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Shafqat Ali∗1, 2, Francesco Ballarin†1, and Gianluigi Rozza‡1

1mathLab, Mathematics area, SISSA, via Bonomea 265, I-34136, Trieste, Italy
2Current address: Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and
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Abstract

It is well known in the Reduced Basis approximation of saddle point problems that
the Galerkin projection on the reduced space does not guarantee the inf-sup approxima-
tion stability even if a stable high fidelity method was used to generate snapshots. For
problems in computational fluid dynamics, the lack of inf-sup stability is reflected by the
inability to accurately approximate the pressure field. In this context, inf-sup stability is
usually recovered through the enrichment of the velocity space with suitable supremizer
functions. The main goal of this work is to propose an alternative approach, which relies
on the residual based stabilization techniques customarily employed in the Finite Element
literature, such as Brezzi-Pitkaranta, Franca-Hughes, streamline upwind Petrov-Galerkin,
Galerkin Least Square. In the spirit of offline-online reduced basis computational split-
ting, two such options are proposed, namely offline-only stabilization and offline-online
stabilization. These approaches are then compared to (and combined with) the state of
the art supremizer enrichment approach. Numerical results are discussed, highlighting
that the proposed methodology allows to obtain smaller reduced basis spaces (i.e., ne-
glecting supremizer enrichment) for which a modified inf-sup stability is still preserved at
the reduced order level.

Keywords: reduced basis method, offline-online stabilization, RB inf-sup stability

1 Introduction

Numerical approximation of fluid dynamics problems (modelled by incompressible Stokes and
Navier-Stokes equations) is required by several applications in mechanics and engineering, often
depending on some parameters. In case of repeated evaluation for different parametric config-
urations, the Reduced Basis (RB) method [23] offers attractive performance, able to cut down
computational costs of standard Finite Element (FE) [41] simulations. In the context of fluid
dynamics problems, formulations based on a Galerkin projection, such as FE and RB, require
the fulfillment of a discrete inf-sup condition [8]. While several choices of suitable discrete
spaces for the velocity and pressure are well known at the FE level [8, 41], the corresponding
RB formulation still deserves investigation, even after more than a decade from the original
supremizer enrichment proposal [43, 42, 46]. This approach consists in the introduction of the
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inner pressure supremizer for the velocity-pressure stability of the RB spaces. Several works
on RB method for Stokes problem [35, 45] were developed subsequently using the pressure
stabilization via the inner pressure supremizer operator. This approach was then extended to
Navier-Stokes problems as well [15, 17, 34, 52, 4].

However, even though nowadays the supremizer enrichment approach is widely used in the
RB community, it still carries the side effect of increasing the RB velocity space, resulting in
a possible increase in the online computational time. Therefore, in this work we look for an
alternative approach which does not entail an enrichment procedure, yet results in a stable RB
approximation.

The stabilization approach developed in this work builds upon classical residual based stabi-
lization techniques [25, 12, 26, 11, 18, 53] already known for FE methods, and properly adapted
to a reduced order setting in this work. Such stabilization techniques have been employed to
handle two sources of instabilities. The first one (which motivates our work) is the incom-
patibility of velocity and pressure FE pairs. Another possible instability is due to dominating
advection for problems characterized by large Reynolds numbers. In this work we will only
focus on the inf-sup stability issue, referring to [36, 21, 1, 3, 51] for reduced order methods for
advection dominated problems.

The idea of combining stabilization techniques to model reduction methods follows the work
of Pacciarini and Rozza [36] and Torlo et al. [51] for advection-dominated problem, where they
introduced the concept of offline-online stabilization and the offline-only stabilization. The
main novelty here is the comparison and combination to the supremizer approach by Rozza
et al. [46], as both methodologies aim at preserving the inf-sup stability of the reduced order
system. As in [36, 38, 37], the offline-online stabilization method is based on performing the
Galerkin projection with respect to the stabilized formulation in both offline and online stages.
In contrast, the offline-only stabilization consists in using the stabilized formulation only during
the offline stage, while projecting with respect to the standard formulation during the online
stage.

We refer to some related works in recent past on the stabilization of reduced order models,
mostly based on POD, see for instance Baiges et al. [2, 1], Caiazzo et al. [14] and Løvgren et
al. [16]. The difference in our approach with respect to previous works is that the stabilization
approach we are using is residual based and is a strongly consistent stabilization.

This manuscript is mainly divided into two parts, with the focus on steady Stokes problem
in first part and steady Navier-Stokes problem in second part, respectively. After this intro-
duction, in section 2, we present FE and RB approximation for the steady Stokes problem in a
parametrized domain, with a particular focus on the introduction of residual based stabilization
techniques in the formulation. In section 3 we show some numerical results and error analysis
to compare different stabilization options. In the second part, section 4 shows FE and RB
discretizations for the steady Navier-Stokes problem. Afterwards, in section 5 we show some
numerical results on a benchmark case, addressing the performance (in terms of cost and accu-
racy) of different stabilization approaches presented. Finally some conclusions and perspectives
are provided in section 6.
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2 Parametrized steady Stokes problem

The steady Stokes problem in a two-dimensional parametrized domain Ωo(µ) ⊂ R2 read as:
find uo(µ) : Ωo(µ)→ R2 and po(µ) : Ωo(µ)→ R2 such that

−ν(µ)∆uo(µ) +∇po(µ) = 0 in Ωo(µ),

div uo(µ) = 0 in Ωo(µ),

uo(µ) = gD(µ) on ΓD,o(µ),

uo(µ) = 0, on ΓW,o(µ),

(1)

where uo(µ) is the unknown velocity and po(µ) is the unknown pressure, ν(µ) is the viscosity of
fluid. These quantities, as well as the domain Ωo(µ), may depend on a parameter µ ∈ P which
accounts for parametrized physical properties or geometrical configurations. The boundary
∂Ωo(µ) is divided into two parts in such a way that ∂Ωo(µ) = ΓD,o(µ) ∪ ΓW,o(µ), where
ΓD,o(µ) is the Dirichlet boundary with non-homogeneous data and ΓW,o(µ) denotes the Dirichlet
boundary with zero data (i.e., walls).

In order to write the weak formulation of problem (1), we introduce a reference domain,
i.e. a µ-independent configuration Ω by assuming that each parametrized domain Ωo(µ) can
be obtained as the image of µ-independent domain Ω through a parametrized map T (.;µ) :
R2 → R2, i.e. Ωo(µ) = T (Ω;µ).

Now the weak formulation of (1) can be obtained by multiplying with the velocity, pressure
test functions and using integration by parts; then by tracing everything back onto the reference
domain Ω, we have the following parametrized weak formulation of problem (1):

Find u(µ) ∈ V , p(µ) ∈ Q :

a(u(µ),v;µ) + b(v, p(µ);µ) = F (v;µ) ∀ v ∈ V ,
b(u(µ), q;µ) = G(q;µ) ∀ q ∈ Q,

(2)

where V = [H1
0 (Ω)]2 and Q = L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω
q = 0}. Bilinear forms related to

diffusion and pressure-divergence operators are defined as:

a(u,v;µ) =

∫
Ω

∂u

∂xi
κij(x;µ)

∂v

∂xj
dx, b(v, q;µ) = −

∫
Ω

qχij(x;µ)
∂vj
∂xi

dx. (3)

The transformation tensors for bilinear viscous and pressure divergence terms in (3) are defined
as follows [4]:

κ(x;µ) = ν(µ)(JT (x;µ))−1(JT (x;µ))−T |JT (x;µ)|,
χ(x;µ) = (JT (x;µ))−1|JT (x;µ)|,

(4)

where |JT | is the determinant of the Jacobian matrix JT ∈ R2×2 of the map T (.;µ). F and G
are terms due to non-homogeneous Dirichlet boundary condition on the boundary are defined
as:

F (v;µ) = −a(l(µ),v;µ),

G(q;µ) = −b(l(µ), q;µ),
(5)

where we denote by l(µ) a parametrized lifting function such that l(µ)|ΓDg
= gD(µ).
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2.1 Finite Element formulation

For a given parameter µ ∈ P, the Galerkin-FE approximation of the parametrized Stokes
problem (2) reads as follows:

Find uh(µ) ∈ V h, ph(µ) ∈ Qh :

a(uh(µ),vh;µ) + b(vh, ph(µ);µ) = F (vh;µ) ∀vh ∈ V h,

b(uh(µ), qh;µ) = G(qh;µ) ∀ qh ∈ Qh,

(6)

where V h and Qh are finite dimensional subspaces of V and Q of dimension Nu and Np,
respectively with h related to the computational mesh size. When dealing with saddle point
formulations it is well known that V h and Qh should be judiciously chosen [41]; we will get
back to this point at the end of this subsection.

Let {φhi }Nu
i=1 and {ψhj }

Np

j=1 be basis functions of V h and Qh respectively. We introduce the
matrices A(µ) ∈ RNu×Nu and B(µ) ∈ RNp×Nu whose entries are

(A(µ))ij = a(φhj ,φ
h
i ;µ), (B(µ))ki = b(φhi , ψ

h
k ;µ), for 1 ≤ i, j ≤ Nu, 1 ≤ k ≤ Np, (7)

and the algebraic form of discrete problem (6) problem reads[
A(µ) BT (µ)
B(µ) 0

] [
U(µ)
P (µ)

]
=

[
f̄(µ)
ḡ(µ)

]
(8)

for the vectors U = (u
(1)
h , ..., u

(Nu)
h )T ,P = (p

(1)
h , ..., p

(Np)
h )T such that uh =

∑Nu

i=1 u
(i)
h φ

h
i and

ph =
∑Np

j=1 p
(j)
h ψhj , where for 1 ≤ i ≤ Nu and 1 ≤ k ≤ Np:

(f̄(µ))i = −a(lh,φ
h
i ;µ), (ḡ(µ))k = −b(lh, ψhk ;µ), (9)

with lh = lh(µ), l(µ) in (2) is discretized by the FE interpolant. For the sake of the subsequent
reduction procedure, affine parametric dependence is assumed for operators in (8) [23]:

A(µ) =

Qa∑
q=1

Θa
q(µ)Aq, B(µ) =

Qb∑
q=1

Θb
q(µ)Bq,

f̄(µ) =

Qf∑
q=1

Θf
q (µ)f̄

q
, ḡ(µ) =

Qg∑
q=1

Θg
q(µ)ḡq.

(10)

Finally, coming back to the choice of the FE pairs, the FE spaces V h and Qh have to fulfill
the following parametrized version of the inf-sup condition [41]:

∃β0(µ) > 0 : βh(µ) = inf
qh∈Qh

sup
vh∈V h

b(vh, qh;µ)

‖vh‖V h
‖qh‖Qh

≥ β0(µ) ∀µ ∈ P. (11)

This relation holds if, e.g., the Taylor-Hood (P2/P1) FE spaces are chosen. Condition (11) does
not hold in case of equal order FE spaces (Pk/Pk), k ≥ 1 and for lowest order element (P1/P0).
To handle these cases, a stabilized formulation is introduced as in the following.

2.2 Stabilized Finite Element formulation

When the finite dimensional spaces V h and Qh do not satisfy the inf-sup stability condition
(11), then in order to avoid possible spurious pressure modes the use of a stabilized formulation,
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introduced in [25, 12, 26, 11, 18, 53], is nowadays widespread in the FE community. This
amounts to modifying (6) as

Find uh(µ) ∈ V h, ph(µ) ∈ Qh :

a(uh(µ),vh;µ) + b(vh, ph(µ);µ)− su,vh (uh,vh;µ)− sp,vh (ph,vh;µ) = F (vh;µ) ∀vh ∈ V h,

b(uh(µ), qh;µ)− su,qh (uh, qh;µ)− sp,qh (ph, qh;µ) = G(qh;µ) ∀ qh ∈ Qh,

(12)
where su,vh (., .;µ), sp,vh (., .;µ), su,qh (., .;µ) and sp,qh (., .;µ) are the stabilization terms [41]. Fol-
lowing a strongly consistent residual based approach, these stabilization terms are defined as

su,vh (uh,vh;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uh,−ρν∆vh), (13)

sp,vh (ph,vh;µ) := δ
∑
K

h2
K

∫
K

(∇ph,−ρν∆vh), (14)

su,qh (uh, qh;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uh,∇qh), (15)

and

sp,qh (ph, qh;µ) := δ
∑
K

h2
K

∫
K

(∇ph,∇qh), (16)

where K is an element of the triangulation of the reference domain Ω, hK is the diameter of
element K, δ is the stabilization coefficient assumed to be constant. For ρ = 0, 1,−1, the
method (13)-(16) is respectively known as the pressure-poisson stabilized Galerkin (Franca-
Hughes) [25], Galerkin least-squares (GALS) [24], Douglas-Wang (DW) [18]. In case of linear
interpolation for velocity and pressure (P1/P1) the Laplacian term −ν∆uh inside the stabi-
lization vanishes and all above choices reduce to Brezzi-Pitkäranta stabilization [10], written
as

su,vh (uh,vh;µ) = sp,vh (ph,vh;µ) = su,qh (uh, qh;µ) := 0, sp,qh (ph, qh;µ) := δ
∑
K

h2
K

∫
K

∇ph·∇qh.

(17)
Further possible stabilization options are available, see e.g. [41, chapter 9] and references
therein. Dependence of these stabilization terms on parameter µ is motivated by the depen-
dence through the parametrized solution. Further dependence on µ might be warranted for
the stabilization coefficient δ (see e.g. numerical test cases in [51] for the case of geometrical
parametrization). In particular, it is often proposed in the FE literature (see e.g. [27]) that
the stabilization coefficient depends nonlinearly on the solution. For the sake of guaranteeing
affine dependence on the stabilization terms, here we assume instead δ to be a constant, with
no noticeable deterioration in the numerical results provided that the stabilization coefficient δ
has been properly chosen. It cannot be too small otherwise the stabilization will be poor and
spurious modes will not be eliminated, while a large value of parameter δ could result in a poor
approximation for the pressure field near to the boundary. Beyond this, if needed, parameter
and solution dependent stabilization coefficient could be dealt with the empirical interpolation
method [6].

For the sake of exposition, in this work we will only focus on the stabilization option
corresponding to ρ = 0 (Franca-Hughes) [25], i.e, the stabilization terms (13) and (14) are not
taken into account.

After adding the stabilization terms into the system (8), the stabilized algebraic formulation
reads [

A(µ) BT (µ)

B̃(µ) −S(µ)

] [
U(µ)
P (µ)

]
=

[
f̄(µ)
ḡ(µ)

]
, (18)
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where B̃(µ) and S(µ) contains the effects of stabilization and defined as follows:(
B̃(µ)

)
ki

= b(φhi , ψ
h
k ;µ)+su,qh (φhi , ψ

h
k ;µ), (S(µ))ij = sp,qh (ψhj , ψ

h
i ;µ), for 1 ≤ i, j ≤ Nu, 1 ≤ k ≤ Np,

(19)
The motivation to choose a strongly consistent residual based method is, it improve the

stability of Galerkin FE method without compromising the consistency. This choice also allows
the stabilized formulation to fulfill a modified version of (11) with a supplementary terms
[8, 13, 7]. Indeed, e.g. for the Brezzi-Pitkäranta method, the stabilized formulation requires
the FE spaces to fulfill the following modified inf-sup condition

∃β0(µ) > 0 : sup
vh∈V h

b(vh, qh;µ)

‖∇vh‖
+ sp,qh (qh, qh;µ)1/2 ≥ β0(µ)‖qh‖,∀qh ∈ Qh, (20)

This condition is a crucial motivation of our work, and will be adapted to the reduced order
system in subsection 2.4.

2.3 Reduced Basis formulation

In this section we present the RB formulation of steady Stokes problem. The RB method
seeks the approximation of FE solution to (6). In first step we construct a set of global basis
functions. Let µ1, ...,µN be a set of snapshot parameter values chosen by greedy algorithm
[45]. We denote by uh(µ

n) and ph(µ
n), n = 1, . . . , N , the corresponding snapshot solutions

for the velocity and pressure. The snapshot solutions are obtained as solutions of a stable FE
formulation of (6). As our focus (especially in the nonlinear case in the second part of the work)
is not on the certification of the reduced model, during the greedy iterations we rely on an error
indicator based on the residual, rather than a certified error bound [23, 20] which would need to
be properly extended to the stabilized case. Nonetheless, the availability of error bounds does
not affect the presentation of the rest of the methodology described in this paper. At the end
of the greedy procedure, we obtain the reduced velocity space V N ⊂ V h and reduced pressure
space QN ⊂ Qh, respectively as:

V N = span {uh(µn), 1 ≤ n ≤ Nu} , (21)

and
QN = span {ph(µn), 1 ≤ n ≤ Np} , (22)

where Nu = Np = N are the dimensions of RB velocity space V N and RB pressure space QN ,
respectively. Applying the Gram-Schmidt orthogonalization process on the snapshots [23], we

denote by {ξun}Nu
n=1 and {ξpn}

Np

n=1 mutually orthonormal functions obtained from velocity and
pressure snapshots, respectively, which we are going to use as basis functions for the reduced
spaces instead of the snapshots.

As well known in the RB community, it is important to point out that, even when the spaces
V N and QN are obtained collecting snapshots from a stable full order model from section 2.1, a
Galerkin projection over the reduced spaces does not guarantee the fulfillment of the following
reduced inf-sup condition:

∃β0,N(µ) > 0 : βN(µ) = inf
qN∈QN

sup
vN∈V N

b(vN , qN ;µ)

‖vN‖V N
‖qN‖QN

≥ β0,N(µ) ∀µ ∈ P. (23)

Indeed, following [46] the usual reduced order methodology relies on the enrichment of the RB
velocity space with supremizer solutions. Even though several variants have been discussed in
literature [46, 42, 43], for the sake of exposition we will focus only on the so-called approximate
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supremizer enrichment. This approach requires the introduction of the supremizer operator
Tµ : Qh → V h defined as follows:

(Tµqh,vh)V = b(vh, qh;µ), ∀v ∈ V h. (24)

which is evaluated for µ = µn and the corresponding pressure snapshot qh := ph(µ
n), n =

1, . . . , N , to obtain N supremizer snapshots. Afterwards, the RB velocity space V N is enriched
with the supremizer snapshots. We denote the enriched RB velocity space by Ṽ N , defined as:

Ṽ N = span
{
uh(µ

n), 1 ≤ n ≤ Nu;T
µn

ph(µ
n), 1 ≤ n ≤ Ns

}
, (25)

where Ns ≤ Np denotes the number of supremizer snapshots. The dimension of Ṽ N will
thus be Nu + Ns; in order to keep the notations simple, in the following we will always take
Nu = Ns = Np = N . Now the RB formulation corresponding to FE problem (6) can be written
as: 

Find uN(µ) ∈ Ṽ N , pN(µ)) ∈ QN :

a(uN(µ),vN ;µ) + b(vN , pN(µ)) = F (vN ;µ) ∀vN ∈ Ṽ N ,

b(uN(µ), qN ;µ) = G(qN ;µ) ∀ qN ∈ QN .

(26)

The solution (uN(µ), pN(µ)) ∈ Ṽ N ×QN of (26) can be expressed as a linear combination of
the basis functions:

uN(µ) =
2N∑
n=1

UN,n(µ)ξun, pN(µ) =
N∑
n=1

PN,n(µ)ξpn, (27)

where UN(µ) = [UN,n(µ)]Nu
n=1 and PN(µ) = [PN,n(µ)]

Np

n=1 denote the vector of coefficients of
the reduced basis approximation for velocity and pressure. Finally, we write the system in
compact form as [

AN(µ) BT
N(µ)

BN(µ) 0

] [
UN(µ)
PN(µ)

]
=

[
f̄N(µ)
ḡN(µ)

]
, (28)

where the RB tensors are computed as

AN(µ) = ZT
u,sA(µ)Zu,s, BN(µ) = ZT

p B(µ)Zu,s,

f̄N(µ) = ZT
u,sf̄(µ), ḡN(µ) = ZT

p ḡ(µ),
(29)

being Zu,s ∈ RNu×Nu,s and Zp ∈ RNp×Np rectangular matrices that contain the FE degrees of
freedom of the basis of Ṽ N and QN , respectively.

2.4 Stabilized Reduced Basis formulation

We introduce now the stabilized Reduced Basis model derived from the stabilized FE problem
(12). During the offline phase, the computation of the reduced spaces is done in section 2.3,
resulting in a reduced velocity space V N , enriched reduced velocity space Ṽ N , and reduced
pressure space QN . During the online stage, the stabilized RB problem reads

Find uN(µ) ∈ V N , pN(µ) ∈ QN :

a(uN(µ),vN ;µ) + b(vN , pN(µ);µ)− su,vN (uN ,vN ;µ)− sp,vN (pN ,vN ;µ) = F (vN ;µ) ∀vN ∈ V N ,

b(uN(µ), qN ;µ)− su,qN (uN , qN ;µ)− sp,qN (pN , qN ;µ) = G(qN ;µ) ∀ qN ∈ QN ,

(30)

7



where su,vN (., .;µ), sp,vN (., .;µ), su,qN (., .;µ) and sp,qN (., .;µ) are the reduced order stabilization terms
defined as

su,vN (uN ,vN ;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uN ,−ρν∆vN), (31)

sp,vN (ph,vN ;µ) := δ
∑
K

h2
K

∫
K

(∇pN ,−ρν∆vN), (32)

su,qN (uN , qN ;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uN ,∇qN), (33)

and

sp,qN (pN , qN ;µ) := δ
∑
K

h2
K

∫
K

(∇pN ,∇qN), (34)

In a similar way, one could seek solutions in the enriched velocity space by replacing V N with
Ṽ N in (30). With slight abuse of notation, we will keep denoting by (uN(µ), pN(µ)) solutions
to either (26) and (30), as it will be clear from the context to which RB formulation we will
refer to. The corresponding algebraic formulation reads[

AN(µ) BT
N(µ)

B̃N(µ) −SN(µ)

] [
UN(µ)
PN(µ)

]
=

[
f̄N(µ)
ḡN(µ)

]
, (35)

where B̃N(µ) and SN(µ) are RB stabilization matrices defined as:

B̃N(µ) = ZT
p B̃(µ)Zu,s, SN(µ) = ZT

p S(µ)Zp, (36)

To further present our methodology, we also define the reduced order version of modified inf-sup
condition (20) as:

∃β0,N(µ) > 0 : sup
vN∈V N

b(vN , qN ;µ)

‖∇vN‖
+ sp,qN (qN , qN ;µ)1/2 ≥ β0,N(µ)‖qN‖,∀qN ∈ QN , (37)

where sp,qN (., .;µ) is due to the addition of stabilization terms in RB formulation. It is now clear
that the two addend on the left-hand side can contribute in different ways to the overall inf-sup
stability of the reduced problem. In particular, one could either increase the first term by
replacing V N with Ṽ N , thus exploiting the existing supremizer enrichment procedure, or rely
on the contribution of the second term due to the underlying FE residual based stabilization,
or both. Overall, this results in the following four different combinations:

(i) the first option is to increase both the first addend, through RB velocity space enrich-
ment with supremizer solutions, and the second addend as well, through residual based
stabilization. Thus, during the online stage we will solve (30), upon replacing V N with
Ṽ N . As the residual based stabilization terms are present both offline and online, we
will call this methodology offline-online stabilization in agreement with the denomination
introduced in [36]. Furthermore, as supremizer enrichment is performed, we will denote
this option by offline-online stabilization with supremizer;

(ii) as a second option, we do not enrich the RB velocity space with supremizer solutions,
yet we still rely on the residual based stabilization during the online phase. Thus, during
the online stage, we solve (30). When compared to (i), this option seems attractive in
terms of CPU time because it decreases the dimensionality of the velocity space, result-
ing in possible larger speedups. We call this option offline-online stabilization without
supremizer;
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(iii) the third option is to enrich the RB velocity space with supremizer solutions and neglect
stabilization during the online phase. Thus, online we end up solving (26). If compared
to (i), this option seems attractive in perspective for cases where the stabilization co-
efficient δ depends nonlinearly on the solution, and an accurate approximation of the
stabilization terms would require preprocessing through EIM. We denote this case with
offline-only stabilization with supremizer, the first part of the name underlining the fact
that stabilization is applied only offline;

(iv) a fourth (fictitious) option could be to completely avoid both supremizer enrichment
and residual based stabilization. We would call this option as offline-only stabilization
without supremizer. It is clear, however, that this methodology would hardly grant a
positive reduced inf-sup constant, as neither stabilizing contributions are enabled. For
this reason, results for this case are not reported in numerical results presented in this
paper.

In the following, we employ equal order FE spaces (Pk/Pk), k ≥ 1 during the offline stage.
We remark that, during this stage, reduced solutions required by the greedy algorithm are
computed via option (i). Indeed, the consistency of the offline-online stabilization is necessary
to ensure that the same parameter will not be selected twice by the greedy algorithm. In
contrast, during the online stage we study the performance of options (i)-(iii).

3 Numerical results and discussion for parametrized Stokes

problems

In this section, we present some numerical results for stabilized reduced order model for steady
Stokes problem developed in section 2. Numerical simulations are carried out in FreeFem++
[22], and also with RBniCS [5] for comparison.

As a test case we consider the parametrized cavity flow problem [25]. We set the parametrized
domain Ωo(µ) = (0, 1 + µ2) × (0, 1), where we define µ = (µ1, µ2) such that µ1 is a physical
parameter (kinematic viscosity of fluid) and µ2 is a geometrical parameter (length of domain).
The parametrized domain is shown in Fig. 1, along with the partition ΓD,o(µ) ∪ ΓW,o(µ) of its
boundary ∂Ω; unit horizontal velocity is imposed on the side ΓD,o(µ).

Figure 1: Parametrized domain.
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3.1 Numerical results for Pk/Pk for k = 1, 2

Since a stabilized FE formulation is used, we need not to employ Taylor-Hood elements, rather
we can rely on equal order velocity-pressure FE pairs. The results in this section are obtained
for Pk/Pk for k = 1, 2. The case k = 1 is attractive in the FE context as it allows to employ
the lowest order continuous FE spaces for both velocity and pressure. However, unless suitable
gradient recovery techniques are used, all the various residual based stabilization techniques
(13)-(15) coincide with the simplest Brezzi-Pitkäranta stabilization (17) when using lowest order
elements. Therefore, in order to test the applicability of the Franca-Hughes stabilization we
also provide results for k = 2. Details of the problem and computational costs are summarized
in Table 1.

In Fig. 2 we show a comparison between the FE velocity solution and the RB solutions
obtained for three different options (i)-(iii), for (µ1, µ2) = (0.6, 2). These plots are shown
in the P2/P2 case, and the corresponding plots for the P1/P1 pair hardly look any different.
From Fig. 2, we see that the RB velocity and pressure solutions obtained by using the offline-
online stabilization with/without supremizer looks similar to the FE solution. However, the
RB solutions obtained by the offline-only stabilization is poor, in particular pressure solution
is highly oscillatory.

In order to see a more quantitive comparison between the offline-online stabilization with/without
supremizer and offline-only stabilization with supremizer we report next the results of an error
analysis, starting from the P1/P1 FE pair with δ = 0.05. These results show that offline-online
stabilization result in the most accurate methods, while offline-only stabilization is inaccurate.
We also see that the enrichment of supremizer together with offline-online stabilization is ben-
eficial for the pressure approximation, improving results by more than an order of magnitude,
while has negigible effect on the velocity.

Figures 4 and 5 are plotted to see the error comparison for velocity and pressure, respectivley
using Franca-Hughes stabilization (15) for P2/P2 FE pair and by varying the stabilization
coefficient δ = 0.5, 0.05. If we compare these results with previous results obtained for the
P1/P1 case, we see that Franca-Hughes stabilization is able to perform comparably between
the cases of offline-online stabilization with and without supremizer, even for the pressure
approximation. Therefore, we conclude that when we use Franca-Hughes stabilization with
P2/P2 FE pair, there is no need to enrich the RB velocity space with supremizer solutions.
In this way we can reduce also the online computational cost by decreasing the dimension of
reduced velocity space (see Table 1). Furthermore, the results for different values of δ show the
robustness of the methodology when varying the stabilization coefficient.
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Physical parameter µ1 (fluid viscosity)
Geometrical parameter µ2 (horizontal length of domain)
Range of µ1 [0.25,0.75]
Range of µ2 [1,3]
µ1 online 0.6
µ2 online 2

FE degrees of freedom
6222 (P1/P1)
10935 (P2/P2)

RB dimension Nu = Ns = Np = 20
Computation time (P2/P1) 260s (offline), 12s (online) with supremizer

Offline time (P1/P1)
180s (offline-online stabilization with supremizer)
130s (offline-online stabilization without supremizer)
105s (offline-only stabilization with supremizer)

Offline time (P2/P2)
348s (offline-online stabilization with supremizer)
309s (offline-online stabilization without supremizer)
280s (offline-only stabilization with supremizer)

Online time (P1/P1)
10s (offline-online stabilization with supremizer)
8s (offline-online stabilization without supremizer)
7s (offline-only stabilization with supremizer)

Online time (P2/P2)
15s (offline-online stabilization with supremizer)
13s (offline-online stabilization without supremizer)
10s (offline-only stabilization with supremizer)

Table 1: Stokes problem: Computational details for physical and geometrical parameters.
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(a) FE Velocity (b) FE Pressure

(c) RB Velocity: offline-online stabilization with
supremizer

(d) RB Pressure: offline-online stabilization
with supremizer

(e) RB Velocity: offline-online stabilization
without supremizer

(f) RB Pressure: offline-online stabilization
without supremizer

(g) RB Velocity: offline-only supremizer (h) RB Pressure: offline-only supremizer

Figure 2: Stokes problem: FE and RB solutions for velocity and pressure at (µ1, µ2) = (0.6, 2);
Nu = Np = 20 and using P2/P2.

From these results it is clear that there is a trade-off between increasing by supremizers
reduced basis velocity spaces and improving accuracy of results.
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Figure 3: Stokes problem: Brezzi-Pitkaranta stabilization on cavity flow; Velocity (left) and
pressure (right) error comparison between the offline-online stabilization with/without suprem-
izer and offline-only stabilization with supremizer using P1/P1; stabilization coefficient δ = 0.05;
Nu = Np = Ns = 20.

Figure 4: Stokes problem: Franca-Hughes stabilization on cavity flow; Velocity error compar-
ison between the offline-online stabilization with/without supremizer and offline-only stabiliza-
tion with supremizer using P2/P2; stabilization coefficient δ = 0.05, 0.5; Nu = Np = Ns = 20.
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Figure 5: Stokes problem: Franca-Hughes stabilization on cavity flow; Pressure error compar-
ison between the offline-online stabilization with/without supremizer and offline-only stabiliza-
tion with supremizer using P2/P2; stabilization coefficient δ = 0.05, 0.5; Nu = Np = Ns = 20.

3.2 Numerical results for P1/P0

In this section we discuss the solution of steady parametrized Stokes problem using the FE
pair given by P1 approximation for velocity and discontinuous P0 discretization for pressure.
We present this case to show that the proposed methodology is applicable to any type of
stabilization, and not necessarily residual based. Indeed, for P1/P0, both (13)-(15) vanish; one
can alternatively resort to [41]:

sp,qh (qh;µ) := δ
∑
σ∈Γh

hσ

∫
σ

[ph]σ [qh]σ (38)

where Γh is the set of all edges σ of the triangulation except for those belonging to the boundary
∂Ω, hσ is the length of σ and [qh]σ denotes its jump across σ.

In Fig. 6 we show some snapshots for velocity and pressure fields using stabilized FE method
and stabilized RB method. From these solution plots we conclude that we are able to recover
a good qualitative approximation of FE solution at reduced order level using the offline-online
stabilization without supremizers, whereas the offline-only stabilization is not enough to recover
FE approximation.
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(a) FE Velocity (b) FE Pressure

(c) RB Velocity: offline-online stabilization
without supremizers

(d) RB Pressure: offline-online stabilization
without supremizers

(e) RB Velocity: offline-only stabilization with
supremizers

(f) RB Pressure: offline-only stabilization with
supremizers

Figure 6: Stokes problem: FE and RB solutions for velocity and pressure at (µ1, µ2) = (0.6, 2);
Nu = Np = 20 and using P1/P0.

In Figs. 7 we plot the comparison between offline-online stabilization with/without suprem-
izer and offline-only stabilization with supremizer for velocity and pressure, respectively for
P1/P0. These comparison shows that the offline-online stabilization results in the most accu-
rate method, and that the addition of supremizer to velocity space is not necessary for pressure
recovery. Indeed, a good approximation of pressure is obtained even without the supremizer,
and the enrichment accounts for a further improvement of only one order of magnitude.
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Figure 7: Stokes problem: Stabilization with P1/P0 on cavity flow: Velocity (left) and pressure
(right) error between FE solution and RB solution for different possible options.

3.3 Numerical results for stable P2/P1

Just for completeness, here we plot a comparison between the FE solution and RB solution for
velocity and pressure in Fig. 8 using stable FE pair P2/P1 [46]. We compare results with and
without supremizer and conclude that supremizer is necessary to enrich the RB velocity space.
In this case we are not using any stabilization method, therefore we need supremizer to fulfill
reduced inf-sup condition.

Figure 8: Stokes problem: Error between FE and RB solutions for velocity (left) and pressure
(right) with/without supremizer using P2/P1.
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4 Parametrized Steady Navier-Stokes problem

Let us now consider the steady incompressible Navier-Stokes equations in a parametrized do-
main Ωo(µ) ⊂ R2. The continuous parametrized formulation read as follows: find uo(µ) :
Ωo(µ)→ R2 and po(µ) : Ωo(µ)→ R2 such that

−ν(µ)∆uo(µ) + (uo(µ) · ∇)uo(µ) +∇po(µ) = 0 in Ωo(µ),

div uo(µ) = 0 in Ωo(µ),

uo(µ) = gD(µ) on ΓD,o(µ),

uo(µ) = 0, on ΓW,o(µ),

(39)

where the parameter, unknowns, coefficients and boundaries have the same meaning as in the
Stokes case (1). For the sake of the numerical test cases, we introduced the Reynolds number
defined as Re(µ) = L(µ)|ū(µ)|/ν(µ), being L(µ) a characteristic length of the parametrized
domain, ū(µ) a typical flow velocity and ν(µ) the kinematic viscosity.

The weak formulation of problem (39) can be obtained, as in section 2, with the aid of a
reference domain Ω, on which function spaces V and Q are defined, as in section 2. Proceeding
as in the Stokes case, we have the following parametrized weak formulation of problem (39):

Find u(µ) ∈ V , p(µ) ∈ Q :

a(u(µ),v;µ) + b(v, p(µ);µ) + c(u(µ),u(µ),v;µ) + d(u(µ),v;µ) = F (v;µ) ∀ v ∈ V ,
b(u(µ), q;µ) = G(q;µ) ∀ q ∈ Q,

(40)
where a(u,v;µ), b(v, q;µ) are the bilinear forms related to diffusion and pressure-divergence
operators, respectively defined in (3), whereas the trilinear form related to the convective term
is defined as:

c(u,v,w;µ) =

∫
Ω

uiχji(x;µ)
∂vm
∂xj

wmdx. (41)

Other terms appearing due to the lifting of Dirichlet boundary conditions are defined as

d(u,v;µ) = c(l(µ),u,v;µ) + c(u, l(µ),v;µ),

F (v;µ) = −a(l(µ),v,µ)− c(l(µ), l(µ),v;µ),

G(q;µ) = −b(l(µ), q;µ),

(42)

being l(µ) a parametrized lifting function as in section 2.

4.1 Finite Element formulation

In order to write the Galerkin-FE formulation for (40), we first need to introduce two finite-
dimensional subspaces V h ⊂ V , Qh ⊂ Q of dimension Nu and Np, respectively, as in section
2.1. The Galerkin-FE approximation of the parametrized problem (40) reads as follows:

Find uh(µ) ∈ V h, ph(µ) ∈ Qh :

a(uh(µ),vh;µ) + b(vh, ph(µ);µ) + c(uh(µ),uh(µ),vh;µ)

+d(uh(µ),vh;µ) = F (vh;µ) ∀vh ∈ V h,

b(uh(µ), qh;µ) = G(qh;µ) ∀ qh ∈ Qh,

(43)

where

d(uh(µ),vh;µ) = c(lh(µ),uh,vh;µ) + c(uh, lh(µ),vh;µ),

F (vh;µ) = −a(lh(µ),vh,µ)− c(lh(µ), lh(µ),vh;µ),

G(qh;µ) = −b(lh(µ), qh;µ).

(44)
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Let {φhi }Nu
i=1 and {ψhj }

Np

j=1 be basis functions of V h and Qh respectively. We introduce the
matrices A(µ) ∈ RNu×Nu , C(u(µ);µ) ∈ RNu×Nu , and B(µ) ∈ RNp×Nu whose entries are

(A(µ))ij = a(φhj ,φ
h
i ;µ) + d(φhj ,φ

h
i ;µ), (B(µ))ki = b(φhi ,ψ

h
k;µ),

(C(u(µ);µ))ij =
Nu∑
m=1

umh (µ)c(φhm,φ
h
j ,φ

h
i ;µ), for 1 ≤ i, j ≤ Nu, 1 ≤ k ≤ Np,

(45)

and therefore the nonlinear algebraic system is:[
A(µ) + C(uh(µ);µ) BT (µ)

B(µ) 0

] [
U(µ)
P (µ)

]
=

[
f̄(µ)
ḡ(µ)

]
, (46)

for the vectors of coefficients U = (u
(1)
h , ..., u

(Nu)
h )T ,P = (p

(1)
h , ..., p

(Np)
h )T such that uh =∑Nu

i=1 u
(i)
h φ

h
i and ph =

∑Np

j=1 p
(j)
h ψhj , where for 1 ≤ i ≤ Nu and 1 ≤ k ≤ Np:

(f̄(µ))i = −a(lh,φ
h
i ;µ)− c(lh, lh,φhi ;µ), (ḡ(µ))k = −b(lh,ψh

k;µ), (47)

with lh = lh(µ), the FE interpolant of lifting function. To solve this nonlinear system we use
the Newton method [40].

For an efficient RB method, we need to ensure the assumption of affine parametric depen-
dence on operators (45) and (47), i.e, these operators can be written as:

A(µ) =

Qa∑
q=1

Θa
q(µ)Aq, C(.;µ) =

Qc∑
q=1

Θc
q(µ)Cq(.), B(µ) =

Qb∑
q=1

Θb
q(µ)Bq,

f̄(µ) =

Qf∑
q=1

Θf
q (µ)f̄

q
, ḡ(µ) =

Qg∑
q=1

Θg
q(µ)ḡq.

(48)

4.2 Stabilized Finite Element formulation

In this section we introduce the stabilization terms into the FE formulation of (43). The
stabilized FE formulation of (43) read as:

Find uh(µ) ∈ V h, ph(µ) ∈ Qh :

a(uh(µ),vh;µ) + b(vh, ph(µ);µ) + c(uh(µ),uh(µ),vh;µ)

+d(uh(µ),vh;µ)− su,vh (uh,vh;µ)− sp,vh (ph,vh;µ) = F (vh;µ) ∀vh ∈ V h,

b(uh(µ), qh;µ)− su,qh (uh, qh;µ)− sp,qh (ph, qh;µ) = G(qh;µ) ∀ qh ∈ Qh,

(49)

where su,vh (., .;µ), sp,vh (., .;µ), su,qh (., .;µ) and sp,qh (., .;µ) are the stabilization terms [41] defined
as:

su,vh (uh,vh;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uh + uh · ∇uh,−ρν∆vh),

sp,vh (ph,vh;µ) := δ
∑
K

h2
K

∫
K

(∇ph,−ρν∆vh),

su,qh (uh, qh;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uh + uh · ∇uh,∇qh),

sp,qh (ph, qh;µ) := δ
∑
K

h2
K

∫
K

(∇ph,∇qh),

(50)
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where δ is the stabilization coefficient needs to be chosen properly [31, 9, 32]. For ρ = 0, 1, the
stabilization (50) is respectively known as Streamline Upwind Petrov Galerkin (SUPG) [12],
Galerkin least-squares (GLS) [26]. The case ρ = −1 was studied by Franca and Frey [19].
Several other works on these kind of stabilization techniques can be found in [30, 50, 53, 33]
and references therein.

In this paper we discuss only the SUPG stabilization. Therefore, after adding the SUPG
stabilization terms, the stabilized version of nonlinear system reads as (46):[

A(µ) + C̃(uh(µ);µ) B̃T (µ)

B̃(µ) −SN(µ)

] [
U(µ)
P (µ)

]
=

[
f̄(µ)
ḡ(µ)

]
, (51)

where B̃, includes the the effects of stabilization in mass equation on divergence term, B̃T

includes the effects on pressure gradient and C̃ contains the nonlinear stabilization terms [41].

4.3 Reduced Basis formulation

In this section we present the RB formulation of parametrized Navier-Stokes problem (39)
[39, 29] in a similar way as we have done for the Stokes case. The RB spaces for velocity and
pressure are defined in section 2.3.

Once, we have built the RB for velocity and pressure fields during the offline stage, the RB
formulation corresponding to FE formulation (43) reads as:

Find uN(µ) ∈ Ṽ N , pN(µ)) ∈ QN :

a(uN(µ),vN ;µ) + b(vN , pN(µ);µ) + c(uN(µ),uN(µ),vN ;µ)

+d(uN(µ),vN ;µ) = F (vN ;µ) ∀vN ∈ Ṽ N ,

b(uN(µ), qN ;µ) = G(qN ;µ) ∀ qN ∈ QN .

(52)

Owing to the representation (27), the corresponding nonlinear reduced system[
AN(µ) + CN(u(µ);µ) BT

N(µ)
BN(µ) 0

] [
UN(µ)
PN(µ)

]
=

[
f̄N(µ)
ḡN(µ)

]
, (53)

where the reduced order matrices are defined as:

AN(µ) = ZT
u,sA(µ)Zu,s, BN(µ) = ZT

p B(µ)Zu,s, CN(.;µ) = ZT
u,sC(.;µ)Zu,s,

f̄N(µ) = ZT
u,sf̄(µ), ḡN(µ) = ZT

p ḡ(µ),
(54)

with Zu,s, the velocity basis matrix and Zp denotes the pressure basis matrix.

4.4 Stabilized Reduced Basis formulation

In this section, we present the stabilized RB method for the model problem (39). The stabilized
RB formulation corresponding to stabilized FE formulation (49) reads as:

Find uN(µ) ∈ V N , pN(µ) ∈ QN :

a(uN(µ),vN ;µ) + b(vN , pN(µ);µ) + c(uN(µ),uN(µ),vN ;µ)

+d(uN(µ),vN ;µ)− su,vN (uN ,vN ;µ)− sp,vN (pN ,vN ;µ) = F (vN ;µ) ∀vN ∈ V N ,

b(uN(µ), qN ;µ)− su,qN (uN , qN ;µ)− sp,qN (pN , qN ;µ) = G(qN ;µ) ∀ qN ∈ QN ,

(55)

19



where su,vN (., .;µ), sp,vN (., .;µ), su,qN (., .;µ) and sp,qN (., .;µ) are the reduced order stabilization terms
defined as:

su,vN (uN ,vN ;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uN+uN ·∇uN
,−ρν∆vN),

sp,vN (ph,vN ;µ) := δ
∑
K

h2
K

∫
K

(∇pN ,−ρν∆vN),

su,qN (uN , qN ;µ) := δ
∑
K

h2
K

∫
K

(−ν∆uN + uN · ∇uN ,∇qN),

sp,qN (pN , qN ;µ) := δ
∑
K

h2
K

∫
K

(∇pN ,∇qN),

(56)

The corresponding nonlinear system results in[
AN(µ) + C̃N(u(µ);µ) B̃T

N(µ)

B̃N(µ) −SN(µ)

] [
UN(µ)
PN(µ)

]
=

[
f̄N(µ)
ḡN(µ)

]
, (57)

where B̃N , B̃
T
N and C̃N are RB stabilization matrices [41] defined as:

B̃N(µ) = ZT
p B̃(µ)Zu,s, B̃T

N(µ) = ZpB̃(µ)Zu,s, SN(µ) = ZT
p S(µ)Zp. (58)

5 Numerical results and discussion for parametrized Navier-

Stokes problems

In this section we present some numerical results for the RB approximation of steady parametrized
Navier-Stokes problem developed in section 4 and subsections therein. As in section 3, we com-
pare three possible options (i) offline-online stabilization with supremizer, (ii) offline-online
stabilization without supremizer, (iii) offline-only stabilization with supremizer. The numeri-
cal test case is the same parametrized cavity problem as in section 3. Table 2 illustrates the
computation details and the cost of stabilization options using both P1/P1 and P2/P2 FE pairs.

In Fig. 9, we show the FE solution (top) for velocity and pressure, RB solution for velocity
and pressure using the offline-online stabilization with/without supremizer (center) and the
offline-only stabilization with supremizer (bottom), for (µ1, µ2) = (120, 2) and δ = 1.0. These
results are carried out using P2/P2 FE pair (results are similar for P1/P1). From these results,
we see that the FE solution and RB solution obtained by offline-online stabilization are same,
but the RB pressure obtained by offline-only stabilization is not accurate.

Figures 10 and 11 represents the error between FE and RB velocity obtained by three pos-
sible stabilization options using P1/P1 and P2/P2 FE pair, respectively. From these results
we conclude that the offline-online stabilization without supremizer has better performance in
case of velocity, when compared to other two options and is the most consistent stabilization
option. However, in case of pressure, supremizer is improving the error upto an order of magni-
tude. Moreover, when comparing the computational costs of the two offline-online stabilization
options, the one without supremizer has less computation time than the case with supremizer.
Therefore, we conclude that the offline-online stabilization is sufficient to guarantee a sta-
ble RB solution and we can avoid the supremizer enrichment to increase the computational
performance of online stage.
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(a) FE Velocity (b) FE Pressure

(c) RB Velocity: offline-online (d) RB Pressure: offline-online

(e) RB Velocity: offline-only (f) RB Pressure: offline-only

Figure 9: Navier-Stokes problem with SUPG stabilization: From top to bottom; FE solution
(top), RB solution using offline-online stabilization (center), RB solution using offline-only
stabilization (bottom) for (µ1, µ2) = (120, 2).

Figure 10: Navier-Stokes problem: SUPG stabilization with geometrical and physical
parametrization on cavity flow; Error between FE and RB solution for velocity (left) and
pressure (right) using P1/P1.
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Figure 11: Navier-Stokes problem: SUPG stabilization with geometrical and physical
parametrization on cavity flow; Error between FE and RB solution for velocity (left) and
pressure (right) using P2/P2.

Physical parameter µ1 (Reynolds number)
Geometrical parameter µ2 (horizontal length of domain)
Range of µ1 [100,200]
Range of µ2 [1.5,3]
µ1 online 120
µ2 online 2

FE degrees of freedom
11160 (P1/P1)
44091 (P2/P2)

RB dimension Nu = Ns = Np = 16
Computation time (P2/P1) 3909s (offline), 195s (online) with supremizers

Offline time (P1/P1)
2034s (offline-online stabilization with supremizers)
1920s (offline-online stabilization without supremizers)
649 (offline-only stabilization with supremizers)

Offline time (P2/P2)
4885s (offline-online stabilization with supremizers)
4387ss (offline-online stabilization without supremizers)
1650s (offline-only stabilization with supremizers)

Online time (P1/P1)
110s (offline-online stabilization with supremizers)
87s (offline-online stabilization without supremizers)
35s (offline-only stabilization with supremizers)

Online time (P2/P2)
242s (offline-online stabilization with supremizers)
180s (offline-online stabilization without supremizers)
90s (offline-only stabilization with supremizers)

Table 2: Navier-Stokes problem: computational details for physical and geometrical parame-
ters.

6 Conclusion and perspectives

In this work we have used classical residual based stabilization techniques [25, 12] to develop
stabilized RB methods for parametrized steady Stokes and Navier-Stokes problem. While such
stabilizations have been used to handle advection dominated problems both at FE [11] and
RB [36] level, in this work we have focused solely on the issue of inf-sup stability and pressure
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recovery. Indeed, construction of stable reduced basis during the offline stage does not guarantee
a stable system in the online stage. The most widespread method in the RB community to
tackle this issue is instead to perform a supremizer enrichment of the reduced velocity space
[46]. The goal of the work has been to combine and compare the two resulting RB inf-sup
stabilization options, i.e. supremizer enrichment and residual based stabilization; this gave rise
to four different reduced order methods.

The first conclusion of this work is that, whenever FE stabilization is used, the offline-
online stabilization is the most appropriate way to perform the online phase. Indeed, the other
option, i.e. offline-only stabilized method, resulted in sensibly larger errors, for both velocity
and pressure. We claim that this is because of the lack of consistency between the offline
and online phases. Similar conclusions were reached by [51, 36], although the difference is
exacerbated in our case, due to the role of the pressure.

The second conclusion is on the role of supremizer enrichment. On one hand, addition
of supremizers to offline-only stabilized case does not help in improving the results, which are
affected in a greater way by the lack of consistency. One the other hand, offline-online stabiliza-
tion with and without supremizers frequently showed comparable results in the error analysis,
with values lower than 10−4 in all numerical examples. The case with supremizer often results in
better pressure, while the case without supremizer yields better velocity in the nonlinear case.
However, the differences in terms of error are often limited to one order of magnitude, still
resulting in a reduced solution which would be sufficiently accurate for many practical applica-
tions. Therefore, when compared to the existing methodology based on supremizer enrichment
alone, our current work allows one to make a tradeoff between accuracy and performance.
Better accuracy is obtained combining residual based stabilization and supremizer enrichment,
while better performance could have been obtained neglecting the enrichment step.

We still have some open questions and perspectives to improve this work in future, in order
to make this approach applicable to more and more complex problems. For instance:

(i) in order to develop a certified stabilized RB method, an a posteriori error analysis [23, 52]
is needed for residual based stabilization in a reduced order setting, for which we suggest
to have a look into the error analysis of stabilized FE methods [48, 28];

(ii) the computational cost of stabilized RB method in case of nonlinear problems can be
decreased by using the Empirical Interpolation method (EIM) [6];

(iii) one can extend this work to develop a Variational MultiScale (VMS) method for turbulent
flows with moderate-higher Reynolds number [47];

(iv) this work is applicable to optimal control problems, see for instance environmental appli-
cations in marine sciences [49];

(v) time-dependent problems are of interest for some applications of the stabilized RB method-
ology;
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