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DERIVED LOOP STACKS AND CATEGORIFICATION OF ORBIFOLD
PRODUCTS

SARAH SCHEROTZKE AND NICOLÒ SIBILLA

Abstract. The existence of interesting multiplicative cohomology theories for orbifolds
was initially suggested by string theorists. Orbifold products have been intensely studied
by mathematicians for the last fifteen years. In this paper we focus on the virtual orbifold
product that was first introduced in Lupercio et al. (2007). We construct a categorification
of the virtual orbifold product that leverages the geometry of derived loop stacks. After work
of Ben-Zvi Francis and Nadler, this reveals connections between virtual orbifold products
and Drinfeld centers of monoidal categories, thus answering a question of Hinich.
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1. Introduction

The existence of non-trivial multiplicative cohomology theories for orbifolds was suggested
by work of string theorists [Z]. The first mathematical implementation of these ideas is due to
Chen and Ruan [CR]. They introduced a cohomology theory for orbifolds which is currently
referred to as Chen-Ruan (CR) cohomology. If X is an orbifold, its Chen-Ruan cohomology
H∗CR(X ) is linearly isomorphic to the cohomology of the inertia orbifold IX , but carries a
non-trivial orbifold product capturing the degree zero Gromov-Witten theory of X . Although
initially developed for differentiable orbifolds, the theory of CR cohomology was later recast
within the framework of algebraic geometry [FG, AGV1, AGV2]. In [JKK] Jarvis, Kaufmann

Key words and phrases. orbifold products, categorification, loop space.
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2 SARAH SCHEROTZKE AND NICOLÒ SIBILLA

and Kimura defined the orbifold K-theory of a global quotient DM stack X . Similarly to
Chen-Ruan cohomology, orbifold K-theory is linearly isomorphic to the rational algebraic K-
theory of the inertia orbifold IX and is equipped with a non-trivial orbifold product. Further,
a multiplicative Chern character map relates orbifold K-theory and CR cohomology.

Chen-Ruan cohomology is not the only possible definition of a multiplicative cohomology
theory for orbifolds. In fact orbifold cohomology theories admit a rich web of distinct mul-
tiplicative structures (called inertial products in [EJK2]) that are governed by a choice of
virtual bundle on the double inertia stack I2X : the orbifold product is only one of them. An
especially important variant of the orbifold product is the virtual orbifold product introduced
in [LUX, LUX+], and investigated in [EJK1, EJK2] from the perspective of algebraic geom-
etry. We denote ∗virt the virtual orbifold product, and Kvirt(X ) := K0(IX , ∗virt) the virtual
orbifold K-theory of X . In this paper we construct a categorification of virtual orbifold
K-theory.

Our main theorem, Theorem 1.1, takes the shape of a comparison result equating the
virtual orbifold product with a different ring structure on K-theory, which is induced by
a tensor product on the triangulated category of coherent sheaves. The virtual orbifold
product is defined in the literature under some restrictive assumptions [EJK1, EJK2]. These
are therefore mirrored by the assumptions in our Theorem 1.1. As we discuss more fully
below, one of the upshots of our work is that in fact the virtual orbifold product can be
defined in much greater generality by converting our Theorem 1.1 into a definition.

Let X be a smooth DM stack which admits a presentation as a global quotient X = [X/G],
where X is an affine scheme and G is a linear group. Under these assumptions Edidin,
Jarvis and Kimura define the virtual orbifold K-theory K0(IX , ∗virt) [EJK2]. Denote LX
the derived loop stack of X in the sense of [TV, BFN]. The bounded derived category of
LX , which we denote Coh(LX ), carries a braided monoidal structure that was introduced
in [BFN]: we denote it ⊗str, and let G0(LX ,⊗str) be the Grothendieck group of Coh(LX )
together with the commutative product induced by ⊗str.
Theorem 1.1. Let ι : IX → LX be the natural inclusion. Then ι∗ gives rise to an isomor-
phism of rings:

ι∗ : Kvirt(X ) = K0(IX , ∗virt) '→ G0(LX ,⊗str).
Using results from [BFN] and [BNP] Theorem 1.1 can be reformulated as follows.

Theorem 1.2. Let Z(Coh(X )) be the derived Drinfeld center (in the sense of [BFN]) of the
symmetric monoidal category Coh(X ). Then there is a natural isomorphism:

Kvirt(X ) ' K0(Z(Coh(X ))).

This result has several useful consequences, we list some below:

• The prescription in [EJK2] gives a definition of virtual orbifold cohomology for
smooth global quotient DM stacks. By setting Kvirt(X ) := G0(LX ,⊗str) we ob-
tain a definition of virtual orbifold cohomology that applies to all smooth DM stacks
with finite stabilizers which are perfect in the sense of [BFN], and in fact, to a wide
class of derived∞-stacks. Namely, it is sufficient that X is a regular, locally Noether-
ian perfect stack with representable diagonal. Under these assumptions Proposition
2.4 applies to X and therefore G0(LX ,⊗str) has a well-defined product structure.
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• Since ∗virt lifts to a tensor product on Coh(LX ) it induces a multiplicative structure
on the full G-theory spectrum of LX , which is equivalent to the K-theory spectrum
of IX , G∗(LX ) ' K∗(IX ).1 This is a much richer invariant than the virtual orbifold
K-theory of X , which can be recovered by taking π0, Kvirt(X ) = π0(K∗(IX )). Also
in this way we achieve a fully motivic definition of the virtual product, which is
therefore not confined to K-theory but extends to any lax monoidal invariant of
stable categories: for instance, our result enables the definition of virtual orbifold
products on Hochschild homology and negative cyclic homology.
• In [BGNX] Behrend, Ginot, Noohi and Xu develop the theory of string topology

for differentiable stacks (expositions of ordinary string topology of manifolds can be
found in [CS, CJ]). It is an interesting problem to work out an analogue of string
topology for derived ∞-stacks. Our work can be interpreted from this perspective.
Our main theorem shows that the product structure on Kvirt(X ) encodes the Chas-
Sullivan product on the K-theory of the derived loop stack.

The initial motivation for this project came from a proposal of Hinich. In [Hi] Hinich
proves the that abelian category of coherent sheaves over IX is isomorphic to the (under-
ived) Drinfeld center [JS] of the abelian tensor category of coherent sheaves over X , and
notes that Coh(IX ) inherits from this equivalence an interesting braided tensor product.
Hinich asks whether this braided tensor product gives an alternative description of the orb-
ifold product of [JKK] on K0(IX ). Theorem 1.2 implies that the answer to Hinich’s question
is negative: the tensor product of the Drinfeld center of Coh(X ) does not descend to the
orbifold product on K0(IX ), but rather to the virtual orbifold product. The two are almost
always different: notable exceptions include the case of classifying stacks of finite groups and
of smooth schemes. For classifying stacks of finite groups a different but related connection
between orbifold products and Drinfeld doubles was studied by Kaufmann and Pham [KP].
Our work was also inspired by ideas of Manin and Toën on categorification of quantum
cohomology, see [Ma] and [To1] Section 4.4 (6). Some recent work in this direction can be
found in preprints of Toën [To2], and of Mann and Robalo [MR].

Acknowledgments: We thank Ralph Kaufmann and Timo Schürg for inspiring con-
versations in the early stages of this project. We are grateful to Kai Behrend and David
Carchedi for useful discussions and for answering our many questions. We would also like to
thank the referee for useful comments.

2. Preliminaries

2.1. ∞-categories. Throughout the paper, we fix a ground field κ of characteristic zero.
It is well known that triangulated categories are not well adapted to capture many impor-
tant functoriality properties of categories of sheaves. Various possible ways to obviate these
deficiencies are now available. In the early 90-s, Bondal and Kapranov [BoK] proposed the
formalism of pre-triangulated dg categories as a better behaved replacement of ordinary
triangulated category theory. We will work with a different enhancement of triangulated

1The equivalence G∗(LX ) ' K∗(IX ) follows from Barwick’s Theorem of the heart [Ba2], see Section 2.2.
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categories, which is provided by stable∞-categories. Several different but equivalent formu-
lations of the theory of∞-categories exist. Our model of choice is given by quasi-categories.
Quasi-categories were originally defined by Boardman and Vogt, and have been extensively
investigated by Joyal [Jo]. We will rely on the comprehensive treatment of this theory pro-
vided by Lurie’s work [Lu]. In this paper we will be exclusively concerned with characteristic
zero applications: we remark that under this assumption the theory of κ-linear stable ∞-
categories is equivalent to the theory of pre-triangulated dg categories [Co]. In the sequel
we will always refer to quasi-categories simply as ∞-categories.

2.2. Derived algebraic geometry. It is often useful to consider spaces of maps from
simplicial sets to algebraic geometric objects such as schemes and stacks. Derived algebraic
geometry provides a language in which to make sense of these constructions. A careful
definition of derived stacks can be found in [To1]. For an agile exposition of this material
see [BFN] Section 2.3, which employs as we do the language of∞-categories. Recall that we
work over a fixed ground field κ of characteristic 0. Let dAlgκ be the∞-category of simplicial
commutative κ-algebras. The opposite category of dAlgκ, which we denote dAffκ, is a site
with the étale topology (see Section 2.3 of [BFN]): we denote it (dAffκ)ét. Derived stacks
are sheaves over (dAffκ)ét with values in the ∞-category of topological spaces, T op.

Derived stacks form the ∞-category dStκ. Some important examples of derived stacks
are:

• ordinary schemes and stacks of groupoids (in the following, we will refer to these
simply as schemes and stacks)
• topological spaces (that are viewed as constant sheaves of spaces), and more generally

underived higher stacks [To1]
• derived affine schemes, that is objects of dAffκ

There exists a truncation functor t0(−) that maps derived stacks to underived stacks: if F
is a derived stack, there is a canonical closed embedding t0(F )→ F . All limits and colimits
of derived stacks are taken in the ∞-category dStκ, that is, they are always derived. This
also applies to limits and colimits of schemes: for instance, if X → Y ← Z is a diagram of
schemes, X×Y Z denotes the derived fiber product of X and Z, which in general differs from
the ordinary fiber product. The ordinary fiber product can be recovered as t0(X ×Y Z).

If K is in T op and X is in dStκ the space of maps from K to X is also a derived stack,
which we denote XK . The derived loop stack of X is the space of maps from S1 into X . We
will often denote the loop stack LX . Recall that S1 can be realized as the colimit of the
diagram ∗ ← (∗

∐
∗) → ∗ in T op: this captures the fact that a circle can be obtained by

joining two intervals at their endpoints. Since the mapping stack functor is right exact, LX
is equivalent to the fiber product of the diagonal X ∆→ X ×X with itself,

LX ' X ×X×X X .

Note that even for ordinary schemes, loop stacks have a non-trivial derived structure. In
fact by the Hochschild-Konstant-Rosenberg isomorphism, if X is a smooth scheme, LX is
equivalent to the total space of the shifted tangent bundle TX [−1].
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Proposition 2.1 ([ACH], Theorem 4.9). Let X be a DM stack, then t0(LX ) is isomorphic
to the inertia stack IX . Further, if X is the global quotient of a smooth scheme by a finite
group, there is an equivalence LX ' TIX [−1].

We can attach to derived stacks various categories of sheaves. Quasi-coherent sheaves on
a derived stack X form a presentable and stable symmetric monoidal ∞-category, that we
denote QCoh(X ). The category of perfect complexes on X , Perf(X ), is the subcategory
of compact objects in QCoh(X ). If X satisfies some additional assumptions (e.g. if it is a
derived DM stack) QCoh(X ) can be equipped with a canonical t-structure, we denote its
heart qcoh(X ). Coherent sheaves are quasi-perfect and quasi-truncated objects in QCoh(X ),
see [Lu8] Definition 2.6.20. They form a full stable subcategory Coh(X ) of QCoh(X ). The
canonical t-structure on QCoh(X ) restricts to a bounded t-structure on Coh(X ) and we
denote its heart coh(X ).

The K-theory of a derived DM stack X is the K-theory of its category of perfect complexes,
while its G-theory is by definition the K-theory of Coh(X ), G∗(X ) := K∗(Coh(X )). We refer
the reader to [Ba1, BGT] for foundations on the K-theory of∞-categories. Recall also that if
X is a smooth ordinary DM stack there is an equivalence Coh(X ) ' Perf(X ), and therefore
the G-theory and K-theory of X are naturally identified.

By Barwick’s “theorem of the heart” [Ba2] (the analogous statement for triangulated
categories had been originally proved by Neeman [Ne]) we know that the G-theory of X and
of t0(X ) are equivalent.

Proposition 2.2 ([Ba2] Proposition 9.2). Let X be a derived DM stack. Then there is an
equivalence of spectra

ι∗ : G∗(t0(X )) = K∗(Coh(t0(X )))
'→ G∗(X ) = K∗(Coh(X )).

In particular ι∗ : G0(t0(X )) → G0(X ) is an isomorphism of groups that sends the class
∞∑
i=0

(−1)iπi(OX ) ∈ G0(t0(X )) to the class of OX in G0(X ).

2.3. Derived Drinfeld center and convolution tensor product. Here we review some
results from [BFN] and [BNP] that will play a key role in the following. Denote PrL the
closed symmetric monoidal∞-category of presentable∞-categories (and left adjoint functors
between them). Let X be a perfect derived stack in the sense of [BFN] Definition 3.2. Note
that, in characteristic zero, quotients of quasi-projective derived schemes by a linear action
of an algebraic group are perfect (see [BFN] Corollary 3.22). As in ordinary homological
algebra, we can define the Hochschild homology and cohomology of QCoh(X ) as an associa-
tive algebra object in PrL. Following [BFN] we call these respectively the derived trace and
derived center ofQCoh(X ), and denote them T r(QCoh(X )) and Z(QCoh(X )). The derived
center Z(QCoh(X )) is an E2-category with the convolution tensor product −⊗conv−. Recall
that E2-categories are the analogue in ∞-category theory of braided monoidal categories.

Let P be the two-dimensional pair of pants, that is, P is a genus 0 compact surface with
three boundary components. Set PX := X P , and note that restriction to the boundary
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components gives maps,

PX
p1

||
p3
��

p2

##
LX LX LX .

This diagram induces a non trivial tensor product on QCoh(LX ), that we denote ⊗str:
F ⊗str G = p3∗(p

∗
1(F)⊗ p∗2(G)).2

Theorem 2.3. (QCoh(LX ),⊗str) is an E2-category, and there is an equivalence of E2-
categories:

(Z(QCoh(X )),⊗conv) ' (QCoh(LX ),⊗str).

Proof. The equivalence of QCoh(LX ) ' Z(QCoh(X )) as symmetric monoidal categories is
given in [BFN] Proposition 5.2. The fact that under this equivalence the convolution tensor
product is send to the string tensor product follows from Section 5.2 of [BFN], inducing an
equivalence of E2-categories by Corollary 6.7 of [BFN]. �

Now assume that X is a proper and perfect, underived DM stack. As we mentioned
earlier examples of stacks X satisfying these properties are given, for instance, by proper
DM stacks obtained as quotients of a quasi-projective scheme by a linear group. The category
Coh(X ) ' Perf(X ) is an associative algebra object in the closed symmetric monoidal ∞-
category of small, stable and idempotent complete ∞-categories.

Proposition 2.4. There is an equivalence of E2-categories:

(Z(Perf(X )),⊗conv) ' (Coh(LX ),⊗str).

Proof. By definition, the derived center Z(Perf(X )) is the category

FunPerf(X×X )(Perf(X ),Perf(X ))

with the convolution tensor product. By Theorem 1.1.3 of [BNP], under our assumptions on
X , there is an equivalence

FunPerf(X×X )(Perf(X ),Perf(X )) ' Coh(LX ).

This equivalence fits in a commutative diagram of ∞-categories:

Z(QCoh(X ))
' // FunQCoh(X×X )(QCoh(X ),QCoh(X ))

' // QCoh(LX )

Z(Perf(X ))
' // FunPerf(X×X )(Perf(X ),Perf(X ))

' //

OO

Coh(LX )

OO

where the vertical arrows are fully-faithful functors given respectively by extension of scalars,
and by the inclusion of coherent shaves into quasi-coherent sheaves. By Theorem 2.3 the
top right horizontal arrow is an equivalence of E2-categories. Further, Coh(LX ) is an E2-
category with the restriction of ⊗str, this is proved exactly as in Section 5.2 of [BFN]. Thus

2The notation ⊗str is motivated by the relation with string topology [CS], [CJ]. See the introduction and
Section 6.1 of [BFN] for a discussion of these aspects.
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the bottom right horizontal arrow is also an equivalence of E2-categories, and this concludes
the proof. �

3. A proof of the main theorem for classifying stacks and schemes

In this section we work out the two simplest examples of our main theorem: we prove it
for DM stacks of the form BG = [∗/G], where G is a finite group, and for smooth schemes.
In the case of BG, a direct proof follows from results scattered in the literature but it will
be useful to sketch it here. Although the proof for schemes does not differ in any essential
way from the general argument, it has the advantage that it can be entirely carried out
leveraging simple geometric properties of mapping spaces. These geometric ideas motivate
the complete proof of Theorem 1.1 that we will give in Section 5 and contribute to clarify it.

3.1. Classifiying stacks of finite groups. Let G be a finite group and let X = [∗/G] be
the classifying stack of G.

Remark 3.1. For classifying stacks of finite groups Kvirt(X ) is equal to Korb(X ) the orbifold
K-theory of X defined in [JKK]. This is an immediate consequence of the definitions, see
[EJK2] Section 4.3.

Proposition 3.2. There is an isomorphism Kvirt(X ) ' G0(LX ,⊗str).

Proof. Since X is isomorphic to [∗/G] and G is finite, the diagonal map ∆ : X → X × X
is flat. As a consequence there in an equivalence X ×X×X X ' t0(X ×X×X X ): that is, the
loop stack LX is equivalent to the inertia stack IX . Further the convolution tensor product
⊗str on Z(Coh(X )) ' Coh(IX ), restricts to an exact tensor product on the abelian heart
coh(IX ).

Recall that the underived Drinfeld center of an ordinary monoidal category was introduced
in [JS]. Its relation with the derived Drinfeld center is discussed in Remark 1.8 of [BFN]: in
order to avoid confusion between the two, for the rest of the proof we refer to the underived
Drinfeld center as the JS center. The JS center of a monoidal category carries a braided
monoidal structure. As noted in [JS] and in [Hi], coh(IX ) is equivalent to the JS center
of coh(X ). Further the induced braided tensor product on coh(IX ) coincides with the
convolution tensor product ⊗str.

Let Rep(G) be the monoidal abelian category of G-representations. Let D(κ[G]) be the
Drinfeld double of the group algebra of G. The abelian category of representations ofD(κ[G]),
Rep(D(κ[G])), is equipped with a braided monoidal structure. There are natural monoidal
equivalences:

(1) between Rep(G) and coh(X ),
(2) and between Rep(D(κ[G])) and the JS center of coh(X ).

Kaufmann and Pham prove in [KP] Theorem 3.13 that there is an isomorphism of rings

K0(Rep(D(κ[G]))) ' Korb(X ).

As a consequence we obtain a chain of ring isomorphisms

G0(LX ,⊗str) ' K0(coh(IX ),⊗str) ' K0(Rep(D(κ[G]))) ' Korb(X ) = Kvirt(X ),

where the last identity is given by Remark 3.1. �
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3.2. Smooth schemes. Let X be a smooth scheme. Then IX = X and both the orbifold
and the virtual orbifold product on K0(X) coincide with the ordinary product in the K-
theory of X. Denote ⊗ the ordinary symmetric tensor product on QCoh(X). In this section
we prove that ι∗ : Kvirt(X) = K0(X,⊗) → G0(LX,⊗str) is an isomorphism of rings. Note
that by Proposition 2.2 the map ι∗ is a group isomorphism. The following proposition shows
that ι∗ is also compatible with the product structures. This proves Theorem 1.1 for smooth
schemes.

Proposition 3.3. Let F and G be in QCoh(X). Then there is a natural equivalence:

(ι∗F)⊗str (ι∗G) ' ι∗(F ⊗ G).

Corollary 3.4. There is an isomorphism ι∗ : Kvirt(X) = K0(X,⊗)→ G0(LX,⊗str).

Before proceeding with the proof of Proposition 3.3 we make some preliminary obser-
vations. Denote D the closed disc, and let P be the pair of pants. It is useful to model
P as the complement of three non-intersecting open discs, D1 D2 and D3, in the 2-sphere
S2. Denote b1, b2, b3 : S1 → P the inclusions given by the identification S1 = ∂Di. Let
{i, j, k} = {1, 2, 3}, and denote Pi = S2 − (Dj ∪Dk), and Pi,j = S2 −Dk. Note that in T op
we have equivalences Pi ' S1, Pi,j ' D.

Lemma 3.5. The following diagrams of inclusions

P

��

// Pi

��

S1

bi
��

// Di

��
Pj // Pi,j, P // Pi,

are push-outs in T op.

Lemma 3.6. Let X
i→ Z

j← Y be maps of quasi-compact and quasi-separated derived
DM stacks. Denote lX : X ×Z Y → X and lY : X ×Z Y → Y the projections, and set
lZ = i◦ lX ' j ◦ lY . Let F be in QCoh(X) and let G be in QCoh(Y ). Then there is a natural
equivalence i∗F ⊗ j∗G ' lZ∗(l

∗
XF ⊗ l∗Y G) in QCoh(Z).

Proof. There is a chain of natural equivalences:

i∗F ⊗ j∗G ' i∗(F ⊗ i∗j∗G) ' i∗(F ⊗ lX∗l∗Y G) ' i∗lX∗(l
∗
XF ⊗ l∗Y G) ' lZ∗(l

∗
XF ⊗ l∗Y G).

The first and third equivalences follow from the projection formula, and the second follows
from the base change formula of [To3] Proposition 1.4. �

Proof of Proposition 3.3. Denote ι : X = t0(LX) → LX the natural embedding. Note that

ι can be described as the restriction map X ' XD → XS1
. Consider the diagram

XP12

s2

##

s1

{{
XP1

n1

yy

u1 // XP

p1{{
p3
�� p2 ##

XP2
u2oo

n2

%%
XD ' X

i // XS1
XS1

XS1
XD ' Xoo
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By Lemma 3.5 the top triangle and the right and left squares are all fiber products. The base
change formula (see [To3] Proposition 1.4) implies that we have equivalences p∗1ι∗F ' u1∗n

∗
1F

and p∗2ι∗G ' u2∗n
∗
2F . Using Lemma 3.6 we can write

p∗1ι∗F ⊗ p∗2ι∗G ' u1∗n
∗
1F ⊗ u2∗n

∗
2G ' u1∗s1∗(s

∗
1n
∗
1F ⊗ s∗2n∗2G) ' u1∗s1∗(F ⊗ G),

where the last equivalence follows from the fact that, since P12 ' D ' ∗, XP12 ' X and
(ni ◦ si)∗ ' Id. Thus, ι∗F ⊗str ι∗G = p3∗(p

∗
1ι∗F ⊗ p∗2ι∗G) ' p3∗u1∗s1∗(F ⊗ G) ' ι∗(F ⊗ G),

and this concludes the proof. �

4. Some remarks on mapping stacks

Let X be a derived stack. In this section we collect some facts about the mapping stacks
LX and PX . Consider the evaluation map S1 × LX → X . We fix a point on S1, ∗ → S1.
We denote ev : LX → X the map obtained as the composition:

LX ' ∗ × LX → S1 × LX → LX .

Lemma 4.1. The following diagrams are fiber products in dStκ:

PX

��

// X
∆
��

PX

��

// LX
ev
��

X ∆// X × X × X , LX ev // X .

Proof. P is equivalent in T op to a wedge of two circles. A wedge of two circles can be
obtained by gluing two arcs along their middle and end points, or by gluing two circles along
a common point. Thus P is equivalent in T op to the push-out of both of the following
diagrams: ∗ ← ∗q∗q∗ → ∗, and S1 ← ∗ → S1. The claim follows from the right exactness
of the mapping stack functor. �

Corollary 4.2. Let X be a DM stack, and denote I2X the double inertia stack of X . Then
t0(PX ) ' I2X .

Proof. Recall that I2X is the ordinary fiber product of the diagram IX → X ← IX (that is,
the fiber product in the category of underived stacks). Since t0 is a right adjoint it preserves
limits. In particular, if X → Z ← Y is a diagram in dStκ, t0(X ×Z Y) is naturally equivalent
to t0(t0(X )×t0(Z) t0(Y)). Thus we obtain a chain of equivalences:

t0(PX ) ' t0(LX ×X LX ) ' t0(t0(LX )×X t0(LX )) = t0(IX ×X IX ) ' I2X .

�

Remark 4.3. Recall that IX is a X -group (for a reference see e.g. Remark 79.5.2 [SP]).
The multiplication is encoded in a map µ : I2X → IX . We also have two projection
maps q1, q2 : I2X → X . We set q3 := µ. By Lemma 4.1 the derived stack PX carries
two projections p1, p2 : PX → LX . These maps coincide with the restriction to two of
the boundary components of P . The restriction to the third boundary component gives a



10 SARAH SCHEROTZKE AND NICOLÒ SIBILLA

morphism p3 : PX → LX (see Section 2.3). We have that qi = t0(pi). Hence these maps fit
in a commutative diagram:

I2X

��

q1

||

q3

""

q2

**
IX

��

PX
p1

||

p3

""

p2

**

IX

��

IX

��
LX LX LX ,

where the vertical arrows are given by the natural embedding IX = t0(LX ) → LX and
I2X = t0(PX )→ PX .

Let G be an algebraic group acting on a scheme X, and let X = [X/G] be the quotient
stack. We let X×G→ X×X and X×G×G→ X×X×X be the maps defined on closed
points by the assignment (x, g) 7→ (x, gx) and (x, g, h) 7→ (x, gx, hx). The next Lemma gives
an explicit construction of LX and PX as global quotients of derived schemes.

Lemma 4.4. • Let LGX be the derived scheme obtained as the following fiber product:

LGX

��

// X

∆
��

X ×G // X ×X.

Then there is a natural action of G on LGX and LX is isomorphic to [LGX/G].
• Let PGX be the derived scheme obtained as the following fiber product:

PGX

��

// X

∆
��

X ×G×G // X ×X ×X.

Then there is a natural action of G on PGX and PX is isomorphic to [PGX/G].

Proof. The first part of the Lemma is stated without proof in Section 4.4 of [To4]. We
include a proof for completeness. Consider the diagram,

LGX

��

// G×X

��

// X

��
X // X ×X // X × X .

There is an equivalence G×X ' X ×X X. Standard properties of fiber products imply that
there is an equivalence G×X ' (X ×X)×X×X X , and therefore that the right square is a
fiber product. The left square is a fiber product by the definition of LGX. Thus the exterior
square is a fiber product as well.



DERIVED LOOP STACKS AND CATEGORIFICATION OF ORBIFOLD PRODUCTS 11

Next note that the left square in the diagram

LGX

��

// LX

��

// X

��
X // X // X × X ,

is a fiber product. Indeed, both the right and the exterior squares are fiber products: the
right square is a fiber product by the discussion in Section 2.2, and the fact that the exterior
square is also a fiber product was proved in the previous paragraph. This and the fact that
X is equivalent to [X/G] prove that both the right and the left squares in

LGX

��

// X

��

// ∗

��
LX // X // [∗/G],

are fiber products, and that therefore the exterior square is as well. Thus LX is equivalent
to [LGX/G], as we needed to show.

The second part of the Lemma is proved in a very similar way. The fiber product of the
diagram X × X × X → X × X × X ← X is equivalent to X ×X X ×X X ' X × G × G.
Next consider the diagram,

PGX

��

// G×G×X

��

// X

��
X // X ×X ×X // X × X × X .

The exterior square is a fiber product, as both right and left squares are. This together with
Lemma 4.1 implies that the left square in the diagram

PGX

��

// PX

��

// X

��
X // X // X × X × X ,

is a fiber product. This implies that the exterior square in

PGX

��

// X

��

// ∗

��
PX // X // [∗/G],

is also a fiber product. That is, PX ' [PGX/G], and this concludes the proof. �

Remark 4.5. Assume now that X is affine, G acts linearly and that X = [X/G] is a DM
stack with finite stabilizers (that is, such that the map IX → X is finite). Under these
assumptions we can give a more explicit description of PX . If g, h are in G let Γg,h be the
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image of X in X ×X ×X under the assignment: x 7→ (x, gx, hx). Let ∆ ⊂ X ×X ×X be
the diagonal subscheme. Then the derived scheme PGX decomposes as the disjoint union

PGX =
∐
g,h∈G

Γg,h ×X×X×X ∆.

5. Virtual orbifold K-theory and the proof of the main Theorem

5.1. Virtual orbifold K-theory. The virtual orbifold cohomology of differential orbifolds
was introduced in [LUX, LUX+]. Virtual orbifold cohomology is closely related to Chen-
Ruan cohomology, and a precise comparison between the two was obtained in Theorem 1.1
of [LUX+]. In the setting of algebraic geometry, the study of virtual orbifold cohomology
and virtual orbifold K-theory was pursued in [EJK2, EJK3]. We start by recalling briefly
the setting of [EJK2, EJK3].

Let X be a smooth Deligne-Mumford stack with finite stabilizers. Assume that X admits
a presentation as a global quotient of a smooth affine scheme by a linear algebraic group,
X = [X/G].

Definition 5.1. • Denote IGX the inertia scheme of X ,

IGX := {(x, g)|gx = x} ⊂ X ×G.

• Denote I2
GX the double inertia scheme of X ,

I2
GX := {(x, g, h)|gx = hx = x} ⊂ X ×G×G.

Remark 5.2. If g ∈ G denote Xg the underived fixed locus of g: that is, if Γg ⊂ X × X
is the graph of g, set Xg := Γg ∩ ∆. Similarly if g, h ∈ G, set Xg,h := Xg ∩ Xh. We can
decompose IGX and I2

GX as the following disjoint unions:

IGX =
∐
g∈G

Xg, I2
GX =

∐
g,h∈G

Xg,h.

Remark 5.3. Let LGX and PGX be as in the statement of Lemma 4.4. Then we have
isomorphisms IGX ' t0(LGX) and I2

GX ' t0(PGX). In particular, I2
GX is the underived

fiber product of IGX → X ← IGX, and we denote the projections q1, q2 : I2
GX → IGX.

Further IGX is a X-group. We let µ : I2
GX → IGX be the multiplication. We set q3 := µ.

Note that in Remark 4.3 we used these same notations to denote the projections I2X → IX ,
and the multiplication on IX : this should cause no confusion as it will be clear from the
context whether we are referring to the inertia scheme or to the inertia stack.

Note that IGX and I2
GX carry a natural action of G. This gives presentations of the inertia

and double inertia stack as global quotients: IX ' [IGX/G] and I2X ' [I2
GX/G]. We can

describe the sheaf theory of IX and I2X in terms of the equivariant sheaf theory of IGX
and I2

GX. In particular, K0(IX ) and K0(I2X ) are naturally identified with the equivariant
Grothendieck groups KG(IGX) and KG(I2

GX).
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Definition 5.4 ([EJK1] Definition 3.1). Let R be a class on KG(I2
GX). Then we define a

product3 ∗R on KG(IGX) ' K0(X ) by the assignment:

x, y ∈ KG(IGX), x ∗R y = q3∗(q
∗
1x · q∗2y · λ−1(R)).

Definition 5.5 ([EJK3] Definition 2.16, [LUX] Section 5). Let u : I2
GX ⊂ X ×G×G→ X

be the projection on the first factor. Set B := u∗TX + TI2GX − q
∗
1TIGX − q∗2TIGX ∈ KG(I2X ),

and R := B∨. Then the virtual orbifold product ∗virt is defined by:

∗virt := ∗R.

Many properties of the virtual orbifold product have been investigated in [EJK2, EJK3,
LUX] and [LUX+]. We list two of the most important here:

• The product ∗virt is unital, associative and commutative ([EJK2] Proposition 4.3.2).
• Kvirt(X ) is a Frobenius algebra (see [LUX+] Theorem 2.3 and [EJK1] Proposition

3.5).

We remark that from the vantage point of Theorem 1.1, the first property is a consequence
of the fact that Kvirt(X ) is the Grothendieck group of the E2-category Coh(LX ). As for the
second point, Coh(LX ,⊗str) is a Frobenius algebra object in the closed symmetric monoidal
∞-category of small, stable and idempotent complete∞-categories (this is a consequence of
[BFN] Proposition 6.3). Thus the same is true of its Grothendieck group, which is isomorphic
to Kvirt(X ).

5.2. The derived double inertia stack and excess intersection. Let X be a DM stack
satisfying the same assumptions as in the previous section: that is, X is smooth, has finite
stabilizers and can be presented as the global quotient [X/G] of an affine scheme by a
linear group. It will be useful to introduce a derived stack, I2X , that in a precise sense
interpolates between PX and I2X . It is possible to describe explicitly OPX and OI2X as
classes in K0(I2X ), and we will do this next: the calculation of the class of OI2X will be
especially important in the proof of Theorem 1.1.

Definition 5.6. The derived double inertia stack of X , denoted I2X , is the derived fiber
product of IX → X ← IX , that is I2X = IX ×X IX .

Remark 5.7. There is an equivalence t0(I2X ) ' I2X . The derived double inertia stack
I2X can be realized as the quotient of the derived scheme I2

GX := IGX ×X IGX by the
action of G: we have I2X = [I2

GX/G]. Note that I2
GX decomposes as the following disjoint

union:

I2
GX '

∐
g,h∈G

Xg ×X Xh.

Lemma 5.8. Denote ι : IX → LX the natural embedding. Let Y be the fiber product of the
diagram LX ev→ X ι← IX . As in Remark 4.3 denote pi : PX → LX , i = 1, 2, the projections.

3It is important to note that ∗R in general will not be neither unital nor associative. The works [EJK1,
EJK2] contain a careful study of the conditions on R under which ∗R is unital, associative, and has various
additional properties.



14 SARAH SCHEROTZKE AND NICOLÒ SIBILLA

Then the following diagrams are fiber products:

Y

��

// PX
pi
��

I2X

��

// Y

��
IX // LX , Y // PX .

Proof. Consider the diagram

Y

��

// PX
p1
��

p2 // LX

��
IX // LX // X .

The right square is a fiber product by Lemma 4.1, and the exterior one is a fiber product by
the definition of Y . Thus the left square is also a fiber product.

In order to prove that the second diagram is a fiber product, we write it as the upper-left
square in the diagram

I2X

��

// Y

��

// IX
ι
��

Y //

��

PX p2 //

p1
��

LX

��
IX ι // LX // X .

Note that the top right, bottom right, and bottom left squares are all fiber products by the
first part of the Lemma and by Lemma 4.1. Also the derived double inertia stack I2X is the
fiber product of IX → X ← IX : thus, also the exterior square is a fiber product. Standard
properties of fiber products imply that the top left square is also a fiber product, and this
concludes the proof.

�

Remark 5.9. The derived stack I2X carries two projections r1, r2 : I2X → IX , and a

multiplication map r3 : I2X → IX . Further we have maps I2X j→ I2X l→ PX , where l
comes from the second fiber product of Lemma 5.8, and j and i := l ◦ j are the canonical
embeddings of I2X = t0(I2X ) = t0(PX ) into I2X and PX . It is important to clarify
the relationship between these maps and the various maps to and from I2X and L2X that
we considered in Remark 4.3. We use the notations of Remark 4.3: for all i = 1, 2, 3, the
following is a commutative diagram

I2X j //

qi ##

I2X
ri
��

l // PX
pi
��

IX // LX .

Lemma 5.10 ([CKS] Proposition A.3). Let X, Y, Z be smooth schemes. Suppose that there
are embeddings X → Z ← Y , such that W = X ∩ Y is smooth, and denote E the excess
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(intersection) bundle, E = TZ |W/(TX |W + TY |W ). Then, in K0(W ), we have the identity:∑
(−1)iπiOX×ZY =

∑
(−1)iΛiE∨ = λ−1(E∨).

Lemma 5.11. Let g, h be in G, and set W := Xg,h. Then:

• The class in K0(W ) of the excess intersection bundle Eg,h of Xg and Xh in X is
given by Eg,h = TX − TXg − TXh + TXg,h.
• The class in K0(W ) of the excess intersection bundle F g,h of Γg,h and ∆ in X×X×X

is given by F g,h = TX + TXg,h.

Proof. Both in the statement of the Proposition and in the proof all bundles are always
implicitly assumed to be restricted to W : TXg, TXh and TXg,h denote respectively the
g-invariant, h-invariant and < g, h >-invariant sub-bundles of TX|W . We start from the

first statement: Eg,h is by definition the cokernel of the embedding TXg × TXh +→ TX.
Thus the class in K0(W ) of Eg,h is given by Eg,h = TX − TXg ⊕ TXh + TXg,h = TX −
TXg − TXh + TXg,h. As for the second statement, the excess bundle F g,h is isomorphic to
the cokernel of the map

TX × TX → TX × TX × TX, (u, v) 7→ (u+ v, gv, hv),

and therefore F g,h = 3TX − TX − TX + TXg,h = TX + TXg,h in K0(W ). �

The next proposition gives a global description of the excess intersection bundles Eg,h and
F g,h from Lemma 5.11 as g and h vary.

Proposition 5.12. • The excess intersection bundles Eg,h, whose class in K-theory is
given by

Eg,h = TX|Xg,h − TX|g
Xg,h − TX|hXg,h + TX|g,h

Xg,h ,

assemble to a bundle EI2 on I2
GX. Further we have that∑

(−1)iπiOI2GX = λ−1(E∨I2)

in K0(I2
GX).

• The excess intersection bundles F g,h, whose class in K-theory is given by

F g,h = TX|Xg,h + TX|g,h
Xg,h ,

assemble to a bundle EP on I2
GX. Further we have that∑

(−1)iπiOPGX = λ−1(E∨P )

in K0(I2
GX).

Proof. By Remark 4.5, Remark 5.2 and Remark 5.7, we have decompositions:

PGX =
∐
g,h∈G

Γg,h ×X×X×X ∆, I2
GX =

∐
g,h∈G

Xg ×X Xh and I2
GX =

∐
g,h∈G

Xg,h.

Thus, by Lemma 5.10, the classes in K-theory ofOI2GX andOPGX can be described in terms of

the excess intersection bundles on each component Xg,h of I2
GX. These have been calculated

in Lemma 5.11 and coincide with the classes appearing in the claim. �
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The bundles EI2 and EP carry a canonical G-equivariant structure. With slight abuse of
notation we keep denoting these bundles EI2 , EP also when we regard them as objects of the
G-equivariant category CohG(I2

GX) or of Coh(I2X ). In the following Corollary the notations
E2
I and EP are used precisely in this way: that is, they refer to the corresponding bundles on
I2X .

Corollary 5.13. • The class
∑

(−1)iπiOI2X is equal to λ−1(E∨I2) in K0(I2X ).
• The class

∑
(−1)iπiOPX is equal to λ−1(E∨P ) in K0(I2X ).

Proof. The claim follows from Proposition 5.12, and the fact that PX and I2X are iso-
morphic to the quotients PX = [PGX/G], I2X = [I2

GX/G] (see Lemma 4.4 and Remark
5.7). �

Remark 5.14. Note that the class of EI2 in K0(I2X ) coincides with the class B that appears
in the definition of the virtual orbifold product, see Definition 5.5. This observation is a key
ingredient in the proof of Theorem 1.1.

5.3. The proof of the main Theorem. In this Section we prove that the string tensor
product on Coh(X ) categorifies the virtual orbifold product. As before we assume that X is
a smooth DM stack with finite stabilizers that admits a presentation as the global quotient of
an affine scheme by a linear group, X ' [X/G]. It will be important to refer to various maps
to and from I2X , PX , I2X , LX and IX : we let ι : IX → LX be the natural embedding,
and for the rest use the same notations as in Remark 5.9.

Lemma 5.15. Let F and G be in Coh(IX ). Then ι∗F ⊗str ι∗G ' ι∗r3∗(r
∗
1F ⊗ r∗2G).

Proof. Consider the commutative diagram

I2X
s2

##

s1

{{

r1

��

r2

��

Y
n1

ww

u1 // PX

p1{{
p3
�� p2 ##

Y
u2oo

n2

''
IX ι // LX LX LX IX .ιoo

Note that the right, left and top squares are all fiber products: we proved that I2X is the
fiber product of the top square in Lemma 5.8. As in Remark 5.9, we denote l the composition
u1 ◦ s1 ' u2 ◦ s2. The base change formula [To3] Proposition 1.4 gives equivalences

p∗1ι∗F ' u1∗n
∗
1F , p∗2ι∗G ' u2∗n

∗
2F .

Using Lemma 3.6 we can rewrite

p∗1ι∗F ⊗ p∗2ι∗G ' u1∗n
∗
1F ⊗ u2∗n

∗
2G ' u1∗s1∗(s

∗
1n
∗
1F ⊗ s∗2n∗2G) ' l∗(r

∗
1F ⊗ r∗2G).

Recall that p3 ◦ l ' ι ◦ r3 (see Remark 5.9), and thus

ι∗F ⊗str ι∗G = p3∗(p
∗
1ι∗F ⊗ p∗2ι∗G) ' p3∗l∗(r

∗
1F ⊗ r∗2G) ' ι∗r3∗(r

∗
1F ⊗ r∗2G).

�
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Lemma 5.16. We denote − ⊗ − the product on K0(I2X ) induced by the ordinary tensor
product of sheaves on I2X . Denote D the class Σi(−1)iπiOI2X in K0(I2X ). If F ,G are in
Coh(IX ), then q3∗(q

∗
1F ⊗ q∗2G ⊗ D) = r3∗(r

∗
1F ⊗ r∗2G) in K0(IX ).

Proof. As in Remark 5.9 let j : I2X → I2X be the natural embedding. Recall by Proposition
2.2 that the class of OI2X in G0(I2X ) is equal to j∗D. We have the following equalities in
K0(IX ):

r3∗(r
∗
1F ⊗r∗2G) = r3∗(r

∗
1F ⊗r∗2G⊗OI2X ) = r3∗(r

∗
1F ⊗r∗2G⊗ j∗D) = r3∗j∗(j

∗(r∗1F ⊗r∗2G)⊗D),

where the last one is a consequence of the projection formula. Further we can write

r3∗j∗(j
∗(r∗1F ⊗ r∗2G)⊗D) = r3∗j∗((j

∗r∗1F ⊗ j∗r∗2G)⊗D) = q3∗(q
∗
1F ⊗ q∗2G ⊗ D),

as qi = ri ◦ j for all i = 1, 2, 3 (see Remark 5.9) and this concludes the proof. �

Theorem 5.17. Let ι : IX → LX be the natural embedding. Then ι∗ is an isomorphism of

rings: ι∗ : Kvirt(X ) = K0(IX , ∗virt) '→ G0(LX ,⊗str).

Proof. Recall that by Proposition 2.2 the map ι∗ is an isomorphism of groups. We need to
prove that ι∗ is also compatible with the product structures. Let F and G be in Coh(IX ).
By Lemma 5.15 and Lemma 5.16,

ι∗F ⊗str ι∗G = ι∗r3∗(r
∗
1F ⊗ r∗2G) = ι∗q3∗(q

∗
1F ⊗ q∗2G ⊗ D),

where D = Σi(−1)iπiOI2X . By Corollary 5.13 there is an identity D = λ−1(E∨I2). We pointed
out in Remark 5.14 that the class of EI2 in K0(IX ) is equal to the class B from Definition
5.5. As a consequence we can rewrite

q3∗(q
∗
1F ⊗ q∗2G ⊗ D) = q3∗(q

∗
1F ⊗ q∗2G ⊗ λ−1(E∨I2)) = F ∗virt G.

Applying ι∗, we obtain an identity ι∗(F) ⊗str ι∗(G) = ι∗(F ∗virt G) in G0(LX ), and this
concludes the proof. �
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