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1 Introduction

Understanding the origin of the pattern of neutrino mixing that emerged from the neutrino

oscillation data in the recent years (see, e.g., [1]) is one of the most challenging problems

in neutrino physics. It is part of the more general fundamental problem in particle physics

of understanding the origins of flavour in the quark and lepton sectors, i.e., of the pat-

terns of quark masses and mixing, and of the charged lepton and neutrino masses and of

neutrino mixing.

The idea of extending the Standard Model (SM) with a non-Abelian discrete flavour

symmetry has been widely exploited in attempts to make progress towards the understand-

ing the origin(s) of flavour (for reviews on the discrete symmetry approach to the flavour

problem see, e.g., [2–4]). In this approach it is assumed that at a certain high-energy

scale the theory possesses a flavour symmetry, which is broken at lower energies to residual
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symmetries of the charged lepton and neutrino sectors, yielding certain predictions for the

values of, and/or correlations between, the low-energy neutrino mixing parameters. In the

reference 3-neutrino mixing scheme we are going to consider in what follows (see, e.g., [1]),

i) the values of certain pairs of, or of all three, neutrino mixing angles are predicted to be

correlated, and/or ii) there is a correlation between the value of the Dirac CP violation

(CPV) phase δ in the neutrino mixing matrix and the values of the three neutrino mixing

angles,1 θ12, θ13 and θ23, which includes also symmetry dependent fixed parameter(s) (see,

e.g., [5–13] and references quoted therein). These correlations are usually referred to as

“neutrino mixing sum rules”. As we have already indicated, the sum rules for the Dirac

phase δ, in particular, depend on the underlying symmetry form of the PMNS matrix [5–9]

(see also, e.g., [10–13]), which in turn is determined by the assumed lepton favour symmetry

that typically has to be broken, and by the residual unbroken symmetries in the charged

lepton and neutrino sectors (see, e.g., [2–4, 7, 9]). They can be tested experimentally (see,

e.g., [6, 10, 14–16]). These tests can provide unique information about the possible exis-

tence of a new fundamental symmetry in the lepton sector, which determines the pattern of

neutrino mixing [5]. Sufficiently precise experimental data on the neutrino mixing angles

and on the Dirac CPV phase can also be used to distinguish between different possible

underlying flavour symmetries leading to viable patters of neutrino mixing.

While in the discrete flavour symmetry approach at least some of the neutrino mixing

angles and/or the Dirac phase are determined (directly or indirectly via a sum rule) by

the flavour symmetry, the Majorana CPV phases α21 and α31 [17] remain unconstrained.

The values of the Majorana CPV phases are instead constrained to lie in certain narrow

intervals, or are predicted, in theories which in addition to a flavour symmetry possess at

a certain high-energy scale a generalised CP (GCP) symmetry [18]. The GCP symmetry

should be implemented in a theory based on a discrete flavour symmetry in a way that

is consistent with the flavour symmetry [19, 20]. At low energies the GCP symmetry is

broken, in general, to residual CP symmetries of the charged lepton and neutrino sectors.

In the scenarios involving a GCP symmetry, which were most widely explored so far

(see, e.g., [19, 21–25]), a non-Abelian flavour symmetry Gf consistently combined with a

GCP symmetry HCP is broken to residual Abelian symmetries Ge = Zn, n > 2, or Zm×Zk,
m, k ≥ 2, and Gν = Z2×Hν

CP of the charged lepton and neutrino mass terms, respectively.2

The factor Hν
CP in Gν stands for a remnant GCP symmetry of the neutrino mass term. In

such a set-up, Ge fixes completely the form of the unitary matrix Ue which diagonalises the

product MeM
†
e and enters into the expression of the PMNS matrix, Me being the charged

lepton mass matrix (in the charged lepton mass term written in the left-right convention).

At the same time, Gν fixes the unitary matrix Uν , diagonalising the neutrino Majorana

mass matrix Mν up to a single free real parameter — a rotation angle θν . Given the fact

that the PMNS neutrino mixing matrix UPMNS is given by the product

UPMNS = U †e Uν , (1.1)

1Throughout the present study we use the standard parametrisation of the Pontecorvo, Maki, Nakagawa

and Sakata (PMNS) neutrino mixing matrix (see, e.g., [1]).
2We note that in refs. [22, 23] the residual symmetry Ge of the charged lepton mass term is augmented

with a remnant CP symmetry He
CP as well.
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Parameter Best fit value 2σ range 3σ range

sin2 θ12/10−1 2.97 2.65–3.34 2.50–3.54

sin2 θ13/10−2 (NO) 2.15 1.99–2.31 1.90–2.40

sin2 θ13/10−2 (IO) 2.16 1.98–2.33 1.90–2.42

sin2 θ23/10−1 (NO) 4.25 3.95–4.70 3.81–6.15

sin2 θ23/10−1 (IO) 5.89 3.99–4.83⊕ 5.33–6.21 3.84–6.36

δ/π (NO) 1.38 1.00–1.90 0–0.17⊕ 0.76–2

δ/π (IO) 1.31 0.92–1.88 0–0.15⊕ 0.69–2

∆m2
21/10−5 eV2 7.37 7.07–7.73 6.93–7.96

∆m2
31/10−3 eV2 (NO) 2.56 2.49–2.64 2.45–2.69

∆m2
23/10−3 eV2 (IO) 2.54 2.47–2.62 2.42–2.66

Table 1. The best fit values, 2σ and 3σ ranges of the neutrino oscillation parameters obtained in

the global analysis of the neutrino oscillation data performed in [26].

all three neutrino mixing angles are expressed in terms of this rotation angle. In this class

of models one obtains specific correlations between the values of the three neutrino mixing

angles, while the leptonic CPV phases are typically predicted to be exactly 0 or π, or

else π/2 or 3π/2. For example, in the set-up considered in [19] (see also [21]), based on

Gf oHCP = S4 oHCP broken to Ge = ZT3 and Gν = ZS2 ×Hν
CP with Hν

CP = {U, SU},3

the authors find:

sin2 θ13 =
2

3
sin2 θν , sin2 θ12 =

1

2 + cos 2θν
=

1

3
(
1− sin2 θ13

) , sin2 θ23 =
1

2
, (1.2)

| sin δ| = 1 , sinα21 = sinα31 = 0 . (1.3)

It follows, in particular, from the results on the neutrino oscillation parameters — best fit

values, 2σ and 3σ allowed ranges — obtained in the latest global fit of neutrino oscillation

data [26] and summarised in table 1, to be used in our further analysis,4 that the predictions

quoted in eq. (1.2) for sin2 θ12 and sin2 θ23 lie outside of their respective currently allowed

2σ ranges.5

Another example of one-parametric models is the extensive study performed in [28],

in which the authors have considered two different residual symmetry patterns. The first

pattern is the one described above, and the second pattern has Ge = Z2 × He
CP and

Gν = Z2 × Z2 × Hν
CP as residual symmetries in the charged lepton and neutrino sectors,

respectively. The authors have performed an exhaustive scan over discrete groups of order

less than 2000, which admit faithful 3-dimensional irreducible representations, and classified

phenomenologically viable mixing patterns.

3S, T and U are the generators of S4 in the basis for its 3-dimensional representation we employ in this

work (see subsection 3.2).
4The results on the neutrino oscillation parameters obtained in the global fit performed in [27] differ some-

what from, but are compatible at 1σ confidence level (C.L.) with, those found in [26] and given in table 1.
5We have used the best fit value of sin2 θ13 to obtain the prediction of sin2 θ12 leading to the quoted

conclusion. Using the 2σ allowed range for sin2 θ13 leads to a minimal value of sin2 θ12 = 0.340, which is

above the maximal allowed value of sin2 θ12 at 2σ C.L., but inside its 3σ range.
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Theoretical models based on the approach to neutrino mixing that combines discrete

symmetries and GCP invariance, in which the neutrino mixing angles and the leptonic

CPV phases are functions of two or three parameters have also been considered in the lit-

erature (see, e.g., [29–32]). In these models the residual symmetry Ge of the charged lepton

mass term is typically assumed to be a Z2 symmetry or to be fully broken. In spite of the

larger number of parameters in terms of which the neutrino mixing angles and the leptonic

CPV phases are expressed, the values of the CPV phases are still predicted to be corre-

lated with the values of the three neutrino mixing angles. A set-up with Ge = Z2 ×He
CP

and Gν = Z2 ×Hν
CP has been considered in [32]. The resulting PMNS matrix in such a

scheme depends on two free real parameters — two angles θν and θe. The authors have

obtained several phenomenologically viable neutrino mixing patterns from Gf = S4 com-

bined with HCP, broken to all possible residual symmetries of the type indicated above.

Models allowing for three free parameters have been investigated in [29–31]. In, e.g., [30],

the author has considered Gf = A5 combined with HCP, which are broken to Ge = Z2 and

Gν = Z2 ×Hν
CP. In this case, the matrix Ue depends on an angle θe and a phase δe, while

the matrix Uν depends on an angle θν . In these two scenarios the leptonic CPV phases

possess non-trivial values.

The specific correlations between the values of the three neutrino mixing angles, which

characterise the one-parameter models based on Ge = Zn, n > 2, or Zm × Zk, m, k ≥ 2,

and Gν = Z2×Hν
CP, do not hold in the two- and three-parameter models. In addition, the

Dirac CPV phase in the two- and three-parameter models is predicted to have non-trivial

values which are correlated with the values of the three neutrino mixing angles and differ

from 0, π, π/2 and 3π/2, although the deviations from, e.g., 3π/2 can be relatively small.

The indicated differences between the predictions of the models based on Ge = Zn, n > 2,

or Zm×Zk, m, k ≥ 2, and on Ge = Z2 symmetries make it possible to distinguish between

them experimentally by improving the precision on each of the three measured neutrino

mixing angles θ12, θ23 and θ13, and by performing a sufficiently precise measurement of the

Dirac phase δ.

In the present article, we investigate the possible neutrino mixing patterns generated

by a Gf = S4 symmetry combined with an HCP symmetry when these symmetries are

broken down to Ge = Z2 and Gν = Z2 × Hν
CP. In section 2, we describe a general

framework for deriving the form of the PMNS matrix, dictated by the chosen residual

symmetries. Then, in section 3, we apply this framework to Gf = S4 combined with HCP

and obtain all phenomenologically viable mixing patterns. Next, in section 4, using the

obtained predictions for the neutrino mixing angles and the Dirac and Majorana CPV

phases, we derive predictions for the neutrinoless double beta decay effective Majorana

mass. Section 5 contains the conclusions of the present study.

2 The framework

We start with a non-Abelian flavour symmetry group Gf , which admits a faithful irreducible

3-dimensional representation ρ. The three generations of left-handed (LH) leptons are as-

signed to this representation. Apart from that, the high-energy theory respects also the

GCP symmetry HCP, which is implemented consistently along with the flavour symmetry.
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At some flavour symmetry breaking scale Gf oHCP gets broken down to residual symme-

tries Ge and Gν of the charged lepton and neutrino mass terms, respectively. The residual

flavour symmetries are Abelian subgroups of Gf . The symmetries Ge and Gν significantly

constrain the form of the neutrino mixing matrix UPMNS, as we demonstrate below.

2.1 The PMNS matrix from Ge = Z2 and Gν = Z2 ×Hν
CP

We choose Ge to be a Z2 symmetry. We will denote it as Zge2 ≡ {1, ge}, g2e = 1 being an

element of Gf of order two, generating the Zge2 subgroup. The invariance of the charged

lepton mass term under Ge implies

ρ(ge)
†MeM

†
e ρ(ge) = MeM

†
e . (2.1)

Below we show how this invariance constrains the form of the unitary matrix Ue, diagonal-

ising MeM
†
e :

U †eMeM
†
e Ue = diag(m2

e,m
2
µ,m

2
τ ) . (2.2)

Lets Ωe be a diagonalising unitary matrix of ρ(ge), such that

Ω†e ρ(ge) Ωe = ρ(ge)
d ≡ diag(1,−1,−1) . (2.3)

This result is obtained as follows. The diagonal entries of ρ(ge)
d are constrained to be

±1, since this matrix must still furnish a representation of Z2 and hence its square is the

identity. We have assumed that the trace of ρ(ge) is −1, for the relevant elements ge, as

it is the case for the 3-dimensional representation of S4 we will consider later on.6 Note

that we can take the order of the eigenvalues of ρ(ge) as given in eq. (2.3) without loss of

generality, as will become clear later.

Expressing ρ(ge) from eq. (2.3) and substituting it in eq. (2.1), we obtain

ρ(ge)
d Ω†eMeM

†
e Ωe ρ(ge)

d = Ω†eMeM
†
e Ωe . (2.4)

This equation implies that Ω†eMeM
†
e Ωe has the block-diagonal form× 0 0

0 × ×
0 × ×

 , (2.5)

and, since this matrix is hermitian, it can be diagonalised by a unitary matrix with a U(2)

transformation acting on the 2-3 block. In the general case, the U(2) transformation can

be parametrised as follows:(
cos θe − sin θe e−iδ

e

sin θe eiδ
e

cos θe

) (
eiβ

e
1 0

0 eiβ
e
2

)
. (2.6)

6For the other 3-dimensional irreducible representation of S4 the trace can be either −1 or +1, depending

on ge. Choosing +1 would simply imply a change of sign of ρ(ge)
d, which however does not lead to new

constraints. The conclusions we reach in what follows are then independent of the choice of 3-dimensional

representation.
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The diagonal phase matrix is, however, unphysical, since it can be eliminated by rephasing

of the charged lepton fields, and we will not keep it in the future. Thus, we arrive to the

conclusion that the matrix Ue diagonalising MeM
†
e reads

Ue = Ωe U23(θ
e, δe)† P Te , (2.7)

with

U23(θ
e, δe) =

1 0 0

0 cos θe sin θe e−iδ
e

0 − sin θe eiδ
e

cos θe

 , (2.8)

and Pe being one of six permutation matrices, which need to be taken into account, since

in the approach under consideration the order of the charged lepton masses is unknown.

The six permutation matrices read:

P123 =

1 0 0

0 1 0

0 0 1

 , P132 =

1 0 0

0 0 1

0 1 0

 , P213 =

0 1 0

1 0 0

0 0 1

 , (2.9)

P231 =

0 1 0

0 0 1

1 0 0

 , P312 =

0 0 1

1 0 0

0 1 0

 , P321 =

0 0 1

0 1 0

1 0 0

 . (2.10)

Note that the order of indices in Pijk stands for the order of rows, i.e., when applied from

the left to a matrix, it gives the desired order, i-j-k, of the matrix rows. The same is also

true for columns, when Pijk is applied from the right, except for P231 which leads to the

3-1-2 order of columns and P312 yielding the 2-3-1 order.

In the neutrino sector we have a Gν = Z2 ×Hν
CP residual symmetry. We will denote

the Z2 symmetry of the neutrino mass matrix as Zgν2 ≡ {1, gν}, with g2ν = 1 being an

element of Gf , generating the Zgν2 subgroup. Hν
CP = {Xν} is the set of remnant GCP

unitary transformations Xν forming a residual CP symmetry of the neutrino mass matrix.

Hν
CP is contained in HCP = {X} which is the GCP symmetry of the high-energy theory

consistently defined along with the flavour symmetry Gf .7 The invariance under Gν of the

7It is worth to comment here on the notation Hν
CP we use. When we write in what follows

Hν
CP = {Xν1, Xν2}, we mean a set of GCP transformations (Xν1 and Xν2) compatible with the resid-

ual flavour Zgν2 symmetry (see eq. (2.13)). However, when writing Gν = Zgν2 ×Hν
CP, Hν

CP is intended to

be a group generated by Xν1. Namely, following appendix B in [19], Hν
CP is isomorphic to {I,Xν1}, where

I is the unit matrix and

Xν1 =

(
0 Xν1
X∗ν1 0

)
,

both of them acting on (ϕ,ϕ∗)T . Then, Zgν2 is isomorphic to {I,Gν}, where

Gν =

(
ρ(gν) 0

0 ρ∗(gν)

)
acts again on (ϕ,ϕ∗)T . Finally, it is not difficult to convince oneself that the full residual symmetry group

Gν is given by a direct product Zgν2 × Hν
CP, and the second GCP transformation Xν2 = ρ(gν)Xν1 is

contained in it. The same logic applies to the notation HCP, and, as has been shown in appendix B of [19],

the full symmetry group is a semi-direct product Gf oHCP. Note that these notations are widely used in

the literature.
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neutrino mass matrix implies that the following two equations hold:

ρ(gν)TMν ρ(gν) = Mν , (2.11)

XT
ν Mν Xν = M∗ν . (2.12)

In addition, the consistency condition between Zgν2 and Hν
CP has to be respected:

Xν ρ
∗(gν)X−1ν = ρ(gν) . (2.13)

To derive the form of the unitary matrix Uν diagonalising the neutrino Majorana mass

matrix Mν as

UTν Mν Uν = diag(m1,m2,m3) , (2.14)

mj > 0 being the neutrino masses, we will follow the method presented in [32].

Lets Ων1 be a diagonalising unitary matrix of ρ(gν), such that

Ω†ν1 ρ(gν) Ων1 = ρ(gν)d ≡ diag(1,−1,−1) . (2.15)

Expressing ρ(gν) from this equation and substituting it in the consistency condition,

eq. (2.13), we find

ρ(gν)d Ω†ν1Xν Ω∗ν1 ρ(gν)d = Ω†ν1Xν Ω∗ν1 , (2.16)

meaning that Ω†ν1Xν Ω∗ν1 is a block-diagonal matrix, having the form of eq. (2.5). Moreover,

this matrix is symmetric, since the GCP transformations Xν have to be symmetric in order

for all the three neutrino masses to be different [19, 21], as is required by the data. In

appendix A we provide a proof of this. Being a complex (unitary) symmetric matrix, it is

diagonalised by a unitary matrix Ων2 via the transformation:

Ω†ν2 (Ω†ν1Xν Ω∗ν1) Ω∗ν2 = (Ω†ν1Xν Ω∗ν1)
d . (2.17)

The matrix (Ω†ν1Xν Ω∗ν1)
d is, in general, a diagonal phase matrix. However, we can choose

(Ω†ν1Xν Ω∗ν1)
d = diag(1, 1, 1) as the phases of (Ω†ν1Xν Ω∗ν1)

d can be moved to the matrix

Ων2. With this choice we obtain the Takagi factorisation of the Xν (valid for unitary

symmetric matrices):

Xν = Ων ΩT
ν , (2.18)

with Ων = Ων1 Ων2.

Since, as we have noticed earlier, Ω†ν1Xν Ω∗ν1 has the form of eq. (2.5), the matrix Ων2

can be chosen without loss of generality to have the form of eq. (2.5) with a unitary 2× 2

matrix in the 2-3 block. This implies that the matrix Ων = Ων1 Ων2 also diagonalises ρ(gν).

Indeed,

Ω†ν ρ(gν) Ων = Ω†ν2 ρ(gν)d Ων2 = ρ(gν)d , (2.19)

where we have used eq. (2.15).

We substitute next Xν from eq. (2.18) in the GCP invariance condition of the neutrino

mass matrix, eq. (2.12), and find that the matrix ΩT
ν Mν Ων is real. Furthermore, this is

a symmetric matrix, since the neutrino Majorana mass matrix Mν is symmetric. A real

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
2

symmetric matrix can be diagonalised by a real orthogonal transformation. Employing

eqs. (2.19) and (2.11), we have

ρ(gν)d ΩT
ν Mν Ων ρ(gν)d = ΩT

ν Mν Ων , (2.20)

implying that ΩT
ν Mν Ων is a block-diagonal matrix as in eq. (2.5). Thus, the required

orthogonal transformation is a rotation in the 2-3 plane on an angle θν :

R23(θ
ν) =

1 0 0

0 cos θν sin θν

0 − sin θν cos θν

 . (2.21)

Finally, the matrix Uν diagonalising Mν reads

Uν = Ων R23(θ
ν)Pν Qν , (2.22)

where Pν is one of the six permutation matrices, which accounts for different order of

mj , and the matrix Qν renders them positive. Without loss of generality Qν can be

parametrised as follows:

Qν = diag(1, ik1 , ik2) , with k1,2 = 0, 1 . (2.23)

Assembling together the results for Ue and Uν , eqs. (2.7) and (2.22), we obtain for the

form of the PMNS matrix:

UPMNS = Pe U23(θ
e, δe) Ω†e Ων R23(θ

ν)Pν Qν . (2.24)

Thus, in the approach we are following the PMNS matrix depends on three free real

parameters8 — the two angles θe and θν and the phase δe. One of the elements of the

PMNS matrix is fixed to be a constant by the employed residual symmetries. We note

finally that, since R23(θ
ν + π) = R23(θ

ν) diag(1,−1,−1), where the diagonal matrix can

be absorbed into Qν , and U23(θ
e + π, δe) = diag(1,−1,−1)U23(θ

e, δe), where the diagonal

matrix contributes to the unphysical charged lepton phases, it is sufficient to consider θe

and θν in the interval [0, π).

2.2 Conjugate residual symmetries

In this subsection we briefly recall why the residual symmetries G′e and G′ν conjugate to

Ge and Gν , respectively, under the same element of the flavour symmetry group Gf lead to

the same PMNS matrix (see, e.g., [19, 22]). Two pairs of residual symmetries {Zge2 , Z
gν
2 }

and {Zg
′
e

2 , Z
g′ν
2 } are conjugate to each other under h ∈ Gf if

h ge h
−1 = g′e and h gν h

−1 = g′ν . (2.25)

8It should be noted that the matrix Ων2 in eq. (2.17) with (Ω†ν1Xν Ω∗ν1)d = diag(1, 1, 1), and thus

the matrix Ων = Ων1 Ων2 in eq. (2.18), is determined up to a multiplication by an orthogonal matrix O

on the right. The matrix Ων2O must be unitary since it diagonalises a complex symmetric matrix, which

implies that O must be unitary in addition of being orthogonal, and therefore must be a real matrix.

Equation (2.19) restricts further this real orthogonal matrix O to have the form of a real rotation in the

2-3 plane, which can be “absorbed” in the R23(θν) matrix in eq. (2.24).
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At the representation level this means

ρ(h) ρ(ge) ρ(h)† = ρ(g′e) and ρ(h) ρ(gν) ρ(h)† = ρ(g′ν) . (2.26)

Substituting ρ(ge) and ρ(gν) from these equalities to eqs. (2.1) and (2.11), respectively, we

obtain

ρ(g′e)
†M ′eM

′†
e ρ(g′e) = M ′eM

′†
e and ρ(g′ν)TM ′ν ρ(g′ν) = M ′ν , (2.27)

where the primed mass matrices are related to the original ones as

M ′eM
′†
e = ρ(h)MeM

†
e ρ(h)† and M ′ν = ρ(h)∗Mν ρ(h)† . (2.28)

As can be understood from eq. (2.12) (or eq. (2.13)), the matrix M ′ν will respect a remnant

CP symmetry Hν′
CP = {X ′ν}, which is related to Hν

CP = {Xν} as follows:

X ′ν = ρ(h)Xν ρ(h)T . (2.29)

Obviously, the unitary transformations U ′e and U ′ν diagonalising the primed mass matrices

are given by

U ′e = ρ(h)Ue and U ′ν = ρ(h)Uν , (2.30)

thus yielding

U ′PMNS = U ′†e U
′
ν = U †e Uν = UPMNS . (2.31)

2.3 Phenomenologically non-viable cases

Here we demonstrate that at least two types of residual symmetries {Ge, Gν} = {Zge2 , Z
gν
2 ×

Hν
CP}, characterised by certain ge and gν , cannot lead to phenomenologically viable form

of the PMNS matrix.

• Type I: ge = gν . In this case, we can choose Ωe = Ων P , with P123 or P132. Then,

eq. (2.24) yields

UPMNS = Pe U23(θ
e, δe)P R23(θ

ν)Pν Qν . (2.32)

This means that up to permutations of the rows and columns UPMNS has the form of

eq. (2.5), i.e., contains four zero entries, which are ruled out by neutrino oscillation

data [26, 27].

• Type II: ge, gν ∈ Z2 × Z2 ⊂ Gf . Now we consider two different order two elements

ge 6= gν , which belong to the same Z2 × Z2 = {1, ge, gν , ge gν} subgroup of Gf . In this

case, since ge and gν commute, there exists a unitary matrix simultaneously diagonalising

both ρ(ge) and ρ(gν). Note, however, that the order of eigenvalues in the resulting diag-

onal matrices will be different. Namely, lets Ων1 be a diagonalising matrix of ρ(gν) and

ρ(ge), and lets Ων1 diagonalise ρ(gν) as in eq. (2.15). Then, Ω†ν1 ρ(ge) Ων1 can yield either

diag(−1, 1,−1) or diag(−1,−1, 1), but not diag(1,−1,−1). Hence, Ωe diagonalising ρ(ge)

as in eq. (2.3), must read

Ωe = Ων1 P , with P = P213 or P312 if Ω†ν1 ρ(ge) Ων1 = diag(−1, 1,−1) , (2.33)

and P = P231 or P321 if Ω†ν1 ρ(ge) Ων1 = diag(−1,−1, 1) . (2.34)
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Taking into account that Ων = Ων1 Ων2, with Ων2 of the block-diagonal form given in

eq. (2.5), we obtain

UPMNS = Pe U23(θ
e, δe)P T Ων2R23(θ

ν)Pν Qν , (2.35)

where P T Ων2, depending on P , can take one of the following forms:0 × ×
× 0 0

0 × ×

 or

0 × ×
0 × ×
× 0 0

 . (2.36)

As a consequence, UPMNS up to permutations of the rows and columns has the form0 × ×
× × ×
× × ×

 , (2.37)

containing one zero element, which is ruled out by the data.

3 Mixing patterns from Gf o HCP = S4 o HCP broken to Ge = Z2 and

Gν = Z2 ×Hν
CP

3.1 Group S4 and residual symmetries

S4 is the symmetric group of permutations of four objects. This group is isomorphic to the

group of rotational symmetries of the cube. S4 can be defined in terms of three generators

S, T and U , satisfying [33]

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (3.1)

From 24 elements of the group there are nine elements of order two, which belong to two

of five conjugacy classes of S4 (see, e.g., [21]):

3 C2 : {S , TST 2 , T 2ST} , (3.2)

6 C′2 : {U , TU , SU , T 2U , STSU , ST 2SU} . (3.3)

Each of these nine elements generates a corresponding Z2 subgroup of S4. Each subgroup

can be the residual symmetry of MeM
†
e , and, combined with compatible CP transforma-

tions, yield the residual symmetry of Mν . Hence, we have 81 possible pairs of only residual

flavour symmetries (taking into account remnant CP symmetries increases the number of

possibilities). Many of them, however, being conjugate to each other, will lead to the

same form of the PMNS matrix, as explained in subsection 2.2. Thus, we first identify the

pairs of elements {ge, gν}, which are not related by the similarity transformation given in

eq. (2.25). We find nine distinct cases for which {ge, gν} can be chosen as

{S, S} , {U,U} , {T 2ST, S} , {S,U} , {U, S} , {SU,U} , (3.4)

{S, TU} , {TU, S} , {TU,U} . (3.5)
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The pair {S, S} is obviously conjugate to {TST 2, TST 2} and {T 2ST, T 2ST}, while {U,U}
is conjugate to {ge, gν} with ge = gν being one of the remaining five elements from conjugacy

class 6 C′2 given in eq. (3.3). The pairs {T 2ST, S}, {S,U}, {U, S} and {SU,U} are conjugate

to five pairs each, and {S, TU} and {TU, S} to eleven pairs each. Finally, {TU,U} is

conjugate to 23 pairs. As it should be, the total number of pairs yields 81. The complete

lists of pairs of elements which are conjugate to each of these nine pairs are given in

appendix B.

The cases in eq. (3.4) do not lead to phenomenologically viable results. The first two of

them belong to the cases of Type I (see subsection 2.3). The remaining four belong to Type

II, since S4 contains ZS2 × ZTST
2

2 = {1, S, TST 2 , T 2ST} and ZS2 × ZU2 = {1, S, U , SU}
subgroups (see, e.g., [34]). Thus, we are left with three cases in eq. (3.5).

We have chosen gν in such a way that it is S, U or TU for all the cases in eq. (3.5).

Now we need to identify the remnant CP transformations Xν compatible with each of these

three elements. It is known that the GCP symmetry HCP = {X} compatible with Gf = S4
is of the same form of Gf itself [20], i.e.,

X = ρ(g), g ∈ S4 . (3.6)

Thus, to find Xν compatible with gν of interest, we need to select those X = ρ(g), which

i) satisfy the consistency condition in eq. (2.13) and ii) are symmetric in order to avoid

partially degenerate neutrino mass spectrum, as was noted earlier. The result reads:9

Xν = 1 , (S) , U , (SU) , TST 2U , (T 2STU) for gν = S ; (3.7)

Xν = 1 , (U) , S , (SU) for gν = U ; (3.8)

Xν = U , (T ) , STS , (T 2STU) for gν = TU . (3.9)

A GCP transformation in parentheses appears automatically to be a remnant CP sym-

metry of Mν , if Xν which precedes this in the list is a remnant CP symmetry. This is

a consequence of eqs. (2.11) and (2.12), which imply that if Xν is a residual CP sym-

metry of Mν , then ρ(gν)Xν is a residual CP symmetry as well. Therefore, we have

three sets of remnant CP transformations compatible with ZS2 , namely, Hν
CP = {1, S},

{U, SU} and {TST 2U, T 2STU}, two sets compatible with ZU2 , which are Hν
CP = {1, U} and

{S, SU}, and two sets consistent with ZTU2 , which read Hν
CP = {U, T} and {STS, T 2STU}.

Taking them into account, we end up with seven possible pairs of residual symmetries

{Ge, Gν} = {Zge2 , Z
gν
2 ×Hν

CP}, with {ge, gν} as in eq. (3.5). In what follows, we will consider

them case by case and classify all phenomenologically viable mixing patterns they lead to.

Before starting, however, let us recall the current knowledge on the absolute values

of the PMNS matrix elements, which we will use in what follows. The 3σ ranges of the

absolute values of the PMNS matrix elements read [35]

|UPMNS|3σ =

0.796→ 0.855 0.497→ 0.587 0.140→ 0.153

0.245→ 0.513 0.543→ 0.709 0.614→ 0.768

0.244→ 0.510 0.456→ 0.642 0.624→ 0.776

 (3.10)

9For notation simplicity we will not write the representation symbol ρ, keeping in mind that Xν = g

meas Xν = ρ(g) with g ∈ Gf .
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for the neutrino mass spectrum with normal ordering (NO), and

|UPMNS|3σ =

0.796→ 0.855 0.497→ 0.587 0.140→ 0.153

0.223→ 0.503 0.452→ 0.703 0.614→ 0.783

0.257→ 0.526 0.464→ 0.712 0.605→ 0.775

 (3.11)

for the neutrino mass spectrum with inverted ordering (IO). The ranges in eqs. (3.10)

and (3.11) differ a little from the results obtained in [27].

3.2 Explicit forms of the PMNS matrix

First, we present an explicit example of constructing the PMNS matrix in the case of

ge = S, gν = TU and Hν
CP = {U, T}, which is the first case out of the seven potentially

viable cases indicated above. We will work in the basis for S4 from [36], in which the

matrices for the generators S, T and U in the 3-dimensional representation read

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

1 0 0

0 ω2 0

0 0 ω

 and U = −

1 0 0

0 0 1

0 1 0

 , (3.12)

where ω = e2πi/3. For simplicity we use the same notation (S, T and U) for the generators

and their 3-dimensional representation matrices. We will follow the procedure described

in subsection 2.1. The matrix Ωe which diagonalises ρ(ge) = S (see eq. (2.3)) is given by

Ωe =
1√
6


√

2 −
√

3 −1√
2 0 2√
2
√

3 −1

 . (3.13)

The matrix Ων , such that Ων ΩT
ν = U (see eq. (2.18)), reads

Ων =
1√
2

 0 0
√

2i

e
2πi
3 −e

iπ
6 0

e
iπ
3 e−

iπ
6 0

 . (3.14)

Using the master formula in eq. (2.24), we obtain that up to permutations of the rows and

columns UPMNS has the form 
i√
2
× ×

× × ×
× × ×

 , (3.15)

where “×” entries are functions of the free parameters θν , θe and δe. Taking into ac-

count the current data, eqs. (3.10) and (3.11), the fixed element with the absolute value

of 1/
√

2 ≈ 0.707 can be (UPMNS)µ2, (UPMNS)µ3, (UPMNS)τ2 or (UPMNS)τ3. Note that

|(UPMNS)τ2| = 0.707 is outside the 3σ range in the case of the NO neutrino mass spectrum,

while |(UPMNS)µ2| = 0.707 is at the border of the 3σ allowed ranges for both the NO and

IO spectra.
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Let us consider as an example the first possibility, i.e., Pe = Pν = P213, leading to

|(UPMNS)µ2| = 1/
√

2. In this case the mixing angles of the standard parametrisation of the

PMNS matrix are related to the free parameters θν , θe and δe as follows:

sin2 θ13 = |(UPMNS)e3|2 =
1

24

[
cos 2θν

(
sin 2θe

(
3 sin δe + 4

√
3 cos δe

)
+ 4 cos 2θe − 1

)
+
√

2 sin 2θν
(

sin 2θe
(√

3 cos δe − 6 sin δe
)

+ cos 2θe + 2
)
− 3 sin δe sin 2θe + 9

]
,

(3.16)

sin2 θ23 =
|(UPMNS)µ3|2

1− |(UPMNS)e3|2
=

3− 2
√

2 sin 2θν + cos 2θν

12 cos2 θ13
, (3.17)

sin2 θ12 =
|(UPMNS)e2|2

1− |(UPMNS)e3|2
=

1 + sin δe sin 2θe

4 cos2 θ13
. (3.18)

Moreover, from |(UPMNS)µ2| = 1/
√

2 we obtain a sum rule for cos δ:

cos δ =
2 cos2 θ12 cos2 θ23 + 2 sin2 θ12 sin2 θ23 sin2 θ13 − 1

sin 2θ12 sin 2θ23 sin θ13
. (3.19)

Let us comment now on the following issue. Once one of the elements of the PMNS

matrix is fixed to be a constant, we still have four possible configurations, namely, a

permutation of two remaining columns, a permutation of two remaining rows and both

of them. For instance, in the case considered above, except for Pe = Pν = P213, we

can have a fixed (UPMNS)µ2 with (Pe, Pν) = (P213, P231), (P312, P213) and (P312, P231).

These combinations of the permutation matrices will not lead, however, to different mixing

patterns by virtue of the following relations:

R23 (θν)P231 = R23 (θν + π/2)P213 diag (−1, 1, 1) , (3.20)

P312 U23 (θe, δe) = diag
(
eiδ

e
, 1,−e−iδe

)
P213 U23 (θe + π/2, δe) . (3.21)

Indeed, e.g., in the case of (Pe, Pν) = (P312, P231), defining θ̂ν = θν+π/2, θ̂e = θe+π/2 and

absorbing the matrix diag (−1, 1, 1) in the matrix Qν , we obtain the same PMNS matrix

as in the case of (Pe, Pν) = (P213, P213):

UPMNS = P213 U23(θ̂
e, δe) Ω†e Ων R23(θ̂

ν)P213Qν . (3.22)

The phases in the matrix diag
(
eiδ

e
, 1,−e−iδe

)
are unphysical, and we have disregarded them.

We list in table 2 the matrices Ωe and Ων for all seven phenomenologically viable pairs of

residual symmetries {Ge, Gν} = {Zge2 , Z
gν
2 ×Hν

CP}. It turns out, however, that four of these

seven pairs, namely, {Ge, Gν} = {ZS2 , ZTU2 ×Hν
CP} with Hν

CP = {U, T} and {STS, T 2STU},
and {Ge, Gν} = {ZTU2 , ZS2 × Hν

CP} with Hν
CP = {U, SU} and {TST 2U, T 2STU}, lead to

the same predictions for the mixing parameters. We demonstrate this in appendix C.
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ge Ωe gν Hν
CP Ων

S
1√
6


√

2 −
√

3 −1√
2 0 2√
2
√

3 −1

 TU

{U, T}
1√
2

 0 0
√

2i

e
2πi
3 −e iπ6 0

e
iπ
3 e−

iπ
6 0



{STS, T 2STU}
1√
6

 0 2i
√

2√
3e

iπ
6 e

iπ
6 −

√
2e−

iπ
3√

3e−
iπ
6 −e− iπ6 −

√
2e

iπ
3



TU
1√
2

 0 0
√

2

e
iπ
3 e−

2πi
3 0

1 1 0



S

{1, S}
1√
6


√

2 −
√

3 −1√
2 0 2√
2
√

3 −1



{U, SU}
i√
6


√

2 −2 0√
2 1 −

√
3i√

2 1
√

3i



{TST 2U, T 2STU}
1√
3

1 i 1

1 e−
iπ
6 −e− iπ3

1 −e iπ6 −e iπ3



U

{1, U}
1√
2

 0 0
√

2

−1 1 0

1 1 0



{S, SU} − i√
6

 0
√

2i −2√
3
√

2i 1

−
√

3
√

2i 1



Table 2. The matrices Ωe and Ων dictated by the residual symmetries Ge = Zge2 and Gν =Zgν2 ×Hν
CP

for all seven phenomenologically viable pairs of Ge and Gν . For each pair Hν
CP = {Xν1, Xν2} of

remnant GCP transformations, the given matrix Ων provides the Takagi factorisation of the first

element, i.e., Xν1 = Ων ΩTν .10

3.3 Extracting mixing parameters and statistical analysis

In this subsection we perform a statistical analysis of the predictions for the neutrino mixing

angles and CPV phases for each of the four distinctive sets of the residual flavour and CP

10Xν2 is instead factorised as Xν2 = Ω̃ν Ω̃Tν , with Ω̃ν = Ων diag(1, i, i), as follows from Xν2 = ρ(gν)Xν1 =

Ων Ω†ν ρ(gν) Ων ΩTν = Ων ρ(gν)d ΩTν , with ρ(gν)d defined in eq. (2.15).
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symmetries, which are {Ge, Gν} = {ZTU2 , ZS2 × Hν
CP} with Hν

CP = {1, S} and {U, SU},
and {Ge, Gν} = {ZTU2 , ZU2 × Hν

CP} with Hν
CP = {1, U} and {S, SU}. This allows us to

derive predictions for the three neutrino mixing angles and the three leptonic CPV phases,

which, in many of the cases analysed in the present study is impossible to obtain purely

analytically.

Once a pair of residual symmetries and the permutation matrices Pe and Pν are speci-

fied, we have the expressions for sin2 θij in terms of θν , θe and δe of the type of eqs. (3.16)–

(3.18). Moreover, employing a sum rule for cos δ analogous to that in eq. (3.19) and

computing the rephasing invariant

JCP = Im
{

(UPMNS)∗e1 (UPMNS)∗µ3 (UPMNS)e3 (UPMNS)µ1
}
, (3.23)

which determines the magnitude of CPV effects in neutrino oscillations [37] and which in

the standard parametrisation of the PMNS matrix is proportional to sin δ,

JCP =
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ , (3.24)

we know the value of δ for any θν , θe and δe. Similarly, making use of the two charged

lepton rephasing invariants,11 associated with the Majorana phases [38–41],

I1 = Im {(UPMNS)∗e1 (UPMNS)e2} and I2 = Im {(UPMNS)∗e1 (UPMNS)e3} , (3.25)

and the corresponding real parts

R1 = Re {(UPMNS)∗e1 (UPMNS)e2} and R2 = Re {(UPMNS)∗e1 (UPMNS)e3} , (3.26)

which in the standard parametrisation of the PMNS matrix read:

I1 = sinθ12 cosθ12 cos2 θ13 sin(α21/2) , I2 = cosθ12 sinθ13 cosθ13 sin(α31/2−δ) , (3.27)

R1 = sinθ12 cosθ12 cos2 θ13 cos(α21/2) , R2 = cosθ12 sinθ13 cosθ13 cos(α31/2−δ) , (3.28)

we also obtain the values of α21 and α31 for any θν , θe and δe.

Further, we scan randomly over θν ∈ [0, π), θe ∈ [0, π) and δe ∈ [0, 2π) and calculate

the values of sin2 θij and the CPV phases. We require sin2 θij to lie in the corresponding

3σ ranges given in table 1. The obtained values of sin2 θij and δ can be characterised by a

certain value of the χ2 function constructed as follows:

χ2 (~x) =

4∑
i=1

χ2
i (xi) , (3.29)

where ~x = {xi} = (sin2 θ12, sin
2 θ13, sin

2 θ23, δ) and χ2
i are one-dimensional projections for

NO and IO taken from [26].12 Thus, we have a list of points (sin2 θ12, sin2 θ13, sin2 θ23, δ,

11In their general form, when one keeps explicit the unphysical phases ξj in the Majorana condition

C νj
T = ξj νj , j = 1, 2, 3, the rephasing invariants related to the Majorana phases involve ξj and are

invariant under phase transformations of both the charged lepton and neutrino fields (see, for example,

eqs. (22)–(28) in [38]). We have set ξj = 1.
12We note that according to the latest global oscillation data, there is an overall preference for NO over

IO of ∆χ2
IO−NO ≈ 3.6. Nevertheless, we take a conservative approach and treat both orderings on an equal

footing. A discussion on this issue can be found in [26].

– 15 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
2

α21, α31, χ
2). To see the restrictions on the mixing parameters imposed by flavour and

CP symmetries we consider all 15 different pairs (a, b) of the mixing parameters. For each

pair we divide the plane (a, b) into bins and find a minimum of the χ2 function in each bin.

We present results in terms of heat maps with colour representing a minimal value of χ2

in each bin. The results obtained in each case are discussed in the following subsection.

3.4 Results and discussion

In this subsection we systematically go through all different potentially viable cases and

summarise their particular features. All these cases can be divided in four groups corre-

sponding to a particular pair of residual symmetries {Ge, Gν}.
In each case we concentrate on results for the ordering for which a better compatibility

with the global data is attained. Note that results for NO and IO differ only i) due to

the fact that the 3σ ranges of sin2 θ13 and sin2 θ23 depend slightly on the ordering and ii)

in the respective χ2 landscapes. Moreover, we present numerical results for the Majorana

phases obtained for k1 = k2 = 0, where k1 and k2 are defined in eq. (2.23). However, one

should keep in mind that all four (k1, k2) pairs, where ki = 0, 1, are allowed. Whenever

k1(2) = 1, the predicted range for α21(31) shifts by π. The values of the ki are important

for the predictions of the neutrinoless double beta decay effective Majorana mass (see,

e.g., [38, 42–44]), which we obtain in section 4.

Group A: {Ge, Gν} = {ZTU2 , ZS2 × Hν
CP} with Hν

CP = {1, S}. Using the corre-

sponding matrices Ωe and Ων from table 2 and the master formula for the PMNS matrix

in eq. (2.24), we find the following form of the PMNS matrix (up to permutations of rows

and columns and the phases in the matrix Qν):

UA
PMNS =

1

2
√

3


√

6 e−
iπ
6

√
3 eiθ

ν √
3 e−iθ

ν

√
2 cee

iπ
3 + 2 see−iδ

e
a1 (θν , θe, δe) a2 (θν , θe, δe)

2 ce −
√

2 see
iπ
3 eiδ

e
a3 (θν , θe, δe) a4 (θν , θe, δe)

 , (3.30)

with ce ≡ cos θe, se ≡ sin θe, cν ≡ cos θν , sν ≡ sin θν and

a1 (θν , θe, δe) =
[√

3cν +
(

2− i
√

3
)
sν
]
ce +

√
2
(
sν −

√
3 cν
)
see−iδ

e
, (3.31)

a2 (θν , θe, δe) =
[√

3sν −
(

2− i
√

3
)
cν
]
ce −

√
2
(
cν +

√
3 sν

)
see−iδ

e
, (3.32)

a3 (θν , θe, δe) =
√

2
(
sν −

√
3 cν
)
ce −

[√
3cν +

(
2− i

√
3
)
sν
]
seeiδ

e
, (3.33)

a4 (θν , θe, δe) = −
√

2
(
cν +

√
3 sν

)
ce −

[√
3 sν −

(
2− i

√
3
)
cν
]
seeiδ

e
. (3.34)

From eq. (3.30), we see that the absolute values of the elements of the first row are fixed.

Namely, the modulus of the first element is equal to 1/
√

2, while the moduli of the second

and third elements equal 1/2. Taking into account the current knowledge of the mixing

parameters, eqs. (3.10) and (3.11), this implies that there are only two potentially viable

cases: i) with |(UPMNS)µ1| = |(UPMNS)µ2| = 1/2 and |(UPMNS)µ3| = 1/
√

2, and ii) with

|(UPMNS)τ1| = |(UPMNS)τ2| = 1/2 and |(UPMNS)τ3| = 1/
√

2.
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• Case A1: |(UPMNS)µ1|= |(UPMNS)µ2|=1/2, |(UPMNS)µ3|=1/
√
2 (Pe=P213,

Pν = P321). In this case we obtain

sin2 θ23 =
1

2
(
1− sin2 θ13

) (3.35)

=
1

2

(
1 + sin2 θ13

)
+O

(
sin4 θ13

)
. (3.36)

This means that only a narrow interval sin2 θ23 ∈ [0.510, 0.512] is allowed using the

3σ region for sin2 θ13. From the equality |(UPMNS)µ1| = 1/2, which we find to hold

in this case, it follows that cos δ satisfies the following sum rule:

cos δ =
1− 4 sin2 θ12 cos2 θ23 − 4 cos2 θ12 sin2 θ23 sin2 θ13

2 sin 2θ12 sin 2θ23 sin θ13
, (3.37)

where the mixing angles in addition are correlated among themselves. We find that

sin2 θ13 is constrained to lie in the interval (0.0213, 0.0240(2)] for NO (IO) and, hence,

sin2 θ23 in [0.5109, 0.5123(4)]. This range of values of sin2 θ23 is not compatible with its

current 2σ range. Moreover, sin2 θ12 is found to be between approximately 0.345 and

0.354, which is outside its current 2σ range as well. What concerns the CPV phases,

the predicted values of δ are distributed around 0, namely, δ ∈ [−0.11π, 0.11π], of

α21 around π, α21 ∈ (0.93π, 1.07π), while the values of α31 fill the whole range, i.e.,

α31 ∈ [0, 2π). These numbers, presented for the NO spectrum, remain practically un-

changed for the IO spectrum. However, the global minimum χ2
min of the χ2 function,

defined in eq. (3.29), yields approximately 22 (19) for NO (IO), which implies that

this case is disfavoured by the global data at more than 4σ.

• Case A2: |(UPMNS)τ1|= |(UPMNS)τ2|=1/2, |(UPMNS)τ3|=1/
√
2 (Pe = Pν

= P321). This case shares the predicted ranges for sin2 θ12, sin2 θ13, α21 and α31 with

case A1, but differs in the predictions for sin2 θ23 and δ. Again, there is a correlation

between sin2 θ13 and sin2 θ23:

sin2 θ23 =
1− 2 sin2 θ13

2
(
1− sin2 θ13

) (3.38)

=
1

2

(
1− sin2 θ13

)
+O

(
sin4 θ13

)
, (3.39)

which, in particular, implies that sin2 θ23 ∈ [0.4877(6), 0.4891], which is not compat-

ible with its present 2σ range. We also find that |(UPMNS)τ1| = 1/2. This equality

leads to the following sum rule:

cos δ =
4 sin2 θ12 sin2 θ23 + 4 cos2 θ12 cos2 θ23 sin2 θ13 − 1

2 sin 2θ12 sin 2θ23 sin θ13
. (3.40)

It is worth noting that we should always keep in mind the correlations between the

mixing angles in expressions of this type. The values of δ in this case lie around

π, in the interval [0.89π, 1.11π]. As in the previous case, the global minimum of

χ2 is somewhat large, χ2
min ≈ 18.5 (15) for NO (IO), meaning that this case is also

disfavoured.
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Group B: {Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {U, SU}. For this choice of

the residual symmetries, the PMNS matrix reads (up to permutations of rows and columns

and the phases in the matrix Qν):

UB
PMNS =

1

2
√

3


√

6 e
iπ
3

√
3 (cν + sν) e

iπ
3

√
3 (sν − cν) e

iπ
3

−
√

2 cee−
iπ
6 + 2 i see−iδ

e
b1 (θν , θe, δe) b2 (θν , θe, δe)

2 i ce +
√

2 see−
iπ
6 eiδ

e
b3 (θν , θe, δe) b4 (θν , θe, δe)

 , (3.41)

with

b1 (θν , θe, δe) = (3sν − cν) cee−
iπ
6 − 2

√
2 i cνsee−iδ

e
, (3.42)

b2 (θν , θe, δe) = − (3cν + sν) cee−
iπ
6 − 2

√
2 i sνsee−iδ

e
, (3.43)

b3 (θν , θe, δe) = −2
√

2 i cνce − (3sν − cν) see−
iπ
6 eiδ

e
, (3.44)

b4 (θν , θe, δe) = −2
√

2 i sνce + (3cν + sν) see−
iπ
6 eiδ

e
. (3.45)

Equation (3.41) implies that the absolute value of one element of the PMNS matrix is

predicted to be 1/
√

2. Thus, we have four potentially viable cases.

• Case B1: |(UPMNS)µ2| = 1/
√
2 (Pe = Pν = P213). Note that from eqs. (3.10)

and (3.11) it follows that this magnitude of the fixed element is inside its 3σ range

for NO, but slightly outside the corresponding range for IO. Hence, we will focus on

the results for NO. The characteristic feature of this case is the following sum rule

for cos δ:

cos δ =
2 cos2 θ12 cos2 θ23 + 2 sin2 θ12 sin2 θ23 sin2 θ13 − 1

sin 2θ12 sin 2θ23 sin θ13
, (3.46)

which arises from the equality of |(UPMNS)µ2| to 1/
√

2. The pair correlations between

the mixing parameters in this case are summarised in figure 1. The colour palette

corresponds to values of χ2 for NO. As can be seen, while all values of sin2 θ13 in its 3σ

range are allowed, the parameters sin2 θ12 and sin2 θ23 are found to lie in [0.250, 0.308]

and [0.381, 0.425) intervals, respectively. The predicted values of δ span the range

[0.68π, 1.32π]. Thus, CPV effects in neutrino oscillations due to the phase δ can be

suppressed. The Majorana phases instead are distributed in relatively narrow regions

around 0, so the magnitude of the neutrinoless double beta decay effective Majorana

mass (see section 4 and, e.g., [38, 42–44]) is predicted (for k1 = k2 = 0) to have a value

close to the maximal possible for the NO spectrum. Namely, α21 ∈ [−0.16π, 0.16π]

and α31 ∈ (−0.13π, 0.13π). In addition, δ is strongly correlated with α21 and α31,

which in turn exhibit a strong correlation between themselves. Finally, χ2
min ≈ 7 for

both NO and IO, i.e., this case is compatible with the global data at less than 3σ.13

13The apparent contradiction between the obtained value of χ2
min ≈ 7, which suggests compatibility also

for IO, and the expectation of χ2
min ∼> 9, according to eq. (3.11), arises from the way we construct the χ2

function (see eq. (3.29)), which does not explicitly include covariances between the oscillation parameters.
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• Case B2: |(UPMNS)τ2| = 1/
√
2 (Pe = P321, Pν = P213). Note that this value

of |(UPMNS)τ2| is compatible at 3σ with the global data in the case of IO spectrum,

but not in the case of NO spectrum, as can be seen from eqs. (3.10) and (3.11). Thus,

below we present results for the IO spectrum only. As in case B1, the whole 3σ range

for sin2 θ13 is allowed. The obtained ranges of values of α21 and α31 are the same

of the preceding case. The range for sin2 θ12 differs somewhat from that obtained in

case B1, and it reads sin2 θ12 ∈ [0.250, 0.328].14 The predictions for sin2 θ23 and δ are

different. Now the following sum rule, derived from |(UPMNS)τ2| = 1/
√

2, holds:

cos δ =
1− 2 cos2 θ12 sin2 θ23 − 2 sin2 θ12 cos2 θ23 sin2 θ13

sin 2θ12 sin 2θ23 sin θ13
. (3.47)

The values of δ are concentrated in [−0.38π, 0.38π]. For sin2 θ23 we find the range

(0.575, 0.636]. The correlations between the phases are of the same type as in case

B1. We summarise the results in figure 2. Finally, χ2
min ≈ 6 in the case of IO and

χ2
min ≈ 12.5 for NO, which reflects incompatibility of this case at more than 3σ for

the NO spectrum. This occurs mainly due to the predicted values of sin2 θ23, which

are outside its current 2σ range for NO.

• Case B3: |(UPMNS)µ3| = 1/
√
2 (Pe = P213, Pν = P321). Since |(UPMNS)µ3| =

1/
√

2, the angles θ13 and θ23 are correlated as in case A1, i.e., according to eq. (3.35).

For IO this leads to sin2 θ23 ∈ [0.5097, 0.5124] due to the fact that the whole 3σ range

of sin2 θ13 is found to be allowed, as can be seen from figure 3. Note that this range is

outside the current 2σ range of sin2 θ23. In addition, we find that the whole 3σ range

of the values of sin2 θ12 can be reproduced. In contrast to case A1, |(UPMNS)µ1| does

not equal 1/2, but depends on θν in the following way:

|(UPMNS)µ1|2 =
1− sin 2θν

4
. (3.48)

From this equation we find

cos δ =
1− 4 sin2 θ12 cos2 θ23 − 4 cos2 θ12 sin2 θ23 sin2 θ13 − sin 2θν

2 sin 2θ12 sin 2θ23 sin θ13
, (3.49)

i.e., cos δ depends on θν explicitly (not only via θ12, θ23 and θ13). With this relation,

any value of δ between 0 and 2π is allowed (see figure 3). The Majorana phases, how-

ever, are constrained to lie around 0 in the following intervals: α21 ∈ [−0.23π, 0.23π]

and α31 ∈ (−0.18π, 0.18π). Moreover, both phases α21 and α31 are correlated in one

and the same peculiar way with the phase δ. The correlation between α21 and α31

is similar to those in cases B1 and B2 (cf. figures 1 and 2). Due to the predicted

values of sin2 θ23, which belong to the upper octant, IO is preferred over NO, the

corresponding χ2
min being approximately 5 and 8.5.

14This difference is related to the fact that the current 3σ range of sin2 θ23 for IO, which reads

[0.384, 0.636], is not symmetric with respect to 0.5. The asymmetry of 0.02 translates to increase of the

allowed range of sin2 θ12 by approximately 0.02. This can be better understood from the top right plots in

figures 1 and 2.
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• Case B4: |(UPMNS)τ3| = 1/
√
2 (Pe = Pν = P321). The predicted ranges of all

the mixing parameters are the same of case B3, except for sin2 θ23, which respects the

relation in eq. (3.38), and thus belongs to [0.4876, 0.4903] in the case of IO spectrum.

As in the previous case, this interval falls outside the 2σ range of sin2 θ23. The results

obtained in this case for the IO spectrum are presented in figure 4. Similarly to the

preceding case, we find

|(UPMNS)τ1|2 =
1− sin 2θν

4
, (3.50)

which leads to

cos δ =
sin 2θν + 4 sin2 θ12 sin2 θ23 + 4 cos2 θ12 cos2 θ23 sin2 θ13 − 1

2 sin 2θ12 sin 2θ23 sin θ13
. (3.51)

The correlation between the Majorana phases is similar to that in the previous case.

Also in this case, χ2
min ≈ 4.5 for IO is lower than that of approximately 6.5 for NO,

the reason being again the predicted range of sin2 θ23.

Group C: {Ge, Gν}={ZTU2 , ZU2 ×Hν
CP} with Hν

CP={1, U}. Using the correspond-

ing matrices Ωe and Ων given in table 2 and eq. (2.24), we obtain the following form of the

PMNS matrix (up to permutations of rows and columns and the phases in the matrix Qν):

UC
PMNS =

1

2


ei
π
3

√
3 cνe−

iπ
6

√
3 sνe−

iπ
6

√
3 cee−

iπ
6 cνcee

iπ
3 − 2 sνsee−iδ

e
sνcee

iπ
3 + 2 cνsee−iδ

e

−
√

3 see−
iπ
6 eiδ

e −2 sνce − cνsee
iπ
3 eiδ

e
2 cνce − sνsee

iπ
3 eiδ

e

 . (3.52)

Thus, this pair of residual symmetries leads the absolute value of the fixed element to be

1/2. Taking into account the current uncertainties in the values of the neutrino mixing pa-

rameters, eqs. (3.10) and (3.11), we have to consider five potentially viable cases correspond-

ing to (UPMNS)e2, (UPMNS)µ1, (UPMNS)τ1, (UPMNS)µ2 or (UPMNS)τ2 being the fixed element.

• Case C1: |(UPMNS)e2| = 1/2 (Pe = P123, Pν = P213). Fixing (UPMNS)e2 leads

to the following relation between sin2 θ13 and sin2 θ12:

sin2 θ12 =
1

4
(
1− sin2 θ13

) (3.53)

=
1

4

(
1 + sin2 θ13

)
+O

(
sin4 θ13

)
. (3.54)

Since this case allows for the whole 3σ range of sin2 θ13 (see figure 5), we find

sin2 θ12 ∈ (0.2548, 0.2562). Note that this narrow interval is outside the current 2σ

range of sin2 θ12. At the same time, this case reproduces the whole 3σ range of the

values of sin2 θ23. From

|(UPMNS)µ2|2 =
3 cos2 θe

4
, (3.55)

we obtain

cos δ =
4 cos2 θ12 cos2 θ23 + 4 sin2 θ12 sin2 θ23 sin2 θ13 − 3 cos2 θe

2 sin 2θ12 sin 2θ23 sin θ13
, (3.56)
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i.e., cos δ explicitly depends on θe, and eventually this relation does not constrain δ.

Instead the Majorana phase α21 is predicted to be exactly π (exactly 0) for k1 = 0

(k1 = 1). While the second Majorana phase α31 itself remains unconstrained, the

difference α31−2δ = 0 (π) for k2 = 0 (k2 = 1), i.e., we have a strong linear correlation

between δ and α31 (see figure 5). The reason for these trivial values of α21 and α31−2δ

is the following. In the standard parametrisation of the PMNS matrix, α21 and the

combination (α31 − 2δ) may be extracted from the phases of the first row of the

PMNS matrix, as can be seen from eqs. (3.25)–(3.28). In case C1, none of the phases

of the first row elements of the PMNS matrix depend (mod π) on the free parameters

θν , θe and δe. Namely, the phases of (UPMNS)e1, (UPMNS)e2 and (UPMNS)e3 are fixed

(mod π and up to a global phase) to be −π/6, π/3 and −π/6, respectively. Notice

that only in groups B and C the relative phases of the first row can be predicted

(mod π) to be independent of θν , θe and δe. Furthermore, case C1 stands out since

it is, out of these relevant cases, the only one which survives the constraints on the

magnitudes of the PMNS matrix elements given in eqs. (3.10) and (3.11). Finally,

χ2
min ≈ 7 for both mass orderings.

• Case C2: |(UPMNS)µ1| = 1/2 (Pe = P213, Pν = P123). The correlations be-

tween the mixing parameters obtained in this case for NO are summarised in figure 6

(the results for IO are very similar). This case accounts for the whole 3σ range

of sin2 θ13, but constrains the values of the two other angles. Namely, we find

sin2 θ12 ∈ [0.285, 0.354] and sin2 θ23 ∈ [0.381, 0.524]. This case enjoys the sum rule

for cos δ given in eq. (3.37), since |(UPMNS)µ1| = 1/2 as it was also in case A1. As

a consequence, we find δ to be constrained: δ ∈ (−0.38π, 0.38π). Both Majorana

phases are distributed in relatively narrow intervals around π: α21 ∈ (0.85π, 1.15π)

and α31 ∈ [0.91π, 1.09π]. The phase δ is correlated with each of the two Majorana

phases in a similar way. The latter in turn are correlated linearly between themselves.

Overall, NO is slightly preferred over IO in this case. The corresponding values of

χ2
min read 4.5 and 5.5, respectively.

• Case C3: |(UPMNS)τ1| = 1/2 (Pe = P321, Pν = P123). This case shares some

of the predictions of case C2. Namely, the whole 3σ range of sin2 θ13 is allowed,

and the ranges of α21 and α31 are the same as in the preceding case, as can be seen

from figure 7, in which we present the results for the IO neutrino mass spectrum.

The interval of values of sin2 θ12 differs somewhat from that of case C2 and reads

sin2 θ12 ∈ [0.279, 0.354]. The predictions for sin2 θ23 and δ, however, are very differ-

ent from those of case C2. The allowed values of sin2 θ23 are concentrated mostly

in the upper octant, sin2 θ23 ∈ [0.475, 0.636]. The sum rule for cos δ in eq. (3.40) is

valid in this case, since |(UPMNS)τ1| = 1/2, and we find the values of δ to be symmet-

rically distributed around π in the interval [0.60π, 1.40π]. The pairwise correlations

between the CPV phases are of the same type as in case C2 (taking into account an

approximate shift of δ by π, as suggested by figures 6 and 7). Due to the predicted

range of sin2 θ23, this case is favoured by the data for IO, for which χ2
min ≈ 1.5, while

for NO we find χ2
min ≈ 8.5.
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• Case C4: |(UPMNS)µ2| = 1/2 (Pe = Pν = P213). From eqs. (3.10) and (3.11)

it follows that the value of |(UPMNS)µ2| = 1/2 is allowed at 3σ only for IO. Thus,

below we present results obtained in the IO case. In the case under consideration

there are no constraints on the ranges of sin2 θ12 and sin2 θ13. The atmospheric angle

is, in turn, found to lie in the upper octant, sin2 θ23 ∈ (0.505, 0.636]. As can be seen

in figure 8, δ ∈ [−0.54π, 0.54π], which is a consequence of the following correlation

between cos δ and the mixing angles:

cos δ =
4 cos2 θ12 cos2 θ23 + 4 sin2 θ12 sin2 θ23 sin2 θ13 − 1

2 sin 2θ12 sin 2θ23 sin θ13
, (3.57)

obtained from |(UPMNS)µ2| = 1/2. There is also a peculiar correlation between sin2 θ23
and δ. The phases α21 ∈ [0.73π, 1.27π] and α31 ∈ [−0.18π, 0.18π]. The values of all

the three phases are highly correlated among themselves. The predicted values of

sin2 θ23 in the upper octant lead to χ2
min ≈ 8.5 for NO (see footnote 13), which is

bigger than that of χ2
min ≈ 2 for IO.

• Case C5: |(UPMNS)τ2| = 1/2 (Pe = P321, Pν = P213). The last case of this

group, analogously to case C4, does not constrain the ranges of sin2 θ12 and sin2 θ13.

Moreover, it leads to almost the same allowed ranges of α21 and α31 as in the pre-

vious case, α21 ∈ (0.74π, 1.26π) and α31 ∈ [−0.16π, 0.16π]. The differences are in

predictions for sin2 θ23 and δ. Now the atmospheric angle lies in the lower octant,

namely, for NO we find sin2 θ23 ∈ [0.381, 0.494]. The condition |(UPMNS)τ2| = 1/2

gives rise to the following sum rule:

cos δ =
1− 4 cos2 θ12 sin2 θ23 − 4 sin2 θ12 cos2 θ23 sin2 θ13

2 sin 2θ12 sin 2θ23 sin θ13
. (3.58)

The allowed values of δ span the range [0.51π, 1.49π]. The correlations between the

mixing parameters in this case are summarised in figure 9. Finally, we have χ2
min ≈ 0.5

for both NO and IO.

Group D: {Ge, Gν} = {ZTU2 , ZU2 ×Hν
CP} with Hν

CP={S, SU}. For this last group

of cases, we find that the PMNS matrix takes the following form (up to permutations of

rows and columns and the phases in the matrix Qν):

UD
PMNS =

1

2
√

3


−
√

3 e−
iπ
6

√
3
(√

2 cν + i sν
)
e−

iπ
6

√
3
(√

2 sν − i cν
)
e−

iπ
6

3 cee
iπ
3 d1 (θν , θe, δe) d2 (θν , θe, δe)

−3 see
iπ
3 eiδ

e
d3 (θν , θe, δe) d4 (θν , θe, δe)

 , (3.59)

where

d1 (θν , θe, δe) =
(√

2 cν + i sν
)
cee

iπ
3 + 2

(
cν − i

√
2 sν

)
see−iδ

e
, (3.60)

d2 (θν , θe, δe) =
(√

2 sν − i cν
)
cee

iπ
3 + 2

(
sν + i

√
2 cν
)
see−iδ

e
, (3.61)

d3 (θν , θe, δe) = 2
(
cν − i

√
2 sν

)
ce −

(√
2 cν + i sν

)
see

iπ
3 eiδ

e
, (3.62)

d4 (θν , θe, δe) = 2
(
sν + i

√
2 cν
)
ce −

(√
2 sν − i cν

)
see

iπ
3 eiδ

e
. (3.63)
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Therefore, the absolute value of the fixed element of the neutrino mixing matrix yields 1/2.

Thus, we have again five potentially viable cases.

• Case D1: |(UPMNS)e2| = 1/2 (Pe = P123, Pν = P213). In this case we find

sin2 θ13 =
3− cos 2θν

8
, (3.64)

which implies that sin2 θ13 can have values between 1/4 and 1/2. Thus, this case is

ruled out.

• Case D2: |(UPMNS)µ1| = 1/2 (Pe = P213, Pν = P123). This case allows for the

whole 3σ range of sin2 θ13 and, in the case of NO, for the following ranges of sin2 θ12
and sin2 θ23: sin2 θ12 ∈ [0.284, 0.354] and sin2 θ23 ∈ [0.381, 0.512]. The sum rule for

cos δ in eq. (3.37) holds, since |(UPMNS)µ1| = 1/2. We find δ ∈ [−0.37π, 0.37π]. What

concerns the Majorana phases, α21 spans a relatively broad interval [0.25π, 1.75π],

while α31 ∈ [−0.48π, 0.48π]. There are very particular correlations between α21(31)

and all the other mixing parameters in this case, as can be seen in figure 10, in which

we summarise the results for NO. Finally, χ2
min ≈ 4.5 for NO, and it is slightly higher,

χ2
min ≈ 5.5, for IO.

• Case D3: |(UPMNS)τ1| = 1/2 (Pe = P321, Pν = P123). As in the previous case,

the whole 3σ range of sin2 θ13 gets reproduced. The allowed ranges of sin2 θ12, α21 and

α31 are very similar to those of case D2. Namely, in the case of IO spectrum we have

sin2 θ12 ∈ [0.279, 0.354], α21 ∈ [0.21π, 1.79π] and α31 ∈ (−0.53π, 0.53π). Instead, the

values of sin2 θ23 occupy mostly the upper octant, sin2 θ23 ∈ [0.488, 0.636]. The sum

rule in eq. (3.40), which holds in this case since |(UPMNS)τ1| = 1/2, leads to the values

of δ distributed around π in a rather broad range of (0.59π, 1.41π). The correlations

between the Majorana phases and δ are as in the previous case, but again with an

approximate shift of δ by π (see figure 11). The minimal value χ2
min ≈ 1.5 in the IO

case, while for the NO spectrum we get approximately 8.5. This difference is due to

the allowed values of sin2 θ23.

• Case D4: |(UPMNS)µ2| = 1/2 (Pe = Pν = P213). This case can account only

for a part of the 3σ range of sin2 θ13, namely, sin2 θ13 ∈ [0.0214, 0.0240(2)] for NO

(IO) spectrum. The constraints on two other angles are more severe. We find that

only a narrow region of the values of sin2 θ23, which falls outside its present 2σ range,

is allowed, namely, sin2 θ23 ∈ [0.505, 0.512]. For the solar mixing angle we have

sin2 θ12 ∈ [0.345, 0.354], which is also outside the current 2σ range of this parameter.

The sum rule in eq. (3.57), which is also valid in this case, constrains δ to lie in

a narrow interval around 0: δ ∈ [−0.11π, 0.11π]. The Majorana phases instead

are distributed in narrow intervals around π. Namely, α21 ∈ (0.83π, 1.17π) and

α31 ∈ [0.92π, 1.08π]. However, the global minimum of χ2 is somewhat large in this

case for both NO and IO orderings. Namely, we find χ2
min ≈ 22 (19) for NO (IO),

i.e., this case is disfavoured at more than 4σ by the current global data.
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• Case D5: |(UPMNS)τ2| = 1/2 (Pe = P321, Pν = P213). This last case shares

the predicted ranges for sin2 θ12, sin2 θ13, α21 and α31 with case D4. Therefore, this

case is also not compatible with the 2σ range of the values of sin2 θ12. For sin2 θ23
instead we find the narrow interval in the lower octant, sin2 θ23 ∈ [0.488, 0.495],

which lies outside the 2σ range of sin2 θ23. We find cos δ to satisfy the sum rule in

eq. (3.58), which in this case gives us the values of δ in a narrow interval around π,

δ ∈ [0.89π, 1.11π]. Thus, all the three CPV phases are concentrated in narrow ranges

around π. Finally, we find χ2
min ≈ 18.5 (15) for NO (IO), which implies that this case

is also disfavoured by the latest global neutrino oscillation data.

The PMNS matrix in case A2 is related with that in case A1 by the permutation

matrix P312 as UA2
PMNS = P312 U

A1
PMNS. Given that P312 = P132P321, one can see that

these matrices are related by µ − τ interchange, after an unphysical exchange of the first

and third rows of UA1
PMNS has been performed (which amounts to a redefinition of the

free parameter θe, as shown in eq. (3.21)). The same also holds for the following pairs

of cases: (B1, B2), (B3, B4), (C2, C3), (C4, C5), (D2, D3) and (D4, D5). As can be

seen from the discussion above and figures 1–4 and 6–11, cases inside a pair share some

qualitative features. Namely, i) the predicted ranges of sin2 θ12, sin2 θ13, α21 and α31 are

approximately the same; ii) the predicted range of sin2 θ23 gets approximately reflected

around 1/2, i.e., sin2 θ23 → 1 − sin2 θ23; iii) the predicted range of the CPV phase δ

experiences an approximate shift by π, i.e., δ → δ + π.

In tables 3 and 4 we summarise the predicted ranges of the mixing parameters obtained

in all the phenomenologically viable cases discussed above. The corresponding best fit val-

ues together with χ2
min are presented in tables 5 and 6. Finally, in table 7 we show whether

the cases compatible with the 3σ ranges of the three mixing angles are also compatible

with their corresponding 2σ ranges.

The results shown in tables 3–6 allow to assess the possibilities to critically test the

predictions of the viable cases of the model and to distinguish between them. We recall that

the current 1σ uncertainties on the measured values of sin2 θ12, sin2 θ13 and sin2 θ23 are [26]

5.8%, 4.0% and 9.6%, respectively. These uncertainties are foreseen to be further reduced

by the currently active and/or future planned experiments. The Daya Bay collaboration

plans to determine sin2 θ13 with 1σ uncertainty of 3% [45]. The uncertainties on sin2 θ12
and sin2 θ23 are planned to be reduced significantly. The parameter sin2 θ12 is foreseen

to be measured with 1σ relative error of 0.7% in the JUNO experiment [46, 47]. In the

proposed upgrading of the currently taking data T2K experiment [48, 49], for example, θ23
is estimated to be determined with a 1σ error of 1.7◦, 0.5◦ and 0.7◦ if the best fit value

of sin2 θ23 = 0.50, 0.43 and 0.60, respectively. This implies that for these three values of

sin2 θ23 the absolute 1σ error would be 0.0297, 0.0086 and 0.0120. This error on sin2 θ23
will be further reduced in the future planned T2HK [50] and DUNE [51–53] experiments.

If δ = 3π/2, the CP-conserving case of sin δ = 0 would be disfavoured for the NO mass

spectrum in the same experiment at least at 3σ C.L. Higher precision measurements of δ

are planned to be performed in the T2HK and DUNE experiments.
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Figure 1. Correlations between the neutrino mixing parameters in case B1. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the NO neutrino mass spectrum.
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Figure 2. Correlations between the neutrino mixing parameters in case B2. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the IO neutrino mass spectrum.
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Figure 3. Correlations between the neutrino mixing parameters in case B3. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of

χ2 for the IO neutrino mass spectrum. Note that this case is not compatible with the 2σ range of

sin2 θ23.
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Figure 4. Correlations between the neutrino mixing parameters in case B4. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of

χ2 for the IO neutrino mass spectrum. Note that this case is not compatible with the 2σ range of

sin2 θ23.
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Figure 5. Correlations between the neutrino mixing parameters in case C1. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of

χ2 for the NO neutrino mass spectrum. Note that this case is not compatible with the 2σ range of

sin2 θ12.
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Figure 6. Correlations between the neutrino mixing parameters in case C2. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the NO neutrino mass spectrum.
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Figure 7. Correlations between the neutrino mixing parameters in case C3. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the IO neutrino mass spectrum.
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Figure 8. Correlations between the neutrino mixing parameters in case C4. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the IO neutrino mass spectrum.
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Figure 9. Correlations between the neutrino mixing parameters in case C5. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the NO neutrino mass spectrum.
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Figure 10. Correlations between the neutrino mixing parameters in case D2. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the NO neutrino mass spectrum.
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Figure 11. Correlations between the neutrino mixing parameters in case D3. The values of all the

three mixing angles are required to lie in their respective 3σ ranges. Colour represents values of χ2

for the IO neutrino mass spectrum.
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We turn now to the possibilities to discriminate experimentally between the different

cases listed in tables 3–6 using the prospective data on sin2 θ12, sin2 θ13, sin2 θ23 and δ.

The first thing to notice is that the predicted ranges for sin2 θ12, sin2 θ13, sin2 θ23 and δ

in cases A1 and A2 practically coincide with the predictions respectively in cases D4 and

D5. However, cases A1, D4 and cases A2, D5 are strongly disfavoured by the current

data: for the NO (IO) neutrino mass spectrum A1 and D4 are disfavoured at 4.7σ (4.4σ),

while A2 and D5 are disfavoured at 4.3σ (3.9σ). In all these cases sin2 θ12, in particular,

is predicted to lie in the interval (0.345,0.354) compatible with the current 3σ range and,

given the current best fit value of sin2 θ12 and prospective JUNO precision on sin2 θ12, it

is very probable that future more precise data on sin2 θ12 will rule out completely these

scenarios. We will not discuss them further in this subsection.

It follows also from tables 5 and 6 that the combined results on the best fit values of

sin2 θ12, sin2 θ23 and δ we have obtained in the different viable cases (excluding A1, A2, D4

and D5) differ significantly. Assuming, for example, that the experimentally determined

best fit values of sin2 θ12 and sin2 θ23 will coincide with those found by us for a given

viable case, it is not difficult to convince oneself inspecting tables 5 and 6 that the cited

prospective 1σ errors on sin2 θ12 and sin2 θ23 will allow to discriminate between the different

viable cases identified in our study. More specifically, considering as an example only the

case of NO neutrino mass spectrum, the prospective high precision measurement of sin2 θ12
will allow to discriminate between case C1 and all other cases B1–B4, C2–C5, D2 and D3.

The same measurement will make it possible to distinguish i) between case B1 and all

the other cases except B2, ii) between case B2 and all the other cases except B1, B3 and

B4, and similarly iii) between case B3 and all the other cases except B2, B4, C4 and C5.

However, the differences between the best fit values of sin2 θ23 in cases B1, B2 and B3 (or

B4) are sufficiently large, which would permit to distinguish between these three cases if

sin2 θ23 were measured with the prospective precision. It follows from table 5, however,

that it would be very challenging to discriminate between cases B3 and B4: it will require

extremely high precision measurement of sin2 θ23. These two cases would be ruled out,

however, if the experimentally determined best fit value of sin2 θ23 differs significantly from

the results for sin2 θ23, namely, 0.511 and 0.489, we have obtained for sin2 θ23 in the B3

and B4 cases.

In the remaining cases C2–C5 and D2–D3, the results we have obtained for sin2 θ12, as

table 6 shows, are very similar. However, the predictions for the pair sin2 θ23 and δ differ

significantly in cases C2 or D2, and C3 or D3. The cases within each pair would be ruled

out if the experimentally determined values of sin2 θ23 and δ differ significantly from the

predicted best fit values.

Thus, the planned future high precision measurements of sin2 θ12 and sin2 θ23, together

with more precise data on the Dirac phase δ, will make it possible to critically test the

predictions of the cases listed in tables 3–6. A comprehensive analysis of the possibilities

to distinguish between the different viable cases found in our work in the considered S4
model can only be done when more precise data first of all on sin2 θ12 and sin2 θ23, and

then on δ, will be available.
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Figure 12. Summary of the predicted allowed regions in the (sin2 θ23, sin
2 θ12) plane and the

corresponding best fit points in cases B1–B4, C1–C5, D2 and D3 for the NO neutrino mass spectrum.

The values of all the three mixing angles are required to lie in their respective current 3σ ranges.

We schematically summarise in figure 12 the predicted 3σ allowed regions in the plane

(sin2 θ23, sin
2 θ12) for all currently viable cases from figures 1–11. In this figure we also

present the best fit point in each case used in the preceding discussion. When future more

precise data on sin2 θ23 and sin2 θ12 become available, the experimentally allowed region

in the (sin2 θ23, sin
2 θ12) plane will shrink, and only a limited number of cases, if any, will

remain viable. It will be possible to distinguish further between some or all of the remaining

viable cases with a high precision measurement of δ.

Finally, we note that the sum rules for sin2 θ23 (sin2 θ12 in case C1) and/or cos δ

obtained in the present study follow from those derived in [7] for certain values of the

parameters sin2 θ◦ij , fixed by Gf = S4 and the residual Zge2 and Zgν2 flavour symmetries,

and the additional constraints provided by the GCP symmetry Hν
CP. Note that in [7] only

flavour symmetry, without imposing a GCP symmetry, has been considered. As we have

seen in subsection 2.1, a GCP symmetry does not allow for a free phase δν coming from the

neutrino sector, which is present otherwise. This, in turn, leads to the fact that in certain

cases the parameter sin θ̂νij (see eq. (213) in [7]), which is free in [7], gets fixed by the GCP

symmetry. Thus, we find additional correlations between θij and between θij and cos δ in

these cases. We provide the correspondence between the phenomenologically viable cases

of the present study and the cases considered in [7] in appendix D.
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Hν
CP

Case sin2 θ12
10−1

sin2 θ13
10−1

sin2 θ23
10−1

δ/π
α21/π α31/π

(p.f.e.) (mod 1) (mod 1)

{1, S}

A1 3.45–3.54 2.13–2.40 5.11–5.12 0–0.11⊕1.89–2 0–0.07⊕0.93–1 0–1

(µ3) 3.44–3.54 2.13–2.42 5.11–5.12 0–0.12⊕1.88–2 0–0.07⊕0.93–1 0–1

A2 3.45–3.54 2.13–2.40 4.88–4.89 0.89–1.11 0–0.07⊕0.93–1 0–1

(τ3) 3.44–3.54 2.13–2.42 4.88–4.89 0.88–1.12 0–0.07⊕0.93–1 0–1

{U, SU}

B1 2.50–3.08 Full 3σ 3.81–4.25 0.68–1.32 0–0.16⊕0.84–1 0–0.13⊕0.88–1

(µ2) 2.50–3.06 Full 3σ 3.84–4.25 0.69–1.31 0–0.16⊕0.84–1 0–0.12⊕0.88–1

B2 2.50–3.03 Full 3σ 5.76–6.15 0–0.30⊕1.70–2 0–0.16⊕0.84–1 0–0.12⊕0.88–1

(τ2) 2.50–3.28 Full 3σ 5.76–6.36 0–0.38⊕1.61–2 0–0.17⊕0.83–1 0–0.13⊕0.87–1

B3 Full 3σ Full 3σ 5.10–5.12 0–2 0–0.23⊕0.77–1 0–0.18⊕0.83–1

(µ3) Full 3σ Full 3σ 5.10–5.12 0–2 0–0.23⊕0.77–1 0–0.18⊕0.82–1

B4 Full 3σ Full 3σ 4.88–4.90 0–2 0–0.23⊕0.77–1 0–0.17⊕0.83–1

(τ3) Full 3σ Full 3σ 4.88–4.90 0–2 0–0.23⊕0.77–1 0–0.18⊕0.82–1

Table 3. Ranges of the mixing parameters for the viable cases, i.e., those cases for which the

predicted values of all the three mixing angles lie inside their respective 3σ allowed ranges. The

cases presented here correspond to Ge = Zge2 and Gν = Zgν2 × Hν
CP with {ge, gν} = {TU, S}, for

which the magnitude of the fixed element is 1/
√

2 (p.f.e. denotes its position in UPMNS). For each

case, the upper and lower rows refer to NO and IO, respectively.

Hν
CP

Case sin2 θ12
10−1

sin2 θ13
10−1

sin2 θ23
10−1

δ/π
α21/π α31/π

(p.f.e.) (mod 1) (mod 1)

{1, U}

C1 2.55–2.56 Full 3σ Full 3σ 0–2 0 (exactly) 0–1

(e2) 2.55–2.56 Full 3σ Full 3σ 0–2 0 (exactly) 0–1

C2 2.85–3.54 Full 3σ 3.81–5.24 0–0.38⊕1.62–2 0–0.15⊕0.85–1 0–0.09⊕0.91–1

(µ1) 2.86–3.54 Full 3σ 3.84–5.25 0–0.37⊕1.63–2 0–0.15⊕0.85–1 0–0.09⊕0.91–1

C3 2.87–3.54 Full 3σ 4.75–6.15 0.63–1.37 0–0.15⊕0.86–1 0–0.09⊕0.91–1

(τ1) 2.79–3.54 Full 3σ 4.75–6.36 0.60–1.40 0–0.15⊕0.85–1 0–0.09⊕0.91–1

C4 Full 3σ Full 3σ 5.06–6.15 0–0.48⊕1.52–2 0–0.25⊕0.75–1 0–0.16⊕0.84–1

(µ2) Full 3σ Full 3σ 5.05–6.36 0–0.54⊕1.45–2 0–0.27⊕0.73–1 0–0.18⊕0.82–1

C5 Full 3σ Full 3σ 3.81–4.94 0.51–1.49 0–0.26⊕0.74–1 0–0.17⊕0.84–1

(τ2) Full 3σ Full 3σ 3.84–4.94 0.52–1.48 0–0.25⊕0.74–1 0–0.16⊕0.84–1

{S, SU}

D2 2.84–3.54 Full 3σ 3.81–5.12 0–0.38⊕1.63–2 0–1 0–0.48⊕0.52–1

(µ1) 2.85–3.54 Full 3σ 3.84–5.12 0–0.37⊕1.63–2 0–1 0–0.48⊕0.52–1

D3 2.87–3.54 Full 3σ 4.88–6.15 0.63–1.37 0–1 0–0.47⊕0.52–1

(τ1) 2.79–3.54 Full 3σ 4.88–6.36 0.59–1.41 0–1 0–1

D4 3.45–3.54 2.14–2.40 5.05–5.12 0–0.11⊕1.89–2 0–0.16⊕0.83–1 0–0.08⊕0.92–1

(µ2) 3.45–3.54 2.14–2.42 5.05–5.12 0–0.11⊕1.89–2 0–0.17⊕0.83–1 0–0.08⊕0.91–1

D5 3.45–3.54 2.13–2.40 4.88–4.95 0.89–1.11 0–0.16⊕0.83–1 0–0.08⊕0.92–1

(τ2) 3.45–3.54 2.13–2.42 4.88–4.95 0.88–1.11 0–0.17⊕0.83–1 0–0.09⊕0.91–1

Table 4. The same as in table 3, but for Ge = Zge2 and Gν = Zgν2 ×Hν
CP with {ge, gν} = {TU,U}.

In this case the magnitude of the fixed element is 1/2.
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Hν
CP

Case sin2 θ12
10−1

sin2 θ13
10−2

sin2 θ23
10−1

δ/π
α21/π α31/π

χ2
min

(p.f.e.) (mod 1) (mod 1)

{1, S}

A1 3.54 2.18 5.11 1.96 0.97 0.43 22.0

(µ3) 3.53 2.19 5.11 1.95 0.97 0.89 19.0

A2 3.54 2.18 4.89 1.05 0.03 0.01 18.5

(τ3) 3.53 2.20 4.89 1.04 0.02 0.67 15.0

{U, SU}

B1 2.74 2.17 3.99 1.09 0.94 0.96 7.0

(µ2) 2.75 2.18 4.01 1.07 0.96 0.97 7.0

B2 2.83 2.17 6.09 1.89 0.07 0.05 12.5

(τ2) 2.83 2.17 6.09 1.89 0.07 0.05 6.0

B3 2.95 2.15 5.11 1.36 0.80 0.85 8.5

(µ3) 2.95 2.15 5.11 1.36 0.80 0.85 5.0

B4 2.93 2.16 4.89 1.38 0.19 0.13 6.5

(τ3) 2.97 2.16 4.89 1.31 0.16 0.11 4.5

Table 5. Best fit values of the mixing parameters and the corresponding value of the χ2 function,

χ2
min, for the viable cases, i.e., those cases for which the predicted values of all the three mixing

angles lie inside their respective 3σ allowed ranges. The cases presented here correspond to Ge = Zge2
and Gν = Zgν2 × Hν

CP with {ge, gν} = {TU, S}, for which the magnitude of the fixed element is

1/
√

2 (p.f.e. denotes its position in UPMNS). For each case, the upper and lower rows refer to NO

and IO, respectively.

4 Neutrinoless double beta decay

As we have seen, in the class of models investigated in the present article the Dirac and

Majorana CPV phases, δ and α21, α31, are (statistically) predicted to lie in specific, in most

cases relatively narrow, intervals and their values are strongly correlated. The only excep-

tion is case C1, in which the exact predictions α21 = 0 or π and (α31 − 2δ) = 0 or π hold.

These results make it possible to derive predictions for the absolute value of the neutri-

noless double beta ((ββ)0ν-) decay effective Majorana mass, 〈m〉 (see, e.g., refs. [1, 42–44]),

as a function of the lightest neutrino mass. As is well known, information about |〈m〉| is

provided by the experiments on (ββ)0ν-decay of even-even nuclei 48Ca, 76Ge, 82Se, 100Mo,
116Cd, 130Te, 136Xe, 150Nd, etc., (A,Z)→ (A,Z + 2) + e− + e−, in which the total lepton

charge changes by two units, and through the observation of which the possible Majorana

nature of massive neutrinos can be revealed. If the light neutrinos with definite mass νj
are Majorana fermions, their exchange between two neutrons of the initial nucleus (A,Z)

can trigger the process of (ββ)0ν-decay. In this case the (ββ)0ν-decay amplitude has the

following general form (see, e.g., refs. [42–44]): A((ββ)0ν) = G2
F 〈m〉M(A,Z), with GF,

〈m〉 and M(A,Z) being respectively the Fermi constant, the (ββ)0ν-decay effective Ma-

jorana mass and the nuclear matrix element (NME) of the process. All the dependence

of A((ββ)0ν) on the neutrino mixing parameters is contained in 〈m〉. The current best
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Hν
CP

Case sin2 θ12
10−1

sin2 θ13
10−2

sin2 θ23
10−1

δ/π
α21/π α31/π

χ2
min

(p.f.e.) (mod 1) (mod 1)

{1, U}

C1 2.56 2.16 4.25 1.32 0 0.64 7.0

(e2) 2.56 2.16 5.85 1.36 0 0.73 7.0

C2 3.15 2.16 4.19 1.86 0.93 0.96 4.5

(µ1) 3.14 2.16 4.24 1.88 0.94 0.96 5.5

C3 3.11 2.16 5.92 1.15 0.07 0.05 8.5

(τ1) 3.08 2.17 5.93 1.13 0.06 0.04 1.5

C4 3.00 2.14 5.95 1.69 0.81 0.88 8.5

(µ2) 3.00 2.14 5.95 1.69 0.81 0.88 2.0

C5 3.01 2.15 4.21 1.25 0.15 0.10 0.5

(τ2) 2.99 2.17 4.26 1.22 0.13 0.09 0.5

{S, SU}

D2 3.13 2.15 4.20 1.88 0.43 0.65 4.5

(µ1) 3.15 2.17 4.23 1.87 0.43 0.66 5.5

D3 3.11 2.17 5.91 1.14 0.61 0.38 8.5

(τ1) 3.06 2.16 5.96 1.12 0.50 0.69 1.5

D4 3.54 2.18 5.11 1.96 0.97 0.98 22.0

(µ2) 3.53 2.20 5.11 1.95 0.97 0.98 19.0

D5 3.54 2.19 4.89 1.05 0.03 0.02 18.5

(τ2) 3.53 2.19 4.89 1.04 0.03 0.01 15.0

Table 6. The same as in table 5, but for Ge = Zge2 and Gν = Zgν2 ×Hν
CP with {ge, gν} = {TU,U}.

In this case the magnitude of the fixed element is 1/2.

A1 A2 B1 B2 B3 B4 C1 C2 C3 C4 C5 D2 D3 D4 D5

3σ
NO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

IO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2σ
NO 7 7 3 7 7 7 7 3 7 7 3 3 7 7 7

IO 7 7 3 3 7 7 7 3 3 3 3 3 3 7 7

Table 7. Compatibility of the cases under consideration with the 3σ and 2σ experimentally allowed

ranges of the three neutrino mixing angles for both types of the neutrino mass spectrum.

limits on |〈m〉| have been obtained by the KamLAND-Zen [54] and GERDA Phase II [55]

experiments searching for (ββ)0ν-decay of 136Xe and 76Ge, respectively:

|〈m〉| < (0.061− 0.165) eV [54] and |〈m〉| < (0.15− 0.33) eV [55] , (4.1)

both at 90% C.L., where the intervals reflect the estimated uncertainties in the relevant

NMEs used to extract the limits on |〈m〉| from the experimentally obtained lower bounds
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on the 136Xe and 76Ge (ββ)0ν-decay half-lives (for a review of the limits on |〈m〉| obtained

in other (ββ)0ν-decay experiments and a detailed discussion of the NME calculations for

(ββ)0ν-decay and their uncertainties see, e.g., [56]). It is important to note that a large

number of experiments of a new generation aims at a sensitivity to |〈m〉| ∼ (0.01−0.05) eV,

which will allow to probe the whole range of the predictions for |〈m〉| in the case of IO

neutrino mass spectrum [57, 58] (see, e.g., [56, 59] for reviews of the currently running and

future planned (ββ)0ν-decay experiments and their prospective sensitivities).

The predictions for |〈m〉| (see, e.g., [38, 42–44]),

|〈m〉| =

∣∣∣∣∣
3∑
i=1

miU
2
ei

∣∣∣∣∣
=
∣∣∣m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e

iα21 +m3 sin2 θ13e
i(α31−2δ)

∣∣∣ , (4.2)

m1,2,3 being the light Majorana neutrino masses, depend on the values of the Majorana

phase α21 and on the Majorana-Dirac phase difference (α31 − 2δ). For the normal hierar-

chical (NH), inverted hierarchical (IH) and quasi-degenerate (QD), neutrino mass spectra

|〈m〉| is given by (see, e.g., [1, 60]):

|〈m〉| ∼=
∣∣∣∣√∆m2

21 sin2 θ12 cos2 θ13 e
iα21 +

√
∆m2

31 sin2 θ13 e
i(α31−2δ)

∣∣∣∣ (NH) , (4.3)

|〈m〉| ∼=
√

∆m2
23 cos2 θ13

∣∣cos2 θ12 + sin2 θ12 e
iα21
∣∣ (IH), (4.4)

|〈m〉| ∼= m0

∣∣cos2 θ12 + sin2 θ12 e
iα21
∣∣ (QD) , (4.5)

where m0
∼= m1,2,3. We recall that the NH spectrum corresponds to m1 � m2 < m3,

and thus, m2 = (m2
1 + ∆m2

21)
1
2 ∼= (∆m2

21)
1
2 ∼= 8.6 × 10−3 eV, m3 = (m2

3 + ∆m2
31)

1
2 ∼=

(∆m2
31)

1
2 ∼= 0.0506 eV. The IH spectrum corresponds to m3 � m1 < m2, and therefore,

m1 = (m2
3 + ∆m2

23 − ∆m2
21)

1
2 ∼= (∆m2

23 − ∆m2
21)

1
2 ∼= 0.0497 eV, m2 = (m2

3 + ∆m2
23)

1
2 ∼=

(∆m2
23)

1
2 ∼= 0.0504 eV. In the case of QD spectrum we have: m1

∼= m2
∼= m3

∼= m0, m
2
j �

∆m2
31(23), m0 ∼> 0.10 eV. In eqs. (4.3) and (4.4) we have assumed that the contributions

respectively ∝ m1 and ∝ m3 are negligible, while in eq. (4.5) we have neglected corrections

∝ sin2 θ13,
15 and ∝ ∆m2

31(23)/m
2
0. Clearly, the values of the phases (α31 − α21 − 2δ) and

α21 determine the ranges of possible values of |〈m〉| in the cases of NH and IH (QD)

spectra, respectively. Using the 3σ ranges of the allowed values of the neutrino oscillation

parameters from table 1, we find that:

i) 0.79× 10−3 eV ∼< |〈m〉| ∼< 4.33× 10−3 eV in the case of NH spectrum;

ii)
√

∆m2
23 cos2 θ13 cos 2θ12 ∼< |〈m〉| ∼<

√
∆m2

23 cos2 θ13, or 1.4×10−2 eV ∼< |〈m〉| ∼< 5.1×
10−2 eV in the case of IH spectrum;

iii) m0 cos 2θ12 ∼< |〈m〉| ∼< m0, or 2.9× 10−2 eV ∼< |〈m〉| ∼< m0 eV, m0 ∼> 0.10 eV, in the

case of QD spectrum, where we have used the fact that at 3σ C.L., cos 2θ12 ≥ 0.29.

15The term ∝ sin2 θ13 gives a subleading contribution because even in the case of α21 = π, when the

leading term ∝ (cos2 θ12 − sin2 θ12) has a minimal value, sin2 θ13 � cos 2θ12 since sin2 θ13 ≤ 0.0242 while

cos 2θ12 ≥ 0.29 at 3σ.
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In what follows, we obtain predictions for |〈m〉| using the phenomenologically viable

neutrino mixing patterns found in subsection 3.4. In figures 13–16 we present |〈m〉| as

a function of the lightest neutrino mass mmin (mmin = m1 for the NO spectrum and

mmin = m3 for the IO spectrum) in cases B1–B4, C1–C3, C4 and C5, and D2 and D3.

The solid and dashed lines limit the found allowed regions of |〈m〉| calculated using the

predicted ranges for θ12, θ13, α21, (α31 − 2δ). In the left panels we require the predicted

values of sin2 θ12, sin2 θ13 and sin2 θ23 to lie in their corresponding experimentally allowed

3σ intervals, while in the right panels we require them to be inside the corresponding 2σ

ranges. The mass squared differences ∆m2
21 and ∆m2

31(23) in the case of NO (IO) spectrum

are varied in their appropriate ranges given in table 1. The light-blue (light-red) areas

in the left and right panels are obtained varying the neutrino oscillation parameters θ12,

θ13, ∆m2
21 and ∆m2

31(23) in their full 3σ and 2σ NO (IO) ranges, respectively, and varying

the phases α21 and (α31 − 2δ) in the interval [0, 2π). The horizontal brown and grey

bands indicate the current most stringent upper limits on |〈m〉|, given in eq. (4.1), set by

KamLAND-Zen and GERDA Phase II, respectively. The vertical grey line represents the

prospective upper limit on mmin ∼< 0.2 eV from the KATRIN experiment [61].

Several comments are in order. Firstly, for given values of (k1, k2) and a given ordering

we find |〈m〉| to be inside of a band, which occupies a certain part of the allowed parameter

space. Secondly, we note that most cases are compatible with both 3σ and 2σ ranges of

all the mixing angles for both neutrino mass orderings (see table 7). There are several

exceptions. Namely, cases B2, C3, C4 and D3, in which, due to the correlations imposed by

the employed symmetry, the predictions for sin2 θ23 for the NO spectrum are not compatible

with its 2σ allowed range (see tables 3 and 4). Moreover, there is incompatibility for both

orderings of cases B3 and B4 with the allowed 2σ ranges of sin2 θ23 (see table 3), and of case

C1 with the 2σ range of sin2 θ12 (see table 4). Thirdly, the predictions for |〈m〉| compatible

with the 3σ ranges of all the mixing angles are almost the same for the following pairs

of cases: (B1, B2), (B3, B4), (C2, C3), (C4, C5) and (D2, D3). As discussed at the end

of subsection 3.4, the cases in each pair share some qualitative features, in particular, the

allowed ranges of θ12, θ13, α21 and (α31 − 2δ) are approximately equal. We note also that

case C1 stands out by having relatively narrow bands for |〈m〉| due to the predicted values

of α21 = k1 π and (α31−2δ) = k2 π. Finally, the results shown in figures 13–16 and derived

using the predictions for the CPV phases and the mixing angles θ12 and θ13 in the case

when the predicted values of all the three mixing angles θ12, θ13 and θ23 are compatible

with their respective 3σ experimentally allowed ranges, can be obtained analytically in the

limiting cases of NH, IH and QD spectra using eqs. (4.3)–(4.5), the values of ∆m2
21 and

∆m2
31(23) quoted in table 1 and the results on sin2 θ12, sin2 θ13, δ, α21 and α31 given in

tables 3 and 4.

5 Summary and conclusions

In the present article we have derived predictions for the 3-neutrino (lepton) mixing and

leptonic Dirac and Majorana CP violation in a class of models based on S4 lepton flavour

symmetry combined with a generalised CP (GCP) symmetry HCP, which are broken to
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Figure 13. The magnitude of the effective Majorana mass |〈m〉| versus the lightest neutrino mass

mmin. The lines limit the allowed regions of |〈m〉| calculated using the predictions for the relevant

mixing angles and the CPV phases obtained in cases B1–B4 and compatible with the 3σ (left

panels) and 2σ (right panels) ranges of all the three mixing angles. The light-blue (light-red) areas

are obtained varying the neutrino oscillation parameters θ12, θ13, ∆m2
21 and ∆m2

31(23) for NO (IO)

in their allowed 3σ and 2σ ranges in the left and right panels, respectively, and the phases α21

and (α31 − 2δ) in the interval [0, 2π). The horizontal brown and grey bands indicate the current

upper bounds on |〈m〉| quoted in eq. (4.1) set by KamLAND-Zen [54] and GERDA Phase II [55],

respectively. The vertical grey line represents the prospective upper limit on mmin ∼< 0.2 eV from

KATRIN [61]. Cases B3 and B4 are compatible with the 3σ ranges of the mixing angles, but not

with their 2σ ranges.
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Figure 14. The same as in figure 13, but for cases C1–C3. Case C1 is compatible with the 3σ

ranges of the mixing angles, but not with their 2σ ranges.
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Figure 15. The same as in figure 13, but for cases C4 and C5.

residual Zge2 and Zgν2 ×Hν
CP symmetries in the charged lepton and neutrino sectors, respec-

tively, where Zge2 = {1, ge}, Zgν2 = {1, gν} and Hν
CP = {Xν}, 1 being the unit element of S4.

The massive neutrinos are assumed to be Majorana particles with their masses generated

by the neutrino Majorana mass term of the left-handed (LH) flavour neutrino fields νlL(x),

l = e, µ, τ . We show that in this class of models the three neutrino mixing angles, θ12, θ23
and θ13, the Dirac and the two Majorana CP violation (CPV) phases, δ and α21, α31, are

functions of altogether three parameters — two mixing angles and a phase, θe, θν and δe.

The S4 group has 9 different Z2 subgroups. Assuming that the LH flavour neutrino

and charged lepton fields, νlL(x) and lL(x), l = e, µ, τ , transform under a triplet irreducible

unitary representation of S4, we prove that there are only 3 pairs of subgroups Zge2 and

Zgν2 which can lead to different viable (i.e., compatible with the current data) predictions

for the lepton mixing. For these three pairs, {ge, gν} = {S, TU}, {TU, S} and {TU,U},
where S, T and U are the generators of S4 (see eq. (3.1)) taken here in the triplet repre-
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Figure 16. The same as in figure 13, but for cases D2 and D3.

sentation of S4 (eq. (3.12)). In what concerns the residual GCP symmetry in the neutrino

sector, Hν
CP = {Xν}, we show that the constraints on Xν (following from the conditions of

consistency between Zgν2 and Hν
CP and of having non-degenerate neutrino mass spectrum,

Xν = XT
ν ) are satisfied in the following cases:

i) for gν = S, if Hν
CP = {1, S}, {U, SU} or {TST 2U, T 2STU};

ii) for gν = U , if Hν
CP = {1, U} or {S, SU};

iii) for gν = TU , if Hν
CP = {U, T} or {STS, T 2STU}.

However, Hν
CP = {U, SU} and Hν

CP = {TST 2U, T 2STU} in the case of gν = S, and

Hν
CP = {U, T} and Hν

CP = {STS, T 2STU} in the case of gν = TU , are shown to lead

to the same predictions for the PMNS neutrino mixing matrix. Thus, we have found

that effectively there are 4 distinct groups of cases to be considered. We have analysed
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them case by case and have classified all phenomenologically viable mixing patterns they

lead to. In all four groups of cases the PMNS neutrino mixing matrix is predicted to

contain one constant element which does not depend on the three basic parameters, θe,

θν and δe. The magnitude of this element is equal to 1/
√

2 in the “Group A” cases

of {Ge, Gν} = {ZTU2 , ZS2 × Hν
CP} with Hν

CP = {1, S}, and in the “Group B” cases of

{Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {U, SU}; and it is equal to 1/2 in the “Group

C” cases of {Ge, Gν} = {ZTU2 , ZU2 ×Hν
CP} with Hν

CP = {1, U}, and in the “Group D” cases

of {Ge, Gν} = {ZTU2 , ZU2 × Hν
CP} with Hν

CP = {S, SU}. In the approach to the neutrino

mixing based on S4 flavour and GCP symmetries employed by us, the PMNS matrix is

determined up to permutations of columns and rows. This implies that theoretically any

of the elements of the PMNS matrix can be equal by absolute value to 1/
√

2 in the Group

A and Group B cases, and to 1/2 in the Group C and Group D cases. However, the data

on the neutrino mixing angles and the Dirac phase δ imply that, taking into account the

currently allowed 3σ ranges of the PMNS matrix elements (see eqs. (3.10) and (3.11)),

only 4 elements, namely, (UPMNS)µ2, (UPMNS)µ3, (UPMNS)τ2 or (UPMNS)τ3, can have an

absolute value equal to 1/
√

2 ≈ 0.707, and only 5 elements, namely, (UPMNS)e2, (UPMNS)µ1,

(UPMNS)τ1, (UPMNS)µ2 or (UPMNS)τ2, can have an absolute value equal to 1/2. It should be

added that i) |(UPMNS)τ2| = 0.707 lies outside the respective currently allowed 3σ range in

the case of NO neutrino mass spectrum, ii) |(UPMNS)µ2| = 0.707 is slightly outside the 3σ

allowed range for the IO spectrum, and that iii) the value of |(UPMNS)µ2| = 1/2 is allowed

at 3σ only for the IO spectrum.

We have derived predictions for the six parameters of the PMNS matrix, θ12, θ23 and

θ13, δ, α21 and α31, in the potentially viable cases of Groups A–D. This was done for both

NO and IO neutrino mass spectra in the cases compatible at 3σ with the existing data.

We have performed also a statistical analysis of the predictions for the neutrino mixing

angles and CPV phases for each of these cases. We have found that in certain cases the

predicted values of the neutrino mixing angles are ruled out, or are strongly disfavoured,

by the existing data (see subsection 3.4 for details). These are:

i) in Group A, the cases of |(UPMNS)µ3| = 1/
√

2 (strongly disfavoured), and

|(UPMNS)τ3| = 1/
√

2 (strongly disfavoured);

ii) in Group D, the cases of |(UPMNS)e2| = 1/2 (ruled out), |(UPMNS)µ2| = 1/2 (strongly

disfavoured), and |(UPMNS)τ2| = 1/2 (strongly disfavoured).

The results of the statistical analysis in the viable cases are presented graphically

in figures 1–11. The predicted ranges of the neutrino mixing parameters and the their

corresponding best fit values are summarised in tables 3–6.

Given the difference in the currently allowed 2σ ranges of sin2 θ23 (see table 1), the

prediction for the allowed values of sin2 θ23 in certain phenomenologically viable cases

makes the IO (NO) spectrum statistically somewhat more favourable than the NO (IO)

spectrum. At the same time, we have found that in a large number of viable cases the

results we have obtained for the NO and IO spectra are very similar.

As a consequence of the fact that, in the class of models we consider, the six PMNS

matrix parameters, θ12, θ23, θ13, δ, α21 and α31, are fitted with the three basic parameters,
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θe, θν and δe, it is not surprising that we have found that there are strong correlations i)

between the values of the Dirac phase δ and the values of the two Majorana phases α21 and

α31, which in turn are correlated between themselves (figures 1, 2, 6–9), and depending on

the case ii) either between the values of θ12 and θ13 (figure 5), or between the values of

θ23 and θ13 (figures 3 and 4) or else between the values of θ12 and θ23 (figures 1, 2, 6–11).

In certain cases our results showed strong correlations between the predicted values of θ23
and the Dirac phase δ and/or the Majorana phases α21,31 (figures 8–11).

In the cases of i) Group B with |(UPMNS)µ2| = 1/
√

2, or |(UPMNS)τ2| = 1/
√

2, ii) Group

C with |(UPMNS)µ1| = 1/2, or |(UPMNS)τ1| = 1/2, or |(UPMNS)µ2| = 1/2, or |(UPMNS)τ2| =
1/2, and iii) Group D with |(UPMNS)µ1| = 1/2, or |(UPMNS)τ1| = 1/2, the cosine of the Dirac

phase δ satisfies a sum rule by which it is expressed in terms of the three neutrino mixing

angles θ12, θ23 and θ13. Taking into account the ranges and correlations of the predicted

values of the three neutrino mixing angles, δ is predicted to lie in certain, in most of the

discussed cases rather narrow, intervals (subsection 3.4). In the remaining viable cases of

Groups B and C, cos δ was shown to satisfy sum rules which depend explicitly, in addition

to θ12, θ23 and θ13, on one of the three basic parameters of the class of models considered,

θe or θν . In these cases, as we have shown, cos δ can take any value.

We have derived also predictions for the Majorana CPV phases α21 and α31 in all

viable cases of Groups B, C and D (subsection 3.4). With one exception — the case of

|(UPMNS)e2| = 1/2 of Group C — the values of α21 and α31, as we have indicated earlier,

are strongly correlated between themselves. In case C1 there is a strong linear correlation

between α31 and δ.

Using the predictions for the Dirac and Majorana CPV phases allowed us to derive

predictions for the magnitude of the neutrinoless double beta decay effective Majorana

mass, |〈m〉|, as a function of the lightest neutrino mass for all the viable cases belonging

to Groups B, C and D. They are presented graphically in figures 13–16.

All viable cases in the class of S4 models investigated in the present article have distinct

predictions for the set of observables sin2 θ12, sin2 θ23, sin2 θ13, the Dirac phase δ and the

absolute value of one element of the PMNS neutrino mixing matrix. Using future more

precise data on sin2 θ12, sin2 θ23, sin2 θ13 and the Dirac phase δ, which will allow also to

determine the absolute values of the elements of the PMNS matrix with a better precision,

will make it possible to test and discriminate between the predictions of all the cases found

by us to be compatible with the current data on the neutrino mixing parameters.

Future data will show whether Nature followed the S4oHCP flavour + GCP symmetry

“three-parameter path” for fixing the values of the three neutrino mixing angles and of the

Dirac (and Majorana) CP violation phases of the PMNS neutrino mixing matrix. We are

looking forward to these data.
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A Symmetry of Xν

If the neutrino sector respects a residual GCP symmetry Hν
CP = {Xν}, the neutrino mass

matrix satisfies eq. (2.12), namely,

XT
ν Mν Xν = M∗ν . (A.1)

The GCP transformation matrices Xν must be unitary due to the GCP invariance of

the neutrino kinetic term. In what follows we show that these matrices are additionally

constrained to be symmetric if the neutrino mass spectrum is non-degenerate, as is known

to be the case.

Expressing Mν from eq. (2.14) and substituting it in eq. (A.1) yields

dν X̃ = X̃∗ dν , (A.2)

where dν ≡ diag(m1,m2,m3) and X̃ ≡ U †ν Xν U
∗
ν is unitary.

Being 3× 3 unitary, X̃ can be parametrised as the product of three complex rotations

Uij and a diagonal matrix of phases Ψ as follows:

X̃ = ΨU23(ϑ23, δ23)U13(ϑ13, δ13)U12(ϑ12, δ12) , (A.3)

where Ψ = diag(eiψ1 , eiψ2 , eiψ3) and the Uij(ϑij , δij) are complex rotations in the i-j plane.

Explicitly,

U23(ϑ23, δ23) =

1 0 0

0 cosϑ23 sinϑ23 e
−iδ23

0 − sinϑ23 e
iδ23 cosϑ23

 , (A.4)

with a straightforward generalisation to (ij) = (12), (13).

Imposing eq. (A.2) produces the following relations:

ei(ψ1−δ13)m1 sinϑ13 = e−i(ψ1−δ13)m3 sinϑ13 , (A.5)

ei(ψ2−δ23)m2 cosϑ13 sinϑ23 = e−i(ψ2−δ23)m3 cosϑ13 sinϑ23 , (A.6)

ei(ψ1−δ12)m1 cosϑ13 sinϑ12 = e−i(ψ1−δ12)m2 cosϑ13 sinϑ12 . (A.7)

From the non-degeneracy of the neutrino mass spectrum it follows that sin ϑ13 =

sinϑ23 = sinϑ12 = 0. Thus, X̃ is constrained to be diagonal and hence symmetric, X̃T = X̃.

This finally implies that also XT
ν = Xν , i.e., a phenomenologically relevant Xν must be

symmetric.
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B Conjugate pairs of S4 elements

As detailed in subsection 2.2, residual flavour symmetries Zge2 and Zgν2 which are conjugate

to each other lead to the same form of the PMNS matrix. For Gf = S4, there are nine group

elements of order two, given in eqs. (3.2) and (3.3), which generate Z2 subgroups. The

resulting 81 pairs of elements {ge, gν} can themselves be partitioned, under the conjugacy

relation of eq. (2.25), into the following nine equivalence classes:

• {S, S}, {TST 2, TST 2}, {T 2ST, T 2ST};

• {U,U}, {SU, SU}, {T 2U, T 2U}, {TU, TU}, {ST 2SU, ST 2SU}, {STSU, STSU};

• {T 2ST, S}, {TST 2, S}, {T 2ST, TST 2}, {S, T 2ST}, {S, TST 2}, {TST 2, T 2ST};

• {S,U}, {S, SU}, {TST 2, T 2U}, {T 2ST, TU}, {TST 2, ST 2SU}, {T 2ST, STSU};

• {U, S}, {SU, S}, {T 2U, TST 2}, {TU, T 2ST}, {ST 2SU, TST 2}, {STSU, T 2ST};

• {SU,U}, {U, SU}, {ST 2SU, T 2U}, {STSU, TU}, {T 2U, ST 2SU}, {TU, STSU};

• {S, TU}, {S, STSU}, {S, T 2U}, {TST 2, TU}, {S, ST 2SU}, {T 2ST,U}, {T 2ST, SU},
{TST 2, U}, {T 2ST, T 2U}, {TST 2, SU}, {T 2ST, ST 2SU}, {TST 2, STSU};

• {TU, S}, {STSU, S}, {T 2U, S}, {TU, TST 2}, {ST 2SU, S}, {U, T 2ST}, {SU, T 2ST},
{U, TST 2}, {T 2U, T 2ST}, {SU, TST 2}, {ST 2SU, T 2ST}, {STSU, TST 2};

• {TU,U}, {STSU,U}, {STSU, SU}, {TU, SU}, {T 2U,U}, {TU, T 2U}, {ST 2SU,U},
{U, TU}, {TU, ST 2SU}, {SU, STSU}, {U, T 2U}, {T 2U, TU}, {U, ST 2SU}, {SU, T 2U},
{SU, ST 2SU}, {T 2U, STSU}, {ST 2SU, STSU}, {ST 2SU, TU}, {STSU, ST 2SU},
{STSU, T 2U}, {SU, TU}, {ST 2SU, SU}, {T 2U, SU}, {U, STSU};

where in boldface we have identified a representative pair of elements for each class, match-

ing the choice made in eqs. (3.4) and (3.5).

C Equivalent cases

A necessary condition for two matrices UPMNS and U ′PMNS to be equivalent is the same

magnitude of the fixed element. Indeed, in the four cases under consideration the absolute

value of one element is 1/
√

2. For Pe = P ′e and Pν = P ′ν , the two matrices UPMNS and

U ′PMNS would be equivalent, if the products Ω†e Ων and Ω′†e Ω′ν could be related in the

following way:

Ω†e Ων = diag(eiφ1 , eiφ2 , eiφ3)U23(θ
e
◦, δ

e
◦) Ω′†e Ω′ν R23(θ

ν
◦) diag(1, ik, ik) , (C.1)

with φi, δ
e
◦ and θe◦, θ

ν
◦ being fixed phases and angles, respectively, and k is allowed to be

0, 1, 2 or 3. Indeed, if this relation holds, from eq. (2.24) we have

UPMNS = PeU23(θe, δe) diag(eiφ1 , eiφ2 , eiφ3)U23(θe◦, δ
e
◦)Ω
′†
e Ω′νR23(θν◦) diag(1, ik, ik)R23(θν)PνQν

= Pe diag(eiφ1 , eiφ2 , eiφ3)U23(θe, δ̃e)U23(θe◦, δ
e
◦)Ω
′†
e Ω′νR23(θ̂ν)PνQ̂ν , (C.2)
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ge gν Hν
CP S TU {U, T} S TU {STS, T 2STU} TU S {TST 2U, T 2STU}

φ1 π/6 −π/3 −π/2

φ2 − arctan
√

1 + 2
√

2/3 − arctan
(√

2 +
√

3
)

arccot (2)

φ3 arctan
(
3
√

3 + 2
√

6
)

arccot
(
2
√

2 +
√

3
)

arctan (2)

δe◦ arccot
(
5/
√

3
)

π/3 arctan
((

5
√

3− 6
)
/13
)

θe◦ arctan
√(

11− 6
√

2
)
/7 arctan

(√
2 +
√

3
)

π − arctan
(
2/
√

5
)

θν◦ π − arctan
(
3− 2

√
2
)

π/4 π/4

k 0 1 3

Table 8. The values of the parameters φi, δ
e
◦, θ

e
◦, θ

ν
◦ and k for which eq. (C.1), proving the

equivalence of the PMNS matrix in a given case to the PMNS matrix in the reference case of

{Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {U, SU}, holds.

with

δ̃e = δe + φ2 − φ3 , θ̂ν = θν◦ + θν and Q̂ν = P Tν diag(1, ik, ik)Pν Qν . (C.3)

Now, using

U23(θ
e, δ̃e)U23(θ

e
◦, δ

e
◦) = diag(1, eiα, e−iα)U23(θ̂

e, δ̂e) , (C.4)

where (see appendix B in [7])

α= arg
{

cosθe cosθe◦−sinθe sinθe◦ e
i(δe◦−δ̃

e)
}
, β= arg

{
sinθe cosθe◦ e

−iδ̃e+cosθe sinθe◦ e
−iδe◦

}
,

cos θ̂e =
∣∣∣cosθe cosθe◦−sinθe sinθe◦ e

i(δe◦−δ̃
e)
∣∣∣ , sin θ̂e =

∣∣∣sinθe cosθe◦ e
−iδ̃e+cosθe sinθe◦ e

−iδe◦
∣∣∣

and δ̂e =α−β ,

we obtain

UPMNS = Qe Pe U23(θ̂
e, δ̂e) Ω′†e Ω′ν R23(θ̂

ν)Pν Q̂ν , (C.5)

with

Qe = Pe diag
(
eiφ1 , ei(φ2+α), ei(φ3−α)

)
P Te (C.6)

being the matrix of unphysical phases. Thus, up to this matrix, UPMNS and U ′PMNS are

the same.

Taking {Ge, Gν} = {ZTU2 , ZS2 × Hν
CP} with Hν

CP = {U, SU} as a reference case and

denoting the corresponding diagonalising matrices as Ω′e and Ω′ν , we find the values of φi,

δe◦, θ
e
◦, θ

ν
◦ and k for which eq. (C.1) holds, if Ωe and Ων are the diagonalising matrices in one

of the three remaining cases under consideration. We summarise these values in table 8.

D Correspondence with earlier results

The sum rules for cos δ or sin2 θ23 (sin2 θ12 in case C1) can formally be obtained from the

corresponding sum rules derived in [7]. In certain cases, this requires an additional input

which is provided by the residual GCP symmetry Hν
CP considered in the present article.
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Below we provide the correspondence between the phenomenologically viable cases of the

present study and the cases considered in [7].

i) Cases B1, C4 and D4 of the present study correspond to case C8 in [7], since for all

these cases (UPMNS)µ2 is fixed. The sum rule for cos δ in case B1, eq. (3.46), follows

from that of case C8 in [7] (see table 4 therein) for sin2 θ◦23 = 1/2, while the sum rule

in eq. (3.57), valid in cases C4 and D4, can be obtained from the same sum rule found

in [7], but for sin2 θ◦23 = 3/4. As should be, these two values of sin2 θ◦23 follow from

Gf = S4, when it is broken to two different non-equivalent specific pairs of residual

{Zge2 , Z
gν
2 } flavour symmetries (see table 10 in [7]).

ii) Cases B2, C5 and D5 correspond to case C1 in [7], since for all of them (UPMNS)τ2
is fixed. The sum rule for cos δ in case B2, eq. (3.47), follows from that of case C1

in [7] (see table 4 therein) for sin2 θ◦23 = 1/2, while the sum rule in eq. (3.58), valid

in cases C5 and D5, can be obtained from the same sum rule found in [7], but for

sin2 θ◦23 = 1/4. Again, these values of sin2 θ◦23 are fixed uniquely by Gf = S4 and the

specific choice of the residual symmetries considered in the present article.16

iii) Cases A1 and B3 of the present study correspond to case C2 in [7], since for these

cases (UPMNS)µ3 is fixed. The expression for sin2 θ23 in eq. (3.35) follows from the

corresponding expression for case C2 in table 6 of [7] with sin2 θ◦23 = 1/2. This value

is in agreement with table 10 of [7]. Moreover, the sum rule for cos δ in eq. (3.37)

in case A1 can be obtained from the sum rule for case C217 in table 4 of [7] with

sin2 θ◦23 = 1/2 and sin2 θ̂ν12 = 1/2. The value of sin2 θ̂ν12, which was an arbitrary

free parameter in [7], is fixed by the GCP symmetry employed in the present study.

Finally, we note that the expression for cos δ in eq. (3.49) valid in case B3 can formally

be obtained from the corresponding expression in case C2 of table 4 in [7] setting

θ̂ν12 = θν − π/4.

iv) Analogously, cases A2 and B4 correspond to case C7 in [7]. Equation (3.38) can be

obtained from the corresponding formula in table 6 of [7] for sin2 θ◦23 = 1/2, which

agrees with the result in table 10 therein. The sum rule in eq. (3.40) follows from

that in case C7 in table 4 of [7] with sin2 θ◦23 = 1/2 and sin2 θ̂ν12 = 1/2, where again

the value of sin2 θ̂ν12, which in [7] is a free parameter, here is fixed by the GCP

symmetry. Similarly to the previous clause, eq. (3.51) can formally be derived from

the corresponding expression in case C7 of table 4 in [7] setting θ̂ν12 = θν − π/4.

v) Case C1 corresponds to case C5 in [7], in which all possible residual flavour symmetries

Ge = Z2 and Gν = Z2 have been considered. The expression for sin2 θ12 in eq. (3.53)

follows from that of case C5 in table 6 in [7] with sin2 θ◦12 = 1/4. This value of sin2 θ◦12

16Note that the value of sin2 θ◦23 = 1/2 is not present in table 10 of [7], since in this reference the best

fit values of the mixing angles for the NO spectrum quoted in eqs. (6)–(8) therein have been used, and

employing them, one obtains cos δ ≈ 2.76.
17We would like to point out a typo in eq. (85) in [7]: cos2 θ◦23 should read cos θ◦23. This typo, however,

does not affect the corresponding sum rule for cos δ in eq. (86) and in table 4 of [7].
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is found for Gf = S4 and the specific choice of the residual symmetries (see table 10

in [7]). Moreover, eq. (3.56) for cos δ can formally be obtained from the corresponding

formula in case C5 of table 4 in [7] setting sin2 θ̂e23 = sin2 θe.

vi) Cases C2 and D2 correspond to case C4 of [7]. The sum rule for cos δ in eq. (3.37),

valid in cases C2 and D2, follows from that of case C4 in [7] (see table 4 therein) for

sin2 θ◦12 = 1/4, which is in agreement with table 10 in [7].

vii) Cases C3 and D3 correspond to case C3 in [7]. Equation (3.40) for cos δ, which holds

in these cases, can be obtained from the corresponding sum rule for case C3 from

table 4 in [7] with sin2 θ◦13 = 1/4. As it should be, we find this value in table 10 of [7].
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