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GLUING SEMI-ORTHOGONAL DECOMPOSITIONS

SARAH SCHEROTZKE, NICOLÒ SIBILLA, AND MATTIA TALPO

Abstract. We introduce preordered semi-orthogonal decompositions (psod-s) of dg-categories. We
show that homotopy limits of dg-categories equipped with compatible psod-s carry a natural psod.
This gives a way to glue semi-orthogonal decompositions along faithfully flat covers, extending the
main result of [4]. As applications we will construct semi-orthogonal decompositions for root stacks
of log pairs (X,D) where D is a (not necessarily simple) normal crossing divisor, generalizing results
from [17] and [3]. Further we will compute the Kummer flat K-theory of general log pairs (X,D),
generalizing earlier results of Hagihara and Nizio l in the simple normal crossing case [15], [23].

1. Introduction

In this paper we study conditions under which semi-orthogonal decompositions (sod-s) of dg-
categories can be glued together to yield global semi-orthogonal decompositions. We formulate
our results in terms of general homotopy limits of dg-categories under appropriate compatibility
assumptions on the structure functors. Our main technical result is, roughly, that a limit of
dg categories equipped with sod-s and compatible functors between them carries a natural sod
(Theorem A in this introduction).

Making use of the homotopy theory of dg categories, the proof of Theorem A is not difficult.
However this result has several significant consequences. We will describe them briefly here, while
referring the reader to the remainder of the introduction for a fuller summary of the contents of
the paper.

(1) As a consequence of Theorem A we recover one of the main results of the interesting
recent article [4], namely what the authors call conservative descent. The proof given in
[4] is framed in the language of classical triangulated categories, and depends on rather
sophisticated arguments. Leveraging the formalism of∞-categories, however, we can give a
very simple proof of this result. Indeed in section 3.1 we will show that conservative descent
follows immediately from our Theorem A.

(2) Root stacks of normal crossing divisors D ⊂ X have been much studied in algebraic geom-
etry. In particular in [17] and [3] it is proved that their derived category carries a natural
semi-orthogonal decomposition. These prior results assume D to be simple normal crossing.
As an application of Theorem A we drop this assumption. We construct semi-orthogonal
decompositions on categories of perfect complexes of root stacks of general normal crossing
divisors D ⊂ X. A new feature emerges: whereas in the simple normal crossing case the
semi-orthogonal summands are given by categories of perfect complexes on the strata of D,
without the simplicity assumption the summands correspond to perfect complexes on the
normalization of the strata.
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2 SCHEROTZKE, SIBILLA, AND TALPO

Although the previous two applications are of general geometric import, we were motivated by log
geometry and the theory of parabolic sheaves. Here are two applications of log geometric nature:

(3) The infinite root stack, introduced in [33], is an important construction in log geometry.
Using (2) above, we construct sod-s for infinite root stacks in the general normal crossing
case. This improves on a result from our previous paper [27, Section 4], where we worked
under restrictive assumptions on the ground field (and we used a highly non-trivial invari-
ance of the derived category of infinite root stacks under log blow-ups). By the results
of [33], we also obtain sod-s on derived categories of parabolic sheaves of general normal
crossing divisors (with rational weights).

(4) Hagihara and Nizio l [15, 23] established an important structure theorem for Kummer flat
K-theory of log schemes with divisorial log structure (X,D), where D is simple normal
crossing. They proved that Kummer flat K-theory splits as an infinite direct sum labeled
by the strata. As a consequence of (3) we extend their description of Kummer flat K-theory
to log pairs (X,D) where D is general normal crossing.

Preordered semi-orthogonal decompositions and gluing. Dg-categories can be viewed as
objects inside homotopically enriched categories. In technical terms, we say that dg-categories
form a model category or an ∞-category. This yields meaningful notions of (homotopy) limits and
colimits of dg categories. This is a key difference with the classical theory of triangulated categories,
where limits and colimits are poorly behaved.

In algebraic geometry, descent properties of sheaves can be encoded via homotopy limits of dg-
categories. If U → X is faithfully flat cover, the category of perfect complexes Perf(X) can be
computed as a limit of the cosimplicial diagram of dg-categories determined by the Čech nerve of
U → X. Limits and colimits of dg-categories arise also in other geometric contexts. For instance,
the Fukaya category of exact symplectic manifolds localizes, and therefore can be calculated as a
limit of Fukaya categories of open patches.

For this reason, it is important to have structure theorems that allow us to deduce properties
of the limit category from the behaviour of the dg-categories appearing as vertices of the limit.
In this paper we prove a result of this type for semi-orthogonal decompositions (sod-s). These are
categorified analogues of direct sum decompositions of abelian groups and have long played a key
role in algebraic geometry, see [20] for a survey of results. In fact, it is more convenient to work
with the slightly more sophisticated concept of preordered semi-orthogonal decompositions (psod-s),
where the factors Cw of a dg-category C are labeled by elements of a preorder (P,≤). We use the
notation (C, P ) to indicate a dg-category C with with a psod indexed by P .

We introduce a notion of ordered structure on an exact functor F : (C1, P1) → (C2, P2): this is
the datum of an order-reflecting map φF : P2 → P1 keeping track of the way the psod-s on C1 and
C2 interact via F .

Theorem A (Theorem 3.13). Assume that for all i ∈ I, Ci = (Ci, Pi) is equipped with a psod,
and that for all morphisms f : i → j in I, α(f) : Ci → Cj is ordered. Assume additionally that
the colimit of indexing preorders P = lim−→i∈I Pi is finite and directed. Then the limit category

C = lim←−i∈I Ci carries a psod with indexing preordered set P , C = 〈Cw, w ∈ P 〉 , such that for all

w ∈ P we have

Cw ' lim←−
i∈I

⊕
z∈φ−1

i (w)

Ci,z,

where φi : Pi → P is the natural map.
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The proof of Theorem A is conceptually clear and not difficult. It reduces to relatively straight-
forward manipulations in the∞-category of dg categories. This simplicity is one of the main assets
of our approach. As it is often the case, leveraging the power of∞-categories allows for simpler and
more conceptual arguments. As an example, we will show how Theorem A immediately implies an
interesting recent result of Bergh and Schnürer from [4]. One of their main theorems is, roughly, a
gluing result akin to Theorem A, but limited to the geometric setting, which is called conservative
descent. Their approach is interesting in itself, but requires rather sophisticated arguments based
on the classical theory of triangulated categories. However from a dg point-of-view conservative
descent admits a simple proof. Indeed in section 3.1 we will show that it can be recovered as a
special case of Theorem A.

Since the precise setting of conservative descent is somewhat complicated, we prefer not to
reproduce that result here but refer the reader directly to section 3.1 in the main text for more
details.

Perfect complexes on root stacks. Root stacks were first studied systematically by Cadman
in [9]. They carry universal roots of line bundles equipped with a section, and in [9] were used to
compactify moduli of stable maps. Root stacks have since found applications in many different areas
of geometry including enumerative geometry, quantum groups [26], the theory of Néron models [11],
and more. From our perspective, root stacks are an essential tool to probe the geometry of log
schemes.

Taking the root stack of a divisor is a fundamental geometric operation akin to blowing-up. In
fact these two operations are often combined, as in the notion of stacky blow-up proposed by Rydh
[25]. From the view-point of the derived category classical blow-ups have a very simple description:
the surgery replacing a smooth subscheme with the projectivization of its normal bundle becomes, at
the level of derived categories, the addition of semi-orthogonal summands to the derived category
of the ambient space. It is a natural question, with many important applications, whether this
picture extends to stacky blow-ups. Semi-orthogonal decompositions associated to root stacks of
normal crossing divisors were studied in [17] and [3]. However these results require the normal
crossing divisor to be simple.

The assumption of simplicity is artificial from the viewpoint of the underyling geometry. One of
the chief goals of this paper is to lift the simplicity assumption and extend these semi-orthogonal
decompositions to the general normal crossing case. The definition of the root stack of a general
normal crossing divisor requires some care, but the geometry is clear: the isotropy along the strata
of the divisor keeps track of their codimension.

We formulate a version of our result as Theorem B below, but we refer the reader to the main
text for a sharper and more general statement (see Corollary 4.3). Let D ⊂ X be a normal crossing
divisor. The divisor D determines a stratification of X where the strata are intersections of local
branches of D. Let S be the set of strata and let M be the top codimension of the strata. For
every 0 ≤ j ≤ M , let Sj be the set of j-codimensional strata. If S is a stratum in S we denote by

S̃ its normalization.

Theorem B (Corollary 4.3). The dg-category of perfect complexes of the r-th root stack r
√

(X,D)
admits a semi-orthogonal decomposition

Perf(
r
√

(X,D)) = 〈AM , . . . ,A0〉
having the following properties:

(1) A0 ' Perf(X),
(2) for every 1 ≤ j ≤M , Aj decomposes as a direct sum Aj '

⊕
S∈Sj BS, and
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(3) for every S ∈ Sj the category BS carries a semi-orthogonal decomposition composed of r · j
semi-orthogonal factors, which are all equivalent to Perf(S̃).

Applications to log geometry: infinite root stacks and Kummer flat K-theory. Log
schemes are an enhancement of ordinary schemes which was introduced in the 80’s in the context
of arithmetic geometry. In recent years log techniques have become a mainstay of algebraic geometry
and mirror symmetry: for instance, log geometry provides the language in which the Gross–Siebert
program in mirror symmetry is formulated [14]. In [33] Talpo and Vistoli explain how to to associate
to a log scheme its infinite root stack, which is a projective limit of usual (i.e. finite-index) root
stacks. This assignment gives rise to a faithful functor from log schemes to stacks: log information
is converted into stacky information without any data loss. Additionally, the authors prove in [33]
that the Kummer flat topos of a log scheme X is equivalent to the flat topos of its infinite root
stack.

Using Theorem B, and passing to the limit on r, we obtain an infinite sod on Perf(∞
√

(X,D)).
This result is stated as Theorem 5.3 in the main text. The passage to the limit actually requires
a careful construction of nested sod-s on categories of perfect complexes of root stacks, which was
explained in our previous work [27], to which we refer the reader. It follows from results of [33] that

Perf(∞
√

(X,D)) is equivalent to the category of parabolic sheaves with rational weights on (X,D):

thus our result can be read as the construction of a sod on ParQ(X,D).

Theorem C (Corollary 5.5). Let (X,D) be a log stack given by an algebraic stack X equipped
with a normal crossing divisor D. Then the Kummer flat K-theory spectrum of X decomposes as
a direct sum

KKfl(X,D) ' K(X)
⊕( ⊕

S∈S∗D

( ⊕
χ∈(Q/Z)∗S

K(S̃)
))
.

We refer the reader to the main text for the definition of all the terms appearing in the formula.
Our result extends to the general normal crossing case the structure theorem in Kummer flat
K-theory due to Hagihara and Nizio l [15], [23]. A notable difference from those results is the
appearance of the K-theory of the normalization of the strata, rather than of the strata themselves.
In fact the statement of Corollary 5.5 in the main text is considerably more general than Theorem
C: it is not limited to K-theory but holds across all Kummer flat additive invariants.

Acknowledgments: We thank Marc Hoyois for a useful exchange about Lemma 2.1, and the
anonymous referee for useful comments and suggestions. M.T. was partially supported by EPSRC
grant EP/R013349/1.

Conventions. We will work over an arbitrary ground commutative ring κ. We use the definition
of algebraic stacks given in [29, Tag 026O]. In the following all algebraic stacks will be of finite type.
All functors between derived categories of sheaves or categories of perfect complexes are implicitly
derived.

2. Preliminaries

2.1. Categories. We will work with dg-categories, that is, κ-linear differential graded categories in
the sense of [18] and [12]. If C is a dg-category, and A and B are in C, we denote by HomC(A,B) the
Hom-complex between A and B. We will be mostly interested in triangulated dg-categories which
are defined for instance in Section 3 of [5]. The homotopy category of a triangulated dg-category
is a triangulated, Karoubi-complete category.



GLUING SEMI-ORTHOGONAL DECOMPOSITIONS 5

The category of dg-categories and exact functors carries a model structure, which was studied
in [31] and [35], where weak equivalences are Morita equivalences. A Morita equivalence is a dg-
functor F : A→ B such that the associated derived functor is an equivalence. Localizing this model
category at weak equivalences yields an (∞, 1)-category, which we denote dgCat. Our reference for
the theory of (∞, 1)-categories is given by Lurie’s work [21, 22]. In the rest of the paper we will
refer to (∞, 1)-categories simply as ∞-categories. The category dgCat has a symmetric monoidal
structure given by the tensor product of dg-categories, see [35].

We will be interested in taking limits and colimits of diagrams α : I → dgCat, where I is an
ordinary category and i is a pseudo-functor, in the sense for instance of Definition 4.1 of [6]. All
limits and colimits are to be understood as homotopy limits and colimits for the Morita model
structure: equivalently, they are (co)limits in the (∞, 1)-categorical sense. Since every pseudo-
functor α : I → dgCat can be strictified up to Morita equivalence, and this does not affect homotopy
(co)limits, the reader can assume that all diagrams α : I → dgCat in the paper are strict.

Throughout the paper, we will say that a square of dg-categories is commutative if there is an
invertible natural transformation α : KG⇒ HF

(1)

C1
F //

G
����

C2

H
��

C3
K //

α :B

C4.

Whenever only the existence of a natural transformation making the diagram commute will be
needed, and not its explicit definition, we will omit α and the 2-cell notation from the diagram.
We will say that (1) commutes strictly if α is the indentity natural transformation, and we will
sometimes denote this as

C1
F //

G
����

C2

H
��

C3
K // C4.

Let I be a small category. Let γ1, γ2 : I → dgCat be diagrams in dgCat. For all i ∈ I set Di := γ1(i)
and Ci := γ2(i). Let

T : γ1 ⇒ γ2 : I −→ dgCat

be a pseudo-natural transformation, given by the following data:

• for all i ∈ I, a functor T (i) : Di → Ci,
• for all i, j ∈ I, and for all maps i

ai,j−−→ j, an invertible natural transformation αi,j

Di
T (i) //

γ1(ai,j)

����

Ci
γ2(ai,j)

��
Dj

T (j) //

αi,j 4<

Cj .

Denote by D and C the limits lim←−i∈I Di and lim←−i∈I Ci respectively, and let T be the limit of the

functors T (i)
T = lim←−

i∈I
T (i) : D −→ C.

Lemma 2.1. Assume the following.

(1) For all i ∈ I, T (i) admits a left adjoint T (i)L, T (i)L a T (i).
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(2) The following Beck–Chevalley condition is satisfied: for all i, j ∈ I, and for all maps i
ai,j−−→ j,

the canonical natural transformation

αLi,j : T (j)L ◦ γ2(αi,j)⇒ γ1(αi,j) ◦ T (i)L

induced by αi,j is invertible.

Then TL = lim←−i∈I T (i)L is the left adjoint of T .

Remark 2.2. Recall that, by definition, αLi,j is given by the composite

T (j)L ◦ γ2(αi,j)
(a)⇒ T (j)L ◦ γ2(αi,j) ◦T (i) ◦T (i)L

(b)⇒ T (j)L ◦T (j) ◦ γ1(αi,j) ◦T (i)L
(c)⇒ γ1(αi,j) ◦T (i)L

where (a) and (c) are given by the counit of T (i)L a T (i) and the unit of T (j)L a T (j), while (b)
is given by αi,j .

Proof of Lemma 2.1. This is a well-known fact in the general setting of ∞-categories. We give a
proof based on [1, Appendix D]. With small abuse of notation we keep denoting by I also the nerve
∞-category of I. Via the Grothendieck construction we can write γ1 and γ2 as Cartesian fibrations
over Iop. Then T yields a morphism of cartesian fibrations over Iop∫

I γ1

""

T //
∫
I γ2

||
Iop

By assumption (1), T has a relative left adjoint: this follows from Lemma D.3 of [1]. Now by Lemma
D.6 of [1] relative adjunctions induce adjunctions between ∞-categories of sections. Further, if the
relative left adjoint preserves cartesian edges (which is the case by assumption (2)), this restricts to
an adjunction between the full subcategories of cartesian sections: this gives the desired adjunction
TL a T and concludes the proof. �

We also state the analogue of Lemma 2.1 for right adjoints.

Lemma 2.3. Assume the following.

(1) For all i ∈ I, T (i) admits a right adjoint T (i)R, T (i) a T (i)R.

(2) The following Beck–Chevalley condition is satisfied: for all i, j ∈ I, and for all maps i
ai,j−−→ j,

the canonical natural transformation

αRi,j : γ1(αi,j) ◦ T (i)R ⇒ T (j)R ◦ γ2(αi,j)

induced by αi,j is invertible.

Then TR = lim←−i∈I T (i)R is the right adjoint of T .

2.1.1. Categories of sheaves. If X is an algebraic stack, we denote by Qcoh(X) the triangulated
dg-category of quasi-coherent sheaves on X. The tensor product of quasi-coherent sheaves equips
Qcoh(X) with a symmetric monoidal structure, and Perf(X), the dg-category of perfect complexes,
is defined as the full subcategory of dualizable objects (see [2]). By [13, Theorem 1.3.4], the
dg-category of quasi-coherent sheaves Qcoh(−) satisfies faithfully flat descent: given a faithfully
flat cover Y → X, if Y • is the semi-simplicial object given by the Čech nerve of Y → X, then
lim←−Qcoh(Y •) ' Qcoh(X). Passing to dualizable objects on both sides, we obtain that Perf(−) also
satisfies faithfully flat descent.
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2.1.2. Exact sequences. Let C be a triangulated dg-category. We say that two objects A and A′

are equivalent if there is a degree 0 map A → A′ that becomes an isomorphism in the homotopy
category of C. If ι : C′ → C is a fully faithful functor, we often view C′ as a subcategory of C and
identify ι with an inclusion. Accordingly, we will usually denote the image under ι of an object
A of C′ simply by A rather than ι(A). We will always assume that subcategories are closed under
equivalence. That is, if C′ is a full subcategory of C, A is an object of C′, and A′ is an object of C
which is equivalent to A, we will always assume that A′ lies in C′ as well.

Recall that if D is a full subcategory of C, (D)⊥ denotes the right orthogonal of D, i.e. the full
subcategory of C consisting of the objects B such that the Hom-complex HomC(A,B) is acyclic for
every object A ∈ D. Let {C1, . . . , Cn} be a finite collection of triangulated subcategories of C such
that, for all 1 ≤ i < j ≤ n, Ci ⊆ (Cj)⊥. Then we denote by 〈C1 , . . . , Cn〉 the smallest triangulated
subcategory of C containing all the subcategories Ci. An exact sequence of triangulated dg-categories
is a sequence

(2) A F−→ B G−→ C

which is both a fiber and a cofiber sequence in dgCat. This is an analogue of classical Verdier
localizations of triangulated categories in the dg setting. Exact sequences of dg-categories are
detected at the homotopy level: it can be shown that (2) is an exact sequence if and only if the
sequence of homotopy categories

Ho(A)
Ho(F )−−−−→ Ho(B)

Ho(G)−−−−→ Ho(C)

is a classical Verdier localization of triangulated categories.
The functor F admits a right adjoint FR exactly if G admits a right adjoint GR, and similarly

for left adjoints, see e.g. [19, Proposition 4.9.1]. If F (or equivalently G) admits a right adjoint
we say that (2) is a split exact sequence. In this case the functor GR is fully faithful and we have
that B = 〈GR(C) , A〉. As we indicated earlier, since GR is fully faithful we will drop it from our
notations whenever this is not likely to create confusion: thus we will denote GR(C) simply by C,
and write B = 〈C , A〉.

2.2. Root stacks. For the convenience of the reader, we include a brief reminder about root stacks
of Cartier divisors in an algebraic stack. More details can be found in [27, Section 2.1] and references
therein.

Let X be a scheme. Then a Cartier divisor D ⊂ X with ideal sheaf I ⊂ OX is said to be simple
(or strict) normal crossings if for every x ∈ D the local ring OX,x is regular, and there exist a
regular sequence f1, . . . , fn ∈ OX,x such that Ix = 〈f1, . . . , fk〉 ⊂ OX,x for some k ≤ n. Moreover,
D is said to be normal crossings if étale locally on X it is simple normal crossings. These notions
are naturally extended to algebraic stacks by working on an atlas.

Given an algebraic stack X with a normal crossings divisor D ⊂ X one can form a root stack
r
√

(X,D) for every r ∈ N. If D is simple normal crossings, this has a simple functorial description
as the stack parametrizing tuples (L1, s1), . . . , (Lk, sk) of line bundles with global sections, with
isomorphisms (Li, si)⊗r ∼= (O(Di), sDi), where Di are the irreducible components of D and sDi is

the canonical section of the line bundle O(Di), whose zero locus is Di. Passing to r
√

(X,D) has the

effect of attaching a stabilizer µkr to points in the intersection of exactly k irreducible components
of D.

When D is only normal crossings, this description is not correct, because it doesn’t distinguish
the branches of D at points where an irreducible components self-intersects (as for example in the
node of an irreducible nodal plane cubic). In this case we have to use the notion of a root stack of a
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logarithmic scheme (see [8, 32]). In this particular case, we can think about r
√

(X,D) as being the

gluing of the r-th root stacks r
√

(U,D|U ), where {U → X} is an étale cover of X where D becomes
simple normal crossings.

The root stacks r
√

(X,D) form an inverse system. Indeed, if r | r′ there is a natural projection
r′√(X,D) → r

√
(X,D). The inverse limit ∞

√
(X,D) = lim←−r

r
√

(X,D) is the infinite root stack [33]

of (X,D). It is a pro-algebraic stack that embodies the “logarithmic geometry” of the pair (X,D)
in its stacky structure, and it is an algebraic analogue of the so-called “Kato-Nakayama space”
[10, 34]. In particular, quasi-coherent sheaves on it correspond exactly to parabolic sheaves [8] on
the pair (X,D), and finitely presented sheaves can be identified with finitely presented sheaves on
the Kummer-flat site of (X,D) (and also on the Kummer-étale site, if the base ring has characteristic
0).

3. Preordered semi-orthogonal decompositions

In this section we introduce preordered semi-orthogonal decompositions (psod-s). We will study
limits of dg-categories equipped with compatible psod-s. This concept was also considered in [3].
Once the set-up is in place the proof of the main result (Theorem 3.13) is not difficult, relaying as
it does on general properties of limits in the ∞-category of dg-categories. As an application of our
theory, we will obtain gluing results for semi-orthogonal decompositions along appropriate faithfully
flat covers. In the setting of classical triangulated categories a related result, called conservative
descent, has been obtained in the recent paper [4]. The advantage of our set-up is that conservative
descent follows in a straightforward way from the general formalism, and thus the proof that we
will give is considerably easier than the one contained in [4].

We will follow closely the account of psod-s contained in the previous paper of the authors [27].
We refer the reader to [20] for a comprehensive survey of the classical theory of semi-orthogonal
decompositions.

Let C be a triangulated dg-category, and let P be a preordered set. Consider a collection of full
triangulated subcategories ιx : Cx −→ C indexed by x ∈ P .

Definition 3.1.

• The subcategories Cx form a preordered semi-orthogonal decomposition (psod) of type P if
they satisfy the following three properties.
(1) For all x ∈ P, Cx is a non-zero admissible subcategory: that is, the embedding ιx

admits a right adjoint and a left adjoint, which we denote by

rx : C −→ Cx and lx : C −→ Cx.

(2) If y <P x, i.e. y ≤P x, and x 6= y, then Cy ⊆ C⊥x .
(3) C is the smallest stable subcategory of C containing Cx for all x ∈ P.

• We say that the subcategories Cx form a pre-psod of type P if they satisfy only properties
(1) and (2).

Note that from condition (2) it follows that if we have both y <P x and x <P y, then

〈Cx, Cy〉 = 〈Cy, Cx〉 ' Cx ⊕ Cy

Definition 3.2. If C is equipped with a psod of type P , we write C = 〈 Cx, x ∈ P 〉. We sometimes
denote the category C by (C, P ) to make explicit the role of the indexing preordered set P.

Remark 3.3. If C is the zero category, then it carries a psod indexed by the empty preordered set.
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We will be interested in gluing psod-s along limits of dg-categories. This requires introducing
an appropriate notion of exact functor compatible with psod-s. We do so after introducing some
preliminary concepts.

Definition 3.4. Let P and Q be preordered sets. We say that a map of sets φ : Q → P is
order-reflecting if for all x, y in Q we have φ(x) ≤P φ(y) =⇒ x ≤Q y.

We denote by PSetsrefl the category of preordered sets and order-reflecting maps between them.
Let us summarize some of its basic properties. Note first that the forgetful functor to sets

U : PSetsrefl −→ Sets

admits a left and a right adjoint, UL a U a UR . The functor UL sends a set S to the preordered
set (S,≤) such that x ≤ y for all x, y ∈ S, with the obvious definition on morphisms. We call UL(S)
the complete preorder on the set S. The functor UR sends a set S to the preordered set (S,≤) such
that x ≤ y, if and only if x = y, with the obvious definition on morphisms. We call UR(S) the
discrete preorder on the set S.

The category PSetsrefl admits all small limits and colimits. Since U has a right and a left adjoint,
they are computed by the underlying set-theoretic limits and colimits. In particular, the coproduct
of a collection of partially ordered sets {(Pi,≤Pi)}i∈I is given by the disjoint union P =

∐
i∈I Pi

equipped with a preorder ≤P defined as follows: let i, j ∈ I and let x be in Pi and y in Pj , then

• if i = j, we have x ≤P y if and only if x ≤Pi y;
• if i 6= j, we have x ≤P y.

Let us describe next the push-out of preordered sets in PSetsrefl,

(P,≤P ) (P1,≤P1)
π1oo

(P2,≤P2)

π2

OO

(P3,≤P3).π4
oo

π3

OO

The set P is the push-out of the underlying sets, and is equipped with a preorder ≤P defined as
follows: let z and z′ be in P, then z ≤P z′ if and only if

• for all pairs x, x′ ∈ P1 such that π1(x) = z and π1(x′) = z′, we have x ≤P1 x
′, and

• for all pairs x, x′ ∈ P2 such that π2(x) = z and π2(x′) = z′, we have x ≤P2 x
′.

Remark 3.5. Let φ : (P,≤P ) → (Q,≤Q) be an order-reflecting map. Then, for all x ∈ Q, the
preordered set φ−1(x) ⊆ (P,≤P ) is equipped with the complete preorder. Indeed, since φ is order-
reflecting, for all y and y′ in φ−1(x) we must have that y ≤P y′ and y′ ≤P y.

Next, we introduce a notion of compatible functor between categories equipped with a psod.

Definition 3.6. Let (C, P ) and (D, Q) be triangulated dg-categories equipped with a pre-psod

C = 〈 Cx, x ∈ P 〉 and D = 〈Dy, y ∈ Q 〉

and let F : C → D be an exact functor. A structure of ordered functor on F is the datum of a
function φF : Q→ P satisfying the following properties:
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• The function φF is an order-reflecting map, and for all x in P there is a strictly commutative
square

Cx
ιx //

F |Cx
��

C

F

��
〈Dy , y ∈ φ−1

F (x)〉 ' //// D.
• For all x ∈ P, set rφ−1

F (x) :=
⊕

y∈φ−1
F (x) ry , and lφ−1

F (x) :=
⊕

y∈φ−1
F (x) ly ,

rφ−1
F (x) : D −→

⊕
y∈φ−1

F (x)

Dy, lφ−1
F (x) : D −→

⊕
y∈φ−1

F (x)

Dy.

Then the following Beck–Chevalley condition holds: there are commutative diagrams

Cx
F |Cx

��

C

F

��

rxoo

αRx
rz

Cx
F |Cx

��

C

F

��

lxoo

⊕
y∈φ−1

F (x)Dy Dr
φ−1
F

(x)

oo
⊕

y∈φ−1
F (x)Dy D

l
φ−1
F

(x)

oo
αLx

dl

where αRx and αLx are defined as in Remark 2.2.

Remark 3.7. Being ordered is a structure on a functor F : (C, P ) → (D, Q) and not a property :
there might be more than one function φF satisfying the properties of Definition 3.6.

Remark 3.8. As we noted in Remark 3.5, φ−1
F (x) is equipped with the complete preorder. This

yields a canonical equivalence
⊕

y∈φ−1
F (x)Dy ' 〈Dy , y ∈ φ

−1
F (x)〉 which we assumed implicitly in

the formulation of property (2) of Definition 3.6. In particular, rφ−1
F (x) and lφ−1

F (x) are the right and

left adjoints of the fully faithful functor ιφ−1
F (x) := ⊕y∈φ−1

F
ιy : 〈Dy , y ∈ φ−1

F (x)〉 → D.

Let I be a small category, and consider a diagram α : I → dgCat. For all i ∈ I set Ci := α(i).
Assume that:

(1) for all i ∈ I, the category Ci is equipped with a pre-psod Ci = (Ci, Pi), and
(2) for all arrows f : i→ j in I, the functor α(f) : (Ci, Pi)→ (Cj , Pj) is equipped with a ordered

structure φα(f).

Assume additionally that the assignments

i ∈ I 7→ Pi and (f : i→ j) ∈ I 7→ φα(f) : Pj → Pi

yield a well-defined functor Iop → PSetsrefl. Let P be the colimit of this diagram, and for all i ∈ I
let φi : Pi → P be the structure maps.

Proposition 3.9. The limit category C = lim←−i∈I Ci carries a pre-psod with indexing preordered set

P = lim−→i∈I Pi such that, for all w ∈ P the subcategory Cw ⊂ C is given by

Cw ' lim←−
i∈I

⊕
z∈φ−1

i (w)

Ci,z.

Proof. Every limit can be expressed in terms of products and fiber products. Thus it is sufficient
to show the statement for these two classes of limits. Let us consider the case of products first.
The product of dg-categories {Ci}i∈I is the limit of the zero functors (Ci, Pi) −→ (0,∅). Thus, we
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need to show that the product category C =
∏
i∈I Ci carries a pre-psod indexed by P =

∐
i∈I Pi. If

x is in P, there is a j ∈ I such that x is in Pj , and we denote ιx : Cx −→ C the subcategory of C
given by

Cx := (Cj)x × 〈0〉 −→ Cj ×
∏

i∈I, i 6=j
Ci

'−→ C.

It is immediate to verify that the collection of subcategories Cx for x ∈ P satisfies properties (1)
and (2) from Definition 3.1, and thus that it is a pre-psod.

Let us check next that the statement holds for fiber products. Let

C

H

��

K // C1

F
��

C2
G // C3

be a fiber product of triangulated dg-categories, such that C1, C2 and C3 are equipped with a
pre-psod

(C1, P1) = 〈 C1,x, x ∈ P1 〉, (C2, P2) = 〈 C2,y, y ∈ P2 〉, (C3, P3) = 〈 C3,z, z ∈ P3 〉,

and G and F are ordered functors. Let P be the pushout of the Pi, and denote

φK : P1 → P, φH : P2 → P

the corresponding order-reflecting maps. We also set φFK := φK ◦ φF and φGH := φH ◦ φG. Note
that, since P is a push-out, φFK = φGH .

For all w in P we set

Cw := 〈C1,x , x ∈ φ−1
K (w)〉 ×C3 〈C2,y , y ∈ φ−1

H (w)〉.

Since 〈C1,x , x ∈ φ−1
K (w)〉 and 〈C2,y , y ∈ φ−1

H (w)〉 are full subcategories of C1 and C2, we have that
Cw is a full subcategory of C = C1 ×C3 C2. Note that we can write Cw equivalently as the fiber
product

〈C1,x , x ∈ φ−1
K (w)〉 ×〈C3,z , z∈φ−1

GH(w)〉 〈C2,y , y ∈ φ−1
H (w)〉,

since 〈C3,z , z ∈ φ−1
GH(w)〉 is a full triangulated subcategory of C3, and the functors

〈C1,x , x ∈ φ−1
K (w)〉 → C3 ← 〈C2,y , y ∈ φ−1

H (w)〉

factor through it.
We will show that the collection of subcategories of C given by 〈 Cw, w ∈ P 〉 satisfies the prop-

erties of a pre-psod of type P. Property (1) follows from Lemma 2.1. Thus we are reduced to
checking property (2). In order to do this, it is useful to use an explicit model for the fiber product
of dg-categories, which can be found for instance in [12, Appendix IV]. The category C1 ×C3 C2 has

• as objects, triples (A1, A2, u : F (A1) → G(A2)), where A1 is in C1, A2 is in C2, and u is an
equivalence,
• while the Hom-complex HomC((A1, A2, u), (A′1, A

′
2, u
′)) is given by the cone of the map

(3) HomC1(A1, A
′
1)⊕HomC2(A2, A

′
2)

u′F−Gu−−−−−→ HomC3(F (A1), G(A′2)).

If w < w′ are distinct elements of P, we have to show that Cw ⊆ C⊥w′ . That is, we need to prove
that if (A1, A2, u) is in Cw and (A′1, A

′
2, u
′) is in Cw′ , then HomC((A

′
1, A

′
2, u
′), (A1, A2, u)) ' 0. This
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however follows immediately by the calculation of the Hom-complexes in C given by (3). Indeed,
since we have inclusions⊕

x∈φ−1
K (w)

C1,x ⊆
( ⊕
x∈φ−1

K (w′)

C1,x

)⊥
,

⊕
y∈φ−1

H (w)

C2,y ⊆
( ⊕
y∈φ−1

H (w′)

C2,y

)⊥
the source of the morphism of complexes (3) vanishes. Further, we have that

F (A′1) ∈ 〈C3,z , z ∈ φ−1
FK(w′)〉 and G(A2) ∈ 〈C3,z , z ∈ φ−1

GH(w)〉,

and as φGH = φFK is order-reflecting we have that

〈C3,z , z ∈ φ−1
GH(w)〉 ⊆

(
〈C3,z , z ∈ φ−1

FK(w′)〉
)⊥
.

Hence also the target of the morphism of complexes (3) vanishes and thus its cone is zero, and this
concludes the proof. �

We will be interested in calculating limits of categories equipped with actual psod-s, rather than
just pre-psod-s. However, in general we cannot conclude that the limit category C will carry a psod,
as the admissible subcategories constructed in the proof of Proposition 3.9 might fail to generate
C. We clarify this point via an example in Example 3.10 below. Then, in Theorem 3.13, we give
sufficient conditions ensuring that the limit category will carry an actual psod.

Example 3.10. Let {Cn}n∈N be a collection of triangulated dg-categories. We can equip them with
a psod indexed by the trivial preorder Pn = {∗} for all n ∈ N. Then Proposition 3.9 yields a pre-
psod on D =

∏
n∈N Cn indexed by the set N equipped with the discrete preorder: the subcategories

of C forming this pre-psod are given by

Dn := Cn × 〈0〉 −→ Cn ×
∏

m∈N,m 6=n
Cm

'−→ C.

It is easy to see that the collection {Dn}n∈N fails to be a psod. Indeed the category spanned by
the Dn is 〈Dn , n ∈ N〉 '

⊕
n∈NDn, which is strictly contained in C.

Let (N,≤) be the set of natural numbers equipped with their usual ordering.

Definition 3.11. A preordered set (P,≤P ) is directed if there exist an order-reflecting map

(P,≤P )→ (N,≤).

Remark 3.12. Note that if (P,≤P ) is a directed finite preorder, then we can number its elements
{p0, . . . , pm} by natural numbers in such a way that, if 0 ≤ n < n′ ≤ m, then pn <P pn′ .

In the statement of Theorem 3.13 below we use the same notations as in Proposition 3.9, and
make the same assumptions that were made there.

Theorem 3.13. Assume that for all i ∈ I, Ci = (Ci, Pi) is equipped with a psod. Assume also
that the colimit of indexing preorders P = lim−→i∈I Pi is finite and directed. Then the limit category

C = lim←−i∈I Ci carries a psod with indexing preordered set P , C = 〈Cw, w ∈ P 〉 , such that for all

w ∈ P
Cw ' lim←−

i∈I

⊕
z∈φ−1

i (w)

Ci,z.
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Proof. We use the same notations we introduced in the proof of Proposition 3.9. In particular,
Proposition 3.9 yields a collection of subcategories Cw for w ∈ P satisfying properties (1) and (2)
of a psod in Definition 3.1. We only need to show that these subcategories generate C.

We denote by αi : C −→ Ci the universal functors from the limit category. Note that by con-
struction, these are ordered functors. Using the directedness of P we can choose a numbering of its
elements {w0, . . . , wm} having the property discussed in Remark 3.12. Recall also that for w ∈ P we
denote by rw : C → Cw the right adjoint of the inclusion ιw : Cw → C. Let us pick a non-zero object
A ∈ C, and show that it belongs to the subcategory 〈Cw , w ∈ P 〉. Since Cwm is right-admissible,
there is a triangle

ιwmrwmA −→ A −→ AC⊥wm
where AC⊥wm

has the property that rwm(AC⊥wm
) ' 0. Now set A1 := AC⊥wm

, and consider the analogous

triangle for A1, using Cwm−1 instead of Cwm
ιwm−1rwm−1A1 −→ A1 −→ AC⊥wm−1

.

Note that rwm−1(AC⊥wm−1
) ' 0, and also rwm(AC⊥wm−1

) ' 0 as

• rwm(ιwm−1rwm−1A1) ' 0, because ιwm−1rwm−1A1 ∈ Cwm−1 ⊆ C⊥wm ,

• and rwm(A1) ' 0, because by construction A1 ∈ C⊥wm .
Next we set A2 := AC⊥wm−1

, and we can iterate the construction above, this time with respect to

Cwm−2 .
Since P is finite, in this way we construct inductively an object Am+1 ∈ C having the prop-

erty that rwi(Am+1) ' 0 for all 0 ≤ i ≤ m. Since the functors αi are ordered, this implies that
rxαi(Am+1) ' 0 in Ci,x for every i and every x ∈ Pi. As each of the categories (Ci, Pi) is generated
by the subcategories making up their psod-s, this implies that αi(Am+1) ' 0 in Ci for all i in I.
Thus Am+1 ' 0. As a consequence A can be realized as an iterated cone of objects lying in the
subcategories Cw and therefore it lies in 〈Cw , w ∈ P 〉, as we needed to show. �

Remark 3.14. For all i ∈ I, denote by πi : Pi → P and αi : C → Ci the universal morphisms. Then
it follows from the proof of Proposition 3.9 that if w is in P, then A ∈ C lies in Cw ⊆ C if and only
if, for all i ∈ I the image αi(A) lies in the subcategory 〈Ci,x , x ∈ π−1

i (w)〉 ⊆ Ci.

3.1. Gluing psod-s and conservative descent. A formalism for gluing semi-orthogonal decom-
positions along faithfully flat covers was proposed in [4, Theorem B]. The authors call their theory
conservative descent. The proof given in [4] depends on rather subtle arguments. The key difference
with our approach is that in that paper, the authors work with the classical theory of triangulated
categories, for which there is no well-behaved notion of limits and colimits. Using the full power of
the∞-category of dg categories we can sidestep these difficulties, and give a simple and conceptual
proof of conservative descent. From our perspective, conservative descent becomes a special case of
the general structure result for limits of categories equipped with a psod given by Theorem 3.13.

More precisely, we will show that our Proposition 3.9 and Theorem 3.13 imply Theorem B from
[4]. We start by briefly recalling the setting of [4], referring the reader to the original reference
for full details. Let S be an algebraic stack. Let X and Z1, . . . , Zm be algebraic stacks over S,
and let S′ → S a faithfully flat map. If T is an algebraic stack, we denote by Dqc(T ) the classical
derived category of quasi-coherent sheaves over T . Note that the category Dqc(T ) is the homotopy
category of Qcoh(T ).

The set-up of Theorem B requires to consider

• functors Φi : Dqc(Zi)→ Dqc(X) which are of Fourier-Mukai type (in the sense of Definition
3.3 of [4]),



14 SCHEROTZKE, SIBILLA, AND TALPO

• and their base change along S′ → S. If we set X ′ = X ×S S′, and Z ′i = Zi ×S S′, then the
base change of Φi is a functor Φ′i : Dqc(Z

′
i)→ Dqc(X

′).

Then Theorem B breaks down as the following two statements:

(1) If the functors Φ′i are fully-faithful, then the functors Φi are also fully-faithful. Under this
assumption, if the subcategories Im(Φ′i) are semi-orthogonal in Dqc(X

′),

i.e. Im(Φ′j) ⊂ Im(Φ′j′)
⊥ if j < j′,

then Im(Φi) are semi-orthogonal in Dqc(X).
(2) Moreover if the subcategories Im(Φ′i) generate Dqc(X

′), then the subcategories Im(Φi) gen-
erate Dqc(X).

Let us sketch how to recover these results from Proposition 3.9 and Theorem 3.13. We will break
this explanation down into several steps. For the sake of clarity we will gloss over some technical
details, which will be left to the reader.

• We set C := Qcoh(X). For all k ∈ N, we denote by Ck the dg-category of quasi-coherent sheaves
over the k-th iterated fiber product of X and S′ over S

Ck := Qcoh(X ×S S′ ×S . . .×S S′).

• For all k ∈ N we denote by Ck,i the dg-category of quasi-coherent sheaves over the k-th iterated
fiber product of Zi and S′ over S

Ck,i := Qcoh(Zi ×S S′ ×S . . .×S S′).

• Since Φi is of Fourier–Mukai type it lifts to a functor between the dg-enhancements of the derived
categories of quasi-coherent sheaves. We keep denoting these functors Φi

Φi : Qcoh(Zi)→ Qcoh(X).

By base change for all k ∈ N we get functors Φk,i : Ck,i → Ck.
• As in Theorem B from [4] we assume that for all i ∈ {1, . . . ,m} Φ1,i = Φ′i is fully-faithful, and that
C1,i ' Im(Φ′i) are semi-orthogonal in C1 = Qcoh(X ′). Equivalently, this can be formulated by
saying that the subcategories C1,i form a pre-psod of C1 of type P , where P is the set {1, . . . ,m}
with the usual ordering. One can show that this implies that, for all k ∈ N, the subcategories
Ck,i form a pre-psod on Ck of type P .
• By faithfully flat descent, Qcoh(X) can be obtained as the limit

(4) Qcoh(X) −→
[
Qcoh(X ′)−→−→Qcoh(X ′ ×S S′)−→−→

−→ Qcoh(X ′ ×S S′ ×S S′) . . .
]
.

In formulas we will write C = lim←−k∈N Ck . For every k ∈ N we denote by

ak,1, . . . , ak,k+1 : Ck → Ck+1

the k + 1 structure maps from diagram (4).
Let k ∈ N, and let j ∈ {1, . . . , k + 1}. It is easy to see that the identity id : P → P is an

order-reflecting map and equips ak,j : (Ck, P )→ (Ck+1, P ) with a structure of ordered functor.
• Proposition 3.9 then implies that C = lim←−k∈N Ck carries a pre-psod of type

lim−→
k∈N

P = P
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with semi-orthogonal factors given by lim←−k Ck,i ' Qcoh(Zi). This recovers statement (1) of

Theorem B. Now assume that C1,i is actually a psod of C1 = Qcoh(X ′). This implies that for all
k ∈ N, Ck,i is a psod of type P of Ck. Then Theorem 3.13 implies statement (2) of Theorem B.1

4. Semi-orthogonal decompositions of root stacks

In this section we explain our main application. Let X be an algebraic stack and let D be a
normal crossings divisor in X. The root stack r

√
(X,D) of a pair (X,D), where D ⊂ X is a normal

crossings divisor, has long been an important object in algebraic geometry. We refer the reader
to the Introduction for more information on previous work in this area. We will construct semi-
orthogonal decompositions on Perf( r

√
(X,D)). This generalizes earlier results by other authors. In

[17] and [3] the authors construct sod-s on Perf( r
√

(X,D)), under the assumption that D is simple
normal crossings. We drop the assumption of simplicity and work with general normal crossings
divisors.

Remark 4.1. We want to stress a subtle point about this assumption: from [3, Definition 3.5], it
might seem that in that paper they do consider divisors that are merely normal crossings.

The point is that the root construction that they use in the non-simple case is not the “correct”
one from the point of view of logarithmic geometry. For instance, if D ⊂ P2 is an irreducible nodal
cubic, their r-th root construction would add a stabilizer µr along all the points of D, including the
node. This does not take into account that locally around the node there are two distinct branches
of D. In this case, the “correct” construction of r

√
(P2, D) (and more generally when D is normal

crossings but not simple) from our point of view is the one introduced in [8], that adds a stabilizer
µr along all the points of D different from the node, and a stabilizer µ2

r at the node. A way to

see that this is indeed the right notion is that, following the definition of [8], the stack r
√

(P2, D)
is smooth, just as the root stacks of smooth schemes along simple normal crossings divisors are;
whereas with the definition of root stacks given in [3, Definition 3.5], in the non-simple normal
crossings case one obtains singular stacks.

The shape of the sod-s that we construct in the general case have interesting differences from
the ones given in [17] and [3]. Indeed whereas in the simple normal crossings case the factors of the
sod-s are equivalent to perfect complexes on the strata, in the general case we need to work with
the normalizations of the strata.

Our construction of psod-s for Perf( r
√

(X,D)) relies in essential way on Theorem 3.13. The other
main ingredient are the psod-s obtained in [3] in the simple normal crossing case, and which will
be reviewed in a slightly different formulation in Section 4.1 below.

4.1. Root stacks of normal crossing divisors. We start by introducing some notations. Let X
be an algebraic stack and let D ⊂ X be a (non-necessarily simple) normal crossing divisor. Note
that X carries a natural stratification given by locally closed substacks which can be obtained,
locally, as intersections of the branches of D. Equivalently this stratification can be defined as

follows: let D̃ be the normalization of D and consider the locally closed substacks S which are

maximal with respect to the following two properties: S is connected; the map D̃ ×X S → S is
étale.

1Proposition 3.9 and Theorem 3.13 were formulated for small dg-categories, while here we are applying them to
the large category Qcoh(X): however our results also hold, without variations, in the setting of large categories.
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Let S(D) denote the set of strata closures, that we will henceforth simply call “strata”.2 For
every k ∈ N we set

S(D)k := {S ∈ S(D) | codim(S) = k}, and S(D)k :=
⋃

S∈S(D)k

S.

We say that S(D)k is the k-codimensional skeleton of the stratification. For every stratum S ∈ S(D)

we denote by S̃ its normalization. We denote by S̃(D)k the normalization of S(D)k: S̃(D)1 is the

disjoint union of the normalizations of the irreducible components of D; more generally, S̃(D)k is
the disjoint union of the normalizations of the strata in S(D)k. In formulas we can write

S̃(D)k =
∐

S∈S(D)k

S̃.

Let ND be the maximal codimension of strata of (X,D). We denote by (ND,≤) the ordered set

ND := {ND, ND − 1, . . . , 0} ordered by ND < ND − 1 < . . . < 0.

We set ND
∗ = ND − {0}. For r ∈ N, we denote by Zr the group of residue classes modulo r and

set Z∗r := Zr − {0}. As in [27], it is useful to identify Zr and Z∗r with subsets of Q/Z = Q ∩ (−1, 0]

(5) Zr ∼=
{
−r − 1

r
, . . . ,−1

r
, 0

}
⊂ Q ∩ (−1, 0], Z∗r ∼=

{
−r − 1

r
, . . . ,−1

r

}
⊂ Q ∩ (−1, 0].

We equip Zr and Z∗r with the order ≤ given by the restriction of the order on Q

−r − 1

r
< −r − 2

r
< . . . < −1

r
< 0.

For all k ∈ ND
∗ we set Zk,r :=

⊕k
i=1 Zr and Z∗k,r :=

⊕k
i=1

(
Zr − {0}

)
. Note that Z∗0,r = {0}. We

equip Zk,r and Z∗k,r with the product preorder. The group Zk,r is canonically isomorphic to the

group of characters of the group of roots of unity µk,r :=
⊕k

i=1 µr.

We denote by (ZD,r,≤) the set
∐ND
k=0 Z

∗
k,r equipped with the following preorder: let ξ, ξ′ be in

ZD,r, with ξ ∈ Z∗k,r and ξ′ ∈ Z∗k′,r, then

ξ < ξ′ if k <ND k′ or k = k′ and ξ <Z∗k,r ξ
′.

Let r
√

(X,D) be the r-th root stack of (X,D). Note that r
√

(X,D) also carries a natural normal

crossing divisor, which we denote Dr ⊂ r
√

(X,D), obtained as reduction of the preimage of D. All

previous notations and definitions therefore also apply to the log pair ( r
√

(X,D), Dr).

Proposition 4.2. (1) The category Perf( r
√

(X,D)) has a psod of type (ND,≤), Perf( r
√

(X,D)) =
〈Ak, k ∈ ND〉 where:
• A0 ' Perf(X).
• For all k ∈ ND

∗, the subcategory Ak has a psod of type (Z∗k,r,≤)

Ak = 〈Akχ, χ ∈ (Z∗k,r,≤)〉

and, for all χ ∈ Z∗k,r, there is an equivalence Akχ ' Perf(S̃(D)k).

2In the usual definition, strata are locally closed, and their boundary is a disjoint union of smaller dimensional
strata. We look instead at closed strata, which are given by the closures of the locally closed ones.
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(2) The category Perf( r
√

(X,D)) has a psod of type (ZD,r,≤)

Perf(
r
√

(X,D)) = 〈Akχ, χ ∈ (ZD,r,≤)〉,

where A0 ' Perf(X) and for all χ ∈ Z∗k,r there is an equivalence Akχ ' Perf(S̃(D)k).

Before giving a proof of Proposition 4.2 we will make a few preliminary considerations.
If D ⊂ X is a simple normal crossing divisor, Proposition 4.2 is a reformulation of Theorem 4.9

from [3]. In order to translate back to the statement of [3, Theorem 4.9], it is sufficient to note

that S̃k decomposes as the disjoint union of strata of codimension k. Indeed, in the simple normal
crossing setting, all strata are already normal. This yields an equivalence

Akχ '
⊕
S∈Sk

Perf(S)

which recovers the semi-orthogonal factors given by [3, Theorem 4.9].
It will be useful to explain how the semi-orthogonal factors Akχ are constructed in the simple

normal crossing case, and some of their basic properties. We refer to the treatment contained in
Sections 3.2.1 and 3.2.2 of [27], and limit ourselves to statements without proof. For all k ∈ N there

is a canonical µk,r-gerbe Gk,r(D)→ S̃(D)k, that fits in a diagram

Gk,r(D)
q←− S̃(Dr)k

ι−→ Perf(
r
√

(X,D))

where S̃(Dr)k is the normalization of the codimension k skeleton of the stratification of ( r
√

(X,D), Dr).
There is a natural splitting (as in Lemma 3.9 of [27])

Perf(Gk,r(D)) '
⊕
χ∈Zk,r

Perf(Gk,r(D))χ '
⊕
χ∈Zk,r

Perf(S̃(D)k).

For every χ ∈ Zk,r, the subcategory Akχ is defined as the image of the composite

(6) Akχ = Perf(S̃(D)k) ' Perf(Gk,r(D))χ
(?)−−→ Perf(Gk,r(D))

ι∗q∗−−→ Perf(
r
√

(X,D))

where arrow (?) is the inclusion of the χ-th factor.

Proof of Proposition 4.2. We will use the fact that, by [3, Theorem 4.9], the statement holds when
D is simple normal crossing.

Let D ⊂ X be a general normal crossing divisor. Consider an étale covering U → X such that
the pull-back to U of the log structure of (X,D) is induced by a simple normal crossings divisor
D|U . The construction of root stacks is compatible with base change, so that there are natural

isomorphisms r
√

(U,D|U ) ' r
√

(X,D) ×X U . Further, r
√

(U,D|U ) → r
√

(X,D) is an étale covering.
For all l ∈ N we denote the l-fold iterated fiber product of U over X Ul := U ×X . . .×X U . For all
l ∈ N the pull-back of the log structure on (X,D) to Ul is also induced by a simple normal crossing
divisor, which we denote Dl.

Consider the semi-simplicial stack given by the nerve of the étale cover r
√

(U,D|U )→ r
√

(X,D)

. . .−→−→
−→ r
√

(U2, D2) ⇒ r
√

(U,D|U ) −→ r
√

(X,D).

Note that for all l, the structure morphisms p1, . . . , pl+1

p1, . . . , pl+1 :
r
√

(Ul+1, Dl+1) −→ r
√

(Ul, Dl)
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map strata of codimension k to strata of codimension k. By faithfully flat descent, we can realize
Perf( r

√
(X,D)) as the totalization of the induced semi-cosimplicial diagram of dg-categories, where

the structure maps are given by pull-back functors:

(7) Perf(
r
√

(X,D)) ' lim←−
l∈N

Perf

(
r
√

(Ul, D|Ul)
)
.

We are going to prove the proposition by applying Theorem 3.13 to the limit of dg-categories (7),
more precisely:

• Since Dl is simple normal crossing, for every l we can equip Perf( r
√

(Ul, D|Ul)) with the
psod of type ZDl,r given by Proposition 4.2, where the semi-orthogonal factors are defined
as in (6). Also, since ZDl,r = ZD,r, we can write

Perf(
r
√

(Ul, Dl)) = 〈Al,kχ , χ ∈ (ZD,r,≤)〉.

• We equip the functors appearing in limit (7) with the ordered structure given by the identity
map: that is, for every j ∈ {1, . . . , l + 1} we have

p∗j : Perf(
r
√

(Ul, Dl)) −→ Perf(
r
√

(Ul+1, Dl+1))

and we set φp∗j = id: ZD,r → ZD,r.

Note that lim−→ZDl,r = ZD,r is a finite preorder. Thus, to apply Theorem 3.13, we only need to check
that the identity map id: ZD,r → ZD,r does indeed induce a well-defined ordered structure on the
functors appearing in (7). Namely, we have to prove the following two properties:

(a) We need to show that for all j ∈ {1, . . . , l+ 1}, for all χ ∈ ZD,r there is a strictly commutative
diagram

(8)

Al+1,k
χ

// Perf( r
√

(Ul+1, Dl+1))

Al,kχ //

p∗j

OO

Perf( r
√

(Ul, Dl)).

p∗j

OO

(b) Additionally we need to show that the canonical 2-cells obtained via adjunction from (strictly)
commutative diagram (8) are also invertible, giving rise to commutative diagrams

(9)

Al+1,k
χ Perf( r

√
(Ul+1, Dl+1))

lχoo Al+1,k
χ Perf( r

√
(Ul+1, Dl+1))

rχoo

Al,kχ

OO

Perf( r
√

(Ul, Dl))

p∗j

OO

lχoo Al,kχ

OO

Perf( r
√

(Ul, Dl)).

p∗j

OO

rχoo

Let us start with property (a). The horizontal arrows in (8) are inclusions, thus we only need to

check that p∗j maps Al,kχ to the subcategory Al+1,k
χ . Note that the map

pj :
r
√

(Ul+1, Dl+1)→ r
√

(Ul, Dl)
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maps strata to strata. Thus we get a commutative diagram

Gk,r(Dl+1)

pj

��

˜S(Dl+1,r)k
qoo ι //

pj

��

Perf( r
√

(Ul+1, Dl+1))

pj

��
Gk,r(Dl) S̃(Dl,r)k

qoo ι // Perf( r
√

(Ul, Dl))

where all vertical arrows are étale (and in particular flat and proper), and both the left and the
right square are fiber products. Property (a) follows because there is a natural equivalence

ι∗q
∗p∗j ' p∗j ι∗q∗ : Gk,r(Dl) −→ Perf(

r
√

(Ul+1, Dl+1))

given by the composite

ι∗q
∗p∗j ' ι∗p∗jq∗

(?)
' p∗j ι∗q

∗

where equivalence (?) is given by flat base change.
Let us consider property (b) next. We will show that the Beck–Chevalley property holds with

respect to right adjoints: that is, that the right square in (9) commutes. The case of left adjoints

is similar. Note that rχ : Perf( r
√

(Ul+1, Dl+1))→ Al+1,k
χ is given by the composite

Perf(
r
√

(Ul+1, Dl+1))
q∗ι!−−→ Gk,r(Dl+1)

prχ−−→ Al+1,k
χ ,

where prχ is the projection onto the χ-th factor, and similarly for rχ : Perf( r
√

(Ul, Dl)) → Al,kχ .
Thus, in order to show that the right square in (9) commutes, it is enough to prove that the
canonical natural transformation

q∗ι
!p∗j ⇒ p∗jq∗ι

! : Perf(
r
√

(Ul, Dl)) −→ Gk,r(Dl+1)

is invertible. This can be broken down as a composite of the base change natural transformations

q∗ι
!p∗j

(i)⇒ q∗p
∗
j ι

! (ii)⇒ p∗jq∗ι
!

which are both equivalences: (i) is an equivalence by proper base change (ι!p∗j ' p∗j ι!), and (ii) by

flat base change (q∗p
∗
j ' p∗jq∗).

Since property (a) and (b) are satisfied we can apply Theorem 3.13 to our setting. Thus

Perf( r
√

(X,D)) carries a psod of type (ZD,r,≤)

Perf(
r
√

(X,D)) = 〈Akχ, χ ∈ (ZD,r,≤)〉

where for all χ ∈ ZD,r we have that

Akχ = lim←−
l∈N
Al,kχ ' lim←−

l∈N
Perf(S̃(Dl)k).

Note that the stacks S̃(Dl)k, together with the structure maps between them, are the nerve of the

étale cover S̃(DU )k → S̃(D)k. Thus, by faithfully flat descent, we have an equivalence

Akχ ' lim←−
l∈N

Perf(S̃(Dl)k) ' Perf(S̃(D)k).

This concludes the proof of part (2) of Proposition 4.2, which immediately implies part (1). �
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It will be useful to reformulate Proposition 4.2 in a way that is closer to the analogous statements
in the simple normal crossing setting given in [3, Theorem 4.9] and [27, Proposition 3.12]. We do

this in Corollary 4.3 below. This amounts to breaking down the factors Akχ ' Perf(S̃(D)k) into

direct sums: since S̃(D)k is the disjoint union of the normalizations of the k-codimensional strata,
we have a decomposition

Akχ ' Perf(S̃(D)k) '
⊕

S∈S(D)k

Perf(S̃)

Before stating this result we need to introduce some notations. We equip the set of strata S(D)
with the coarsest preorder satisfying the following two properties: let S and S′ be in S(D)

(1) if S ⊆ S′ then S ≤ S′, and
(2) if dim(S) = dim(S′) then S ≤ S′ and S′ ≤ S.

We denote S(D)∗ := S(D) − {X}. For every S ∈ S(D), if cod(S) is the codimension of S we
set |S| := cod(S). We denote by (ZS(D),r,≤) the set

∐
S∈S(D) Z∗|S|,r equipped with the following

preorder: let ξ, ξ′ be in ZSD,r, with ξ ∈ Z∗|S|,r and ξ ∈ Z∗|S′|,r, then ξ < ξ′

• if |S| > |S′|,
• or if |S| = |S′| and S 6= S′,
• or if S = S′ and ξ <Z∗|S|,r ξ

′.

Corollary 4.3 generalizes [3, Theorem 4.9] and [27, Proposition 3.12] to pairs (X,D) where D is
normal crossing but necessarily simple.

Corollary 4.3.

(1) The category Perf( r
√

(X,D)) has a psod of type (S(D),≤), Perf( r
√

(X,D)) = 〈AS , S ∈ S(D)〉
where:
• AX ' Perf(X).
• For all S ∈ S(D)∗, the subcategory AS has a psod of type (Z∗|S|,r,≤)

AS = 〈ASχ, χ ∈ (Z∗|S|,r,≤)〉

and, for all χ ∈ Z∗|S|,r, there is an equivalence ASχ ' Perf(S̃).

(2) The category Perf( r
√

(X,D)) has a psod of type (ZS(D),r,≤)

Perf(
r
√

(X,D)) = 〈ASχ, χ ∈ (ZS(D),r,≤)〉,

where AX ' Perf(X) and for all χ ∈ Z∗|S|,r there is an equivalence ASχ ' Perf(S̃).

Example 4.4. It might be useful to describe the sod given by Corollary 4.3 in a concrete example.
Let X = A2 and let D be an irreducible nodal cubic curve with node at the origin o ∈ A2. The

stratification of A2 induced by D has three strata: o, D and A2. The normalization of D̃ of D is
isomorphic to A1. The preorder (ZS(D),2,≤) is given by o < D < A2. Then Corollary 4.3 yields a
sod of the form

Perf( 2
√

(A2, D)) = 〈Perf(o),Perf(D̃),Perf(A2) 〉.

5. Applications to logarithmic geometry

In this last section we explain two consequences of our results in the context of logarithmic
geometry and the theory of parabolic sheaves. In section 5.1 we construct an infinite sod on the
category of perfect complexes over the infinite root stack ∞√(X,D) of a pair (X,D) where D is a
general normal crossing divisor. Equivalently, this can be expressed by saying that we construct
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an infinite sod on the derived category of parabolic sheaves with rational weights on (X,D). This
improves earlier results that we obtained in [27]. Then in section 5.2 we show that this implies a
generalization to the general normal crossings case of an important structure result in Kummer flat
K-theory originally due to Hagihara and Nizio l.

5.1. Infinite root stacks of normal crossing divisors. Before proceeding it is useful to recall
our results from [27], and explain in which way our current results improve on them.

(1) In [27] we construct psod-s on Perf(∞
√

(X,D)), under the assumption that D is simple
normal crossings.

(2) In [27] we also constructed psod-s on Perf(∞
√

(X,D)) in the general normal crossing case.
This however required, first of all, to work over a field of characteristic zero, and secondly
involved using a highly non-trivial result on the invariance of Perf(∞

√
(X,D)) under log

blow-ups which was established in [28]. In particular the sod obtained in this way depended

on a choice of a simple normal crossing model (X̃, D̃) obtained from (X,D) by successive
blow-ups along the strata of D.

Remark 5.1. It is also important to note that the psod-s in the general normal crossing case
constructed in [27] only exist for the infinite root stack, and not for finite root stacks. The argument

in [27] requires to switch to a simple normal crossing birational model (X̃, D̃) of (X,D). The key

point is that the categories of perfect complexes of
∞
√

(X̃, D̃) and ∞√(X,D) are equivalent by the

main theorem of [28] but this is far from true for finite root stacks. Thus the psod-s on finite root
stacks constructed in Proposition 4.2 are entirely new, even over a field of characteristic 0.

Let (X,D) be a pair given by an algebraic stack equipped with a normal crossing divisor. Our
main goal in this section is to use the results of Section 4 to construct psod-s (patterned after

Corollary 4.3) on Perf(∞
√

(X,D)) in the general normal crossing case, which are independent of

the ground ring and of the choice of a desingularization (X̃, D̃). This is given by Theorem 5.3
below. The proof strategy is the same as the one that was used to prove Theorem 3.16 of [27],
whose statement exactly parallels Theorem 5.3: the only difference is that Theorem 3.16 of [27]
assumes that D is simple normal crossings. For this reason we will limit ourselves to state our
results, referring the reader to [27] for the proof.

Formulating Theorem 5.3 requires introducing some notations. Let S be a stratum in S(D). We
denote

(Q/Z)|S| :=

|S|⊕
i=1

Q/Z, (Q/Z)∗|S| :=

|S|⊕
i=1

(
Q/Z− {0}

)
.

There is a natural identification (Q/Z)|S| = Q|S| ∩ (−1, 0]|S|. We will equip (Q/Z)|S| with a total

order, which we denote ≤!, that differs from the restriction of the usual ordering on the rational
numbers.

First of all we define the order ≤! on Zn! recursively, as follows.

• On Z2! = {−1
2 , 0} we set −1

2 <
! 0.

• Having defined ≤! on Z(n−1)!, let us consider the natural short exact sequence

0→ Z(n−1)! → Zn!
πn−→ Zn → 0,

where Zn = {−n−1
n , . . . ,− 1

n , 0} is equipped with the standard order ≤ described above.

Given two elements a, b ∈ Zn!, we set a ≤! b if either πn(a) < πn(b), or πn(a) = πn(b) and
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a ≤! b in Z(n−1)!, where we are identifying the fiber π−1
n (πn(a)) ⊆ Zn! with Z(n−1)! in the

canonical manner.

We identify Zn! with a subset of Q∩ (−1, 0] as explained in (5) above. Note that we can write every

element χ in Q|S| ∩ (−1, 0]|S| as

χ =
(
−p1

n!
, . . . ,−pN

n!

)
for some p1, . . . , pN in N where n ∈ N. This expression is unique if we require n to be as small as
possible, and we call this the normal factorial form.

Definition 5.2. Let

χ =
(
−p1

n!
, . . . ,−pN

n!

)
, χ′ =

(
− q1

m!
, . . . ,−qN

m!

)
∈ Q|S| ∩ (−1, 0]|S|

be in normal factorial form. We write χ ≤! χ′ if:

• n > m, or
• n = m and −pi

n! ≤
! − qi

n! in Zn! for all i = 1, . . . , N , where ≤! is the ordering defined above.

Theorem 5.3.

(1) The category Perf(∞
√

(X,D)) has a psod of type (S(D),≤)

Perf(
∞√

(X,D)) = 〈AS , S ∈ S(D)〉,
where:
• AX ' Perf(X).
• For all S ∈ S(D)∗, the subcategory AS has a psod of type ((Q/Z)∗|S|,≤

!)

AS = 〈ASχ, χ ∈ ((Q/Z)∗|S|,≤
!)〉

and, for all χ ∈ Z∗|S|,r, there is an equivalence ASχ ' Perf(S̃).

(2) The category Perf(∞
√

(X,D)) has a psod of type ((Q/Z)S(D),≤!)

Perf(
∞√

(X,D)) = 〈ASχ, χ ∈ ((Q/Z)S(D),≤!)〉,

where AX ' Perf(X) and for all χ ∈ (Q/Z)∗|S| there is an equivalence ASχ ' Perf(S̃).

5.2. Kummer flat K-theory of normal crossing divisors. The psod-s on infinite root stacks
that we constructed in [27] are a categorification of structure theorems in Kummer flat K-theory of
simple normal crossing divisors due to Hagihara and Nizio l [15], [23]. Our techniques allowed us to
extend those structure theorems to a wider class of log stacks, including the case of general normal
crossing divisors, but only over a field of characteristic zero and via a desingularization step.

In this section we explain how the results obtained in Section 5.1 yield unconditional structure
theorem for Kummer flat K-theory of general normal crossing divisors. As in [27], we will formulate
our statements more generally in terms of noncommutative motives and additive invariants of dg-
categories.

Definition 5.4. An additive invariant of dg-categories is a functor of ∞-categories

H: dgCat −→ P
where P is a stable and presentable ∞-category, satisfying the following properties:

(1) H preserves zero-objects.
(2) H sends split exact sequences of dg-categories to cofiber sequences in P.
(3) H preserves filtered colimits.



GLUING SEMI-ORTHOGONAL DECOMPOSITIONS 23

Hochschild homology, algebraic K-theory and non-connective K-theory are all examples of ad-
ditive invariants. As proved in [30], [7] (see also [24] and [16]) there exists a universal additive
invariant

U : dgCat −→ Mot.

The target category of the universal additive invariant, Mot, is called the category of additive
noncommutative motives. If X is a stack, we denote U(Perf(X)) simply by U(X).

The following Corollary extends to the general normal crossing case Corollary 5.6 and 5.8 of [27];
its second half extends to the general normal crossing case Theorem 1.1 of [23].

Corollary 5.5. Let (X,D) be a log stack given by an algebraic stack X equipped with a normal
crossing divisor D.

• There is an equivalence

(10) U(Perf(
∞√

(X,D))) ' U(X)
⊕( ⊕

S∈S(D)∗

( ⊕
χ∈(Q/Z)∗S

U(S̃)
))
.

Since U is universal, every additive invariant H(Perf(∞
√

(X,D))) decomposes as a direct sum
patterned after (10).
• Denote by KKfl(X,D) the Kummer flat K-theory of (X,D). Then there is a direct sum decom-

position of spectra

KKfl(X,D) ' K(X)
⊕( ⊕

S∈S∗D

( ⊕
χ∈(Q/Z)∗S

K(S̃)
))
.

Proof. The first part of the Corollary is proved exactly as Corollary 5.6 from [27]. As explained in
Section 2.1.4 of [27], it follows from [33] that the Kummer flat K-theory of (X,D) coincides with

the algebraic K-theory of Perf(∞
√

(X,D)). Since K-theory is an additive invariant, the second half
of the Corollary follows from the first. This concludes the proof. �

Remark 5.6. In addition to Kummer flat K-theory one can define Kummer flat versions of all
additive invariants, such as Hochschild homology, in the following way. If X is a log scheme, let
Perf(XKfl) be the dg-category of perfect complexes over the Kummer flat topos of X. Then for
every additive invariant H, we set HKfl(X) := H(Perf(XKfl)). Corollary 5.5 implies that, if the log
structure on X is given by a normal crossing divisor, HKfl(X) also decomposes as a direct sum
patterned after (10).

Remark 5.7. Corollary 5.5 has an analogue for the Kummer étale topos of (X,D): this, in partic-
ular, extends the second part of the statement of Theorem 1.1 of [23] and the Main Theorem of [15]
to the general normal crossing setting. In characteristic zero there is no difference so this comment
is relevant only if κ has positive or mixed characteristic, and, assuming that D is equicharacteristic
as in [23], Q/Z has to be replaced by (Q/Z)′ = Z(p)/Z (where p is the characteristic over which D
lives) in the formulas above. The key observation is that, if XKét is the Kummer étale topos, then
Perf(XKét) is equivalent to perfect complexes over a restricted version of the infinite root stack
∞′√(X,D), where we take the inverse limit only of root stacks r

√
(X,D) such that p does not divide

r. Then Perf(∞
′√

(X,D)) carries a psod which analogous to the one given by Theorem 5.3, except
we work everywhere with indices which are coprime to p. We leave the details to the interested
reader.
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