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We develop a quantum many-body theory of the Bose-Hubbard model based on the canonical
quantization of the action derived from a Gutzwiller mean-field ansatz. Our theory is a systematic
generalization of the Bogoliubov theory of weakly-interacting gases. The control parameter of the
theory, defined as the zero point fluctuations on top of the Gutzwiller mean-field state, remains small
in all regimes. The approach provides accurate results throughout the whole phase diagram, from
the weakly to the strongly interacting superfluid and into the Mott insulating phase. As specific
examples of application, we study the two-point correlation functions, the superfluid stiffness, the
density fluctuations, for which quantitative agreement with available quantum Monte Carlo data is
found. In particular, the two different universality classes of the superfluid-insulator quantum phase
transition at integer and non-integer filling are recovered.

I. INTRODUCTION

The Hubbard model is one of the most celebrated
models of quantum condensed matter theory. The main
reason is probably the widespread belief that its two-
dimensional fermionic version holds the key to under-
stand how high-temperature superconductivity emerges
upon doping a Mott insulator [1, 2]. Its central feature is
the competition between the kinetic energy term, which
favors delocalized states, and the local Coulomb repulsion
which favors localization [3, 4]. In the two-dimensional
fermionic model this physics is however somewhat hid-
den by the presence of other phases bridging between
the Mott insulator, the superconducting and the metallic
states, including the celebrated pseudogap [5] and charge-
ordered [6] phases.

The archetypal competition between the kinetic and
interaction energies is found in the bosonic version of
the model, the so-called Bose-Hubbard (BH) model [7],
where it manifests itself as a direct quantum phase tran-
sition between a superfluid and a Mott insulator. As
a consequence of its paradigmatic nature, this transi-
tion has attracted an enormous experimental interest in
the last years, fostering implementations with cold atoms
trapped in optical lattices [8–15] and, more recently, im-
plementations with photons in the novel context of non-
equilibrium phase transitions [16–18].

On the theoretical side, a very common approach to the
BH model is based on the Gutzwiller ansatz. While many
important features of both the superfluid and the insu-
lating phases are accurately captured by the Gutzwiller
wave function, its local, site-factorized form typically
makes physical quantities involving off-site quantum cor-
relations to be missed. In the weakly-interacting regime,
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a Bogoliubov approach for the fluctuations around the
mean-field Gross-Pitaevskii (GP) ground state of a di-
lute Bose-Einstein condensate provides an accurate de-
scription of the equilibrium state and of the excitations
of the gas [15, 19], including quantum correlations be-
tween particles [20]. In the strongly-interacting regime,
however, the GP mean-field theory and the Bogoliubov
approach based on it become clearly inadequate. The
rich physics of the strongly interacting BH model across
the Mott-superfluid transition and specifically in the in-
sulating phase has been attacked through a number of dif-
ferent approaches, ranging from semi-analytical methods
as RPA [21–23], slave boson representation [24, 25], time-
dependent Gutzwiller approximation [26, 27], to numer-
ical techniques including quantum Monte Carlo meth-
ods [28–31], bosonic Dynamical Mean-Field Theory (B-
DMFT) [32–34] and Numerical Renormalization Group
(NRG) [35, 36]. All these methods provide qualitatively
concordant results on the phase diagram as well as on the
spectral properties of the model. The collective phonon
excitations of the Bogoliubov theory of dilute conden-
sates are replaced by a multi-branch spectrum of excita-
tions [23, 26, 27, 37], containing in particular the gapless
Goldstone mode and a gapped (also refereed to as Higgs)
mode on the superfluid side and the particle/hole excita-
tions in the insulating phase (see e.g. [27, 38, 39]).

In spite of these remarkable advances, a complete,
easily tractable and physically intuitive description of
the collective excitations and their fingerprint on quan-
tum observables across the whole phase diagram of the
model is still lacking. In particular, the development of
non-local correlations across the Mott-superfluid tran-
sition and the proper characterization of the strongly-
interacting superfluid state and of its excitation modes
remain a challenging problem.

In this paper, we combine the successful features of the
Gutzwiller and Bogoliubov approaches to develop a new
strategy to systematically quantize the time-dependent
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Gutzwiller ansatz. In spite of the local nature of the
Gutzwiller ansatz – see Eq. (2) below –, the accurate
description of the excitations and, in particular, of their
zero-point fluctuations allows to correctly reproduce the
non-local many-body correlations in the different phases,
as well as the different critical behaviours of the com-
mensurate and incommensurate phase transitions [7, 38].
Time-dependent Gutzwiller approaches addressing the
linear-response dynamics in the BH model [26] and in
lattice Fermi systems [40] have been recently developed.
The advantage of our formalism is that it directly in-
cludes quantum fluctuations of the collective modes and
could naturally incorporate those effects beyond lin-
earised fluctuations that stem from interactions between
quasi-particles. This is essential to successfully tackle
problems such as the finite quasi-particles lifetime via
Beliaev-like nonlinear interaction processes and the quan-
tum correlations between the products of their decay,
which will be the subject of future investigations.

The paper is organized as follows. Sect. II is devoted
to the derivation of the quantum Gutzwiller theory for
the Bose-Hubbard model. The original features of the
method are highlighted and its advantages and disadvan-
tages are discussed in comparison to other approaches.
In Sect. III, we present the predictions of the quantum
Gutzwiller method for observables in which local and
non-local quantum correlations strongly modify the stan-
dard mean-field picture, such as two-point correlation
functions, superfluid density and pair correlations. We
conclude in Sect. IV with an outlook on future studies
and on possible extensions of the quantum formalism in-
troduced in this work.

II. MODEL AND THEORY

In Subsect. II A, we briefly review the basic concepts of
the Bose-Hubbard model and of the C-number Gutzwiller
ansatz needed to develop the quantum Gutzwiller ap-
proach presented in the following Subsects. II B to IID.
The quantum Gutzwiller method is put into perspective
and compared with other approaches in Subsect. II E.

A. Lagrangian formulation within the Gutzwiller
ansatz

We consider the three-dimensional BH model

Ĥ = −J
∑
〈r,s〉

(
â†r âs + h.c.

)
+
U

2

∑
r

n̂r (n̂r − 1)−µ
∑
r

n̂r (1)

where J is the hopping amplitude, U the on-site inter-
action, µ the chemical potential, while 〈r, s〉 labels all
pairs of nearest-neighboring sites. The annihilation and
creation operators of a bosonic particle at site r are âr
and â†r respectively, and n̂r = â†r âr is the local density
operator.

We use the Gutzwiller ansatz [26, 41, 42]

|ΨG〉 =
⊗
r

∑
n

cn(r) |n, r〉, (2)

where the wave function is site-factorized and the com-
plex amplitudes cn(r) are variational parameters with
normalization condition

∑
n |cn(r)|2 = 1 to reformulate

the Bose-Hubbard model in terms of the following La-
grangian functional

L[c, c∗] =
〈

ΨG

∣∣∣ i ~ ∂t − Ĥ
∣∣∣ΨG

〉
= (3)

=
i ~
2

∑

r,n

[c∗n(r)ċn(r)− c.c.]

+ J
∑

〈r,s〉

[ψ∗(r)ψ(s) + c.c.]−
∑

r,n

Hn |cn(r)|2 .

In the previous equation, the dot indicates the temporal
derivative,

Hn =
U

2
n (n− 1)− µn (4)

are the on-site terms in the Hamiltonian and

ψ(r) =
〈
âr
〉

=
∑

n

√
n c∗n−1(r) cn(r) (5)

is the mean-field order parameter. In this formula-
tion, the conjugate momenta of the parameters cn(r) are
c∗n(r) = ∂L/∂ċn(r). The classical Euler-Lagrange equa-
tions associated to Lagrangian (3) are the time-dependent
Gutzwiller equations as derived, e.g., in [21, 26] and from
which the excitation spectrum can be determined. In
the uniform system the stationary solutions are homoge-
neous. The system is in a Mott Insulator (MI) state if
ψ(r) = 0 and in a Superfluid (SF) state otherwise.

The spectrum of the collective modes ωα,k is plotted in
Figure 1 in different regions of the phase diagram shown
in panel (a). In the MI phase [panel (b)], the two lowest
excitation branches are the gapped particle and hole ex-
citations. In the SF phase [panel (c)], the lowest of them
becomes the gapless Goldstone mode of the broken U(1)
symmetry. The other gapped excitation is often referred
to as the Higgs mode [27, 43–45] and is related to the
fluctuations of the amplitude of the order parameter in
some specific region of the phase diagram [27].

The quantum phase transition from the MI to the SF
phase can belong to two different universality classes
[7, 38] depending on whether the transition is crossed
while changing the density – the so-called commensurate-
incommensurate (CI) transition [blue point in panel (a)]
– or it is crossed at a fixed and commensurate filling (at
the tip) – the so-called O(2) transition [red point in panel
(a)]. At the CI transition points only one mode becomes
gapless (the Goldstone branch in the SF), whereas the
other mode is gapped and related to the particle or the
hole branch of the MI depending on the chemical poten-
tial [panel (d)]. On the other hand, at the tip critical
point both modes become gapless [panel (e)].
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FIG. 1. Panel (a): mean-field Gutzwiller phase diagram around the 〈n̂〉 = 1 Mott lobe. The black points refer to the MI and
SF spectra shown in panels (b, c), while the blue and red points indicate the CI and O(2) critical points respectively. Panel
(b): energy spectra of hole (solid line) and particle (dashed line) excitations in the MI phase for µ/U = 0.2 and 2 d J/U = 0.03.
Panel (c): Goldstone mode (solid line) and Higgs mode (dashed line) energy dispersion in the strongly-correlated SF phase
for µ/U = 0.2 and 2 d J/U = 0.2. Panel (d): excitation spectrum at the CI critical point corresponding to µ/U = 0.2 and
2 d J/U = 0.13, see blue dot in panel (a). Panel (e): excitation spectrum at the O(2)-invariant critical point, see red dot in
panel (a). Both modes become gapless and present a linear dispersion.

B. The quantum Gutzwiller theory

In order to go beyond the Gutzwiller ansatz reviewed
in the previous subsection, it is natural to consider how
quantum (and thermal) effects populate the excitation
modes of the system and to address how they affect the
observable quantities. We include quantum fluctuations
by building a theory of the excitations starting from La-
grangian (3) via canonical quantization [46, 47], namely
promoting the coordinates and their conjugate momenta
to operators and imposing equal-time canonical commu-
tation relations

[
ĉn(r), ĉ†m(s)

]
= δr,s δn,m. (6)

In analogy with the Bogoliubov approximation for dilute
Bose-Einstein condensates [15, 19], we expand the opera-
tors ĉn around their ground state values c0n, obtained by
minimizing the energy 〈ΨG|Ĥ|ΨG〉, as

ĉn(r) = Â(r) c0n + δĉn(r). (7)

The normalization operator Â(r) is a function of
δĉn (r) and δĉ†n (r) and ensures the proper normalization∑
n ĉ
†
n(r) ĉn(r) = 1̂. By restricting to local fluctuations

orthogonal to the ground state
∑
n δĉ

†
n(r) c0n = 0 one has

Â(r) =

[
1−

∑

n

δĉ†n(r) δĉn(r)

]1/2
. (8)

In a homogeneous system, it is convenient to work in
momentum space by writing

δĉn(r) ≡ N−1/2
∑

k∈BZ

eik·r δĈn(k). (9)

Inserting Eq. (9) in 〈ΨG|Ĥ|ΨG〉 and keeping only terms
up to the quadratic order in the fluctuations, we obtain

Ĥ(2) = E0 +
1

2

∑
k

[δĈ
†
(k),−δĈ(−k)] L̂k

[
δĈ(k)

δĈ
†
(−k)

]
, (10)

where E0 is the mean-field ground state energy, the vec-
tor δĈ(k) contains the components δĈn(k), and L̂k is
a pseudo-Hermitian matrix, the explicit expression of
which is given in App. B. A suitable Bogoliubov rota-
tion of the Gutzwiller operators

δĈn(k) =
∑

α

uα,k,n b̂α,k +
∑

α

v∗α,−k,n b̂
†
α,−k (11)

recasts the quadratic form (10) into a diagonal form

Ĥ(2) = ~
∑

α

∑

k

ωα,k b̂
†
α,kb̂α,k, (12)

where each b̂†α,k corresponds to a different many-body ex-
citation mode with frequencies ωα,k, labeled by its mo-
mentum k and branch index α. Bosonic commutation
relations between the annihilation and creation operators
b̂α,k and b̂†α,k

[b̂α,k, b̂
†
α′,k′ ] = δk,k′ δα,α′ (13)

are enforced by choosing the usual Bogoliubov normal-
ization condition

u∗α,k · uβ,k − v∗α,−k · vβ,−k = δαβ , (14)

where the vectors uα,k (vα,k) contain the components
uα,k,n (vα,k,n). As a direct consequence of the spectral
properties of Lk, the fluctuation operators δĉn(r) satisfy
the quasi-bosonic commutation relations

[
δĉn(r), δĉm

†(s)
]

= δr,s
(
δn,m − c0n c0m

)
, (15)
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the calculation of which is made explicit in App. C. The
correction term on the right-hand side of Eq. (15) serves
to remove those unphysical degrees of freedom that are
introduced by the local gauge invariance of the Gutzwiller
ansatz (2), namely the arbitrariness of the phase of the
local wavefunctions cn(r) at each site r. Result (15)
generalises to a strongly-interacting Bose system what
it is known from the Bogoliubov approach in the homo-
geneous weakly-interacting Bose gas [19].

Even though in this paper we focus only on Gaussian
fluctuations, the inclusion of terms beyond second order
in δĉn arising from the quartic hopping term in Eq. (3)
does not pose any fundamental difficulty. As in stan-
dard Bogoliubov theory, higher-order terms describe in-
teractions between collective modes (e.g., see Section III
in [48]).

C. General remarks on the accuracy of the
quantum Gutzwiller method

10−2 10−1 100 101 102

2 d J/U

10−4

10−3

10−2

10−1

F

〈n̂〉 = 1

〈n̂〉 = 0.6

〈n̂〉 = 0.4

〈n̂〉 = 0.2

FIG. 2. Control parameter F of the theory as defined in
(16) plotted as a function of 2dJ/U for different values of
the lattice filling. Dashed and solid lines indicate whether
the system is in a Mott insulating (only for 〈n̂〉 = 1) or in a
superfluid phase, respectively.

The accuracy of the quantum Gutzwiller theory can be
quantitatively estimated by looking at the magnitude of
the “quantum fluctuations” around the Gutzwiller mean-
field,

F = 1− 〈Â2〉 =
∑

n

〈δc†n(r) δcn(r)〉 , (16)

which represents the small control parameter of our the-
ory [49]. As it is illustrated in Figure 2, this quantity
remains always very small throughout the phase dia-
gram, suggesting the overall reliability of the quantum
Gutzwiller approach: a small value of the quantum fluc-
tuations is in fact a good indication that the nonlinear

terms that are not included in (10) are indeed small and
can be neglected.

In particular, for commensurate density, the quantity
F approaches zero both in the deep MI (dashed line) and
in the deep SF regime, that is in both limits where the
Gutzwiller ansatz recovers exactly the ground state of
the BH model. As expected, its maximum is located at
the transition point.

For non-commensurate densities, F tends to zero in the
deep SF regime (where again the Gutzwiller ansatz re-
covers exactly the ground state) and eventually increases
in the strongly interacting superfluid regime for decreas-
ing J/U → 0. Note that for non-commensurate densities
this limit does not correspond to a Mott insulator and the
Gutzwiller ansatz is not able to fully capture the ground
state.

D. Calculation of the observables

In this subsection we summarize the protocol that we
use to compute physical observables within the quantum
Gutzwiller theory. The evaluation of the expectation
value for any observable 〈Ô(â†r, âr)〉 consists in applying
the following four-step procedure:

1. Determine the expression O[c, c∗] =
〈
ΨG

∣∣Ô
∣∣ΨG

〉
in

terms of the Gutzwiller parameters cn and c∗n;

2. Create the operator Ô[ĉ, ĉ†] by replacing the
Gutzwiller parameters in O [c, c∗] by the corre-
sponding operators ĉn(r) and ĉ†n(r) without modi-
fying their ordering;

3. Expand the operator Ô order by order in the fluctu-
ations δĉn and δĉ†n, taking into account the depen-
dence of the operator Â on the fluctuation opera-
tors. The contribution of Â may be of fundamental
importance when higher orders in the fluctuations
become relevant;

4. For the specific case considered in this work of negli-
gible interactions between excitation modes, invoke
Wick theorem to compute the expectation value of
products of operators on Gaussian states – such as
ground or thermal states obtained from H(2).

In the following, we apply this protocol to compute
〈Ô〉, where the expectation value is intended to be eval-
uated on the Bogoliubov vacuum, i.e. b̂k,α|0〉 = 0.

E. Putting the method into perspective

Before proceeding with the presentation of the predic-
tions of our theory, it is worth shortly commenting on the
relation of our theory with other competing methods.

Our approach owes much to the time-dependent
Gutzwiller method in [26] where the cn(r) parameters
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are considered as C-numbers and not as operators. In
the same way as the linearised Gross-Pitaevskii equation
can be used together with linear response theory to ob-
tain information on the quantum fluctuations [50], the
time dependent Gutzwiller approach would give the same
results as our method for a number of properties where
only quadratic fluctuations are important.

When only Gaussian fluctuations above the MF re-
sult are considered, our approach to the BH model has
strong similarities to including quantum fluctuations by
slave boson techniques, as done, e.g., in the comprehen-
sive work by Frérot and Roscilde [25]. One important
difference from this work is however the way in which the
observables are calculated: in particular, we never rely on
the microscopic reconstruction of the original Bose fields
âr through the operators ĉn’s and, from the very begin-
ning, the dynamical variables of our approach are δĉn
and δĉ†n. It is also worth mentioning that to our knowl-
edge there are no slave boson calculations of the role of
quantum fluctuations on the one-body correlation func-
tion and on the superfluid density. Even though for such
quantities we expect the slave-boson and our approach
to give the same results, our method is technically eas-
ier and more transparent. Finally, the slave-boson ap-
proach has been recently shown to properly interpolate
between strong coupling and Bogoliubov approaches in
calculating the entanglement entropy [25], a property ac-
cessible to our approach, but not to the time-dependent
Gutzwiller method.

In the next Section, we will show how the quantum
Gutzwiller method can reproduce both local and non-
local correlations with very high accuracy and success-
fully compares to Quantum Monte Carlo (QMC) calcu-
lations. Moreover, the study of time-dependent prob-
lems appears to be a straightforward generalization of the
quantum Gutzwiller approach. This is a crucial feature
compared to QMC, which can hardly describe dynamical
properties.

Dynamical properties can be instead attacked by
means of the bosonic version of Dynamical Mean Field
Theories (B-DMFT) [32–34]: while this theory is very
accurate for the study of local quantities, it is how-
ever poorly reliable for non-local quantities. In addition
to not providing physical intuition, both QMC and B-
DMFT are computationally much more demanding than
the present quantum Gutzwiller approach.

III. CORRELATION FUNCTIONS ACROSS
THE MI-SF TRANSITION

After having introduced the quantum Gutzwiller the-
ory, in the present Section we apply it to the calculation
of some relevant correlation functions: (i) the coherence
function; (ii) the current-current correlation function and
superfluid density; (iii) the density-density correlation
function. We compare our results with the predictions
of Quantum Monte Carlo calculations, when available,

finding striking agreement.

A. Coherence function

The single-particle correlation function, referred to also
as coherence function, is defined as

g(1)(r) =
〈â†r â0〉
〈â†0 â0〉

→ 〈ψ̂
†(r) ψ̂(0)〉

〈ψ̂†(0) ψ̂(0)〉
, (17)

where the last expression is the result of the quantization
protocol outlined in the previous section.

0 1 2 3 4
r

0.94

0.95

0.96

0.97

0.98

0.99

1.00

g
( 1

) ( r
)

(a)

0 1 2 3 4
r

0.2

0.4

0.6

0.8

1.0

(a′)

0 1 2 3 4 5
r

10−4

10−3

10−2

10−1

100

g
( 1

) ( r
)

(b)

0 1 2 3 4
r

10−4

10−3

10−2

10−1

100

(c)

FIG. 3. Panel (a): first-order coherence function g(1)(r) for
µ/U =

√
2− 1 and 2 d J/U = 2, 3, 5, 10 going deeper into the

SF phase (from bottom to top). Solid and dashed lines re-
fer to the quantum Gutzwiller and Bogoliubov predictions
respectively. Panel (a’): Gutzwiller predictions of g(1)(r)
for µ/U =

√
2 − 1 and 2 d J/U = 0.2, 0.4, 0.6, 0.8, 1.0 ap-

proaching the critical point (from top to bottom). Panel
(b): g(1)(r) in the MI phase for µ/U = 0.2 and increas-
ing 2 d J/U = 0.002, 0.02, 0.04, 0.08, 0.11, 0.13, (2 d J/U)c ap-
proaching the transition point (2 d J/U)c from inside the
MI lobe (purple to blue lines). Panel (c): g(1)(r) in the
MI phase for µ/U = (µ/U)tip =

√
2 − 1 and increasing

2 d J/U = 0.02, 0.06, 0.12, 0.16, 0.17, (2 d J/U)tip towards the
tip of the Mott lobe (dark brown to red to gold lines). Dashed
lines in panels (b) and (c) are the quantum Gutzwiller predic-
tions, and the (exponential and power-law) fits are displayed
as solid black lines.

Within our protocol the field operator reads

ψ̂(r) =
∑

n

√
n ĉ†n−1(r) ĉn(r). (18)
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Expanding ĉn and ĉ†n to the lowest order in the fluctua-
tions δĉn(r), δĉ†n(r), one obtains

ψ̂(r) ≈
∑
n

√
n c0n−1 c

0
n +

∑
n

√
n
[
c0n−1 δĉn(r) + c0n δĉ

†
n−1(r)

]
= ψ0 +

1√
N

∑
α>0

∑
k

(
Uα,k b̂α,ke

ik·r + Vα,k b̂
†
α,ke

−ik·r
)
,

(19)
where ψ0 =

∑
n

√
n c0n−1 c

0
n is the order parameter in the

ground state and the particle (hole) amplitudes

Uα,k =
∑

n

√
n+ 1(c0nuα,k,n+1 + c0n+1vα,k,n) (20)

Vα,k =
∑

n

√
n+ 1(c0n+1uα,k,n + c0nvα,k,n+1) (21)

satisfy the Bogoliubov normalization [27]
∑

α

(
|Uα,k|2 − |Vα,k|2

)
= 1. (22)

In this way, the Bose field (19) satisfies the usual canon-
ical commutation relations

[
ψ̂(r), ψ̂†(s)

]
= δr,s (23)

up to second order in the fluctuations.
At the same level of approximation, the normalized

zero-temperature one-body coherence function reads

g(1)(r) ≈
|ψ0|2 +N−1

∑
k,α |Vα,k|

2
cos (k · r)

|ψ0|2 +N−1
∑

k,α |Vα,k|
2 . (24)

In Figure 3(a-c) we plot the results for g(1) along the
different lines at constant chemical potential in the phase
diagram shown in Figure 1(a).

In the deep SF phase [panel (a)], the spectral weight is
saturated by the Goldstone mode and our prediction for
g(1)(r) reduces to the result for the weakly-interacting gas
(dashed lines). In the region 2 d J/U ≤ 1 [panel (a’)] of
strongly-interacting superfluid, the contribution of other
excitation modes [23] starts to become relevant – and
the Bogoliubov approach (not shown) would give much
higher asymptotic values. In the MI phase [panels (b,
c)], the quantum Gutzwiller method is able to capture an
exponentially decreasing coherence g(1)(r) ∼ exp (−r/ξ)
with a finite coherence length ξ. A non-vanishing value
of ξ provides a first drastic improvement with respect to
the mean-field Gutzwiller ansatz, whose factorized form
cannot predict any off-site coherence, giving g(1)MF (r) =
(|ψ0|2/n0)(1− δr,0) + δr,0 , with n0 =

∑
n n |c0n|2.

Moreover, the present quantum theory is also able to
capture the different critical behaviours of the superfluid-
insulator transition depending on whether the transition
is approached at integer or non-integer filling. Approach-
ing the superfluid transition from the Mott phase away
from the tip of the Mott lobe, the correlation length ξ
of the MI grows but remains bounded [panel (b)]. As

soon as one enters the SF phase, long-range order sud-
denly appears as a non-vanishing long-distance coher-
ence, 〈â†r â0〉r→∞ 6= 0: such a quantity physically corre-
sponds to the condensate density |ψ0|2 and continuously
grows from zero as one penetrates the superfluid phase.
On the other hand, when approaching the SF phase at
the tip of the Mott lobe, the correlation length ξ diverges
and a power-law dependence for g(1) is found at the crit-
ical point [panel (c)].

This remarkable difference is related to the distinct
universality class of the MI-SF transition at non-integer
or integer filling [38]. In all critical points of the CI tran-
sition, either the hole or the particle excitation becomes
gapless, respectively the hole excitation below the tip
or the particle excitation above the tip. Since the non-
trivial short-distance coherence of the MI is due to virtual
particle-hole excitations, the exponential decay of g(1)(r)
is dominated by the gap of the particle (or hole) excita-
tion which remains finite. Instead, at the critical point
of the O(2)-transition both the particle and hole modes
become gapless (before turning into the Goldstone and
Higgs modes on the SF side), which explains the diver-
gent coherence length [51].

It is worth noticing that result (24) can be obtained
within the time-dependent Gutzwiller formalism [26] as
the particle response function. This amounts to de-
termine the time-dependent Gutzwiller wave function
resulting from applying as a perturbation the single-
particle operator âr, and identifying g(1) as the linear
response function related to the variation of the expecta-
tion value of the operator â†r (see the detailed discussion
in the Gross-Pitaevskii framework in [50]). However, the
quantum Gutzwiller approach presented in this section
provides a simpler, more intuitive and straightforward
procedure, not only for the calculation of g(1), but also
for many other observables. First of all, the Bogoliubov
amplitudes in (11) are calculated once for all and can be
used to calculate the expectation value for any combi-
nation of operators. Then, quantities like the superfluid
density, that we are going to compute in the following
Sect. III B, would require very involved calculations us-
ing the time-dependent Gutzwiller approach. Finally, as
we are going to show in the next Sect. III C, there are
quantities, like the density correlation function g(2), for
which the contribution of the normalisation operator Â
is dominant, in particular close and in the Mott phase:
while in the time-dependent Gutzwiller approach the in-
clusion of Â would be at least a technically cumbersome
task, our theory is able to account for the order by order
expansion of the normalization operator in a natural and
systematic way.

B. Superfluid density

The superfluid density ns is defined through the static
limit of the transverse current-current response func-
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tion [52, 53] of the system, namely

2Jns = lim
qy→0

lim
ω→0

ΛxxJ (qx = 0, qy, ω)−
〈
K̂x

〉
, (25)

where

K̂x(r) = −J [ψ̂†(r + ex) ψ̂(r) + h.c.] (26)

is the local kinetic energy operator along the direction x
of the phase twist [54] and

ΛxxJ (q, ω) = −i
∫ ∞

0

dt eiωt
〈 [
Ĵx(q, t), Ĵx(−q, 0)

] 〉
(27)

is the current-current response function for the current
operator

Ĵx(r) = i J [ψ̂†(r + ex) ψ̂(r)− h.c.]. (28)

The expectation value (27), as well as the average ki-
netic energy 〈K̂x〉, are calculated applying the protocol
outlined in Sect. IID: the average kinetic energy reads

〈K̂x〉 = −2 J


ψ2

0 +
1

N

∑

α,k

|Vα,k|2 cos (kx)


 , (29)

while the first non vanishing contribution to the response
function ΛxxJ turns out to be the 4th-order correlation

ΛxxJ (0, 0) =−4 J2
∑

k,α,β

(Uα,kVβ,k − Uβ,kVα,k)
2

ωα,k + ωβ,k
sin2 (kx).

(30)

Equation (30) reveals the crucial role played by the cou-
pling between different collective modes in suppressing
the superfluid stiffness and creating a sort of normal com-
ponent [55]. For the sake of comparison, it is worth re-
minding that the ground state mean-field Gutzwiller the-
ory would give 〈K̂x〉 = −2 J ψ2

0 and a vanishing current
response ΛxxJ (0, 0) = 0. This leads to equal superfluid
and condensate densities, ns = |ψ0|2.

The results of the quantum Gutzwiller method for the
superfluid density are illustrated in Figure 4 by the black
thick line for the superfluid fraction fs = ns/〈n̂〉, defined
as usual as the ratio of the superfluid density ns over
the total density 〈n̂〉. This quantity tends to unity in
the deep SF and approaches zero at the critical point.
Throughout the whole SF region, it is always larger than
the condensed fraction |ψ0|2 (black dashed line), defined
as usual as the r →∞ limit of 〈â†râ0〉. In the MI region
the superfluid fraction fs is exactly zero, as expected for
a phase that does not exhibit superfluidity.

Further insight is obtained by isolating the two contri-
butions appearing on the right hand side of Eq. (25). The
current response Λ defined in Eq. (30) (light-pink dashed
line) exhibits a non-monotonic behaviour as a function
of J/U : it tends to zero in the deep Mott and superfluid

phases, while it reaches its maximum at the MI-SF tran-
sition point. In the strongly-interacting SF regime, the
Goldstone-Higgs vertex almost saturates the sum in the
current response (30) and leads to a complete suppres-
sion of ns. As expected, the kinetic energy Eq. (29) (see
dotted blue line) has as expected a monotonic behaviour,
from zero at J = 0 to the weakly-interacting mean-field
value 2J〈n̂〉. In the MI phase, the vanishing ns results
from the perfect cancellation of the short-range virtual
particle-hole correlations and the kinetic energy.

For completeness in Figure 4 we also report the
the weakly-interacting Bogoliubov prediction [56] (green
dashed-dotted line), which our result approaches in the
limit 2dJ/U � 1. Since it takes into account only the
gapless Goldstone mode, such approach leads in particu-
lar to a zero current response ΛxxJ (0, 0) = 0 and thus to
an overestimated superfluid density.

10−2 10−1 100 101

2 d J/U

0.0

0.2

0.4

0.6

0.8

1.0

MI SF

fs

ρc = |ψ0|2 /〈n̂〉
−〈K̂x〉/ (2J〈n̂〉)
|Λxx(0, 0)|
Bogoliubov

FIG. 4. Superfluid fraction fs along the µ/U =
√

2 − 1 line
crossing the tip of the 〈n̂〉 = 1 Mott lobe. The orange-shaded
area indicates the MI region. Solid black line: quantum
Gutzwiller prediction. Blue dotted and light-pink dashed lines
are the contributions to fs from the kinetic energy K̂x and
the current response ΛxxJ , respectively. Green dot-dashed line:
Bogoliubov approach for the weakly-interacting gas. Black
dashed line: condensate fraction |ψ0|2 /〈n̂〉.

C. Density fluctuations

We consider the normally-ordered equal-time density
correlation function

g(2)(r) =
〈â†râ†0â0âr〉
〈n̂r〉 〈n̂0〉

. (31)

Applying the procedure outlined in Sect. IID, and since
our states are translational invariant, g(2)(r) reads

g(2)(r) =

{[
〈D̂(0)〉 − 〈N̂ (0)〉

] /
〈N̂ (0)〉2, r = 0,

〈N̂ (r) N̂ (0)〉/〈N̂ (0)〉2, r 6= 0,
(32)
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1.00

(b)

MI SF

g(2)(1)

g(2)
(√

2
)

FIG. 5. Density-density correlation g(2)(r) as a function of
2dJ/U across the 〈n̂〉 = 1 commensurate SF-MI transition.
Orange (white) background identifies the MI (SF) region.
Panel (a): On-site correlation function g(2)(0). Black solid
line: quantum Gutzwiller method; black dashed line: mean-
field Gutzwiller approach; green dot-dashed line: weakly-
interacting Bogoliubov theory; red dotted line: Quantum
Monte Carlo simulation for a lattice size of 163 sites [57]; grey
dashed line: strong-coupling perturbation theory [42]. Panel
(b): Nearest and next-to-nearest density correlations, g(2)(1)

and g(2)(
√

2). Black solid line: quantum Gutzwiller approach;
grey dotted line: strong-coupling approximation; red dots:
Quantum Monte Carlo calculation for a 53 lattice [42].

where the density N̂ (r) and the square density D̂(r) op-
erators are defined as

N̂ (r) =
∑

n

n ĉ†n(r) ĉn(r), (33)

D̂(r) =
∑

n

n2 ĉ†n(r) ĉn(r). (34)

The expectation values in Eqs. (32) are evaluated by ex-
panding the operators up to second-order in the δĉ’s:

〈D̂(0)〉 = D0 +
∑
n

(
n2 −D0

)
〈δĉ†n(0) δĉn(0)〉 , (35)

〈N̂ (0)〉 = n0 +
∑
n (n− n0) 〈δĉ†n(0) δĉn(0)〉 , (36)

〈N̂ (r 6= 0) N̂ (0)〉 = n20 + 1
N

∑
α,k |Nα,k|

2
cos (k · r)(37)

+
∑
n,m (n− n0) (m− n0) 〈δĉ†n(r) δĉn(r) δĉ†m(0) δĉm(0)〉,

where

Nα,k =
∑

n

n c0n(uα,k,n + vα,k,n). (38)

Specifically, all second order terms in the expansion arise
directly from the normalization operator Â(r). This cor-
responds in saying that, in Eqs. (35) and (36), the mean-
field quantities D0 =

∑
n n

2
∣∣c0n
∣∣2 and n0 =

∑
n n
∣∣c0n
∣∣2

are corrected by the depletion of the mean-field solution
itself due to quantum fluctuations, leading to a non-
trivial description of local quantum correlations in the
ground state. Similar features are shared by the non-local
correlations in Eq. (37), where terms up to fourth-order
have to be taken into account. In particular, the role
of these higher-order fluctuations dominates for strong
interactions, since the spectral amplitude Nα,k appear-
ing in the linear expansion of the density operator n̂(r)
vanishes identically in the Mott phase [26, 27].

The quantum Gutzwiller result (32) for the local den-
sity correlation g(2)(r = 0) is shown as a solid black
line in the panel (a) of Figure 5. On the SF side,
the antibunching g(2)(0) < 1 due to the repulsive on-
site interactions well matches the weakly-interacting Bo-
goliubov prediction [56] in the deep SF (green dashed-
dotted line) and increases, faster than the Bogoliubov
predictions, when moving towards the Mott transition.
On the MI side, while the mean-field Gutzwiller the-
ory (black dashed line) predicts a perfect antibunching
g
(2)
MF (0) ∝ D0 − n0 = 0, the quantum Gutzwiller re-
sult (32) is able to account for the virtual excitation
of doublon-hole pairs. This leads to g(2) ∝ J2 at low
2dJ/U , in excellent agreement with strongly-interacting
perturbative calculations (gray dotted line) [42]. Re-
markably, close to and across the critical point, the quan-
tum Gutzwiller theory is in very good agreement with
low-temperature Quantum Monte Carlo predictions [57]
(red dots). In order to compare the results of the two dif-
ferent models, the hopping parameter for the QMC data
has been rescaled by a factor Jc/JQMC

c so to make the
position of the critical point in the two theories coincide.
Note that no other semi-analytical theory is available to
describe this region close to and across the critical point.

The role of quantum fluctuations and the accuracy of
the method can be further explored by looking at the off-
site density correlations function for |r| = 1 and

√
2. In

panel (b) of Figure 5 we report the quantum Gutzwiller
predictions for g(2)(1) and g(2)(

√
2) along the 〈n̂〉 = 1

filling line across the tip of the Mott lobe. These curves
are successfully compared to available Quantum Monte
Carlo data (see [42] and references therein) and to strong-
coupling perturbation theory, which shows that our the-
ory is accurate across the whole phase transition and cor-
rectly interpolates between a strongly-interacting Mott
insulator phase and the weakly-interacting Bose gas.
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IV. CONCLUSIONS

In this paper, we have introduced a simple and power-
ful semi-analytical tool to study the many-body physics
of quantum interacting particles on a lattice based on
a canonical quantization of the fluctuations around the
Gutzwiller ground state. The power of the method
has been validated on the archetypal case of the Bose-
Hubbard model. In spite of the locality of the initial
mean-field Gutzwiller ansatz, the quantization procedure
proposed in our work is able to accurately capture very
non-local physical features such as the superfluid stiff-
ness of the superfluid phase, the different behaviours of
the correlation functions at the different critical points,
and the spatial structure of the virtual particle-hole pair
excitations on top of a Mott insulator. In particular these
last predictions are in quantitative agreement with Quan-
tum Monte Carlo results available in the literature. In
addition to its quantitative accuracy and to its compu-
tational simplicity, the quantum Gutzwiller method has
the crucial advantage over other approaches of providing
a deep physical insight on the equilibrium state and on
the quantum dynamics of the system under investigation.

Due to its flexibility and numerical accessibility, our
formalism can be straightforwardly extended to treat in-
homogeneous configurations, more exotic hopping and in-
teraction terms, and to deal with more complex forms of
the initial ansatz, such as the cluster Gutzwiller wave-
function, which include at least some quantum correla-
tions already in the ground state. An important applica-
tion of our quantized model for the excitations is the in-
vestigation of finite temperature and/or time-dependent
problems, including non-equilibrium dynamics. Going
beyond the quadratic expansion around the mean-field,
our method can in fact naturally incorporate additional
nonlinear terms describing interactions between quasi-
particles [58] so to describe, e.g., their temporal decay
into entangled pairs via multi-branch Beliaev decay pro-
cesses [59]. Exciting long term perspectives will be to ap-
ply our theoretical framework to those driven-dissipative
models that can now be realized in photonic systems [16–
18].
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APPENDIX A: THE NORMALIZATION
OPERATOR Â(r)

The normalization operator

Â(r) =

[
1−

∑

n

δĉ†n(r) δĉn(r)

]1/2
(A.1)

entering the expansion of the Gutzwiller coordinates
ĉn(r) = Âr c

0
n + δĉn(r) is introduced in order to satisfy

automatically the local constraint
∑

n

ĉ†n(r) ĉn(r) = 1̂ (A.2)

which restricts the action of the Gutzwiller operators to
the physical subspace and derives directly from the nor-
malization condition for the original complex-valued pa-
rameters cn(r). Eq. (A.2) holds under the additional
condition

∑
n δĉ

†
n(r) c0n = 0, namely that the ground

state eigenvector is orthogonal the fluctuation field. This
condition is assumed at the beginning of the derivation
of our theory and guaranteed a posteriori by the spectral
properties of the pseudo-Hermitian matrix L̂k, as dis-
cussed in App. B.
The physical role of Â(r) consists in taking into account
the feedback of quantum fluctuations onto the Gutzwiller
ground state c0n in a self-consistent manner. The impor-
tance of such renormalization can be immediately ob-
served in the calculation of local observables as the av-
erage square density 〈D̂(0)〉 = 〈n̂2(0)〉 contributing to
the expression of the on-site pair correlation function
g2(0) presented in Section III C. The explicit calculation
of 〈D̂(0)〉 reads
〈D̂(0)〉 =

∑

n

n2〈ĉ†n(0) ĉn(0)〉 (A.3)

=
∑

n

n2
〈 [
Â0

(
c0n
)∗

+ δĉ†n(0)
] [
Â0 c

0
n + δĉn(0)

] 〉

=
∑

n

n2
[〈
Â2

0

〉 ∣∣c0n
∣∣2 + 〈δĉ†n(0) δĉn(0)〉

]

= D0 +
∑

n

(
n2 −D0

)
〈δĉ†n(0) δĉn(0)〉

which is the expected result of Eq. (35). The sum
in Eq. (A.3) is composed by two terms, one given by
quantum fluctuations only and the other, proportional
to the mean-field quantity D0, deriving exclusively from
the normalization operator via the expectation value〈
Â2(0)

〉
. This second contribution is crucial in the suc-

cessful predictions for density correlations presented in
Figure 5.

APPENDIX B: PROPERTIES OF L̂k

Fixed the maximal local occupation number at nmax
for computational purposes, the pseudo-Hermitian ma-
trix L̂k is a 2nmax × 2nmax-dimensional object of the
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form

Lk =

(
Hk Kk

−Kk −Hk

)
(B.1)

The nmax×nmax blocks Hk and Kk are identical to the
ones controlling the Gutzwiller dynamical equations at
the linear response level [26]

Hnm
k =− J(0)ψ0

(√
mδn+1,m +

√
n δn,m+1

)

+

[
U

2
n (n− 1)− µn− ~ω0

]
δn,m

− J(k)
(√
n+ 1

√
m+ 1 c0n+1 c

0
m+1

+
√
n
√
mc0n−1 c

0
m−1

)

(B.2)

Knm
k =− J(k)

(√
n+ 1

√
mc0n+1 c

0
m−1

+
√
n
√
m+ 1 c0n−1 c

0
m+1

) (B.3)

where J(k) = 2 d J − ε(k) with

ε(k) = 4J

d∑

i=1

sin2

(
ki
2

)
(B.4)

is the energy of a free particle on a d-dimensional lattice.
The ground state energy

~ω0 = −4 d J ψ2
0 +

∑

n

[
U

2
n (n− 1)− µn

] ∣∣c0n
∣∣2 (B.5)

is set by the classical evolution of the c0n’s at the mean-
field level and, shifting the diagonal elements of L̂k, as-
sures a gapless spectrum in the superfluid phase.

Among the relevant spectral properties of the pseudo-
Hermitian matrix L̂k of the quadratic form in Eq. (10),
it is worth mentioning that

(
c0, (c0)∗

)
is a right eigen-

vector with zero energy for all momenta k. This fact
is intimately related to the physical invariance of the
Gutzwiller ansatz (2) under local phase transformations
cn(r) → cn(r) eiϕ(r), which reflects into the presence of
such spurious eigenvector of L̂k both in the superfluid
and in the insulating phases.

APPENDIX C: COMMUTATION RELATIONS

The commutation relations for the Gutzwiller fluctua-
tion operators δĉn(r) can be identified a posteriori once
the right eigenvectors

(
uα,k, vα,k

)
of L̂k and the exact

form of the Bogoliubov rotation (11) are determined. Ex-
ploiting the fact that the excitation operators b̂α,k, b̂

†
α,k

satisfy Bose statistics, it follows that
[
δĉn(r), δĉ†m(s)

]
(C.1)

=
1

N

∑

α,k

eik·(r−s)
(
uα,k,n uα,k,m − vα,k,n vα,k,m

)
,

where all the eigenvector components are assumed to be
real. A well-known property of pseudo-Hermitian matri-
ces as L̂k is the sum rule [19]
∑

α

(uα,k,n uα,k,m − vα,k,n vα,k,m) = δn,m−c0n c0m (C.2)

that follows from the fact that formally the ground state
eigenvector

(
c0, (c0)∗

)
is a zero-energy eigenvector of Lk

and can be projected out of the spectral decomposition
of the quadratic form (10) when considering only states
with finite positive energy in the spectral decomposition
(see App. B). Inserting the expression (C.2) into Eq.
(C.1), we obtain the expected quasi-bosonic commuta-
tion relations (15).

APPENDIX D: QUANTUM CORRECTIONS

10−2 10−1 100 101 102

2 d J/U

−0.10

−0.05

0.00

0.05

0.10

MI SF

〈δ2n̂〉/n0

〈δ2ψ̂〉/ψ0

FIG. 6. Quantum corrections to the local density (solid line)
and order parameter (dotted line) at fixed mean-field density
n0 = 1. Orange (white) background indicates the MI (SF)
phase.

In this Appendix we report explicitly how the order
parameter ψ and the the density n are affected by the
quantum fluctuations. Both quantities are modified due
to the contribution of the normalization operator Â:

〈N̂ (r)〉 = n0 + 〈δ2n̂〉
= n0 +

∑

n

(n− n0) 〈δĉ†n(r) δĉn(r)〉 ,

〈ψ̂(r)〉 = ψ0 + 〈δ2ψ̂〉
= ψ0 +

∑

n

(
√
n 〈δĉ†n−1(r) δĉn(r)〉 − ψ0〈δĉ†n(r) δĉn(r)〉).

The corrections at fixed mean-field density n0 = 1 are
reported in Figure 6. The correction for the density is
always very small being zero in the MI phase as well as
approaching the non-interacting regime. The order pa-
rameter correction is also very small, becoming relevant
only extremely close to the transition to the MI phase,
where ψ0 → 0 (notice that on the scale of the Figure the
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maximum correction is still only 10%). Notice also the
change in sign of the correction.

Corrections to the mean-field Gutzwiller phase dia-
gram shown in Figure 1(a) can be obtained by means of

a self-consistent calculation including the back-reaction
of the quantum fluctuations onto the initial classical
Gutzwiller wavefunction. This will be the subject of fu-
ture work.
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