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Abstract

Motivation: High-throughput measurements of DNA methylation are increasingly becoming a

mainstay of biomedical investigations. While the methylation status of individual cytosines can

sometimes be informative, several recent papers have shown that the functional role of DNA

methylation is better captured by a quantitative analysis of the spatial variation of methylation

across a genomic region.

Results: Here, we present BPRMeth, a Bioconductor package that quantifies methylation profiles

by generalized linear model regression. The original implementation has been enhanced in two im-

portant ways: we introduced a fast, variational inference approach that enables the quantification

of Bayesian posterior confidence measures on the model, and we adapted the method to use sev-

eral observation models, making it suitable for a diverse range of platforms including single-cell

analyses and methylation arrays.

Availability and implementation: http://bioconductor.org/packages/BPRMeth

Contact: g.sanguinetti@ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

DNA methylation is probably the best studied epigenomic mark,

due to its well established heritability and widespread association

with diseases. Yet its role in gene regulation and the molecular

mechanisms underpinning its association with diseases are still im-

perfectly understood. While methylation of CpG islands is widely

recognized as a prominent gene silencing mechanism, the import-

ance of DNA methylation in different genomic regions, such as gene

bodies, remains largely mysterious.

While many early studies concentrated on methylation levels at sin-

gle CpGs, or average levels across regions, recent years have gradually

seen a shift in perspective towards considering spatial patterns of DNA

methylation in more detail. Methods considering spatial methylation

patterns have been successful in more effectively predicting changes in

gene expression (Vanderkraats et al., 2013) and in developing powerful

statistical tests for differential methylation (Mayo et al., 2015).

Recently, we proposed a method to quantify explicit features of

methylation profiles, in a way that would make it easier to formally

use such profiles in downstream modelling efforts (Kapourani and

Sanguinetti, 2016). Mathematically, the approach is based on a

basis function generalized linear model. The basic idea is as follows:

the methylation profile associated with a genomic region D is

defined as a (latent) function f: D! (0, 1), which takes as input the

genomic coordinate along the region and returns the propensity for

that locus to be methylated. To enforce spatial smoothness and ob-

tain a compact representation for this function in terms of interpret-

able features, we represent the profile function as a linear

combination of basis functions

f xð Þ ¼ U wTh xð Þ
� �

; (1)

where h(x) are the basis functions, and U is a probit transformation

needed in order to map the function output to the (0, 1) interval.

The latent function is observed at specific loci through a noise model

that encapsulates the experimental technology. The optimal weight

parameters w can be recovered by maximum likelihood estimation,

providing a set of quantitative features that can be used in down-

stream models such as prediction of gene expression and clustering

of regions according to their methylation profiles.
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The original paper (Kapourani and Sanguinetti, 2016) provides a

full derivation of the mathematical model and demonstrates on a

number of datasets the usefulness of the methylation profile ap-

proach. In this application note, we describe the features of the soft-

ware supporting this model. Importantly, with respect to the

original implementation, the scope and flexibility of the software

have been extended considerably. The major features of this new im-

plementation are as follows:

• The R implementation is now supported by full documentation

and examples, available in the Bioconductor package BPRMeth.
• BPRMeth supports single cell methylation data, using a

Bernoulli likelihood (see Section 1.1 in Supplementary Material).
• BPRMeth supports data measured by methylation array plat-

forms achieved by using a Beta likelihood (Siegmund, 2011) (see

Section 1.2 in Supplementary Material).
• BPRMeth now supports approximate Bayesian estimation via

mean-field variational inference (Blei et al., 2017). This enables

to perform model selection and quantify uncertainty in all model

quantities a posteriori (see Section 2 in Supplementary Material).
• BPRMeth supports Fourier basis functions, as well as radial

and polynomial basis functions, which might be useful for ana-

lysing data with expected periodicity (e.g. nucleosome

positioning).

We notice that, while the main purpose of BPRMeth is to provide a

flexible tool for methylation data, the approach is in principle de-

ployable to other measurements with a similar structure, and indeed

the method was already used for single-cell chromatin accessibility

data in Clark et al. (2018).

The operational characteristics of the software are as follows: A

methylation and annotation file are given as input to create genomic

regions of pre-specified length. The annotation file might contain ar-

bitrary genomic contexts, e.g. promoters or enhancers, Next, a basis

object is required to transform the input methylation data, e.g. the

create_rbf_object will produce an RBF object. The infer_

profiles_vb (variational inference) or infer_profiles_mle

(maximum likelihood estimation) functions are used to infer the

latent methylation profiles. Equivalently, the cluster_

profiles_vb or cluster_profiles_mle functions are used to

cluster genomic regions. The execution times of the algorithm, using

10 kb windows on 5000 promoters takes around 5 min for inferring

profiles and 20 min for clustering.

The output of the algorithm can then be used for downstream

analyses, such as predicting gene expression (using the predict_

expr function) or quantifying levels of accessibility heterogeneity

across cells, see Clark et al. (2018). To visualize the results, the ob-

jects produced from the model are given as input to plot_infer_

profiles or plot_cluster_profiles. An example of the

graphical output of the software is given in Figure 1.

In conclusion, BPRMeth provides a flexible environment to ana-

lyse and model spatial patterns in DNA methylation and similarly

structured data from a variety of experimental platforms. Given the

continuing popularity of methylome assays, and their rapid expan-

sion in a clinical setting, we expect BPRMeth to become a wide-

spread tool in the high-throughput bioinformatics workbench.
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Fig. 1. Analysis schematic workflow (left) with example output graphs (right)
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