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We derive the Gardner storage capacity for associative networks of threshold linear units, and show that
with Hebbian learning they can operate closer to such Gardner bound than binary networks, and even
surpass it. This is largely achieved through a sparsification of the retrieved patterns, which we analyze for
theoretical and empirical distributions of activity. As reaching the optimal capacity via nonlocal learning
rules like back propagation requires slow and neurally implausible training procedures, our results indicate
that one-shot self-organized Hebbian learning can be just as efficient.
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Introduction.—Learning in neuronal networks is believed
to happen largely through changes in the weights of the
synaptic connections between neurons. Local learning rules,
those that self-organize through weight changes depending
solely on the activity of pre- and postsynaptic neurons, are
generally considered to be more biologically plausible than
nonlocal ones [1]. But how effective are local learning rules?
Quite ineffective, has been the received wisdom since the
1980s, when nonlocal iterative algorithms came to the fore.
However, this wisdom, when it comes to memory storage and
retrieval, is largely based on analyzing networks of binary
neurons [2–5], while neurons in the brain are not binary.
A better, but still mathematically simple description of

neuronal input-output transformation is through threshold-
linear (TL) activation function [6,7], also predominantly
adopted in recent deep learning applications (called ReLU in
that context) [8]. Therefore, one may ask if the results from
the 1980s highlighting the contrast between the effective,
iterative procedures used in machine learning and the self-
organized, one-shot, perhaps computationally ineffective
local learning rules are valid beyond binary units [9].
The Hopfield model, a most studied model of memory, is

a fully connected network of N binary units endowed with
a local, Hebbian learning rule [2,3]: the weight between
two units increases if they have the same activity in a
memory pattern; otherwise it decreases. The network can
retrieve only up to pmax ≃ 0.14N patterns, while, in
comparison, Elizabeth Gardner showed [5] that with C
connections per unit, the optimal capacity that such a
network can attain is pmax ¼ 2C, about 14 times higher; the
bound can be approached through iterative procedures like
backpropagation that progressively reduce the difference
between current and desired output. This consolidated the
impression that unsupervised, Hebbian plasticity may well
be of biological interest, but is rather inefficient for memory
storage. In the fully connected Hopfield model, the tran-
sition to no retrieval is discontinuous: right below the

storage capacity, ∼1.5% of units in a retrieved pattern are
misaligned with the stored pattern, but 50%, i.e., chance
level, just above the capacity [3]. This rather low error
certainly contributes to the low capacity. However, the
negative characterization of Hebbian learning in binary
networks persisted even when more errors occur: in the
more biologically relevant highly diluted networks the error
smoothly goes to 50% [10], but the capacity is still a factor
of 3 away [4], approaching the bound only when the
fraction of active unit in each pattern is f ≪ 1 [11].
What about TL units? Are they more efficient in the

unsupervised learning of memory patterns? Here, we study
the optimal pattern capacity à la Gardner in networks of TL
units. Past work discussed above [11] had suggested that
the distribution of activity (along with the connectivity)
may play a role in how efficient Hebbian learning is, but,
back then, this only meant changing f. Besides being a
better model of neuronal input-output transformation, by
allowing nonbinary patterns, TL units permit a better
understanding of the interplay between the retrieval proper-
ties of recurrent networks and the distribution of the activity
stored in the network. In fact, we show that while for binary
patterns the Gardner bound is larger than the Hebbian
capacity no matter how sparse the code, this does not, in
general, hold for nonbinary stored patterns: the Hebbian
capacity can even surpass the bound. This perhaps surpris-
ing violation of the bound is because the Gardner calcu-
lation imposes an infinite output precision [12], while
Hebbian learning exploits its loose precision to sparsify the
retrieved pattern. In other words, with TL units, Hebbian
capacity can get much closer to the optimal capacity or
even surpass it, by retrieving a sparser version of the stored
pattern. We find that experimentally observed distributions
from the inferior-temporal visual cortex [13], which can be
taken as patterns to be stored, would be sparsified
about 50% by Hebbian learning, and would reach about
50%−80% of the Gardner bound.
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Model description.—We consider a network of N units
and p patterns of activity, fημi gμ¼1;…;p

i¼1;…;N each representing
one memory stored in the connection weights via some
procedure. Each ημi is drawn independently for each unit i
and each memory μ from a common distribution PrðηÞ. The
activity of unit i is denoted by vi and is determined by the
activity of the C units feeding to it as

vi ¼ g½hi − ϑ�þ; ð1aÞ

hifvig ¼ 1
ffiffiffiffi

C
p

X

j

Jijvj; ð1bÞ

where ½x�þ ¼ x for x > 0 and ¼ 0 otherwise; and both the
gain g and threshold ϑ are fixed parameters. The storage
capacity, or capacity for short, is defined as αc ≡ pmax=C,
with pmax the maximal number of memories that can be
stored and individually retrieved. The synaptic weights Jij
are taken to satisfy the spherical normalization condition
for all i

X

j≠i
J2ij ¼ C: ð2Þ

We are interested in finding the set of Jij that satisfy Eq. (2),

such that patterns fημi gμ¼1;…;p
i¼1;…;N are self-consistent solutions

of Eqs. (1), namely that for all i and μ we have, hμi ¼
ϑþ ημi =g if ημi > 0 and hμi ≤ ϑ if ημi ¼ 0.
Replica analysis.—Adapting the procedure introduced in

[5] for binary units to our network, we evaluate the
fractional volume of the space of the interactions Jij which
satisfy Eqs. (1) and (2), using the replica trick and the
replica symmetry ansatz, we obtain the standard order
parameters m ¼ ð1= ffiffiffiffi

C
p ÞPj Jij and q ¼ ð1=CÞPj J

a
ijJ

b
ij

corresponding, respectively, to the average of the weights
within each replica and to their overlap between two
replicas a and b (Supplemental Material [14], Sec. A).
Increasing p, for C → ∞, shrinks the volume of the
compatible weights, eventually to a single point, i.e., when
there is only a unique solution and the storage capacity is
reached. This corresponds to the case where all the
replicated weights are equal q → 1, implying that only
one configuration satisfying all the equations exists.
Adding a further memory pattern would make it
impos-sible, in general, to satisfy them all. At the end,
we obtain the following equations for αc:

0 ¼ −f
�

xþ d1
g

ffiffiffiffiffi

d3
p

�

þ ð1 − fÞ
Z

∞

x
Dtðt − xÞ;

1

αc
¼ f

�

x2 þ d2
g2d3

þ 2xd1
g

ffiffiffiffiffi

d3
p þ 1

�

þ ð1 − fÞ
Z

∞

x
Dtðt − xÞ2;

ð3Þ
where we have introduced the averages over Pr(η): d1≡
hημi i, d2≡hðημi Þ2i and d3≡d2−d21; x¼ðϑ−d1mÞ= ffiffiffiffiffi

d3
p

is

the normalized difference between the threshold and the
mean input, while f ¼ Prðη > 0Þ is the fraction of active
units and Dt≡ dt expð−t2=2Þ= ffiffiffiffiffiffi

2π
p

. The two equations
yield x and αc. Both equations can be understood as
averages over units, respectively, of the actual input and
of the square input, which determine the amount of
quenched noise and hence the storage capacity.
The capacity αc then depends on the proportion f of

active units, but also on the gain g, and on the cumulants d1
and d3. Figure 1(a) shows that at fixed g, αc increases as
more and more units remain below threshold, ceasing to
contribute to the quenched noise. In fact, αc diverges as
½2f lnð1= ffiffiffiffiffiffi

2π
p

fÞ�−1, for f → 0; see Supplemental Material
[14], Sec. B. At fixed f, there is an initially fast increase
with g followed by a plateau dependence for larger values
of g. One can show that αc → ðg2=g2 þ 1Þ as f → 1, i.e.,
when all the units in the memory patterns are above
threshold, it is always αc < 1 for any finite g. At first
sight this may seem absurd: a linear system of N2

independent equations and N2 variables always has an
inverse solution, which would lead to αc being (at least)
one. Similar to what was already noted in [12], however, the
inverse solution does not generally satisfy the spherical
constraint in Eq. (2); but it does, in our case, in the limit
g → ∞ and this can also be understood as the reason why
αc is highest when g is very large. In practice, Fig. 1
indicates that over a broad range of f values, αc approaches
its g → ∞ limit already for moderate values of g; while the
dependence on d1 and d3 is only noticeable for small g, as
can be seen by comparing Figs. 1(c) and 1(d). For g → ∞,
one sees that Eqs. (3) depend on PrðηÞ only through f.
Equations (3), at g → ∞, have been verified by explicitly

training a threshold linear perceptron with binary patterns,

FIG. 1. Dependence of the Gardner capacity αc on different
parameters: in (a) as a function of g and f (d1 ¼ 1.1, d2 ¼ 2), in
(b) as a function of a ¼ d21=d2 for different values of f (g ¼ 10,
d1 ¼ 1.1), in (c) and (d) as a function of d1 and d3 for g ¼ 0.2 and
g ¼ 10, respectively (f ¼ 0.5). Note that fixing f restricts the
available range of a, as a cannot be larger than f; the inaccessible
ranges are shadowed in (b)–(d).
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evaluating αc numerically as the maximal load which can
be retrieved with no errors; see Supplemental Material [14],
Sec. C for details. Estimated values of αc are depicted by
red diamonds in Fig. 2, and they follow the profile of the
solid line describing the g → ∞ limit of Eqs. (3).
Comparison with a Hebbian rule: Theoretical

analysis.—With highly diluted connectivity and nonsparse
patterns a binary network can get to 1=π of the bound, even
if with vanishing overlaps, much closer than in the fully
connected case. This is intuitively because the quenched
noise is diminished as Jij and Jji become effectively
independent. Besides its biological relevance, with TL
units, the fair comparison to the capacity à la Gardner is
thus that of a Hebbian network with highly diluted
connectivity. In what follows, we indicate the Gardner
capacity as calculated in the previous section and the
Hebbian capacity, by αGc and αHc , respectively, and use
similar superscript notations for other quantities.
The capacity of the TL network with diluted connectivity

was evaluated analytically in [16]; see Supplemental
Material [14], Sec. D for a recap. Whereas for g → ∞
the Gardner capacity depends on PrðηÞ only via f, for
Hebbian networks it does depend on the distribution, and
most importantly on a, the sparsity

a ¼ hημi i2=hðημi Þ2i ð4Þ

whose relation to f depends on the distribution [16].
Figure 2 shows the results for three examples of binary,

ternary, and quaternary distributions for which f and a are
related through f ¼ a, 9a=5, and 9a=4, respectively, see
Supplemental Material [14], Sec. E; the Hebbian and the
Gardner capacities diverge in the sparse coding limit.
When attention is restricted to binary patterns in

Fig. 2(a), the Gardner capacity αGc seems to provide an
upper bound to the capacity reached with Hebbian learning;
more structured distributions of activity, however, dispel
such a false impression: the quaternary example already
shows higher capacity for sufficiently sparse patterns. The
bound, in fact, would only apply to perfect errorless

retrieval, whereas Hebbian learning creates attractors which
are, up to the Hebbian capacity limit, correlated but not
identical to the stored patterns; in particular, we notice that
when considering TL units and Hebbian learning, in order
to reach close to the capacity limit, the threshold has to be
such as to produce sparser patterns at retrieval, in which
only the units with the strongest inputs get activated.
Figure 2(b) shows the ratio of the sparsity of the retrieved
pattern produced by Hebbian learning, aHr ¼ hvμi i2=hðvμi Þ2i
(estimated as described in Supplemental Material [14]) to
that of the stored pattern a, vs f: except for the binary
patterns at low f, the retrieved patterns, at the storage
capacity, are always sparser than the stored ones. The
largest sparsification happens for quaternary patterns, for
which the Hebbian capacity overtakes the Gardner bound,
at low f. Sparser patterns emerge as, to reach close to αHc , ϑ
has to be such as to inactivate most of the units with
intermediate activity levels in the stored pattern. Of course,
the perspective is different if αHc is considered as a function
of ar instead of a, in which case the Gardner capacity
remains unchanged, as it implies retrieval with ar ¼ a, and
is above αHc for each of the three sample distributions; see
Fig. 1 of Supplemental Material [14].
Comparison with a Hebbian rule: Experimental data.—

Having established that the Hebbian capacity of TL net-
works can surpass the Gardner bound for some distribu-
tions, we ask what would happen with distributions of
firing rates naturally occurring in the brain. We considered
published distributions of single neurons in the inferior-
temporal cortex in response to short naturalistic movies
[13]. Such distributions can be taken as examples of
patterns elicited by visual stimuli, to be stored with
Hebbian learning, given appropriate conditions, and later
retrieved using attractor dynamics, triggered by a partial
cue [17,18]. How many such patterns can be stored, and
with what accompanying sparsification?
Figures 3(a) and 3(b) show the analysis of two sample

distributions from [13]. The observed distributions, in blue,
labeled “Gardner,” are those we assume could be stored and
retrieved, exactly as they were, with a suitable training
procedure bound by the Gardner capacity. In orange,
we plot the distribution that would be retrieved follow-
ing Hebbian learning operating at its capacity, see
Supplemental Material [14], Sec. I for the estimation of
the retrieved distribution. Note that the absolute scale of the
retrieved firing rate is arbitrary; what is fixed is only the
shape of the distribution, which is sparser (as clear already
from the higher bar at zero). The pattern in Fig. 3(a),
which has a < 0.5, could also be fitted with an exponential
distribution having f ¼ 2a (see Supplemental Material
[14], Sec. F). In that panel we also show the values of
α
Hexp
c and a

Hexp
r , calculated assuming the exponential fit,

along with values from the observed discrete distribution
(αHnaive

c and aHnaive
r ). Figure 3(c) shows both αGc and α

Hexp
c

versus f; we have indicated by diamonds the Hebbian

FIG. 2. Hebbian vs Gardner capacity. (a) αHc vs f for different
sample distribution of stored patterns compared to the analyti-
cally calculated universal αGc ; the red diamonds and green crosses
are reached using perceptron training for binary and ternary
patterns, respectively. (b) the sparsification of the stored patterns
at retrieval, for Hebbian networks at their capacity.
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capacities for the nine empirical distributions in [13] and by
circles the fitted values for those which could be fitted to an
exponential. In the Supplemental Material [14], Sec. G we
also discuss the fit to a log-normal, which is better at
reproducing experimental distributions with a mode above
zero [19], as in Fig. 3(b).
There are three conclusions that we can draw from these

data. First, the Hebbian capacity from the empirical
distributions is about 80% of that of the exponential fit,
when available. Second, in general for distributions like
those of these neurons, the capacity achieved by Hebbian
learning is about 50%–80% of the Gardner capacity,
depending on the neuron and whether we take its discrete
distribution as is, or fit it to an exponential (or, e.g., to a log-
normal) shape. Third, with Hebbian learning retrieved
patterns tend to be 2–3 times sparser than the stored ones,
again depending on the particular distribution, empirical or
exponential fit (as for nonsparse distributions, which could
be better fit by a log-normal, see Supplemental Material
[14], Sec. G). As illustrated in Fig. 3(d), the empirical
distributions achieve a lower capacity than that of their
exponential fit, as the latter leads to further sparsification at
retrieval.
Discussion.—While instrumental in conceptualizing

memory storage [20], Hebbian learning has been widely

considered a poor man’s option, relative to more powerful
machine learning algorithms that could reach the Gardner
bound for binary units and patterns. No binary or quasi-
binary pattern of activity has ever been observed in the
cerebral cortex, however. A few studies have considered TL
units, showing them to be less susceptible to memory
mix-up effects [21] or perturbations in the weights and
inputs values [22] but, in the framework of à la Gardner
calculations, they have focused on issues other than
associative networks storing sparse representations. For
instance, a replica analysis was carried out in [12] with a
generic gain function, but then discussed only in a
quasibinary regime. Others considered monotonically
increasing activation functions under the constraint of
nonnegative weights [23]. Here, we report the analytical
derivation of the Gardner capacity for TL networks,
validate it via perceptron training, and compare it with
Hebbian learning. We find that the bound can be reached or
even surpassed, and that retrieval leads to sparsification.
For sample experimental distributions, we find that one-
shot Hebbian learning can utilize 50%–80% of the avail-
able “errorless” capacity if retrieving sparser activity,
compatible with recent observations [18].
In deriving the Gardner bound, we assumed errorless

retrieval and it remains to be seen how much allowing
errors increases this bound for TL units and neurally
plausible distributions. For the binary case of [10], as
already mentioned, this errorless bound is still above the
Hebbian capacity of the highly diluted regime, with its
continuous (second order) transition, i.e., with vanishing
overlap at storage capacity [10]. How does the overlap
behave in the TL case? For highly diluted TL networks with
Hebbian learning, in fact, except for special cases, the
transition at capacity is discontinuous: the overlap drops to
zero from a nonzero value that depends on the distribution
of stored neural activity but can be small [24]. It is worth
noting, though, that while in the binary case the natural
measure of error is simply the fraction of units misaligned
at retrieval, in the TL case error can be quantified in other
ways. In the extreme in which only the most active cells
remain active at retrieval, those retrieved memories cannot
be regarded as the full pattern, with its entire information
content, but more as a pointer, effective perhaps as a
mechanism only to distinguish between different possible
patterns or to address the full memory elsewhere, as posited
in index theories of two-stage memory retrieval [25].
Further understanding would also derive from comparing
the maximal information content per synapse for TL units,
with Hebbian or iterative learning, as previously studied for
binary networks [26]. Using nonbinary patterns might also
afford a solution to the low storage capacity observed in
balanced memory networks storing binary patterns [27].
Our focus here has been on memory storage in asso-

ciative neural networks, with the overarching conclusion
that the relative efficiency of Hebbian learning is much

FIG. 3. Hebbian vs Gardner capacity for experimental data. (a),
(b) histograms of two experimentally recorded spike counts
(blue) and the retrieved distributions, if the patterns were stored
using Hebbian learning (orange). Note that the retrieved distri-
butions à la Gardner would be the same as the stored patterns.
(c) Analytically calculated Gardner capacity αGc (blue), compared
to α

Hexp
c for the Hebbian learning of an exponential distribution

(orange, circles). αHnaive
c is shown by diamonds. The asterisks

mark the two cells whose distribution is plotted in (a) and (b).
(d) Sparsification of the retrieved patterns, for Hebbian learning.
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higher when units have a similar transfer function to real
cortical neurons. The efficiency of local learning rules had
also been challenged by their comparatively weaker
performance in other (machine learning) settings [28],
while results to the contrary are also reported [29,30]. It
may therefore be argued that the efficiency of local learning
in these settings might also be fundamentally dependent on
both the types of units used and the data, observations
consistent with the findings in [30,28], respectively. In
evaluating a learning rule, it may therefore be crucial to
consider whether it is suited to the transfer function and
data representation it operates on.
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