
s

)
+ Γijs Γskl − Γiks Γsjl .(4.18)

The aim of this section is to construct a Dubrovin Frobenius structure on the orbit space of

An. The strategy to achieve this goal is based on the derivation of a WDVV solution from the

geometric data of the orbit space An. More specifically, the WDVV solution will be derived

from the flat pencil structure which the orbit space of An naturally has.

Definition 4.4.1. [11] Two metrics (g∗, η∗) form a flat pencil if:

(1) The metric

(4.19) gijλ := gij + ληij ,

is flat for arbitrary λ.

(2) The Levi-Civita connection of the metric (4.19) has the form

Γijk,λ := Γijk,g + λΓijk,η

where Γijk,g, Γijk,η are the Levi-Civita connection of g∗, and η∗ respectively.

The main source of flat pencil metric is the following lemma

Lemma 4.4.1. [11] If for a flat metric g∗ in some coordinate a2, a3, .., an+1 both the coefficients

of the metric gij and Levi Civita connection Γijk are linear in the coordinate an+1, and if

det(g∗) 6= 0, then, the metric

(4.20) gij + λ
∂gij

∂an+1
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form a flat pencil. The corresponding Levi-Civita connection have the form

(4.21) Γijk,g := Γijk , Γijk,η :=
∂Γijk
∂an+1

Hence, our goal is first to construct a flat globally well defined metric in the orbit space of

An such that there exist coordinates a2, a3, .., an+1 in which both the metric and its Christoffel

symbols are at most linear on an+1.

4.5. The Saito metric η

Step 4:

This section will be devoted to construct the flat pencil metric on the orbit space of An. The

first flat metric was already constructed in (4.6), therefore, this section will concentrate in the

construction of the second flat metric. The second metric as the lemma 4.4.1 suggests is given

by

Lie ∂
∂an+1

gij := ηij .

Hence, we will derive the coefficients of the metric (4.6) in the coordinates a2, a3, .., an+1 and

from it we derive the coefficients of the second metric of the flat pencil.

Proposition 4.5.1. [28] The coefficient of g∗(dap, daq) is recovered by the generating

formula

n+1∑
i,j=0

g∗(dai, daj)u
n+1−iwn+1−j =

= − 1

n+ 1

dλ(w)

dw

dλ(u)

du
+

1

u− w

(
λ(w)

dλ(u)

du
− dλ(w)

dw
λ(u)

)
.

(4.22)

Before proving it, we state the following corollary.

Corollary 4.5.1.1. [28] Let be η∗ defined by

(4.23) η∗ := Lie ∂
∂an+1

g∗ :

Then, the coefficient of η∗ in the coordinates a2, a3, .., an+1 is recovered by the formula

η∗(dai, daj) :=
∂g∗(dai, daj)

∂an+1
= − (2n+ 4− i− j) ai+j−n−3.(4.24)

The metric η∗ is called Saito metric due to Saito, who is the first one that defined such metric

[28].

Proof.

n+1∑
i,j=0

∂g∗(dai, daj)

∂an+1
un+1−iwn+1−j =

1

u− w

(
dλ(u)

du
− dλ(w)

dw

)
(4.25)
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Note that

λ(p) =
n+1∑
i=0

aip
n+1−i

∂λ(p)

dp
=

n+1∑
i=0

(n+ 1− i)aipn−i
(4.26)

Then substituting (4.26) in (4.25)

n+1∑
i,j=0

∂g∗(dai, daj)

∂an+1
un+1−iwn+1−j =

1

u− w
[

n+1∑
i=0

(n+ 1− i)ai(un−i − wn−i)]

=
n+1∑
i=0

n−1−i∑
j=0

(n+ 1− i)aiun−1−i−jwj

=
n+1∑
i=0

n−1∑
j=0

(n+ 1− i+ j)ai−ju
n−1−iwj

=

n+3∑
i=2

n+1∑
j=2

(2n+ 4− i− j)ai+j−n−3un+1−iwn+1−j

(4.27)

In order to prove the proposition 4.5.1 it will be necessary to prove some auxiliary lemmas.

At first steep, it will be required to extended the metric g∗(dai, daj) on the space Cn ⊕ C 3
(v0, v1, .., vn, p), the extension goes as follows

(4.28) g̃∗ =
n+1∑
i=0

∂

∂xi
⊗ ∂

∂xi

and also we extended λ(p) as

λ̃(p) =

n∏
i=0

(p− pi) = pn+1 + p1p
n + p2p

n−1 + ...+ pnp+ pn+1,(4.29)

by forgetting the condition
∑n

i=0 vi = 0. Then, we have the following relation between

(p1, p2, p3, .., pn, pn+1) and (a2, a3, .., an, an+1)

pi(v0, ..., vn)|∑n
i=0 vi=0 = ai(v0, ..., vn).(4.30)

Then, we can state

Lemma 4.5.2. [28] Let the extended intersection form (4.28), and the extended generating

function (4.29). Then, the following identity holds

(4.31)

n+1∑
i,j=0

g̃∗(dpi, dpj)u
n+1−iwn+1−j =

1

u− w
[λ̃(v)

dλ̃(u)

du
− dλ̃(w)

dw
λ̃(u)]
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Proof.

n+1∑
i,j=0

g̃∗(dpi, dpj)u
n+1−iwn+1−j = g̃∗(dλ̃(u), dλ̃(w))

=
n+1∑
i,j=0

g̃∗(dpi, dpj)
∂λ̃(u)

∂pi

∂λ̃(w)

∂pj

=
n+1∑
i,j=0

1

p− vi
1

p− vj
λ̃(u)λ̃(w)

=
1

u− w

n+1∑
i,j=0

[
1

p− vi
− 1

p− vj
]λ̃(u)λ̃(w)

=
1

u− w
[λ̃(w)

dλ̃(u)

du
− dλ̃(w)

dw
λ̃(u)]

(4.32)

Lemma 4.5.3. [28] Let the extended intersection form (4.28), and the extended generating

function be given by (4.29). Then, the following identity holds

g̃∗(dp1, dpi) = −(n+ 2− i)pi−1(4.33)

Proof.

g̃∗(dp1, dλ̃(v)) =
n+1∑
l,m=0

∂p1
∂vl

∂λ̃(w)

∂vm
=

n+1∑
m=0

−1

p− vm
λ̃(w) = λ̃′(w)

=
n+1∑
m=0

−(n+ 1−m)piw
n−m =

n+1∑
m=0

g̃∗(dp1, dpi)w
n+1−m

=
n+2∑
m=1

−(n+ 2−m)piw
n+1−m

(4.34)

Lemma 4.5.4. [28] Let be P,Q two polynomials in Ω 3 (v0, v1, .., vn), and P̃ , Q̃ two polyno-

mials with variable in Ω̂ = Ω⊕ C 3 (v0, v1, .., vn, p) such that

P̃ = P + p1f1,

Q̃ = Q+ p1f2,

where f1, f2 are polynomial functions in p1, p2, .., pn+1. Then,

g̃∗(dP̃ , dQ̃) = g∗(dP, dQ) + p1h1h2.

where h1, h2 are polynomial functions in p1, p2, .., pn+1.
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Proof. We have the orthogonal decomposition of dP̃

dP̃ =
n+1∑
k=0

∂P̃

∂vk
dvk

= ηP̃ +
1

n+ 1
g̃∗(dp1, dP̃ )dp1

where

ηP̃ =

n+1∑
k=0

∂P̃

∂vk
d

(
vk −

1

n+ 1
p1

)

Similarly for dQ̃

dQ̃ =

n+1∑
k=0

∂Q̃

∂vk
dvk

= ηQ̃ +
1

n+ 1
g̃∗(dp1, dQ̃)dp1

where

ηQ̃ =
n+1∑
k=0

∂Q̃

∂vk
d

(
vk −

1

n+ 1
p1

)

Since, g̃∗(dp1, dp1) = n+ 1,

g̃∗(dP̃ , dQ̃) = g̃∗(ηP̃ , ηQ̃) +
1

n+ 1
g̃∗(dp1, dQ̃)g̃∗(ηP̃ , dp1)

+
1

n+ 1
g̃∗(dp1, dP̃ )g̃∗(ηQ̃, dp1) +

n+ 1

(n+ 1)2
g̃∗(dp1, dQ̃)g̃∗(dP̃ , dp1)

= g̃∗(ηP̃ , ηQ̃) +
1

n+ 1
g̃∗(dp1, dQ̃)g̃∗(dP̃ , dp1)

Proof. of proposition 4.5.1 Note that

ai = pi −
(
n+ 2− i
n+ 1

)
p1pi−1, i = 2, .., n+ 1.
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Then, applying the lemmas 4.5.4, 4.5.3, we have

g̃∗(dai, daj) = g̃∗(dpi, dpj)−
(
n+ 2− j
n+ 1

)
p1g̃
∗(dpi, dpj−1)−

(
n+ 2− j
n+ 1

)
pj−1g̃

∗(dpi, dp1)

−
(
n+ 2− i
n+ 1

)
p1g̃
∗(dpj , dpi−1)−

(
n+ 2− i
n+ 1

)
pi−1g̃

∗(dpj , dp1)

+

(
n+ 2− i
n+ 1

)(
n+ 2− j
n+ 1

)
p21g̃
∗(dpi−1, dpj−1)

+

(
n+ 2− i
n+ 1

)(
n+ 2− j
n+ 1

)
p1pj−1g̃

∗(dp1, dpi−1)

+

(
n+ 2− i
n+ 1

)(
n+ 2− j
n+ 1

)
p1pi−1g̃

∗(dp1, dpj−1)

+

(
n+ 2− i
n+ 1

)(
n+ 2− j
n+ 1

)
pi−1pj−1g̃

∗(dp1, dp1)

= g̃∗(dpi, dpj)−
(
n+ 2− i
n+ 1

)(
n+ 2− j
n+ 1

)
pi−1pj−1 + p1h,

where h is some polynomial in the variables p1, p2, .., pn+1. Then,

n+1∑
i,j=0

g̃∗(dai, daj)u
n+1−iwn+1−j = − 1

n+ 1

dλ(w)

dw

dλ(u)

du
+

1

u− v

(
λ(w)

dλ(u)

du
− dλ(w)

dw
λ(u)

)
+ p1h.

(4.35)

4.6. Flat coordinates of the Saito metric η

Step 5:

This section will be dedicated to prove that the Saito metric η is flat and non degenerate. This

fact, implies the existence of the hypothesis of the lemma 4.4.1. In practice, we will construct

the flat coordinates of the Saito metric η as follows.

Let be t1, t2, .., tn given by the following generating function

p(k) = k − 1

n+ 1
(
tn

k
+
tn−1

k2
+ ..+

t2

kn−2
+
t1

kn
) +O(

1

kn+1
)(4.36)

defined by the following condition

p(k)n+1 + a2p(k)n−1 + a3p(k)n−2 + ...+ anp(k) + an+1 = kn+1

Lemma 4.6.1. The functions t1, t2, .., tn be defined in (4.36) can be obtained by the formula

tα =
n+ 1

n+ 1− α
res
p=∞

(
λ
n+1−α
n+1 (p)dp

)
.(4.37)

Proof. Consider the integration by parts

n+ 1

n+ 1− α

∫ (
λ
n+1−α
n+1 (p)dp

)
= pλ

n+1−α
n+1 −

∫
pλ

−α
n+1dλ.(4.38)
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Lemma proved.

Lemma 4.6.2. The functions t1, t2, .., tn be defined in (4.36) can be obtained by the formula

tα = − res
λ=∞

(
p(λ)λ

−α
n+1dλ

)
.(4.39)

Proof. Let k = λ
1

n+1 , then

p(λ)λ
−α
n+1dλ =

(
k − 1

n+ 1
(
tn

k
+
tn−1

k2
+ ..+

t2

kn−2
+
t1

kn
) +O(

1

kn+1
)

)
k−α (n+ 1) kndk

=

(n+ 1)kn+1−α −
n∑
β=1

tβ

k1−α−β
+O(

1

kα+1
)

 dk.

Hence, the residue is different from 0, when α = β, resulting in this way the desired result.

Lemma 4.6.3. [28] Let the functions t1, t2, .., tn be defined in (4.36), then

(4.40) tα =
n+ 1

n+ 1− α
(1 +An+2−α)

n+1−α
n+1 ,

where

(1 +Ai)
n+1−α
n+1 =

∞∑
d=0

(n+1−α
n+1

k

)
Adi ,

Adi =
∑

i1+i2+..+id=i

ai1 ...aid .

(4.41)
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Proof.

tα =
n+ 1

n+ 1− α
res
p=∞

(
λ
n+1−α
n+1 (p)dp

)
=

n+ 1

n+ 1− α
res
p=∞

(
pn+1 + a2p

n−1 + a3p
n−2 + ..+ anp+ an+1

)n+1−α
n+1 dp

=
n+ 1

n+ 1− α
res
p=∞

pn+1−α
(

1 +
a2
p2

+
a3
p3

+ ..+
an
pn

+
an+1

pn+1

)n+1−α
n+1

dp

=
n+ 1

n+ 1− α
res
p=∞

pn+1−α
∞∑
d=0

(n+1−α
n+1

d

)(
a2
p2

+
a3
p3

+ ..+
an
pn

+
an+1

pn+1

)d
dp

=
n+ 1

n+ 1− α
res
p=∞

pn+1−α
∞∑
d=0

(n+1−α
n+1

d

) ∑
j1+..+jn=d

d!

j1!j2!..jn!

(
a2
p2

)j1 (a3
p3

)j2
..

(
an
pn

)jn−1
(
an+1

pn+1

)jn
dp

=
n+ 1

n+ 1− α
res
p=∞

pn+1−α−2j1−3j2−..−(n+1)jn

∞∑
d=0

(n+1−α
n+1

d

) ∑
j1+..+jn=d

d!

j1!j2!..jn!
aj12 ..a

jn
n+1dp

=
n+ 1

n+ 1− α

∞∑
d=0

(n+1−α
n+1

d

) ∑
j1+..+jn=d

2j1+3j2+..+(n+1)jn=n+2−α

d!

j1!j2!..jn!
aj12 ..a

jn
n+1

=
n+ 1

n+ 1− α

∞∑
d=0

(n+1−α
n+1

d

) ∑
i1+..+id=n+2−α

ai1 ..aid

=
n+ 1

n+ 1− α

∞∑
d=0

(n+1−α
n+1

d

)
Adn+2−α

=
n+ 1

n+ 1− α
(1 +An+2−α)

n+1−α
n+1 .

Lemma 4.6.4. [28] Let the functions a2, a3, .., an, an+1 be defined in (4.2), then

ai =
n+ 1

n+ 1− i

(
1

1− Ti
n+1

)n+1−i

, i 6= n+ 1,

an+1 = (n+ 1) log

(
1− Tn+1

n+ 1

)
,

(4.42)

where

(4.43) T di =
∑

i1+..id=i

ti1 ...tid .

Lemma 4.6.5. Let T di be defined in (4.43), then

∂T di
∂tj

= dT d−1i−j ,

T di =
∑

i1+..im=i

T d1i1 ...T
dm
im
, d = d1 + ..+ dm.

(4.44)

Here T 0
i = δi0.
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Lemma 4.6.6. [28] Let

(4.45) gk(Ti) =
∞∑
d=0

gikT
d
i

a formal power series in Ti be defined in (4.43), then

∂gk(Ti)

∂tj
= g′k(Ti−j),

g1(Ti)...gm(Ti) =
∑

i1+..+im=i

g1(Ti1)..gm(Tim).
(4.46)

Here the symbol ′ in the right hand side of the first equation of (4.46) means derivative with

respect the formal variable Ti.

Theorem 4.6.7. [28] Let (t1, t2, .., tn) be defined in (4.36), and η∗ be defined in (4.23).

Then,

(4.47) η∗(dtα, dtn+3−β) = −(n+ 1)δαβ.

Proof. Consider the metric η∗ in the coordinates (t1, t2, .., tn)

(4.48) η∗(dai, daj) =

n∑
α=1

n∑
β=1

∂ai
∂tα

∂aj
∂tβ

η∗(dtα, dtβ)

Moreover, consider ∂ai
∂tα

, and use the first line of the equation (4.46)

∂ai
∂tα

=

(
1

1− Ti−α
n+1

)n+2−i

.

Then,

(4.49)
n∑

α=1

∂ai
∂tα

∂an+3−j
∂tn+3−α

=
1(

1− Ti−α
n+1

)n+2−i
1(

1− Tα−j
n+1

)j−1 .
Using the second of the equation (4.46) in (4.49)

n∑
α=1

∂ai
∂tα

∂an+3−j
∂tn+3−α

=
1(

1− Ti−j
n+1

)n+1−i+j

=

(
n+ 1− i+ j

n+ 1

)
ai−j

(4.50)

Substituting (4.50) in (4.48)

n∑
α=1

∂ai
∂tα

∂an+3−j
∂tn+3−α

=

n∑
α=1

n∑
β=1

∂ai
∂tα

∂an+3−j
∂tn+3−β

δαβ.(4.51)
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On another hand, using equation (4.24), we have

η∗(dai, dan+3−j) = −(n+ 1− i+ j)ai−j

=

n∑
α=1

n∑
β=1

∂ai
∂tα

∂an+3−j
∂tn+3−β

η∗(dtα, dtn+3−β)

= (n+ 1)
n∑

α=1

n∑
β=1

∂ai
∂tα

∂an+3−j
∂tn+3−β

δαβ

Then, we obtain

η∗(dtα, dtn+3−β) = − (n+ 1) δαβ.

Corollary 4.6.7.1. The Saito metric η is non degenerate.

4.7. The action of Euler vector in the geometric data

Step 6:

We realise the geometric data of the orbit space of An as eigenfunctions of the Euler vector field.

The eigenvalues of the Euler vector field introduce a notion of degree in the geometric data of

the orbit space of An.

Definition 4.7.1. A function f is quasi homogeneous of degree d if it is an eigenfunction of

the Euler vector field (4.7) with eigenvalue d, i.e.

E(f) = df.

Lemma 4.7.1. Let a2, .., an+1 be defined in (4.2), and E theEuler vector field be defined in

(4.7), then polynomials ai has degree di, i.e

(4.52) E(ai) = diai

Proof.

E(ai) =

n+1∑
j=2

djaj
∂ai
∂ai

= diai.(4.53)

Lemma 4.7.2. [11] Let a2, .., an+1 be defined in (4.2), and E the Euler vector field be

defined in (4.7), then coefficients of the metric gij , and its Christoffel symbols in the coordinates

a2, .., an+1 are An invariant polynomials, furthermore,

E(gij) = (di + dj − 2)gij

E(Γijk ) = (di + dj − dk − 2)Γijk .
(4.54)
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Corollary 4.7.2.1. [11] The functions gij(a) and Γijk (a) are at most linear on an+1.

Corollary 4.7.2.2. [11] There exist homogeneous polynomials t1, t2, .., tn, with degrees

d1, ..., dn respectively such that the matrix

(4.55) ηαβ = δα+β,n+1.

Moreover, the Euler vector field in this coordinates becomes

(4.56) E =
n∑
α

dαt
α ∂

∂tα
.

Corollary 4.7.2.3. [11] The orbit space of the group An carries a flat pencil metric gij(a),

ηij(a), with ηij(a) is polynomialy invertible globally on the orbit space of An.

4.8. Construction of WDVV solution

Step 7:

The main aim of this section is to extract a WDVV equation from the data of the group An.

The following lemma shows that flat pencil structure is almost the same as Dubrovin

Frobenius structure.

Lemma 4.8.1. [11] For a flat pencil metric gαβ, ηαβ there exist a vector field f = fγ∂γ such

that the tensor

(4.57) ∆αβγ = ηαδΓβγδ,g − g
αδΓβγδ,η

and the metric gαβ have the following form

∆αβγ = ηαµηβν∂µ∂νf
γ

gαβ = ηαµ∂µf
β + ηβν∂νf

α + cηαβ
(4.58)

for some constant c. The vector field f should satisfy

∆αβ
ε ∆εγ

δ = ∆αγ
ε ∆εβ

δ(4.59)

where

∆αβ
γ = ηγε∆

αβε = ηαµ∂µ∂γf
β

(ηαεgβδ − gαεηβδ)∂ε∂δfγ = 0
(4.60)

Conversely, for any metric ηαβ and for f solution of the system (4.59) and (4.60) the metrics

ηαβ and gαβ form a flat pencil metric.

Lemma 4.8.2. [11] Let t1, t2, .., tn be defined in (4.36), then

gnα = dαt
α,

Γnαβ = (dα − 1)δαβ .
(4.61)
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Lemma 4.8.3. [11] Let t1, ..., tn be the Saito flat coordinates on the space of orbits of a finite

Coxeter group An and

(4.62) ηαβ =
∂gαβ

∂t1

be the correspondent constant Saito metric. Then there exists a quasihomogeneous polynomial

F (t) of the degree 2(n+ 1) + 2 such that

(4.63) gαβ =
(dα + dβ − 2)

2
ηαληβµ∂λ∂µF.

The polynomial F(t) determines on the space of orbits a Dubrovin Frobenius structure

(4.64) cγαβ = ηγλ∂λ∂β∂αF.

with the structure constants the unity

(4.65) e =
∂

∂t1

and the invariant inner product η.

4.9. Mirror symmetry between the orbit space of An and the Hurwitz space H0,n

Theorem 4.9.1. The Dubrovin Frobenius structure of the orbit space An is isomorphic as

Dubrovin Frobenius manifold to the Hurwitz space H0,n.

Proof. Both the orbit space An and the Hurwitz space H0,n have the same intersection

form, Euler vector, unit vector field. From this data, one can reconstruct the WDVV solution

by using the relation

(4.66) Fαβ = ηαα
′
ηββ

′ ∂2F

∂tα′∂tβ′
=

gαβ

deggαβ
.

Theorem proved.

Remark 4.9.1. The Dubrovin Frobenius structure in the orbit space of An and in the

Hurwitz space H0,n is globally well-defined. i.e. the structure constant (4.64), the Saito metric

η (4.23) , the unit vector field (4.8) , and the Euler vector field (4.7) are globally well-defined.

However, the flat coordinates of the intersection form (4.6) is multivalued due to the fact that

the intersection form (4.6) is not everywhere non degenerate, see subsection 2.1.3 for details.

Note that the monodromy of the flat coordinates of the intersection form (4.6) is exactly the

group An. Moreover, we generate a n-sheeted covering over the orbit space of An by fixing

a chart in the orbit space of An, i.e. choosing a representative to each orbit, and after that

we act the group An in this space.Therefore, the flat coordinates of the intersection form are

globally well defined in each sheet of this covering, and fixing a sheet solves the problem of the

multivalueness of the flat coordinates of the intersection form.
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Remark 4.9.2. The result of the Theorem 4.9.1 implies that the orbit space of An is

isomoprphic to the Hurwitz space H0,n. In the remark 4.9.1, we defined a Dubrovin Frobenius

manifold in each sheet of the associate covering over the orbit space of An, then, one could ask

what happens in the Hurwitz space side. Indeed, the Hurwitz space H0,n is also associated with

a n-sheeted covering, and we can fix sheet by choosing a root of λ near ∞, which is equivalent

to fix a root of unity of zn = 1.
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CHAPTER 5

Review of Dubrovin Frobenius manifolds on the orbit space of

J (An)

This chapter is a summary of the work done in [8] and [9], which generalises the constructions

done in chapter 4 for a suitable extension of the An group.

5.1. Ordinary Jacobi group J (An)

Step 1:

The first step of the orbit space construction, as it was previously done for the An, is the

definition of the desired group action. In this particular case, the definition of the J (An) action

on C⊕ Cn ⊕H, see [8] for details.

Consider the action of the group An on (LAn , 〈, 〉An) done in section 4.1. Then, consider the

following group LAn × LAn × Z with the following group operation

∀(λ, µ, k), (λ̃, µ̃, k̃) ∈ LAn × LAn × Z

(λ, µ, k) • (λ̃, µ̃, k̃) = (λ+ λ̃, µ+ µ̃, k + k̃ + 〈λ, λ̃〉An)

Note that <,>An is invariant under An group, then An acts on LAn × LAn × Z. Hence, we can

take the semidirect product An n (LAn × LAn × Z) given by the following product.

∀(w, λ, µ, k), (w̃, λ̃, µ̃, k̃) ∈ An × LAn × LAn × Z

(w, λ, µ, k) • (w̃, λ̃, µ̃, k̃) = (ww̃,wλ+ λ̃, wµ+ µ̃, k + k̃ + 〈λ, λ̃〉An)

Denoting W (An) := An n (LAn × LAn × Z), we can define

Definition 5.1.1. The Jacobi group J (An) is defined as a semidirect product W (An) o
SL2(Z). The group action of SL2(Z) on W (An) is defined as

Adγ(w) = w

Adγ(λ, µ, k) = (aµ− bλ,−cµ+ dλ, k +
ac

2
〈µ, µ〉An − bc〈µ, λ〉An +

bd

2
〈λ, λ〉An)

for (w, t = (λ, µ, k)) ∈W (Ãn), γ ∈ SL2(Z). Then the multiplication rule is given as follows

(w, t, γ) • (w̃, t̃, γ̃) = (ww̃, t •Adγ(wt̃), γγ̃)

Recall the following identification Zn ∼= LAn ,Cn ∼= LAn ⊗ C done in 4.1.

Then the action of Jacobi group J (An) on Ω := C⊕ Cn ⊕H is given as follows
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Proposition 5.1.1. [8] The group J (An) 3 (w, t, γ) acts on Ω := C⊕ Cn ⊕H 3 (u, v, τ)

as follows:

w(u, v, τ) = (u,wv, τ),

t(u, v, τ) = (u− 〈λ, v〉An −
1

2
〈λ, λ〉Anτ, v + λτ + µ, τ),

γ(u, v, τ) = (u+
c〈v, v〉An
2(cτ + d)

,
v

cτ + d
,
aτ + b

cτ + d
).

(5.1)

5.2. Jacobi forms of J (An)

Step 2:

The main goal of this section is construct notion of invariant ring which generalise the

symmetric polynomials in chapter 4. The ring of invariant suitable for Jacobi groups is called

ring of Jacobi forms. This notion was first defined in [18] for the Jacobi group A1, and further

generalise in [34]. In [8] and [9], Jacobi forms were used in the context of Dubrovin Frobenius

manifolds.

Definition 5.2.1. [8] The weak Jacobi forms of J (An) of weight k, and index m are

functions on Ω = C⊕ Cn ⊕H 3 (u, v, τ) which are holomorphic on (u, v, τ) and satisfy

ϕ (w(u, v, τ)) = ϕ(u, v, τ), An invariant condition

ϕ(t(u, v, τ)) = ϕ(u, v, τ)

ϕ(γ(u, v, τ)) = (cτ + d)−kϕ(u, v, τ)

Eϕ(u, v, τ) :=
1

2πi

∂

∂u
ϕ(u, v, τ) = mϕ(u, v, τ)

(5.2)

Moreover,

(1) ϕ is locally bounded functions on v as =(τ) 7→ +∞ (weak condition).

The space of Invariant functions of J (An) of weight k, and index m is denoted by JAnk,m.

Definition 5.2.2. J
J (An)
•,• =

⊕
k,m J

An
k,m.

Remark 5.2.1. The condition Eϕ(u, v, τ) = mϕ(u, v, τ) implies that ϕ(u, v, τ) has the

following form

ϕ(u, v, , τ) = f(v, τ)e2πimu

and the function f(v, τ) has the following transformation law

f(w(v, τ)) = f(v, τ),

f(t(v, τ)) = e−2πim(〈λ,v〉+ 〈λ,λ〉
2

τ)f(v, τ),

f(γ(v, τ)) = (cτ + d)−ke
2πim(

c〈v,v〉
(cτ+d)

)
f(v, τ).

(5.3)
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The functions f(v, τ) are more closely related with the definition of Jacobi form of Eichler-Zagier

type [18]. The coordinate u works as kind of automorphic correction in this functions f(v, τ).

Remark 5.2.2. Note that the ring of Jacobi forms of J (An) is not exactly invariant under

the action of J (An). Indeed, the first two equations of (8.2) show that Jacobi forms are

invariant under the first to action of (5.1), but the third equation of (8.2) gives a modular

behaviour to the ring of Jacobi forms.

The main result of section is the following.

The ring of An invariant Jacobi forms is polynomial over a suitable ring M• :=

J
J (An)
•,0 on suitable generators ϕ0, ϕ2, ..ϕn+1.

Before state precisely the theorem, I will define the objects M•, ϕ0, ϕ2, ..ϕn+1.

The ring M• := J
J (An)
•,0 is the space of Jacobi forms of index 0, by definition.

Lemma 5.2.1. The sub-ring J
J (An)
•,0, is equal to M• :=

⊕
Mk, where Mk is the space of

modular forms of weight k for the full group SL2(Z).

Proof. Using the Remark 5.2.1 , we have that functions ϕ(u, v, τ) ∈ J
J (An)
•,0 can not

depend on u, then ϕ(u, v, τ) = ϕ(v, τ). Moreover, for fixed τ the functions vi 7→ ϕ(v, τ)) are

holomorphic elliptic function for any i. Therefore, by Liouville theorem, these functions are

constant in v. Then, ϕ = ϕ(τ) are standard holomorphic modular forms.

At this stage, we can state the main theorem of this section

Theorem 5.2.2. [34] The ring of An invariant Jacobi forms is free module of rank n+ 1

over the ring of modular forms, i.e. there exist Jacobi forms ϕ0, ϕ2, .., ϕn+1 such that

J
J (An)
•,• = M•[ϕ0, ϕ2, .., ϕn+1].

An explicit base of generators were derived in [8]. The strategy done by Bertola in [8] was

starting with a basic Jacobi form of An, which was constructed in [34] as

(5.4) ϕn+1 = e2πiu
n∏
i=0

θ1(vi, τ)

θ′1(0, τ)
,

thereafter, Bertola defined a recursive operator to generate the other basic Jacobi forms.

For this purpose, it is necessary to enlarge the domain of the Jacobi forms from C⊕ Cn ⊕H 3
(u, v0, v1, .., vn, τ) to C⊕ Cn+1 ⊕H 3 (u, v0, v1, .., vn, p, τ). In addition, we lift the Jacobi forms

defined in C⊕ Cn ⊕H to C⊕ Cn+1 ⊕H as

ϕ(u, v0, v1, v2, .., vn, τ) 7→ ϕ̂(p) := ϕ(u, v0 + p, v1 + p, .., vn + p, τ).

41



A convenient way to do computation in these extended Jacobi forms is by using the following

coordinates

s = u− g1(τ)p2

n+ 1
,

zi = vi + p, i = 1, .., n+ 1.

τ = τ.

(5.5)

The bilinear form 〈v, v〉Ã1
is extended to

(5.6) 〈(z1, z2, , ..zn, zn+1), (z1, z2, .., zn, zn+1)〉E =
n+1∑
i=1

z2i ,

or equivalently,

(5.7) 〈(v0, v1, .., vn, p), (v0, v1, .., vn, p)〉E =
∑

Aijvivj + (n+ 1)p2.

The action of the Jacobi group An in this extended space is

ŵE(u, v, p, τ) = (u,w(v), p, τ) ,

tE(u, v, p, τ) =

(
u− 〈λ, v〉E −

1

2
〈λ, λ〉Eτ + k, v + p+ λτ + µ, τ

)
,

γE(u, v, p, τ) =

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)
.

(5.8)

Proposition 5.2.3. [8] Let ϕ ∈ JJ (An)
k,m , and ϕ̂ the correspondent extended Jacobi form.

Then,

(5.9)
∂

∂p
(ϕ̂)

∣∣∣∣
p=0

∈ JJ (An)
k−1,m .

Proof. (1) An-invariant

The vector field ∂
∂p in coordinates s, z1, z2, .., zn, zn+1, τ reads

(5.10)
∂

∂p
=

n+1∑
i=1

∂

∂zi
− 2πig1(τ)p

n+ 1

∂

∂u

Moreover, in the coordinates s, z1, z2, .., zn, zn+1, τ the An group acts by permutation

on the variables {zi}. Then

∂

∂p
(ϕ(s, zi1 , zi2 , , ..zin , zn+1, τ))

∣∣∣∣
p=0

=

(
n+1∑
i=1

∂

∂zi

) (
ϕ(s, zi1 , zi2 , , ..zin , zin+1 , τ)

)∣∣
p=0

=

(
n+1∑
i=1

∂ϕ

∂zi

) (
s, zi0 , zi1 , , ..zin , zin+1 , τ

)∣∣
p=0

=

(
n+1∑
i=1

∂ϕ

∂zi

)
(s, z0, z1, , ..zn, zn+1, τ)|p=0 .
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(2) Translation invariant

∂

∂p
(ϕ(u− 〈λ, v〉E − 〈λ, λ〉E , v + p+ λτ + µ, τ))

∣∣∣∣
p=0

=
∂

∂p
〈λ, v〉E

∣∣∣∣
p=0

ϕ(u, v, τ) +
∂ϕ

∂p

(
u− 〈λ, v〉Ã1

− 1

2
〈λ, λ〉Anτ + k, v + λτ + µ, τ

)
=
∂ϕ

∂p

(
u− 〈λ, v〉An −

1

2
〈λ, λ〉Anτ + k, v + λτ + µ, τ

)
=
∂ϕ

∂p
(u, v, τ)

∣∣∣∣
p=0

(3) SL2(Z) equivariant

∂

∂p

(
ϕ(u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d
)

)∣∣∣∣
p=0

=
c

2(cτ + d)

∂

∂p
〈v, v〉E

∣∣∣∣
p=0

ϕ(u, v, τ) +
1

cτ + d

∂ϕ

∂p

(
u+

c〈v, v〉An
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d
)

)
=

1

cτ + d

∂ϕ

∂p

(
u+

c〈v, v〉An
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)
=

1

(cτ + d)k
∂ϕ

∂p
(u, v, τ)

∣∣∣∣
p=0

.

Then,

∂ϕ

∂p

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)∣∣∣∣
p−0

=
1

(cτ + d)k−1
∂ϕ

∂p
(u, v, τ)

∣∣∣∣
p=0

.

(4) Index 1
1

2πi

∂

∂u

∂

∂p
ϕ̂ =

1

2πi

∂

∂p

∂

∂u
ϕ̂ =

∂

∂p
ϕ̂.

Corollary 5.2.3.1. [8] The generators of the algebra J
J (An)
•,• are given by the following

generating function

(5.11)

[
e
z ∂
∂p

(
e2πiu

n+1∏
i=1

θ1(zi)

θ′1(0)

)]∣∣∣∣∣
p=0

= ϕn+1+ϕnz+ϕn−1z
2+...+ϕ2z

n−1+ϕ0z
n+1+O(zn+2)

where

(5.12) ϕj :=
∂n+1−j

∂pn+1−j (ϕ̂n+1)

∣∣∣∣
p=0

Proof. Acting ∂
∂p k times in ϕn+1, we have[

∂k

∂kp

(
e2πiu

n+1∏
i=1

θ1(zi)

θ′1(0)

)]∣∣∣∣∣
p=0

∈ JJ (An)
−n−1+k,1.
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Corollary 5.2.3.2. [8] The generating function can be written as

(5.13)

[
e
z ∂
∂p

(
e2πiu

n+1∏
i=1

θ1(zi)

θ′1(0)

)]∣∣∣∣∣
p=0

= e−2πi(−u+(n+1)g1(τ)z2)
n∏
i=0

θ1(z − vi)
θ′1(0)

.

The next lemma is one of the main points of [8] and [9], because this lemma identify the

orbit space of the group J (An) with the Hurwitz space H1,n. This relationship is possible due

to the construction of the generating function of the Jacobi forms of type An, which can be

completed to be the Landau-Ginzburg superpotential of H1,n as follows

(5.14) e−2πi(−u+(n+1)g1(τ)z2)
n∏
i=0

θ1(z − vi)
θ′1(0)

7→ e−2πiu
∏n
i=0 θ1(z − vi, τ)

θn+1
1 (v, τ)

.

Lemma 5.2.4. There is a local biholomorphism between Ω/J (An) and H1,n,, i.e the space

of elliptic functions with 1 pole of order n, and one simple pole.

Proof. The correspondence is realized by the map:

(5.15) [(u, v0, v1, .., vn−1, τ)]←→ λ(z) = e−2πiu
∏n
i=0 θ1(z − vi, τ)

θn+1
1 (v, τ)

Note that this map is well defined and one to one. Indeed:

(1) Well defined

Note that proof that the map does not depend on the choice of the representant of

[(u, v0, v1, .., vn−1, vn+1, τ)] is equivalent to prove that the function (5.15) is invariant

under the action of J (An). Indeed

(2) An invariant

The An group acts on (5.15) by permuting its roots, thus (5.15) remais invariant under

this operation.

(3) Translation invariant

Recall that under the translation v 7→ v +m+ nτ , the Jacobi theta function transform

as [8], [33]:

(5.16) θ1(vi + µi + λiτ, τ) = (−1)λi+µie−2πi(λivi+
λ2i
2
τ)θ1(vi, τ)

Then substituting the transformation (5.16) into (5.15), we conclude that (5.15) remains

invariant.

(4) SL2(Z) invariant

Under SL2(Z) action the following function transform as

(5.17)
θ1

(
vi

cτ+d ,
aτ+d
cτ+d

)
θ′1

(
0, aτ+dcτ+d

) = exp

(
πicv2i
cτ + d

)
θ1(vi, τ)

θ′1(0, τ)

Then substituting the transformation (5.17) into (5.15), we conclude that (5.15) remains

invariant.
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(5) Injectivity

Two elliptic functions are equal if they have the same zeros and poles with multiplicity.

(6) Surjectivity

Any elliptic function can be written as rational functions of Weierstrass sigma function

up to a multiplication factor [33]. By using the formula to relate Weierstrass sigma

function and Jacobi theta function

(5.18) σ(vi, τ) =
θ1(vi, τ)

θ′1(0, τ)
exp(−2πig1(τ)v2i )

where g1(τ) is a specific normalization of Eisenstein 2 [8]. Hence, we get the desire

result.

At this stage, it is possible to show the relation between the Jacobi forms ϕ0, .., ϕn+1 and

the elementary symmetric polynomials a2, a3, .., an+1.

Proposition 5.2.5. [8] Let the Jacobi forms ϕ0, .., ϕn+1 be defined by (5.11), then the

lowest term of the Taylor expansion in the variables {vi} are given by

ϕn+1 = an+1 +O(||v||n),

ϕn = an +O(||v||n−1)

ϕn−1 = an−1 +O(||v||n−2)

.

.

ϕ2 = a2 +O(||v||4)

ϕ1 = a1 = 0

ϕ0 = a0 +O(||v||2)

(5.19)

where a2, a3, ., an+1 are defined in (4.2)

Proof. Expanding the θ1(vi, τ) in ϕn+1, we obtain

ϕn+1 = an+1 +O(||v||n).(5.20)

Applying the operator (5.10) in ϕn+1 and using (4.3), we get the desired result.

Corollary 5.2.5.1. [8] The Jacobi forms ϕ0, .., ϕn+1 be defined by (5.11) are algebraically

independent.
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Proof. The Jacobi forms ϕ0, .., ϕn+1 are algebraically independent iff a2, a3, .., an+1 are

algebraically independent due to 5.19. The functions a2, a3, .., an+1 are algebraically independent

due to Chevalley theorem 4.2.1.

Corollary 5.2.5.2. The functions (ϕ0, ϕ2, .., ϕn+1) obtained by the formula

λ = e−2πiu
∏n
i=0 θ1(z − vi, τ)

θn+1
1 (z, τ))

= ϕn+1℘
n−1(z, τ) + ϕn℘

n−2(z, τ) + ...+ ϕ2℘(z, τ) + ϕ0,

(5.21)

are Jacobi forms of weight 0,−2, ..,−n− 1 respectively, index 1.

Proof. Let us prove each item separated.

(1) An invariant, translation invariant

The l.h.s of (5.21) are An invariant, and translation invariant by the lemma (5.2.4).

Then, by the uniqueness of Laurent expansion of λ, we have that ϕi are An invariant,

and translation invariant.

(2) SL2(Z) equivariant

The l.h.s of (5.21) are SL2(Z) invariant, but the Weierstrass functions of the r.h.s have

the following transformation law

℘(k−2)(
z

cτ + d
,
aτ + b

cτ + d
) = (cτ + d)k℘(k−2)(z, τ).(5.22)

Then, ϕk must have the following transformation law

ϕk(u+
c〈v, v〉An
2(cτ + d)

,
v

cτ + d
,
aτ + b

cτ + d
) = (cτ + d)−kϕk(u, v, τ).(5.23)

(3) Index 1

1

2πi

∂

∂u
λ = λ.(5.24)

Then

1

2πi

∂

∂u
ϕi = ϕi.(5.25)

5.3. Intersection form, Unit vector field, Euler vector field and Bertola’s

reconstruction process

Step 3:

This section focus on the Bertola approach to construct a Dubrovin Frobenius structure on the

orbit space of J (An). The first step of this process is to build the invariant J (An) invariant
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sections : intersection form, Unit vector field and Euler vector field, and from this data, Bertola

reconstruct the Dubrovin Frobenius structure of the Hurwitz space H1,n.

Remark 5.3.1. J (An) invariant sections means invariant under the first to action of (5.1)

and modular with respect the third action of (5.1).

Definition 5.3.1. [8] Let bilinear pairing be given in coordinates (u, v0, v1, .., vn, τ) by

g =
n∑
i=0

dv2i
∣∣∑n

i=0 vi=0
+ 2dudτ

=
∑
i,j

Aijdvidvj + 2dudτ,

(5.26)

where matrix Aij is equal to the matrix gij in (4.5). The intersection form is given by

g∗ =
∑
i,j

A−1ij
∂

∂vi
⊗ ∂

∂vj
+

∂

∂u
⊗ ∂

∂τ
+

∂

∂τ
⊗ ∂

∂u
.(5.27)

Proposition 5.3.1. [8] The intersection form (5.27) is invariant under the first two actions

of (5.1), and behaves a modular form of weight 2 under the last action of (5.1).

Note that (5.27) is modular with respect the SL2(Z), but this does not means that its

coefficients on some coordinates have the same modular behaviour. Indeed, taking the coordinates

ϕ0, ϕ2, .., ϕn+1, τ , we have that if under the SL2(Z)

ϕi 7→
ϕi

(cτ + d)i
,

then,

dϕi 7→
dϕi

(cτ + d)i
− icϕidτ

(cτ + d)i+1
.

Since (5.26) and (5.27) behaves as modular, the coefficient gij and gij have to transform in a

non modular way to cancel the cancel the non modular contribution of dϕi and ∂
∂ϕi

. For this

purpose, Bertola considered the following metric.

Lemma 5.3.2. [8] Let ϕi ∈ JAn−ki,mi and η(τ) the Dedekind eta function, then the metric

given by

1

η2i+2j
g∗(dη2iϕi, dη

2jϕj)
∂

∂ϕi

(
η2i.
)
⊗ ∂

∂ϕj

(
η2j .

)
(5.28)

is invariant under the first two actions of (5.1), and behaves a modular form of weight 2 under

the last action of (5.1).

Moreover, the coeffiecients of the metric (5.28) are given by

M (dϕi, dϕj) :=
1

η2i+2j
g∗(dη2iϕi, dη

2jϕj)

= g∗ (dϕi, dϕj)− 4πig1(τ) (kimj + kjmi)ϕiϕj ,

(5.29)

furthermore, M(dϕi, dϕj) ∈ JAn−ki−kj+2,mi+mj
.
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Proof. The metric (5.28) is is invariant under the first two actions of (5.1), because propo-

sition 5.3.1, and because η do not change under this action. The equivariance with respect the

SL2(Z) follows again from proposition 5.3.1, and from the fact that the transformation laws of

η get canceled.

The equation (5.29) follows from the chain rule, from the identity

(5.30)
η′

η
(τ) = g1(τ).

The ring of Jacobi forms of J (An) give us the data to build the remaining part of the

Dubrovin Frobenius structure. Indeed:

Definition 5.3.2. The Euler vector field with respect the orbit space J (Ãn) is defined by

the last equation of (5.2), i.e

(5.31) E := − 1

2πi

∂

∂u

Definition 5.3.3. The Unit vector field with respect the orbit space J (An) is the vector

associated to the invariant coordinate ϕ0 defined in (5.21) , i.e

(5.32) e :=
∂

∂ϕ0
.

At this point, we can state the main result of [9].

Theorem 5.3.3. [9] The Dubrovin Frobenius structure of the orbit space of J (An) is

locally isomorphic as Dubrovin Frobenius manifold to the Hurwitz space H1,n.

Proof. Both the orbit space J (An) and the Hurwitz space H1,n has the same intersection

form, Euler vector, unit vector field. From this data, one can reconstruct the WDVV solution

by using the relation

(5.33) Fαβ =
gαβ

deggαβ
.

Theorem proved, see details in [9].

Remark 5.3.2. Note that even though the Hurwitz space H1, n is locally isomorphic to the

orbit space of J (An), this does not mean that the two constructions are completely equivalent.

The Dubrovin Frobenius structure on the Hurwitz space depends on the Hurwitz space, and in

choice of a primary differential, and the Dubrovin Frobenius structure on orbit space depends

on the data of the group. Moreover, Dubrovin Frobenius structure on the Hurwitz space is a

local construction, since it is constructed on a solution of a Darboux-Egoroff system. The orbit

space construction instead, have the invariant ring of function, which gives a global picture.
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5.4. The Saito metric for the group J (An)

Step 4:

From this point, we will prove the existence of a Dubrovin Frobenius structure in the orbit space

of J (An) by using a strategy that is more closed related to the Saito and Dubrovin approach

of differential geometry of orbit spaces [28], [11]. The effort to do this alternative proof worth,

because, it would stress even more the fact that the construction of Hurwitz spaces and orbit

spaces are independent, furthermore, this construction could be more suitable for the others

Jacobi groups associated to the finite Coxeter group. This section will be devoted to construct

the flat pencil metric on the orbit space of J (An). The first flat metric was already constructed

in (5.27), therefore, this section will concentrate in the construction of the second flat metric.

The second metric as the equations (5.36) suggests is given by

Lie ∂
∂ϕ0

gij := ηij .

Hence, we will derive the coefficients of the metric (5.27) in the coordinates ϕ0, ϕ2, .., ϕn+1 and

from it we derive the coefficients of the second metric of the flat pencil.

In order to derive the coefficients of the metric η∗, first, we derive a generating function for

the coefficients of g∗.

Definition 5.4.1. [8] Let Ek the space of elliptic function of weight k. The elliptic connection

Dτ : EK 7→ Ek is linear map defined by

(5.34) DτF (v, τ) = ∂τF (v, τ)− 2kg1(τ)F (v, τ)− 1

2πi

θ′1(v, τ)

θ1(v, τ)
F ′(v, τ),

where F (v, τ) ∈ Ek.

Theorem 5.4.1. [8] The coefficient of M∗(dϕi, dϕj) be given (5.29) is recovered by the

generating formula

n+1∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
M∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πi(λ(v′)Dτλ(v) + λ(v)Dτλ(v′))− 1

n+ 1

dλ(v)

dv

dλ(v′)

dv′

+
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[λ(v)

dλ(v′)

dv′
− dλ(v)

dv
λ(v′)]

(5.35)

Starting from this point, there exist some original work. For these results, I will not put

references.

Corollary 5.4.1.1. Let η̃∗(dϕi, dϕj) and η∗(dϕi, dϕj) be given by

η̃∗(dϕi, dϕj) :=
∂M∗(dϕi, dϕj)

∂ϕ0
,

η∗(dϕi, dϕj) :=
∂g∗(dϕi, dϕj)

∂ϕ0
.

(5.36)
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The coefficient of η̃∗(dϕi, dϕj) is recovered by the generating formula

n+1∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
η̃∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πi(Dτλ(v) +Dτλ(v′)) +
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[
dλ(v′)

dv′
− dλ(v)

dv
]

(5.37)

Moreover,

η̃∗(dϕi, dϕj) = η∗(dϕi, dϕj), i, j 6= 0

η̃∗(dϕ0, dϕj) = η∗(dϕi, dϕj) + 4πikjϕj
(5.38)

Proof. Just differentiate equation (5.35) with respect ϕ0, and use the equation (5.21).

Corollary 5.4.1.2. The metric η̃∗ and η∗ defined in (5.36) behave as modular form of

weight 2 under the last action of (5.1).

Theorem 5.4.2. Let η∗(dϕi, dϕj) defined in (5.36), then its coefficients can be obtained by

the formula

η∗(dϕi, dϕj) = (i+ j − 2)ϕi+j−2, i, j 6= 0

η∗(dϕi, dϕ0) = 0, i 6= 0.
(5.39)

Proof. Consider the equation (5.21) written in a concise way as follows

(5.40) λ(v) =
n+1∑
k=0

(−1)n−k

(n− k)!
ϕn+1−k℘

n−1−k(v).

Substituting (5.40) in (5.37)

n+1∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂M∗(dϕi, dϕj)

∂ϕ0
℘(v)(k−2)℘(v′)(j−2) =

=
n+1∑
k=0

(−1)n−k

(n− k)!
ϕn+1−k

[
2πi

(
Dτ℘

n−1−k(v) +Dτ℘
n−1−k(v′)

)]

+

n+1∑
k=0

(−1)n−k

(n− k)!
ϕn+1−k

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘n−k(v′)− ℘n−k(v′)

)]
(5.41)

Expanding the left-hand side of (5.41), we get

n+1∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂M∗(dϕi, dϕj)

∂ϕ0
℘(v)(k−2)℘(v′)(j−2)

=

n+1∑
k,j=0

∂M∗(dϕi, dϕj)

∂ϕ0

1

vk(v′)j
+ Other terms,

(5.42)
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where ”Other terms” in the equation (5.42) means positive powers of either v or v′. For

convenience, define

(1) : = 2πi
(
Dτ℘

n−1−k(v) +Dτ℘
n−1−j(v′)

)
+
(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘n−j(v′)− ℘n−k(v)

)(5.43)

In order to better to compute (5.43), consider the analytical behaviour of the term

(5.44) Dτ℘
n−1−k(v) = ∂τ℘

n−1−k(v)− 2(n+ 1− k)g1(τ)℘n−1−k(v)− 1

2πi

θ′1(v, τ)

θ1(v, τ)
℘n−k(v).

The term

∂τ℘
n−1−k(v)

in (5.44 ) is holomorphic, therefore, it does not contribute for the Laurent tail. The term

(5.45) 2(n+ 1− k)g1(τ)℘n−1−k(v)

also do not contribute, because the full expression (5.44) behaves as modular form under the

SL2(Z), but (5.45) is clear a quasi-modular form, since it contains g1(τ). Hence, (5.45) is

canceled with the Laurent tail of

(5.46)
1

2πi

θ′1(v, τ)

θ1(v, τ)
℘n−k(v).

To sum up, the analytical behavior of (5.44 ) is essentially given by (5.46). Under this

consideration, and by using the equation

ζ(v, τ) =
θ′1(v, τ)

θ1(v, τ)
− 4πig1(τ)v

=
1

v
+O(v3)

(5.47)

the equation (5.43) became

51



(1) = −ζ(v)℘n−k(v)− ζ(v′)℘n−k(v′)

+
(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘n−k(v′)− ℘n−k(v)

)
+ Other terms

= ζ(v − v′)
(
℘n−k(v′)− ℘n−k(v′)

)
− ζ(v)℘n−k(v′)− ζ(v′)℘n−k(v) + Other terms

=
1

v − v′

(
(−1)n−k(n− k − 1)!

v′n+2−k − (−1)n−k(n− k − 1)!

vn+2−k

)
− 1

v

(−1)n−k(n− k − 1)!

v′n+2−k − 1

v′
(−1)n−k(n− k − 1)!

vn+2−k + Other terms

= (−1)n−k(n− k − 1)!

(
1

v − v′
vn+2−k − v′n+2−k

(v′v)n+2−k

)

− 1

v

(−1)n−k(n− k − 1)!

v′n+2−k − 1

v′
(−1)n−k(n− k − 1)!

vn+2−k + Other terms

= (−1)n−k(n− k − 1)!

n+1−k∑
j=0

vn+1−k−jv′j

(v′v)n+2−k


− 1

v

(−1)n−k(n− k − 1)!

v′n+2−k − 1

v′
(−1)n−k(n− k − 1)!

vn+2−k + Other terms

= (−1)n−k(n− k − 1)!

n+1−k∑
j=0

1

v1+jv′n+2−k−j


− 1

v

(−1)n−k(n− k − 1)!

v′n+2−k − 1

v′
(−1)n−k(n− k − 1)!

vn+2−k + Other terms

= (−1)n−k(n− k − 1)!

n−k∑
j=1

1

v1+jv′n+2−k−j

+ Other terms

= (−1)n−k(n− k − 1)!

n+1−k∑
j=2

1

vjv′n+3−k−j

+ Other terms

(5.48)
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Substituting (5.48) in right-hand side of (5.41)

n+1∑
k=0

(−1)n−k

(n− k)!
ϕn+1−k

[
2πi

(
Dτ℘

n−1−k(v) +Dτ℘
n−1−k(v′)

)]

+
n+1∑
k=0

(−1)n−k

(n− k)!
ϕn+1−k

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘n−k(v′)− ℘n−k(v′)

)]

=
n+1∑
k=0

n+1−k∑
j=2

(n+ 1− k)ϕn+1−k

vjv′n+3−k−j + Other terms

=

n+1∑
k=0

n+1∑
j=2

(n+ 1− k + j)ϕn+1−k+j

vjv′n+3−k + Other terms

=
n+1∑
k=0

n+1∑
j=2

(k + j)ϕk+j

vjv′k+2
+ Other terms

=

n+3∑
k=2

n+1∑
j=2

(k + j)ϕk+j−2

vjv′k
+ Other terms

(5.49)

Comparing (5.49) with (5.42), we get the desired result.

5.5. Flat coordinates of the Saito metric η

Step 5:

This section will be dedicated to prove that the Saito metric η is flat and non degenerate to

complete that hypothesis of the lemma 4.4.1. In practice, we will construct the flat coordinates

of the Saito metric η as follows.

Let t1, t2, .., tn be given by the following generating function

v(z) =
−1

n+ 1

(
tn+1z + tnz2 + .....+ t2zn +O(zn+2)

)
.(5.50)

Defined by the following condition

λ(v) =
1

zn+1
.

Moreover,

(5.51) t1 = ϕ0 + 4πig1(τ)ϕ2.

Lemma 5.5.1. The functions t2, .., tn+1 be defined in (5.50) can be obtained by the formula

tα =
n+ 1

n+ 2− α
res
p=∞

(
λ
n+2−α
n+1 (p)dp

)
.(5.52)

Proof. Consider the integration by parts

n+ 1

n+ 2− α

∫ (
λ
n+2−α
n+1 (p)dp

)
= pλ

n+2−α
n+1 −

∫
pλ

1−α
n+1 dλ.(5.53)
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Lemma proved.

Lemma 5.5.2. The functions t2, .., tn be defined in (5.50) can be obtained by the formula

tα = − res
λ=∞

(
v(z)λ

1−α
n+1 dλ

)
.(5.54)

Proof. Let

z =

(
1

λ

) 1
n+1

,

then,

v(z)λ
1−α
n+1 dλ =

(
1

n+ 1

)(
tn+1z + tnz2 + .....+ t2zn +O(zn+2)

)
zα−1 (n+ 1) z−n−2dz

=

n+1∑
β=2

tβzn+2−β +O(zn+2)

 zα−n−3dz

=

n+1∑
β=2

tβzα−β−1 +O(zα−n−3)

 dz.

Hence, the residue is different from 0, when α = β, resulting in this way the desired result.

Corollary 5.5.2.1. The coordinate tn+1 can be written in terms of the coordinates

ϕ0, ϕ2, .., ϕn+1 as

(5.55) tn+1 = (ϕn+1)
1

n+1 .

Proof.

tn+1 = res
v=0

λ
1

n+1 (v)dv

= res
v=0

(ϕn+1

vn+1
+
ϕn
vn

+ ..+
ϕ2

v2
+O(1)

) 1
n+1

dv

= res
v=0

(ϕn+1)
1

n+1

v
(1 +O(v))

1
n+1 dv

= (ϕn+1)
1

n+1 .

Lemma 5.5.3. Let the functions t2, .., tn+1 be defined in (5.50), then the following identity

holds

(5.56) tα =
n+ 1

n+ 2− α
(ϕn+1)

n+2−α
n+1 (1 + Φn+1−α)

n+2−α
n+1 ,
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where

(1 + Φi)
n+2−α
n+1 =

∞∑
d=0

(n+2−α
n+1

d

)
Φd
i ,

Φd
i =

∑
i1+i2+..+id=i

ϕ(n+1−i1)

ϕn+1
....
ϕ(n+1−id)

ϕn+1
.

(5.57)

Proof.

tα =
n+ 1

n+ 2− α
res
v=0

(
λ
n+2−α
n+1 (v)dv

)
=

n+ 1

n+ 2− α
res
v=0

(ϕn+1

vn+1
+
ϕn
vn

+ ..+
ϕ2

v2
+O(1)

)n+2−α
n+1

dv

=
n+ 1

n+ 2− α
res
v=0

(ϕn+1

vn+1

)n+2−α
n+1

(
1 +

ϕn
ϕn+1

v +
ϕn−1
ϕn+1

v2 + ..+
ϕ2

ϕn+1
vn−1 +O

(
vn+1

))n+2−α
n+1

dv

=
n+ 1

n+ 2− α
res
v=0

(ϕn+1

vn+1

)n+2−α
n+1

∞∑
d=0

(n+2−α
n+1

d

)(
1 +

ϕn
ϕn+1

v +
ϕn−1
ϕn+1

v2 + ..+
ϕ2

ϕn+1
vn−1 +O

(
vn+1

))d
dv

=
n+ 1

n+ 2− α
res
v=0

(ϕn+1

vn+1

)n+2−α
n+1

∞∑
d=0

(n+2−α
n+1

d

) ∑
j1+..+jn=d

d!

j1!j2!..jn!

n−1∏
i=1

(
ϕn+1−iv

i

ϕn+1

)ji
(O(vn+1))jndv

=
n+ 1

n+ 2− α
res
v=0

(ϕn+1)
n+2−α
n+1

∞∑
d=0

(n+2−α
n+1

d

) ∑
j1+..+jn=d

d!

j1!j2!..jn!

n−1∏
i=1

(
ϕn+1−i
ϕn+1

)ji
v(
∑n−1
i=1 iji−n−2−α)dv

+O(1)

=
n+ 1

n+ 2− α
(ϕn+1)

n+2−α
n+1

∞∑
d=0

(n+2−α
n+1

d

) ∑
j1+..+jn=d

j1+2j2+3j3+..+(n−1)jn−1=n+1−α

d!

j1!j2!..jn!

n−1∏
i=1

(
ϕn+1−i
ϕn+1

)ji

=
n+ 1

n+ 2− α
(ϕn+1)

n+2−α
n+1

∞∑
d=0

(n+2−α
n+1

d

) ∑
i1+..+id=n+1−α

ϕ(n+1−i1)

ϕn+1
....
ϕ(n+1−id)

ϕn+1

=
n+ 1

n+ 2− α
(ϕn+1)

n+2−α
n+1

∞∑
d=0

(n+2−α
n+1

d

)
Φd
n+1−α

=
n+ 1

n+ 2− α
(ϕn+1)

n+2−α
n+1 (1 + Φn+1−α)

n+2−α
n+1 .

Lemma 5.5.4. Let ϕ0, ϕ2, .., ϕn+1 and λ(v) be defined in (5.21), then

(5.58) kϕk = res
v=0

kλvk−1dv.

Proof.

res
v=0

kλvk−1dv = res
v=0

k
(ϕn+1

vn+1
+
ϕn
vn

+ ..+
ϕk
vk

+ ..+
ϕ2

v2
+O(1)

)
vk−1dv

= kϕk.

55



Lemma 5.5.5. Let ϕ0, ϕ2, .., ϕn+1 and λ(v) be defined in (5.21), then

(5.59) kϕk = − res
λ=∞

vkdλ.

Proof. Using formula (5.59) and integration by parts

kϕk = res
v=0

kλvk−1dv = − res
λ=∞

vkdλ.

Lemma 5.5.6. Let ϕ0, ϕ2, .., ϕn+1, λ(v) be defined in (5.21) and (t2, .., tn+1) be defined in

(5.50) , then

(5.60) kϕk =
(−1)k

(n+ 1)k−1
T kn+1,

where

(5.61) T kn+1 =
∑

i1+..+ik=n+1

t(n+2−i1)...t(n+2−ik).

Proof. Let z :=
(
1
λ

) 1
n+1 , then by using equation (5.59):

− res
λ=∞

vkdλ = res
z=0

(n+ 1)vk(z)dz

zn+2

= res
z=0

(−1)k

(n+ 1)k−1
(
tn+1z + tnz2 + ..+ t2zn +O(zn+2)

) dz

zn+2

= res
z=0

(−1)k

(n+ 1)k−1

∑
j1+j2+..+jn+jn+2=k

(
tn+1z

)j1 (tnz2)j2 .. (t2zn)jn (O(zn+2)
)jn+2 dz

zn+2

=
(−1)k

(n+ 1)k−1

∑
j1+j2+..+jn=k

j1+2j2+3j3+..+(n)jn=n+1

k!

j1!j2!..jn!

(
tn+1

)j1 (tn)j2 ..
(
t2
)jn

=
(−1)k

(n+ 1)k−1

∑
i1+..ik=n+1

t(n+2−i1)...t(n+2−ik)

=
(−1)k

(n+ 1)k−1
T kn+1.

Lemma 5.5.7. Let T kn+1 be defined in (5.61), then

(5.62)
∂T kn+1

∂tα
= kT k−1α−1 .
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Proof.

∂T kn+1

∂tα
=

∂

∂tα

 ∑
i1+..ik=n+1

t(n+2−i1)...t(n+2−ik)


=

∑
i1+..ik=n+1

kδn+2−ik,αt
(n+2−i1)...t(n+2−ik−1)

= k
∑

i1+..ik−1=α−1
t(n+2−i1)...t(n+2−ik−1)

= kT k−1α−1 .

Theorem 5.5.8. Let (t2, .., tn+1) be defined in (5.50), and η∗ be defined in (5.36). Then,

(5.63) η∗(dtα, dtn+3−β) = −(n+ 1)δαβ.

Proof. If i, j 6= 0

(5.64) η∗(dϕi, dϕj) =

n+1∑
α=2

n+1∑
β=2

∂ϕi
∂tα

∂ϕj
∂tβ

η∗(dtα, dtβ)

Using (5.62) and (5.60), we get

∂ϕk
∂tα

=
(−1)k

(n+ 1)k−1
kT k−1α−1 .(5.65)

Then,

(5.66)
n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−α =

n+1∑
α=2

(−1)i−j+n+1

(n+ 1)i−j+n+1
T i−1α−1T

n+2−j
n+2−α.

Using the second of the equation (4.46) in (5.66)

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−α =

Tn+1+i−j
n+1

(n+ 1)

=
(n+ 1 + i− j)

n+ 1
ϕ(n+1+i−j).

(5.67)

Note that

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−α =

n+1∑
α=2

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−β δαβ.(5.68)
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On another hand, using equation (5.39), we have

η∗(dϕi, dϕn+3−j) = (n+ 1 + i− j)ϕn+1+i−j

=
n+1∑
α=2

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−β η

∗(dtα, dtn+3−β)

= −(n+ 1)
n+1∑
α=2

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−β δαβ.

Then, we obtain

η∗(dtα, dtn+3−β) = (n+ 1) δαβ.

Lemma 5.5.9. The metric

(5.69)
n+1∑
α=2

η∗(dtα, dtn+3−α)dtαdtn+3−α + 2dt1dτ

behaves as a modular form of weight 2, under the SL2(Z) action of (5.1).

Proof. Under the SL2(Z) action of (5.1), we have that t1, t2, .., tn+1 have the following

transformation law (see lemma 5.6.1)

t1 7→ t1 +
c

2(cτ + d)
ϕ2 = t1 +

c

4(n+ 1)(cτ + d)

n+1∑
α=2

tαtn+3−α

tα 7→ tα

cτ + d
, α 6= 1.

Hence, its differentials transform as

dt1 7→ dt1 +
c

4(n+ 1)(cτ + d)

n+1∑
α=2

(
dtαtn+3−α + tαdtn+3−α)

dtα 7→ dtα

cτ + d
− ctαdτ

(cτ + d)2
, α 6= 1.

(5.70)

Substituting (5.70) in (5.69), we get the desired result.

Lemma 5.5.10. Let t1 defined in (5.51), and η∗ defined in (5.36). Then,

(5.71) η∗(dt1, dtα) = 0, α 6= 1.

Proof. If i 6= 0, using the definition of η∗ in equation (5.36) and formula (5.39)

η∗(dt1, dϕi) = η∗(dϕ0, dϕi) + 4πig1(τ)η∗(dϕ2, dϕi) + 4πig′1(τ)η∗(dτ, dϕi)

= η∗(dϕ0, dϕi) + 4πig1(τ)η∗(dϕ2, dϕi)

= η̃∗(dϕ0, dϕi)− 4πig1(τ)kiϕi + 4πig1(τ)kiϕi = 0

= −4πig1(τ)kiϕi + 4πig1(τ)kiϕi = 0.
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Then,

η∗(dt1, dtα) =
n+1∑
α=2

∂tα

∂ϕi
η∗(dt1, dϕi) = 0.

Theorem 5.5.11. Let (t1, t2, .., tn+1) be defined in (5.50), and η∗ be defined in (5.36). Then,

(5.72) η∗(dtα, dtn+3−β) = −(n+ 1)δαβ.

Proof. The theorem is already proved for α, β ∈ {2, .., n + 1} in theorem 5.5.8, and for

α = 1, and β 6= 1 in the lemma 5.5.10. The only missing part is to prove

(5.73) η∗(dt1, dt1) = 0.

Recall that from corollary 5.4.1.2, the metric η∗ behaves as modular form of weight 2 under

the SL2(Z) action. Moreover, the same statement is valid for (5.69), because of lemma 5.5.9.

However, the tensor dt1⊗dt1 behaves as quasi-modular. Hence, if the coefficient of the component

dt1 ⊗ dt1 is different from 0, we have a contradiction with corollary 5.4.1.2.

Corollary 5.5.11.1. The metric η∗(dϕi, dϕj) :=
∂g∗(dϕi,dϕj)

∂ϕ0
is triangular, and non degen-

erate.

Definition 5.5.1. Let η∗ = ηαβ ∂
∂tα ⊗

∂
∂tβ

be defined in (5.36). The metric defined by

(5.74) η = ηαβdt
α ⊗ dtβ

is denoted by η.

5.6. The extended ring of Jacobi forms

The main point of this section is to point out that the flat coordinates of the Saito metric η

does not live in the orbit space of J (An), but it lives in suitable covering over it. Therefore,

all the geometric data of Dubrovin Frobenius manifold are in suitable extension of the ring of

Jacobi forms.

Lemma 5.6.1. [9] The coordinates (t1, t2, .., tn+1, τ) defined on (5.50) have the following

transformation laws under the action of the group J (An): they transform as follows under the

third action (5.1)

t1 7→ t1 +
c
∑

α,β 6=1,τ ηαβt
αtβ

2(n+ 1)(cτ + d)

tα 7→ tα

cτ + d
, α 6= 1,

τ 7→ aτ + b

cτ + d

(5.75)

59



Proof. Note that the term Φd
i equation (5.57) has weight +i, then using that ϕn+1 has

weight −n− 1, we have that the weight of tα for α 6= 1 must have weight −1 due to (5.56). The

transformation law of t1 follows from the transformation law of g1(τ)

(5.76) g1(
aτ + b

cτ + d
) = (cτ + d)2g1(τ) + 2c(cτ + d),

and by using equation (5.60) for k = 2.

In addition , from the formula (5.56) it is clear that the multivaluedness of (t1, .., tn+1) comes

from (ϕn+1)
1

n+1 . Therefore, the coordinates lives in a suitable covering over the orbit space of

the group J (An). This covering is obtained by forgetting to act the Coxeter group An and the

SL2(Z) action of J (An) on C⊕ Cn ⊕H. The only remaining part of the J (An) action are

the translations

vi 7→ vi + λiτ + µi.

Hence, the coordinates (t1, .., tn+1) live in n-dimensional tori with fixed symplectic base of the

torus homology and with a branching divisor Y := {ϕn+1 = 0}. Another geometric interpretation

of this covering can be done by the use of the following coordinates

Lemma 5.6.2. The equations

u =
−1

2πi

[
n∑
i=0

log σ(zi, ω, ω
′)− η

ω
(〈z, z〉An)

]
vi =

zi
2ω
, i = 0, 1, .., n,

τ =
ω′

ω
.

(5.77)

determine local coordinates in H1,n, where η = ζ(ω, ω, ω′) is Weiestrass Zeta function evaluated

in ω.

Proof. Expressing the σ function for the lattice generated by ω, ω′ in terms of Jacobi theta

1

(5.78) σ(z, ω, ω′) = 2ω
θ1(

z
2ω ,

ω′

ω )

θ′1(0,
ω′

ω )
e
η
2ω
z2 .

Substituting (5.78), we obtain

(5.79) − 2πiu = log

(
(2ω)−n−1

θ′1(0, τ)n+1∏n
i=0 θ1(vi, τ)

)
,
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Then, the following equations determines the inverse map of (5.77)

(2ω)n+1 =
θ′1(0, τ)n+1∏n
i=0 θ1(vi, τ)

e−2πiu,

zi = 2ωvi, i = 0, 1, .., n,

ω′ = τω.

(5.80)

Using the coordinates (5.77), the covering of the orbit space of J (An) is a n-dimensional

tori in lattice (ω, ω′) with fixed symplectic base of the torus homology and with a branching

divisor Y := { 1ω = 0}. There exist another geometric interpretation of this covering in terms of

the flat coordinates of the intersection form u, v0, v1, .., vn, τ . Indeed, in these coordinates the

covering is defined to be the quotient of C⊕ Cn ⊕H by the group J (An) without the An and

SL2(Z) action, i.e. doing the quotient only by the action of the group Zn ⊕ τZn in the notation

of section 5.1.

This covering space of the orbit space of J (An), in the coordinates u, v0, v1, .., vn, τ , is

defined by

(5.81) ˜C⊕ Cn ⊕H/J (An) := (C⊕ Cn ⊕H) / (Zn ⊕ τZn) .

Note that

(5.82) Enτ = Cn/ (Zn ⊕ τZn)

is a n-dimensional tori with respect the lattice (1, τ). Then, the covering (5.81) can be thought

as line bundle over n-dimensional toric fibration.

Remark 5.6.1. Following the same discussion regarding the correspondence between covering

of the orbit spaces and covering of Hurwitz space started in remarks 4.9.1 and 4.9.2, we will

consider the correspondence between the covering (5.81) and a suitable covering of the Hurwitz

space H1,n. Note that, a base in the first homology class of a torus is isomorphic to a lattice,

therefore, fixing a SL2(Z) orbit in the orbit space of J (An) (fixing a lattice) is equivalent to fix

a base of homology in the Hurwitz space H1,n. Moreover, the action of ”forget” the An action is

equivalent to choice a root of λ (5.21) near ∞ due to the discussions of remarks 4.9.1 and 4.9.2.

In order to manipulate the geometric objects of this covering, it is more convenient to use

their ring of functions. Hence, we define:

Definition 5.6.1. The extended ring of Jacobi forms with respect the ring of coefficients is

the following ring

(5.83) M̃•[ϕ0, ϕ2, .., ϕn+1],
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where

(5.84) M̃• = M• ⊕ {g1(τ)}.

Lemma 5.6.3. The coefficients of the intersection form gij on the coordinates ϕ0, ϕ2, .., ϕn+1, τ

belong to the ring M̃•[ϕ0, ϕ2, .., ϕn+1].

Proof. It is a consequence of the formula (5.29).

Lemma 5.6.4. The coefficients of the intersection form gαβ on the coordinates t1, .., tn+1, τ

belong to the ring M̃•[t
1, .., tn+1, 1

tn+1 ].

Proof. Using the transformation law of gαβ

(5.85) gαβ =
∂tα

∂ϕi

∂tβ

∂ϕj
g(dϕi, dϕj),

we realise the term ∂tα

∂ϕi
as polynomial in t1, .., tn+1, 1

tn+1 due to the relations (5.56) and (5.60).

Recall that the quotient

(5.86) fi =
ϕi
ϕn+1

is a elliptic function of weight i − n − 1 in the variables (v0, v1, ., vn, τ), and ϕn+1 = 1
(2ω)n+1 .

Then, we can promote the elliptic function fi in the lattice (1, τ) to a elliptic function in the

lattice ω, ω′ by doing

(5.87) fi(v0, v1, ., vn, τ) 7→ f̂i(z0, z1, .., zn, ω, ω
′) :=

1

(2ω)n+1−i fi(v0, v1, ., vn, τ).

The same can be done in the modular forms in (1, τ) of weight k. Indeed,

(5.88) h(τ) 7→ ĥ(ω, ω′) :=
1

(2ω)k
h(τ).

Therefore, due to the equation (5.56), in the coordinates defined in (5.77) the ring M̃•[t
1, .., tn+1, 1

tn+1 ]

takes the following form

(5.89) M̃•ω,ω′
[
f̂0, f̂2, .., f̂n

]
where f̂i is defined in (5.87) and M̃•ω,ω′ is the space of modular forms in the lattice ω, ω′.
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5.7. Christoffel symbols of the intersection form

In this section, we will focus to prove that the Christoffel symbols of the intersection

form belongs to the algebra M̃•[ϕ0, ϕ2, .., ϕn+1] on the coordinates ϕ0, ϕ2, .., ϕn+1, τ , and to the

algebra M̃•[t
1, .., tn+1, 1

tn+1 ] on the coordinates t1, .., tn+1, τ . Moreover, we will prove that on

the coordinates ϕ0, ϕ2, .., ϕn+1, τ the Christoffel Christoffel symbols of the intersection form is

at most linear on ϕ0. This fact is necessary to realise the pair g∗, η∗ as a flat pencil metric.

Recall that the Christoffel symbols Γijk (ϕ) associated with the intersection form g∗ is given

in terms of the following conditions (4.13).

Lemma 5.7.1. Let ϕ0, ϕ2, .., ϕn, τ , be defined in (5.21), then Γiij depend at most linear on

ϕ0.

Proof. Using the first condition of (4.13)

∂kg
ii = 2Γiik .

Recall that due to the theorem 5.4.2, the metric gij depend at most linear on ϕ0. Then,

2
∂2Γiik
∂ϕ2

0

= ∂20∂kg
ii = ∂k∂

2
0g
ii = 0.

Lemma 5.7.2. Let ϕ0, , ϕ1, ϕ2, .., ϕn+1, τ , defined in (5.21), then

Γiτj = 0,

Γτkk = −2πi
δjk
k
.

(5.90)

Proof. Let Γijk (x), in the coordinates x1, .., xn, and Γpql (y) in the coordinates y1, .., yn, then

the transformation law of the Christoffel symbol in defined in the cotangent bundle is the

following

(5.91) Γijk (x) =
∂xi

∂yp
∂xj

∂yq
∂yl

∂xk
Γpql (y) +

∂xi

∂yp
∂

∂xk

(
∂xj

∂yq

)
gpq(y).

In particular, the Γijk (ϕ) in the coordinates (ϕ0, ϕ1, .., ϕn, vn+1, τ) could be derived from the

Christoffel symbol in the coordinates v0, v1, .., vn+1, τ which is 0. Then,

(5.92) Γijk (ϕ) =
∂ϕi
∂vp

∂

∂ϕk

(
∂ϕj
∂vq

)
gpq(v).

Computing Γiτj ,

Γiτk (ϕ) =
∂ϕi
∂vp

∂

∂ϕk

(
∂τ

∂vq

)
gpq(v)

= −2πϕi
∂

∂ϕk
(1) = 0.

(5.93)
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Computing Γτij by using the first condition of (4.13),

Γτkj (ϕ) = ∂jg
kτ − Γkτj

= ∂jg
kτ = −2πi

δjk
k
.

(5.94)

Proposition 5.7.3. The Christoffel symbols Γijk (ϕ) belong to the ring M̃•[ϕ0, ϕ2, .., ϕn+1].

Proof. Note that the invariance of the Jacobi form ϕi with respect the first two actions of

(5.1), and equivariant by the third one implies that the differential dϕi is invariant under the

first two actions of (5.1), and behaves as follows under the SL2(Z)

dϕi 7→
dϕi

(cτ + d)ki
− cϕi

(cτ + d)ki+1
.(5.95)

Therefore the Christoffel symbol Γijk

(5.96) ∇(dϕi)#dϕj = Γijk dϕk

is a Jacobi form if ϕi has weight 0. Hence, doing the change of coordinates

(5.97) ϕi 7→ ϕ̂i := η2i(τ)ϕi,

we have that the Christoffel symbol Γ̂ijk

(5.98)
1

η2i+2j
∇(dϕ̂i)#dϕ̂j = Γ̂ijk dϕ̂k

is a Jacobi form.

Comparing Γ̂ijk with Γijk

∇(dϕ̂j)#dϕ̂i = ∇
(2jg1η2jϕjdτ+η2jdϕj)

#

(
2ig1η

2iϕidτ + η2idϕi
)

= ∇
(2jg1η2jϕjdτ)

#

(
2ig1η

2iϕidτ
)

+∇
(2jg1η2jϕjdτ)

#

(
η2idϕi

)
+∇

(η2jdϕj)
#

(
2ig1η

2iϕidτ
)

+∇
(η2jdϕj)

#

(
η2idϕi

)
= 2jg1η

2jϕjg
lτ∇ ∂

∂ϕl

(
2iη2ig1ϕidτ

)
+ 2jg1η

2jϕjg
lτ∇ ∂

∂ϕl

(
η2idϕi

)
+ η2jglj∇ ∂

∂ϕl

(
2ig1η

2iϕidτ
)

+ η2jglj∇ ∂
∂ϕl

(
η2idϕi

)
= 4ijg′1g1ϕiη

2i+2jϕjg
ττdτ + 4i2jg31η

2i+2jϕjϕig
ττdτ + 4ijg1η

2i+2jϕjg
iτdτ

+ 4ijg21η
2i+2jϕjg

ττdϕi + 2jg1η
2i+2jϕjΓ

τi
k dϕk + 4i2g21η

2i+2jϕig
τjdτ

+ 2ig′1η
2i+2jϕig

ljdτ + 2ig1η
2i+2jgijdτ + 2ig1ϕiη

2i+2jΓiτk dϕk

+ η2i+2jg1g
lτdϕi + η2i+2jΓjik dϕk.

(5.99)
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Dividing the equation (5.99) by η2i+2j and isolating Γjik dϕk, we have

Γjik dϕk = −4ijg′1g1ϕiϕjg
ττdτ − 4i2jg31ϕjϕig

ττdτ + 4ijg1η
2i+2jϕjg

iτdτ

− 4ijg21ϕjg
ττdϕi − 2jg1ϕjΓ

τi
k dϕk − 4i2g21ϕig

τjdτ

− 2ig′1ϕig
ljdτ − 2ig1η

2i+2jgijdτ − 2ig1ϕiΓ
iτ
k dϕk

− g1glτdϕi + Γ̂jik dϕk.

(5.100)

Since the differential forms has a vector space structure and the right hand side of (5.100)

depends only on gij , g1(τ), ϕi, and Γτik which belongs to the ring M̃•[ϕ0, ϕ2, .., ϕn+1], the desired

result is proved.

Lemma 5.7.4. The Christoffel symbols Γijk (ϕ) depend at most linearly on ϕ0.

Proof. The proposition 5.7.3 gives to the space of Christoffel symbols the structure of

graded algebra, in particular we can compute the degree m regarding to the algebra of Jacobi

forms. Let φ ∈ M̃•[ϕ0, ϕ2, .., ϕn+1] with index mφ and weight kφ, then we write

degmφ = mφ,

degkφ = kφ.
(5.101)

If k 6= τ ,

degmΓijk = degm

(
∂ϕi
∂vp

∂

∂ϕk

(
∂ϕj
∂vq

)
gpq(v)

)
= 1.(5.102)

Therefore, Γijk is at most linear on ϕ0. If k = τ ,

degkΓ
ij
τ = degk

(
∂ϕi
∂vp

∂

∂τ

(
∂ϕj
∂vq

)
gpq(v)

)
= −i− j + 4.

Suppose that Γijτ contains a the term a(τ)ϕ2
0, where a(τ), then

degka(vn+1, τ) = −i− j + 4 > 0.

The possible Christoffel symbols that could depend on ϕ2
0 are

Γ04
τ ,Γ

40
τ ,Γ

22
τ ,Γ

20
τ ,Γ

02
τ ,Γ

00
τ .(5.103)

But Γ22
τ ,Γ

00
τ is linear on ϕ0 due to lemma 8.8.1.

Computing Γijτ

Γijτ =
∂ϕi
∂vp

∂

∂τ

(
∂ϕj
∂vq

)
gpq(v)

=
∂ϕi
∂vp

∂

∂vq

(
∂ϕj
∂τ

)
gpq(v)

(5.104)

Recall that in (5.19), there exist a relation between the Jacobi form {ϕi} and the he elementary

symmetric polynomials a2, .., an+1 be given by the Taylor expansion of {ϕi}.
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Note that the Christoffel symbol depend on ϕ0 iff it contains the term constant in its

expansion. Our strategy is to show that the Christoffel symbols (5.103) contains only higher

order polynomials in its expansions. Computing the lowest degree term in the expansion of

(5.104)

Γijτ =
∂ϕi
∂vp

∂

∂vq

(
∂ϕj
∂τ

)
gpq(v)

=
∂ai
∂vp

∂

∂vq

(
∂bj(τ)

∂τ
aj+1

)
gpq(v) + ..

=
∂Pi
∂vp

∂bj(τ)

∂τ

∂aj+1

∂vq
gpq(v) + ..

=
∂bj(τ)

∂τ
ai+j+3 + ...

(5.105)

Therefore, we have that the associated Christoffel symbol do not depend on ϕ2
0.

5.8. Unit and Euler vector field of the orbit space of J (An)

This section is devoted to study the action of the Euler vector field, and Unit vector field in

the geometric structure of the orbit space of the group J (An). The action of the Euler vector

field is particularly important, because it would give rise to the quasi homogeneous condition to

the WDVV solution, which we aim to construct.

Lemma 5.8.1. Let λ, ϕ0, .., ϕn, ϕn+1, ϕn+2 = τ be defined in (5.21), (t1, ., tn+1, τ) the flat

coordinates of η defined in (5.50), and the Euler vector field be defined by (5.31). Then,

E(λ) = λ,

E(ϕi) = diϕi,

E(tα) = dαt
α,

(5.106)

where

di = 1, i < n+ 2,

di = 0, i = n+ 2,

dα =
n+ 1− α

n
,

(5.107)

Proof. Recall that the function λ is given by

λ = e−2πiu
∏n
i=0 θ1(z − vi, τ)

θn+1
1 (z, τ)

= ϕn+1℘
n−1(z, τ) + ϕn℘

n−2(z, τ) + ...+ ϕ2℘(z, τ) + ϕ0.

Hence,

1

2πi

∂

∂u
(λ) = λ

= E(ϕn+1)℘
n−1(z, τ) + E(ϕn)℘n−2(z, τ) + ...+ E(ϕ2)℘(z, τ) + E(ϕ0),
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therefore,

E(ϕi) = ϕi,

furthermore,

E(τ) = 0.

Recall that tα can written in terms of equation (5.54) or in more convenient way

tα =
n

n+ 1− α
res
v=0

λ
n+1−α

n (v)dv, α 6= 1,

t1 = ϕ0 + 4πig1(τ)ϕ2.
(5.108)

Applying the Euler vector in (5.108) we get the desired result.

Corollary 5.8.1.1. The Euler vector field (5.31) in the flat coordinates of η∗ has the

following form

(5.109) E :=
n+1∑
α=1

dαt
α ∂

∂tα
,

where

dα =
n+ 2− α
n+ 1

.(5.110)

Proof. Recall that

E =
1

2πi

∂

∂u

= E(tα)
∂

∂tα
,

=
n+1∑
α=1

dαt
α ∂

∂tα
.

Lemma 5.8.2. The Euler vector field (5.31) acts in the vector fields ∂
∂tα , ∂

∂ϕi
and differential

forms dtα, dϕi as follows:

LieEdϕi = didϕi,

LieEdt
α = dαdt

α,

LieE
∂

∂ϕi
= −di

∂

∂ϕi
,

LieE
∂

∂tα
= −dα

∂

∂tα
.

(5.111)
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Lemma 5.8.3. The intersection form gij be defined in (5.27) and its Christoffel symbol Γijk

in the coordinates ϕ0, .., ϕn, ϕn+1, ϕn+2 = τ be defined in (5.21) are weighted polynomials in

the variables ϕ0, ϕ2, .., ϕn+1, with degrees

deg
(
gij
)

= di + dj ,

deg
(

Γαβk

)
= di + dj − dk.

(5.112)

Proof. The function gij and Γijk belong to the ring M̃•[ϕ0, ϕ2, .., ϕn+1] due to lemma 5.6.3

and 5.7.3. The degrees are computed by using the following formulae

E
(
gij(ϕ)

)
= E

(
∂ϕi
∂vl

∂ϕj
∂vm

glm(v)

)
= E

(
∂ϕi
∂vl

)
∂ϕj
∂vm

glm(v) +
∂ϕi
∂vl

E

(
∂ϕj
∂vm

glm(v)

)
=
∂E(ϕi)

∂vl
∂ϕj
∂vm

glm(v) +
∂ϕi
∂vl

∂E(ϕj)

∂vm
glm(v)

= (di + dj)
∂ϕi
∂vl

∂ϕj
∂vm

glm(v).

and

E
(

Γijk (ϕ)
)

= E

(
∂ϕi
∂vl

∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v)

)
= E

(
∂ϕi
∂vl

)
∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v) +

∂ϕi
∂vl

E

(
∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v)

)
=
∂E(ϕi)

∂vl
∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v) +

∂ϕi
∂vl

∂

∂ϕk

(
∂E(ϕj)

∂vm

)
glm(v)

− dk
∂ϕi
∂vl

∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v)

= (di + dj − dk)
∂ϕi
∂vl

∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v).

Lemma 5.8.4. The intersection form gαβ be defined in (5.27) in the coordinates (t1, ., tn+1, τ)

be defined in (5.50) and its Christoffel symbol Γαβγ are weighted polynomials in the variables

t1, .., tn+1, 1
tn+1 with degrees

deg
(
gαβ
)

= dα + dβ,

deg
(

Γαβγ

)
= dα + dβ − dγ .

(5.113)
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Proof. Lemma 5.6.4 guarantee that gαβ ∈ M̃•[t0, t1, .., tn+1, 1
tn+1 ]. Using the formula

E(gαβ) = E(
∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ))

= E(
∂tα

∂ϕi
)
∂tβ

∂ϕj
gij(ϕ) +

∂tα

∂ϕi
E(

∂tβ

∂ϕj
)gij(ϕ) +

∂tα

∂ϕi

∂tβ

∂ϕj
E(gij(ϕ))

=
∂E(tα)

∂ϕi

∂tβ

∂ϕj
gij(ϕ)− di

∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ) +

∂tα

∂ϕi

∂E(tβ)

∂ϕj
gij(ϕ)− dj

∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ)

+ (di + dj)
∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ)

= (dα + dβ)
∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ).

The Christoffel symbol Γαβγ is given by the following

Γαβγ =
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk +
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij .

Γijj ,
∂ϕk
∂tγ ∈ M̃•[t

1, .., tn+1] due to Lemma 5.7.3 and equations (5.65), (5.61). But ∂tα

∂ϕi
∈

M̃•[t
1, .., tn+1, 1

tn+1 ], see the proof of lemma 5.6.4 for details. Therefore, Γαβγ are weighted

polynomials in the variables t1, .., tn+1, 1
tn+1 . Computing the degree of Γαβγ

E(Γαβγ ) = E(
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk +
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij)

= (dα − di)
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk + (dβ − dj)
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk

+ (dk − dγ)
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk + (dα − di)
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij

+ (dβ − dγ)
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij + (dα − di)

∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij

+ (di + dj)
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij

= (dα + dβ − dγ)Γαβγ .

Lemma 5.8.5. The Unit vector field (5.32) in the flat coordinates of η∗ has the following

form

(5.114) e =
∂

∂t1
.
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Proof.

∂

∂ϕ0
=
∂tα

∂ϕ0

∂

∂tα

=
∂

∂t1
.

Lemma 5.8.6. Let the metric η∗ defined on (5.36) and the Euler vector field (5.31). Then,

(5.115) LieEη
αβ = (dα + dβ − d1)ηαβ.

5.9. Construction of WDVV solution

The main aim of this section is to extract a WDVV equation from the data of the group

J (An).

Lemma 5.9.1. The orbit space of J (An) carries a flat pencil metric

gαβ, ηαβ :=
∂gαβ

∂t1
(5.116)

with the correspondent Christoffel symbols.

Γαβγ , ηαβ :=
∂Γαβγ
∂t1

(5.117)

Proof. The metric (5.116) satisfies the hypothesis of Lemma 4.8.1 which proves the desired

result.

The following lemma shows that flat pencil structure is almost the same as Dubrovin

Frobenius structure due to lemma 4.8.1.

Lemma 5.9.2. Let the intersection form (5.27), unit vector field (5.32), and Euler vector

field (5.31). Then, there exist a function

(5.118) F (t1, t2, .., tn+1, τ) =
(t1)2τ

4πi
+
t1

2

∑
α,β 6=1,τ

ηαβt
αtβ +G(t2, .., tn+1, τ),

such that

LieEF = 2F + quadratic terms,

LieE

(
Fαβ

)
= gαβ,

∂2G(t1, t2, .., tn+1, τ)

∂tα∂tβ
∈ M̃•[t2, .., tn+1,

1

tn+1
],

(5.119)

where

(5.120) Fαβ = ηαα
′
ηββ

′ ∂F 2

∂tα′∂tβ′
.
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Proof. Let Γαβγ (t) the Christoffel symbol of the intersection form (5.27) in the coordinates

the flat coordinates of η∗, i.e t1, t2, .., tn+1, τ . According to the lemma 4.8.1, we can represent

Γαβγ (t) as

(5.121) Γαβγ (t) = ηαε∂ε∂γf
β(t).

Using the relations (5.113), (5.111) and lemma 5.8.6

LieE(Γαβγ (t)) = LieE(ηαε)∂ε∂γf
β(t) + ηαεLieE(∂ε∂γf

β(t))

= (dα + dε − d1)ηαε∂ε∂γfβ(t) + (−dε − dγ)ηαε∂ε∂γLieE(fβ(t))

= (dα + dβ − dγ)ηαε∂ε∂γf
β(t).

Then, by isolation LieE
(
fβ(t)

)
we get

(5.122) LieE

(
fβ(t)

)
= (dβ + d1)f

β +Aβσt
σ +Bβ, Aβσ, B

β ∈ C.

Considering the second relation of (4.13) for α = τ

gτσΓβγσ = gβσΓτγσ ,(5.123)

and using lemma 5.7.2 and the fact that

g(dϕi, dτ) = 2πiϕi,

which implies

g(dtα, dτ) = 2πidαt
α,

we have.

2πidσt
σηβε∂σ∂εf

γ = 2πidσδ
γ
σg

βσ,(5.124)

which is equivalent to

LieE

(
ηβε∂εf

γ
)

= dγg
βγ .(5.125)

Using (5.122) in the equation (5.125), we have

(dβ + dγ)ηβε∂εf
γ = dγg

βγ .(5.126)

If γ 6= τ , we define

(5.127) F γ =
fγ

dγ
,

and note that gβγ is symmetric with respect the indices β, γ. Hence,

(dβ + dγ)ηβε∂εF
γ = (dβ + dγ)ηγε∂εF

β,(5.128)

which is the integrability condition for

F γ = ηγµ∂µF.(5.129)
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In order to extract information from γ = τ , take β = τ in equation (5.126)

dγη
τ0∂0f

γ = dγg
τγ

2πidγ∂0f
γ = 2πidγt

γ
(5.130)

which is equivalent to

ηγε∂ε∂0F = tγ ,

inverting ηγε

∂α∂0F = ηαγt
γ ,(5.131)

integrating equation (5.131), we obtain

(5.132) F (t1, t2, .., tn+1, τ) =
(t1)2τ

4πi
+
t1

2

∑
α,β 6=1,τ

ηαβt
αtβ +G(t2, .., tn+1, τ).

Substituting the equation (5.132) in the (5.126) for γ 6= τ , we get

gβγ = (dβ + dγ)ηβεηγµ∂ε∂µF,

= LieE(F βγ)
(5.133)

Since gβγ is a symmetric matrix, the equation (5.133) is equivalent to the second equation of

(5.119) for either β and γ different from τ . Therefore, the missing part of the second equation

of (5.119) is only for the case β = γ = τ . Moreover, the intersection form gβγ is proportional to

the Hessian of the equation (5.132) for for either β and γ different from τ . Recall that from the

data of a Hessian, we can reconstruct uniquely a function up to quadratic terms, therefore, by

defining

LieE

(
∂2F

∂t12

)
= gττ .(5.134)

Then substituting (5.132) in (5.134).

LieE

(
∂2F

∂t12

)
= LieE

( τ

2πi

)
= 0 = gττ .

Hence, we proved the second equation (5.119). Substituting the equation (5.132) in the second

equation (5.119) for α, β 6= τ

LieE

(
Fαβ

)
= LieE

(
ηαα

′
ηββ

′ ∂F 2

∂tα′∂tβ′

)
= LieE

(
ηαα

′
ηββ

′ ∂G2

∂tα′∂tβ′

)
= gαβ ∈ M̃•[t2, .., tn+1,

1

tn+1
].
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Hence, the second equation (5.119) prove the third equation of (5.119).

Substituting (5.132) in (5.122), and using (5.129), we obtain

LieE

(
fβ
)

= LieE

(
ηβε∂εF

)
= LieE

(
ηβε∂εF

)
∂εF + ηβεLieE (∂εF )

= (dβ + dε − d1)ηβε∂εF∂εF + ηβε∂εLieE (F )− dεηβε∂εF

= (dβ − d1)ηβε∂εF∂εF + ηβε∂εLieE (F )

= (dβ + d1)η
βε∂εF +Aβσt

σ +Bβ

Hence, isolating LieE (F )

ηβε∂εLieE (F ) = 2ηβε∂εF +Aβσt
σ +Bβ,

inverting ηβε

∂αLieE (F ) = 2∂αF + ηαβA
β
σt
σ + ηαβB

β,

integrating

LieE (F ) = 2F + ηαβA
β
σt
αtσ + ηαβB

βtα,

Lemma proved.

Lemma 5.9.3. Let

(5.135) cαβγ =
∂F 3

∂tα∂tβ∂tγ
,

then,

(5.136) cγαβ = ηγεcαβε

is a structure constant of a commutative algebra given by the following rule in the flat coordinate

of η

(5.137) ∂α • ∂β = cγαβ∂γ

such that

(5.138) η(∂α • ∂β, ∂γ) = η(∂α, ∂β • ∂γ), Frobenius condition.

Proof.
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(1) Commutative

The product defined in (5.137) is commutative, because its structure constant (5.136)

is symmetric with respect its indices α, β, γ due to the commutative behaviour of the

partial derivatives ∂
∂tα ,

∂
∂tβ
, ∂
∂tγ .

(2) Frobenius condition

η(∂α • ∂β, ∂γ) = cεαβη(∂ε, ∂γ)

= cεαβηεγ

= cαβγ

= cεβγηαε = η(∂α, ∂β • ∂γ).

Lemma proved.

Lemma 5.9.4. The unit vector field defined in (5.32) is the unit of the algebra defined in

lemma 5.9.3.

Proof. Substituting (5.129) and (5.127) in (5.121), we obtain

(5.139) Γαβγ = dβc
αβ
γ ,

where

(5.140) cαβγ = ηαµηβεcεµγ .

Substituting α = τ in (5.139) and using lemma 5.7.2

Γτβγ = 2πidβδ
β
γ ,

= dβc
τβ
γ .

Then,

cβ0γ = δβγ .

Computing

∂0 • ∂γ = cβ0γ∂β = ∂γ .

Lemma proved.

Lemma 5.9.5. The algebra defined in lemma 5.9.3 is associative.

Proof. Recall that the Christoffel symbol Γαβγ is proportional to the structure constant of

the algebra defined in lemma 5.9.3 for β 6= τ

Γαβγ = dβc
αβ
γ .
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Then, using (4.59), we obtain

(5.141) Γαβσ Γσγε = Γαγσ Γσβε

Substituting (5.139) in (5.141), we have

cαβσ cσγε = cαγσ cσβε , for β, γ 6= τ.

If β = τ ,

cατσ cσγε = 2πiδασ c
σγ
ε

= 2πicαγε

= 2πiδσε c
αγ
σ

= cαγσ cστε .

Recall of the covering space of the orbit space of J (An) defined in (5.81), see section 5.6

for details.

Theorem 5.9.6. The orbit space ˜C⊕ Cn ⊕H/J (An) with the intersection form (5.27), unit

vector field (5.32), and Euler vector field (5.31) has a Dubrovin Frobenius manifold structure.

Proof. The function (5.118) satisfy a WDVV equation due to the lemmas 5.9.2, 5.9.3,

5.9.4, 5.9.5.

Remark 5.9.1. The Dubrovin Frobenius structure associated with the group J (An) does

not live in the orbit space of J (An), but in a suitable covering. This covering is described by

the space such that the ring of functions is M̃•
[
t1, t2, .., tn+1, 1

tn+1

]
.

Remark 5.9.2. There are two interpretations of the Dubrovin Frobenius structure on the

orbit space of J (An). In the first one, the Dubrovin Frobenius structure in the orbit space

of J (An) exist only locally due to the SL2(Z) action, then the orbit space of J (An) is said

to have a twisted Frobenius structure, see details in appendix B of [12]. The second one, the

Dubrovin Frobenius manifold structure exist truly in the a covering, where we fix the ambiguity,

in this case, we fix a symplectic base of homology and a branching of the root of ϕn+1.
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CHAPTER 6

Differential geometry of orbit space of Extended Jacobi group

A1

This chapter is based in the work done in [1], which have the aim to give a gentle introduction

to the general theory of orbit space of the group J (Ãn), see section 8 for details. The focus

of this chapter is the definition of a new extension of the finite Coxeter group A1 such that it

contains the affine Weyl group Ã1 and the Jacobi group J (A1). This new extension will be

denoted by Extended affine Jacobi group J (Ã1). Further, we prove that from the data of the

group J (Ã1), we can reconstruct the Dubrovin Frobenius structute of the Hurwitz space H1,0,0

on the orbit space of J (Ã1). The advantage of this orbit space construction is the Chevalley

theorem 6.2.9, which gives a global interpretation for orbit space of J (Ã1). Furthermore, it

attaches the group J (Ã1) to the Hurwitz space H1,0,0, and this fact might be useful in the

general understanding of WDVV/group correspondence. The results of this chapter is interesting

because the Hurwitz space H1,0,0 is well know to have a rich Dubrovin Frobenius structure

called tri-hamiltonian structure [26], [27], and [25]. This fact realise the orbit space of J (Ã1)

as suitable ambient space for Dubrovin Frobenius submanifolds, furthermore, it gives interesting

relation between the integrable systems of the ambient space and the integrable systems of its

Dubrovin Frobenius submanifolds.

6.1. The Group J (Ã1)

The main goal of this section is to motivate and to define the group J (Ã1). In order to do

that, it will be necessary to recall the definition of the group A1, and some of its extensions.

Moreover, the goal is to understand how to derive WDDV solution starting from these groups.

Recall the action of the group An in LAn ⊗ C in section 4.1, but let us concentrate on the

simplest possible case, i.e n = 1. In this case, the action on C ∼= LA1 ⊗ C is just:

(6.1) v0 7→ −v0.

The understanding of the orbit space of A1 requires a Chevalley theorem 4.2.1 for the ring of

invariants. In the A1 case, the ring of invariants is just

C[v20] ∼= C[a2],
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then the orbit space of A1 is just the

Spec
(
C[v20]

)
.

In the paper [11] and [12], it was demonstrated that C/A1 has structure of Dubrovin-Frobenius

manifold, furthermore, it is isomorphic to the Hurwitz space H0,1, i.e. the space of rational

functions with a double pole. The isomorphism can be realized by the following map

(6.2) [v0] 7→ λA1(p, v0) = (p− v0)(p+ v0) = p2 + a2.

Note that the isomorphism works, because λA1(p, v0) is invariant under the A1 action. Applying

the methods developed in [11] and [12], one can show that the WDVV solution associated with

this orbit space is

(6.3) F (t1) =
(t1)3

6
,

where t1 is the flat coordinate of the metric η.

In [12], [15] it was also considered the extended affine A1 that is denoted by Ã1. The action

on (
LA1 ⊗ C

)
⊕ C = {(v0, v1, v2) ∈ C3 :

1∑
i=0

vi = 0}

is:

v0 7→ ±v0 + µ0,

v2 7→ v2 + µ2,
(6.4)

where µ0, µ2 ∈ Z.

A notion of invariant ring for the group extended affine An were define in [15] , and Dubrovin

and Zhang proved that this invariant ring for the case Ã1 is isomorphic to

C[e2πiv2cos(2πiv0), e
2πiv2 ].

Therefore, the orbit space of Ã1 is the weight projective variety associated with

Spec
(
C
[
e2πiv2 cos(2πiv0), e

2πiv2
])
.

Further, a Dubrovin Frobenius manifold structure was built on the orbit space of Ã1 with the

following WDVV solution

(6.5) F (t1, t2) =
(t1)2t2

2
+ et

2
.

The orbit space of Ã1 is also associated with a Hurwitz space, but the relation is slightly less

straightforward. The first step is to consider the following map

[v0, v2] 7→ λÃ1(p, v0, v2) = ep + e2πiv2 cos(2πiv0) + e2πiv2e−p
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The second is to consider the Legendre transformation of S2 type (Appendix B, and Chapter 5

of [12]). Consider

b = e2πiv2 cos(2πiv0), a = e2πiv2 ,

and the following choice of primary differential dp̃ implicity given by

dp =
dp̃

p̃− b
.

Then, in this new coordinates λÃ1 is given by

(6.6) λ(p̃, a, b) = p̃+
a

p̃− b

Hence, the orbit space of Ã1 is isomorphic to the Hurwitz space H0,0,0, i.e. space of fractional

functions with two simple poles.

The next example of group to be considered is the Jacobi group J (A1) already considered

in 5.1, which acts on

ΩJ (A1) :=
(
LA1 ⊗ C

)
⊕ C⊕H = {(v0, v1, u, τ) ∈ C3 ⊕H :

1∑
i=0

vi ∈ Z + τZ}

as follows:

A1 action:

v0 7→ −v0, u 7→ u, τ 7→ τ.(6.7)

Translations:

v0 7→ v0 + µ0 + λ0τ, u 7→ u− λ0v0 −
λ20
2
τ, τ 7→ τ,(6.8)

where µ0, λ0 ∈ Z.

SL2(Z) action:

v0 7→
v0

cτ + d
, u 7→ u− cv20

2(cτ + d)
, τ 7→ aτ + b

cτ + d
.(6.9)

where a, b, c, d ∈ Z, and ad− bc = 1.

The notion of invariant ring of J (A1) was first defined in [18]. However, the definitions stated

in [34], [8], [9] are more suitable for this purpose. Then, we use the definition of Jacobi forms

5.2.1 for the case J (A1).
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Definition 6.1.1. The weak A1 -invariant Jacobi forms of weight k, and index m are

holomorphic functions on Ω = C⊕ C⊕H 3 (u, v0, τ) which satisfy

ϕ(u,−v0, τ) = ϕ (u, v0, τ) , A1 invariant condition

ϕ

(
u− λ0v0 −

λ0
2

2
τ, v0 + λ0τ + µ, τ

)
= ϕ (u, v0, τ)

ϕ

(
u+

cv20
2(cτ + d)

,
v0

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)k ϕ(u, v0, τ)

Eϕ(u, v0, τ) :=
1

2πi

∂

∂u
ϕ(u, v0, τ) = mϕ(u, v0, τ)

(6.10)

Moreover,

(1) ϕ is locally bounded functions of v0 as =(τ) 7→ +∞ (weak condition).

The space of Ã1-invariant Jacobi forms of weight k, and index m is denoted by JA1
k,m, and

J
J (A1)
•,• =

⊕
k,m J

A1
k,m is the space of Jacobi forms A1 invariant.

In [18], it was proved the following a version of the Chevalley theorem, which is a particular

case of the Theorem 5.2.2 and corollary 5.2.3.1 .

Theorem 6.1.1. Let J
J (A1)
•,• the ring of Jacobi forms A1 invariant, then

(6.11) J
J (A1)
•,• ∼= M•[ϕ0, ϕ2]

where M• is the ring of holomorphic modular forms, and

ϕ2 = e2πiu
(
θ1(v0, τ)

θ′1(0, τ)

)2

,

ϕ0 = ϕ2℘(v0, τ),

(6.12)

θ1 is the Jacobi theta 1 function (3.25), and ℘ is the Weierstrass P function, which is defined as

(6.13) ℘(v, τ) =
1

v2
+

∞∑
m2+n2 6=0

1

(v −m− nτ)2
− 1

(m+ nτ)2
,

Note that this Chevalley theorem is slightly different from the others, the ring of the

coefficients is the ring of holomorphic of modular forms, instead of just C. The geometric

interpretation of this fact is that the orbit space of J (A1) is a line bundle such that its base

is family of elliptic curves Eτ quotient by the group A1 parametrised by H/SL2(Z). In [8]

and [9], it was proved that orbit space of J (A1) has a Dubrovin Frobenius structure, for the

convenience of the reader this result was also prove in chapter 5. Furthermore, the orbit space

of J (A1) is isomorphic to H1,1, i.e space of elliptic functions with 1 double pole. The explicit

isomorphism is given by the map

(6.14) [(u, v0, τ)] 7→ λJ (A1)(v, u, v0, τ) = e2πiu
θ1(v − v0, τ)θ1(v + v0, τ)

θ21(v, τ)
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As in the A1 case, the isomorphism is only possible, because the map (6.14) is invariant under

(6.7), (6.8), (6.9). A WDVV solution for this case is the following

(6.15) F (t1, t2, τ) =
(t1)2τ

2
+
t1(t2)2

2
− πi(t2)2

48
E2(τ),

where

E2(τ) = 1 +
3

π2

∑
m 6=0

∞∑
n=−∞

1

(m+ nτ)2
.

A remarkable fact in these orbit space constructions are its correspondences with Hurwitz spaces,

which can be summarize in the following diagram.

H0,1
∼= C/A1 H0,0,0

∼= C2/Ã1

H1,1
∼= (C⊕ C⊕H) /J (A1) H1,0,0

∼=?

1

2 4

3

The arrows of the diagram above have a double meaning. The first one is simply an extension of

the group, the arrow 2 is ”Jacobi” extension, and the arrow 1 is ”affine” extension. The second

meaning is related with the Hurwitz space side: the arrow 2 and 4 increase by one the genus,

and the arrow 1 and 3 split a double pole in 2 simple poles. The missing part of the diagram is

exactly the orbit space counter part of H1,0,0. The diagram suggest that the new group should

be an extension of the A1 group such that combine the groups Ã1, and J (A1), furthermore, it

should preserve H1,0,0 in a similiar way for what was done in (6.14). To construct the desired

group, we start from the group J (A1) and make an extension in order to incorporate the Ã1

group. Concretely, we extend the domain ΩJ (A1) to

ΩJ (Ã1) := ΩA1 ⊕ C⊕ C⊕H = {(v0, v1, v2, u, τ) ∈ C4 ⊕H : v0 + v1 ∈ Z⊕ τZ},

and we extend the group action J (A1) to the following action:

A1 action:

v0 7→ −v0,

v2 7→ v2,

u 7→ u,

τ 7→ τ.

(6.16)

Translations:

v0 7→ v0 + µ0 + λ0τ,

v2 7→ v2 + µ2 + λ2τ,

u 7→ u− 2λ0v0 + 2λ2v2 − λ20τ + λ22τ + k.

τ 7→ τ

(6.17)
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where (λ0, λ2), (µ0, µ2) ∈ Z2, and k ∈ Z.

SL2(Z) action:

v0 7→
v0

cτ + d
,

v2 7→
v2

cτ + d
,

u 7→ u+
c(v20 − v22)

(cτ + d)
,

τ 7→ aτ + b

cτ + d
.

(6.18)

where a, b, c, d ∈ Z, and ad− bc = 1.

The group action (6.16), (6.17), and (6.18) is called extended affine Jacobi group A1, and denoted

by J (Ã1).

Remark 6.1.1. The translations of the group Ã1 is a subgroup of the translations of the

group J (Ã1). Therefore, it is in that sense that J (Ã1) is a combination of Ã1 and J (A1).

In order to rewrite the action of J (Ã1) in an intrinsic way, consider the A1 in the following

extended space

LÃ1 = {(z0, z1, z2) ∈ Z3 :

3∑
i=0

zi = 0}.

The action of A1 on LÃ1 is given by

w(z0, z1, z2) = (z1, z0, z2)

permutations in the first 2 variables. Moreover, A1 also acts on the complexfication of LÃ1 ⊗ C.

Let us use the following identification Z2 ∼= LÃ1 ,C2 ∼= LÃ1 ⊗C that is possible due to the maps

(v0, v2) 7→ (v0,−v0, v2),

(v0, v1, v2) 7→ (v0, v2).

The action of A1 on C2 3 v = (v0, v2) is:

w(v) = w(v0, v2) = (−v0, v2).

Let the quadratic form 〈, 〉Ã1
is given by

〈v, v〉Ã1
= vTMÃ1

v

= vT

(
2 0

0 −2

)
v

= 2v20 − 2v22.

(6.19)
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Consider the following group LÃ1 × LÃ1 × Z with the following group operation

∀(λ, µ, k), (λ̃, µ̃, k̃) ∈ LÃ1 × LÃ1 × Z,

(λ, µ, k) • (λ̃, µ̃, k̃) = (λ+ λ̃, µ+ µ̃, k + k̃ + 〈λ, λ̃〉Ã1
).

Note that 〈, 〉Ã1
is invariant under A1 group, then A1 acts on LÃ1 × LÃ1 × Z. Hence, we can

take the semidirect product A1 n (LÃ1 × LÃ1 × Z) given by the following product.

∀(w, λ, µ, k), (w̃, λ̃, µ̃, k̃) ∈ A1 × LÃ1 × LÃ1 × Z,

(w, λ, µ, k) • (w̃, λ̃, µ̃, k̃) = (ww̃,wλ+ λ̃, wµ+ µ̃, k + k̃ + 〈λ, λ̃〉Ã1
).

Denoting W (Ã1) := A1 n (LÃ1 × LÃ1 × Z), we can define

Definition 6.1.2. The Jacobi group J (Ã1) is defined as a semidirect product W (Ã1) o
SL2(Z). The group action of SL2(Z) on W (Ã1) is defined as

Adγ(w) = w,

Adγ(λ, µ, k) = (aµ− bλ,−cµ+ dλ, k +
ac

2
〈µ, µ〉Ã1

− bc〈µ, λ〉Ã1
+
bd

2
〈λ, λ〉Ã1

).

for (w, t = (λ, µ, k)) ∈W (Ã1), γ ∈ SL2(Z). Then the multiplication rule is given as follows

(w, t, γ) • (w̃, t̃, γ̃) = (ww̃, tAdγ(wt̃), γγ̃).

Then the action of Jacobi group J (Ã1) on ΩJ (Ã1) := C⊕ C2 ⊕H ∈ (u, v, τ) is described

by the main three generators

ŵ =
(
w, 0, ISL2(Z)

)
,

t =
(
IA1 , λ, µ, k, ISL2(Z)

)
,

γ =

(
IA1 , 0,

(
a b

c d

))

, which acts on ΩJ (Ã1) as follows:

ŵ(u, v = (v0, v2), τ) = (u,−v0, v2, τ) ,

t(u, v = (v0, v2), τ) =

(
u− 〈λ, v〉Ã1

− 1

2
〈λ, λ〉Ã1

τ + k, v0 + λ0τ + µ0, v2 + λ2τ + µ2, τ

)
,

γ(u, v = (v0, v2), τ) =

(
u+

c〈v, v〉Ã1

2(cτ + d)
,

v0
cτ + d

,
v2

cτ + d
,
aτ + b

cτ + d

)
,

where λ, µ, k ∈ LÃ1 × LÃ1 × Z,

λ = (λ0, λ2), µ = (µ0, µ2).

Writing in a more condensed way, we have the following proposition:
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Proposition 6.1.2. The group J (Ã1) 3 (ŵ, t, γ) acts on Ω := C⊕ C2 ⊕H 3 (u, v, τ) as

follows

ŵ(u, v, τ) = (u,w(v), τ) ,

t(u, v, τ) =

(
u− 〈λ, v〉Ã1

− 1

2
〈λ, λ〉Ã1

τ + k, v + λτ + µ, τ

)
,

γ(u, v, τ) =

(
u+

c〈v, v〉Ã1

2(cτ + d)
,

v

cτ + d
,
aτ + b

cτ + d

)
.

(6.20)

Substituting (6.19) in (6.20), we get the transformation law (6.16),(6.17), and (6.18). The

explanation of why (6.20) is an group action for J (Ã1) is just straightforward computations,

but a bit long, then, this part of the proof will be omitted.

6.2. Jacobi forms of J (Ã1)

In order to understand the differential geometry of orbit space, first we need to study the

algebra of the invariant functions. Informally, every time that there is a group W acting on a

vector space V , one could think the orbit spaces V/W as V , but you should remember yourself

that it is only allowed to use the W−invariant sections of V. Hence, motivated by the definition

of Jacobi forms of group An defined in [34], and used in the context of Dubrovin-Frobenius

manifold in [8],[9], and summarised in Chapter 5 we give the following:

Definition 6.2.1. The weak J (Ã1) -invariant Jacobi forms of weight k ∈ Z, order l ∈ N,

and index m ∈ N are functions on Ω = C⊕ C2 ⊕H 3 (u, v0, v2, τ) = (u, v, τ) which satisfy

ϕ (w (u, v, τ)) = ϕ(u, v, τ), A1 invariant condition

ϕ (t (u, v, τ)) = ϕ(u, v, τ),

ϕ (γ (u, v, τ)) = (cτ + d)−k ϕ(u, v, τ),

Eϕ(u, v, τ) := − 1

2πi

∂

∂u
ϕ(u, v0, v2, τ) = mϕ(u, v0, v2, τ).

(6.21)

Moreover,

(1) ϕ is locally bounded functions of v0 as =(τ) 7→ +∞ (weak condition).

(2) For fixed u, v0, τ the function v2 7→ ϕ(u, v0, v2, τ) is meromorphic with poles of order

at most l + 2m at in v2 = 0, 12 ,
τ
2 ,

1+τ
2 mod Z⊕ τZ.

(3) For fixed u, v2 6= 0, 12 ,
τ
2 ,

1+τ
2 mod Z ⊕ τZ, τ the function v0 7→ ϕ(u, v0, v2, τ) is holo-

morphic.

(4) For fixed u, v0, v2 6= 0, 12 ,
τ
2 ,

1+τ
2 mod Z ⊕ τZ. the function τ 7→ ϕ(u, v0, v2, τ) is

holomorphic.

The space of Ã1-invariant Jacobi forms of weight k, order l, and index m is denoted by J Ã1
k,l,m,

and J
J (Ã1)
•,•,• =

⊕
k,l,m J

Ã1
k,l,m is the space of Jacobi forms Ã1 invariant.
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Remark 6.2.1. The condition Eϕ(u, v0, v2, τ) = mϕ(u, v0, v2, τ) implies that ϕ(u, v0, v2, τ)

has the following form

ϕ(u, v0, v2, τ) = f(v0, v2, τ)e2πimu

and the function f(v0, v2, τ) has the following transformation law

f(v0, v2, τ) = f(−v0, v2, τ)

f(v0, v2, τ) = e−2πim(〈λ,v〉+ 〈λ,λ〉
2

τ)f(v0 +m0 + n0τ, v2 +m2 + n2τ, τ)

f(v0, v2, τ) = (cτ + d)−ke
2πim(

c〈v,v〉
(cτ+d)

)
f(

v0
cτ + d

,
v2

cτ + d
,
aτ + b

cτ + d
)

(6.22)

The functions f(v0, v2, τ) are more closely related to the definition of Jacobi form of Eichler-

Zagier type [18]. The coordinate u works as kind of automorphic correction in this functions

f(v0, v2, τ). Further, the coordinate u will be crucial to construct an equivariant metric on the

orbit space of J (Ã1), see section 6.3.

Remark 6.2.2. Note that the Jacobi forms in the Definition 6.1.1 are holomorphic, and in

the Definition 6.2.1, the Jacobi forms are meromorphic in the variable v2. This fact will also

reflect in the difference between the Chevalley theorems of 6.2.1, and 6.1.1. See Theorem 6.2.9

for details.

The main result of this section is the following.

The ring of Ã1 invariant Jacobi forms is polynomial over a suitable ring E•,• :=

J
J (Ã1)
•,•,0 on suitable generators ϕ0, ϕ1.

Before stating precisely the theorem, I will define the objects E•,•, ϕ0, ϕ1.

The ring E•,l := J
J (Ã1)
•,l,0 is the space of meromorphic Jacobi forms of index 0 with poles of

order at most l at 0, 12 ,
τ
2 ,

1+τ
2 mod Z ⊕ τZ, by definition. The sub-ring J

J (Ã1)
•,0,0 ⊂ E•,• has a

nice structure, indeed:

Lemma 6.2.1. The sub-ring J
J (Ã1)
•,0,0 is equal to M• :=

⊕
Mk, where Mk is the space of

modular forms of weight k for the full group SL2(Z).

Proof. Using the Remark 6.2.1, we know that functions ϕ(u, v0, v2, τ) ∈ J
J (Ã1)
•,0,0 can

not depend on u, then ϕ(u, v0, v2, τ) = ϕ(v0, v2, τ). Moreover, for fixed v2, τ the functions

v0 7→ ϕ(v0, v2, τ) are holomorphic elliptic function. Therefore, by Liouville theorem, these

function are constant in v0. Similar argument shows that these function do not depend on v2,

because l + 2m = 0, i.e there is no pole. Then, ϕ = ϕ(τ) are standard holomorphic modular

forms.
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Lemma 6.2.2. If ϕ ∈ E•,• = J
J (Ã1)
•,•,0 , then ϕ depends only on the variables v2, τ . Moreover,

if ϕ ∈ JJ (Ã1)
0,l,0 for fixed τ the function v2 7→ ϕ(v2, τ) is an elliptic function with poles of order at

most l on 0, 12 ,
τ
2 ,

1+τ
2 mod Z⊕ τZ.

Proof. The proof is essentially the same of the lemma (6.2.1), the only difference is that

now we have poles at v2 = 0, 12 ,
τ
2 ,

1+τ
2 mod Z⊕ τZ. Then, we have dependence on v2.

As a consequence of lemma 6.2.2, the function ϕ ∈ Ek,l = J
J (Ã1)
k,l,0 has the following form

ϕ(v2, τ) = f(τ)g(v2, τ)

where f(τ) is holomorphic modular form of weight k, and for fixed τ , the function v2 7→ g(v2, τ)

is an elliptic function of order at most l at the poles 0, 12 ,
τ
2 ,

1+τ
2 mod Z⊕ τZ.

At this stage, we are able to define ϕ0, ϕ1. Note that a natural way to produce meromorphic

Jacobi forms is by using rational functions of holomorphic Jacobi forms. Starting from now,

we will denote the Jacobi forms related with the Jacobi group J (A1) with the upper index

J (A1), for instance

ϕJ (A1),

and the Jacobi forms related with the Jacobi group J (Ã1) with the upper index J (Ã1)

ϕJ (Ã1).

In [8], Bertola found basis of the generators of the Jacobi form algebra by producing a

holomorphic Jacobi form of type An as product of theta functions.

(6.23) ϕJ (An) = e2πiu
n+1∏
i=1

θ1(zi, τ)

θ′1(0, τ)
.

Afterwards, Bertola defined a recursive operator to produce the remaining basic generators. In

order to recall the details see section 5.2. Our strategy will follow the same logic of Bertola

method, we use theta functions to produce a basic generator and thereafter, we produce a

recursive operator to produce the remaining part.

Lemma 6.2.3. Let be ϕ
J (A2)
3 (u1, z1, z2, τ) the holomorphic A2 − invariant Jacobi form

which correspond to the algebra generator of maximal weight degree, in this case degree 3. More

explicitly,

(6.24) ϕ
J (A2)
3 = e−2πiu1

θ1(z1, τ)θ1(z2, τ)θ1(−z1 − z2, τ)

θ′1(0, τ)3
.

Let be ϕ
J (A1)
2 (u2, z3, τ) the holomorphic A1 − invariant Jacobi form which correspond to the

algebra generator of maximal weight degree, in this case degree 2.

(6.25) ϕ
J (A1)
2 = e−2πiu2

θ1(z3, τ)2

θ′1(0, τ)2
.
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Then, the function

(6.26) ϕ
J (Ã1)
1 =

ϕ
J (A2)
3

ϕ
J (A1)
2

is meromorphic Jacobi form of index 1, weight -1, order 0.

Proof. For our convenience, we change the labels z1, z2, z3 to v0 + v2,−v0 + v2, 2v2 respec-

tively. Then (6.26) has the following form

(6.27) ϕ
J (Ã1)
1 (u, v0, v2, τ) = e−2πiu

θ1(v0 + v2, τ)θ1(−v0 + v2, τ)

θ′1(0, τ)θ1(2v2, τ)

Let us prove each item separated.

(1) A1 invariant

The A1 group acts on (6.27) by permuting its roots, thus (6.27) remains invariant under

this operation.

(2) Translation invariant

Recall that under the translation v 7→ v +m+ nτ , the Jacobi theta function transform

as [8], [33]:

(6.28) θ1(vi + µi + λiτ, τ) = (−1)λi+µie−2πi(λivi+
λ2i
2
τ)θ1(vi, τ).

Then substituting the transformation (6.42) into (6.27), we conclude that (6.27) remains

invariant.

(3) SL2(Z) invariant

Under SL2(Z) action the following function transform as

(6.29)
θ1

(
vi

cτ+d ,
aτ+d
cτ+d

)
θ′1

(
0, aτ+dcτ+d

) = (cτ + d)−1 exp

(
πicv2i
cτ + d

)
θ1(vi, τ)

θ′1(0, τ)
.

Then, substituting (6.43) in (6.27), we get

ϕ
J (Ã1)
1 7→ ϕ

J (Ã1)
1

cτ + d

(4) Index 1

1

2πi

∂

∂u
ϕ1J (Ã1) = ϕ

J (Ã1)
1 .(6.30)

(5) Analytic behavior

Note that ϕ
J (Ã1)
1 θ21(2v2, τ) is holomorphic function in all the variables vi. Therefore

ϕ
J (Ã1)
1 are holomorphic functions on the variables v0, and meromorphic function in

the variable v2 with poles on j
2 + lτ

2 , j, l = 0, 1 of order 2, i.e l = 0, since m = 1.
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In order to define the desired recursive operator, it is necessary to enlarge the domain of the

Jacobi forms from C⊕ C2 ⊕H 3 (u, v0, v2, τ) to C⊕ C3 ⊕H 3 (u, v0, v2, p, τ). In addition, we

define a lift of Jacobi forms defined in C⊕ C2 ⊕H to C⊕ C3 ⊕H as

ϕ(u, v0 + v2,−v0 + v2, τ) 7→ ϕ̂(p) := ϕ(u, v0 + v2 + p,−v0 + v2 + p, τ)

A convenient way to do computation in these extended Jacobi forms is by using the following

coordinates

s = u+ g1(τ)p2,

z1 = v0 + v2 + p,

z2 = −v0 + v2 + p,

z3 = 2v2 + p,

τ = τ.

(6.31)

The bilinear form 〈v, v〉Ã1
is extended to

(6.32) 〈(z1, z2, z3), (z1, z2, z3)〉E = z21 + z22 − z23 ,

or equivalently,

(6.33) 〈(v0, v2, p), (v0, v2, p)〉E = 2v20 − 2v22 + p2.

The action of the Jacobi group Ã1 in this extended space is

ŵE(u, v, p, τ) = (u,w(v), p, τ)

tE(u, v, p, τ) =

(
u− 〈λ, v〉E −

1

2
〈λ, λ〉Eτ + k, v + p+ λτ + µ, τ

)
γE(u, v, p, τ) =

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)(6.34)

Proposition 6.2.4. Let be ϕ ∈ JJ (Ã1)
k,m,• , and ϕ̂ the correspondent extended Jacobi form.

Then,

(6.35)
∂

∂p
(ϕ̂)

∣∣∣∣
p=0

∈ JJ (Ã1)
k−1,m,•.

Proof. (1) A1-invariant

The vector field ∂
∂p in coordinates s, z1, z2, z3, τ reads

∂

∂p
=

∂

∂z1
+

∂

∂z2
+

∂

∂z3
+ 2g1(τ)p

∂

∂u
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Moreover, in the coordinates s, z1, z2, z3, τ the A1 group acts by permuting z1 and z2.

Then

∂

∂p
(ϕ(s, z2, z1, z3, τ))

∣∣∣∣
p=0

=

(
∂

∂z1
+

∂

∂z2
+

∂

∂z3

)
(ϕ(s, z2, z1, z3, τ))|p=0

=

(
∂

∂z1
+

∂

∂z2
+

∂

∂z3

)
(ϕ(s, z1, z2, z3, τ))|p=0 .

(2) Translation invariant

∂

∂p
(ϕ(u− 〈λ, v〉E − 〈λ, λ〉E , v + p+ λτ + µ, τ))

∣∣∣∣
p=0

=
∂

∂p
〈λ, v〉E

∣∣∣∣
p=0

ϕ(u, v, τ) +
∂ϕ

∂p

(
u− 〈λ, v〉Ã1

− 1

2
〈λ, λ〉Ã1

τ + k, v + λτ + µ, τ

)
=
∂ϕ

∂p

(
u− 〈λ, v〉Ã1

− 1

2
〈λ, λ〉Ã1

τ + k, v + λτ + µ, τ

)
=
∂ϕ

∂p
(u, v, τ).

(3) SL2(Z) equivariant of weight k

∂

∂p

(
ϕ(u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d
)

)∣∣∣∣
p=0

=
c

2(cτ + d)

∂

∂p
〈v, v〉E

∣∣∣∣
p=0

ϕ(u, v, τ) +
1

cτ + d

∂ϕ

∂p

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d
)

)
=

1

cτ + d

∂ϕ

∂p

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)
=

1

(cτ + d)k
∂ϕ

∂p
(u, v, τ).

Then,

∂ϕ

∂p

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)
=

1

(cτ + d)k−1
∂ϕ

∂p
(u, v, τ)

(4) Index 1

1

2πi

∂

∂u

∂

∂p
ϕ̂ =

1

2πi

∂

∂p

∂

∂u
ϕ̂ =

∂

∂p
ϕ̂.

Corollary 6.2.4.1. The function

(6.36)

[
e
z ∂
∂p

(
e2πiu

θ1(v0 + v2 + p)θ1(−v0 + v2 + p)

θ1(2v2 + p)θ′1(0)

)]∣∣∣∣
p=0

= ϕ
J (Ã1)
1 + ϕ

J (Ã1)
0 z +O(z2),

generates the Jacobi forms ϕ
J (Ã1)
0 and ϕ

J (A1)
1 , where

(6.37) ϕ
J (Ã1)
0 :=

∂

∂p

(
ϕ̂

J (Ã1)
1

)∣∣∣∣
p=0

.
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Proof. Acting ∂
∂p k times in ϕ

J (Ã1)
1 , we have[

∂k

∂kp

(
e2πiu

θ1(v0 + v2 + p)θ1(−v0 + v2 + p)

θ1(2v2 + p)θ′1(0)

)]∣∣∣∣
p=0

∈ JJ (Ã1)
1−k,1,•.

Corollary 6.2.4.2. The generating function can be written as

(6.38)[
e
z ∂
∂p

(
e2πiu

θ1(v0 + v2 + p)θ1(−v0 + v2 + p)

θ1(2v2 + p)θ′1(0)

)]∣∣∣∣
p=0

= e−2πi(u+ig1(τ)z
2) θ1(z − v0 + v2, τ)θ1(z + v0 + v2, τ)

θ′1(0)θ1(z + 2v2)
.

Proof. [
e
z ∂
∂p

(
e2πiu

θ1(v0 + v2 + p)θ1(−v0 + v2 + p)

θ′1(0)θ1(2v2 + p)

)]∣∣∣∣
p=0

=

=

[
e
z ∂
∂p

(
e2πi(s+ig1(τ)p

2 θ1(v0 + v2 + p)θ1(−v0 + v2 + p)

θ1(2v2 + p)θ′1(0)

)]∣∣∣∣
p=0

= e−2πi(u+ig1(τ)z
2) θ1(z − v0 + v2, τ)θ1(z + v0 + v2, τ)

θ′1(0)θ1(z + 2v2)
.

(6.39)

The next lemma is one of the main points of this Chapter, because this lemma identify the

orbit space of the group J (Ã1) with the Hurwitz space H1,0,0. This relationship is possible

due to the construction of the generating function of the Jacobi forms of type Ã1, which can be

completed to be the Landau-Ginzburg superpotential of H1,0,0 as follows

(6.40)

e−2πi(u+ig1(τ)z
2) θ1(z − v0 + v2, τ)θ1(z + v0 + v2, τ)

θ′1(0)θ1(z + 2v2)
7→ e−2πiu

θ1(v − v0 + v2, τ)θ1(v + v0 + v2, τ)

θ1(vτ)θ1(v + 2v2, τ)
.

Lemma 6.2.5. There exists a local isomorphism between Ω/J (Ã1) and H1,0,0.

Proof. The correspondence is realized by the map:

(6.41) [(u, v0, v2, τ)]←→ λ(v) = e−2πiu
θ1(v − v0, τ)θ1(v + v0, τ)

θ1(v − v2, τ)θ1(v + v2, τ)

where θ1(v, τ) is the Jacobi theta function defined on (3.25).

It is necessary to prove that the map is well defined and one to one.

(1) Well defined

Note that the map does not depend on the choice of the representative of [(u, v0, v2, τ)]

if the function (6.41) is invariant under the action of J (Ã1). Therefore, let us prove

the invariance of the map (6.41).

(2) A1 invariant

The A1 group acts on (6.41) by permuting its roots, thus (6.41) remains invariant under

this operation.
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(3) Translation invariant

Recall that under the translation v 7→ v +m+ nτ , the Jacobi theta function transform

as [33]:

(6.42) θ1(vi + µi + λiτ, τ) = (−1)λi+µie−2πi(λivi+
λ2i
2
τ)θ1(vi, τ).

Then substituting the transformation (6.42) into (6.41), we conclude that (6.41) remains

invariant.

(4) SL2(Z) invariant

Under SL2(Z) action the following function transform as

(6.43)
θ1

(
vi

cτ+d ,
aτ+d
cτ+d

)
θ′1

(
0, aτ+dcτ+d

) = (cτ + d)−1 exp

(
πicv2i
cτ + d

)
θ1(vi, τ)

θ′1(0, τ)
.

Then substituting the transformation (6.43) into (6.41), we conclude that (6.41) remains

invariant.

(5) Injectivity

Note that for fixed v, v0, v2, u, the function τ 7→ f(τ) := λ(v, v0, v2, u, τ) is a modular

form with character [18]. This is clear because λ(v, v0, v2, u, τ) is rational function

of θ1(z, τ), which is modular form with character for special values of z [18]. Let

λ(v, v0, v2, u, τ) = λ(v, v̂0, v̂2, û, τ̂), then for fixed v, v0, v2, u, v̂0, v̂2, û, we have f(τ) =

f(τ̂), in particular, f(τ), f(τ̂) have the same vanishing order, and this implies that τ, τ̂

belongs to the same SL2(Z) orbit.

Two elliptic functions are equal if they have the same zeros and poles with multi-

plicity mod Z⊕ τZ. Then, for a fixed τ in the SL2(Z) orbit

v̂0 = v0 + λ0τ + µ0,

v̂2 = v2 + λ2τ + µ2,

(λi, µi) ∈ Z2.

Furthermore, for two different representative of the same SL2(Z) orbit, but considering

fixed cells, we have

v̂0 =
v0

cτ + d
,

v̂2 =
v2

cτ + d
,

τ̂ =
aτ + b

cτ + d
,
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where

(
a b

c d

)
∈ SL2(Z).

Since, λ(v, v0, v2, u, τ) is invariant under translations, and SL2(Z), for τ̂ = τ , we have

û = u− 〈λ, v〉Ã1
− 〈λ, λ〉Ã1

τ

2
+ k.

For τ̂ = aτ+b
cτ+d ,

û = u−
c〈v, v〉Ã1

2(cτ + d)
+ k,

where k ∈ Z.

(6) Surjectivity

Any elliptic function can be written as rational functions of Weierstrass sigma function

up to a multiplication factor [33]. By using the formula

σ(vi, τ) =
θ1(vi, τ)

θ′1(0, τ)
exp(−2πig1(τ)v2i )

g1(τ) =
η′(τ)

η(τ)

(6.44)

where η(τ) is the Dedekind η function, we get the desire result.

Remark 6.2.3. Lemma 6.2.5 is a local equivalence between H1,0,0, and the orbit space of

J (Ã1), but it is not a global statement. The Theorem 6.2.9 below characterises the ring of

invariants of ΩJ (Ã1)/J (Ã1), therefore, we have the global understanding of ΩJ (Ã1)/J (Ã1) by

using the ring of functions/ manifold correspondence. On another hand, the Dubrovin Frobenius

structure in a Hurwitz space is based on an open dense domain of a solution of a Darboux-Egorrof

system [12], [29]. Hence, it is a local construction . In this way, the construction of the orbit

space of J (Ã1) complements the construction of the Hurwitz space H1,0,0, because now, there

exist global object where the local Dubrovin Frobenius structure of H1,0,0 lives. In addition,

lemma 6.2.5 associates a group to H1,0,0, and this could be useful for the general understanding

of the WDDV solutions/ discrete group correspondence [12].

Remark 6.2.4. Lemma 6.2.5 is a local biholomorphism of manifolds, but this does not

necessarily means isomorphism of Dubrovin Frobenius structure. On a Hurwitz space may exist

several inequivalent Dubrovin Frobenius structure. For instance, in [27] Romano constructed

two generalised WDDV solution on the Hurwitz space H1,0,0, furthermore, in [8] and [9], Bertola

constructed two different Dubrovin Frobenius structures on the orbit space of the Jacobi group

G2. The Dubrovin Frobenius structure of this orbit space will be constructed only on section

6.3.
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Corollary 6.2.5.1. The functions (ϕÃ1
0 , ϕÃ1

1 ) obtained by the formula

λÃ1 = e−2πiu
θ1(v − v0, τ)θ1(v + v0, τ)

θ1(v − v2, τ)θ1(v + v2, τ)

= ϕÃ1
1 [ζ(v − v2, τ)− ζ(v + v2, τ) + 2ζ(v2, τ)] + ϕÃ1

0

(6.45)

are Jacobi forms of weight 0,−1 respectively, index 1, and order 0. More explicitly,

ϕÃ1
1 =

θ1(v0 + v2, τ)θ1(−v0 + v2, τ)

θ′1(0, τ)θ1(2v2, τ)
e−2πiu,

ϕÃ1
0 = −ϕÃ1

1 [ζ(v0 − v2, τ)− ζ(v0 + v2, τ) + 2ζ(v2, τ)] ,

(6.46)

where ζ(v, τ) is the Weierstrass zeta function for the lattice (1, τ), i.e.

ζ(v, τ) =
1

v
+

∞∑
m2+n2 6=0

1

v −m− nτ
+

1

m+ nτ
+

v

(m+ nτ)2
.(6.47)

Proof. Let us prove each item separated.

(1) A1 invariant, translation invariant

The first line of (6.45) are A1 invariant, and translation invariant by the lemma (6.2.5).

Then, by the Laurent expansion of λÃ1 , we have that ϕÃ1
i are A1 invariant, and

translation invariant.

(2) SL2(Z) equivariant

The first line of (6.45) are SL2(Z) invariant, but the Weierstrass zeta functions of the

second line of (6.45) have the following transformation law

ζ

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)ζ(z, τ).(6.48)

Then, ϕÃ1
i must have the following transformation law

ϕÃ1
0

(
u+

c〈v, v〉Ã1

2(cτ + d)
,

v

cτ + d
,
aτ + b

cτ + d

)
= ϕÃ1

0 (u, v, τ),

ϕÃ1
1

(
u+

c〈v, v〉Ã1

2(cτ + d)
,

v

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)−kϕÃ1

1 (u, v, τ).

(6.49)

(3) Index 1

1

2πi

∂

∂u
λÃ1 = λÃ1 .(6.50)

Then

1

2πi

∂

∂u
ϕÃ1
i = ϕÃ1

i .(6.51)
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(4) Analytic behavior

Note that λÃ1θ21(2v2, τ) is holomorphic function in all the variables vi. Therefore ϕÃ1
i

are holomorphic functions on the variables v0, and meromorphic function in the variable

v2 with poles on j
2 + lτ

2 , j, l = 0, 1 of order 2, i.e l = 0, since m = 1 for all ϕÃ1
i .

To prove the formula (6.46) let us compute the following limit

lim
z→v2

λÃ1v2 = ϕÃ1
1 = e−2πiu

θ1(v0 + v2, τ)θ1(−v0 + v2, τ)

θ′1(0, τ)θ1(2v2, τ)
.

Let us compute the zeros of λÃ1

λÃ1(v0) = 0 = ϕÃ1
1 [ζ(v0 − v2, τ)− ζ(v0 + v2, τ) + 2ζ(v2, τ)] + ϕÃ1

0 .

Lemma 6.2.6. The functions ϕÃ1
0 , ϕÃ1

1 are algebraically independent over the ring E•,•.

Proof. If P (X,Y ) is any polynomial in E•,•(X,Y ), such that P (ϕÃ1
0 , ϕÃ1

1 ) = 0, then, the

fact ϕÃ1
0 , ϕÃ1

1 have index implies that each homogeneous component Pd(ϕ
Ã1
0 , ϕÃ1

1 ) has to vanish

identically. Defining pd

(
ϕ
Ã1
0

ϕ
Ã1
1

)
:=

Pd

(
ϕ
Ã1
0 ,ϕ

Ã1
1

)
(
ϕ
(Ã1)
1

)d , we have that pd

(
ϕ
Ã1
0

ϕ
Ã1
1

)
is identically 0 iff

ϕ
Ã1
0

ϕ
Ã1
1

is constant (belongs to E•,•), but

(6.52)
ϕÃ1
0

ϕÃ1
1

=
℘′(v2, τ)

℘(v0, τ)− ℘(v2, τ)
6= a(v2, τ)

where a(v2, τ) is any function belongs to E•,•. Then, ϕÃ1
0 , ϕÃ1

1 are algebraically independent

over the ring E•,•.

Recall that ℘(v, τ) is the Weierstrass P function (6.13).

Consider the formula (5.21) for the J (A2) case

Corollary 6.2.6.1. [8] The ring of A2 invariant Jacobi forms is free module of rank 3 over

the ring of modular forms, moreover there exist a formula for its generators given by

λA2 = e−2πiu2
θ1(z + v0 + v2, τ)θ1(z − v0 + v2, τ)θ1(z − 2v2)

θ31(z, τ)

= −ϕ
A2
3

2
℘′(z, τ) + ϕA2

2 ℘(z, τ) + ϕA2
0

(6.53)

Lemma 6.2.7. Let {ϕÃ1
0 , ϕÃ1

1 } be set of functions given by the formula (6.45) ,and {ϕA2
0 , ϕA2

2 , ϕA2
3 }

given by (6.53), then

ϕA2
3 = ϕÃ1

1 ϕA1
2

ϕA2
2 = ϕÃn0 ϕA1

2 + a2(v2, τ)ϕÃnj ϕA1
2

ϕA2
0 = a0(v2, τ)ϕÃ1

0 ϕA1
2 + b0(v2, τ)ϕÃ1

2 ϕA1
2

(6.54)
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where

ϕA1
2 :=

θ21(2v2, τ)

θ′1(0, τ)2
e2πi(−u2+u1)

and ai, bi are elliptic functions on v2.

Proof. Note the following relation

λA2

λÃ1
=
θ1(z − 2v2, τ)θ1(z + 2v2), τ

θ21(z, τ)
e2πi(−u2+u1)

= ϕA1
2 ℘(z, τ)− ϕA1

2 ℘(2v2, τ)

Hence,

− ϕA2
3

2
℘′(z, τ) + ϕA2

2 ℘(z, τ) + ϕA2
0 =

=
(
ϕÃ1
1 [ζ(z, τ)− ζ(z + 2v2, τ) + 2ζ(v2, τ)] + ϕÃn0

)(
ϕA1
2 ℘(z, τ)− ϕA1

2 ℘(2v2, τ)
)
.

(6.55)

Then, the desired result is obtained by doing a Laurent expansion in the variable z in both side

of the equality.

Corollary 6.2.7.1.

E•,•

[
ϕÃ1
0 , ϕÃ1

1

]
= E•,•

[
ϕA2
0

ϕA1
2

,
ϕA2
2

ϕA1
2

,
ϕA2
3

ϕA1
2

]
.

Moreover, we have the following lemma

Lemma 6.2.8. Let be ϕ ∈ J Ã1
•,•,m, then ϕ ∈ E•,•

[
ϕ
A2
0

ϕ
A1
2

,
ϕ
A2
2

ϕ
A1
2

,
ϕ
A2
3

ϕ
A1
2

]
.

Proof. Let be ϕ ∈ J Ã1
•,•,m, then the function ϕ(

ϕ
Ã1
1

)m is an elliptic function on the variables

(v0, v2) with poles on v0 − v2, v0 + v2, 2v2 due to the zeros of ϕÃ1
1 and the poles of ϕ, which are

by definition in 2v2. Expanding the function ϕ(
ϕ
Ã1
1

)m in the variables v0, v2 we get

ϕ(
ϕÃ1
1

)m =
m∑

i=−1
ai℘(i)(v0 + v2) +

m∑
i=−1

bi℘(i)(−v0 + v2) + c(v2, τ),(6.56)

where ℘−1(v) := ζ(v), and c(v2, τ) is an elliptic function in the variable v2.

But the function ϕ(
ϕ
Ã1
1

)m is invariant under the permutations of the variables v0, then the

equation (6.56) is

ϕ(
ϕÃ1
1

)m =
m∑

i=−1
ai
(
℘(i)(v0 + v2) + ℘(i)(−v0 + v2)

)
+ c(v2, τ),(6.57)
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Now we complete this function to A2 invariant function by summing and subtracting the

following function in e.q (6.57)

f(v2, τ) =
m∑

i=−1
ai℘(i)(2v2).

Hence,

ϕ(
ϕÃ1
1

)m =
m∑

i=−1
ai
(
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

)
+ g(v2, τ),(6.58)

Multiplying both side of the equation (6.58) by ϕA1
1 , we get

ϕ =

(
m∑

i=−1
ai
(
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

))(
ϕA2
3

)m
+ g(v2, τ)

(
ϕA2
3

)m
.

(6.59)

To finish the prove, we will show that(
m∑

i=−1
ai
(
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

))(
ϕA2
3

)m
is a weak holomorphic Jacobi form of type A2. To finish the proof note the following

(1) The functions
(
ϕA2
3

)m (
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

)
are A2 invariant by

construction,

(2) The functions
(
ϕA2
3

)m (
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

)
are invariant under

the action of (Z⊕τZ)2, because ϕA2
3 invariant, and ℘(i)(v0+v2)+℘(i)(−v0+v2)+℘(i)(2v2)

are elliptic functions.

(3) The functions
(
ϕA2
3

)m (
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

)
are equivariant un-

der the action of SL2(Z), because ϕA2
3 is equivariant, and ℘(i)(v0 + v2) + ℘(i)(−v0 +

v2) + ℘(i)(2v2) are elliptic functions.

(4) The function ϕA2
3 has zeros on v0 − v2, v0 + v2, 2v2 of order m, and ℘(i)(v0 + v2) +

℘(i)(−v0 + v2) + ℘(i)(2v2) has poles on v0 − v2, v0 + v2, 2v2 of order i+ 2 ≤ m. Then,

the functions
(
ϕA2
3

)m (
℘(i)(v0 + v2) + ℘(i)(−v0 + v2) + ℘(i)(2v2)

)
are holomorphic.

Hence,

ϕ ∈ E•,•

[
ϕA2
0

ϕA1
2

,
ϕA2
2

ϕA1
2

,
ϕA2
3

ϕA1
2

]
.(6.60)

At this stage, the principal theorem can be stated in precise way as follows.
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Theorem 6.2.9. The trigraded algebra of weak J (Ã1) -invariant Jacobi forms J
J (Ã1)
•,•,• =⊕

k,l,m J
Ã1
k,l,m is freely generated by 2 fundamental Jacobi forms (ϕÃ1

0 , ϕÃ1
1 ) over the graded ring

E•,•

(6.61) J
J (Ã1)
•,•,• = E•,•

[
ϕÃ1
0 , ϕÃ1

1

]
.

Proof.

(6.62) J Ã1
•,•,• ⊂ E•,•

[
ϕA2
0

ϕA1
2

,
ϕA2
2

ϕA1
2

,
ϕA2
3

ϕA1
2

]
= E•,•

[
ϕÃ1
0 , ϕÃ1

1

]
⊂ J Ã1

•,•,•.

Remark 6.2.5. The structural difference between the Chevalley theorems of the groups

J(A1), and J (Ã1) lies in the ring of coefficients. The ring of coefficients of Jacobi forms with

respect J(A1) are modular forms, and the ring of coefficients of Jacobi forms with respect J (Ã1)

are ,for fixed τ , the ring of elliptic functions with poles on 0, 12 ,
τ
2 ,

1+τ
2 mod Z⊕ τZ. See lemma

6.2.2.

Remark 6.2.6. The geometry of ΩJ (Ã1)/J (Ã1) is similar to ΩJ (A1)/J (A1). Indeed, the

orbit space of J (Ã1) is locally a line bundle over a family of two elliptic curves Eτ/A1 ⊗Eτ ,
where the first one is quotient by A1, and both are parametrised by H/SL2(Z).

6.3. Frobenius structure on the Orbit space of J (Ã1)

In this section, a Dubrovin-Frobenius manifold structure will be constructed on the orbit

space of J (Ã1). More precisely, It will be defined the data (ΩJ (Ã1/J (Ã1), g∗, e, E), with the

intersection form g∗, unit vector field e, and Euler vector field E. These data will be written

naturally in terms of the invariant functions of J (Ã1). Thereafter, it will be proved that these

data are enough to the construction of the Dubrovin-Frobenius structure.

The first step to be done is the construction of the intersection form. It will be shown that

such metric can be constructed by using just the data of the group J (Ã1). The strategy is to

combine the intersection form of the group Ã1 and J (A1). Recall that the intersection form of

the group Ã1 [12], [15] is:

ds2 = 2dv20 − 2dv22,

and the intersection form of J (A1) [8], [9], [12] is:

ds2 = dv20 + 2dudτ.

Therefore, the natural candidate to be the intersection form of J (Ã1) is:

(6.63) ds2 = 2dv20 − 2dv22 + 2dudτ.
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The following lemma proves that this metric is invariant metric of the group J (Ã1). To be

precise, the metric will be invariant under the action of A1, and translations, and equivariant

under the action of SL2(Z).

Lemma 6.3.1. The metric

(6.64) ds2 = 2dv20 − 2dv22 + 2dudτ

is invariant under the transformations (6.16),(6.17). Moreover, the transformations (6.18)

determine a conformal transformation of the metric ds2, i.e:

(6.65) 2dv20 − 2dv22 + 2dudτ 7→ 2dv20 − 2dv22 + 2dudτ

(cτ + d)2
.

Proof. Under (6.16),(6.17), the differentials transform as:

dv0 7→ −dv0,

dv0 7→ dv0 + λ0dτ,

dv2 7→ dv2 + λ2dτ,

du 7→ du− λ20dτ − 2λ0dv0 + λ22dτ + 2λ2dv2,

dτ 7→ dτ.

(6.66)

Hence:

dv20 7→ dv20,

dv20 7→ dv20 + 2λ0dv0dτ + λ20dτ
2,

dv22 7→ dv22 + 2λ2dv2dτ + λ22dτ
2,

2dudτ 7→ 2dudτ − 2λ20dτ
2 − 4λ0dv0dτ + 2λ22dτ

2 + 4λ2dv2dτ.

(6.67)

Then:

(6.68) 2dv20 − 2dv22 + 2dudτ 7→ 2dv20 − 2dv22 + 2dudτ.

Let us show that the metric has conformal transformation under the transformations (6.18):

dv0 7→
dv0
cτ + d

− v0dτ

(cτ + d)2
,

dv2 7→
dv2
cτ + d

− v2dτ

(cτ + d)2
,

dτ 7→ dτ

(cτ + d)2
,

du 7→ du+
c(2v0dv0 − 2v2dv

2
2)

cτ + d
− c(v20 − v22)dτ

(cτ + d)2
.

(6.69)

97



Then:

dv20 7→
dv20

(cτ + d)2
− 2v0dv0dτ

(cτ + d)3
+

v20dτ
2

(cτ + d)4
,

dv22 7→
dv22

(cτ + d)2
− 2v2dv2dτ

(cτ + d)3
+

v22dτ
2

(cτ + d)4
,

2dudτ 7→ 2dudτ

(cτ + d)2
+
c(4v0dv0 − 4v2dv2)dτ

(cτ + d)3
− c(2v20 − 2v22)dτ2

(cτ + d)4
.

(6.70)

Then,

(6.71) 2dv20 − 2dv22 + 2dudτ 7→ 2dv20 − 2dv22 + 2dudτ

(cτ + d)2
.

The next step is the construction of the Euler vector field. Recall that the coordinates

(u, v0, v2, τ) are natural coordinates of the orbit space of J (Ã1). The Euler vector field will be

defined as:

(6.72) E = − 1

2πi

∂

∂u
.

The last structure to be defined is the unit vector field

(6.73) e =
∂

∂ϕ0
.

In order to construct the Dubrovin Frobenius structure, it will be necessary to introduce the

coordinates (t1, t2, t3, t4).

Lemma 6.3.2. There is a change of coordinates in ΩJ (Ã1)/J (Ã1) be given by:

t1 = ϕ0 + 2t2
θ′1(v2|τ)

θ1(v2|τ)
,

t2 = ϕ1,

t3 = v2,

t4 = τ.

(6.74)

Proof. Note that the function (6.41) can be parametrised by (t1, t2, t3, t4) as follows

λ = ϕ0 + ϕ1[ζ(v − v2|τ)− ζ(v + v2|τ) + 2ζ(v2)]

= ϕ0 + ϕ1[
θ′1(v − v2|τ)

θ1(v − v2|τ)
− θ′1(v + v2|τ)

θ1(v + v2|τ)
+ 2

θ′1(v2|τ)

θ1(v2|τ)
]

= ϕ0 + 2
θ′1(v2|τ)

θ1(v2|τ)
+ ϕ1[

θ′1(v − v2|τ)

θ1(v − v2|τ)
− θ′1(v + v2|τ)

θ1(v + v2|τ)
]

= t1 + t2[
θ′1(v − t3|t4)
θ1(v − t3|t4)

− θ′1(v + t3|t4)
θ1(v + t3|t4)

]

(6.75)
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from the first line to the second line was used the following equation

ζ(v − v2, τ) =
θ′1(v − v2|τ)

θ1(v − v2|τ)
+ 4πig1(τ)(v − v2).

In this way, (t1, t2, t3, t4) are local coordinates of ΩJ (Ã1)/J (Ã1) due to lemma 6.2.5.

The side back effect of the coordinates (t1, t2, t3, t4) is the fact that they are not globally

single valued functions on the quotient.

Lemma 6.3.3. The coordinates (t1, t2, t3, t4) have the following transformation laws under

the action of the group J (Ã1): they are invariant under (6.16). They transform as follows

under (6.17):

t1 7→ t1 − λ2t2

t2 7→ t2

t3 7→ t3 + µ2 + λ2t
4

t4 7→ t4

(6.76)

Moreover, they transform as follows under (6.18)

t1 7→ t1 +
2ct2t3

ct4 + d

t2 7→ t2

ct4 + d

t3 7→ t3

ct4 + d

t4 7→ at4 + b

ct4 + d

(6.77)

Proof. The invariance under (6.16) is clear since only t1 depend on v0, and its dependence

is given by ϕ0 which is invariant under (6.16). Let us check how tα transform under (6.17),

(6.18): Since t3 = v2, t
4 = τ , we have the desired transformations law by the definition of

J (Ã1). The coordinate t2 = ϕ1 is a invariant under (6.17) and transform as modular form of

weight -1 under (6.17). The only non-trivial term is t1, because it contains the term
θ′1(v2|τ)
θ1(v2|τ) ,

which transform as follows under (6.17),(6.18) [33].

θ′1(v2|τ)

θ1(v2|τ)
7→ θ′1(v2|τ)

θ1(v2|τ)
− 2πin2

θ′1(v2|τ)

θ1(v2|τ)
7→ (cτ + d)

θ′1(v2|τ)

θ1(v2|τ)
+ 2πict3

(6.78)

The proof is completed when we do the rescaling from t1 to t1

2πi .
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In order to make the coordinates (t1, t2, t3, t4) being well defined, it will be necessary to

define them in a suitable covering over ΩJ (Ã1)/J (Ã1). It is clear that the multivaluedness

comes from the coordinates t3, t4 essentially. Therefore, the problem is solved by defining a

suitable covering over the orbit space of J (Ã1). This can be done by fixing a lattice (1, t4),

and a representative of orbit given by the action

(6.79) t3 7→ t3 + µ2 + λ2t
4.

In order to realise also the coordinates (u, v0, v2.τ) as globally well-behaviour in the covering of

the orbit space of J (Ã1), we also forget the A1 action by fixing a representative of each orbit.

Therefore in the following covering the problem

(6.80)
˜

ΩJ (Ã1)/J (Ã1) := ΩJ (Ã1)/Z⊕ τZ

where Z⊕ τZ acts on ΩJ (Ã1) as

v0 7→ v0 + λ0τ + µ0,

u 7→ u− 2λ0v0 − n20τ,

v2 7→ v2,

τ 7→ τ.

(6.81)

This covering is similar to the covering defined in section 5.6 for the orbit space of J (An). In

the covering (6.80) the coordinates tα, and the intersection form g∗ are globally single valued.

Hence, we have necessary condition to have Dubrovin-Frobenius manifold, since its geometry

structure should be globally well defined. Note that, ΩJ (Ã1)/J (Ã1) has the structure of

Twisted Frobenius manifold [12].

Remark 6.3.1. (t1, t2) lives in an enlargement of the algebra of E•,•[ϕ0, ϕ1]. The extended

algebra is the same as E•,•[ϕ0, ϕ1], but it is necessary to add the function
θ′1(v2,τ)
θ1(v2,τ)

in the ring of

coefficients E•,•.

Remark 6.3.2. As it was already discussed in remark 5.6.1, a covering in the orbit space

correspond to a covering in the Hurwitz space. The fixation of a lattice in the orbit space of

J (Ã1) is equivalent to a choice of homology basis in the Hurwitz space H1,0,0. Moreover, a

choice of the representative of the action 6.79 in the variable v2 is a choice of logarithm root in

the Hurwitz space H1,0,0, furthermore, fixing a representative of the A1 action is to choice a

pole or equivalently to choice a sheet in the Hurwitz space H1,0,0.

Theorem 6.3.4. There exists Dubrovin-Frobenius structure on the manifold ˜Ω/J (Ã1)

with the intersection form (6.64), the Euler vector field (6.72), and the unity vector field (6.73).

Moreover, ˜Ω/J (Ã1) is isomorphic as Dubrovin-Frobenius manifold to H̃1,0,0
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Proof. The first step to be done is the computation of the intersection form in coordinates

(t1, t2, t3, t4). Hence, consider the transformation formula of ds2:

(6.82) gαβ(t) =
∂tα

∂xi
∂tβ

∂xj
gij .

where x1 = u, x2 = v0, x
3 = v2, x

4 = τ .

From the expression:

ds2 = 2dv20 − 2dv22 + 2dudτ = gijdx
idxj ,

we have:

(gij) =


0 0 0 1

0 2 0 0

0 0 −2 0

1 0 0 0


Therefore

(gij) = (gij)
−1 =


0 0 0 1

0 1
2 0 0

0 0 −1
2 0

1 0 0 0


To compute gαβ(t), let us write tα in terms of xi.

t4 = τ,

t3 = v2,

t2 = −θ1(v0 + v2, τ)θ1(v0 − v2, τ)

θ1(2v2, τ)θ′1(0, τ)
e−2πiu,

(6.83)

using the following formulae [33]

℘′(v2)

℘(v0)− ℘(v0)
= ζ(v0 − v2, τ)− ζ(v0 + v2, τ) + 2ζ(v2, τ),

℘(v0, τ)− ℘(v2, τ) = −σ(v0 + v2, τ)σ(v0 − v2, τ)

σ2(v0, τ)σ2(v2, τ)
,

σ(2v2, τ)

σ4(v2, τ)
= −℘′(v2, τ),

(6.84)

101



it is possible to rewrite t1 in a more suitable way:

t1 = −t2[ζ(v0 − v2, τ)− ζ(v0 + v2, τ) + 2ζ(v2, τ)] + 2t2
θ′1(v2, τ)

θ1(v2, τ)

= −t2 ℘′(v2, τ)

℘(v0, τ)− ℘(v2, τ)
+ 2t2

θ′1(v2, τ)

θ1(v2, τ)

= −t2 ℘′(v2, τ)θ21(v2, τ)θ21(v0, τ)

θ1(v0 + v2, τ)θ1(v0 − v2, τ)θ′1(0, τ)2
+ 2t2

θ′1(v2, τ)

θ1(v2, τ)

= −℘
′(v2, τ)θ21(v2, τ)θ21(v0, τ)

θ1(2v2, τ)θ′1(0, τ)3
e−2πiu + 2t2

θ′1(v2, τ)

θ1(v2, τ)

=
θ21(v0, τ)

θ21(v2, τ)
e−2πiu + 2t2

θ′1(v2, τ)

θ1(v2, τ)

(6.85)

Summarizing:

(6.86) t1 =
θ21(v0, τ)

θ21(v2, τ)
e−2πiu + 2t2

θ′1(v2, τ)

θ1(v2, τ)
,

(6.87) t2 = −θ1(v0 + v2, τ)θ1(v0 − v2, τ)

θ1(2v2, τ)θ′1(0, τ)
e−2πiu,

(6.88) t3 = v2,

(6.89) t4 = τ.

Computing gαβ according to (6.82):

(6.90) gαβ =
1

2

∂tα

∂v0

∂tβ

∂v0
− 1

2

∂tα

∂v2

∂tβ

∂v2
+
∂tα

∂u

∂tβ

∂τ
+
∂tα

∂τ

∂tβ

∂u
,

Trivially, we get:

(6.91) g44 = g34 = 0,

(6.92) g33 = −1

2
,

and

(6.93) g24 = −2πit2,

(6.94) g14 = −2πit1.

The following non-trivial terms are computed in Appendix.

g23 = − t
1

2
+ t2

θ′1
(
2t3, τ

)
θ1 (2t3, τ)

,(6.95)

g13 = −2πit2
∂

∂τ

(
log

θ′1 (0, τ)

θ1 (2t3, τ)

)
,(6.96)
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g22 = 2
(
t2
)2 [θ′′1 (2t3, τ)

θ1 (2t3, τ)
−
θ′

2

1

(
2t3, τ

)
θ21 (2t3, τ)

]
,(6.97)

g12 = −2πi
(
t2
)2 [ ∂2

∂t3∂τ

(
log

(
θ′1 (0, τ)

θ1 (2t3, τ)

))]
,(6.98)

g11 = −4
(
t2
)2 θ′1 (t3, τ)
θ1 (t3, τ)

∂

∂t3

(
θ′1
(
t3, τ

)
θ1 (t3, τ)

)[
2
θ′1
(
t3, τ

)
θ1 (t3, τ)

− 2
θ′1
(
2t3, τ

)
θ1 (2t3, τ)

]

+ 8
θ′

2

1

(
t3, τ

)
θ21 (t3, τ)

(
t2
)2 [θ′′1 (2t3, τ)

θ1 (2t3, τ)
−
θ′

2

1

(
2t3, τ

)
θ21 (2t3, τ)

]

− 2
(
t2
)2 [ ∂

∂t3

(
θ′1
(
t3, τ

)
θ1 (t3, τ)

)]2
− 16πi

(
t2
)2 θ′1 (t3, τ)
θ1 (t3, τ)

∂

∂τ

(
θ′1
(
t3, τ

)
θ1 (t3, τ)

)
.

(6.99)

Differentiating gαβ w.r.t. t1 we obtain a constant matrix η∗:

(ηαβ) =
∂

∂t1
(gαβ) =


0 0 0 −2πi

0 0 −1
2 0

0 −1
2 0 0

−2πi 0 0 0


So t1, t2, t3, t4 are the flat coordinates.

The next step is to calculate the matrix Fαβ using formula (2.12), namely

(6.100) Fαβ =
gαβ

deg (gαβ)
.

We can compute deg
(
gαβ
)

using the fact that we compute deg (tα). Indeed:

(6.101) E = − 1

2πi

∂

∂u
.

Implies that:

(6.102) deg
(
t1
)

= deg
(
t2
)

= 1,

(6.103) deg
(
t3
)

= deg
(
t4
)

= 0.

Then the function F is obtained from the equation:

(6.104)
∂2F

∂tα∂tβ
= ηαα′ηββ′F

α′β′

Computing

(6.105) Fα4 =
gα4

deg (gα4)
,
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we derive

(6.106)
∂3F

∂t1∂tα∂tβ
= ηαβ,

Hence

(6.107) F =
i

4π

(
t1
)2
t4 − 2t1t2t3 + f

(
t2, t3, t4

)
.

Substituting, F 23,F 13 in (6.107)

(6.108) F =
i

4π

(
t1
)2
t4 − 2t1t2t3 −

(
t2
)2

log

(
θ′1
(
0, t4

)
θ1 (2t3, t4)

)
+ h

(
t2
)

+Aαβt
αtβ + Cαt

α +D,

where Aαβ ,Cα,Cα are constants. Note that F 22,F 12 contains the same information, furthermore,

there is no information in F 33,F 34,F 44 because:

(6.109) deg
(
g33
)

= deg
(
g34
)

= deg
(
g44
)

= 0

However, h(t2) can be computed by using g33

(6.110) g33 = −1

2
= Eεη3µη3λcεµλ =

t2

4
c222.

Using the formula (2.10), we have:

(6.111) F
(
t1, t2, t3, t4

)
=

i

4π

(
t1
)2
t4 − 2t1t2t3 −

(
t2
)2

log

(
t2
θ′1
(
0, t4

)
θ1 (2t3, t4)

)
.

The remaining part of proof is to show that the equation (6.111) satisfies WDDV equations.

Let us prove it step by step

(1) Commutative of the algebra

Defining the structure constant of the algebra as

(6.112) cαβγ(t) =
∂3F

∂tα∂tβ∂tγ

commutative is straightforward.

(2) Normalization

Using equation (6.106), we obtain

(6.113) c1αβ(t) =
∂3F

∂t1∂tβ∂tγ
= ηαβ.

(3) Quasi homogeneity

Applying the Euler Vector field in the function (6.111), we have

(6.114) E(F ) = 2F − 2t2.
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(4) Associativity In order to prove that the algebra is associativity, we will first shown

that the algebra is semisimple. First of all note that the multiplication by the Euler

vector field is equivalent to the intersection form. Indeed,

E • ∂α = tσcβσα∂β = tσ∂σ

(
ηβµ∂α∂µF

)
∂β =

= (dα − dβ)ηβµ∂α∂µF∂β = ηαµg
µβ∂β

(6.115)

Therefore, the multiplication by the Euler vector field is semisimple if the following

polynomial

(6.116) det(ηαµg
µβ − uδβα) = 0,

has only simple roots. Since det(ηαµ) 6= 0, the equation (6.116) is equivalent to

(6.117) det(gαβ − uηαβ) = 0.

Using that ηαβ = ∂1g
αβ, we have that

(6.118) det(gαβ − uηαβ) = det
(
gαβ(t1 − u, t2, t3, t4)

)
= 0.

Then, it is enough to compute detgαβ . In particular, computing detg in the coordinates

(ϕ0, ϕ1, v2, τ). Recall that

gαβ = g(dtα, dtβ), in coordinates(t1, t2, t3, t4),

glm = g(dvl, dvm), in coordinates(u, v0, v2, τ),

gij = g(dϕi, dϕj), in coordinates(ϕ0, ϕ1, v2, τ).

Then,

detgij = det

(
∂ϕi
∂vl

)
det

(
∂ϕj
∂vm

)
det
(
glm
)
.

Remark 6.3.3. The coordinates (u, v0, v2, τ) are defined away from the submanifold

defined by detg = 0. Then, we have to change coordinates to compute the roots of

detg = 0.

Hence, it is enough to compute the det
(
∂ϕi
∂vl

)

det

(
∂ϕi
∂vl

)
=


∂ϕ0

∂v0
∂ϕ0

∂v2
∂ϕ0

∂τ −2πiϕ0

∂ϕ1

∂v0
∂ϕ1

∂v2
∂ϕ1

∂τ −2πiϕ1

0 1 0 0

0 0 1 0

 =− 2πiϕ0ϕ1

[
2
θ′1(v0)

θ1(v0)
− θ′1(−v0 + v2)

θ1(−v0 + v2)
+
θ′1(v0 + v2)

θ1(v0 + v2)

]

=− 2πie−4πiu
θ1(2v0)

θ1(2v2)θ′1(0)2
.

(6.119)
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Then, equation (6.119) has four distinct roots v0 = 0, 12 ,
τ
2 ,

1+τ
2 . Hence, the following

system of equation

det
(
gαβ(t1, t2, t3, t4)

)
= 0,

det
(
ηαβ(t1, t2, t3, t4)

)
6= 0,

(6.120)

implies in existence of 4 functions yi(t
2, t3, t4) such that

t1 = yi(t
2, t3, t4), i = 1, 2, 3, 4.(6.121)

Sending t1 7→ t1 − u in (6.120), we obtain

(6.122) ui = t1 − yi(t2, t3, t4), i = 1, 2, 3, 4.

The multiplication by the Euler vector field

gij = ηjkg
ki, in canonical coordinates(u1, u2, u3, u4)

is diagonal, then

(6.123) gij = uiηijδij ,

where ηij is the canonical coordinates (u1, u2, u3, u4), and the unit vector field have the

following form

(6.124)
∂

∂t1
=

4∑
i=1

∂ui
∂t1

∂

∂ui
=

4∑
i=1

∂

∂ui
.

Moreover, since

(6.125) [E, e] = [t1
∂

∂t1
+ t2

∂

∂t2
,
∂

∂t1
] = −e,

the Euler vector field in the coordinates (u1, u2, u3, u4) takes the following form

(6.126) E =

4∑
i=1

ui
∂

∂ui
.

Using the relation (6.115) in the coordinates (u1, u2, u3, u4), we have

(6.127) uiηijδij = ulηimηjnclmn,

differentiating both side of the equation (6.127) with respect t1

(6.128) ckij = δij ,

which proves that the algebra is associative and semisimple.

The Function F is exactly the Free energy of the Dubrovin-Frobenius manifold of the Hurwitz

space H̃1,0,0. Therefore, the equation (6.111) solves the WDVV equations by the lemma 2.1.2,

then the theorem is proved.
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Conclusion

The WDVV solution of H1,0,0, which is (6.111), contains the term log

(
θ′1(0,t4)
θ1(2t3,t4)

)
on the two

exceptional variables (t3, t4). This is a reflection of how the ring of invariants affects the WDVV

solution. The same pattern is obtained in J (A1), and Ã1. The equation (6.15) contains E2(τ)

which is a quasi modular form, and the equation (6.5) contains et
2
. These facts could be useful

on the understanding of the WDVV/ groups correspondence.

The arrows of the diagram of in section 6.1 may have a third meaning, which is an embedding

of Dubron Frobenius submanifolds [31], [32] in to the ambient space H1,0,0. The fact that

H1,0,0 contains 3 Dubrovin Frobenius submanifolds is not an accident, this comes from the tri

hamiltonian structure that H1,0,0 has [25], [26]. In a subsequent publication, we will study the

Dubrovin Frobenius manifolds of H1,0,0, and its associated integrable systems.

6.4. Appendix

Computing g12:

g23 =− 1

2

∂t2

∂v2
= − t

2

2

[
−θ
′
1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
+
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
− 2

θ′1 (2v2, τ)

θ1 (2v2, τ)

]
=− t2

2

[
−θ
′
1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
+
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
− 2

θ′1 (v2, τ)

θ1 (v2, τ)

]
− t2 θ

′
1 (v2, τ)

θ1 (v2, τ)

+ t2
θ′1 (2v2, τ)

θ1 (2v2, τ)

=− 1

2℘′ (v2, τ)
[−ζ (v0 − v2, τ) + ζ (v0 + v2, τ)− 2ζ (v2, τ)]− t2 θ

′
1 (v2, τ)

θ1 (v2, τ)

+ t2
θ′1 (2v2, τ)

θ1 (2v2, τ)

=
1

2

1

℘ (z0, τ)− ℘ (z2, τ)
− t2 θ

′
1 (v2, τ)

θ1 (v2, τ)
+ t2

θ′1 (2v2, τ)

θ1 (2v2, τ)

=− t1

2
+ t2

θ′1 (2v2, τ)

θ1 (2v2, τ)
.

(6.129)
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Computing g13:

g13 =− 1

2

∂t1

∂v2
= −θ

′
1 (v2, τ)

θ1 (v2, τ)

1

℘ (z0)− ℘ (z2)
− ∂t2

∂v2

θ′1 (v2, τ)

θ1 (v2, τ)

− t2
[
θ′′1 (v, τ)

θ1 (v, τ)
− θ′

2

1 (v, τ)

θ21 (v, τ)

]

=− θ′1 (v2, τ)

θ1 (v2, τ)

1

℘ (z0)− ℘ (z2)
− t1 θ

′
1 (v2, τ)

θ1 (v2, τ)
− 2t2

θ′1 (2v2, τ)

θ1 (2v2, τ)

θ′1 (v2, τ)

θ1 (v2, τ)

− t2
[
θ′′1 (v, τ)

θ1 (v, τ)
− θ′

2

1 (v, τ)

θ21 (v, τ)

]

=− 2t2
θ′

2

1 (v2, τ)

θ21 (v2, τ)
− 2t2

θ′1 (2v2, τ)

θ1 (2v2, τ)

θ′1 (v2, τ)

θ1 (v2, τ)
− t2

[
θ′′1 (v, τ)

θ1 (v, τ)
− θ′

2

1 (v, τ)

θ21 (v, τ)

]

=− t2 θ
′2
1 (v2, τ)

θ21 (v2, τ)
− 2t2

θ′1 (2v2, τ)

θ1 (2v2, τ)

θ′1 (v2, τ)

θ1 (v2, τ)
− t2 θ

′′
1 (v, τ)

θ1 (v, τ)
.

(6.130)

To simplify this expression we need the following lemma:

Lemma 6.4.1. [8] When x+ y + z = 0 holds:

θ′′1 (x, τ)

θ1 (x, τ)
+
θ′′1 (y, τ)

θ1 (y, τ)
− 2

θ′1 (x, τ)

θ1 (x, τ)

θ′1 (y, τ)

θ1 (y, τ)
=

= 4πi
∂

∂τ

(
log

(
θ′1 (0, τ)

θ (x− y, τ)

))
+ 2

θ′1 (x− y, τ)

θ1 (x− y, τ)

[
θ′1 (x, τ)

θ1 (x, τ)
− θ′1 (y, τ)

θ1 (y, τ)

]
.

(6.131)

Proof. Applying the formulas

ζ (v, τ) =
θ′1 (v, τ)

θ1 (v, τ)
+ 4πig1 (τ) v,

℘ (v, τ) = −θ
′′
1 (v, τ)

θ1 (v, τ)
+

(
θ′1 (v, τ)

θ1 (v, τ)

)2

− 4πig1 (τ) ,

(6.132)

in the identity [33]

(6.133) [ζ (x) + ζ (y) + ζ (z)]2 = ℘ (x) + ℘ (y) + ℘ (z) ,

we get:

(
θ′1(x, τ)

θ1(x, τ)
+
θ′1(y, τ)

θ1(y, τ)
+
θ′1(z, τ)

θ1(z, τ)
)2 =

= −12πig1(τ)− θ′′1(x, τ)

θ1(x, τ)
+
θ′

2

1 (x, τ)

θ21(x, τ)
− θ′′1(y, τ)

θ1(y, τ)
+
θ′

2

1 (y, τ)

θ21(y, τ)
− θ′′1(z, τ)

θ1(z, τ)
+
θ′

2

1 (z, τ)

θ21(z, τ)
.

(6.134)

Simplifying:

2
θ′1 (x− y, τ)

θ1 (x− y, τ)

[
θ′1 (x, τ)

θ1 (x, τ)
− θ′1 (y, τ)

θ1 (y, τ)

]
+ 2

θ′1 (x, τ)

θ1 (x, τ)

θ′1 (y, τ)

θ1 (y, τ)
=

= 3
η

ω
− θ′′1 (x, τ)

θ1 (x, τ)
− θ′′1 (y, τ)

θ1 (y, τ)
− θ′′1 (z, τ)

θ1 (z, τ)
,

(6.135)
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using the fact that

(6.136) 4πi
∂τθ
′
1(0, τ)

θ′1(0, τ)
= −12πig1(τ),

(6.137)
∂2

∂2v
θ1(v, τ) = 4πi

∂

∂τ
θ1(v, τ),

and doing the substitution y 7→ −y, z 7→ x− y, we get the desired identity.

Substituting in the lemma x = v2, y = −v2 we get:

(6.138) 2
θ′′1 (v2, τ)

θ1 (v2, τ)
+ 2

θ′
2

1 (v2, τ)

θ21 (v2, τ)
= 4πi

∂

∂τ

(
log

(
θ′1 (0, τ)

θ1 (2v2, τ)

))
+ 4

θ′1 (2v2, τ)

θ1 (2v2, τ)

θ′1 (v2, τ)

θ1 (v2, τ)
.

Substituting (6.138) in (6.130)

g13 = −2πit2
∂

∂τ

(
log

(
θ′1 (0, τ)

θ1 (2v2, τ)

))
.(6.139)

Computing g22:

g22 =
1

2

(
∂t2

∂v0

)2

− 1

2

(
∂t2

∂v2

)2

+ 2
∂t2

∂u

∂t2

∂τ

=
1

2

(
∂t2

∂v0

)2

− 1

2

(
∂t2

∂v2

)2

− 4πit2
∂t2

∂τ
.

(6.140)

First, we separately compute ∂t2

∂v2
, ∂t2

∂v0
, ∂t2

∂τ

1

2

(
∂t2

∂v0

)2

=

(
t2
)2

2

[
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
+
θ′1 (v0 − v2, τ)

θ1 (v0 − v2, τ)

]2
,

−1

2

(
∂t2

∂v2

)2

= −
(
t2
)2

2

[
−θ
′
1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
+
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
− 2

θ′1 (2v2, τ)

θ1 (2v2, τ)

]2
,

−4πit2
∂t2

∂τ
=− 4πi

(
t2
)2

2

[
∂τθ1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
+
∂τθ1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
− ∂τθ1 (2v2, τ)

θ1 (2v2, τ)

]
− 4πi

(
t2
)2

2

[
−∂τθ

′
1 (0, τ)

θ′1 (0, τ)

]
.

(6.141)

Summing the equations we get:

g22 =
(t2)2

2

[
4
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)

θ′1 (v0 − v2, τ)

θ1 (v0 − v2, τ)

]
+

(t2)2

2

[
4
θ′1 (2v2, τ)

θ1 (2v2, τ)

[
−θ
′
1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
+
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)

]
− 4

θ′
2

1 (2v2, τ)

θ21 (2v2, τ)

]

+
(t2)2

2

[
−2

θ′′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
− 2

θ′′1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
− 8πi

[
−∂τθ1 (2v2, τ)

θ1 (2v2, τ)
− ∂τθ

′
1 (0, τ)

θ′1 (0, τ)

]]
,

(6.142)
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where was used (6.137). Substituting in the lemma 2.3 x = v0 + v2, y = v0 − v2 we get:

θ′′1 (v0 − v2, τ)

θ1 (v0 − v2, τ)
+
θ′′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
− 2

θ′1 (v0 − v2, τ)

θ1 (v0 − v2, τ)

θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
=

= 4πi
∂

∂τ

(
log

(
θ′1 (0, τ)

θ (2v2, τ)

))
+ 2

θ′1 (2v2, τ)

θ1 (2v2, τ)

[
θ′1 (v0 + v2, τ)

θ1 (v0 + v2, τ)
− θ′1 (v0 − v2, τ)

θ1 (v0 − v2, τ)

]
.

(6.143)

Substituting the last identity in g22 we get:

g22 = 2
(
t2
)2 [θ′′1 (2v2, τ)

θ1 (2v2, τ)
− θ′

2

1 (2v2, τ)

θ21 (2v2, τ)

]
.(6.144)

Computing g12:

g12 =
1

2

∂t1

∂v0

∂t2

∂v0
− 1

2

∂t1

∂v2

∂t2

∂v2
+
∂t1

∂u

∂t2

∂τ
+
∂t2

∂u

∂t1

∂τ

=
1

2

∂t1

∂v0

∂t2

∂v0
− 1

2

∂t1

∂v2

∂t2

∂v2
− 2πit2

∂t1

∂τ
− 2πit1

∂t2

∂τ
.

(6.145)

We have that:

∂t1

∂v0
= 2

θ′1(v0, τ)

θ1(v0, τ)

θ21(v0, τ)

θ21(v2, τ)
e−2πiu + 2

∂t2

∂v0

θ′1(v2, τ)

θ1(v2, τ)
,

∂t1

∂v2
= −2

θ′1(v2, τ)

θ1(v2, τ)

θ21(v0, τ)

θ21(v2, τ)
e−2πiu + 2

∂t2

∂v2

θ′1(v2, τ)

θ1(v2, τ)
+ 2t2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
,

∂t1

∂τ
= 2

[
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

]
θ21(v0, τ)

θ21(v2, τ)
e−2πiu + 2

∂t2

∂τ

θ′1(v2, τ)

θ1(v2, τ)

+ 2t2
∂

∂τ
(
θ′1(v2, τ)

θ1(v2, τ)
).

(6.146)
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Therefore:

1

2

∂t1

∂v0

∂t2

∂v0
=t2

[
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)

]
θ′1(v0, τ)

θ1(v0, τ)

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

+

(
∂t2

∂v0

)2
θ′1(v2, τ)

θ1(v2, τ)
,

−1

2

∂t1

∂v2

∂t2

∂v2
=− t2

[
−θ
′
1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)

]
θ′1(v2, τ)

θ1(v2, τ)

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

− t2
[
−2

θ′1(2v2, τ)

θ1(2v2, τ)

]
θ′1(v2, τ)

θ1(v2, τ)

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

− (
∂t2

∂v2
)2
θ′1(v2, τ)

θ1(v2, τ)
− t2 ∂t

2

∂v2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
,

−2πit1
∂t2

∂τ
=− 2πi

[
∂τθ1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
∂τθ1(v0 − v2, τ)

θ1(v0 − v2, τ)

]
t2
θ21(v0, τ)

θ21(v2, τ)
e−2πiu

− 2πi

[
−∂τθ1(2v2, τ)

θ1(2v2, τ)
− ∂τθ

′
1(0, τ)

θ′1(0, τ)

]
t2
θ21(v0, τ)

θ21(v2, τ)
e−2πiu

− 4πit2
∂t2

∂τ

θ′1(v2, τ)

θ1(v2, τ)
,

−2πit2
∂t1

∂τ
= −4πit2

[
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

]
θ21(v0, τ)

θ21(v2, τ)
e−2πiu

− 4πit2
∂t2

∂τ

θ′1(v2, τ)

θ1(v2, τ)
− 4πi(t2)2

∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
.

(6.147)

Let us separate g12 in three terms:

g12 = (1) + (2) + (3)(6.148)

where:

(1) =t2
θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
θ′1(v0, τ)

θ1(v0, τ)

(
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)

)]
+ t2

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
θ′1(v2, τ)

θ1(v2, τ)

(
−θ
′
1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

)]
+ t2

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
−2πi

(
∂τθ1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
∂τθ1(v0 − v2, τ)

θ1(v0 − v2, τ)

)]
+ t2

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
−2πi

(
−∂τθ1(2v2, τ)

θ1(2v2, τ)
− ∂τθ

′
1(0, τ)

θ′1(0, τ)

)]
+ t2

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
−4πi

(
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

)]
,

(6.149)
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(2) =
θ′1(v2, τ)

θ1(v2, τ)

[(
∂t2

∂v0

)2

−
(
∂t2

∂v2

)2

− 8πit2
∂t2

∂τ

]

=4
θ′1(v2, τ)

θ1(v2, τ)
(t2)2

[
θ′′1(2v2, τ)

θ1(2v2, τ)
− θ′

2

1 (2v2, τ)

θ21(2v2, τ)

]
,

(6.150)

where was used the previous computation of g22:

(3) = −4πi(t2)2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
− t2 ∂t

2

∂v2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
.(6.151)

To simplify the expression (1) we need to use the lemma 6.4.1 with the following substitutions

x = v0,y = v2:

θ′′1(v0, τ)

θ1(v0, τ)
+
θ′′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(v0, τ)

θ1(v0, τ)

θ′1(v2, τ)

θ1(v2, τ)
=

=4πi
∂

∂τ

(
log

(
θ′1(0, τ)

θ(v0 − v2, τ)

))
+ 2

θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)

[
θ′1(v0, τ)

θ1(v0, τ)
− θ′1(v2, τ)

θ1(v2, τ)

]
.

(6.152)

Using the substitutions x = v0,y = −v2
θ′′1(v0, τ)

θ1(v0, τ)
+
θ′′1(v2, τ)

θ1(v2, τ)
+ 2

θ′1(v0, τ)

θ1(v0, τ)

θ′1(v2, τ)

θ1(v2, τ)
=

=4πi
∂

∂τ

(
log

(
θ′1(0, τ)

θ(v0 + v2, τ)

))
+ 2

θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)

[
θ′1(v0, τ)

θ1(v0, τ)
+
θ′1(v2, τ)

θ1(v2, τ)

]
.

(6.153)

Summing (6.152) with (6.153):

2
θ′′1(v0, τ)

θ1(v0, τ)
+ 2

θ′′1(v2, τ)

θ1(v2, τ)
− 4πi

∂

∂τ

(
log

(
θ′1(0, τ)

θ(v0 − v2, τ)

))
− 4πi

∂

∂τ

(
log

(
θ′1(0, τ)

θ(v0 + v2, τ)

))
=2

θ′1(v0, τ)

θ1(v0, τ)

(
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)

)
+ 2

θ′1(v2, τ)

θ1(v2, τ)

(
−θ
′
1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)

)
.

(6.154)

Substituting in (1) we get :

(1) =t2
θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
−2

θ′1(2v2, τ)

θ1(2v2, τ)

θ′1(v2, τ)

θ1(v2, τ)

]
+ t2

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
−2πi(−∂τθ1(2v2, τ)

θ1(2v2, τ)
+
∂τθ
′
1(0, τ)

θ′1(0, τ)
) + 8πi(

∂τθ1(v2, τ)

θ1(v2, τ)
)

]
=t2

θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
−2

θ′1(2v2, τ)

θ1(2v2, τ)

θ′1(v2, τ)

θ1(v2, τ)
− 2πi

∂

∂τ

(
log

θ′1(0, τ)

θ1(2v2, τ)

)
+ 2

θ′′1(v2, τ)

θ1(v2, τ)

]
.

(6.155)

Using the identity (6.131), We get:

(1) = t2
θ21(v0, τ)

θ21(v2, τ)
e−2πiu

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
.(6.156)
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We compute (3)

(3) =− 4πi(t2)2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
− t2 ∂t

2

∂v2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

=− 4πi(t2)2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
− t2

(
t1 − 2t2

θ′1(2v2, τ)

θ1(2v2, τ)

)[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

=− 4πi(t2)2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
+ 2(t2)2

θ′1(2v2, τ)

θ1(2v2, τ)
)

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

− t2 θ
2
1(v0, τ)

θ21(v2, τ)
e−2πiu

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

− 2(t2)2
θ′1(v2, τ)

θ1(v2, τ)
)

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
.

(6.157)

The result implies:

(1) + (3) =− 4πi(t2)2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
− 2(t2)2

[
θ′1(v2, τ)

θ1(v2, τ)
− θ′1(2v2, τ)

θ1(2v2, τ)
)

][
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
.

(6.158)

Computing g12:

g12 =− 4πi(t2)2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
− 2(t2)2

[
θ′1(v2, τ)

θ1(v2, τ)
− θ′1(2v2, τ)

θ1(2v2, τ)
)

][
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

+ 4
θ′1(v2, τ)

θ1(v2, τ)
(t2)2

[
θ′′1(2v2, τ)

θ1(2v2, τ)
− θ′

2

1 (2v2, τ)

θ21(2v2, τ)

]
.

(6.159)

To simplify this expression we need to prove one more lemma:

Lemma 6.4.2.

2
θ′′′1 (v2, τ)

θ1(v2, τ)
+ 2

θ′′1(v2, τ)θ′1(v2, τ)

θ1(v2, τ)
− 4

θ′
3

1 (v2, τ)

θ31(v2, τ)
= 4πi

∂2

∂v2∂τ

(
log

(
θ′1(0, τ)

θ1(2v2, τ)

))
+ 8

θ′′1(2v2, τ)

θ1(2v2, τ)

θ′1(v2, τ)

θ1(v2, τ)
− 8

θ′
2

1 (2v2, τ)

θ21(2v2, τ)

θ′1(v2, τ)

θ1(v2, τ)
+ 4

θ′1(2v2, τ)

θ1(2v2, τ)

θ′′1(v2, τ)

θ1(v2, τ)

− 4
θ′1(2v2, τ)

θ1(2v2, τ)

θ′
2

1 (v2, τ)

θ21(v2, τ)
.

(6.160)

Proof. Differentiating the identity with respect to v2 we obtain (6.160).
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Computing g12:

g12 =(t2)2

[
−θ
′′′
1 (v2, τ)

θ1(v2, τ)
+
θ′1(v2, τ)θ′′1(v2, τ)

θ21(v2, τ)
− 2

θ′1(v2, τ)

θ1(v2, τ)

θ′′1(v2, τ)

θ1(v2, τ)
+ 2

θ′
3

1 (v2, τ)

θ31(v2, τ)

]

+ (t2)2

[
2
θ′1(2v2, τ)

θ1(2v2, τ)
)
θ′′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

θ′
2

1 (v2, τ)

θ21(v2, τ)
+ 4

θ′1(v2, τ)

θ1(v2, τ)

θ′′1(2v2, τ)

θ1(2v2, τ)

]

+ (t2)2

[
−4

θ′1(v2, τ)

θ1(v2, τ)

θ′
2

1 (2v2, τ)

θ21(2v2, τ)

]
.

(6.161)

Applying (6.160), we get:

g12 = −2πi(t2)2
[

∂2

∂v2∂τ

(
log

(
θ′1(0, τ)

θ1(2v2, τ)

))]
.(6.162)

Computing g11:

g11 =
1

2

(
∂t1

∂v0

)2

− 1

2

(
∂t1

∂v2

)2

+ 2
∂t1

∂u

∂t1

∂τ

=
1

2

(
∂t1

∂v0

)2

− 1

2

(
∂t1

∂v2

)2

− 4πit1
∂t1

∂τ

(6.163)

Computing 1
2

(
∂t1

∂v0

)2
, 1
2

(
∂t1

∂v2

)2
and −4πit1 ∂t

1

∂τ :

To simplify the computation let us define:

(6.164) A :=
θ21(v0, τ)

θ21(v2, τ)
e−2πiu.

Then,

1

2

(
∂t1

∂v0

)2

= 2
θ′

2

1 (v0, τ)

θ21(v0, τ)
A2 + 4A

θ′1(v0, τ)

θ1(v0, τ)

∂t2

∂v0

θ′1(v2, τ)

θ1(v2, τ)
+ 2

(
∂t2

∂v0

)2
θ′

2

1 (v2, τ)

θ21(v2, τ)
,(6.165)

−1

2

(
∂t1

∂v2

)2

=− 2
θ′

2

1 (v2τ)

θ21(v2, τ)
A2

+ 2A
θ′1(v2, τ)

θ1(v2, τ)

[
2
∂t2

∂v2

θ′1(v2, τ)

θ1(v2, τ)
+ 2t2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]]

− 2

(
∂t2

∂v2

)2
θ′

2

1 (v2, τ)

θ21(v2, τ)
− 4t2

∂t2

∂v2

θ′1(v2, τ)

θ1(v2, τ)

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

− 2(t2)2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]2
,

(6.166)
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−4πit1
∂t1

∂τ
=− 8πiA2

[
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

]
− 8πiA

∂t2

∂τ

θ′1(v2, τ)

θ1(v2, τ)

− 8πiAt2
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
− 16πiAt2

θ′1(v2, τ)

θ1(v2, τ)

[
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

]
− 16πit2

∂t2

∂τ

θ′
2

1 (v2, τ)

θ21(v2, τ)
− 16πi(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
.

(6.167)

Then, we have:

g11 = (1) + (2) + (3) + (4) + (5),(6.168)

where:

(1) =A2

[
2
θ′

2

1 (v0, τ)

θ21(v0, τ)
− 2

θ′
2

1 (v2τ)

θ21(v2, τ)
− 8πi

[
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

]]

=A2

[
2
θ′

2

1 (v0, τ)

θ21(v0, τ)
− 2

θ′
2

1 (v2τ)

θ21(v2, τ)
− 2

θ′′1(v0, τ)

θ1(v0, τ)
+ 2

θ′′1(v2, τ)

θ1(v2, τ)

]

=2A2 [℘(v0)− ℘(v2)] = 2
16ω4

[℘(v0)− ℘(v2)]
2 [℘(v0)− ℘(v2)]

=32
ω4

℘(v0)− ℘(v2)
,

(6.169)

(2) =− 8πit2A
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
+ 2At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
2
θ′1(v0, τ)

θ1(v0, τ)

[
θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)

]]
+ 2At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
2
θ′1(v2, τ)

θ1(v2, τ)

[
−θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]]
+ 2At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
− 8πi

[
∂τθ1(v0, τ)

θ1(v0, τ)
− ∂τθ1(v2, τ)

θ1(v2, τ)

]]

+ 2At2
θ′

2

1 (v2, τ)

θ21(v2, τ)

[
−4πi

[
∂τθ1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
∂τθ1(v0 − v2, τ)

θ1(v0 − v2, τ)
− ∂τθ1(2v2, τ)

θ1(2v2, τ)
− ∂τθ

′
1(0, τ)

θ′1(0, τ)

]]
.

(6.170)

Using (6.131),

2
θ′′1(v0, τ)

θ1(v0, τ)
+ 2

θ′′1(v2, τ)

θ1(v2, τ)
− 4πi

∂

∂τ

(
log

(
θ′1(0, τ)

θ(v0 − v2, τ)

))
− 4πi

∂

∂τ

(
log

(
θ′1(0, τ)

θ(v0 + v2, τ)

))
=

= 2
θ′1(v0, τ)

θ1(v0, τ)

(
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
+
θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)

)
+ 2

θ′1(v2, τ)

θ1(v2, τ)

(
−θ
′
1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)

)
,

(6.171)
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(2) =− 8πit2A
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
+ 2At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
−4

θ′1(v2, τ)

θ1(v2, τ)

θ′1(2v2, τ)

θ1(2v2, τ)

]
+ 2At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
2

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
+ 4

θ′′1(v2, τ)

θ1(v2, τ)

]

+ 2At2
θ′

2

1 (v2, τ)

θ21(v2, τ)

[
−4πi

∂τθ
′
1(0, τ)

θ′1(0, τ)
+ 4πi

∂τθ1(2v2, τ)

θ1(2v2, τ)

]
.

(6.172)

Using again (6.131):

(2) = −8πit2A
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
+ 8At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]
,(6.173)

(3) = 4
θ′

2

1 (v2, τ)

θ21(v2, τ)

[
1

2

(
∂t2

∂v0

)2

− 1

2

(
∂t2

∂v2

)2

− 4πit2
∂t2

∂τ

]

= 8
θ′

2

1 (v2, τ)

θ21(v2, τ)
(t2)2

[
θ′′1(2v2, τ)

θ1(2v2, τ)
− θ′

2

1 (2v2, τ)

θ21(2v2, τ)

]
,

(6.174)

(4) = −2(t2)2
[
∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)]2
− 16πi(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
,(6.175)

(5) =− 4(t2)
∂t2

∂v2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)
=− 4(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
−θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
=− 4(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
−θ′1(v0 − v2, τ)

θ1(v0 − v2, τ)
+
θ′1(v0 + v2, τ)

θ1(v0 + v2, τ)
− 2

θ′1(v2, τ)

θ1(v2, τ)

]
− 4(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
= −4(t2)A

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)
− 4(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
.

(6.176)
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Summing (2) and (5):

(2) + (5) =− 8πit2A
∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
+ 8At2

θ′
2

1 (v2, τ)

θ21(v2, τ)

[
θ′′1(v2, τ)

θ1(v2, τ)
− θ′

2

1 (v2, τ)

θ21(v2, τ)

]

− 4(t2)A
θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)
− 4(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
= −4(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
+At2

[
−2

θ′′′1 (v2, τ)

θ1(v2, τ)
+ 6

θ′1(v2, τ)θ′′1(v2, τ)

θ1(v2, τ)
− 4

θ′
3

1 (v2, τ)

θ31(v2, τ)

]

= −4(t2)2
θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
+ 2At2℘′(v2)

= −4(t2)2
θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
− 32

ω4

℘(v0)− ℘(v2)
.

(6.177)

Summing (1) and (2) + (5):

(1) + (2) + (5) = −4(t2)2
θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
.(6.178)

From the above results, we find:

g11 =(1) + (2) + (5) + (3) + (4)

=− 4(t2)2
θ′1(v2, τ)

θ1(v2, τ)

∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)[
2
θ′1(v2, τ)

θ1(v2, τ)
− 2

θ′1(2v2, τ)

θ1(2v2, τ)

]
+ 8

θ′
2

1 (v2, τ)

θ21(v2, τ)
(t2)2

[
θ′′1(2v2, τ)

θ1(2v2, τ)
− θ′

2

1 (2v2, τ)

θ21(2v2, τ)

]

− 2(t2)2
[
∂

∂v2

(
θ′1(v2, τ)

θ1(v2, τ)

)]2
− 16πi(t2)2

θ′1(v2, τ)

θ1(v2, τ)

∂

∂τ

(
θ′1(v2, τ)

θ1(v2, τ)

)
.

(6.179)

Summarizing, we have proved the identities (6.95)-(6.99).
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CHAPTER 7

Coalescence phenomenon and Dubrovin Frobenius submanifold

of the orbit space of J (Ã1)

In differential geometry, one of the most common problem is the study of the submanifolds.

Dubrovin Frobenius manifolds consists in a manifold with a large number of geometric conditions,

therefore, quite often some of these conditions are not satisfied in a submanifold, for instance

flatness. In [31] and [32] , Strachan investigates the geometric structure of the discriminant

locus and the caustic of Hurwitz spaces, which is described as

ui = 0, discriminant locus,

ui = uj , for i 6= j, caustic.

In these spaces, there exist a very rich geometric structure, which is almost a Dubrovin Frobenius

structure, but, the induced metric of the ambient space is quite often curved. The aim of this

section is to point out the rich geometric structure that the orbit space of J (Ã1) has. Indeed,

in [26], Romano proved that the Hurwitz space H1,0,0 have a tri-hamiltonian structure. This

fact realise the Hurwitz space H1,0,0 as suitable ambient space to support the Hurwitz space

H1,1 as Dubrovin Frobenius submanifold. This was done supported in the argument that the

Darboux-Egoroff systems of both Hurwitz spaces are parametrized by the same Painleve VI

transcendents. In addition, in [30] Shramchenko shows that the Stokes matrices of the Hurwitz

space H1,0,0 depends on the Stokes matrices of the Hurwitz space H0,0,0. This fact suggests that

there exist some submanifold of H1,0,0 which contains some geometric information regarding

the Hurwitz space H0,0,0. Therefore, this section will investigates the submanifolds of H1,0,0 by

coalescing the canonical coordinates.

7.1. Review of Tri-hamiltonian structure

In [26], Romano inspired by the work done in [25] introduced the a notion of tri-hamiltonian

structure. This new structure implies in the existence of third flat metric compatible with the

flat pencil structure of the Dubrovin Frobenius manifold.

Definition 7.1.1. [26] A 2n-dimensional Dubrovin Frobenius manifold has a tri-hamiltonian

structure if its Euler vector field has the following form

(7.1) E =

n∑
i=1

tα
∂

∂tα
+ (1 + 2µ)

2n∑
i=n+1

∂

∂tα
,
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for some non zero constant µ.

The name tri-hamiltonian is motivated by the following

Proposition 7.1.1. [26] Let be a 2n-dimensional Dubrovin Frobenius manifold with tri-

hamiltonian structure, then the metric

(7.2) η̃αβ = ηεα
(
U 2
)β
ε
, U α

β = Eµcβµα

is flat.

Corollary 7.1.1.1. [26] Let a 2n-dimensional Dubrovin Frobenius manifold with tri-

hamiltonian structure, then the metrics η∗, g∗, η̃ form a 2-parameter flat pencil metric

(7.3) gε1,ε2 = η̃ − ε1g − ε2η.

If the a 2n-dimensional Dubrovin Frobenius manifold with a tri-hamiltonian structure is

semisimple, the metrics η, g, η̃, in canonical coordinates, have the following form

η =

2n∑
i=1

ηii(dui)
2,

g =
2n∑
i=1

ηii
ui

(dui)
2,

η̃ =

2n∑
i=1

ηii
u2i

(dui)
2,

(7.4)

7.2. Review of Dubrovin Frobenius submanifolds

The aim of this section is to introduce the definition of Dubrovin Frobenius submanifolds,

for this purpose, it will be necessary to introduce the notion of induced structure first. Dubrovin

Frobenius manifolds is manifold together a large amount of conditions, therefore, we will

gradually introduce the induced structure once by time.

7.2.1. Induced structure.

Definition 7.2.1. [32] An F-manifold is a pair (M, •) where M is a manifold and • is a

commutative, associative multiplication • : TM ×TM 7→ TM satisfying the following conditions

LieX•Y (•) = X • LieY (•) + Y • LieX(•), ∀X,Y ∈ TM.(7.5)

Definition 7.2.2. [32]

(1) An FE manifold is an F-manifold with an Euler vector field of weight d. This is a

global vector field satisfying the conditions

(7.6) LieE(•) = d. • .
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(2) An Fη is an F-manifold with a metric η(, ) compatible with the multiplication:

(7.7) η(X • Y,Z) = η(X,Y • Z), X, Y, Z ∈ TM.

(3) An F is both FE and Fη manifold with E and η related by the relation

(7.8) LieEη(, ) = Dη(, )

for some constant D.

At this stage, we can define the notion of natural submanifold.

Definition 7.2.3. [32] A natural submanifold N of an FE manifold (M, •, E) is a submani-

fold N ⊂M such that

TN • TN ⊂ TN,

Ex ∈ TN, ∀x ∈ N.
(7.9)

Then, we say that the vector field E|N is the induced Euler vector field.

Definition 7.2.4. [32] Consider a Fη manifold (M, •, η) with a submanifold N ⊂M , then

we define an induced metric on N by η|N , and an induced product ? by

(7.10) X ? Y = pr(X • Y ), X, Y ∈ TxN ⊂ TxM,

where pr denotes the projection with respect the metric η. Moreover, if we also have a unit

vector field e, we defined an induced unit vector field by e|N .

At this point, we have collected the minimal definitions to give a notion of Dubrovin

Frobenius submanifolds.

Definition 7.2.5. [32] Let (M, •, η, e, E) be a Dubrovin Frobenius manifold with Frobenius

product •, metric η, unit vector field e, and Euler vector field E. Then, we say that a submanifold

N ⊂M is a Dubrovin Frobenius submanifold if (N, ?, η|N , e|N , E|N ) is a Dubrovin Frobenius

manifold. i.e. N is a Dubrovin Frobenius manifold with respect the induced structure.

In [31], Strachan proved an important Theorem, which could give a source of Dubrovin

Frobenius submanifolds.

Theorem 7.2.1. [31] Let N be a natural flat submanifold of a Dubrovin Frobenius manifold

M . If the unit vector field e and the Euler vector field E are both tangential to N at all t ∈ N ,

then N is a Dubrovin Frobenius submanifold.

For two-dimensional submanifolds we have an even stronger result.

Theorem 7.2.2. [32] Let M a Dubrovin Frobenius manifold of dimension n and N a

two-dimensional submanifold. If the unity vector field e is tangential to the submanifold N at

all points t ∈ N , then N is a Dubrovin Frobenius submanifold.
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7.2.2. Semisimple Dubrovin Frobenius submanifold. The goal of this subsection is to

show that the discriminant locus and the caustic of a semisimple Dubrovin Frobenius manifolds

is a promising source of Dubrovin Frobenius submanifolds, since the caustic for instance fails to

be a Dubrovin Frobenius manifold only due the non-flatness of the induced metric η.

Consider a semisimple F manifold, then there exists coordinates (u1, u2, u3, .., un) such that

the Frobenius product and the Euler vector field assume the following form

∂

∂ui
• ∂

∂uj
= δij

∂

∂ui
,

E =

n∑
i=1

ui
∂

∂ui
.

(7.11)

Definition 7.2.6. [32]

(1) A submanifold defined by the condition ui = 0 for one or more values of i is a

discriminant hypersurface, and will be denoted by D .

(2) A submanifold defined by the condition ui = uj for some pair ui and uj for i 6= j is

known as caustic, and will be denoted by C .

The next Theorem proved by Strachan in [32] shows that discriminant and caustic hyper-

surfaces are the only source of possible Dubrovin Frobenius submanifolds.

Theorem 7.2.3. [32] Let (M, •, E, η) be a semisimple F manifold. Then

(1) The only natural submanifolds are the caustic and the discriminant hypersurfaces.

(2) The identity is tangential to a natural submanifold if and only if it is pure caustic. i.e.

it does not have intersection with any discriminant hypersurface.

Thereore, the Theorems 7.2.1, 7.2.2, and 7.2.3 proves the following corollary, which is our

main source of Dubrovin Frobenius submanifolds.

Corollary 7.2.3.1. [32] Any flat caustic of semisimple Dubrovin Frobenius manifold is

itself a Dubrovin Frobenius manifold, i.e. Dubrovin Frobenius submanifold. All two-dimensional

caustic are Dubrovin Frobenius submanifolds.

7.3. Discriminant of J (Ã1)

We start this section by comparing the Landau-Ginzburg superpotential of H1,0,0 and H1,1.

In the appendix J of [12], Dubrovin proved the following lemma relating the coordinates

(z, ω, ω′) with the coordinates (u, v0, τ).
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Lemma 7.3.1. [12] The map

u =
−1

2πi

[
2 log σ(z0, ω, ω

′)− η

ω
z20

]
v0 =

z0
2ω
,

τ =
ω′

ω
.

(7.12)

determine local coordinates in H1,1, where η = ζ(ω, ω, ω′) is Weiestrass Zeta function evaluated

in ω.

Lemma 7.3.2. The canonical coordinates of the orbit space J (A1) are given by

u1 = −t1 + t2
θ′′2(0, τ)

θ2(0, τ)
,

u2 = −t1 + t2
θ′′3(0, τ)

θ3(0, τ)
,

u3 = −t1 + t2
θ′′4(0, τ)

θ4(0, τ)
.

(7.13)

where (t1, t2, τ) are the flat coordinates of η with respect the orbit space J (A1).

Proof. Consider the Landau-Ginzburg superpotential (5.21) for n = 1

(7.14) λJ (A1)(v) = ϕ2℘(v, τ) + ϕ0.

where

(7.15) ϕ0 = −ϕ2℘(v0, τ).

Computing the critical points of (7.14),

(7.16) λJ (A1)′(v) = ϕ2℘
′(v, τ) = 0.

We obtain v = 1
2 ,

τ
2 ,

1+τ
2 as roots of (7.16). Then, by writing (7.14) in terms of the flat coordinates

of η

(7.17) λJ (A1)(v) = ϕ2
d2 log θ1(v, τ)

dv2
− t1.

We obtain the desired result by substituting v = 1
2 ,

τ
2 ,

1+τ
2 in(7.17), and by using the following

relations between the Jacobi theta functions [33]

θ2(v, τ) = θ1

(
v +

1

2
, τ

)
,

θ3(v, τ) = e(iv+
iπτ
4 )θ1

(
v +

1 + τ

2
, τ

)
,

θ4(v, τ) = ie(iv+
iπτ
4 )θ1

(
v +

τ

2
, τ
)
.

(7.18)

122



Lemma 7.3.3. The canonical coordinates of the orbit space J (Ã1) are given by

v1 = t1 − 2t2
θ′1(t

3, τ)

θ1(t3, τ)
,

v2 = t1 − 2t2
θ′2(t

3, τ)

θ2(t3, τ)
,

v3 = t1 − 2t2
θ′3(t

3, τ)

θ3(t3, τ)
,

v4 = t1 − 2t2
θ′4(t

3, τ)

θ4(t3, τ)
.

(7.19)

Proof. Consider the critical points of (6.75),

λ′(p) = t2
[
−℘(p− t3, τ) + ℘(p+ t3, τ)

]
= t2

σ(2p, τ)σ(2t3, τ)

σ2(p− t3, τ)σ2(p− t3, τ)
= 0.

(7.20)

Then, p = 0, 12 ,
τ
2 ,

1+τ
2 solves (7.20). Consequently, the canonical coordinates of the orbit space

of J (Ã1) read

v1 = t1 − 2t2
θ′1(t

3, τ)

θ1(t3, τ)
,

v2 = t1 − 2t2
θ′2(t

3, τ)

θ2(t3, τ)
,

v3 = t1 − 2t2
θ′3(t

3, τ)

θ3(t3, τ)
,

v4 = t1 − 2t2
θ′4(t

3, τ)

θ4(t3, τ)
,

due to (7.18).

Lemma 7.3.4. The equations

u =
−1

2πi

[
4 log σ(z2, ω, ω

′)− log σ(z0 − z2, ω, ω′)− log σ(z0 + z2, ω, ω
′)− η

ω

(
z20 − z22

)]
v0 =

z0
2ω
,

v2 =
z2
2ω
,

τ =
ω′

ω
,

(7.21)

determine local coordinates in H1,0,0, where η = ζ(ω, ω, ω′) is Weiestrass Zeta function evaluated

in ω.

Proof. The σ function for the lattice generated by ω, ω′ in terms of Jacobi theta 1 is

(7.22) σ(z, ω, ω′) = 2ω
θ1(

z
2ω ,

ω′

ω )

θ′1(0,
ω′

ω )
e
η
2ω
z2 .
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Substituting (7.22) into (7.21), we obtain

(7.23) − 2πiu = log

(
(2ω)2

θ41(v2, τ)

θ1(v0 − v2, τ)θ1(v0 + v2, τ)θ′1(0, τ)2

)
,

Then, the equations (7.21) determine the inverse map of (7.24) below

4ω2 =
θ1(v0 − v2, τ)θ1(v0 + v2, τ)θ′1(0, τ)2

θ41(v2, τ)
e−2πiu,

z0 = 2ωv0,

z2 = 2ωv2,

ω′ = τω.

(7.24)

Consider the Landau-Ginzburg superpotential of H1,0,0 (6.45) written in the coordinates

(z0, z2, ω, ω
′)

Lemma 7.3.5. The Landau-Ginzburg superpotential of H1,0,0 (6.45) in the coordinates

(z0, z2, ω, ω
′) have the following form

λJ (Ã1) =
1

℘(z0, ω, ω′)− ℘(z2, ω, ω′)
− 1

℘(z, ω, ω′)− ℘(z2, ω, ω′)
.(7.25)

Proof.

λJ (Ã1) = e−2πiu
θ1(v − v0, τ)θ1(v + v0, τ)

θ1(v − v2, τ)θ1(v + v2, τ)

= (2ω)2
θ41(v2, τ)

θ1(v0 − v2, τ)θ1(v0 + v2, τ)θ′1(0, τ)2
θ1(v − v0, τ)θ1(v + v0, τ)

θ1(v − v2, τ)θ1(v + v2, τ)

=
σ4(z2, ω, ω

′)

σ(z0 − z2, ω, ω′σ(z0 − z2, ω, ω′)
σ(z − z0, ω, ω′)σ(z + z0, ω, ω

′)

σ(z − z2, ω, ω′)σ(z + z2, ω, ω′)

=
σ2(z2)σ(z0)

σ(z0 − z2)σ(z0 + z2)

σ2(z)σ(z0)

σ(z − z2)σ(z + z2)

σ(z − z0)σ(z + z0)

σ2(z)σ(z0)

=
℘(z0, ω, ω

′)− ℘(z, ω, ω′)

(℘(z0, ω, ω′)− ℘(z2, ω, ω′)) (℘(z, ω, ω′)− ℘(z2, ω, ω′))

=
1

℘(z0, ω, ω′)− ℘(z2, ω, ω′)
− 1

℘(z, ω, ω′)− ℘(z2, ω, ω′)
.

(7.26)

A convenient way to write the Landau-Ginzburg superpotential (7.14) is by taking the new

coordinates

4ω2 = ϕ2,

v0 =
z0
ω
,

τ =
ω′

ω
.

(7.27)
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Then, substituting (7.27) in (7.14)

(7.28) λJ (A1)(z) = ℘(z, ω, ω′)− ℘(z0, ω, ω
′).

Hence, identifying the ω, ω′ of the Landau-Ginzburg superpotential of J (A1) (7.28) and of

J (Ã1) (7.25), we obtain

(7.29) λJ (Ã1)(v) =
1

℘(z0, ω, ω′)− ℘(z2, ω, ω′)
− 1

λJ (A1)(v)
.

Consequently, we receive the following corollary.

Corollary 7.3.5.1. Let (v1, v2, v3, v4) the canonical coordinates of the orbit space of J (Ã1)

be given by (7.19), and (u1, u2, u3) the canonical coordinates of the orbit space of J (A1). Then,

the following relation holds

v1 = v1,

v2 = v1 −
1

u1
,

v3 = v1 −
1

u2
,

v4 = v1 −
1

u3
.

(7.30)

Proof. From the equations (7.19) and (6.74), we have

(7.31) v1 = ϕ0.

Hence, recalling that 0, 12 ,
τ
2 ,

1+τ
2 are the critical points of (6.45) and 1

2 ,
τ
2 ,

1+τ
2 are the critical

points of (7.14), we obtain the desired result by using the equation (7.29).

Note that the Hurwitz space H1,0,0 has a tri-hamiltonian structure due its Euler vector field

(6.72) in flat coordinates of η. i.e.

(7.32) E = t1
∂

∂t1
+ t2

∂

∂t2
.

This fact implies that H1,0,0 has three flat metrics η∗, g∗, η̃∗. The next proposition will realise

a discriminant hypersurface of the Hurwitz space H1,0,0 as Dubrovin Frobenius submanifold.

However, we should consider the induced vector field E2, instead of the induced unit vector field

e of the orbit space of H1,0,0.

Proposition 7.3.6. Consider the orbit space of the group J (Ã1), and let (u, v0, v2, τ)

be the flat coordinates of its intersection form g∗ (6.64). Then, the submanifold v0 = 0 is a

Dubrovin Frobenius submanifold with respect the induced structure (g∗|v0=0 , E|v0=0 , E
2
∣∣
v0=0

).

Moreover, the hyperplane v0 = 0 is isomorphic as Dubrovin Frobenius manifold to the orbit

space of J (A1).
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Proof. The intersection form (6.64) induces the metric

(7.33) − 2dv22 + 2dudτ,

in the submanifold v0 = 0. Note that the induced intersecition form (7.33) is flat and is equal to

the intersection form of the orbit space of J (A1) (once, we send u 7→ −u) . Then, it remains to

show that the induced Euler vector field and unit vector field are the same of those of the orbit

space of J (A1), because due to 2.1.2, we can reconstruct the Dubrovin Frobenius structure

from this data.

The equations (7.30) in the submanifold v0 = 0 have the following form

v1 = 0,

v2 =
1

u1
,

v3 =
1

u2
,

v4 =
1

u3
.

(7.34)

The unit vector field e , Euler vector field E and the square of the Euler vector field E2 in

canonical coordinates read

e =
4∑
i=1

∂

∂vi
,

E =

4∑
i=1

vi
∂

∂vi
,

E2 =
4∑
i=1

v2i
∂

∂vi
.

(7.35)

In the submanifold v0 = 0, the vector fields (7.35) have the following form

e|v0=0 =
3∑
i=1

−u3i
∂

∂ui
,

E|v0=0 =
3∑
i=1

ui
∂

∂ui
,

E2
∣∣
v0

=

3∑
i=1

− ∂

∂ui
.

(7.36)

Therefore, the Euler vector field on the ambient space induces the correct Euler vector in the

submanifold, but the unit vector does not induces the unit vector field of H1,1. Fortunately, E2

induces the correct unit vector field of H1,1. Hence, we have that (g∗|v0=0 , E|v0=0 , E
2
∣∣
v0=0

) are

the same data of the Hurwitz space H1,1 and using the Theorem 5.9.6, we can reconstruct the

Dubrovin Frobenius manifold of H1,1.
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Remark 7.3.1. The metric η of H1,0,0 does not induce the metric η of H1,1, but, H1,0,0 has

the tri-hamiltonian structure with three flat metric. The third metric η̃ of H1,0,0 induce the

metric η of H1,1. The vector field E2 inducing the correct unit vector field in the submanifold

v0 = 0 is the realisation of this fact.

Corollary 7.3.6.1. The Dubrovin Frobenius submanifold described in proposition 7.3.6

lives in the discriminant locus of the orbit space of J (Ã1).

Proof. It is a direct consequence of the equation (7.34).

7.4. Nilpotent caustic of the orbit space J (Ã1)

Lemma 7.4.1. Consider the orbit space of the group J (Ã1), and let u, v0, v2, τ be the flat

coordinates of its intersection form g∗. Then, the submanifold defined by

(7.37) N = {(u, v0, v2, τ) ∈
(
C⊕ C2 ⊕H

)
/J (Ã1) : u = 0, Im(τ) 7→ ∞}

lives in the caustic of the orbit space of the group J (Ã1).

Proof. Recall the following relation of the log derivatives of Jacobi theta functions [33]

θ′1(v, τ)

θ1(v, τ)
= cot v + 4

∞∑
n=1

q2n

1− q2n
sin(2nv),

θ′2(v, τ)

θ2(v, τ)
= tan v + 4

∞∑
n=1

(−1)n
q2n

1− q2n
sin(2nv),

θ′3(v, τ)

θ3(v, τ)
= 4

∞∑
n=1

(−1)n
q2n

1− q2n
sin(2nv),

θ′4(v, τ)

θ4(v, τ)
= +4

∞∑
n=1

q2n

1− q2n
sin(2nv).

(7.38)

Doing the limit Im(τ) 7→ ∞ in (7.38), we obtain

θ′1(v, τ)

θ1(v, τ)
= cot v,

θ′2(v, τ)

θ2(v, τ)
= tan v,

θ′3(v, τ)

θ3(v, τ)
= 0,

θ′4(v, τ)

θ4(v, τ)
= 0.

(7.39)

Substituting (7.39) in (7.19), we obtain

(7.40) v3 = v4.
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Then, N is the caustic of the orbit space of J (Ã1).

Proposition 7.4.2. Consider the orbit space of the group J (Ã1), and let u, v0, v2, τ be

the flat coordinates of its intersection form g∗. Then, the submanifold defined by

(7.41) N = {(u, v0, v2, τ) ∈
(
C⊕ C2 ⊕H

)
/J (Ã1) : u = 0, Im(τ) 7→ ∞}

is Dubrovin Frobenius submanifold with respect the induced structure (?, η̃∗|N , E|N , e|N ).

Moreover, N is isomorphic as Dubrovin Frobenius manifold to the orbit space of Ã1.

Proof. From lemma 7.4.1, and corollary 7.2.3.1, we derive that N is Dubrovin Frobenius

submanifold of the orbit space of J (Ã1). In order to proof the remaining part. Note that the

induced intersection form in u = 0, Im(τ) 7→ ∞, is given by

2dv20 − 2dv22,

which is the intersection form of the orbit space of Ã1. Taking the limit u 7→ 0, Imτ 7→ ∞ in

(6.45), we have

(7.42) lim
Imτ 7→∞,u 7→0

λJ (Ã1) =
sin(v − v0) sin(v + v0)

sin(v − v2) sin(v + v2)
,

after doing some Moebius transformation in v and some change of coordinates the (7.42) became

the superpotential

(7.43) λÃ1 = ep + a+ be−p.

From the data of (7.43) we can derive the Euler vector field and unit of the orbit space of Ã1

[15]. Hence, we can reconstruct the Dubrovin Frobenius structure of the orbit space of Ã1 by

the arguments of section 2.1.2.

Proposition 7.4.3. Consider the orbit space of the group J (A1), and let u, v0, τ be the

flat coordinates of its the intersection form g∗. Then, the submanifold defined by

(7.44) N = {(u, v0, τ) ∈ (C⊕ C⊕H) /J (A1) : u = 0, Im(τ) 7→ ∞}

is a Dubrovin Frobenius submanifold of the orbit space of J (A1) with respect the induced

structure (?, η̃∗|N , E|N , e|N ). Moreover, N is isomorphic as a Dubrovin Frobenius manifold to

the orbit space of A1.

Proof. The induced intersection form in u = 0, Im(τ) 7→ ∞, is given by

2dv20,

128



which is the intersection form of the orbit space of A1. Recall that the canonical coordinates of

the orbit space J (A1) are given by

u1 = t1 − t2 θ
′′
2(0, τ)

θ2(0, τ)
,

u2 = t1 − t2 θ
′′
3(0, τ)

θ3(0, τ)
,

u3 = t1 − t2 θ
′′
4(0, τ)

θ4(0, τ)
.

(7.45)

In the limit u = 0, Im(τ) 7→ ∞,, the canonical coordinates take the form

u1 = u2 = u3 = t1.(7.46)

Hence, the unit vector field of H1,1 takes the form

(7.47) e = 3
∂

∂t1
,

which is the unit and the Euler of the orbit space of A1. Lemma is proved due to the discussion

of section 2.1.2.

Corollary 7.4.3.1. Consider the orbit space of the group J (A1), and let u, v0, τ be the

flat coordinates of its intersection form g∗. Then, the submanifold defined by

(7.48) N = {(u, v0, τ) ∈ (C⊕ C⊕H) /J (A1) : u = 0, Im(τ) 7→ ∞}

lives in the caustic of the orbit space of the group J (A1).

Proof. It is a direct consequence of (7.46).

Proposition 7.4.4. The Dubrovin Frobenius submanifolds described in proposition 7.4.2

and 7.4.3 live in the nilpotent locus of the orbit space of J (Ã1) and J (A1) respectively.

Proof. Consider the following identity

log

(
θ1(v|τ)

θ′1(0|τ)

)
= log(sin(πv)) + 4

∞∑
m=1

q2m

1− q2m
sin2(mπv)

m
(7.49)

where q = eiπτ . Differentiating with respect τ and then computing the limit =τ 7→ ∞, we receive

lim
=τ 7→∞

∂

∂τ

(
log

(
θ1(v, τ)

θ′1(0, τ)

))
= 4 lim

=τ 7→∞

∞∑
m=1

[
2mq2m

1− q2m
− 2mq4m

(1− q2m)2

]
sin2(mπv)

m
= 0.(7.50)

Therefore, considering the WDVV solution given by (6.111), we have that c4αβ evaluated in the

Dubrovin Frobenius submanifold u = 0,=τ 7→ ∞ is 0. Therefore

(7.51) ∂4 • ∂4 = c444∂1 + c443∂2 + c442∂3 = 0.
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Then, the vector field ∂4 is nilpotent in the submanifold u = 0,=τ 7→ ∞ .

Consider the identity

(7.52)
θ′′′1 (0, τ)

θ′1(0, τ)
= −1 + 24

∞∑
i=0

q2n

(1− q2n)2
.

Differentiating with respect τ and then computing the limit =τ 7→ ∞, we receive

(7.53) lim
Imτ 7→∞

∂

∂τ

(
θ′′′1 (0, τ)

θ′1(0, τ)

)
= −24 lim

Imτ 7→∞

∞∑
i=0

2nq2n

(1− q2n)2
− 2nq4n

(1− q2n)3
= 0.

From appendix C of [12], we have that the WDVV solution of the orbit space of J (A1) is

(7.54) F =
(t1)2τ

2
+
t1(t2)2

2
− iπ

48
(t2)4E2(τ).

Using the fact that E2(τ) is proportional to
θ′′′1 (0,τ)
θ′1(0,τ)

, we have that ∂τ is nilpotent in the

submanifold u = 0,=τ 7→ ∞ in the orbit space of J (A1), by the same reason of the case

u = 0,=τ 7→ ∞ in the orbit space of J (Ã1) .
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CHAPTER 8

Differential geometry of the orbit space of extended Jacobi

group An

This Chapter is dedicated to generalise the group J (Ã1) defined in Chapter 6 for arbitrary

n, this new class of groups will be denoted by J (Ãn). From the data of the group J (Ãn), we

will construct the Dubrovin Frobenius manifold in the orbit space of J (Ãn). Furthermore, this

Dubrovin Frobenius manifold will be locally isomorphic to the Hurwitz space H1,n−1,0. In the

section 1.4, there is a scheme of the technical steps that we should take to built the desired

Dubrovin Frobenius manifold.

8.1. The Group J (Ãn)

In this section, we define the group J (Ãn). In order to understand the motivation of this

group see 1.4.

Consider the An in the following extended space

LÃn = {(z0, z1, .., zn, zn+1) ∈ Zn+2 :
n∑
i=0

zi = 0}.

The action of An on LÃn is given by

w(z0, z1, z2, .., zn−1, zn, zn+1) = (zi0 , zi1 , zi2 , .., zin−1 , zin , zn+1)
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permutations in the first n + 1 variables. Moreover, An also acts on the complexfication of

LÃn ⊗ C. Let the quadratic form 〈, 〉Ãn be given by

〈v, v〉Ãn = vTMÃn
v

= vT



2 1 1 ...1 1 0

1 2 1 ....1 1 0

1 1 2 ....1 1 0

. . . ... . 0

. . . ... . 0

1 1 1 ...2 1 0

1 1 1 .... 2 0

0 0 0 .... 0 −n(n+ 1)


v

= 2
n−1∑
i=0

v2i + 2
∑
i>j

vivj − n(n+ 1)v2n+1.

Consider the following group LÃn × LÃn × Z with the following group operation

∀(λ, µ, k), (λ̃, µ̃, k̃) ∈ LÃn × LÃn × Z

(λ, µ, k) • (λ̃, µ̃, k̃) = (λ+ λ̃, µ+ µ̃, k + k̃ + 〈λ, λ̃〉Ãn)

Note that 〈, 〉Ãn is invariant under An group, then An acts on LÃn × LÃn × Z. Hence, we can

take the semidirect product An n (LÃn × LÃn × Z) given by the following product.

∀(w, λ, µ, k), (w̃, λ̃, µ̃, k̃) ∈ An × LÃn × LÃn × Z,

(w, λ, µ, k) • (w̃, λ̃, µ̃, k̃) = (ww̃,wλ+ λ̃, wµ+ µ̃, k + k̃ + 〈λ, λ̃〉Ãn).

Denoting W (Ãn) := An n (LÃn × LÃn × Z), we can define

Definition 8.1.1. The Jacobi group J (Ãn) is defined as a semidirect product

W (Ãn) o SL2(Z). The group action of SL2(Z) on W (Ãn) is defined as

Adγ(w) = w,

Adγ(λ, µ, k) = (aµ− bλ,−cµ+ dλ, k +
ac

2
〈µ, µ〉Ãn − bc〈µ, λ〉Ãn +

bd

2
〈λ, λ〉Ãn),

for (w, t = (λ, µ, k)) ∈W (Ãn), γ ∈ SL2(Z). Then the multiplication rule is given as follows

(w, t, γ) • (w̃, t̃, γ̃) = (ww̃, t •Adγ(wt̃), γγ̃).

132



Let us use the following identification Zn+1 ∼= LÃn ,Cn+1 ∼= LÃn ⊗ C that is possible due to

maps

(v0, .., vn−1, vn+1) 7→ (v0, .., vn−1,−
n∑
i=0

vi, vn+1),

(v0, .., vn−1, vn, vn+1) 7→ (v0, .., vn−1, vn+1).

Then the action of Jacobi group J (Ãn) on Ω := C⊕ Cn+1 ⊕H is given as follows

Proposition 8.1.1. The group J (Ãn) 3 (w, t, γ) acts on Ω := C⊕Cn+1 ⊕H 3 (u, v, τ) as

follows

w(u, v, τ) = (u,wv, τ)

t(u, v, τ) = (u− 〈λ, v〉Ãn −
1

2
〈λ, λ〉Ãnτ, v + λτ + µ, τ)

γ(u, v, τ) = (φ+
c〈v, v〉Ãn
2(cτ + d)

,
v

cτ + d
,
aτ + b

cτ + d
)

(8.1)

The proof of the proposition 8.1.1 follows from the proposition 5.1.1 with small adaptation

with the extra trivial action in the exceptional variable vn+1 with respect the An action.

8.2. Jacobi forms of J (Ãn)

This section is the generalisation of the section 5.2 and 6.2 for the case of the group J (Ãn).

Definition 8.2.1. The weak J (Ãn) -invariant Jacobi forms of weight k ∈ Z, order l ∈ N,

and index m ∈ N are functions on Ω = C⊕ Cn+1 ⊕H 3 (u, v′, vn+1, τ) = (u, v, τ) which satisfy

ϕ(w(u, v, τ)) = ϕ(u, v, τ), An invariant condition

ϕ(t(u, v, τ)) = ϕ(u, v, τ)

ϕ(γ(u, v, τ)) = (cτ + d)−kϕ(u, v, τ)

Eϕ(u, v, τ) := − 1

2πi

∂

∂u
ϕ(u, v, τ) = mϕ(u, v, τ)

(8.2)

Moreover,

(1) ϕ is locally bounded functions on v′ as =(τ) 7→ +∞ (weak condition).

(2) For fixed u, v′, τ the function vn+1 7→ ϕ(u, v′, vn+1, τ) is meromorphic with poles of

order at most l + 2m on vn+1 = j
n + lτ

n mod Z⊕ τZ, 0 ≤ l, j ≤ n− 1.

(3) For fixed u, τ, vn+1 = j
n + lτ

n mod Z ⊕ τZ, 0 ≤ l, j ≤ n − 1 the function (i 6= n + 1)

vi 7→ ϕ(u, v′, vn+1, τ) is holomorphic.

(4) For fixed u, v′, vn+1 = j
n + lτ

n mod Z ⊕ τZ, 0 ≤ l, j ≤ n − 1. the function τ 7→
ϕ(u, v′, vn+1, τ) is holomorphic.

The space of J (Ãn)-invariant Jacobi forms of weight k, order l, and index m is denoted by

J Ãnk,l,m, and J
J (Ãn)
•,•,• =

⊕
k,l,m J

Ãn
k,l,m is the space of Ãn invariant Jacobi forms .
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Remark 8.2.1. The condition Eϕ(u, v′, vn+1, τ) = mϕ(u, v′, vn+1, τ) implies that ϕ(u, v′, vn+1, τ)

has the following form

ϕ(u, v′, vn+1, τ) = f(v′, vn+1, τ)e2πimu.

See also remarks 6.2.1.

The main result of section is the following.

The ring of Ãn invariant Jacobi forms is polynomial over a suitable ring

E•,• := J
J (Ãn)
•,•,0 on suitable generators ϕ0, ϕ1, ϕ2, .., ϕn.

Before state precisely the theorem, I will define the objects E•,•, ϕ0, ϕ1, ϕ2, .., ϕn.

The ring E•,l := J
J (Ãn)
•,l,0 is the space of meromorphic Jacobi forms of index 0 with poles

of order at most l on vn+1 = j
n + lτ

n , 0 ≤ l, j ≤ n− 1mod Z⊕ τZ, by definition. The sub-ring

J
J (Ãn)
•,0,0 ⊂ E•,• has a nice structure, indeed:

Lemma 8.2.1. The sub-ring J
J (Ãn)
•,0,0 is equal to M• :=

⊕
Mk, where Mk is the space of

modular forms of weight k for the full group SL2(Z).

Proof. Using the Remark 8.2.1, we know that functions ϕ(u, v′, vn+1, τ) ∈ JJ (Ãn)
•,0,0 can not

depend on u, then ϕ(u, v′, vn+1, τ) = ϕ(v′, vn+1, τ). Moreover, for fixed vn+1, τ the functions

vi 7→ ϕ(v′, vn+1, τ)) are holomorphic elliptic function for any i 6= n+ 1. Therefore, by Liouville

theorem, these function are constant in v′. Similar argument shows that these function do

not depend on vn+1, because l + 2m = 0, i.e there is no pole. Then, ϕ = ϕ(τ) are standard

holomorphic modular forms.

Lemma 8.2.2. If ϕ ∈ E•,• = J
J (Ãn)
•,•,0 , then ϕ depends only on the variables vn+1, τ . Moreover,

if ϕ ∈ JJ (Ãn)
0,l,0 for fixed τ the function τ 7→ ϕ(vn+1, τ) is a elliptic function with poles of order

at most l vn+1 = j
n + lτ

n , 0 ≤ l, j ≤ n− 1mod Z⊕ τZ.

Proof. The proof follows essentially in the same way of the lemma 8.2.1, the only difference

is that now we have poles on vn+1 = j
n + lτ

n , 0 ≤ l, j ≤ n − 1mod Z ⊕ τZ. Then, we have

depedence in vn+1.

As a consequence of lemma 8.2.2, the function ϕ ∈ Ek,l = J
J (Ãn)
k,l,0 has the following form

ϕ(vn+1, τ) = f(τ)g(vn+1, τ)

where f(τ) is holomorphic modular form of weight k, and for fixed τ , the function vn+1 7→
g(vn+1, τ) is an elliptic function of order at most l on the poles vn+1 = j

n + lτ
n , 0 ≤ l, j ≤ n− 1

mod Z⊕ τZ.
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At this point, we will generalise the construction in sections 5.2 and 6.2 regarding a generating

functions of the basic generators of the algebra of Jacobi forms.

Note that a natural way to produce meromorphic Jacobi form is by using rational functions

of holomorphic Jacobi forms. Starting from now, we will denote the Jacobi forms related with

the Jacobi group J (An+1) with the upper index J (An+1), for instance

ϕJ (An+1),

and the Jacobi forms related with the Jacobi group J (Ãn) with the with the upper index

J (Ãn)

ϕJ (Ãn).

In [8], Bertola found basis of the algebra of Jacobi form by producing a holomorphic Jacobi

form of type An as product of theta functions.

(8.3) ϕ
J (An+1)
n+2 = e−2πiu

n+2∏
i=1

θ1(zi, τ)

θ′1(0, τ)
.

Afterwards, Bertola defined a recursive operator to produce the remaining basic generators. In

order to recall the details see section 5.2. Our strategy will follow the same logic of Bertola

method, we use theta functions to produce a basic generator and thereafter, we produce a

recursive operator to produce the remaining part.

Lemma 8.2.3. Let be ϕ
J (An+1)
n+2 (u1, z1, z2, .., zn, τ) the holomorphic An+1− invariant Jacobi

forms which correspond to the algebra generator of maximal weight degree, in this case degree

n+2. More explicitly,

(8.4) ϕ
J (A2)
n+2 = e−2πiu1

n+2∏
i=1

θ1(zi, τ)

θ′1(0, τ)
.

Let be ϕ
J (A1)
2 (u2, zn+1, τ) the holomorphic A1 − invariant Jacobi form which correspond to

the algebra generator of maximal weight degree, in this case degree 2.

(8.5) ϕ
J (A1)
2 = e−2πiu2

θ1(zn+2, τ)2

θ′1(0, τ)2
.

Then, the function

(8.6) ϕ
J (Ãn)
n =

ϕ
J (An+1)
n+2

ϕ
J (A1)
2

is meromorphic Jacobi form of index 1, weight -n, order 0.
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Proof. For our convenience, we change the labels u2 − u1, z1, z2, ...., zn+2 to

u = u2 − u1,

z1 = v0 − vn+1,

z2 = v1 − vn+1,

.

.

zn+1 = −
n∑
i=0

vi − vn+1,

zn+2 = (n+ 1)vn+1.

(8.7)

Then (8.6) has the following form

(8.8) ϕ
J (Ãn)
n (u, v0, v1, .., vn+1, τ) = e−2πiu

∏n
i=0 θ1(vi − vn+1, τ)

θ′1(0, τ)nθ1((n+ 1)vn+1, τ)

Let us prove each item separated.

(1) An invariant

The An group acts on (8.8) by permuting its roots, thus (8.8) remains invariant under

this operation.

(2) Translation invariant

Recall that under the translation v 7→ v +m+ nτ , the Jacobi theta function transform

as [8], [33]:

(8.9) θ1(vi + µi + λiτ, τ) = (−1)λi+µie−2πi(λivi+
λ2i
2
τ)θ1(vi, τ).

Then substituting the transformation (8.9) into (8.8), we conclude that (8.8) remains

invariant.

(3) SL2(Z) invariant

Under SL2(Z) action the following function transform as

(8.10)
θ1(

vi
cτ+d ,

aτ+d
cτ+d )

θ′1(0,
aτ+d
cτ+d )

= (cτ + d)−1 exp(
πicv2i
cτ + d

)
θ1(vi, τ)

θ′1(0, τ)
.

Then, substituting (8.10) in (8.8), we get

ϕ
J (Ãn)
n 7→ ϕ

J (Ãn)
n

(cτ + d)n

(4) Index 1

1

2πi

∂

∂u
ϕ

J (Ãn)
n = ϕ

J (Ãn)
n .(8.11)
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(5) Analytic behavior

Note that ϕ
J (Ãn)
n θ21((n + 1)vn+1, τ) is holomorphic function in all the variables vi.

Therefore ϕ
J (Ãn)
n are holomorphic functions on the variables {vi}, and meromorphic

function in the variable vn+1 with poles on j
n + lτ

n , j, l = 0, 1, .., n − 1 of order 2, i.e

l = 0, since m = 1.

In order to define the desired recursive operator, it is necessary to enlarge the domain of the

Jacobi forms from C⊕Cn ⊕H 3 (u, v0, v1, .., vn+1, τ) to C⊕Cn+1 ⊕H 3 (u, v0, v1, .., vn+1, p, τ).

In addition, we define lift a of Jacobi forms defined in C⊕ C2 ⊕H to C⊕ C3 ⊕H as

ϕ(u, v0−vn+1, v1−vn+1, .., (n+1)vn+1, τ) 7→ ϕ̂(p) := ϕ(u, v0−vn+1+p, v1−vn+1+p, .., (n+1)vn+1+p, τ)

A convenient way to do computation in these extended Jacobi forms is by using the following

coordinates

s = u+ ng1(τ)p2,

z1 = v0 − vn+1 + p,

z2 = v1 − vn+1 + p,

.

.

zn+1 = −
n∑
i=0

vi − vn+1 + p,

zn+2 = (n+ 1)vn+1 + p,

τ = τ.

(8.12)

The bilinear form 〈v, v〉Ã1
is extended to

(8.13) 〈(z1, z2, .., zn+2), (z1, z2, .., zn+2)〉E =

n+1∑
i=1

z2i − z2n+2,

The action of the Jacobi group Ãn in this extended space is

ŵE(u, v, p, τ) = (u,w(v), p, τ)

tE(u, v, p, τ) =

(
u− 〈λ, v〉E −

1

2
〈λ, λ〉Eτ + k, v + p+ λτ + µ, τ

)
γE(u, v, p, τ) =

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)(8.14)
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Proposition 8.2.4. Let be ϕ ∈ JJ (Ãn)
k,m,• , and ϕ̂ the correspondent extended Jacobi form.

Then,

(8.15)
∂

∂p
(ϕ̂)

∣∣∣∣
p=0

∈ JJ (Ãn)
k−1,m,•.

Proof. (1) An-invariant

The vector field ∂
∂p in coordinates s, z1, z2, .., zn+2, τ reads

∂

∂p
=

n+2∑
i=1

∂

∂zi
+ 2ng1(τ)p

∂

∂u

Moreover, in the coordinates s, z1, z2, ., zn+1, zn+2, τ the An group acts by permuting

z1, z2, ..., zn+1 . Then

∂

∂p
(ϕ(s, z2, z1, z3, τ))

∣∣∣∣
p=0

=

(
n+2∑
i=1

∂

∂zi

) (
ϕ(s, zi1 , zi2 .., zin+1 , zn+2, τ)

)∣∣
p=0

=

(
n+2∑
i=1

∂

∂zi

)
(ϕ(s, z1, z2, , .., zn+1, zn+2, τ))|p=0 .

(2) Translation invariant

∂

∂p
(ϕ(u− 〈λ, v〉E − 〈λ, λ〉E , v + p+ λτ + µ, τ))

∣∣∣∣
p=0

=
∂

∂p
〈λ, v〉E

∣∣∣∣
p=0

ϕ(u, v, τ) +
∂ϕ

∂p

(
u− 〈λ, v〉Ãn −

1

2
〈λ, λ〉Ãnτ + k, v + λτ + µ, τ

)
=
∂ϕ

∂p

(
u− 〈λ, v〉Ãn −

1

2
〈λ, λ〉Ãnτ + k, v + λτ + µ, τ

)
=
∂ϕ

∂p
(u, v, τ)

∣∣∣∣
p=0

.

(3) SL2(Z) equivariant

∂

∂p

(
ϕ(u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d
)

)∣∣∣∣
p=0

=
c

2(cτ + d)

∂

∂p
〈v, v〉E

∣∣∣∣
p=0

ϕ(u, v, τ) +
1

cτ + d

∂ϕ

∂p

(
u+

c〈v, v〉Ãn
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)
=

1

cτ + d

∂ϕ

∂p

(
u+

c〈v, v〉Ãn
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)
=

1

(cτ + d)k
∂ϕ

∂p
(u, v, τ)

∣∣∣∣
p=0

.

Then,

∂ϕ

∂p

(
u+

c〈v, v〉E
2(cτ + d)

,
v

cτ + d
,

p

cτ + d
,
aτ + b

cτ + d

)∣∣∣∣
p=0

=
1

(cτ + d)k−1
∂ϕ

∂p
(u, v, τ)

∣∣∣∣
p=0

.
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(4) Index 1

1

2πi

∂

∂u

∂

∂p
ϕ̂ =

1

2πi

∂

∂p

∂

∂u
ϕ̂ =

∂

∂p
ϕ̂.

Corollary 8.2.4.1. The function[
e
z ∂
∂p

(
e2πiu

∏n
i=0 θ1(p+ vi − vn+1, τ)

θ′1(0, τ)nθ1(p+ (n+ 1)vn+1, τ)

)]∣∣∣∣
p=0

= ϕ
J (Ãn)
n + ϕ

J (Ãn)
n−1 z + ϕ

J (Ãn)
n−2 z2 + ...+ ϕ

J (Ãn)
0 zn +O(zn+1),

(8.16)

is a generating function for the Jacobi forms ϕ
J (Ãn)
n , ϕ

J (Ãn)
n−1 , ϕ

J (Ãn)
n−2 , .., ϕ

J (Ãn)
0 , where

(8.17) ϕ
J (Ãn)
k :=

∂n−k

∂pn−k

(
ϕ̂

J (Ãn)
n

)∣∣∣∣
p=0

.

Proof. Acting ∂
∂p k times in ϕ

J (Ãn)
n , we have[

∂k

∂kp

(
e2πiu.

∏n
i=0 θ1(p+ vi − vn+1, τ)

θ′1(0, τ)nθ1(p+ (n+ 1)vn+1, τ)

)]∣∣∣∣
p=0

∈ JJ (Ãn)
−n+k,1,•.

Corollary 8.2.4.2. The generating function can be written as

(8.18)[
e
z ∂
∂p

(
e2πiu

∏n
i=0 θ1(p+ vi − vn+1, τ)

θ′1(0, τ)nθ1(p+ (n+ 1)vn+1, τ)

)]∣∣∣∣
p=0

= e−2πi(u+ng1(τ)z
2)

∏n
i=0 θ1(z + vi − vn+1, τ)

θ′1(0, τ)nθ1(z + (n+ 1)vn+1, τ)
.

Proof. [
e
z ∂
∂p

(
e2πiu

∏n
i=0 θ1(p+ vi − vn+1, τ)

θ′1(0, τ)nθ1(p+ (n+ 1)vn+1, τ)

)]∣∣∣∣
p=0

=

=

[
e
z ∂
∂p

(
e2πi(s+ng1(τ)p

2

∏n
i=0 θ1(p+ vi − vn+1, τ)

θ′1(0, τ)nθ1(p+ (n+ 1)vn+1, τ)

)]∣∣∣∣
p=0

= e−2πi(u+ng1(τ)z
2)

∏n
i=0 θ1(z + vi − vn+1, τ)

θ′1(0, τ)nθ1(z + (n+ 1)vn+1, τ)
.

(8.19)

The next lemma is one of the main points of this section, because this lemma identify the

orbit space of the group J (Ãn) with the Hurwitz space H1,n−1,0. This relationship is possible

due to the construction of the generating function of the Jacobi forms of type Ãn, which can be

completed to be the Landau-Ginzburg superpotential of H1,n−1,0 as follows

Lemma 8.2.5. There is local biholomorphism between the orbit space J (Ãn) and H1,n−1,0,

i.e the space of elliptic functions with 1 pole of order n, and one simple pole.
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Proof. The correspondence is realized by the map:

(8.20) [(u, v0, v1, .., vn−1, vn+1, τ)]←→ λ(v) = e−2πiu
∏n
i=0 θ1(z − vi, τ)

θn1 (v, τ)θ1(v + (n+ 1)vn+1, τ)

Note that this map is well defined and one to one. Indeed:

(1) Well defined

Note that proof that the map does not depend on the choice of the representant of

[(φ, v0, v1, .., vn−1, vn+1, τ)] is equivalent to prove that the function (8.20) is invariant

under the action of J (Ãn). Indeed

(2) An invariant

The An group acts on (8.20) by permuting its roots, thus (8.20) remais invariant under

this operation.

(3) Translation invariant

Recall that under the translation v 7→ v +m+ nτ , the Jacobi theta function transform

as [8], [33]:

(8.21) θ1(vi + µi + λiτ, τ) = (−1)λi+µie−2πi(λivi+
λ2i
2
τ)θ1(vi, τ)

Then substituting the transformation (8.21) into (8.20), we conclude that (8.20) remains

invariant.

(4) SL2(Z) invariant

Under SL2(Z) action the following function transform as

(8.22)
θ1(

vi
cτ+d ,

aτ+d
cτ+d )

θ′1(0,
aτ+d
cτ+d )

= exp(
πicv2i
cτ + d

)
θ1(vi, τ)

θ′1(0, τ)

Then substituting the transformation (8.22) into (8.20), we conclude that (8.20) remains

invariant.

(5) Injectivity

Two elliptic functions are equal if they have the same zeros and poles with multiplicity.

(6) Surjectivity

Any elliptic function can be written as rational functions of Weierstrass sigma function

up to a multiplication factor [33]. By using the formula to relate Weierstrass sigma

function and Jacobi theta function

(8.23) σ(vi, τ) =
θ1(vi, τ)

θ′1(0, τ)
exp(−2πig1(τ)v2i )
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Corollary 8.2.5.1. The functions (ϕÃn0 , ϕÃn1 , .., ϕÃnn ) obtained by the formula

λÃn = e2πiu
∏n
i=0 θ1(z − vi + vn+1, τ)

θn1 (z, τ)θ1(z + (n+ 1)vn+1)

= ϕÃnn ℘n−2(z, τ) + ϕÃnn−1℘
n−3(z, τ) + ...+ ϕÃn2 ℘(z, τ)

+ ϕÃn1 [ζ(z, τ)− ζ(z + (n+ 1)vn+1, τ) + ϕÃn0

(8.24)

are Jacobi forms of weight 0,−1,−2, ..,−n respectively, index 1, and order 0.

Proof. Let us prove each item separated.

(1) An invariant, translation invariant

The l.h.s of (8.24) are An invariant, and translation invariant by the lemma (8.2.5).

Then, by the uniqueness of Laurent expansion of λÃn , we have that ϕÃni are An

invariant, and translation invariant.

(2) SL2(Z) equivariant

The l.h.s of (8.24) are SL2(Z) invariant, but the Weierstrass functions of the r.h.s have

the following transformation law

℘(k−2)(
z

cτ + d
,
aτ + b

cτ + d
) = (cτ + d)k℘(k−2)(z, τ).(8.25)

Then, ϕÃnk must have the following transformation law

ϕÃnk (u+
c〈v, v〉Ãn
2(cτ + d)

,
v

cτ + d
,
aτ + b

cτ + d
) = (cτ + d)−kϕÃnk (u, v, τ).(8.26)

(3) Index 1

1

2πi

∂

∂u
λÃn = λÃn .(8.27)

Then

1

2πi

∂

∂u
ϕÃni = ϕÃni .(8.28)

(4) Analytic behavior

Note that λÃnθ21((n+1)vn+1, τ) is holomorphic function in all the variables vi. Therefore

ϕÃni are holomorphic functions on the variables v0, v1, .., vn−1, and meromorphic function

in the variable (n+ 1)vn+1 with poles on j
n + lτ

n , j, l = 0, .., n− 1 of order 2, i.e l = 0,

since m = 1 for all ϕÃni .
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8.3. Proof of the Chevalley theorem

At this stage, the principal theorem can be state in precise way as follows.

Theorem 8.3.1. The trigraded algebra of weak J (Ãn) -invariant Jacobi forms J
J (Ãn)
•,•,• =⊕

k,l,m J
Ãn
k,l,m is freely generated by n+ 1 fundamental Jacobi forms (ϕ0, ϕ1, , ϕ2, .., , ϕn) over the

graded ring E•,•

(8.29) J
J (Ãn)
•,•,• = E•,• [ϕ0, ϕ1, , ϕ2, .., , ϕn] ,

where

E•,• = J•,•,0 is the ring of coefficients.

More specifically, the ring of function E•,• is the space of coefficients f(vn+1, τ) such that for

fixed τ , the functions vn+1 7→ f(vn+1, τ) is an elliptic function.

Before proving this Theorem, some auxiliary lemmas will be necessary.

Lemma 8.3.2. Let {ϕÃni } be set of functions given by the formula (8.24) ,and {ϕAn+1

j } given

by (5.21) , then

ϕ
J (An+1)
n+2 = ϕÃnn ϕ

J (A1)
2 ,

ϕ
J (An+1)
n+1 = ϕ

J (Ãn)
n−1 ϕ

J (A1)
2 + ann−1ϕ

J (Ãn)
n ϕ

J (A1)
2 ,

ϕ
J (An+1)
n+2 = ϕ

J (Ãn)
n−2 ϕ

J (A1)
2 + an−1n−2ϕ

J (Ãn)
n−1 ϕ

J (A1)
2 + ann−2ϕ

J (Ãn)
n ϕ

J (A1)
2 ,

.

.

ϕ
J (An+1)
2 = ϕ

J (Ãn)
0 ϕ

J (A1)
2 +

n∑
j=1

aj0ϕ
J (Ãn)
j ϕ

J (A1)
2 ,

ϕ
J (An+1)
0 =

n∑
j=0

aj−1ϕ
J (Ãn)
j ϕ

J (A1)
2 .

(8.30)

where ϕ
J (A1)
2 is defined on (8.5) for zn+2 = (n + 1)vn+1, and aji = aji (vn+1, τ) are elliptic

functions on vn+1.

Proof. Note the following relation

λJ (An+1)

λJ (Ãn)
=
θ1(z − (n+ 1)vn+1, τ)θ1(z + (n+ 1)vn+1), τ

θ21(z, τ)
e−2πiu2

= ϕ
J (A1)
2 ℘(z, τ)− ϕJ (A1)

2 ℘((n+ 1)vn+1, τ)

142



Hence,

ϕ
J (An+1)
n+2 ℘n−2(z, τ) + ϕ

J (An+1)
n+1 ℘n−3(z, τ) + ...+ ϕ

J (An+1)
2 ℘(z, τ) + ϕ

J (An+1)
0

= (ϕ
J (Ãn)
n ℘n−2(z, τ) + ϕ

J (Ãn)
n−1 ℘n−3(z, τ) + ...+ ϕ

J (Ãn)
2 ℘(z, τ)

+ ϕ
J (Ãn)
1 [ζ(z, τ)− ζ(z + (n+ 1)vn+1, τ) + ϕ

J (Ãn)
0 )(ϕ

J (A1)
2 ℘(z, τ)− ϕJ (A1)

2 ℘((n+ 1)vn+1, τ)).

(8.31)

Then, the desired result is obtained by doing a Laurent expansion in the variable z in both side

of the equality.

As a consequence of the previous lemma, we have

Corollary 8.3.2.1. The Jacobi forms {ϕJ (Ãn)
i } are algebraically independent.

Proof. Suppose that there exist polynomial h(x0, x1, .., xn) not identically 0, such that

h(ϕ
J (Ãn)
0 , ϕ

J (Ãn)
1 , ϕ

J (Ãn)
2 , .., ϕ

J (Ãn)
n ) = 0

then, because J
J (Ãn)
•,•,• is graded ring h(x0, x1, .., xn) should be 0 in each homogeneous component

hm(x0, x1, .., xn) of index m. Let h̃m := (ϕ
J (A1)
2 )

m
hm(ϕ

J̃ (An)
0 , ϕ

J (Ãn)
1 , ϕ

J (Ãn)
2 , .., ϕ

J (Ãn)
n ).

Let us expand the functions ϕ
J (Ãn)
i in the variables vi, then h̃m vanishes iff its vanishes in each

order of this expansion.

From equations (5.19), we know that the lowest term of the taylor expansion of ϕ
J (An+1)
n+2

are the elementary symmetric polynomials. Using lemma 8.3.2, we conclude that the lowest

term of ϕ
J (Ãn)
j is the same as the lowest term of ϕ

J (An+1)
j+2 , but those terms are exactly the

elementary symmetric polynomials. But the elementary symmetric polynomials are algebraically

independent, then they can not solve any polynomial equation. Lemma proved.

Corollary 8.3.2.2.

E•,•

[
ϕ

J (Ãn)
0 , ϕ

J (Ãn)
1 , ϕ

J (Ãn)
2 , .., ϕ

J (Ãn)
n

]
= E•,•

[
ϕ

J (An+1)
0

ϕ
J (A1)
2

,
ϕ

J (An+1)
2

ϕ
J (A1)
2

, ...,
ϕ

J (An+1)
n

ϕ
J (A1)
2

]

Moreover, we have the following lemma

Lemma 8.3.3. Let ϕ ∈ JJ (Ãn)
•,•,m , then ϕ ∈ E•,•

[
ϕ

J (An+1)

0

ϕ
J (A1)
2

,
ϕ

J (An+1)

2

ϕ
J (A1)
2

, ..., ϕ
J (An+1)
n

ϕ
J (A1)
2

]
.

Proof. Let ϕ ∈ JJ (Ãn)
•,•,m , then the function ϕ

ϕ
J (An)
n

is an elliptic function on the variables

(v0, v1, .., vn−1, vn+1) with poles on vi − vn+1, (n + 1)vn+1. Expanding the function ϕ

ϕ
J (An)
n

in
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the variables v0, v1, .., vn−1 we get

ϕ

ϕ
J (An)
n

=
n−1∑
i=0

aim℘
(m−2)(vi − vn+1) +

n−1∑
i=0

aim−1℘
(m−3)(vi − vn+1) + ..

+

n−1∑
i=0

ai1ζ
(m−2)(vi − vn+1) + b(vn+1, τ)

But the function ϕ

ϕ
J (An)
n

is invariant under the permutations of the variables vi, then

ϕ

ϕ
J (An)
n

= am

n−1∑
i=0

℘(m−2)(vi − vn+1) + am−1

n−1∑
i=0

℘(m−3)(vi − vn+1) + ..

+ a1

n−1∑
i=0

ζ(m−2)(vi − vn+1) + b(vn+1, τ)

(8.32)

Now we complete this function to An+1 invariant function by summing and subtracting the

following function in e.q (8.32)

f(vn+1, τ) = am

n−1∑
i=0

℘(m−2)((n+ 1)vn+1) + am−1

n−1∑
i=0

℘(m−3)((n+ 1)vn+1) + ..

+ a1

n−1∑
i=0

ζ(m−2)((n+ 1)vn+1)

Hence,

ϕ

ϕ
J (An)
n

= am(
n−1∑
i=0

℘(m−2)(vi − vn+1) + ℘(m−2)(n+ 1)vn+1))

+ am−1

n−1∑
i=0

(℘(m−3)(vi − vn+1) + ℘(m−3)((n+ 1)vn+1)) + ..

+ a1

n−1∑
i=0

(ζ(m−2)(vi − vn+1) + ζ(m−2)((n+ 1)vn+1)) + b̃(vn+1, τ)

(8.33)

To finish the proof note the following

(1) The functions ϕ
J (An+1)
n+2 [℘(j)(vi − vn+1) + ℘(j)(n+ 1)vn+1)] are An+1 by construction,

(2) The functions ϕ
J (An+1)
n+2 [℘(j)(vi−vn+1)+℘(j)(n+1)vn+1)] are invariant under the action

of (Z⊕ τZ)2n+2, because ϕ
J (An+1)
n+2 invariant, and ℘(j)(vi − vn+1) + ℘(j)(n+ 1)vn+1)]

are elliptic functions.

(3) The functions ϕ
J (An+1)
n+2 [℘(j)(vi − vn+1) + ℘(j)(n+ 1)vn+1)] are equivariant under the

action of SL2(Z), because ϕ
J (An+1)
n+2 is equivariant, and ℘(j)(vi−vn+1)+℘(j)(n+1)vn+1)]

are elliptic functions.

(4) The function ϕ
J (An+1)
n+2 has zeros on vi − vn+1, (n+ 1)vn+1 of order m, and ℘(j)(vi −

vn+1) +℘(j)(n+ 1)vn+1)] has poles on vi− vn+1, (n+ 1)vn+1 of order j + 2 ≤ m. Then,

the functions ϕ
J (An+1)
n+2 [℘(j)(vi − vn+1) + ℘(j)(n+ 1)vn+1)] are holomorphic.
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(5) We conclude that gj := ϕ
J (An+1)
n+2 [℘(j)(vi−vn+1)+℘(j)(n+1)vn+1)] ∈ JJ (An+1)

•,• . Hence,

ϕ =

m∑
i=1

ai
gi

(ϕ
J (A1)
2 )

m + b̃(vn+1, τ)(
ϕ

J (An+1)
n+2

ϕ
J (A1)
2

)

m

∈ E•,•[
ϕ

J (An+1)
0

ϕ
J (A1)
2

,
ϕ

J (An+1)
2

ϕ
J (A1)
2

, ...,
ϕ

J (An+1)
n

ϕ
J (A1)
2

].

(8.34)

Proof.

(8.35)

J
J (Ãn)
•,•,• ⊂ E•,•

[
ϕ

J (An+1)
0

ϕ
J (A1)
2

,
ϕ

J (An+1)
2

ϕ
J (A1)
2

, ...,
ϕ

J (An+1)
n

ϕ
J (A1)
2

]
= E•,•

[
ϕ

J (Ãn)
0 , ϕ

J (Ãn)
1 , ϕ

J (Ãn)
2 , .., ϕ

J (Ãn)
n

]
⊂ JJ (Ãn)

•,•,• .

8.4. Intersection form

This section generalise the definitions and results of the section 5.3. In addition, we generalise

the formula (5.35).

Remark 8.4.1. From this point, we will use (ϕ0, ϕ1, .., ϕn) to denote the Jacobi forms of the

group J (Ãn) again, since there will not be anymore Jacobi form from others Jacobi groups.

Definition 8.4.1. Let

g =
n∑
i=0

dv2i
∣∣∑n

i=0 vi=0
− n(n+ 1)dv2n+1 + 2dudτ,

=
n−1∑
i,j=0

Aijdvidvj − n(n+ 1)dv2n+1 + 2dudτ,

=
n+1∑
i,j=0

gijdvidvj + 2dudτ.

(8.36)

where Aij is same as gij of the Coxeter case (4.5). The intersection form is given by

g∗ =

n−1∑
i,j=0

A−1ij
∂

∂vi
⊗ ∂

∂vj
− 1

n(n+ 1)

∂

∂vn+1
⊗ ∂

∂vn+1
+

∂

∂u
⊗ ∂

∂τ
+

∂

∂τ
⊗ ∂

∂u
.(8.37)

Proposition 8.4.1. The intersection form (8.36) is invariant under the first two actions of

(8.1), and behaves a modular form of weight 2 under the last action of (8.1).

Proof. The first action of (8.1) only acts on the variables vi, the intersection form is

invariant under this action because Aijdvidvj is invariant under permutation.
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Under the second action of (8.1), the differentials transform as:

dvi 7→ dvi + λidτ,

du 7→ du− 〈λ, λ〉dτ − 2

n+1∑
i=0

gijλjdvi,

dτ 7→ dτ.

(8.38)

Hence:

gijdvidvj 7→ gijdvidvj + 2gijλidvidτ + gijλiλjdτ
2,

2dudτ 7→ 2dudτ − 〈λ, λ〉d2τ − 2

n−1∑
i=0

gijλjdvidτ.
(8.39)

Then:

(8.40)

n+1∑
i,j=0

gijdvidvj + 2dudτ 7→
n+1∑
i,j=0

gijdvidvj + 2dudτ.

Let us show that the metric has conformal transformation under the third action of transforma-

tions (8.1):

dvi 7→
dvi

cτ + d
− cvidτ

(cτ + d)2
,

dτ 7→ dτ

(cτ + d)2
,

du 7→ du+
cgijvidvj
cτ + d

− c〈v, v〉dτ
2(cτ + d)2

.

(8.41)

Then:

gijdvidvj 7→
gijdvidvj
(cτ + d)2

− 2cgijvidvjdτ

(cτ + d)3
+
gijvivjdτ

2

(cτ + d)4
,

2dudτ 7→ 2dudτ

(cτ + d)2
+

2cgijvidvjdτ

(cτ + d)3
− c〈v, v〉dτ2

(cτ + d)4
.

(8.42)

Then,

(8.43)
n+1∑
i,j=0

gijdvidvj + 2dudτ 7→
∑n+1

i,j=0 gijdvidvj + 2dudτ

(cτ + d)2
.

An efficient way to compute all g∗(dϕi, dϕj) is by collecting all of them in a generating

function. Note that (dϕi, dϕj) is not a Jacobi form, and this fact makes the computation more

difficult. Hence, in order to circle around this problem, we define the following coefficients in

(8.45).

146



Lemma 8.4.2. Let ϕi ∈ JAnki,mi , then the metric given by

1

η2i+2j
g∗(dη2iϕi, dη

2jϕj)
∂

∂ϕi

(
η2i.
)
⊗ ∂

∂ϕj

(
η2j .

)
(8.44)

is invariant under the first two actions of (8.1), and behaves a modular form of weight 2 under

the last action of (8.1).

Moreover, the coeffiecients of the metric (8.44)

M (dϕi, dϕj) :=
1

η2i+2j
g∗(dη2iϕi, dη

2jϕj)

= g∗ (dϕi, dϕj)− 4πig1(τ) (kimj + kjmi)ϕiϕj ,

(8.45)

belong to JAnki+kj−2,mi+mj .

Proof. The metric (8.44) is invariant under the first two actions of (8.1) due to proposition

8.4.1, and because η do not change under this action. The equivariance with respect the SL2(Z)

follows again from proposition 8.4.1, and from the fact that the transformation laws of η get

canceled.

The equation (8.45) follows from the chain rule, from the identity

(8.46)
η′

η
(τ) = g1(τ)

Proposition 8.4.3. [8] Let Ek the space of elliptic function of weight k. The elliptic

connection Dτ : EK 7→ Ek is linear map defined by

(8.47) DτF (v, τ) = ∂τF (v, τ)− 2kg1(τ)F (v, τ)− 1

2πi

θ′1(v, τ)

θ1(v, τ)
F ′(v, τ),

where F (v, τ) ∈ Ek.

In order to compute the coefficient of M∗(dϕi, dϕj) it will be necessary to define an extended

intersection form g.

Definition 8.4.2. The extended metric g is defined by

(8.48) g̃ =
n∑
i=0

dv2i
∣∣∑n

i=0 vi=0
−n(n+ 1)dv2n+1 + 2dudτ +ndp2 + 4ng1(τ)pdpdτ + 2ng′1(τ)p2dτ2,

or alternatively,

(8.49) g̃ =
n+1∑
i=1

dz2i − dz2n+2 + 2dsdτ,
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where (s, z1, ..., zn+2, τ) is given by (8.12). The extended intersection form read as

g̃∗ =
∑
i,j

A−1ij
∂

∂vi
⊗ ∂

∂vj
− 1

n(n+ 1)

∂

∂vn+1
⊗ ∂

∂vn+1
+

1

n

∂

∂p
⊗ ∂

∂p
+

∂

∂s
⊗ ∂

∂τ
+

∂

∂τ
⊗ ∂

∂s

(8.50)

The following technical result proved by Bertola in [8] will be useful to prove the subsequent

results.

Proposition 8.4.4. [8] The following formula holds

(8.51)

(
α′′(x)

α(x)
+
α′′(y)

α(y)
− α′(x)α′(y)

α(x)α(y)

)
= −4πi

∂τα(x− y)

α(x− y)
+ 2

α′(x− y)

α(x− y)

[
α′(x)

α(x)
− α′(y)

α(y)

]
.

where α(p) is given by the second equation (8.55).

The desired generating function is a consequence of the following lemmas.

Lemma 8.4.5. Let Φ(p) be given by

(8.52) Φ(p) = e−2πiu−2πip
2ng1(τ)

n+1∏
i=1

θ1(zi, τ)

θ′1(0, τ)

θ′1(0, τ)

θ1(zn+2, τ)
,

and M̃ the extended modified intersection form

(8.53) M̃(dΦ(p), dΦ(p′)) =
1

η4n+4
g̃∗
(
d
(
η2n+2Φ(p)

)
, d
(
η2n+2Φ(p′)

))
,

then,

e2πin(p
2+p′2)M̃(dΦ(p), dΦ(p′)) =

= 2πin
∇τα(p− p′)
α(p− p′)

+
α′(p− p′)
α(p− p′)

[
P (p)

dP (p′)

dp′
− P (p′)

dP (p)

dp

]
,

(8.54)

where

∇τF (v, τ) =
1

η2k
∂
(
η2kF

)
∂τ

, F ∈ Ek,

α(p) =
θ1(p, τ)

θ′1(0, τ)
,

P (p) = e−2πiu
n+1∏
i=1

θ1(zi, τ)

θ′1(0, τ)

θ′1(0, τ)

θ1(zn+2, τ)
.

(8.55)

Proof.

e2πing1(τ)(p
2+p′2)M̃(dΦ(p), dΦ(p′))

= e2πig1(τ)n(p
2+p′2)M̃

(
d
(
e−2πing1(τ)p

2
P (p)

)
, d
(
e−2πing1(τ)p

′2
P (p′)

))(8.56)
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Note that

∂

∂p
=

n+2∑
i=1

∂

∂zi
+ 2npg1(τ)

∂

∂u
,

∂

∂vn+1
=

n+1∑
i=1

∂

∂zi
+ (n+ 1)

∂

∂zn+2
,

∂

∂τ
=

∂

∂τ̃
+ np2g′1(τ)

∂

∂u
.

Hence,

e2πing1(τ)p
2 ∂

∂p

(
e−2πing1(τ)p

2
P (p)

)
=

n+1∑
i=1

∂P (p)

∂zi
− ∂P (p)

∂zn+2
,

e2πing1(τ)p
2 ∂

∂τ

(
e−2πing1(τ)p

2
P (p)

)
=
∂P (p)

∂τ̃
.

(8.57)

Substituting (8.57) in (8.56) we get

e2πing1(τ)(p
2+p′2)M̃(dΦ(p), dΦ(p′)) =

=

n−1∑
i,j=0

A−1ij
∂P (p)

∂vi

∂P (p′)

∂vj
+

1

n

n+1∑
i=1

∂P (p)

∂zi

n+1∑
i=1

∂P (p′)

∂zi
− 1

n(n+ 1)

∂P (p)

∂vn+1

∂P (p′)

∂vn+1

− 1

n

∂P (p)

∂zn+2

n+1∑
i=1

∂P (p′)

∂zi
− 1

n

∂P (p′)

∂zn+2

n+1∑
i=1

∂P (p)

∂zi
+

1

n

∂P (p)

∂zn+2

∂P (p′)

∂zn+2

− 2πiP (p)∇τP (p′)− 2πiP (p′)∇τP (p)

=
n+1∑
i=1

∂P (p)

∂zi

∂P (p′)

∂zi
− 2πiP (p)∇τP (p′)− 2πiP (p′)∇τP (p).

(8.58)

Using the following identity in (8.58)

n−1∑
i,j=0

A−1ij
∂P (p)

∂vi

∂P (p′)

∂vj
+

1

n

n+1∑
i=1

∂P (p)

∂zi

n+1∑
i=1

∂P (p′)

∂zi

=

n+1∑
i=1

∂P (p)

∂zi

∂P (p′)

∂zi
+

1

n(n+ 1)

n+1∑
i=1

∂P (p)

∂zi

n+1∑
i=1

∂P (p′)

∂zi
,

(8.59)

we get

e2πing1(τ)(p
2+p′2)M̃(dΦ(p), dΦ(p′)) =

=
n+1∑
i=1

∂P (p)

∂zi

∂P (p′)

∂zi
− ∂P (p)

∂zn+2

∂P (p′)

∂zn+2
− 2πiP (p)∇τP (p′)− 2πiP (p′)∇τP (p),

(8.60)
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we now compute

n+1∑
i=1

∂P (p)

∂zi

∂P (p′)

∂zi
− 2πiP (p)∇τP (p′)− 2πiP (p′)∇τP (p) =

=
n+1∑
i=1

∂P (p)

∂zi

∂P (p′)

∂zi
− 2πi

η2n

[
P (p)

∂
(
η2nP (p′)

)
∂τ

+ P (p′)
∂
(
η2nP (p)

)
∂τ

]

= −1

2

(
n+1∑
i=1

α′′(zi)

α(zi)
+
α′′(wi)

α(wi)
− 2

α′(zi)α
′(wi)

α(zi)α(wi)

)
P (p)P (p′) + 4πig1nP (p)P (p′)

+
1

2

(
α′′(zn+2)

α(zn+2)
+
α′′(wn+2)

α(wn+2)
− 2

α′(zn+2)α
′(wn+2)

α(zn+2)α(wn+2)

)
P (p)P (p′),

(8.61)

where zi := zi(vi, p), wi := zi(vi, p
′). Substituting (8.51) in (8.61)

= −1

2

n+1∑
i=1

(
α′′(zi)

α(zi)
+
α′′(wi)

α(wi)
− 2

α′(zi)α
′(wi)

α(zi)α(wi)

)
P (p)P (p′) + 4πig1nP (p)P (p′)

+
1

2

(
α′′(zn+2)

α(zn+2)
+
α′′(wn+2)

α(wn+2)
− 2

α′(zn+2)α
′(wn+2)

α(zn+2)α(wn+2)

)
P (p)P (p′)

= 2πin
∇τα(p− p′)
α(p− p′)

+
α′(p− p′)
α(p− p′)

[
P (p)

dP (p′)

dp′
− P (p′)

dP (p)

dp

]
.

(8.62)

Lemma 8.4.6. For the coefficients M̃ of intersection form, we have the following formula∑
k,j

Ck(p)Cj(p
′)M̃(dϕk, dϕj) =

= 2πin
∇τα(p− p′)
α(p− p′)

λ(p)λ(p′) +
α′(p− p′)
α(p− p′)

[
P (p)

dP (p′)

dp′
− P (p′)

dP (p)

dp

]
−
∑
k,j

M̃
(
dCk(p), dCj(p

′)
)
ϕn+1−kϕn+1−j

(8.63)

where Ck(p) is given by

Ck(p) =
(−1)k

(k − 1)!
αn(p)℘(k−2)(p),

℘−1(p) = ζ(p)− ζ(p+ (n+ 1)vn+1) + (n+ 1)ζ(vn+1),

℘−2(p) = 1,

(8.64)

and

M̃
(
dCk(p), dCj(p

′)
)

:=− 2πi
(
Ck(p)∇τCj(p′) + Cj(p

′)∇τCk(p)
)

+
1

n

∂Ck(p)

∂p

∂Cj(p
′)

∂p′

− 1

n(n+ 1)

∂Ck(p)

∂vn+1

∂Cj(p
′)

∂vn+1
+

n∑
k,j=0

Ck(p)Cj(p
′)
∂ϕj
∂vn+1

∂ϕk
∂vn+1

.

(8.65)
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Proof. Note that P (p) =
∑n+1

k=0 Ck(p)ϕk, then

e2πin(p
2+p′2)M̃(dΦ(p), dΦ(p′)) =

=
∑
j,k

M̃
(
d (Ck(p)ϕk) , d

(
Cj(p

′)ϕj
))

=
∑
j,k

Ck(p)Cj(p
′)M̃ (dϕk, dϕj) +

∑
j,k

Cj(p
′)ϕkM̃ (dCk(p), dϕj)

+
∑
j,k

Ck(p)ϕjM̃
(
dϕk, dCj(p

′)
)

+
∑
j,k

ϕkϕjM̃
(
dCk(p), dCj(p

′)
)

=
∑
j,k

Ck(p)Cj(p
′)M̃ (dϕk, dϕj)− 2πi

∑
j,k

Cj(p
′)ϕkϕj∇τCk(p)

− 2πi
∑
j,k

Ck(p)ϕjϕk∇τCj(p′) +
1

n

∑
j,k

ϕkϕj
∂Ck(p)

∂p

∂Cj(p
′)

∂p′

− 1

n(n+ 1)

∑
j,k

ϕkϕj
∂Ck(p)

∂vn+1

∂Cj(p
′)

∂vn+1
− 1

n(n+ 1)

∑
j,k

Ck(p)ϕj
∂ϕk
∂vn+1

∂Cj(p
′)

∂vn+1

− 1

n(n+ 1)

∑
j,k

Cj(p
′)ϕk

∂ϕj
∂vn+1

∂Ck(p)

∂vn+1
.

(8.66)

Then, isolating
∑

k,j Ck(p)Cj(p
′)M̃(dϕk, dϕj)∑

k,j

Ck(p)Cj(p
′)M̃(dϕk, dϕj) =

= 2πin
∇τα(p− p′)
α(p− p′)

λ(p)λ(p′) +
α′(p− p′)
α(p− p′)

[
P (p)

dP (p′)

dp′
− P (p′)

dP (p)

dp

]
−
∑
k,j

M̃
(
dCk(p), dCj(p

′)
)
ϕn+1−kϕn+1−j .

(8.67)

Theorem 8.4.7. The coefficient of M∗(dϕi, dϕj) is recovered by the generating formula

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
M∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πi(λ(v′)Dτλ(v) + λ(v)Dτλ(v′))− 1

n+ 1

dλ(v)

dv

dλ(v′)

dv′

+
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[λ(v)

dλ(v′)

dv′
− dλ(v)

dv
λ(v′)]− 1

n
λ′(p)λ′(p′)

− 1

n(n+ 1)

∂λ(p)

∂vn+1

∂λ(p′)

∂vn+1
+

1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
℘(v)(k−2)℘(v′)(j−2)

∂ϕj
∂vn+1

∂ϕk
∂vn+1

.

(8.68)
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Proof. We start by dividing the expression (8.67) by αn(p)αn(p′)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
M∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πin
∇τα(p− p′)
α(p− p′)

λ(p)λ(p′) +
α′(p− p′)
α(p− p′)

[
λ(p)

dP (p′)

dp′
1

αn(p′)
− λ(p′)

dP (p)

dp

1

αn(p)

]
−
∑
k,j

M̃ (dCk(p), dCj(p
′))

αn(p)αn(p′)
ϕn+1−kϕn+1−j

= (1)− (2).

(8.69)

Computing separately

(1) := 2πin
∇τα(p− p′)
α(p− p′)

λ(p)λ(p′) +
α′(p− p′)
α(p− p′)

[
λ(p)

dP (p′)

dp′
1

αn(p′)
− λ(p′)

dP (p)

dp

1

αn(p)

]
=

= n

(
2πi
∇τα(p− p′)
α(p− p′)

− α′(p− p′)
α(p− p′)

[
α′(p)

α(p)
− α′(p′)

α(p′)

])
λ(p)λ(p′)

+
α′(p− p′)
α(p− p′)

[
λ(p)

dλ(p′)

dp′
− λ(p′)

dλ(p)

dp

]
.

(8.70)
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and

(2) :=
∑
k,j

M̃ (dCk(p), dCj(p
′))

αn(p)αn(p′)
ϕn+1−kϕn+1−j =

= −2πi
(
λ(p)∇τλ(p′) + λ(p′)∇τλ(p)

)
− 2πin

[
4g1 +

∂τα(p)

α(p)
+
∂τα(p)

α(p)

]
λ(p)λ(p′)

+
1

n

[
∂λ(p)

∂p
+ n

α′(p)

α(p)
λ(p)

] [
∂λ(p′)

∂p′
+ n

α′(p′)

α(p′)
λ(p′)

]
− 1

n(n+ 1)

∂λ(p)

∂vn+1

∂λ(p′)

∂vn+1
+

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
℘(v)(k−2)℘(v′)(j−2)

∂ϕj
∂vn+1

∂ϕk
∂vn+1

= −2πi
(
λ(p)∇τλ(p′) + λ(p′)∇τλ(p)

)
− n

[
8πig1 + 2πi

(
∂τα(p)

α(p)
+
∂τα(p)

α(p)

)
− α′(p)α′(p′)

α(p)α(p′)

]
λ(p)λ(p′)

+
1

n

∂λ(p)

∂p

∂λ(p′)

∂p′
+
α′(p)

α(p)
λ(p)

∂λ(p′)

∂p′
+
α′(p′)

α(p′)
λ(p′)

∂λ(p′)

∂p′

− 1

n(n+ 1)

∂λ(p)

∂vn+1

∂λ(p′)

∂vn+1
+

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
℘(v)(k−2)℘(v′)(j−2)

∂ϕj
∂vn+1

∂ϕk
∂vn+1

= −2πi
(
λ(p)Dτλ(p′) + λ(p′)Dτλ(p)

)
− n

[
8πig1 + 2πi

(
∂τα(p)

α(p)
+
∂τα(p)

α(p)

)
− α′(p)α′(p′)

α(p)α(p′)

]
λ(p)λ(p′)

+
1

n

∂λ(p)

∂p

∂λ(p′)

∂p′
+

(
α′(p)

α(p)
− α′(p′)

α(p′)

)[
λ(p)

dλ(p′)

dp′
− λ(p′)

dλ(p)

dp

]
− 1

n(n+ 1)

∂λ(p)

∂vn+1

∂λ(p′)

∂vn+1
+

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
℘(v)(k−2)℘(v′)(j−2)

∂ϕj
∂vn+1

∂ϕk
∂vn+1

.

(8.71)

Computing (1)-(2), and using equation (8.51), we obtain

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
M∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πi(λ(v′)Dτλ(v) + λ(v)Dτλ(v′))− 1

n+ 1

dλ(v)

dv

dλ(v′)

dv′

+
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[λ(v)

dλ(v′)

dv′
− dλ(v)

dv
λ(v′)]− 1

n
λ′(p)λ′(p′)

1

n(n+ 1)

∂λ(p)

∂vn+1

∂λ(p′)

∂vn+1
− 1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
℘(v)(k−2)℘(v′)(j−2)

∂ϕj
∂vn+1

∂ϕk
∂vn+1

.

(8.72)
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Corollary 8.4.7.1. Let η̃∗(dϕi, dϕj) and η∗(dϕi, dϕj) be given by

η̃∗(dϕi, dϕj) :=
∂M∗(dϕi, dϕj)

∂ϕ0
,

η∗(dϕi, dϕj) :=
∂g∗(dϕi, dϕj)

∂ϕ0
.

(8.73)

The coefficient of η̃∗(dϕi, dϕj) is recovered by the generating formula

n+1∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!
η̃∗(dϕi, dϕj)℘(v)(k−2)℘(v′)(j−2) =

= 2πi(Dτλ(v) +Dτλ(v′)) +
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[
dλ(v′)

dv′
− dλ(v)

dv
]

− 1

n(n+ 1)

∂

∂ϕ0

(
∂λ(p)

∂vn+1

)
∂λ(p′)

∂vn+1
− 1

n(n+ 1)

∂λ(p)

∂vn+1

∂

∂ϕ0

(
∂λ(p′)

∂vn+1

)
+

1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂

∂ϕ0

(
∂ϕj
∂vn+1

)
∂ϕk
∂vn+1

+
1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂ϕj
∂vn+1

∂

∂ϕ0

(
∂ϕk
∂vn+1

)

(8.74)

Moreover,

η̃∗(dϕi, dϕj) = η∗(dϕi, dϕj), i, j 6= 0,

η̃∗(dϕ0, dϕj) = η∗(dϕi, dϕj) + 4πikjϕj .
(8.75)

Proof. Just differentiate equation (8.68) with respect ϕ0, and use the equation (8.24).

Corollary 8.4.7.2. The metric η̃∗ and η∗ defined in (8.73)is invariant under the second

action of (8.1), furthermore, behave as modular form of weight 2 under the last action of (8.1).

Proof. The metric η̃∗ and η∗ are given by

η̃∗ = Lie ∂
∂ϕ0

M

η∗ = Lie ∂
∂ϕ0

g∗
(8.76)

The fact that ∂
∂ϕ0

, g∗,M∗ is invariant under the second action of (8.1),furthermore, behave as

modular form of weight 2 under the last action of (8.1) give the desired result.

8.5. The second metric of the pencil

In the (8.73), it was defined the second metric η, furthermore, it was derived a generating

function for it. The main goal of this section is to extract the coefficients η(dϕi, dϕj) from its

generating function. In order to do this extraction, some auxiliaries lemmas are needed.
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Lemma 8.5.1. Let ϕ1, ϕn be defined on (8.24), then

ϕ1 = e2πiu
∏n
i=0 θ1(vi + nvn+1)

θn1 ((n+ 1)vn+1)θ′1(0)
,

ϕn = e2πiu
∏n
i=0 θ1(−vi + vn+1)

θ1(−(n+ 1)vn+1)θ′1(0)n
.

(8.77)

Proof.

ϕ1 = lim
p 7→−(n+1)vn+1

(p+ (n+ 1)vn+1)λ(p) = −e2πiu
∏n
i=0 θ

n
1 (−vi − nvn+1)

θn1 (−(n+ 1)vn+1)θ′1(0)
= e2πiu

∏n
i=0 θ1(vi + nvn+1)

θn1 ((n+ 1)vn+1)θ′1(0)
,

ϕn = lim
p 7→0

pnλ(p) = e2πiu
∏n
i=0 θ1(−vi + vn+1)

θ1(−(n+ 1)vn+1)θ′1(0)n
.

Lemma 8.5.2. Let ϕ0, ϕ1, ϕ2, .., ϕn be defined on (8.24), then

∂

∂ϕ0

(
∂ϕi
∂vn+1

)
= 0, i > 1,

∂

∂ϕ0

(
∂ϕ1

∂vn+1

)
= n,

∂

∂ϕ0

(
∂ϕ0

∂vn+1

)
= −nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
.

(8.78)

Proof. Computing ∂ϕn
∂vn+1

by using the first equation of (8.77)

(8.79)
∂ϕn
∂vn+1

=

(
n∑
i=0

θ′1(−vi + vn+1)

θ1(−vi + vn+1)
− (n+ 1)

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

)
ϕn.

Recall the recursive relation between {ϕi} in (8.17)

(8.80) ϕi =
∂(n−i)ϕn(p)

∂pn−i

∣∣∣∣∣
p=0

.

In particular,

(8.81) ϕn−1 =
∂ϕn(p)

∂p

∣∣∣∣
p=0

=

(
n∑
i=0

θ′1(−vi + vn+1)

θ1(−vi + vn+1)
− θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

)
ϕn,

Then,

(8.82)
∂ϕn
∂vn+1

= ϕn−1 − n
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕn,

consequently

∂

∂ϕ0

(
∂ϕn
∂vn+1

)
= 0.

Suppose that for i > 1, we have

(8.83) ϕi = f(−v0 + vn+1,−v1 + vn+1, .., (n+ 1)vn+1, τ)ϕn,
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where f(−v0 + vn+1,−v1 + vn+1, .., (n + 1)vn+1, τ) is an elliptic function on the variables

v0, v1, .., vn+1 with zeros on −vi + vn+1 and poles on (n+ 1)vn+1. Consider the extended ϕi(p)

as

ϕi(p) = f(p− v0 + vn+1, p− v1 + vn+1, .., p+ (n+ 1)vn+1, τ)ϕn.

The action of the vector fields ∂
∂p and ∂

∂vn+1
in ϕi(p) and ϕi are given by

∂ϕi(p)

∂p

∣∣∣∣
p=0

=
∂f

∂p

∣∣∣∣
p=0

ϕn + f
∂ϕn(p)

∂p

∣∣∣∣
p=0

,

∂ϕi
∂vn+1

=
∂f

∂vn+1
ϕn + f

∂ϕn
∂vn+1

.

Note that

∂f

∂p

∣∣∣∣
p=0

− ∂f

∂vn+1
= b(vn+1, τ),

where b((n + 1)vn+1, τ) is an elliptic function on (n + 1)vn+1, because ∂f
∂p

∣∣∣
p=0

and ∂f
∂vn+1

are

elliptic functions with the same Laurent tail in the variables −vi + vn+1. Hence, using equation

(8.80)

∂ϕi
∂vn+1

=
∂ϕi(p)

∂p

∣∣∣∣
p=0

+ h(vn+1, τ)ϕn,

= ϕi−1 + h(vn+1, τ)ϕn.

Then,

∂

∂ϕ0

(
∂ϕi
∂vn+1

)
= 0, i > 1,

Computing ϕ0

ϕ0 =
∂ϕ1

∂p

∣∣∣∣
p=0

=

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]
ϕ1.

Computing ∂ϕ1

∂vn+1
in terms of ϕ0

∂ϕ1

∂vn+1
=

[
n∑
i=0

n
θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− n(n+ 1)

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]
ϕ1

= nϕ0 − n
θ1((n+ 1)vn+1

θ′1((n+ 1)vn+1
ϕ1.

(8.84)

Then,

(8.85)
∂

∂ϕ0

(
∂ϕ1

∂vn+1

)
= n.
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Computing ∂
∂ϕ0

(
∂ϕ0

∂vn+1

)
∂ϕ0

∂vn+1
=

[
n

n∑
i=0

∂2 log θ1(vi + nvn+1)

∂v2n+1

− n(n+ 1)
∂2 log θ1((n+ 1)vn+1)

∂v2n+1

]
ϕ1

+

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]
∂ϕ1

∂vn+1

=

[
n

n∑
i=0

∂2 log θ1(vi + nvn+1)

∂v2n+1

− n(n+ 1)
∂2 log θ1((n+ 1)vn+1)

∂v2n+1

]
ϕ1

+

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

][
−nϕ0 − n

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕ1

]

=

[
n

n∑
i=0

∂2 log θ1(vi + nvn+1)

∂v2n+1

− n(n+ 1)
∂2 log θ1((n+ 1)vn+1)

∂v2n+1

]
ϕ1

− n

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]2
ϕ1 − n

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕ0

= −∂
2 log θ1((n+ 1)vn+1)

∂v2n+1

ϕ1 − n
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕ0 + naϕ1.

(8.86)

where a is defined by

a =
n∑
i=0

∂2 log θ1(vi + nvn+1)

∂v2n+1

− ∂2 log θ1((n+ 1)vn+1)

∂v2n+1

−

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]2
.

(8.87)

Note that naϕ1 can not be proportional to bϕ0, for any b = b(vn+1, τ) elliptic function in the

variable vn+1. Indeed, if

naϕ1 = b

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]
ϕ1,

we obtain,

na = b

[
n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
− nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

]
.(8.88)

Analysing the Laurent tail in vi + nvn+1 of (8.87)

a = −2
∑
i≤j

θ′1(vi + nvn+1)

θ1(vi + nvn+1)

θ′1(vj + nvn+1)

θ1(vj + nvn+1)
+ 2

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

n∑
i=0

θ′1(vi + nvn+1)

θ1(vi + nvn+1)
+ regular terms,

(8.89)

then, the first term of the equation (8.89) implies that the left-hand side and right hand side of

the equation (8.88) have a different Laurent tail which is an absurd. Hence,

∂

∂ϕ0

(
∂ϕ0

∂vn+1

)
= −nθ

′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
.
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Corollary 8.5.2.1. Let ϕ0, ϕ1, ϕ2, .., ϕn be defined on (8.24) and the metric η∗ defined in

(8.73), then

η∗(dϕi, dvn+1) = 0, i > 1,

η∗(dϕ1, dvn+1) = − 1

n+ 1
,

η∗(dϕ0, dvn+1) = − 1

n+ 1

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
.

(8.90)

Proof.

η∗(dϕi, dvn+1) =
∂

∂ϕ0

(
∂ϕi
∂vn+1

)
= 0, i > 1,

η∗(dϕ1, dvn+1) = − 1

n(n+ 1)

∂

∂ϕ0

(
∂ϕ1

∂vn+1

)
= − 1

n+ 1
,

η∗(dϕ0, dvn+1) = − 1

n(n+ 1)

∂

∂ϕ0

(
∂ϕ0

∂vn+1

)
= − 1

n+ 1

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
.

Lemma 8.5.3. Let ϕ0, ϕ1, ϕ2, .., ϕn be defined on (8.24) and the metric η∗ defined in (8.73),

then

η∗(dϕi, dτ) = 0, i 6= 0,

η∗(dϕ0, dτ) = −2πi.
(8.91)

Proof.

η∗(dϕi, dτ) = −2πi
∂ϕi
∂ϕ0

= δi0.

Theorem 8.5.4. Let η∗(dϕi, dϕj) be defined in (8.73), then its coefficients can be obtained

by the formula

η̃∗(dϕi, dϕj) = (i+ j − 2)ϕi+j−2, i, j 6= 0

η̃∗(dϕi, dϕ0) = 0, i 6= 0, i 6= 1,

η̃∗(dϕ1, dϕj) = 0. j 6= 0,

η̃∗(dϕ1, dϕ0) = ℘((n+ 1)vn+1)ϕ1.

(8.92)
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Proof. We start by dividing the right hand side of the expression (8.74) in two parts:

(a) := 2πi(Dτλ(v) +Dτλ(v′)) +
1

2

℘′(v) + ℘′(v′)

℘(v)− ℘(v′)
[
dλ(v′)

dv′
− dλ(v)

dv
],

(b) :=
1

n(n+ 1)

∂

∂ϕ0

(
∂λ(p)

∂vn+1

)
∂λ(p′)

∂vn+1
+

1

n(n+ 1)

∂λ(p)

∂vn+1

∂

∂ϕ0

(
∂λ(p′)

∂vn+1

)
− 1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂

∂ϕ0

(
∂ϕj
∂vn+1

)
∂ϕk
∂vn+1

− 1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂ϕj
∂vn+1

∂

∂ϕ0

(
∂ϕk
∂vn+1

)
.

(8.93)

Consider the equation (8.24) written in a concise way as follows

(8.94) λ(v) =

n∑
k=0

(−1)k

(k − 1)!
ϕk℘

k−2(v).

Substituting (8.94) in the first equation of (8.93)

(a) =
n∑
k=0

(−1)k

(k − 1)!
ϕk

[
2πi

(
Dτ℘

n−1−k(v) +Dτ℘
n−1−k(v′)

)]
+

n∑
k=0

(−1)k

(k − 1)!
ϕk

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘n−k(v′)− ℘n−k(v′)

)]
.

(8.95)

Dividing the expression once more

(a)1 =

n∑
k=2

(−1)k

(k − 1)!
ϕk

[
2πi

(
Dτ℘

n−1−k(v) +Dτ℘
n−1−k(v′)

)]
+

n∑
k=2

(−1)k

(k − 1)!
ϕk

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘n−k(v′)− ℘n−k(v′)

)]
,

(a)2 := ϕ1

[
2πi

(
Dτ℘

−1(v) +Dτ℘
−1(v′)

)]
+ ϕ1

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘−1(v′)− ℘−1(v′)

)]
.

(8.96)

Expanding the left-hand side of (8.74), we get

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂M∗(dϕi, dϕj)

∂ϕ0
℘(v)(k−2)℘(v′)(j−2)

=

n∑
k,j=0

∂M∗(dϕi, dϕj)

∂ϕ0

1

vk(v′)j
+ Other terms,

(8.97)

where ”Other terms” in the equation (8.97) means positive powers of either v or v′. For

convenience, define

(1) : = 2πi
(
Dτ℘

(k−2)(v) +Dτ℘
(j−2)(v′)

)
+
(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘(j−1)(v′)− ℘(k−1)(v)

)(8.98)
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In order to better to compute (8.98), consider the analytical behaviour of the term

(8.99) Dτ℘
k−2(v) = ∂τ℘

k−2(v)− 2(k − 2)g1(τ)℘k−2(v)− 1

2πi

θ′1(v, τ)

θ1(v, τ)
℘k−1(v).

The term ∂τ℘
k−2(v) in (8.99 ) is holomorphic, therefore, it does not contribute for the Laurent

tail. The term

(8.100) 2(k − 2)g1(τ)℘k−2(v)

also does not contribute, because the full expression (8.99) behaves as modular form under the

SL2(Z), but (8.100) is clear a quasi-modular form, since it contains g1(τ). Hence, (8.100) is

canceled with the Laurent tail of

(8.101)
1

2πi

θ′1(v, τ)

θ1(v, τ)
℘k−1(v).

To sum up, the analytical behaviour avior of (8.99 ) is essentially given by (8.101), under this

consideration, and by using the equation

ζ(v, τ) =
θ′1(v, τ)

θ1(v, τ)
− 4πig1(τ)v

=
1

v
+O(v3),

(8.102)

the equation (8.98) became

(1) = −ζ(v)℘k−1(v)− ζ(v′)℘k−1(v′)

+
(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘k−1(v′)− ℘k−1(v)

)
+ Other terms

= ζ(v − v′)
(
℘k−1(v′)− ℘k−1(v′)

)
− ζ(v)℘k−1(v′)− ζ(v′)℘k−1(v) + Other terms

=
1

v − v′

(
(−1)kk!

v′k+1
− (−1)kk!

vk+1

)
− 1

v

(−1)kk!

v′k+1
− 1

v′
(−1)kk!

vk+1
+ Other terms

= (−1)kk!

(
1

v − v′
vk+1 − v′k+1

(v′v)k+1

)
− 1

v

(−1)kk!

v′k+1
− 1

v′
(−1)kk!

vk+1
+ Other terms

= (−1)kk!

 k∑
j=0

vk−jv′j

(v′v)k+1

− 1

v

(−1)kk!

v′k+1
− 1

v′
(−1)kk!

vk+1
+ Other terms

= (−1)kk!

 k∑
j=0

1

v1+jv′k+1−j

− 1

v

(−1)kk!

v′k+1
− 1

v′
(−1)kk!

vk+1
+ Other terms

= (−1)kk!

 k∑
j=1

1

v1+jv′k+1−j

+ Other terms

= (−1)kk!

k+1∑
j=2

1

vjv′k+2−j

+ Other terms.

(8.103)
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Substituting (8.103) in right-hand side of (8.95)

n∑
k=0

(−1)k

(k − 1)!
ϕk

[
2πi

(
Dτ℘

k−2(v) +Dτ℘
k−1(v′)

)]
+

n∑
k=0

(−1)k

(k − 1)!
ϕk

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘k−1(v′)− ℘k−1(v′)

)]

=

n∑
k=0

k+1∑
j=2

(k)ϕk

vjv′k+2−j + Other terms

=
n∑
k=0

n+1∑
j=2

(k + j)ϕk+j

vjv′k+2
+ Other terms

=
n+2∑
k=2

n+1∑
j=2

(k + j − 2)ϕk+j−2

vjv′k
+ Other terms.

(8.104)

Computing the second expression of (8.96)

(a)2 := ϕ1

[
2πi

(
Dτ℘

−1(v) +Dτ℘
−1(v′)

)]
+ ϕ1

[(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
℘−1

′
(v′)− ℘−1′(v)

)]
= ϕ1

[
ζ(v) (−℘(v) + ℘(v + (n+ 1)vn+1)) + ζ(v′)

(
−℘(v′) + ℘(v′ + (n+ 1)vn+1)

)]
+ ϕ1

(
ζ(v − v′) + ζ(v′)− ζ(v)

)
(℘(v)− ℘(v + (n+ 1)vn+1))

+ ϕ1

(
ζ(v − v′) + ζ(v′)− ζ(v)

) (
−℘(v′) + ℘(v′ + (n+ 1)vn+1)

)
+ Other terms

= ϕ1ζ(v − v′)
(
℘(v)− ℘(v + (n+ 1)vn+1)− ℘(v′) + ℘(v′ + (n+ 1)vn+1)

)
+ ϕ1

[
ζ(v)

(
−℘(v′) + ℘(v′ + (n+ 1)vn+1)

)
+ ζ(v′) (−℘(v) + ℘(v + (n+ 1)vn+1))

]
+ Other terms

= ϕ1ζ(v − v′)
(
−℘(v + (n+ 1)vn+1) + ℘(v′ + (n+ 1)vn+1)

)
+ ϕ1

[
ζ(v)℘(v′ + (n+ 1)vn+1) + ζ(v′)℘(v + (n+ 1)vn+1)

]
+ (̃a)2 + Other terms,

(8.105)

where (̃a)2 are terms that were already computed in (8.104). To compute the second expression

in (8.93), consider

∂λ(v)

∂vn+1
=

n∑
k=0

(−1)k

(k − 1)!

∂ϕk
∂vn+1

℘(k−2)(v) + (n+ 1)ϕ1 [℘(v + (n+ 1)vn+1)− ℘((n+ 1)vn+1)] ,

(8.106)
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and

∂

∂ϕ0

(
∂λ(v)

∂vn+1

)
=

∂

∂ϕ0

(
∂ϕ1

∂vn+1

)
[ζ(v)− ζ(v + (n+ 1)vn+1) + ζ((n+ 1)vn+1)] +

∂

∂ϕ0

(
∂ϕ0

∂vn+1

)
= n [ζ(v)− ζ(v + (n+ 1)vn+1) + ζ((n+ 1)vn+1)]− n

θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)

= n [ζ(v)− ζ(v + (n+ 1)vn+1)] .

(8.107)

Substituting (8.106) and (8.107) in the the second expression in (8.93)

(b) :=
1

n(n+ 1)

∂

∂ϕ0

(
∂λ(p)

∂vn+1

)
∂λ(p′)

∂vn+1
+

1

n(n+ 1)

∂λ(p)

∂vn+1

∂

∂ϕ0

(
∂λ(p′)

∂vn+1

)
− 1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂

∂ϕ0

(
∂ϕj
∂vn+1

)
∂ϕk
∂vn+1

− 1

n(n+ 1)

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂ϕj
∂vn+1

∂

∂ϕ0

(
∂ϕk
∂vn+1

)
= ϕ1

[
ζ(v′)− ζ(v′ + (n+ 1)vn+1)

]
[℘(v + (n+ 1)vn+1)− ℘((n+ 1)vn+1)]

+ ϕ1 [ζ(v)− ζ(v + (n+ 1)vn+1)]
[
℘(v′ + (n+ 1)vn+1)− ℘((n+ 1)vn+1)

]
.

(8.108)

Subtracting (8.105) and (8.108)

(a)2 − (b) = −ϕ1

[
ζ(v′)− ζ(v′ + (n+ 1)vn+1)

]
[℘(v + (n+ 1)vn+1)− ℘((n+ 1)vn+1)]

− ϕ1 [ζ(v)− ζ(v + (n+ 1)vn+1)]
[
℘(v′ + (n+ 1)vn+1)− ℘((n+ 1)vn+1)

]
+ ϕ1ζ(v − v′)

(
−℘(v + (n+ 1)vn+1) + ℘(v′ + (n+ 1)vn+1)

)
+ ϕ1

[
ζ(v)℘(v′ + (n+ 1)vn+1) + ζ(v′)℘(v + (n+ 1)vn+1)

]
+ (̃a)2 + Other terms

= ϕ1℘((n+ 1)vn+1)
[
ζ(v′)− ζ(v′ + (n+ 1)vn+1)

]
+ ϕ1℘((n+ 1)vn+1) [ζ(v)− ζ(v + (n+ 1)vn+1)]

+ ϕ1

[
ζ(v − v′)

] (
℘(v + (n+ 1)vn+1) + ℘(v′ + (n+ 1)vn+1)

)
+ ϕ1

[
ζ(v′ + (n+ 1)vn+1)

]
(℘(v + (n+ 1)vn+1))

+ ϕ1 [ζ(v + (n+ 1)vn+1)]
(
℘(v′ + (n+ 1)vn+1)

)
+ (̃a)2 + Other terms

= ϕ1℘((n+ 1)vn+1)
[
ζ(v′)− ζ(v′ + (n+ 1)vn+1)

]
+ ϕ1℘((n+ 1)vn+1) [ζ(v)− ζ(v + (n+ 1)vn+1)]

+ (̃a)2 + Other terms.

(8.109)
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Summing (8.109) and (8.104), we have

n∑
k,j=0

(−1)k+j

(k − 1)!(j − 1)!

∂M∗(dϕi, dϕj)

∂ϕ0
℘(v)(k−2)℘(v′)(j−2)

=

n∑
k,j=0

∂M∗(dϕi, dϕj)

∂ϕ0

1

vk(v′)j
+ Other terms,

=
n+2∑
k=2

n+1∑
j=2

(k + j − 2)ϕk+j−2

vjv′k

+ ϕ1℘((n+ 1)vn+1)
[
ζ(v′)− ζ(v′ + (n+ 1)vn+1)

]
+ ϕ1℘((n+ 1)vn+1) [ζ(v)− ζ(v + (n+ 1)vn+1)]

+ Other terms.

Hence, we get the desired result.

Corollary 8.5.4.1. Let η∗(dϕi, dϕj) be defined in (8.73), then its coefficients can be

obtained by the formula

η∗(dϕi, dϕj) = (i+ j − 2)ϕi+j−2, i, j 6= 0

η∗(dϕi, dϕ0) = 0, i 6= 0, i 6= 1,

η∗(dϕ1, dϕj) = 0. j 6= 0,

η∗(dϕ1, dϕ0) =
∂2 log(θ1(n+ 1)vn+1)

∂v2n+1

ϕ1.

(8.110)

8.6. Flat coordinates of η

This section is dedicated to construct the flat coordinates of η and its relationship with the

invariant coordinates ϕ0, ϕ1, .., ϕn, vn+1, τ . Our strategy will be an adaptation of the work done

in [28]. See section 4.6 for the summary of this approach, and section 5.5 to see this techniques

applied in ordinary Jacobi group. The flatness of the Saito metric η is proved in the Theorem

8.6.12.

Let t1, t2, .., tn be given by the following generating function

v(z) =
−1

n

(
tnz + tn−1z2 + .....+ t2zn−1 + t1zn +O(zn+1)

)
,(8.111)

be defined by the following condition

λ(v) =
1

zn
.

Moreover,

(8.112) t0 = ϕ0 −
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕ1 + 4πig1(τ)ϕ2.
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Lemma 8.6.1. The following identity holds

(8.113)
n

n+ 1− α
res
p=∞

(
λ
n+1−α

n (p)dp
)

= − res
λ=∞

(
v(z)λ

1−α
n dλ

)
Proof. Consider the integration by parts

n

n+ 1− α

∫ (
λ
n+1−α

n (p)dp
)

= pλ
n+1−α

n −
∫
pλ

1−α
n dλ(8.114)

Lemma proved.

Lemma 8.6.2. The functions t1, t2, .., tn defined in (8.111) can be obtained by the formula

tα = − res
λ=∞

(
v(z)λ

1−α
n dλ

)
.(8.115)

Proof. Let

z =

(
1

λ

) 1
n

,

then,

v(z)λ
1−α
n dλ =

(
1

n

)(
tnz + tn−1z2 + .....+ t2zn−1 + t1zn +O(zn+1)

)
zα−1nz−n−1dz

=

 n∑
β=1

tβzn+1−β +O(zn+1)

 zα−n−2dz

=

 n∑
β=1

tβzα−β−1 +O(zα−1)

 dz.

Hence, the residue is different from 0, when α = β, resulting in this way the desired result.

Corollary 8.6.2.1. The coordinate tn can be written in terms of the coordinates ϕ0, ϕ1, ϕ2, .., ϕn+1

as

(8.116) tn = n (ϕn)
1
n .

Proof.

tn = n res
v=0

λ
1
n (v)dv

= n res
v=0

(ϕn
vn

+
ϕn−1
vn−1

+ ..+
ϕ2

v2
+
ϕ1

v
+O(1)

) 1
n
dv

= n res
v=0

(ϕn)
1
n

v
(1 +O(v))

1
n dv = n (ϕn)

1
n .
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Lemma 8.6.3. Let t1, t2, .., tn be defined in (8.111), then

(8.117) tα =
n

n+ 1− α
(ϕn)

n+1−α
n (1 + Φn−α)

n+1−α
n ,

where

(1 + Φi)
n+1−α

n =
∞∑
d=0

(n+1−α
n

d

)
Φd
i ,

Φd
i =

∑
i1+i2+..+id=i

ϕ(n−i1)

ϕn
....
ϕ(n−id)

ϕn
.

(8.118)

Proof.

tα =
n

n+ 1− α
res
v=0

(
λ
n+1−α

n (v)dv
)

=
n

n+ 1− α
res
v=0

(ϕn
vn

+
ϕn−1
vn−1

+ ..+
ϕ2

v2
+
ϕ1

v
+O(1)

)n+1−α
n

dv

=
n

n+ 1− α
res
v=0

(ϕn
vn

)n+1−α
n

(
1 +

ϕn−1
ϕn

v +
ϕn−2
ϕn

v2 + ..+
ϕ2

ϕn
vn−2 +

ϕ1

ϕn
vn−1 +O

(
vn+1

))n+1−α
n

dv

=
n

n+ 1− α
res
v=0

(ϕn
vn

)n+1−α
n

∞∑
d=0

(n+1−α
n

d

)(
1 +

ϕn−1
ϕn

v + ..+
ϕ1

ϕn
vn−1 +O

(
vn+1

))d
dv

=
n

n+ 1− α
res
v=0

(ϕn
vn

)n+1−α
n

∞∑
d=0

(n+1−α
n

d

) ∑
j1+..+jn=d

d!

j1!j2!..jn!

n−1∏
i=1

(
ϕn−iv

i

ϕn

)ji
(O(vn))jndv

=
n

n+ 1− α
res
v=0

(ϕn)
n+1−α

n

∞∑
d=0

(n+1−α
n

d

) ∑
j1+..+jn=d

d!

j1!j2!..jn!

n−1∏
i=1

(
ϕn−i
ϕn

)ji
v(
∑n−1
i=1 iji−n−1+α)dv

+O(1)

=
n

n+ 1− α
(ϕn)

n+1−α
n

∞∑
d=0

(n+1−α
n

d

) ∑
j1+..+jn=d

j1+2j2+3j3+..+(n−1)jn−1=n−α

d!

j1!j2!..jn!

n−1∏
i=1

(
ϕn−i
ϕn

)ji

=
n

n+ 1− α
(ϕn)

n+1−α
n+1

∞∑
d=0

(n+1−α
n

d

) ∑
i1+..+id=n−α

ϕ(n−i1)

ϕn+1
....
ϕ(n−id)

ϕn

=
n

n+ 1− α
(ϕn)

n+1−α
n

∞∑
d=0

(n+1−α
n

d

)
Φd
n−α

=
n

n+ 1− α
(ϕn)

n+1−α
n (1 + Φn−α)

n+1−α
n .

Corollary 8.6.3.1. The coordinate t1 can be written in terms of the coordinates ϕ0, ϕ1, ϕ2, .., ϕn

as

(8.119) t1 = ϕ1
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Proof. Using the relation (8.117) for α = 1

t1 = ϕn (1 + Φn−1) = ϕn
∑

i1=n−1

ϕn−i1
ϕn

= ϕ1.(8.120)

Lemma 8.6.4. Let ϕ0, ϕ1, ϕ2, .., ϕn and λ(v) be defined in (8.24), then

(8.121) kϕk = res
v=0

kλvk−1dv.

Proof.

res
v=0

kλvk−1dv = res
v=0

k
(ϕn
vn

+
ϕn−1
vn−1

+ ..+
ϕk
vk

+ ..+
ϕ2

v2
+
ϕ1

v
+O(1)

)
vk−1dv

= kϕk.

Lemma 8.6.5. Let ϕ0, ϕ1, ϕ2, .., ϕn and λ(v) be defined in (8.24), then

(8.122) kϕk = − res
λ=∞

vkdλ.

Proof. Using formula (8.122) and integration by parts

kϕk = res
v=0

kλvk−1dv = − res
λ=∞

vkdλ.

Lemma 8.6.6. Let ϕ0, , ϕ1, ϕ2, .., ϕn, λ(v) be defined in (8.24) and (t1, .., tn) be defined in

(8.111) , then

(8.123) kϕk =
(−1)k

nk−1
T kn ,

where

(8.124) T kn =
∑

i1+..+ik=n

t(n+1−i1)...t(n+1−ik).

Proof. Let z :=
(
1
λ

) 1
n , then by using equation (8.122):
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− res
λ=∞

vkdλ = res
z=0

nvk(z)dz

zn+1

= res
z=0

(−1)k

nk−1
(
tnz + tn−1z2 + ..+ t2zn−1 +O(zn+1)

)k dz

zn+1

= res
z=0

(−1)k

nk−1

∑
j1+j2+..+jn+jn+1=k

(tnz)j1
(
tn−1z2

)j2 .. (t2zn−1)jn (O(zn+1)
)jn+2 dz

zn+1

=
(−1)k

nk−1

∑
j1+j2+..+jn=k

j1+2j2+3j3+..+(n)jn=n

k!

j1!j2!..jn!
(tn)j1

(
tn−1

)j2 .. (t2)jn

=
(−1)k

nk−1

∑
i1+..ik=n

t(n+1−i1)...t(n+1−ik)

=
(−1)k

nk−1
T kn .

Lemma 8.6.7. Let T kn be defined in (8.124), then

(8.125)
∂T kn
∂tα

= kT k−1α−1 .

Proof.

∂T kn
∂tα

=
∂

∂tα

 ∑
i1+..ik=n

t(n+1−i1)...t(n+1−ik)


=

∑
i1+..ik=n

kδn+1−ik,αt
(n+1−i1)...t(n+1−ik−1)

= k
∑

i1+..ik−1=α−1
t(n+1−i1)...t(n+1−ik−1)

= kT k−1α−1 .

At this stage, we are able to compute the coefficients of η(dtα, dtβ).

Theorem 8.6.8. Let (t1, .., tn) defined in (8.111), and η∗ defined in (8.73). Then,

(8.126) η∗(dtα, dtn+3−β) = nδαβ.

Proof. If i, j 6= 0

(8.127) η∗(dϕi, dϕj) =
n∑

α=1

n∑
β=1

∂ϕi
∂tα

∂ϕj
∂tβ

η∗(dtα, dtβ)

Using (8.125) and (8.123), we get

∂ϕk
∂tα

=
(−1)k

nk−1
kT k−1α−1(8.128)
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(8.129)
n∑

α=1

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−α =

n∑
α=1

(−1)i−j+n+1

ni−j+n+1
T i−1α−1T

n+2−j
n+2−α

Using the second of the equation (4.46) in (8.129)

n∑
α=1

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−α =

Tn+1+i−j
n+1

n

=
(n+ 1 + i− j)

n
ϕ(n+1+i−j)

(8.130)

Note that the following identity holds

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−α =

n+1∑
α=2

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−β δαβ.(8.131)

On another hand, using the first equation of (8.92), we have

η∗(dϕi, dϕn+3−j) = (n+ 1 + i− j)ϕn+1+i−j

= n
n+1∑
α=2

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−β δαβ

=

n+1∑
α=2

n+1∑
α=2

∂ϕi
∂tα

∂ϕn+3−j
∂tn+3−β η

∗(dtα, dtn+3−β)

Then, we obtain

η∗(dtα, dtn+3−β) = nδαβ.

Lemma 8.6.9. Let (t1, .., tn) be defined in (8.111), and η∗ be defined in (8.73). Then,

η∗(dti, dτ) = −2πiδi0,

η∗(dti, dvn+1) = − δi1
n+ 1

.
(8.132)

Proof. Using corollary 8.5.2.1 and lemma 8.5.3, we have

η∗(dti, dτ) =
∂ti

∂ϕj
η∗(dϕj , dτ) = −2πiδi0.

In addition, if i 6= 0

η∗(dti, dvn+1) =
∂ti

∂ϕj
η∗(dϕj , dvn+1) = 0, i 6= 1,

η∗(dt1, dvn+1) = η∗(dϕ1, dvn+1) = − 1

n+ 1
.
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Computing dt0 with respect the variables ϕi by using (8.112),

dt0 = dϕ0 − (n+ 1)
∂2 log(θ1((n+ 1)vn+1)

∂v2n+1

ϕ1dvn+1 −
∂ log(θ1((n+ 1)vn+1)

∂vn+1
dϕ1

+ 4πig′1(τ)ϕ2dτ + 4πig1(τ)dϕ2.

(8.133)

Hence,

η∗(dt0, dvn+1) = η∗(dϕ0, dvn+1)−
∂ log(θ1((n+ 1)vn+1)

∂vn+1
η∗(dϕ1, dvn+1)

= 0.

Lemma 8.6.10. Let t0 be defined in (8.112), and η∗ be defined in (8.73). Then,

(8.134) η∗(dt0, dtα) = 0, α 6= 0.

Proof. Using the definition of η∗ in equation (8.73), formula (8.92), and (8.75)

If i > 1,

η∗(dt0, dϕi) = η∗(dϕ0, dϕi) + 4πig1(τ)η∗(dϕ2, dϕi) + 4πig′1(τ)η∗(dτ, dϕi)

= η∗(dϕ0, dϕi) + 4πig1(τ)η∗(dϕ2, dϕi)

= η̃∗(dϕ0, dϕi)− 4πig1(τ)kiϕi + 4πig1(τ)kiϕi = 0

= −4πig1(τ)kiϕi + 4πig1(τ)kiϕi = 0

Then, if α > 1

η∗(dt0, dtα) =

n∑
α=2

∂tα

∂ϕi
η∗(dt0, dϕi) = 0.

Computing η∗(dt0, dt1) by using (8.133)

η∗(dt0, dt1) = η∗(dϕ0, dϕ1)− (n+ 1)
∂2 log(θ1((n+ 1)vn+1)

∂v2n+1

ϕ1η
∗(dvn+1, dϕ1)

= 0.

Instead of considering the coefficients of the metric η∗, let us investigate the flatness of its

inverse η in order to make the computations shorter.

Lemma 8.6.11. The metric

(8.135)

n∑
α=2

η(dtα, dtn+3−α)dtαdtn+3−α − 2(n+ 1)dt1dvn+1 −
1

πi
dt0dτ

is invariant under the second action of (8.1).
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Proof. Under the second action of (8.1), we have that

n∑
α=2

η(dtα, dtn+3−α)dtαdtn+3−α

are invariant under the second action of (8.1), because the relationship between ti and ϕi be

given by (8.117), and the fact that the Jacobi forms {ϕi} are invariant under the second action

of (8.1). t0 and vn+1 have the following transformation law

t0 7→ t0 − 2πi(n+ 1)λn+1t
1

vn+1 7→ vn+1 + λn+1τ + µn+1

(8.136)

Hence, its differentials are

dt0 7→ dt0 − 2πi(n+ 1)λn+1dt
1

dvn+1 7→ dvn+1 + λn+1dτ
(8.137)

Substituting (8.137) in (8.135) we get the desired result.

Theorem 8.6.12. Let (t0, t1, t2, .., tn) defined in (8.111), and η∗ defined in (8.73). Then,

η∗(dtα, dtn+3−β) = −(n+ 1)δαβ, 2 ≤ α, β ≤ n

η∗(dt1, dtα) = 0,

η∗(dt0, dtα) = 0,

η∗(dti, dτ) = −2πiδi0,

η∗(dti, dvn+1) = − δi1
n+ 1

.

(8.138)

Moreover, the coordinates t0, t1, t2, .., tn, vn+1, τ are the flat coordinates of η∗.

Proof. The theorem is already proved for α, β ∈ {2, .., n} in theorem 8.6.8, and for the

rest in the lemma 8.6.10 and 8.6.9. The only missing part is to prove

(8.139) η∗(dt0, dt0) = 0.

Recall that from corollary 8.4.7.2, the metric η∗ is invariant under the second action of (8.1).

Moreover, the same statement is valid for (8.135), because of lemma 8.6.11. However, the tensor

dt0 ⊗ dt0 have a non-trivial transformation law under this action. Hence, if the coefficient of the

component dt0 ⊗ dt0 is different from 0, we have a contradiction with corollary 8.4.7.2.

Corollary 8.6.12.1. The metric η∗(dϕi, dϕj) :=
∂g∗(dϕi,dϕj)

∂ϕ0
is triangular, and non degen-

erate.
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Definition 8.6.1. Let η∗ = ηαβ ∂
∂tα ⊗

∂
∂tβ

defined in (8.73). The metric defined by

(8.140) η = ηαβdt
α ⊗ dtβ

is denoted by η.

8.7. The extended ring of Jacobi forms

This section generalise the results of section 5.6 and lemma 6.3.3. The flat coordinates of

the Saito metric η of the orbit space of J (Ãn) does not live in the orbit space of J (Ãn), but

live in a suitable covering of this orbit space. The main goal of this section is in describing this

covering as the space such that the ring of functions is a suitable extension of the ring of Jacobi

forms.

Lemma 8.7.1. The coordinates (t0, t1, t2, .., vn+1, τ) defined on (8.111) have the following

transformation laws under the action of the group J (Ãn): They transform as follows under the

second action of (8.1):

t0 7→ t0 − 2πi(n+ 1)λn+1t
1

tα 7→ tα, α 6= 0

vn+1 7→ vn+1 + µn+1 + λn+1τ

τ 7→ τ

(8.141)

Moreover, they transform as follows under the third action (8.1)

t0 7→ t0 +
2c
∑

α,β 6=0,τ ηαβt
αtβ

cτ + d

tα 7→ tα

cτ + d
, α 6= 0

vn+1 7→
vn+1

cτ + d

τ 7→ aτ + b

cτ + d

(8.142)

Proof. Note that the term Φd
i equation (8.118) has weight +i, then using that ϕn has

weight −n, we have that the weight of tα for α 6= 1 must have weight −1 due to (8.117). The

transformation law of t1 follows from the transformation law of
θ′1((n+1)vn+1)
θ1((n+1)vn+1)

and g1(τ)

θ′1((n+ 1)vn+1 + (n+ 1)λn+1τ + µn+1, τ)

θ1((n+ 1)vn+1 + (n+ 1)λn+1τ + µn+1, τ)
=
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
− 2πi(n+ 1)λn+1,

θ′1(
(n+1)vn+1

cτ+d , aτ+bcτ+d)

θ1(
(n+1)vn+1

cτ+d , aτ+b)cτ+d

=
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
+ 2πic(n+ 1)vn+1,

g1(
aτ + b

cτ + d
) = (cτ + d)2g1(τ) + 2c(cτ + d),

(8.143)

and by using equation (8.123) for k = 2.
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In addition , from the formula (8.118) it is clear that the multivaluedness of (t1, .., tn) comes

from (ϕn)
1
n . Therefore, the coordinates lives in a suitable covering over the orbit space of

the group J (Ãn). This covering is obtained by forgetting to act the Coxeter group An and

the SL2(Z) action, and the translation action vn+1 7→ vn+1 + λn+1τ + µn+1 of J (Ãn) on

C⊕ Cn+1 ⊕H. The only remaining part of the J (Ãn) action are the translations

vi 7→ vi + λiτ + µi, i 6= n+ 1.

Hence, the coordinates (t1, .., tn) live in n-dimensional tori with fixed symplectic base of the

torus homology, a fixed chamber in the tori parametrised by (vn+1, τ), and with a branching

divisor Y := {ϕn = 0}. Another way to describe this covering is using the flat coordinates of

the intersection form (u, v0, v1, .., vn+1, τ), and to fix a lattice τ , a representative of the action

(8.144) vn+1 7→ vn+1 + λn+1τ + µn+1,

and a representative of the An action. Then, the desired covering of the orbit space of the group

J (Ãn) is defined by

(8.145) ˜C⊕ Cn+1 ⊕H/J (Ãn) := C⊕ Cn+1 ⊕H/(Zn ⊕ τZn),

where Zn ⊕ τZn acts on C⊕ Cn+1 ⊕H by

vi 7→ vi + λiτ + µi, i 6= n+ 1,

u 7→ u− 2Aijλivj −Aijλiλjτ,

vn+1 7→ vn+1,

τ 7→ τ.

(8.146)

where Aij is given by (4.5).

Remark 8.7.1. As it was already discussed in the remarks 4.9.1, 4.9.2 , 5.6.1, and 6.3.2, we

expect that the covering space covering space for the tilde an case is isomorphic to a suitable

covering over the Hurwitz space H1,n−1,0. The covering over H1,n−1,0 is given by a fixation of

base of the homology in the tori generated by the lattice (1, τ), fixation of root λ (8.24) near ∞,

and a fixation of a logarithm root.

In order to manipulate the geometric objects of this covering, it is more convenient to use

their ring of functions. Hence, we define:

Definition 8.7.1. The extended ring of Jacobi forms with respect the ring of coefficients is

the following ring

(8.147) Ẽ•,•[ϕ0, ϕ1, .., ϕn],
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where

(8.148) Ẽ•,• = E•,• ⊕ {g1(τ)} ⊕ {θ
′
1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
}.

Lemma 8.7.2. The coefficients of the intersection form gij on the coordinates ϕ0, ϕ1, .., ϕn, vn+1, τ

belong to the ring Ẽ•,•[ϕ0, ϕ1, .., ϕn].

Proof. It is a consequence of the formula (8.45).

Lemma 8.7.3. The coefficients of the intersection form gαβ on the coordinates t0, t1, .., tn, vn+1, τ

belong to the ring Ẽ•,•[t
0, t1, .., tn, 1

tn ].

Proof. Using the transformation law of gαβ

(8.149) gαβ =
∂tα

∂ϕi

∂tβ

∂ϕj
g(dϕi, dϕj),

we realise the term ∂tα

∂ϕi
as polynomial in t0, t1, .., tn, 1

tn due to the relations (8.117) and (8.123).

8.8. Christoffel symbols of the intersection form

In this section, we will generalise the results done in 5.7. Roughly speaking, we consider the

Christoffel symbols of the intersection form as object living in Ẽ•,• [ϕ0, ϕ1, .., ϕn] in coordinates

ϕ0, , ϕ1, ϕ2, .., ϕn, vn+1, τ , in addition, we will show that the Christoffel symbols depend at most

linear in ϕ0 in this coordinates.

Recall that the Christoffel symbols Γijk (ϕ) associated with the intersection form g∗ is given

in terms of the conditions (4.13).

Lemma 8.8.1. Let ϕ0, , ϕ1, ϕ2, .., ϕn, vn+1, τ be defined in (8.24), then Γiij depend at most

linear on ϕ0.

Proof. Using the first condition of (4.13)

∂kg
ii = 2Γiik

Recall that due to the corollary 8.5.4.1, the metric gij depend at most linear on ϕ0. Then,

2
∂2Γiik
∂ϕ2

0

= ∂20∂kg
ii = ∂k∂

2
0g
ii = 0.

Lemma 8.8.2. Let ϕ0, , ϕ1, ϕ2, .., ϕn, vn+1, τ be defined in (8.24), then

Γiτj = 0,

Γτkk = −2πi
δjk
k
.

(8.150)
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Proof. Let Γijk (x), in the coordinates x1, .., xn, and Γpql (y) in the coordinates y1, .., yn, then

the transformation law of the Christoffel symbol defined in the cotangent bundle is the following

(8.151) Γijk (x) =
∂xi

∂yp
∂xj

∂yq
∂yl

∂xk
Γpql (y) +

∂xi

∂yp
∂

∂xk

(
∂xj

∂yq

)
gpq(y).

In particular, the Γijk (ϕ) in the coordinates (ϕ0, ϕ1, .., ϕn, vn+1,τ ) could be derived from the

Christoffel symbol in the coordinates v0, v1, .., vn+1, τ which is 0. Then,

(8.152) Γijk (ϕ) =
∂ϕi
∂vp

∂

∂ϕk

(
∂ϕj
∂vq

)
gpq(v).

Computing Γ
ivn+1

j ,

Γiτk (ϕ) =
∂ϕi
∂vp

∂

∂ϕk

(
∂τ

∂vq

)
gpq(v)

= −2πϕi
∂

∂ϕk
(1) = 0.

(8.153)

Computing Γ
vn+1i
j by using the first condition of (4.13),

Γτkj (ϕ) = ∂jg
kτ − Γkτj

= ∂jg
kτ = −2πi

δjk
k
.

(8.154)

Lemma 8.8.3. Let ϕ0, , ϕ1, ϕ2, .., ϕn, vn+1, τ be defined in (8.24), then

Γ
ivn+1

j = 0,

Γ
vn+1i
j =

∂givn+1

∂ϕj
∈ Ẽ•,•[ϕ0, ϕ1, ., ϕn],

Γijvn+1
∈ Ẽ•,•[ϕ0, ϕ1, ., ϕn].

(8.155)

Moreover, these Christoffel symbols are at most linear on ϕ0.

Proof. Let Γijk (x), in the coordinates x1, .., xn, and Γpql (y) in the coordinates y1, .., yn, then

the transformation law of the Christoffel symbol defined in the cotangent bundle is the following

(8.156) Γijk (x) =
∂xi

∂yp
∂xj

∂yq
∂yl

∂xk
Γpql (y) +

∂xi

∂yp
∂

∂xk

(
∂xj

∂yq

)
gpq(y).

In particular, the Γijk (ϕ) in the coordinates (ϕ0, ϕ1, .., ϕn, vn+1,τ ) could be derived from the

Christoffel symbol in the coordinates v0, v1, .., vn+1, τ which is 0. Then,

(8.157) Γijk (ϕ) =
∂ϕi
∂vp

∂

∂ϕk

(
∂ϕj
∂vq

)
gpq(v).
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Computing Γ
ivn+1

k ,

Γ
ivn+1

k (ϕ) =
∂ϕi
∂vp

∂

∂ϕk

(
∂vn+1

∂vq

)
gpq(v)

=
∂ϕi
∂vn+1

∂

∂ϕk
(1) gvn+1vn+1(v) = 0.

(8.158)

Computing Γ
vn+1i
k by using the first condition of (4.13),

Γ
vn+1i
k (ϕ) = ∂kg

ivn+1 − Γ
ivn+1

j

= ∂kg
ivn+1 .

(8.159)

Since, givn+1 ∈ Ẽ•,•[ϕ0, ϕ1, ., ϕn], we have that Γ
vn+1i
k (ϕ) ∈ Ẽ•,•[ϕ0, ϕ1, ., ϕn]. In addition, since

the metric ηivn+1 is independent of ϕ0 due to the corollary 8.5.4.1, we have that ∂kg
ivn+1 is at

most linear on ϕ0

Computing Γijvn+1 ,

Γijvn+1
(ϕ) =

∂ϕi
∂vp

∂

∂vn+1

(
∂ϕj
∂vq

)
gpq(v)

=
∂ϕi
∂vp

∂

∂vq

(
∂ϕj
∂vn+1

)
gpq(v)

(8.160)

In the subsequent computation, whenever appears a function depend only on vn+1, τ , we will

call it by h(vn+1, τ), because for our purpose, it is enough to prove that the subsequent function

belong to the ring Ẽ•,•[ϕ0, ϕ1, ., ϕn].

If j > 1, using equation (8.82),

Γijvn+1
(ϕ) =

∂ϕi
∂vp

∂

∂vq

(
∂ϕj
∂vn+1

)
gpq(v)

=
∂ϕi
∂vp

∂

∂vq
(ϕj−1 + h(vn+1, τ)ϕn) gpq(v)

=
∂ϕi
∂vp

∂

∂vq
(ϕj−1 + h(vn+1, τ)ϕn) gpq(v)

=
∂ϕi
∂vp

∂

∂vq
(ϕj−1) g

pq(v) + h(vn+1, τ)
∂ϕi
∂vp

∂

∂vq
(ϕn) gpq(v)

+ ϕn
∂ϕi
∂vn+1

∂

∂vn+1
(h(vn+1, τ)) gvn+1vn+1(v)

= gi(j−1)(ϕ) + h(vn+1, τ)gin(ϕn) +
h′(vn+1, τ)

n(n+ 1)
(ϕi + g(vn+1, τ)ϕn)ϕn.

(8.161)
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If j = 1, using equation (8.84)

Γi1vn+1
(ϕ) =

∂ϕi
∂vp

∂

∂vq

(
∂ϕ1

∂vn+1

)
gpq(v)

=
∂ϕi
∂vp

∂

∂vq
(nϕ0 + h(vn+1, τ)ϕ1) g

pq(v)

=
∂ϕi
∂vp

∂

∂vq
(nϕ0 + h(vn+1, τ)ϕ1) g

pq(v)

=
∂ϕi
∂vp

∂

∂vq
(nϕ0) g

pq(v) + h(vn+1, τ)
∂ϕi
∂vp

∂

∂vq
(ϕ1) g

pq(v)

+ ϕ1
∂ϕi
∂vn+1

∂

∂vn+1
(h(vn+1, τ)) gvn+1vn+1(v)

= ngi0(ϕ) + h(vn+1, τ)gi1(ϕ1) +
h′(vn+1, τ)

n(n+ 1)
(ϕi + h3(vn+1, τ)ϕn)ϕ1.

(8.162)

If j = 0, using equation (8.86)

Γi0vn+1
(ϕ) =

∂ϕi
∂vp

∂

∂vq

(
∂ϕ0

∂vn+1

)
gpq(v)

=
∂ϕi
∂vp

∂

∂vq
(−nh1(vn+1, τ)ϕ0 + h2(vn+1, τ)ϕ1) g

pq(v)

=
∂ϕi
∂vp

∂

∂vq
(−nh1(vn+1, τ)ϕ0 + h2(vn+1, τ)ϕ1) g

pq(v)

=
∂ϕi
∂vp

∂

∂vq
(−nh1(vn+1, τ)ϕ0) g

pq(v) + h2(vn+1, τ)
∂ϕi
∂vp

∂

∂vq
(ϕ1) g

pq(v)

+ ϕ1
∂ϕi
∂vn+1

∂

∂vn+1
(h2(vn+1, τ)) gvn+1vn+1(v)

= −nh1(vn+1, τ)gi0(ϕ) + h2(vn+1, τ)gi1(ϕn) +
h′2(vn+1, τ)

n(n+ 1)
(ϕi + h3(vn+1, τ)ϕn)ϕ1

− nh
′
1(vn+1, τ)

n(n+ 1)
(ϕi + h3(vn+1, τ)ϕn)ϕ0.

(8.163)

Hence Γijvn+1(ϕ) ∈ Ẽ•,•[ϕ0, ϕ1, ., ϕn], furthermore, it is at most linear on ϕ0.

Proposition 8.8.4. The Christoffel symbols Γijk (ϕ) belong to the ring Ẽ•,•[ϕ0, ϕ1, .., ϕn].

Proof. Note that the invariance of the Jacobi form ϕi with respect the first two actions of

(8.1), and equivariance by the third one implies that the differential dϕi is invariant under the

first two actions of (8.1), and behaves as follows under the SL2(Z)

dϕi 7→
dϕi

(cτ + d)ki
− cϕi

(cτ + d)ki+1(8.164)

Therefore the Christoffel symbol Γijk

(8.165) ∇(dϕi)#dϕj = Γijk dϕk
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is a Jacobi form if ϕi has weight 0. Hence, doing the change of coordinates

(8.166) ϕi 7→ ϕ̂i := η2i(τ)ϕi,

we have that the Christoffel symbol Γ̂ijk

(8.167)
1

η2i+2j
∇(dϕ̂i)#dϕ̂j = Γ̂ijk dϕ̂k

is a Jacobi form.

Comparing Γ̂ijk with Γijk

∇(dϕ̂j)#dϕ̂i = ∇
(2jg1η2jϕjdτ+η2jdϕj)

#

(
2ig1η

2iϕidτ + η2idϕi
)

= ∇
(2jg1η2jϕjdτ)

#

(
2ig1η

2iϕidτ
)

+∇
(2jg1η2jϕjdτ)

#

(
η2idϕi

)
+∇

(η2jdϕj)
#

(
2ig1η

2iϕidτ
)

+∇
(η2jdϕj)

#

(
η2idϕi

)
= 2jg1η

2jϕjg
lτ∇ ∂

∂ϕl

(
2iη2ig1ϕidτ

)
+ 2jg1η

2jϕjg
lτ∇ ∂

∂ϕl

(
η2idϕi

)
+ η2jglj∇ ∂

∂ϕl

(
2ig1η

2iϕidτ
)

+ η2jglj∇ ∂
∂ϕl

(
η2idϕi

)
= 4ijg′1g1ϕiη

2i+2jϕjg
ττdτ + 4i2jg31η

2i+2jϕjϕig
ττdτ + 4ijg1η

2i+2jϕjg
iτdτ

+ 4ijg21η
2i+2jϕjg

ττdϕi + 2jg1η
2i+2jϕjΓ

τi
k dϕk + 4i2g21η

2i+2jϕig
τjdτ

+ 2ig′1η
2i+2jϕig

ljdτ + 2ig1η
2i+2jgijdτ + 2ig1ϕiη

2i+2jΓiτk dϕk

+ η2i+2jg1g
lτdϕi + η2i+2jΓjik dϕk.

(8.168)

Dividing the equation (8.168) by η2i+2j and isolating Γjik dϕk, we have

Γjik dϕk = −4ijg′1g1ϕiϕjg
ττdτ − 4i2jg31ϕjϕig

ττdτ + 4ijg1η
2i+2jϕjg

iτdτ

− 4ijg21ϕjg
ττdϕi − 2jg1ϕjΓ

τi
k dϕk − 4i2g21ϕig

τjdτ

− 2ig′1ϕig
ljdτ − 2ig1η

2i+2jgijdτ − 2ig1ϕiΓ
iτ
k dϕk

− g1glτdϕi + Γ̂jik dϕk.

(8.169)

Since the differential forms has a vector space structure and the right hand side of (8.169)

depends only on gij , g1(τ), ϕi, and Γτik which belongs to the ring Ẽ•,•[ϕ0, ϕ1, .., ϕn], the desired

result is proved.

Lemma 8.8.5. The Christoffel symbols Γijk (ϕ) depend linearly on ϕ0.

Proof. The result was already proved, when k = vn+1 in the lemma 8.8.3. The proposition

8.8.4 gives to the space of Christoffel symbols the structure of graded algebra, in particular we

can compute the degree m regarding to the algebra of Jacobi forms. Let φ ∈ Ẽ•,•[ϕ0, ϕ1, .., ϕn]
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with index mφ and weight kφ, then we write

degmφ = mφ,

degkφ = kφ.
(8.170)

If k 6= τ, vn+1,

degmΓijk = degm

(
∂ϕi
∂vp

∂

∂ϕk

(
∂ϕj
∂vq

)
gpq(v)

)
= 1.(8.171)

Therefore, Γijk is at most linear on ϕ0. If k = τ ,

degkΓ
ij
τ = degk

(
∂ϕi
∂vp

∂

∂τ

(
∂ϕj
∂vq

)
gpq(v)

)
= −i− j + 4.

Suppose that Γijτ contains a the term a(vn+1, τ)ϕ2
0, where a(vn+1, τ) is an elliptic function in

vn+1, then

degka(vn+1, τ) = −i− j + 4 > 0.

The possible Christoffel symbols that could depend on ϕ2
0 are

Γ04
τ ,Γ

40
τ ,Γ

13
τ ,Γ

31
τ ,Γ

22
τ ,Γ

21
τ ,Γ

12
τ ,Γ

20
τ ,Γ

02
τ ,Γ

11
τ ,Γ

10
τ ,Γ

01
τ ,Γ

00
τ .(8.172)

But Γ22
τ ,Γ

11
τ ,Γ

00
τ is linear on ϕ0 due to lemma 8.8.1.

Computing Γijτ

Γijτ =
∂ϕi
∂vp

∂

∂τ

(
∂ϕj
∂vq

)
gpq(v) =

∂ϕi
∂vp

∂

∂vq

(
∂ϕj
∂τ

)
gpq(v)(8.173)

In order to compute it, recall there exist a relationship between the holomorphic Jacobi forms

of An+1 type and the meromorphic Jacobi forms of Ãn type given by (8.30). Moreover, in (5.19)

it was demonstrated that the lowest degree term in the Taylor expansion of ϕ
J (An+1)
i with

respect the variables v0, v1, .., vn+1 are the elementary symmetric polynomials ai(v0, v1, .., vn+1)

of degree i. Hence, using the equations (5.19) and (8.30), we can estimate the degree of the

lowest degree term of the meromorphic Jacobi forms of Ãn, more specifically,

ϕ
J (Ãn)
n ϕ

J (A1)
2 = an+2(v) + bn+2(vn+1, τ)an+3(v) +O(||v||n+4),

ϕ
J (Ãn)
n−1 ϕ

J (A1)
2 + bnn−1ϕ

J (Ãn)
n ϕA1

2 = an+1(v) + bn+1(vn+1, τ)an+2(v) +O(||v||n+3),

ϕ
J (Ãn)
n−2 ϕ

J (A1)
2 + bn−1n−2ϕ

J (Ãn)
n−1 ϕ

J (A1)
2 + ann−2ϕ

J (Ãn)
n ϕ

J (A1)
2 = an(v) + bn+2(vn+1, τ)an+1(v) +O(||v||n+2),

.

.

ϕ
J (Ãn)
0 ϕ

J (A1)
2 +

n∑
j=1

bj0ϕ
J (Ãn)
j ϕ

J (A1)
2 = a2(v) + b3(vn+1, τ)a3(v) +O(||v||4).

(8.174)

178



Note that the Christoffel symbol depend on ϕ0 iff it contains the term a22(v) in its expansion. Our

strategy is to show that the Christoffel symbols (8.172) contains only higher order polynomials

in its expansions. Computing the lowest degree term in the expansion of (8.173)

Γ01
τ =

∂ϕi
∂vp

∂

∂vq

(
∂ϕj
∂τ

)
gpq(v)

=
∂ai+2

∂vp

∂

∂vq

(
∂bj+1(vn+1, τ)

∂τ
aj+3

)
gpq(v) + ..

=
∂ai+2

∂vp

∂bj+1(vn+1, τ)

∂τ

∂aj+3

∂vq
gpq(v) + ..

=
∂bj+1(vn+1, τ)

∂τ
ai+j+3 + ...

(8.175)

Therefore, for i+ j > 1, we have that the associated Christoffel symbol do not depend on ϕ2
0. It

remains to check only Γ01
τ and Γ10

τ . Computing Γ10
τ by using the second equation of (4.13) for

i = 1, j = 0, k = 0

n+2∑
l=0

g1lΓ00
l =

n+2∑
l=0

g0lΓ10
l

=

n+1∑
l=0

g0lΓ10
l + g0τΓ10

τ .

Isolating Γ10
τ ,

Γ10
τ =

1

2πiϕ0

[
n+2∑
l=0

g1lΓ00
l −

n+1∑
l=0

g0lΓ10
l

]
,(8.176)

we have that the right hand side of (8.176) depend at most linear on ϕ0. Moreover, using the

first equation (4.13), we have

∂20Γ10
τ = ∂τ∂

2
0g

10 − ∂20Γ10
τ

= ∂τ∂
2
0g

10 = 0.

Lemma proved.

8.9. Unit and Euler vector field of the orbit space of J (Ãn)

The aim of this section is to define the Unit and Euler vector field and its respective actions

on the geometric data of the orbit space of J (Ãn). Further, these objects will be fundamental

to define the unit of the Frobenius algebra of the desired Dubrovin Frobenius structure, and to

give a quasi homogeneous property to the desired WDVV solution.

179



Definition 8.9.1. The Euler vector field with respect the orbit space J (Ãn) is defined by

the last equation of (8.2), i.e

(8.177) E := − 1

2πi

∂

∂u

Definition 8.9.2. A f is quasi homogeneous of degree d if it is an eigenfunction of the

Euler vector field (8.177) with eigenvalue d, i.e.

E(f) = df.

Lemma 8.9.1. Let λ, ϕ0, .., ϕn, ϕn+1 = vn+1, ϕn+2 = τ be defined in (8.24) and (t0, ., tn, vn+1, τ)

the flat coordinates of eta defined in (8.111). Then,

E(λ) = λ,

E(ϕi) = diϕi,

E(tα) = dαt
α,

(8.178)

where

di = 1, i < n+ 1,

di = 0, i ≥ n+ 1,

dα =
n+ 1− α

n
, α 6= 0,

d0 = 1.

(8.179)

Proof. Recall that the function λ is given by

λ = e−2πiu
∏n
i=0 θ1(z − vi + vn+1, τ)

θn1 (z, τ)θ1(z + (n+ 1)vn+1)

= ϕn℘
n−2(z, τ) + ϕn−1℘

n−3(z, τ) + ...+ ϕ2℘(z, τ)

+ ϕ1[ζ(z, τ)− ζ(z + (n+ 1)vn+1, τ) + ϕ0.

Hence,

λ =
1

2πi

∂

∂u
(λ)

= E(ϕn)℘n−2(z, τ) + E(ϕn−1)℘
n−3(z, τ) + ...+ E(ϕ2)℘(z, τ)

+ E(ϕ1)[ζ(z, τ)− ζ(z + (n+ 1)vn+1, τ) + E(ϕ0),

therefore, E(ϕi) = ϕi, and E(vn+1) = E(τ) = 0.

Recall that tα can written in terms of equation (8.115) or in more convenient way

tα =
n

n+ 1− α
res
v=0

λ
n+1−α

n (v)dv, α 6= 0,

t0 = ϕ0 −
θ′1((n+ 1)vn+1)

θ1((n+ 1)vn+1)
ϕ1 + 4πig1(τ)ϕ2.

(8.180)

Applying the Euler vector in (8.180) we get the desired result.
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Corollary 8.9.1.1. The Euler vector field (8.177) in the flat coordinates of η∗ has the

following form

(8.181) E :=

n∑
α=0

dαt
α ∂

∂tα
,

where

dα =
n+ 1− α

n
, α 6= 0,

d0 = 1.
(8.182)

Proof. Recall that

E =
1

2πi

∂

∂u
= E(tα)

∂

∂tα
=

n∑
α=0

dαt
α ∂

∂tα
.

Lemma 8.9.2. The Euler vector field (8.177) acts on the vector fields ∂
∂tα , ∂

∂ϕi
and differential

forms dtα, dϕi as follows:

LieEdϕi = didϕi,

LieEdt
α = dαdt

α,

LieE
∂

∂ϕi
= −di

∂

∂ϕi
,

LieE
∂

∂tα
= −dα

∂

∂tα
.

(8.183)

Proof. Recall that the Lie derivative acts in vector fields by using the Lie bracket and in

differential forms by the use of Cartan’s magic formula

LieE
∂

∂tα
=

[
E,

∂

∂tα

]
,

LieEdt
α = dE(dtα) + E(d2tα) = dE(dtα).

(8.184)

Using (8.184) and (8.178), we obtain the desired result.

Lemma 8.9.3. The intersection form gij defined in (8.36) and its Christoffel symbol Γijk in

the coordinates ϕ0, .., ϕn, ϕn+1 = vn+1, ϕn+2 = τ defined in (8.24) are weighted polynomials in

the variables ϕ0, .., ϕn, with degrees

deg
(
gij
)

= di + dj , deg
(

Γαβk

)
= di + dj − dk.(8.185)
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Proof. The function gij and Γijk belong to the ring Ẽ•,•[ϕ0, ϕ1, .., ϕn] due to 8.4.2 and 8.8.4.

The degrees are computed by using the following formulae

E
(
gij(ϕ)

)
= E

(
∂ϕi
∂vl

∂ϕj
∂vm

glm(v)

)
= E

(
∂ϕi
∂vl

)
∂ϕj
∂vm

glm(v) +
∂ϕi
∂vl

E

(
∂ϕj
∂vm

glm(v)

)
=
∂E(ϕi)

∂vl
∂ϕj
∂vm

glm(v) +
∂ϕi
∂vl

∂E(ϕj)

∂vm
glm(v)

= (di + dj)
∂ϕi
∂vl

∂ϕj
∂vm

glm(v).

and

E
(

Γijk (ϕ)
)

= E

(
∂ϕi
∂vl

∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v)

)
= E

(
∂ϕi
∂vl

)
∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v) +

∂ϕi
∂vl

E

(
∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v)

)
=
∂E(ϕi)

∂vl
∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v) +

∂ϕi
∂vl

∂

∂ϕk

(
∂E(ϕj)

∂vm

)
glm(v)

− dk
∂ϕi
∂vl

∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v)

= (di + dj − dk)
∂ϕi
∂vl

∂

∂ϕk

(
∂ϕj
∂vm

)
glm(v).

Lemma 8.9.4. The intersection form gαβ defined in (8.36) in the coordinates (t0, ., tn, vn+1, τ)

defined in (8.111) and its Christoffel symbol Γαβγ are weighted polynomials in the variables

t0, t1, .., tn, 1
tn with degrees

deg
(
gαβ
)

= dα + dβ,

deg
(

Γαβγ

)
= dα + dβ − dγ .

(8.186)

Proof. Lemma 8.7.3 guarantee that gαβ ∈ Ẽ•,•[t0, t1, .., tn, 1n ]. Using the formula

E(gαβ) = E(
∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ))

= E(
∂tα

∂ϕi
)
∂tβ

∂ϕj
gij(ϕ) +

∂tα

∂ϕi
E(

∂tβ

∂ϕj
)gij(ϕ) +

∂tα

∂ϕi

∂tβ

∂ϕj
E(gij(ϕ))

=
∂E(tα)

∂ϕi

∂tβ

∂ϕj
gij(ϕ)− di

∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ) +

∂tα

∂ϕi

∂E(tβ)

∂ϕj
gij(ϕ)− dj

∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ)

+ (di + dj)
∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ)

= (dα + dβ)
∂tα

∂ϕi

∂tβ

∂ϕj
gij(ϕ).
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The Christoffel symbol Γαβγ is given by the following

Γαβγ =
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk +
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij .

Γijj ,
∂ϕk
∂tγ ∈ Ẽ•,•[t

0, t1, .., tn] due to Lemma 8.8.4 and equations (8.128), (8.125). But using (8.117),

we realise that ∂tα

∂ϕi
is polynomial in t1, t2, .., tn, 1

tn due to due to equations (8.123) and (8.118).

Therefore, Γαβγ are weighted polynomials in the variables t0, t1, .., tn, 1
tn . Computing the degree

of Γαβγ

E(Γαβγ ) = E(
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk +
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij)

= (dα − di)
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk + (dβ − dj)
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk

+ (dk − dγ)
∂tα

∂ϕi

∂tβ

∂ϕj

∂ϕk
∂tγ

Γijk + (dα − di)
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij

+ (dβ − dγ)
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij + (dα − di)

∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij

+ (di + dj)
∂tα

∂ϕi

∂

∂tγ

(
∂tβ

∂ϕj

)
gij

= (dα + dβ − dγ)Γαβγ .

Definition 8.9.3. The Unit vector field with respect the orbit space J (Ãn) is the vector

associated to the invariant coordinate ϕ0 defined in (8.24) , i.e

(8.187) e :=
∂

∂ϕ0
.

Lemma 8.9.5. The Unit vector field (8.177) in the flat coordinates of η∗ has the following

form

(8.188) e =
∂

∂t0
.

Proof.

∂

∂ϕ0
=
∂tα

∂ϕ0

∂

∂tα
=

∂

∂t0
.

Lemma 8.9.6. Let the metric η∗ be defined on (8.73) and the Euler vector field (8.177).

Then,

(8.189) LieEη
αβ = (dα + dβ − d1)ηαβ.
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8.10. Discriminant locus and the monodromy of the orbit space of J (Ãn)

This section relates the critical points of the (8.24) with the zeros of the determinant of

the intersection form g∗ (8.37). Further, in section 8.11, it will be built a Frobenius algebra

in the sections of the orbit space of J (Ãn), furthermore, the intersection form g∗ (8.37) can

be realised as the multiplication by the Euler vector field (8.177). The results of this section

will imply that the intersection form g∗ (8.37) is diagonalisable with eigenvalues generically

different from 0, and this is equivalent to the Frobenius algebra be semisimple. Moreover, we can

realise the isomorphism of orbit space of J (Ãn) with the Hurwitz space H1,n−1,0 as a Dubrovin

Frobenius manifolds, see Theorem 8.11.7 for details.

Definition 8.10.1. Let g∗ the metric defined on (8.37). The discriminant locus of the orbit

space of J (Ãn) C⊕ Cn+1 ⊕H/J (Ãn) is defined by

(8.190) Σ = {x ∈ C⊕ Cn+1 ⊕H/J (Ãn) : det(g∗) = 0}.

Lemma 8.10.1. The fixed points of the action J (Ãn) belong to the discriminant locus

(8.190).

Proof. Note that the fixed points of the action J (Ãn) on C⊕Cn+1⊕H 3 (u, v0, v1, .., vn−1, vn+1, τ)

are the fixed points of the action An on Cn 3 (v0, v1, .., vn1). Therefore, the fixed points are the

hyperplanes

(8.191) vi = vj i, j ∈ {0, 1, .., n− 1}.

The intersection form (8.37) is given by

g =

n∑
i=0

dv2i
∣∣∑n

i=0 vi=0
− n(n+ 1)dv2n+1 + 2dudτ

=
n−1∑
i,j=0

Aijdvidvj − n(n+ 1)dv2n+1 + 2dudτ

(8.192)

The intersection form is given by

g∗ =
n−1∑
i,j=0

A−1ij
∂

∂vi
⊗ ∂

∂vj
− 1

n(n+ 1)

∂

∂vn+1
⊗ ∂

∂vn+1
+

∂

∂u
⊗ ∂

∂τ
+

∂

∂τ
⊗ ∂

∂u
(8.193)

became degenerate on the hyperplanes (8.191), because two columns of the matrix A−1ij became

proportional.

Lemma 8.10.2. The function λ(p, u, v0, v1, .., vn+1, τ) defined on (8.24) has simple critical

points if and only if (u, v0, v1, .., vn+1, τ) is a fixed point of the action J (Ãn).
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Proof. Using the local isomorphism given by 8.20

(8.194) [(u, v0, v1, .., vn−1, vn+1, τ)]←→ λ(v) = e−2πiu
∏n
i=0 θ1(z − vi, τ)

θn1 (v, τ)θ1(v + (n+ 1)vn+1, τ)
,

we can realise the discriminant locus as the space of parameters of λ(p, u, v0, v1, .., vn+1, τ) such

that λ(p, u, v0, v1, .., vn+1, τ) has repeated roots. In these cases λ(p, u, v0, v1, .., vn+1, τ) has non

simple critical points.

Definition 8.10.2. The canonical coordinates (u1, u2, .., un+2) of the orbit space J (Ãn) is

given by the following relation

λ(qi) = ui,

λ′(qi) = 0.
(8.195)

Lemma 8.10.3. The determinant of the intersection form g∗ defined on (8.36) is proportional

to
∏n+2
i=1 ui.

Proof. If ui = λ(qi, u, v0, .., vn+1, τ) = 0, we have that detg∗ = 0 due to lemma (8.10.2),

then ui are zeros of the equation detg∗ = 0.

Proposition 8.10.4. In the canonical coordinates (u1, u2, .., un+2) the unit vector field

(8.187), the Euler vector field (8.177), and the intersection form (8.36) have the following form

gii = uiηiiδij ,

e =

n+2∑
i=1

∂

∂ui
,

E =

n+2∑
i=1

ui
∂

∂ui
.

(8.196)

where ηii are the coefficients of second metric η∗ in canonical coordinates.

Proof. Note that g∗ is diagonalisable with distinct eigenvalues if the following equation

(8.197) det(ηαµg
µβ − uδβα) = 0,

has only simple roots. Since det(ηαµ) 6= 0, the equation (8.197) is equivalent to

(8.198) det(gαβ − uηαβ) = 0.

Using that ηαβ = ∂0g
αβ, we have that

(8.199) det(gαβ − uηαβ) = det
(
gαβ(t0 − u, t1, t2, t3, .., tn, vn+1, τ

)
= 0.

Due to the lemma 8.10.3 the equation (8.198) has n+ 2 distinct roots

(8.200) ui = t1 − yi(t1, t2, t3, .., tn, vn+1, τ).
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In the coordinates (u1, u2, .., un+2) the matrix gij is diagonal, then

(8.201) gij = uiηijδij

and the unit vector field have the following form

(8.202)
∂

∂t1
=

n+2∑
i=1

∂ui
∂t1

∂

∂ui
=

n+2∑
i=1

∂

∂ui

Moreover, since

(8.203) [E, e] = [

n∑
α=0

dαt
α ∂

∂tα
,
∂

∂t1
] = −e,

the Euler vector field in the coordinates (u1, u2, .., un+2) takes the following form

(8.204) E =
n+2∑
i=1

ui
∂

∂ui
.

Lemma proved.

8.11. Construction of WDVV solution

The main aim of this section is to extract a WDVV equation from the data of the group

J (Ãn).

Lemma 8.11.1. The orbit space of J (Ãn) carries a flat pencil of metrics

gαβ, ηαβ :=
∂gαβ

∂t0
(8.205)

with the correspondent Christoffel symbols.

Γαβγ , ηαβ :=
∂Γαβγ
∂t0

(8.206)

Proof. The metric (8.205) satisfies the hypothesis of Lemma 4.8.1 which proves the desired

result.

Lemma 8.11.2. Let the intersection form be (8.36), unit vector field be (8.187), and Euler

vector field be (8.177). Then, there exist a function

(8.207) F (t0, t1, t2, .., tn.vn+1, τ) = −(t0)2τ

4πi
+
t0

2

∑
α,β 6=0,τ

ηαβt
αtβ +G(t1, t2, .., tn, vn+1, τ),

such that

LieEF = 2F + quadratic terms,

LieE

(
Fαβ

)
= gαβ,

∂2G(t1, t2, .., tn, vn+1, τ)

∂tα∂tβ
∈ Ẽ•,•[t1, t2, .., tn,

1

tn
],

(8.208)

186



where

(8.209) Fαβ = ηαα
′
ηββ

′ ∂F 2

∂tα′∂tβ′
.

Proof. Let Γαβγ (t) the Christoffel symbol of the intersection form (8.36) in the coordinates

the flat coordinates of η∗, i.e t0, t1, t2, .., tn.vn+1, τ . According to the lemma 4.8.1, we can

represent Γαβγ (t) as

(8.210) Γαβγ (t) = ηαε∂ε∂γf
β(t).

Using the relations (8.186), (8.183) and lemma 8.9.6

LieE(Γαβγ (t)) = LieE(ηαε)∂ε∂γf
β(t) + ηαεLieE(∂ε∂γf

β(t))

= (dα + dε − d1)ηαε∂ε∂γfβ(t) + (−dε − dγ)ηαε∂ε∂γLieE(fβ(t))

= (dα + dβ − dγ)ηαε∂ε∂γf
β(t).

Then, by isolation LieE
(
fβ(t)

)
we get

(8.211) LieE

(
fβ(t)

)
= (dβ + d1)f

β +Aβσt
σ +Bβ, Aβσ, B

β ∈ C.

Considering the second relation of (4.13) for α = τ

gτσΓβγσ = gβσΓτγσ ,(8.212)

and using lemma 8.5.3 and 8.8.2, we have.

−2πidσt
σηβε∂σ∂εf

γ = −2πidσδ
γ
σg

βσ,(8.213)

which is equivalent to

LieE

(
ηβε∂εf

γ
)

= dγg
βγ .(8.214)

Using (8.211) in the equation (8.214), we have

(dβ + dγ)ηβε∂εf
γ = dγg

βγ .(8.215)

If γ 6= vn+1, τ , we define

(8.216) F γ =
fγ

dγ
,

and note that gβγ is symmetric with respect the indices β, γ. Hence,

(dβ + dγ)ηβε∂εF
γ = (dβ + dγ)ηγε∂εF

β,(8.217)

which is the integrability condition for

F γ = ηγµ∂µF.(8.218)
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In order to extract information from γ = τ , take β = τ in equation (8.215)

dγη
τ0∂0f

γ = dγg
τγ

−2πidγ∂0f
γ = −2πidγt

γ
(8.219)

which is equivalent to

ηγε∂ε∂0F = tγ ,

inverting ηγε

∂α∂0F = ηαγt
γ ,(8.220)

integrating equation (8.220), we obtain

(8.221) F (t0, t1, t2, .., tn, vn+1, τ) = −(t0)2τ

4πi
+
t0

2

∑
α,β 6=0,τ

ηαβt
αtβ +G(t1, t2, .., tn, vn+1, τ).

Substituting the equation (8.221) in the (8.215) for γ 6= vn+1, τ , we get

gβγ = (dβ + dγ)ηβεηγµ∂ε∂µF,

= LieE(F βγ)
(8.222)

Since gβγ is a symmetric matrix the equation (8.222) is equivalent to the second equation of

(8.208) for either β and γ different from vn+1, τ . Therefore, the missing part of the second

equation of (8.208) is only for the cases β = γ = vn+1 and β = γ = τ . Moreover, the intersection

form gβγ is proportional to the Hessian of the equation (8.221) for for either β and γ different

from vn+1, τ . Recall that from the data of a Hessian, we can reconstruct uniquely a function up

to quadratic terms, therefore, by defining

LieE

(
∂2F

∂t12

)
= gvn+1vn+1 ,

LieE

(
∂2F

∂t12

)
= gττ .

(8.223)

Just the second equation of (8.223) needs to be proved, since the first equation defines the

coefficients of the Hessian ∂2F
∂t12

, in another words, it defines ∂2G
∂t12

. The second equation must

be compatible with the equation (8.221), then substituting (8.221) in the second equation of

(8.223).

LieE

(
∂2F

∂t12

)
= LieE

( τ

2πi

)
= 0 = gττ .
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Hence, we proved the second equation (8.208). Substituting the equation (8.221) in the second

equation (8.208) for α, β 6= τ

LieE

(
Fαβ

)
= LieE

(
ηαα

′
ηββ

′ ∂F 2

∂tα′∂tβ′

)
= LieE

(
ηαα

′
ηββ

′ ∂G2

∂tα′∂tβ′

)
= gαβ ∈ Ẽ•,•[t1, t2, .., tn,

1

tn
]

Hence, the second equation (8.208 prove the third equation of (8.208).

Substituting (8.221) in (8.211), (8.218)

LieE

(
fβ
)

= LieE

(
ηβε∂εF

)
= LieE

(
ηβε∂εF

)
∂εF + ηβεLieE (∂εF )

= (dβ + dε − d1)ηβε∂εF∂εF + ηβε∂εLieE (F )− dεηβε∂εF

= (dβ − d1)ηβε∂εF∂εF + ηβε∂εLieE (F )

= (dβ + d1)η
βε∂εF +Aβσt

σ +Bβ

Hence, isolating LieE (F )

ηβε∂εLieE (F ) = 2ηβε∂εF +Aβσt
σ +Bβ,

inverting ηβε

∂αLieE (F ) = 2∂αF + ηαβA
β
σt
σ + ηαβB

β,

integrating

LieE (F ) = 2F + ηαβA
β
σt
αtσ + ηαβB

βtα,

Lemma proved.

Lemma 8.11.3. Let be

(8.224) cαβγ =
∂F 3

∂tα∂tβ∂tγ
,

then,

(8.225) cγαβ = ηγεcαβε

is a structure constant of a commutative algebra given by the following rule in the flat coordinate

of η

(8.226) ∂α • ∂β = cγαβ∂γ
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such that

(8.227) η(∂α • ∂β, ∂γ) = η(∂α, ∂β • ∂γ), Frobenius condition.

Proof.

(1) Commutative

The product defined in (8.226) is commutative, because its structure constant (8.225)

is symmetric with respect its indices α, β, γ due to the commutative behaviour of the

partial derivatives ∂
∂tα ,

∂
∂tβ
, ∂
∂tγ .

(2) Frobenius condition

η(∂α • ∂β, ∂γ) = cεαβη(∂ε, ∂γ)

= cεαβηεγ

= cαβγ

= cεβγηαε = η(∂α, ∂β • ∂γ).

Lemma proved.

Lemma 8.11.4. The unit vector field be defined in (8.187) is the unit of the algebra defined

in lemma 8.11.3.

Proof. Substituting (8.218) and (8.216) in (8.210), we obtain

(8.228) Γαβγ = dβc
αβ
γ ,

where

(8.229) cαβγ = ηαµηβεcεµγ .

Substituting α = τ in (8.228) and using lemma 8.8.2

Γτβγ = −2πidβδ
β
γ ,

= dβc
τβ
γ .

Then,

cβ0γ = δβγ .

Computing

∂0 • ∂γ = cβ0γ∂β = ∂γ .

Lemma proved.

Lemma 8.11.5. The algebra defined in lemma 8.11.3 is associative and semisimple.
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Proof. Recall that the Christoffel symbol Γαβγ is proportional to the structure constant of

the algebra defined in lemma 8.11.3 for β 6= vn+1, τ

Γαβγ = dβc
αβ
γ .

Then, using (4.59), we obtain

(8.230) Γαβσ Γσγε = Γαγσ Γσβε

Substituting (8.228) in (8.230), we have

cαβσ cσγε = cαγσ cσβε , for β, γ 6= vn+1, τ.

If β = τ ,

cατσ cσγε = −2πiδασ c
σγ
ε

= −2πicαγε

= −2πiδσε c
αγ
σ

= cαγσ cστε .

In order to prove the associativity for β = vn+1, note that the multiplication by the Euler vector

field is almost the same of the intersection form g∗. Indeed,

E • ∂α = tσcβσα∂β = tσ∂σ

(
ηβµ∂α∂µF

)
∂β =

= (dα − dβ)ηβµ∂α∂µF∂β = ηαµg
µβ∂β

(8.231)

Then,

Eσcαβσ = gαβ.(8.232)

Using the relation (8.232) in the coordinates (u1, u2, ..., un+2), we have

(8.233) uiηijδij = ulηimηjnclmn,

differentiating both side of the equation (8.233) with respect t1

(8.234) ckij = δij ,

which proves that the algebra is associative and semisimple.

Recall of the covering space of the orbit space of J (Ãn) defined in (8.145), see section 8.7

for details.

Theorem 8.11.6. The covering ˜C⊕ Cn ⊕H/J (Ãn) with the intersection form (8.36), unit

vector field (8.187), and Euler vector field (8.177) has a Dubrovin Frobenius manifold structure.
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Proof. The function (8.207) satisfy a WDVV equation due to the lemmas 8.11.2, 8.11.3,

8.11.4, 8.11.5.

Taking the same covering taking in the orbit space of J (Ãn) in the Hurwitz space H1,n−1,0,

fixing a symplectic base of cycle, a chamber in the tori where the variable vn+1 lives, and

branching root of ϕn, denoting this covering by

(8.235) H̃1,n−1,0,

we obtain

Theorem 8.11.7. The Dubrovin Frobenius structure of the covering space ˜C⊕ Cn ⊕H/J (Ãn)

is isomorphic as Dubrovin Frobenius manifold to the covering H̃1,n−1,0.

Proof. Both the orbit space J (Ãn) and the Hurwitz space H1,n−1,0 has the same inter-

section form, Euler vector, unit vector field due to proposition 8.10.4, lemma 8.10.2 and 8.10.3

From this data, one can reconstruct the WDVV solution by using the relation

(8.236) Fαβ = ηαα
′
ηββ

′ ∂2F

∂tα′∂tβ′
=

gαβ

deggαβ
.

Theorem proved.
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