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Overview and 
on
lusions
Towards a 
osmologi
al standard modelThe study of 
osmi
 mi
rowave ba
kground anisotropies is one of the pillars of modern
osmology. The 
osmi
 mi
rowave ba
kground (hereafter CMB) 
onsists of photons left overby the hot phase after the Big-Bang and is very homogeneous and isotropi
. Its existen
ewas predi
ted by Gamov (1946), and a

identally dis
overed only mu
h later by Penzias andWilson (Penzias & Wilson, 1965), but it was only in 1992 that the COBE satellite (Smootet al., 1992) dete
ted the presen
e of tiny temperature �u
tuations (1 part in 100'000), whi
hare thought to have been generated by quantum �u
tuations in the very early universe. Theobservational study of these temperature �u
tuations, known as anisotropies, has been a greatte
hnologi
al a
hievement. Over the last ten years, there has been a spe
ta
ular advan
ementin the a

ura
y of measurements, using ground-based, balloon-born and orbital instruments.The WMAP satellite (Bennett et al., 2003) has re
ently measured the anisotropies with apre
ision whi
h, on 
ertain s
ales, is 
lose to a fundamental statisti
al limit, 
alled �
osmi
varian
e�.The importan
e of su
h a wealth of data for theoreti
al 
osmology 
annot be overstated.In a few se
onds on a desktop 
omputer, it is nowadays possible to produ
e a

urate numeri
alpredi
tions of the statisti
al distribution of the anisotropies on the sky for any 
osmologi
almodel of interest, i.e. of the CMB angular power spe
trum. If the primordial �u
tuations areGaussian distributed, then the power spe
trum en
odes all of the statisti
al information: its
omputation is based on linear perturbation theory and the underlying physi
s is well under-stood. The detailed shape of the power spe
trum 
arries 
hara
teristi
 signatures dependingon the value of the late Universe 
osmologi
al parameters and on the initial 
onditions forthe perturbations. By �late Universe 
osmologi
al parameters� we mean the quantities 
on-trolling the expansion history of the Universe, i.e. its matter budget, 
omplemented by somedes
ription of the reionization history. In the former 
ategory, an in
omplete list wouldin
lude the Hubble parameter, the energy density in baryons, 
old dark matter and darkenergy, the dark energy equation of state parameter (possibly in
luding a des
ription of itstime evolution), the neutrino masses and the number of massless families plus the densityparameters and e�e
tive equation of state of any other exoti
 form of matter one might wishto in
lude; spe
ifying how the Universe was reionized in the 
ontext of stellar evolution the-ory might require three or four additional parameters, whi
h however usually redu
e to theopti
al depth to reionization or equivalently to the redshift of reionization, as far as the CMBis 
on
erned. Spe
ifying the initial 
onditions requires the value of �primordial parameters�for the amplitudes of the primordial �u
tuations in ea
h of the matter 
omponents and their



2 Overview and 
on
lusionss
ale dependen
e.The fa
t that CMB anisotropies are sensitive both to the late Universe 
osmologi
al pa-rameters and to primordial parameters means that CMB observations only 
onstrain a (de-generate) 
ombination of both: until now, disentangling the former required rather strongassumptions about the nature of initial 
onditions. Some guidan
e is o�ered by the in�ation-ary paradigm: in its simplest in
arnation, the de
ay of the in�aton �eld produ
es adiabati
initial 
onditions, in whi
h there is no �u
tuation in the relative number density of thespe
ies, hen
e no entropy perturbations (�adiabati
�). The presen
e of entropy �u
tuations
an ex
ite up to four other non-de
aying modes for the perturbations. Those are 
olle
tivelytermed �iso
urvature�, be
ause in three 
ases the total matter density is unperturbed andhen
e there is no 
urvature perturbation in the spatial se
tions either. The observation ofthe �rst a
ousti
 peak in the CMB power spe
trum (Page et al., 2003) at ℓ = 220.1± 0.8 hassubstantially 
on�rmed the predominan
e of the adiabati
 mode. However, a subdominantiso
urvature 
ontribution to the prevalent adiabati
 mode 
annot be ex
luded: after all, thereis no 
ompelling reason why the physi
s of the early universe should boil down to only onedegree of freedom.Even though in prin
iple the number of late Universe parameters 
an be very large, easilyex
eeding a dozen, only an handful of them seems to be required by the 
urrently availableobservational eviden
e (Spergel et al., 2003; Tegmark et al., 2004b; Liddle, 2004):
• the Hubble parameter h ∼ 0.7;
• the density parameter for baryons Ωb ∼ 0.05;
• the density parameter for 
old dark matter (CDM) Ω
dm ∼ 0.25;
• the density parameter for a 
osmologi
al 
onstant ΩΛ ∼ 0.7;
• the opti
al depth to reionization τre ∼ 0.15.Summed together, Ω
dm+Ωb+ΩΛ ∼ 1 imply a �at Universe. The 
ru
ial point is that for theCMB these results only hold on
e we make the rather strong assumption of purely adiabati
initial 
onditions. In that 
ase, the primordial parameters redu
e to the spe
tral index for the�u
tuations, ns ∼ 1, and an overall adiabati
 amplitude AAD. These two quantities togetherwith the above �ve late Universe parameters are what we 
all �standard CMB parameters�,be
ause they build the basis of the �
on
ordan
e model� of present-day 
osmology1.By 
ombining CMB data with other 
osmologi
al and astrophysi
al measurements � su
has galaxy distribution statisti
s, supernovæ luminosity distan
e measurements, gravitationallensing statisti
s, Lyman α absorption lines, lo
al determination of the Hubble parameter,light elements abundan
e � we have rea
hed an unpre
edented pre
ision in determining thestandard 
osmologi
al parameters, whi
h are now known with an a

ura
y of a few per
ent.This is even more astonishing if we think that only ten years ago it was only possible for mostparameters to estimate their order of magnitude. Most importantly, various independent1We do not dis
uss the possibility of gravitational waves, whi
h are indeed predi
ted by any in�ationarys
enario; presently there are merely upper limits to their 
ontribution, whi
h 
ould be small enough to bevery di�
ult to dete
t in the CMB. Our dis
ussion here and in the following fo
uses on the s
alar se
toronly.



Overview and 
on
lusions 3observations � whi
h probe very di�erent epo
hs of the 
osmi
 history and are based ontotally di�erent physi
al pro
esses � seem to be 
onverging to the same answer.We are now in a position where we 
an move on from parameter �tting to model testing:in other words, in order to establish a �
osmologi
al standard model� we need to assess the
onsisten
y and 
ompleteness of our theoreti
al framework. In order to be sure that we 
antrust the error-bars on the standard parameters beyond the quoted statisti
al error, we haveto 
onfront ourselves with the question of possible systemati
 errors in the measurements onone side, and of hidden �aws in our theoreti
al interpretation of the data on the other. Giventhe intrinsi
 di�
ulty of many 
osmologi
al observations, an assessment of systemati
 errorsfor a 
ertain data-set 
an 
ome from the 
ombination with other, independent measurementsof the same quantity. Dis
repan
ies in the results will indi
ate a �aw in the underlying theory,or in the data, or in both. This is one of the reasons why the 
omparison of many data-setsis so important, the other being that often the 
ombined data have a superior 
onstrainingpower due to the breaking of degenerate dire
tions in parameter spa
e. From the point of viewof model-building, it is now be
oming possible to relax some assumptions whi
h were beforene
essary in order to extra
t from the data any information at all, and thereby 
he
k whetherour results are robust or else whether they 
riti
ally depend on our prejudi
es. If it is foundthat our 
on
lusions depend strongly on the underlying model assumptions, then we needto 
riti
ally review our theoreti
al paradigm and open our mind to alternative expli
ativemodels.Testing the 
on
ordan
e model with the CMBThe CMB is an ex
ellent testing ground to 
arry out this program: our theoreti
al under-standing is based on General Relativity and linear perturbation theory, whi
h su�
es todes
ribe almost all of the relevant physi
al pro
esses. This makes us 
on�dent that we un-derstand quite well CMB anisotropies, and we 
an exploit them to go beyond the standard
osmologi
al parameters in two di�erent ways: the �rst path leads dire
tly to the primordialUniverse, via the dependen
e of the CMB on the nature of initial 
onditions; the se
ondapproa
h makes use of the high quality of re
ent CMB data to look for e�e
ts whi
h werepreviously ignored be
ause thought to be irrelevant, but whi
h are now within the 
onstrain-ing power of the observations. In both 
ases, the mi
rowave ba
kground plays the role of aUniverse-sized laboratory for the study of fundamental physi
s whi
h is often una

essibleto any parti
le physi
s laboratory. This work pursues both those aspe
ts, as we detail in thefollowing.In the �rst part, we introdu
e in Chapter 1 the homogeneous and isotropi
 Friedmann-Robertson-Walker universe, whi
h is the ba
kground on whi
h perturbation theory is built,and we brie�y present a few other observations whi
h we later 
ompare and 
ombine withthe CMB. We then give the derivation of all the relevant perturbation equations needed todes
ribe the CMB in Chapter 2. Those are applied to the temperature �u
tuations in the
osmi
 photons in the se
ond part: in Chapter 3 we obtain under various approximationsanalyti
al expressions for the growth of perturbations in an Universe 
ontaining photons,
old dark matter, massless neutrinos, baryons and a 
osmologi
al 
onstant; in Chapter 4 wepresent a thorough a

ount of the main features of the CMB temperature and polarization



4 Overview and 
on
lusionsangular power spe
tra. In parti
ular, we are 
on
erned with 
hara
teristi
 signatures on theangular power spe
tra of the standard 
osmologi
al parameters, whi
h 
onstitute the basisfor their determination using CMB data. We also introdu
e the most general type of initial
onditions, whi
h 
onsist of one adiabati
 and four iso
urvature modes. The third part fo-
uses on the interplay between theoreti
al modelling and observational data. The 
omparisonof theoreti
al models with a
tual data needs some basis in probability theory and statisti
s,whi
h we give in Chapter 5, emphasizing their appli
ation to the problem of parameter esti-mation from CMB observations. The last two 
hapters 
ontain most of the original resear
hwork, whi
h is developed along the two lines sket
hed above: Chapter 6 deals with the obser-vational 
onsequen
es and 
onstraints when we add to the standard 
osmologi
al parametersnew quantities des
ribing possible departures from known physi
s, while Chapter 7 exploresthe 
onsequen
es of relaxing the fundamental assumption of adiabati
ity.In � 6.1 we fo
us on the e�e
tive number of massless neutrino families, Neff (Bowenet al., 2002). Although in the standard model of parti
le physi
s Neff = 3, there are severalme
hanism whi
h would give Neff 6= 3 as measured by the two 
osmologi
al probes we dis
uss,namely Big-Bang Nu
leosynthesis (BBN) 
ombined with observations of the light elementsabundan
es, and CMB. This is be
ause both of them are sensitive not only to the numberof weakly intera
ting neutrinos, but rather to the total energy density of relativisti
 parti
leswhi
h sets the expansion rate at early times, and therefore 
an 
onstrain e.g. the existen
e ofsterile neutrinos unobservable in Z-de
ay experiments. Using pre-WMAP CMB data alone,we obtain fairly broad bounds on Neff , 0.04 < Neff < 13.37 with 2σ likelihood 
ontent,whi
h are redu
ed by in
luding prior information 
oming from supernovæ luminosity distan
emeasurements and large s
ale stru
ture observations. We show that Neff , or equivalently
ωrel ≡ Ωrelh2, the energy density parameter in relativisti
 parti
les, is nearly degeneratewith the amount of energy in matter, ωm ≡ Ωmh

2, and that its in
lusion in CMB parameterestimation also a�e
ts the 
onstraints on other parameters su
h as the 
urvature or the s
alarspe
tral index of primordial �u
tuations. However, even though this degenera
y has the e�e
tof limiting the a

ura
y of parameter estimation from the WMAP satellite, we �nd that it 
anbe broken by measurements on smaller s
ales su
h as those provided by the Plan
k satellitemission. We fore
ast that Plan
k will be able to 
onstrain Neff within 0.24 (1σ).The primordial 4He mass fra
tion, Yp, is predi
ted by BBN along with the abundan
es ofthe other light elements as a fun
tion of two free parameters, namely the baryon density ωband the relativisti
 energy density ωrel. If we �x Neff = 3 and thereby ωrel as motivated by theparti
le physi
s standard model, then in standard BBN the abundan
es of D, 3He, 4He and
7Li depend on the baryon density alone: 
omparison with the observed values in astrophysi
alsystems indi
ates a slight dis
repan
y, whi
h however presently 
annot 
learly be as
ribed tosystemati
al errors or to deviations from the standard BBN s
enario. We explore in � 6.2 thepotentiality of using the CMB as a totally independent way of measuring Yp via its impa
ton the reionization history, thereby possibly allowing to dis
riminate between the various hy-pothesis (Trotta & Hansen, 2004). We �nd that WMAP data give only a marginal dete
tion,
0.160 < Yp < 0.501 at 68% likelihood 
ontent. We estimate that the Plan
k satellite willdetermine the helium mass fra
tion within 5% (or ∆Yp ∼ 0.01), whi
h however will only allowa marginal dis
rimination between di�erent astrophysi
al measurements. Equally important,we identify degenera
ies between Yp and other 
osmologi
al parameters, most notably the
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on
lusions 5baryon abundan
e, the redshift and opti
al depth of reionization and the spe
tral index; we
on
lude that even though present-day CMB data a

ura
y does not require the in
lusionof Yp as a free parameter, the un
ertainty of the helium fra
tion will have to be taken intoa

ount in order to 
orre
tly estimate the errors on the baryon density from Plan
k.The sear
h for observational eviden
e for time or spa
e variations of the �fundamental�
onstants that 
an be measured in our four-dimensional world is an extremely ex
iting area of
urrent resear
h, with several independent 
laims of dete
tions in di�erent 
ontexts emergingin the last few years, together with other improved 
onstraints. Most e�orts have been
on
entrating on the �ne-stru
ture 
onstant, α, both due to its obviously fundamental roleand to the availability of a series of independent methods of measurement. Of parti
ularinterest is the result of Webb and 
ollaborators, who 
laim a 4σ dete
tion of a �ne-stru
ture
onstant that was smaller in the past (Murphy et al., 2003; Webb et al., 2003). Noteworthyamong the possibilities of independently 
he
k those results is the CMB, whi
h probes αde
,the value of α at de
oupling, z ∼ 1100 (Martins et al., 2002, 2004; Ro
ha et al., 2004). As weshow in � 6.3, by analyzing the �rst year WMAP data for time-variations of α we obtain the
onstrain 0.95 < αde
/α0 < 1.02 with 95% likelihood 
ontent, where α0 denotes the presentvalue. We 
larify the issue of degenera
ies between α and other standard parameters, andgive exhaustive fore
asts of the expe
ted performan
e of the full four year WMAP data, ofthe Plan
k satellite and of an ideal CMB experiment. We emphasize the role of polarizationmeasurements to lift �at dire
tions (i.e., degenera
ies) in parameter spa
e, and dis
uss therole of reionization in the determination of αde
.In Chapter 7 we relax the assumption of adiabati
ity by allowing for the most generalinitial 
onditions (Bu
her et al., 2000) and we investigate two 
omplementary aspe
ts: the �rstis the degradation in the a

ura
y of the late Universe standard parameters as a 
onsequen
eof the introdu
tion of new degrees of freedom in the primordial Universe (Trotta et al.,2001); the se
ond is the robustness of the measurement of a non-zero 
osmologi
al 
onstant,
ΩΛ 6= 0, when di�erent statisti
al approa
hes (frequentist rather then Bayesian) are appliedto the data, or when general iso
urvature modes are in
luded in the analysis (Trotta et al.,2003). We also expli
itly test the paradigm of adiabati
ity by using CMB observations toput 
onstraints on the iso
urvature 
ontribution.For the �rst point, the results in � 7.2 demonstrate that the determination of the Hubbleparameter and the baryon density from pre-WMAP CMB data is essentially impossible with-out strong assumptions about the nature of initial 
onditions. Conversely, it be
omes verydi�
ult to put limits on the type of the initial 
onditions without using external, non-CMBpriors on the late Universe parameters. Indeed, the CMB is perhaps the most e�e
tive wayto dire
tly probe the very early Universe, and thereby 
onstrain or falsify the models for thegeneration of perturbations. It is therefore very important to extra
t the most informationabout the 
onditions in the early Universe. Adding polarization information greatly enhan
esthe power of the CMB to simultaneously 
onstrain the late Universe parameters and the pri-mordial ones: we show in � 7.4 that the full four year WMAP data will measure orthogonal
ombinations of the late Universe parameters with an a

ura
y of the order 10% − 30% formost parameters even in the general initial 
onditions 
ase. The Plan
k mission will have abetter polarization resolution and will be able to do pre
ision 
osmology almost independentlyon the type of initial 
onditions (Trotta & Durrer, 2004). As for the possibility of mitigating



6 Overview and 
on
lusionsthe 
osmologi
al 
onstant problem by introdu
ing iso
urvature modes, our �ndings in � 7.3indi
ate that ΩΛ 6= 0, as obtained from a 
ombination of CMB and large s
ale stru
ture data,is indeed robust even in the presen
e of iso
urvature 
ontributions. The more 
onservativefrequentist statisti
s � as 
ompared to the usual Bayesian approa
h � ex
ludes ΩΛ = 0 onlyat the 2σ 
on�den
e level for pre-WMAP CMB data 
ombined with the 2dF Galaxy RedshiftSurvey, but this only if we admit a rather low value for the Hubble 
onstant, h ∼ 0.5, whi
hwould be in 
ontradi
tion with the result of the Hubble Spa
e Teles
ope, h = 0.72 ± 0.08(Freedman et al., 2001).Outlook and 
on
lusionThe CMB has be
ome a well established tool for the study of our Universe, and an unavoidabletesting ground for any theoreti
al model. The ever improving quality of the data permitson one side to look for new physi
s in the early Universe, as shown in our study of timevariations of α, on the presen
e of extra relativisti
 parti
les and on the existen
e of non-adiabati
 modes; on the other hand, it also requires an upgrade of our modelling, so toproperly treat subtle e�e
ts su
h as the un
ertainty 
oming from our unpre
ise knowledge ofthe primordial Helium fra
tion, or from our ignoran
e on the 
orre
t model for the generationof �u
tuations. For this reasons, it is important to look ahead, to the goals for the nextgeneration of experiments, and to their potential to 
onstrain or falsify the theoreti
al models.More than ever, the 
entral issue is be
oming how to e�
iently and reliably extra
tthe most information from up
oming high-quality data: there are about 2000 observableindependent multipoles for ea
h of the three angular power spe
tra, namely temperature,E-polarization and temperature-polarization 
ross-
orrelation, whi
h however are highly re-dundant due to the smooth os
illatory nature of the spe
tra. The amount of informationwhi
h 
an be extra
ted is mu
h less, and 
an be 
ondensed in maybe a dozen of well-
hosenparameters. The best 
hoi
e for those quantities is the one whi
h takes into a

ount thephysi
s and sele
ts orthogonal dire
tions in parameters spa
e on the basis of fundamental de-genera
ies. This idea has been a leitmotiv of the works presented here, and there is probablystill spa
e to apply it further, espe
ially in 
onne
tion with the primordial parameters.Despite this en
ouraging pi
ture, there are still open 
hallenges for our understanding ofthe Universe: the nature of dark energy and dark matter, the details of the initial 
onditionsand the epo
h of reionization, for example. The CMB will provide key advan
ements onall these issues over the next years. The polarization of the anisotropies has been dete
tedby the experiments DASI (Kova
 et al., 2002) and WMAP and will be pre
isely mapped bythe forth
oming experiments PolarBear, Bi
ep, SPOrt, AMiBA and QUEST, opening up anew line of resear
h and allowing to re
onstru
t the 
osmologi
al parameters with still higherpre
ision. This pro
ess will 
ulminate with the European Spa
e Agen
y satellite Plan
k(Plan
k Website, 2004), whi
h starting in 2007 will observe the temperature spe
trum withthe ultimate possible pre
ision and provide a

urate mapping of the polarization as well. Inview of this wealth of data, and in order to fully exploit its potential, it is of fundamentalimportan
e that theoreti
al resear
h on the subje
t advan
es a

ordingly. There is a need ofmore powerful and e�
ient 
omputational and statisti
al te
hniques whi
h 
an handle the
onsiderably larger amount of data expe
ted. Also, our theoreti
al understanding of model-
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on
lusions 7building has to be re�ned and in parti
ular we need to further develop the interdis
iplinarylink between models 
oming from high energy physi
s, string theory, astrophysi
s and theirobservational signature on the CMB. This approa
h will strengthen the role of the CMB as auniverse-size laboratory for investigating the most elusive domains of fundamental physi
s.





All men, So
rates, who have any degreeof right feeling, at the beginning of everyenterprise, whether small or great, always
all upon God. And we, too, who are go-ing to dis
ourse of the nature of the uni-verse, how 
reated or how existing with-out 
reation, if we be not altogether out ofour wits, must invoke the aid of Gods andGoddesses and pray that our words maybe a

eptable to them and 
onsistent withthemselves. PlatoTimaeus
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Chapter 1Introdu
tion
1.1 Notation and 
onventionsWe begin by introdu
ing the notation and 
onventions whi
h are used throughout this work.

• The metri
 signature is − + ++.
• The spa
etime metri
 is denoted by gµν , where the spa
etime 
oordinate are xµ, µ =

0, 1, 2, 3. Greek indexes always run from 0 to 3.
• The 3-spa
e of 
onstant 
urvature has metri
 γij . Latin indexes always run from 1 to3.
• When we dis
uss perturbations, the ba
kground, unperturbed quantities are denoted byan overline. Therefore for instan
e ρ = ρ̄+ δρ, where ρ̄ denotes the ba
kground energydensity and ρ the perturbed (ba
kground plus linear perturbation) energy density.
• The overdot � ˙ � denotes the derivative with respe
t to 
onformal time, η.
• Bold 
hara
ter denote the i = 1, 2, 3 
omponents of the 
orresponding 4-ve
tor.
• Unless otherwise stated we use natural units, in whi
h the speed of light, the Boltzmann
onstant and the Plan
k 
onstant are unity, c = kB = ~ = 1.
• The Hubble parameter today is written as H0 ≡ 100h km s−1 Mpc−1.
• The symbol ΩX denotes the density parameter in the 
omponent X (where X 
an standfor baryons, photons, 
old dark matter, et
.), expressed in units of the 
riti
al energydensity. In general, ΩX = ΩX(η), but whenever we omit the expli
it time dependen
e,it is understood that the quantity is evaluated today, i.e. ΩX ≡ ΩX(η0), where η0 isthe present value of 
onformal time.
• The 
riti
al energy density today is ρ
rit(η0) ≈ 1.88 · 10−29 h2 g/
m3, and the presentenergy density of 
omponent X is written ρX(η0) = ωX 1.88 · 10−29 g/
m3, where wehave de�ned ωX ≡ ΩX(η0)h

2.



12 Introdu
tion1.2 Friedmann-Robertson-Walker 
osmologyIn this se
tion, we brie�y review the standard treatment of an homogeneous and isotropi
universe. We present the ba
kground Einstein and 
onservation equations for perfe
t �uids,along with the unperturbed Boltzmann equation des
ribing relativisti
 parti
les.1.2.1 Einstein equationsThe 
osmi
 mi
rowave ba
kground is homogeneous and isotropi
 to better than one partin 100'000. This justi�es the assumption that the universe, on large enough s
ale, 
an betreated as being homogeneous and isotropi
. We then 
onsider a 4-dimensional manifold
M endowed with a metri
 gµν , so that 
onstant-time hypersurfa
es are 
onstant-
urvature,maximally symmetri
 3-spa
es. The Friedmann-Robertson-Walker (FRW) metri
 reads

gµνdxµdxν = −dt2 + a(t)γijdxidxj , (1.1)with the 3-spa
e metri
 of 
urvature K = {0,+1,−1} given by
γijdxidxj = dr2 + χ2(r)(dθ2 + sin(θ)2dφ2) . (1.2)Here the s
ale fa
tor a(t) depends only on time, and

χ(r) =











r for K = 0 (�at universe)
sin(r) for K = +1 (
losed universe)
sinh(r) for K = −1 (open universe) . (1.3)We will mostly work in 
onformal time η, de�ned through dη ≡ a−1(t)dt, so that theFRW metri
 reads

gµνdxµdxν = a(η)(−dη2 + γijdxidxj) . (1.4)Following the assumptions of homogeneity and isotropy, the ba
kground energy-momentumtensor, Tµν is bound to be of the perfe
t �uid form
Tµν = (ρ+ P )uµuν + Pgµν , (1.5)where ρ, P are fun
tions of the 
onformal time η only, and represent the �uid energy densityand pressure, respe
tively. The �uid 4-velo
ity is the timelike 4-ve
tor u, with

uµ =

(

1

a
, 0, 0, 0

) and uµu
µ = −1 . (1.6)We suppose that the equation of state of the �uid is of the form

P = w(ρ)ρ , (1.7)where the enthalpy w(ρ) depends only on the lo
al energy density. In many 
ases of interest,the enthalpy is simply a 
onstant, in whi
h 
ase it is termed equation of state parameter: for
old, non-relativisti
, pressureless matter wm = 0 (dust), for relativisti
 parti
les wr = 1/3(radiation) and wΛ = −1 for a 
osmologi
al 
onstant (va
uum energy). The energy density



1.2 Friedmann-Robertson-Walker 
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osmologi
al 
onstant is 
ontained in Tµν , and is of the form ρΛ = Λ/(8πG). Anotherrelevant quantity is the adiabati
 sound speed of the �uid, de�ned as
c2s ≡ Ṗ /ρ̇ . (1.8)The Einstein equations

Gµν = 8πGTµν (1.9)with the FRW metri
 (1.4) and the energy-momentum tensor (1.5) yield the two Friedmannequations. The �rst Friedmann equation is a �rst order di�erential equation for the 
onformalHubble parameter H(η) ≡ ȧ/a

Ḣ = −4πG

3
a2(ρ+ 3P ) . (1.10)The se
ond one is a 
onstraint equation,

H2 + K =
8πG

3
a2ρ . (1.11)An evolution equation for the �uid energy density follows from the 0 
omponent of theenergy-momentum 
onservation equation, ∇µT

µν = 0:
ρ̇+ 3H(ρ+ P ) = 0 , (1.12)supplemented with the �uid equation of state, Eq. (1.7). If the universe 
ontains (or isdominated by) only one �uid with w = 
onst, it follows from Eq. (1.12) that its energydensity behaves as

ρ ∝ a−3(1+w) , (1.13)hen
e from Eq. (1.10) the s
ale fa
tor of a �at universe (K = 0) is
a =

∣

∣

∣

2A

1 + 3w
η
∣

∣

∣

2
1+3w for w 6= −1/3 . (1.14)with A2 = 8πG/3ρa3(1+w) = 
onst. In parti
ular, in the radiation dominated universe(w = 1/3) we have a ∝ η, while in the matter dominated universe (w ≈ 0) a ∝ η2.In the standard 
osmologi
al pi
ture, the universe 
ontains non-relativisti
, pressurelessmatter (baryons and 
old dark matter), photons, massless neutrinos and a va
uum energy
omponent. In this 
ase, the stress-energy tensor is the sum of the �uid 
omponents

T µν =
∑

α

T µνα . (1.15)The Friedmann equations (1.10, 1.11) apply to the total energy density and pressure, whi
hare just the sum of the 
ontributions from ea
h �uid. The energy 
onservation equation,Eq. (1.12), still applies to the total variables, while in general for ea
h 
omponent we have
∇µT

µν
α = Qνα , (1.16)where the 4 ve
tor Qµνα des
ribe the energy-momentum transfer from the 
omponent α. The
onservation of total energy requires

∑

α

Qνα = 0 . (1.17)



14 Introdu
tionIn the general 
ase, the Friedmann equations have to be solved numeri
ally. However, we
an easily write down solutions of simple 
ases. From Eq. (1.13) it follows that for radiation
ρr ∝ a−4 while for matter ρm ∝ a−3. Physi
ally, the energy density of matter is dilutedby the growth of the physi
al volume of the 3-spa
e, while for radiation an extra a−1 fa
tor
omes in from the redshifting of the parti
les energy. Hen
e, sin
e a is growing, at earlyenough time the universe is radiation dominated. The equality time is de�ned as the time atwhi
h the two 
ontributions are equal, i.e. ρr = ρm, after whi
h the universe be
omes matterdominated. Therefore

aeq
a0

=
ρr
ρm

∣

∣

∣

∣

η0

≈ 3 · 10−3 , (1.18)or in terms of the redshift z ≡ a0/a− 1 we have
zeq ≈ 3000 . (1.19)The subs
ript 0 indi
ates that the quantity is evaluated today. The numeri
al estimate
omes from the measurement of the present day radiation density in the 
osmi
 mi
rowaveba
kground, whi
h together with the assumption of three massless neutrino families yields

ρr = 7.94 · 10−34

(

TCMB
2.737 K)4 g/
m3 . (1.20)The matter 
ontent of the Universe is obtained from the 
ombination of CMB, large s
alestru
ture and supernovæ type IA measurements. We shall see in � 4.2 that the CMB itselfis a good probe to determine the redshift of equality.Sin
e for a 
osmologi
al 
onstant wΛ = −1, ρΛ = 
onst, its 
ontribution is negligible inthe early universe, and indeed for a redshift

z ≫
(

Ωm

ΩΛ

)3

− 1 ≈ 0.5 . (1.21)However, if Λ 6= 0, the late universe will be dominated by the va
uum energy term. In that
ase, a(t) ∝ exp
[

(Λ/3)1/2t
] and the expansion be
omes exponential (in physi
al time).It is 
ustomary to introdu
e the 
riti
al energy density as the energy density for whi
hthe universe is �at

ρ
rit ≡ 3H2

8πGa2
. (1.22)We also de�ne the Hubble parameter H0 ≡ H/a0 and the fudge fa
tor h

H0 ≡ 100h km s−1 Mpc−1 . (1.23)The 
riti
al energy density today then evaluates to
ρ
rit(η0) ≈ 1.88 · 10−29 h2 g/
m3 . (1.24)At all times, the density parameters ΩX give the 
ontribution of the 
omponent X in units
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riti
al energy density:
Ωr(η) ≡

ρr
ρ
rit , (1.25)

Ωm(η) ≡ ρm
ρ
rit , (1.26)

ΩΛ(η) ≡ ρΛ

ρ
rit =
Λ

8πGρ
rit , (1.27)
ΩK(η) ≡ −3K

8πGa2ρ
rit . (1.28)By de�nition the sum of the density parameters has to be unity
Ωr(η) + Ωm(η) + ΩΛ(η) + ΩK(η) = 1 . (1.29)The physi
al energy density of the 
omponent X is then given by

ρX(η) = ΩX(η)ρ
rit(η) , (1.30)and in parti
ular when evaluating this quantity at the present time we de�ne ωX ≡ ΩX(η0)h
2and write

ρX(η0) = ωX 1.88 · 10−29 g/
m3 . (1.31)The de�nition (1.28) expresses the energy density due to the 
urvature of the spatialse
tions for K = ±1. Sin
e ΩK ∝ H−2 ∝ η2, the 
urvature is always negligible in the earlyuniverse. Various 
osmologi
al observations indi
ate that today ΩK ≈ 0. However, if theuniverse is not exa
tly �at, this would imply that at Plan
k time |ΩK| ≈ O(10−60). Thesmallness of this number is the essen
e of the ��atness problem�. The in�ationary me
hanismindeed naturally provides a solution for this �ne tuning problem: as the universe in�atesquasi-exponentially, its 
urvature is driven to 0.A key quantity is the angular diameter distan
e DA(z): 
onsider an obje
t of physi
allength d sitting at a redshift z1 (
orresponding to 
onformal time η1 and radial distan
e r1),whi
h is observed at our present position (z0 = 0, r0 = 0) under an angle θ. Then the angulardiameter distan
e is de�ned as
DA(η1) ≡

d

θ
= a(η1)χ(η0 − η1) , (1.32)where in the se
ond equality we have used d = λa(η1), with λ the 
omoving length of theobje
t, and θ = λ/χ(r1), noting that r1 = η0 − η1 sin
e light travels on null geodesi
s. We
an now integrate Eq. (1.11) to �nd

∆η ≡ η0 − η1 =
1

H0a2
0

∫ a0

a1

da
[

Ωr + Ωm
a

a0
+ ΩK

a2

a2
0

+ ΩΛ
a4

a4
0

]1/2
, (1.33)This equation is more 
onveniently written in redshift spa
e

∆η =
1

H0a0

∫ z1

0

dz
[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ]1/2

. (1.34)Re
all that the quantities ΩX above are evaluated at the present time. So if we know thephysi
al length of an obje
t at a given redshift, and we measure the angle subtended by
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tionit on the sky, we are in prin
iple able to extra
t the value of the 
osmologi
al parametersusing Eq. (1.34). The CMB provides exa
tly su
h a standard rod on the sky: the a
ousti
os
illations of the photon �uid just before re
ombination have a 
hara
teristi
 length s
ale,whi
h shows up as the �rst peak in the angular power spe
trum, see � 4.1.2. The redshift ofre
ombination is also known with good a

ura
y, hen
e the CMBmeasures with high pre
isionthe angular diameter distan
e to the last s
attering surfa
e. This pie
e of information aloneis however insu�
ient to re
onstru
t 
ompletely the matter-energy 
ontent of the Universe:this problem is known as geometri
al degenera
y, and it is explained in � 4.1.2.1.2.2 Boltzmann equationAt early time, the energy density of the universe is dominated by the relativisti
 spe
ies,and to leading order we 
an negle
t in the 
ontribution of non-relativisti
 
omponents tothe total energy. As long as photons are in lo
al thermodynami
al equilibrium, the photontemperature T is related to the energy density of radiation by
ρr =

π2

30
g⋆T

4 , (1.35)where g⋆ 
ounts the total number of relativisti
 degrees of freedom
g⋆ ≡

∑

b

gb
T 4
b

T 4
+
∑

f

gf
T 4
f

T 4
(1.36)and b and f run over the bosoni
 and fermioni
 spe
ies respe
tively. The fa
tors Tb and

Tf take into a

ount possible temperature di�eren
es between the photons and the otherrelativisti
 parti
les. From Eq. (1.35) and ρr ∝ a−4 it follows that while the photons are inthermodynami
al equilibrium, T ∝ 1/a.For T > 4000K ≈ 0.4eV hydrogen nu
lei are ionized, and photons are 
oupled to baryonsvia non-relativisti
 Thomson s
attering o� free ele
trons, see � 2.2.5. As the temperaturedrops below 0.30eV, 
orresponding to zde
 ≈ 1100, almost all the hydrogen nu
lei qui
klyre
ombine, the mean free path of photons be
omes larger than the Hubble length 1/H: theuniverse be
omes transparent. This event is 
alled last s
attering or de
oupling.After re
ombination, the photon distribution fun
tion
f(η,E) =

1

exp(E/T ) − 1
(1.37)evolves a

ording to the 
ollisionless Boltzmann equation, whi
h 
an be derived by requiringthat the total derivative of f with respe
t to the a�ne parameter λ vanishesdfdλ = 0 . (1.38)In general f = f(η, xi, E, ni), where the momentum 4-ve
tor pµ = (p0,p) is written as

pµ =
E

a
(1,n) , (1.39)with

pi =
|p|
a
ni , p0 =

E

a
=

|p|
a
, (1.40)

√

pipi ≡ |p| , ninjγij = 1 . (1.41)
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al observations 17From Eq. (1.38) we have
∂f

∂η
+
∂f

∂xi
ni +

∂f

∂E
Ė +

∂f

∂ni
ṅi = 0 . (1.42)Be
ause of isotropy, ∂f/∂ni = 0, while homogeneity implies ∂f/∂xi = 0. Using the 0
omponent of the geodesi
s equationdpαdλ + Γαµνp

µpν = 0 , (1.43)whi
h in the FRW universe reads
Ė + HE = 0 (1.44)we obtain from Eq. (1.42) the ba
kground Boltzmann equation

∂f

∂η
−HE ∂f

∂E
= 0 . (1.45)This equation is satis�ed by any f of the form f = f(aE). We 
on
lude that after de
ouplingthe energy of the 
osmi
 photons is redshifted by the expansion as E ∝ a−1. The bla
kbody distribution, Eq. (1.37), retains its spe
trum. The spe
trum of the 
osmi
 mi
rowaveba
kground photons has been measured very a

urately by the FIRAS spe
trometer onboardthe COBE satellite (Fixsen et al., 1996), and was found to be ex
eedingly 
lose to thermal.Deviations from a perfe
t bla
k body spe
trum 
an be measured by the Comptonizationparameter y, the 
hemi
al potential µ and the parameter Yff des
ribing 
ontamination byfree-free emission. The 95% 
on�den
e limits on those parameters are

|µ| < 9 · 10−5 , |y| < 1.2 · 10−5 , |Yff | < 1.9 · 10−5 . (1.46)After de
oupling, T is no longer a temperature in the thermodynami
al sense, rather aparameter in the distribution fun
tion, whi
h drops as T ∝ a−1.1.3 Cosmologi
al observationsIt is only in 
omparatively re
ent times that 
osmology has be
ome a data driven s
ien
e,in whi
h theoreti
al hypothesis 
an be falsi�ed or validated against observational data. It isamazing that only 15 years ago the total energy density of the universe was known with order-of-magnitude a

ura
y only. Nowadays, most 
osmologi
al parameters are 
onstrained withina few per
ent. The dis
overy and a

urate mapping of CMB �u
tuations has 
onstituted amajor pillar in this evolution and represents a fundamental 
ornerstone of modern 
osmology,see � 5.3 for an overview.It is nevertheless of equal importan
e that many other 
osmologi
al probes have beendeveloped in parallel, and this for at least two good reasons. Firstly, all observation su�ersin one form or in another from the degenera
y problem: only a 
ertain 
ombination of 
osmo-logi
al parameters 
an be measured a

urately. Sin
e degenera
y dire
tions are di�erent fordi�erent observations, 
ombining two or more measurements leads to tighter 
onstrains onthe parameters we are interested in. The se
ond reason is that 
osmologi
ally relevant mea-surements are intrinsi
ally di�
ult. One obvious obsta
le is that there is only one universe for
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tionQuantity Value ObservationsBaryon density ωb 0.024 CMB, BBN, light elements abundan
eCold dark matter density ω
dm 0.116 CMB+LSS+SN, 
lusters
Λ density ωΛ 0.378 CMB+LSS+SN+weak lensingHubble 
onstant h 0.72 HST, SZ, strong lensingOpti
al depth τre 0.17 CMBSpe
tral index ns 1.00 CMB, LSS, Lyman-α, 
lustersBaryons Ωb 0.046Cold dark matter Ω
dm 0.224Cosmologi
al 
onstant ΩΛ 0.73Radiation Ωrad 7.95 · 10−5 CMBMassless ν families Nν 3.04 CMB+LSSCurvature ΩK 0.00 CMB+LSS+SN+weak lensingInitial 
onditions purely adiabati
 CMBTable 1.1: Parameters of today's �ΛCDM 
osmologi
al 
on
ordan
e model�, whi
h is in goodagreement with most of the 
urrent observational eviden
e 
oming from CMB (Spergel et al.,2003), large s
ale stru
tures (LSS) (Tegmark et al., 2004b), Big-Bang Nu
leosynthesis (BBN)(Fields & Sarkar, 2004), supernovæ type Ia (SN) (Tonry et al., 2003), strong (Ko
hanek& S
he
hter, 2004) and weak lensing (Contaldi et al., 2003), Lyman-α absorption systems(Seljak et al., 2003a) and galaxy 
lusters (Bah
all et al., 2003) observations.whi
h the experimental 
onditions 
annot be manipulated at will. Very often the interestingphysi
s is hidden behind foreground emissions, poor statisti
al sampling, faint signals andnon-linearities. It is 
ommon to try and extra
t 
osmologi
al information by using obje
tswhose physi
al properties are poorly understood, and in general systemati
s are very di�
ultto assess in 
osmology. Hen
e a 
osmologi
al measurement is usually 
onsidered as valid onlyif 
on�rmed by one or more independent pie
es of eviden
e.The so-
alled ΛCDM 
on
ordan
e model is strongly supported by several independentobservational data. It is generally a

epted that our universe is very 
lose to �at (ΩK ≈ 0);that it is dominated by �dark energy� (ΩΛ ≈ 0.7), perhaps in form of va
uum energy, orquintessen
e or a tra
king s
alar �eld; that around 25% is non-intera
ting 
old dark matter,and that only the remaining 5% is 
onstituted of baryons. If the three neutrino families ofthe Standard Model of parti
le physi
s are not massless (as the large mixing angle solutionto the solar neutrino problem seems to suggest), than their mass is bounded from above tobe mν <∼O(1)eV. Stru
ture formation pro
eeded by gravitational instability from quantum�u
tuations stret
hed to super-horizon s
ale by a period of superluminal expansion (in�ation).The simplest in�ationary model, in whi
h in�ation is driven by one single slow-rolling s
alar�eld, su

essfully predi
ts the absen
e of non-Gaussianity, the (predominantly) adiabati
nature of the �u
tuations and the almost s
ale invariant spe
tral index (ns ∼ 1) for theperturbations. The age of the universe, around 13 Gyrs, easily a

ommodates the oldestobserved obje
ts. For de�niteness, in Table 1.1 we give the parameters of what we believeis a 
urrently widely a

epted �
on
ordan
e model�, to whi
h we will refer throughout thiswork for illustrative and 
omparative purposes.



1.3 Cosmologi
al observations 19Apart from CMB anisotropies, whi
h we will dis
uss in depth in the rest of this work, webrie�y present some of the pie
es of observational eviden
e whi
h 
orroborate the (presently)standard ΛCDM s
enario.1.3.1 Big-Bang Nu
leosynthesisBig-Bang Nu
leosynthesis is based on the Standard Model of parti
le physi
s, and givespredi
tions for the abundan
e of light elements D, 3He, 4He and 7Li synthesized in the earlyUniverse, whi
h are in good overall agreement with the observed abundan
es, see Olive et al.(2000) for a review and Fields & Sarkar (2004) for more re
ent results.Below a temperature T ∼ 1 MeV the neutron-proton 
onversion rate falls below the expan-sion rate, and the neutron to proton ratio freezes out at the value n/p = exp (−Q/T ) ≈ 1/6,where Q = 1.293 MeV is the neutron-proton mass di�eren
e. The light elements produ
tionstarts slightly afterwards, at a temperature T ∼ 0.1 MeV, whi
h is well below the bindingenergy of deuterium, BD = 2.23 MeV be
ause photo-disso
iation prevents the formationof deuterium and other nu
lei until then. By this time, β-de
ay has further redu
ed theneutron-to-proton ratio to n/p ≈ 1/7. The surviving neutrons end up almost 
ompletelyin 4He, while the abundan
e of the other elements is sensitively dependent on the nu
learrea
tions rates, whi
h in turn depend on the baryon density, usually expressed with respe
tto the photon density by de�ning the parameter η10 as
η10 ≡ nb

nγ
× 1010 ≈ 274 · ωb(η0) , (1.47)where η0 is the 
onformal time today. A simple 
ounting argument, see Eq. (6.16, page 136),yields that the primordial 4He mass fra
tion is about 25%, while the number densities of theother elements relative to hydrogen turn out to be of the order D/H ∼ 3He/H ∼ 10−5 and

7Li/H ∼ 10−10 . The predi
tions are very reliable and a

urate, with a residual numeri
alun
ertainty whi
h depends on the experimentally determined rea
tion rates; interestingly, itturns out that most of this un
ertainty is asso
iated with our only approximative knowledgeof the neutron lifetime (Cuo
o et al., 2003). The other free parameter of BBN is the radiationdensity in the early Universe, whi
h sets the Hubble expansion rate and therefore determinesthe freeze-out temperature for the weak rea
tions and is usually parameterized with theequivalent number of (massless) neutrino families. We 
omment on the possibility of a non-standard number of neutrino families and dis
uss BBN-related issues in � 6.1.2.In summary, agreement between the abundan
e of the light elements as inferred fromastrophysi
al measurement and the 
orresponding predi
tion of BBN is a powerful tool toverify the Standard Model of parti
le physi
s. In � 6.2.3 we present in detail the determinationof light elements, dis
uss the slight dis
repan
ies between them and the BBN predi
tions andgive some possible interpretations. However, the overall agreement is satisfa
tory, and (for astandard number of neutrino families) the light elements abundan
es 
an be explained by abaryon density 
ompatible with the one independently inferred from CMB, namely η10 ∼ 5.5or ωb ∼ 0.02.1.3.2 Matter distributionStru
ture formation pro
eeds from small inhomogeneities in the matter distribution whi
hgrow by gravitational instability, eventually giving rise to the large s
ale stru
tures like galax-
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tionies and 
lusters observed today. From the determination of the statisti
al distribution ofmatter one tries to re
onstru
t the properties of the primeval �u
tuations, and to validatethe stru
ture formation model.In � 3.6.3 we introdu
e the linear matter power spe
trum Pm(k), whi
h represents theFourier transform of the 2-point 
orrelation fun
tion for the matter density 
ontrast. Obser-vations of the distribution of galaxies out to a redshift z ∼ 0.1 probe the galaxy-galaxy powerspe
trum, Pgg; the Sloan Digital Sky Survey, for example, 
urrently 
ontains approximately
2 × 105 galaxies (Tegmark et al., 2004a), and upon 
ompletion will a
hieve 106 galaxies.The problem is then to relate Pgg(k), whi
h probes the luminous matter distribution, withthe underlying Pm(k) des
ribing (mostly) the dark matter distribution. This is the issueof bias, introdu
ed by Kaiser to explain the di�erent amplitudes of the 
orrelation fun
tionfor galaxies and for 
lusters (Kaiser, 1984, 1987): the basi
 idea is that galaxies representpeaks of the matter distribution, and therefore our observations of Pgg a
tually sele
t onlythe regions of the underlying matter distribution above some threshold. This 
on
ept hasbeen extended to various kinds of bias: luminosity-dependent, morphology-dependent, 
olor-dependent bias, s
ale-dependent bias, anti-bias, and others. The simplest form is to assumea s
ale-independent bias, whi
h seems to be justi�ed on large (linear) s
ales, setting

Pgg(k) = b2Pm(k) for k < kNL ≈ 0.3 hMp
−1 (1.48)with the bias parameter b whi
h is just an unknown 
onstant fa
tor (see however e.g. Durreret al., 2003a for a 
riti
al dis
ussion). In pra
ti
e, this pres
ription amounts to introdu
inga free parameter whi
h 
ontrols the amplitude of the matter power spe
trum. There aremethods whi
h allow to determine the bias from the higher-order n-point fun
tion of thedistribution: for instan
e Verde et al. (2002) found b = 1.04 ± 0.11 from the data of the 2dFGalaxy Redshift survey (Colless et al., 2001), whi
h plans to measure 2.5 × 105 galaxies.One 
an also 
onsider the distribution of galaxy 
lusters as a fun
tion of redshift, whi
h inprin
iple one should be able to predi
t by using hydro-dynami
al simulations. Comparisonwith the observed distribution would then allow to 
onstrain the 
osmologi
al parameters.This simple sounding program is in pra
ti
e 
ompli
ated by the need of a

urately simulatingall the relevant physi
s, and despite the great amount of 
omputational power nowadaysavailable, re
ent works in the �eld still involve many approximations. As a result, 
lusterdata mainly 
onstrain a 
ombination of the matter power spe
trum at 
lusters s
ales and thevalue of Ωm, see e.g. Bah
all et al. (2003).Another way to probe the mass distribution is o�ered by the Lyman α forest, the absorp-tion lines in the spe
tra of distant quasars produ
ed by the neutral hydrogen in regions ofoverdense intergala
ti
 gas along the line of sight at a redshift 2−4 (Croft et al., 2002). Sin
ethe overdensities probed at these redshifts are still 
lose to the linear regime, one hopes tobe able to 
onne
t the observations to the matter power spe
trum by modelling numeri
allythe relevant physi
s (Mandelbaum et al., 2003; Seljak et al., 2003a).Weak gravitational lensing is very promising as a tool to 
onstrain 
osmologi
al parame-ters, and in parti
ular the matter distribution. It uses the distortion in the images of distantgalaxies indu
ed by inhomogeneities in the intervening matter distribution (Kaiser & Squires,1993), and re
onstru
ts with a statisti
al analysis the so-
alled �
osmi
 shear� (Wittman et al.,2000; Bartelmann & S
hneider, 2001). The te
hnique is now rapidly be
oming mature to help
onstrain the matter budget (Contaldi et al., 2003).



1.3 Cosmologi
al observations 21One of the most important aspe
ts is that all of the above observations 
an be 
ombinedto a
hieve superior 
onstraining power on the CDM model parameters, while testing the
onsisten
y of the theory itself, or the soundness of ea
h data-set. A te
hnique to mergegalaxy surveys, 
luster distribution, weak lensing and Lyman α data with the CMB to probea larger portion of the matter power spe
trum is presented in Tegmark & Zaldarriaga (2002).There is presently a general agreement that the matter 
ontent of the Universe is low, around
Ωm ∼ 0.3.1.3.3 Type Ia supernovæSupernovæ (SN) are 
lassi�ed a

ording to their spe
trum: the type Ia is 
hara
terized bythe absen
e of hydrogen (the �I�), and by strong sili
on features (the �a�). The standardpi
ture is a progenitor binary system, with a white dwarf whi
h a

retes matter from its
ompanion until it rea
hes the Chandrasekhar limit, and the gravitational infall triggers athermonu
lear explosion whi
h we observe as a supernova. At the peak of its brightness, aSN 
an easily ex
eed the luminosity of its host galaxy, making it a promising 
andidate tomeasure distan
es out to very high (z ∼ 1 − 2) redshifts.Their most important property is the remarkable homogeneity in their spe
tra, in theshape of their light-
urve and in their peak absolute magnitude, whi
h makes them nearly�standard 
andles�. In fa
t, it was dis
overed that intrinsi
ally brighter SNIa de
line moreslowly than dim ones (Hamuy et al., 1996). By exploiting an empiri
al 
orrelation betweenthe shape of the light 
urve and the intrinsi
 luminosity, and 
orre
ting for extin
tion e�e
tsvia measurements at di�erent wavelengths, it is nevertheless possible to produ
e a �
alibrated
andle�, with a very narrow peak magnitude dispersion (Riess et al., 1996). For a review ofthe 
osmologi
al appli
ations, see e.g. Filippenko (2004).The measured apparent magnitude m is related to the absolute magnitude M via theluminosity distan
e DL

m = M + 5 log [H0DL(z,Ωm,ΩΛ)] +K (1.49)where the �K-
orre
tion� 
ompensates for the di�eren
e in wavelength of the emitted andre
eived photons due to the expansion, and the luminosity distan
e of an obje
t at redshift
z is de�ned in terms of the intrinsi
 luminosity L and of the measured �ux ℓ as

DL(z) ≡
(

L

4πℓ

)1/2

. (1.50)The luminosity distan
e is related to the angular diameter distan
e byDL(z) = (1+z)2DA(z).Supernovæ essentially measure the angular diameter distan
e over a redshift range of z ∼
0.5 − 2, mu
h lower than range probed by the CMB. At su
h low redshift, the radiation
ontent is negligible, and with ΩK = 1−Ωm−ΩΛ we obtain from (1.32) and (1.34, page 15)
H0DL(z1,Ωm,ΩΛ) =

1 + z1
√

|ΩK|
×

χ

(

1 + z1
√

|ΩK|

∫ z1

0

[

(1 + z)2(1 + zΩm) − ΩΛz(2 + z)
]−1/2 dz) ,

(1.51)
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Figure 1.1: Illustration of the determination of (Ωm,ΩΛ) using supernovæ data: the dashed(solid) 
urves are lines of 
onstant DL for the given measured apparent magnitude of astandard 
andle at a redshift z = 0.5 (z = 1.0). If the apparent magnitude m 
an bemeasured with a

ura
y ∆m = 0.05 
ombining the two observations gives the dark shadedallowed region for (Ωm,ΩΛ). Figure reprinted from Goobar & Perlmutter (1995).where the fun
tion χ is de�ned in Eq. (1.3, page 12). Noti
e that magnitude-redshift re-lation (1.49) does not depend on the Hubble parameter. Therefore, assuming that we areable to reliably re
onstru
t the intrinsi
 luminosity M , from the measurement of one SNEq. (1.49) yields one degenera
y line for the possible values of (Ωm,ΩΛ). By measuring ase
ond standard 
andle at z2 6= z1 we are able to determine the interse
tion of the degenerateluminosity distan
e lines in the (Ωm,ΩΛ) plane, and thus to measure separately the matterand 
osmologi
al 
onstant 
ontent. When we add the measurements error, both lines widento two strips, and we obtain a region of 
on�den
e for the two parameters, independently onthe Hubble parameter, see Fig. 1.1.In pra
ti
e, of 
ourse, a larger number of measurements is ne
essary, and it turns outthat the approximate 
ombination Ωm−ΩΛ is well 
onstrained, as it is intuitively 
lear fromFig. 1.1. For instan
e, Tonry et al. (2003) found
ΩΛ − 1.4Ωm = 0.35 ± 0.14 (at 1σ). (1.52)This degenera
y dire
tion is almost orthogonal to the one in inferred from the angular diam-eter distan
e at z ∼ 1100 measured by the CMB, 
f. Fig. 4.1. Combination of supernovæ andCMB data is thus a very e�e
tive way to break the angular diameter distan
e degenera
yand to 
onstraint the matter and va
uum energy 
ontents separately. As we have seen, obser-vations of the matter distribution on large s
ales independently 
onstrain the matter densityparameter: it is a remarkable a
hievement of modern 
osmology that this �
osmi
 
omple-mentarity� seems to be pointing toward the same value, namely Ωm ∼ 0.3 and ΩΛ ∼ 0.7,see e.g. Spergel et al. (2003). At the same time, the puzzle of the nature of dark matter anddark energy remains unsolved, and we o�er some further remarks regarding the 
osmologi
al
onstant in � 7.3.



Chapter 2Cosmologi
al perturbation theory
In order to understand the physi
al origin of CMB anisotropies, we are interested in study-ing the evolution of perturbations in the photon distribution fun
tion, by perturbing atlinear order around the �ba
kground� solution for the homogeneous and isotropi
 Friedmann-Robertson-Walker (FRW) universe of � 1.2. That linear perturbation theory is su�
ient todes
ribe almost all aspe
ts of CMB physi
s is a 
onsequen
e of the smallness of the �u
tua-tions.In � 2.1 we introdu
e the relevant perturbation variables, dis
uss the issues of gauge trans-formations and gauge invariant formalism, extend the treatment to multiple �uids and de�neentropy perturbations. We then present the perturbed Einstein (� 2.2.1) and 
onservationequations (� 2.2.2) for an Universe �lled with four di�erent parti
le spe
ies: baryons, 
olddark matter (CDM), photons and massless neutrinos. The Bardeen equation is presentedin � 2.2.3, while � 2.2.4 is devoted to the derivation of the 
ollisionless Boltzmann equation,whi
h des
ribes massless neutrinos and photons after de
oupling. The last se
tion � 2.2.5
on
erns the Thomson s
attering pro
ess whi
h 
ouples photons and baryons before re
om-bination, and explains the origin of CMB polarization.Cosmologi
al perturbation theory in the four-dimensional FRW universe is a well stud-ied subje
t, see e.g. Kodama & Sasaki (1984); Mukhanov et al. (1992); Ma & Berts
hinger(1995); Durrer (1994). More re
ently, the formalism has been extended to higher-dimensionalmanifolds, involving extra dimensions (see e.g. Riazuelo et al., 2002), in view of the re
entinterest in string theory motivated braneworlds s
enarios.2.1 Perturbation variablesIn this se
tion, ba
kground (unperturbed) quantities are denoted by an overline, so thatthe perturbed energy density, e.g., is denoted by ρ = ρ̄ + δρ. The ba
kground quantitiesdepend on time only, while the linear perturbations are fun
tions of time and of the 3-spa
e
oordinate, i.e. δρ = δρ(η,x).2.1.1 Metri
 perturbationsWe perturb to linear order the FRW metri
 of Eq. (1.4, page 12) by setting

gµνdxµdxν = ḡµνdxµdxν + a2hµνdxµdxν (2.1)



24 Cosmologi
al perturbation theorywhere the perturbation hµν is given by
hµνdxµdxν = −2Adη2 + 2Bidxidη + 2Hijdxidxj . (2.2)The perturbation variables A,Bi,Hij are arbitrary fun
tions of the 4-
oordinate ve
tor xµ = (η,x).It is 
onvenient to split them into 
omponents whi
h transform irredu
ibly under therotation group SO(3). The ve
tor �eld Bi 
an thus be written as the sum of a gradient of as
alar and a divergen
eless 
omponent (ve
tor)

Bi = B|i +B(v)
i , B

(v)|i
i = 0 . (2.3)We split Hij into an isotropi
 and an anisotropi
 part

Hij = Cγ̄ij + Eij , (2.4)and Eij is further de
omposed in irredu
ible s
alar (spin 0), ve
tor (spin 1) and tensor (spin2) 
omponents as
Eij = E|ij +

1

2
(E(v)

j|i + E(v)
i|j ) + E(t)

ij , (2.5)where
E(v)j

|j = E(t)ij
|j = 0 (divergen
eless) , (2.6)
E(t)j
j = 0 (tra
eless) . (2.7)Note that at this stage we are still working in real spa
e and we do not perform an harmoni
analysis of the perturbation variables (see Kodama & Sasaki, 1984; Durrer, 1994 instead).At linear order, the di�erent spin 
omponents do not mix, and we 
an treat them separately.2.1.2 Perturbations of the energy-momentum tensorThe perturbed energy-momentum tensor is obtained by perturbing in Eq. (1.5) the energydensity

ρ = ρ̄+ δρ = ρ̄(1 + δ) , with δ ≡ δρ/ρ̄ , (2.8)the pressure
P = P̄ + δP ≡ P̄ (1 + πL) , with πL ≡ δP/P̄ , (2.9)and the spa
e 
omponents of the observer's 4-velo
ity

ui = δui ≡ −v
i

a
= −1

a
(v|i + v(v)i) , (2.10)

u0 = ū0 + δu0 =
1

a
(1 −A) , (2.11)and the se
ond line follows from the norm of the 4-velo
ity uµuµ = −1.The perturbation of the energy-momentum tensor is then written as

δTµν =
(

ρ̄δ + P̄ πL
)

ūµūν +
(

ρ̄+ P̄
)

(δuµūν + δuν ūµ) + P̄
(

πLḡµν + a2hµν + a2Πµν

)

, (2.12)



2.1 Perturbation variables 25where we have introdu
ed the anisotropi
 stress perturbation Πµν , whi
h is a tra
eless tensorand orthogonal to the 4-velo
ity, uµΠµν = 0. It des
ribes o�-diagonal, spa
e-spa
e pertur-bations in the stress-energy tensor, and 
an be split into a s
alar Π, a divergen
eless ve
tor
Π(v)
i and a tra
e-free tensor part Π(t)

ij , a

ording to:
Πij = (∇i∇j −

1

3
γ̄ij∇k∇k)Π +

1

2
(Π(v)

i|j + Π(v)
j|i) + Π(t)

ij , (2.13)The perturbation 
omponents of the stress-energy tensor therefore take the form
δT 0

0 = −ρ̄δ , (2.14a)
δT 0

i = (ρ̄+ P̄ )(Bi − vi) , (2.14b)
δT i0 = (ρ̄+ P̄ )vi , (2.14
)
δT ij = P̄ (γ̄ijπL + Πi

j) . (2.14d)2.1.3 Gauge transformationsBy 
hoosing the ba
kground spa
etime manifold and metri
 to be of the FRW form, we im-pli
itly assume that for all quantity of interest Q we are able to de�ne a spatially averaged Q̄,whi
h represents the ba
kground, homogeneous and isotropi
 value of Q on (M̄, ḡ). Considernow a slightly perturbed manifold, Mpert, endowed with a 
oordinate system xµ. The value of
Q on Mpert depends on the 
hoi
e of the 
oordinate system, Qpert = Q̄+ δQ(xµ). Along with
xµ, any other 
oordinate system whi
h leaves ḡ invariant is admissible, i.e. we 
an arbitrarilytransform the 
oordinates by an in�nitesimal amount

xµ → yµ = xµ + δxµ (2.15)thereby obtaining for Q in this newly de�ned 
oordinates
Qpert(xµ) → Qpert(yµ) = Qpert(xµ) + Lδx(Q̄) , (2.16)where LX(Q̄) is the Lie derivative of Q with respe
t to the ve
tor �eld X, see e.g. Straumann(2004). Su
h in�nitesimal 
oordinate transformations are 
alled gauge transformations, andthe above result is known as Stewart�Walker Lemma. Fixing the 
oordinate system on Mpertis 
alled a gauge 
hoi
e. Clearly, physi
al observables are geometri
al quantities, and aretherefore independent of the 
oordinate system in whi
h they are 
al
ulated. The form of theequations, however, 
an be very di�erent a

ording to the gauge 
hoi
e. It is often 
onvenientto �x the gauge in the way whi
h is best suited for the problem at hand.The gauge transformation Eq. (2.15) 
an be written in all generality as

δx0 = T , δxi = L|i + L(v)i . (2.17)By applying the transformation law (2.16) to the perturbed metri
 (2.1) under a gaugetransformation of the type (2.17), we obtain the following transformation properties for the
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al perturbation theorymetri
 variables:
A → A+ HT + Ṫ , (2.18a)
B → B − T + L̇ , (2.18b)
C → C + HT , (2.18
)
E → E + L , (2.18d)

B(v)i → B(v)i + L̇(v)i , (2.18e)
E(v)i → E(v)i + L(v)i , (2.18f)
E(t)ij → E(t)ij . (2.18g)The same pro
edure applied on the ba
kground stress-energy tensor T̄µν and 4-velo
ity

ūµ gives for the matter perturbation variables:
δ → δ − 3TH(1 + w) , (2.19a)

πL → πL − 3c2s
w

(1 + w)HT , (2.19b)
Π → Π , (2.19
)
v → v + L̇ , (2.19d)

v(v)i → v(v)i + L̇(v)
i , (2.19e)

Π(v)
i → Π(v)

i , (2.19f)
Π(t)
ij → Π(t)

ij . (2.19g)In order to 
ompletely �x the gauge, we need to spe
ify in Eq. (2.2) the fun
tional formof two s
alar fun
tions, 
orresponding to a spe
i�
 
hoi
e for (T,L), and one ve
tor, 
orre-sponding to a 
hoi
e for L(v)i. In the following, we brie�y summarize some popular gauge
hoi
es.Longitudinal gaugeLongitudinal gauge (also sometimes 
alled �Newtonian gauge�) is de�ned by requiring B =

E = B(v)i = 0, so that the perturbed metri
 element takes the formds2 = a2
[

−(1 + 2Ψ)dη2 + (1 − 2Φ)γ̄ijdxidxj] , (2.20)and we have de�ned the Bardeen potentials Ψ = A and Φ = −C (Bardeen, 1980), whi
hrepresent the gravitational time dilation and the perturbation to the 3-spa
e 
urvature, re-spe
tively. From any other gauge, the transformation T = B−Ė, L = −E and L̇(v)i = −B(v)ileads to the longitudinal gauge.Flat sli
ing gaugeThis gauge owns its name to the 
hoi
e E = C = E(v)i = 0, whi
h makes the spatialhypersurfa
es unperturbed, and the metri
 element isds2 = a2
[

−(1 + 2A)dη2 + 2Bidxidη + γ̄ijdxidxj] . (2.21)The 
oordinate transformation whi
h leads to �at sli
ing gauge is T = −C/H, L = −E and
L(v)i = −E(v)i.



2.1 Perturbation variables 27Syn
hronous gaugeIn syn
hronous gauge, 
onstant time hypersurfa
es are orthogonal to the 3-spa
e (hen
e thename), i.e. (η, xi) are Gaussian 
oordinates. This 
an be obtained by imposing A = B =

B(v)i = 0. Thus the metri
 presents perturbations in the spa
e-spa
e part only, and it is oftenwritten as ds2 = a2
[

−dη2 + (γ̄ij + hij)dxidxj] , (2.22a)
hij ≡ h|ij(η,x) + (∇i∇j −

1

3
γ̄ij∇k∇k)6η(η,x) . (2.22b)The above 
hoi
e does not �x 
ompletely the gauge: in fa
t, the gauge transformationwhi
h leads to syn
hronous gauge is

T = −1

a

∫

aAdη +
α

a
(2.23a)

L =

∫

(T −B)dη + β (2.23b)
L(v)i = −

∫

B(v)idη + β(v)i , (2.23
)whi
h presents a residual gauge freedom in the four arbitrary integration 
onstants α and
βi = β|i + β(v)i (where β(v)i must be divergen
eless). The four 
onstants 
orrespond todi�erent 
hoi
es of the 
onstant time hypersurfa
e and of the spatial 
oordinates on it. Thisleads to the presen
e of �
titious �gauge modes� in the perturbation equations, whi
h mustbe removed be
ause they are just an artifa
t of the 
hoi
e of the 
oordinate. Despite thisdi�
ulty, syn
hronous gauge is quite popular in the literature.Comoving gaugeIn the 
omoving gauge the total bulk velo
ity vanishes, δT 0

i = 0, whi
h translates intothe 
ondition Bi = vi. In order to 
ompletely �x the gauge one further requires E = 0and E(v)i = 0. This is a
hieved with the transformation T = B − v − Ė, L = −E and
L(v)i = −E(v)i. This gauge is the one whi
h resembles most the gauge invariant formalism(de�ned below), sin
e for the variables in 
omoving gauge we have

C = −ζ see Eq. (2.26)
δ = D see Eq. (2.30)
δα = ∆α see Eq. (2.37)
v = V see Eq. (2.31) . (2.24)2.1.4 Gauge invarian
eGeneral 
ovarian
e guarantees that all equations in general relativity 
an be written in a formwhi
h is independent of the gauge 
hoi
e (Bardeen, 1980; Kodama & Sasaki, 1984; Durrer,1994). From (2.16) it follows that for all tensor �elds with vanishing or 
onstant ba
kground
ontribution, so that LX(Q̄) = 0 ∀X, we 
an 
onstru
t gauge invariant perturbation equa-tions. Su
h perturbation variables are invariant under a gauge transformation of the type



28 Cosmologi
al perturbation theoryEq. (2.15). Sin
e we 
an 
ast all general relativisti
 equations in the form Q = 0, it is alwayspossible to 
onstru
t gauge invariant perturbation equations (Stewart & Walker, 1974).This approa
h has the advantage of leading to equations whi
h are independent of the
oordinate 
hoi
e, and whi
h are often easier to interpret physi
ally. Furthermore, gaugeindependent equations are free from spurious gauge modes. In order to write down therelevant gauge invariant perturbation equations, we make use of the transformation propertiesof the metri
 and matter variables under a 
hange of gauge, Eqs. (2.18) and (2.19).Metri
 variablesFrom Eq. (2.18) we 
an 
onstru
t the following 4 gauge invariant metri
 variables:
Φ ≡ −C −H(B − Ė) , (2.25a)
Ψ ≡ A+ H(B − Ė) + (Ḃ − Ë) , (2.25b)

Σ(v)
i ≡ Ė(v)

i −B(v)
i , (2.25
)

H (t)
ij ≡ E(t)

ij . (2.25d)The two s
alar variables Φ and Φ are 
alled Bardeen potentials (Bardeen, 1980). Anothervery useful variable is the gauge invariant 
urvature perturbation ζ, whi
h is de�ned as
ζ ≡ −C + H(v −B) , (2.26)where v is de�ned in Eq. (2.10). From the 
onstraint equation (2.50), it follows that for a�at universe, K = 0, the gauge invariant 
urvature perturbation is related to the Bardeenpotentials by

ζ = Φ +
H

H2 − Ḣ
(HΨ + Φ̇) . (2.27)There is only one gauge invariant ve
tor perturbation 
onstru
ted out of metri
 variables,Eq. (2.25
). Tensor variables are automati
ally gauge invariant, sin
e there is no spin-2
oordinate transformation.Matter variablesBe
ause of the Stewart�Walker Lemma (2.16), the variables Π, Π(v)

i and Π(t)
i are alreadygauge invariant, sin
e the ba
kground anisotropi
 stress vanishes.From s
alar matter variables alone we 
an 
onstru
t the gauge invariant variable

Γ ≡ πL − c2s
w
δ , (2.28)whi
h measures the intrinsi
 non-adiabati
ity of the matter 
ontent. More pre
isely, as weshall see below, Γ is related to the entropy produ
tion rate. If the pressure is a fun
tion ofthe lo
al energy density only, P = P (ρ), then we 
an write

δP

δρ
=
Ṗ

ρ̇
(2.29)and sin
e by de�nition δρ = δ · ρ, δP = πL · P , it follows that Γ = 0. In the 
ase of a perfe
t�uid, P = wρ and Γ vanishes. Non-zero 
ontributions to Γ arise from the relative entropy ofa mixture of several �uid 
omponents, whi
h is dis
ussed in � 2.1.5.



2.1 Perturbation variables 29The 
hoi
e of a gauge invariant density 
ontrast is not unique, and requires the use ofmetri
 variables. Meaningful 
ombinations are
Ds ≡ δ − 3(1 + w)H(B − Ė) (longitudinal), (2.30a)
Dg ≡ δ + 3(1 + w)C (�at sli
ing), (2.30b)
D ≡ δ − 3(1 + w)H(B − v) (
omoving). (2.30
)On super-horizon s
ales, Ds 
orresponds to the density 
ontrast in the longitudinal gauge; Dgis the density 
ontrast on homogeneous 3-spa
e hypersurfa
es (�at sli
ing); D redu
es to thedensity 
ontrast in the 
omoving gauge. The distin
tion is only important on super-horizons
ales, sin
e on small (sub-horizon) s
ales, all the above variables redu
e to the same (Durrer,2001).The remaining velo
ity perturbation 
an be written in gauge invariant form as

V ≡ v − Ė , (2.31a)
V (v)
i ≡ v(v)i − Ė(v)

i . (2.31b)Useful relations between those gauge invariant variables are
Dg = Ds − 3(1 + w)Φ , (2.32a)
D = Ds + 3(1 + w)HV , (2.32b)
D = Dg + 3(1 + w)ζ , (2.32
)
ζ = Φ + HV . (2.32d)2.1.5 Multiple �uidsThe above de�nitions assume that the universe is �lled with, or dominated by, only one�uid 
omponent. In a more realisti
 modelling, we must a

ount for the presen
e of severalmatter 
omponents. We will usually 
onsider four of them, namely photons (subs
ript γ),massless neutrinos (subs
ript ν), non-intera
ting 
old dark matter (CDM, subs
ript c) andbaryons (subs
ript b). The subs
ripts r (radiation) and m (matter) will refer generi
ally to arelativisti
 (wr = 1/3) and a non-relativisti
, dust-like (wm = 0) �uid, respe
tively. Variableswithout subs
ript designate the total perturbation.If multiple matter 
omponents are present, the total perturbation variables are the weightedsum of the variables for ea
h 
omponent:
δ =

∑

α

ρ̄α
ρ̄
δα , (2.33a)

vj =
∑

α

ρ̄α + P̄α
ρ̄+ P̄

vjα , (2.33b)
Πij =

∑

α

P̄α
P̄

Πij
α . (2.33
)The equation of state and the adiabati
 sound speed are de�ned for ea
h 
omponent

wα ≡ P̄α
ρ̄α

and c2α ≡
˙̄Pα
˙̄ρα
, (2.34)
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al perturbation theoryand for the mixture we have
w ≡ P̄

ρ̄
and c2s ≡

˙̄P
˙̄ρ
. (2.35)The transformation properties of the variables for ea
h 
omponents are the same as for thetotal variables, Eqs. (2.19). Hen
e for ea
h matter 
omponent we 
an de�ne gauge invariantvariables as in Eqs. (2.28, 2.30, 2.31), yielding for the s
alar part:

Γα ≡ πα,L − c2α
wα

δα , (2.36a)
Vα ≡ vα − Ė , (2.36b)

Dα,s ≡ δα − 3(1 + wα)H(B − Ė) , (2.36
)
Dα,g ≡ δα + 3(1 + wα)C , (2.36d)
Dα ≡ δα − 3(1 + wα)H(B − vα) . (2.36e)In the presen
e of multiple matter 
omponents, it is often useful to work with the gaugeinvariant density 
ontrast
∆α ≡ δα − 3(1 + wα)H(B − v) , (2.37)whi
h 
orresponds to the density 
ontrast in the gauge where the total matter is at rest, i.e.the 
omoving gauge introdu
ed on page 27. Noti
e that on the right hand side it appears thetotal velo
ity v, rather then the velo
ity of the α 
omponent as in (2.36e). This new variableis related to the density 
ontrast in the �at sli
ing gauge by

∆α = Dg,α + 3(1 + wα) (Φ + HV ) . (2.38)2.1.6 Entropy perturbationsWhen more than one 
omponent is present, entropy perturbations 
an arise even for a mixtureof perfe
t �uids. The total non-adiabati
ity of the mixture is given by (2.28), where thequantities appearing on the right hand side have to be interpreted as total variables. Usingthe de�nitions (2.33), we obtain
P̄Γ = P̄Γint +

∑

α

δαρ̄α(c2α − c2s) ,= P̄ (Γint + Γrel) . (2.39)We have introdu
ed the total intrinsi
 entropy perturbation
Γint =

∑

α

P̄α
P̄

Γα (2.40)and the relative entropy perturbation Γrel, whi
h using the ba
kground energy 
onservation,Eq. (1.16, page 13), 
an be re
ast as
P̄Γrel =

1

2

∑

α,β

(1 + wα)(1 + wβ)ρ̄αρ̄β
(1 + w)ρ̄

(c2α − c2β)

(

δα
1 +wα

− δβ
1 + wβ

)

. (2.41)Here we have assumed that the 
omponents are de
oupled from ea
h other, i.e. that Q̄να = 0in (1.16, page 13), see (Malik et al., 2003) for a generalization to the 
ase of intera
ting �uids.



2.2 Perturbation equations 31The quantity Γrel represents relative entropy perturbations whi
h are produ
ed by thedi�erent dynami
al behavior of the matter 
omponents with di�erent sound speed. Theentropy perturbation between the 
omponents α and β is de�ned as
Sαβ ≡ δα

1 + wα
− δβ

1 + wβ
. (2.42)It is easy to see that the entropy perturbations are gauge invariant quantities by substitutingthe gauge dependent density 
ontrasts on the right hand side with the gauge invariant densityvariables de�ned in (2.37), obtaining

Sαβ =
∆α

1 + wα
− ∆β

1 + wβ
. (2.43)In order to 
larify the physi
al meaning of Sαβ, 
onsider a mixture of radiation and dust-like matter. We are interested in �u
tuations of the number density (per physi
al volume)ratio of the two spe
ies:

δ

(

nr
nm

)

/(nrnm) =
δnr
nr

− δnm
nm

. (2.44)Re
all that (see e.g. Kolb & Turner, 1990) nr ∝ s ∝ T 3, with s the radiation entropy pervolume, hen
e
δnr
nr

=
δs

s
= 3

δT

T
=

3

4

δρr
ρ̄r

(2.45)For matter we have
δnm
nm

=
δρm
ρ̄m

, (2.46)and therefore
δnr
nr

− δnm
nm

=
δr

(1 + wr)
− δm

(1 + wm)
= Srm . (2.47)Thus a non vanishing relative entropy perturbation means that there are spatial inhomo-geneities in the relative number density of the the two �uids, whi
h 
an be understood as aspatial variation in the equation of state. The above results are generalized in � 4.3.2.2 Perturbation equationsIn this se
tion, we write down the �rst order perturbation equations using the gauge invariantformalism and variables de�ned above. For 
ompleteness, we also give the ve
tor and tensorequations, but in the rest of this work we will 
on
entrate ex
lusively on the s
alar se
tor.2.2.1 Einstein equationsThe perturbed Einstein equations

δGµν = 8πGδTµν (2.48)are split in their s
alar, ve
tor and tensor parts.



32 Cosmologi
al perturbation theoryS
alar equationsThere are 4 s
alar equations for the 4 gauge invariant quantities Φ,Ψ, V and D:
(△ + 3K)Φ = 4πGa2ρ̄D (Poisson), (2.49)

HΨ + Φ̇ = 4πGa2ρ̄(1 + w)V (
onstraint), (2.50)
Φ − Ψ = 8πGa2ρ̄wΠ (anisotropi
 stress), (2.51)

HU̇ + (H2 + 2Ḣ)U = 4πGa2ρ̄

(

c2sDg + wΓ +
2

3
w△Π

)

, (2.52)where
U ≡ Ψ +

H2 − Ḣ
H2

Φ +
Φ̇

H . (2.53)Re
all that Dg is related to D, V and Φ via Eqs. (2.32, page 29), and we have assumedan equation of state of the form (1.7, page 12). Eq. (2.49) is the general relativisti
 analogueof the Poisson equation. In order to 
lose this system, we need to spe
ify the matter 
ontentby giving w, c2s, Γ and Π. For a single perfe
t �uid, Γ = Π = 0, hen
e from the anisotropi
stress equation (2.51) it follows that Ψ = Φ.We shall see below that an evolution equation for Π follows e.g. from the kineti
 des
riptionprovided by the Boltzmann equation, see Eq. (2.127, page 42). For multiple �uids, we willalso rewrite Γ in terms of the relative entropy perturbations, as in Eq. (2.41).Ve
tor equationsThe ve
tor part yields a 
onstraint and an evolution equation for V (v)
i and Σ(v)

i :
(

2K + △ + 4(Ḣ − H2)
)

Σ(v)
i = 16πGρ̄a2(1 + w)V (v)

i , (2.54)
Σ̇(v)
i + 2HΣ(v)

i = 8πGρ̄a2wΠ(v)
i . (2.55)For a perfe
t �uid, Π(v)

i = 0, the above equations give in a �at universe on large s
ales(su
h that gradients 
an be negle
ted)
Σ(v)
i = −V (v)

i ∝ 1

a2
. (2.56)Therefore in the absen
e of a
tive seeds, ve
tor perturbations are always de
aying on larges
ales.Tensor equationThe tensor part yields an equation des
ribing the gravitational waves. It is the equation of afor
ed harmoni
 os
illator, with a damping term due to the expansion of the universe:

Ë(t)
ij + 2HĖ(t)

ij + (2K −△)E(t)
ij = 8πGρ̄a2Π(t)

ij . (2.57)On super-horizon s
ales and for zero 
urvature, the term ∝ E(t)
ij is negligible. The homoge-neous equation in the radiation era, when H = η−1, has a de
aying solution E(t)

ij ∝ η−1 anda 
onstant solution, E(t)
ij = 
onst. As a mode enters the horizon, the os
illatory behaviortakes over, and the wave propagates with a frequen
y k2 + 2K and is damped as a−1. In the
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e of anisotropi
 stress and in a �at universe, K = 0, the general solution of (2.57) for
Π = 0, writing E(t)

ij = h(x, η)εij(x) and going to Fourier spa
e in a �at universe, is given by
h = (kη)1−q [Ajq−1(kη) +Bnq−1(kη)] , (2.58)where jν(x) and nν(x) are the Bessel and von Neumann fun
tions of order ν, respe
tively(see Eqs. 3.10, page 48) and a ∝ ηq.2.2.2 Conservation equationsThe 
onservation equations, whi
h follow from the 
ontra
ted Bian
hi identity, o�er evolutionequations whi
h are sometimes of a simpler form and are handy to manipulate. From theperturbed energy 
onservation equation

δ(∇µT̄
µν) = 0 (2.59)we obtain the following equations for a mixture of non-intera
ting �uids.S
alar equationsThere are two s
alar 
onservation equations, one for the density 
ontrast and the se
ond forthe velo
ity perturbation. In terms of Dg,α the 
onservation equations read:

Ḋg,α + 3H(c2α − wα)Dg,α = −3HΓαwα + (1 + wα)△Vα , (2.60)
V̇α + (1 − 3c2α)HVα = Ψ + 3c2αΦ +

wα
1 + wα

(

Γα +
c2α
wα

Dg,α +
2

3
(△ + 3K)Πα

)

. (2.61)Is is sometimes 
onvenient to express the above in terms of the density 
ontrast Dα:
Ḋα − 3wαHDα = (△ + 3K) [(1 +wα)Vα + 2HwαΠα] + 3

1 + wα
1 + w

(H2 + K)(V − Vα) , (2.62)
V̇α + HVα = Ψ +

c2α
1 +wα

Dα +
wα

1 + wα

(

Γα +
2

3
(△ + 3K)Πα

)

. (2.63)Ve
tor equationWe obtain one evolution equation for the vorti
ity Ω(v)
iα ≡ Σ(v)

iα + V (v)
iα :

Ω̇(v)
i,α + HΩ(v)

i,α(1 − 3c2α) =
1

2

wα
1 + wα

△Π(v)
i,α . (2.64)If the anisotropi
 stress sour
e term is absent, we 
an rewrite the above equation asddη (Ω(v)

i,αa
1−3c2α) = 0 , (2.65)hen
e

Ω(v)
i,α ∝ a3c2α−1 . (2.66)
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al perturbation theory2.2.3 The Bardeen equationIt is often 
onvenient to have an evolution equation for the Bardeen potential in terms of thetotal matter 
ontent. By 
ombining the 
onservation equation Eq. (2.60) with the Einsteinequations (2.49�2.51) we obtain a se
ond order equation, 
alled the Bardeen equation, for Φ:
Φ̈ + 3H(1 + c2s)Φ̇ +

[

3(c2s − w)H2 − (1 + 3c2s)K − c2s△
]

Φ = gΦ , (2.67)where the sour
e term gΦ is generated by the matter anisotropi
 stress and entropy pertur-bation:
gΦ = 8πGa2P

[

HΠ̇ + [2Ḣ + 3H2(1 − c2s/w)]Π + 1
2△Π + 1

2Γ
]

. (2.68)The above equation 
an be re
ast in an evolution equation for the gauge invariant 
urvatureperturbation, Eq. (2.27). For hydrodynami
al matter, i.e. setting Π = 0 and for a �at universe(K = 0) we �nd
ζ̇ =

H
H2 − Ḣ

[

c2s△Φ + 3
2H

2wΓ
]

. (2.69)This expression will be used when dis
ussing the evolution of 
urvature and entropy pertur-bations.2.2.4 Collisionless Boltzmann equationWe brie�y re
all in the following the basi
s of relativisti
 kineti
 theory, for more details seee.g. de Groot et al. (1980). Consider the phase spa
e given by the the tangent bundle
T ≡ {(xµ, pµ)|xµ ∈ M, pµ ∈ Tx} (2.70)where M is the spa
etime manifolds and Tx its tangent spa
e at the point xµ. For a parti
leof mass m, its distribution fun
tion f(xµ, pµ) is de�ned on the mass-shell
Pm(xµ) ≡ {pµ ∈ Tx|pµpµ = −m2} (2.71)The Liouville operator L is de�ned on T , and it gives the evolution of f(xµ, pµ) along theparti
le world lines, a

ording to the Boltzmann equation

L [f ] = C [f ] , (2.72)whi
h states that the rate of 
hange of f is due to the 
ollision term C [f ]. For the purpose ofstudying relativisti
 parti
les su
h as photons and massless neutrinos, we will treat the 
ase
m = 0 only. The hereby derived equations will then be applied to the des
ription of neutrinosand of photons after re
ombination. Further details and the general 
ase for massive parti
les
an be found in e.g. Durrer (1994); Uzan (1998).We now pro
eed with perturbing the left hand side of Eq. (2.72). Its ba
kground solutionwas presented in � 1.2.2, and was shown to be of the form f̄ = f̄(ap), see Eq. (1.45), where
E2 = p2 ≡ pµpνg

µν . By splitting the distribution fun
tion into a ba
kground and a perturbedpart,
f(η, xi, p, ni) = f̄(η, p) + F (η, xi, p, ni) (2.73)we move to a phase spa
e whi
h di�ers to linear order from the one of f̄ . Therefore the 
hoi
eof F and its transformation properties depend on the isomorphism relating the �ba
kground�
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e. By an opportune 
hoi
e of the isomorphism, it 
an beshown (Durrer, 1994) that under a gauge transformation F transforms as
F → F + p

∂f̄

∂p

[

HT + niTi
]

. (2.74)It follows that the following variable
F ≡ F − p

∂f̄

∂p

[

C + ni(Ėi −Bi)
]

, (2.75)is gauge invariant. In terms of F , the 
ollisionless Boltzmann equation reads
∂F
∂η

+
∂F
∂xi

ni − pH∂F
∂p

− (3)Γijkn
jnk

∂F
∂ni

= p
∂f̄

∂p

[

ni∂i(Ψ + Φ)
]

, (2.76)and (3)Γijk are the Christo�el symbols of the ba
kground 3-spa
e. The above equation isin manifestly gauge invariant form, and we noti
e that spatial variations in the Bardeenpotential a
t as sour
e for perturbations in the distribution fun
tion.By integrating this equation over the parti
le energies, we obtain a di�erential equationfor the brightness perturbation I, de�ned as
I = Ī(η) + I(η, xi, ni) ≡ 4π

∫ ∞

0
f̄p3dp+ 4π

∫ ∞

0
Fp3dp . (2.77)The brightness represents the energy per unit solid angle as measured by an observer atposition xi. The photon energy is just the monopole of the brightness, i.e.

ργ =

∫ dΩ
4π
I , (2.78)and therefore ρ̄γ = Ī. From Eq. (2.76) we obtain

İ +

(

ni∂i + 4H− (3)Γijkn
jnk

∂

∂ni

)

I = −4Ī
[

ni∂i(Ψ + Φ)
]

. (2.79)The above 
an be rewritten in terms of the temperature 
ontrast
Θ(η, xi, ni) ≡ δT

T
=

1

4

I
Ī

(2.80)and using the ba
kground energy 
onservation equation we obtain
Θ̇ +

(

ni∂i − (3)Γijkn
jnk

∂

∂ni

)

Θ = −ni∂i(Ψ + Φ) . (2.81)This is the Boltzmann equation for relativisti
, 
ollisionless parti
les, whi
h relates gravita-tional perturbations to temperature �u
tuations of their distribution fun
tion.The Boltzmann hierar
hyWe now go to Fourier spa
e, and we restri
t ourselves to the spatially �at 
ase, K = 0, sothat the eigenfun
tions of the Lapla
ian are just plane waves and (3)Γijk = 0 (an harmoni
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al perturbation theoryde
omposition for non-�at spa
es 
an be found e.g. in Vilenkin & Smorodinskii, 1964; Kodama& Sasaki, 1984), so that for any s
alar f
f(η,x) =

1

(2π)3/2

∫ d3kf(η,k)eıkx , (2.82)and in general we denote the real spa
e f and its harmoni
 transform with the same symbol.De�ning µ ≡ njkj/k and k ≡
√

kiki we obtain from Eq. (2.81)
Θ̇ + ıµkΘ = −ıµk(Ψ + Φ) . (2.83)Assuming that Θ does not depend expli
itly on ki, then the dependen
e on the photonsmomentum dire
tion 
omes in only via µ. In that 
ase Θ = Θ(η, k, µ), and we will suppressthe expli
it time dependen
e. We now perform an expansion in Legendre polynomials1

Θ(µ, k) =
∑

ℓ

(2ℓ+ 1)PℓΘℓ , (2.84)
Θℓ(k) ≡

1

2

∫ 1

−1
dµΘ(µ, k)Pℓ(µ) , (2.85)where Pℓ(x) is the Legendre polynomial of order ℓ, whi
h satisfy

P0(x) =1 , (2.86)
P1(x) =x , (2.87)
P2(x) =

1

2
(3x2 − 1) , (2.88)

(ℓ+ 1)Pℓ+1(x) =(2ℓ+ 1)xPℓ(x) − ℓPℓ−1(x) . (2.89)From Eq. (2.83) follows an in�nite hierar
hy of equations for the moments of the Boltzmannequation:
Θ̇0 + ıkΘ1 = 0 , (2.90)

Θ̇1 +
1

3
ıkΘ0 +

2

3
ıkΘ2 = −1

3
ık(Φ + Ψ) , (2.91)

Θ̇ℓ +
ℓ

2ℓ+ 1
ıkΘℓ−1 +

ℓ+ 1

2ℓ+ 1
ıkΘℓ+1 = 0 (ℓ ≥ 2) . (2.92)Gradients of the Bardeen potentials a
t as a sour
e for the �rst moment. Be
ause of there
ursion relation, ea
h multipole moment ℓ is 
oupled to the pre
eding and the followingmoment. Therefore, power is transferred to higher moments, and in prin
iple we need tosolve an in�nite number of 
oupled di�erential equations. Simply trun
ating the hierar
hy byimposing Θℓmax = 0 is not an optimal solution, sin
e the error due to the trun
ation will re�e
tba
k to lower moments via the 
oupling. A more e�e
tive trun
ation s
heme is dis
ussed inMa & Berts
hinger (1995). We noti
e that at early times and super-horizon s
ales (i.e.

kη ≪ 1) higher moments are suppressed by su

essive powers of kη, Θℓ ∼ O(Θℓ−1kη), andhen
e the �rst few moments are su�
ient to a

urately des
ribe the temperature �u
tuation.1Di�erent normalizations for the expansion 
oe�
ient are 
ommonly used in the literature and their relationwith the one used here is: in Hu & Sugiyama (1995b) ΘHS = ıℓ(2ℓ + 1)Θℓ (noti
e that in this work theBardeen potentials are su
h that ΨHS = Ψ but ΦHS = −Φ); in Ma & Berts
hinger (1995) Θ is denoted by
Ψ and ΨMB

ℓ = ıℓΘℓ, whi
h is the same 
onvention used by Seljak & Zaldarriaga (1996); in Durrer (1994)
Θ is denoted by M and Mℓ = Θℓ/2.



2.2 Perturbation equations 37Relations with ma
ros
opi
 quantitiesFrom the de�nition of the stress-energy tensor (de Groot et al., 1980)
T µν(xα) =

∫ d3p

p0
pµpνf(xα, pµ) (2.93)and 
omparing with Eq. (2.14, page 25), we 
an establish the hydrodynami
al gauge invariantvariables as integrals over momenta of the gauge invariant brightness perturbation:

Dg,γ =
1

ρ̄γ

∫ dΩ

4π
I , (2.94a)

V j
γ = − 1

(1 +wγ)ρ̄γ

∫ dΩ
4π
njI , (2.94b)

Πij =
1

wγ ρ̄γ

∫ dΩ
4π
nijI . (2.94
)Rewriting the above in terms of multipole moments of the temperature perturbation, we havethe identities in harmoni
 spa
e2

Θ0 =
1

4
Dg,γ , (2.95a)

Θ1 = −1

3
ıkVγ , (2.95b)

Θ2 = − 1

12
k2Πγ . (2.95
)Trun
ating the Boltzmann hierar
hy at the third moment by setting Θℓ = 0 for ℓ ≥ 3, weobtain

Ḋg,γ +
4

3
k2Vγ = 0 , (2.96)

V̇γ −
1

4
Dg,γ = −1

6
k2Πγ + Φ + Ψ , (2.97)

Π̇γ −
8

5
Vγ = 0 . (2.98)Unsurprisingly, we re
over the two 
onservation equations of (2.60-2.61, page 33) for ra-diation (with wγ = c2γ = 1/3 and Γ = 0), supplemented with an evolution equation for Πγ .These equations are appropriate for relativisti
, 
ollisionless and massless parti
les su
h asneutrinos. At later times, however, higher order moments need to be taken into a

ount.Photons are s
attered by ele
trons, and to des
ribe their evolution we now turn to the ap-propriate 
ollision term.2Noti
e that the monopole of our F 
orresponds (up to multipli
ative 
onstants) to the density perturbationin the 
omoving gauge; in the literature the temperature perturbation in Newtonian gauge is often employed(as in (Hu & Sugiyama, 1995b)), in whi
h 
ase an extra term ∝ Φ appears along with ΘN

0 . With thenormalization 
onvention of (Hu & Sugiyama, 1995b), the relation between our monopole and the one inNewtonian gauge is Θ0 = ΘN
0 − Φ. All other multipoles ℓ > 0 do not su�er from this ambiguity and aregauge independent.



38 Cosmologi
al perturbation theory2.2.5 Thomson s
atteringWe now 
onsider the 
ase of elasti
 Thomson s
attering between photons and non-relativisti
ele
trons. We give some elements of the derivation for the 
ollision term for the total photonintensity, while we just outline the polarization treatment. A detailed derivation 
an be foundin Kosowsky (1996); Durrer (2001).Thomson s
attering of unpolarized light generates linear polarization if the in
ident inten-sity has a quadrupolar anisotropy. In the tight 
oupling regime, 
ollisions make the photonsdistribution fun
tion uniform in the ele
trons rest frame, and therefore no polarization 
anarise. However, during the weak 
oupling regime just before last s
attering, the mean freepath of photons grows and a sizable temperature quadrupole is generated, whi
h a
ts as asour
e for polarization, as we brie�y des
ribe in this se
tion. After de
oupling, free streaming
onserves the polarization state, whi
h 
an only be 
hanged by further res
attering due toreionization, see � 4.1.3.2.2.2.5.1 Stokes parametersThe polarization state of light is usually des
ribed in terms of Stokes parameters, see e.g.Ja
kson (1975). The ele
tri
 �eld of a plane mono
hromati
 ele
tromagneti
 wave propagat-ing in the z dire
tion is
E(x, t) = Eeı(ωt−kz) , (2.99)where the 
omplex ve
tor E des
ribing the polarization state of the wave is given by
E =







axe
ıθx

aye
ıθy

0






. (2.100)Instead of using the four numbers (ax, ay, θx, θy), it is 
onvenient to introdu
e the Stokesparameters

I ≡ a2
x + a2

y , (2.101)
Q ≡ a2

x − a2
y , (2.102)

U ≡ 2axay cos(θx − θy) , (2.103)
V ≡ 2axay sin(θx − θy) , (2.104)whi
h 
an be dire
tly measured with a linear polarizer and a quarter-wave plate. Their phys-i
al interpretation is straightforward: I gives the total intensity, Q measures the di�eren
ebetween x and y polarization, U gives phase information for the two linear polarizations,and V determines the di�eren
e between positive and negative 
ir
ular polarization. I and

V are physi
al observables independent of the 
oordinate system, but Q and U mix under arotation by an angle φ of the x− y plane:
Q′ = Q cos(2φ) + U sin(2φ) (2.105a)
U ′ = −Q sin(2φ) + U cos(2φ) , (2.105b)from whi
h it is easy to derive that the physi
ally observable quantity is the polarizationve
tor P, lying in the x − y plane, with magnitude (Q2 + U2)1/2 and with polar angle

α = 1
2 tan−1 U

Q .
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θE iny
E inx

Eouty

Eoutx

nin
nout

Figure 2.1: Geometry of the the Thomson s
attering pro
ess in the rest frame of the ele
tron,represented by the sphere in the 
enter. A photon beam is in
oming from the left and iss
attered o� with an angle θ.Finally, the four stokes parameters are not independent, but satisfy the relation
I2 = Q2 + U2 + V 2 . (2.106)2.2.5.2 S
attering 
ross se
tionWe now 
onsider the s
attering pro
ess in the rest frame of the ele
tron, with the geometry ofFig. 2.1. The Thomson s
attering 
ross se
tion for an in
ident wave with linear polarization

E in into a s
attered wave with polarization Eout isdσdΩ =
3σT
8π

|E in · Eout|2 , (2.107)with σT the Thomson s
attering 
ross se
tion. It is 
onvenient to work with the partialintensities Ix and Iy, de�ned as
Ix ≡ I +Q

2
and Iy ≡

I −Q

2
. (2.108)The in
oming wave is unpolarized by assumption, so I inx = I iny = I in/2, and for the outgoingwave we �nd

Ioutx =
3σT
16π

I in and Iouty =
3σT
16π

I in cos2(θ) (2.109)or, in terms of the outgoing Stokes parameters
Iout =

3σT
16π

I in(1 + cos2(θ)) , (2.110)
Qout =

3σT
16π

I in sin2(θ) , (2.111)
Uout = 0 . (2.112)
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al perturbation theoryThe value of Uout has been found by re
al
ulating Q in an outgoing basis whi
h has beenrotated by π/4. Thomson s
attering does not generate 
ir
ular polarization, so V = 0 andwe will not 
onsider it further. Sin
e from (2.106) there are only three independent Stokesparameters, and V = 0 all the time, the des
ription in terms of I and Q is su�
ient, and wewont use U any further.The total outgoing intensities are obtained by integrating over all in
oming dire
tions,and rotating the result into a 
ommon 
oordinate system using (2.105):
Iout =

3σT
16π

∫ dΩ(1 + cos2(θ))I in(θ, φ) , (2.113)
Qout =

3σT
16π

∫ dΩ sin2(θ) cos(2φ)I in(θ, φ) . (2.114)2.2.5.3 Temperature hierar
hyWe are now in the position of deriving the 
ollision term due to Thomson s
attering for theintensity distribution fun
tion f , whi
h is of the form
C [f ] =

df+dη − df−dη . (2.115)where f+(xµ, pµ) (f−) denotes the distribution of parti
les within (∆xµ,∆pi/p0) of (xµ, pµ)gained (lost) in the s
attering pro
ess. A

ording to the hypothesis of mole
ular 
haos(de Groot et al., 1980), the 
ontribution lost is just proportional to the ele
tron densitytimes the photon distribution, hen
e with the de�nitions (1.40�1.41, page 16)df−dη (xµ, p, ni) = τ̇ f(xµ, p, ni) , (2.116)where
τ̇ ≡ aσTne (2.117)is the di�erential Thomson opti
al depth, and ne is the free ele
tron density. The 
ontributions
attered into pi = pni is most easily evaluated in the ele
tron's rest frame, whi
h we denoteby a tilde. After averaging over in
oming and summing over outgoing polarization states, weobtain df̃+dt̃ (xµ, p̃, ñ) = σTne

∫ dΩ̃ε

4π
f̃(p̃, ñ)ω(ñ, ε) , (2.118)where the angular dependen
e of the s
attered intensity is, from (2.113)

ω(ε, ε′) =
3

4
[1 − (ε · ε′)2] = 1 +

3

4
εijε

′ij (2.119)with εij ≡ εiεj − 1
3δij. We now transform into the 
oordinate system, in whi
h the photondistribution fun
tion f is de�ned. To �rst order we have the relations

p̃ = p
(

1 + ni(v
i
b −Bi)

)

, (2.120)
ñ = n , (2.121)sin
e aberration appears only at se
ond order. We have used the baryon 3-velo
ity vib, sin
eele
trons and baryons are ele
tromagneti
ally 
oupled and their velo
ities are the same. Note



2.2 Perturbation equations 41that the above transformation assumes vb ≪ 1, i.e. that the ele
trons are non-relativisti
,
onsistent with the fa
t that we 
onsider vb as a perturbation. Splitting the distributionfun
tion in an isotropi
 part and a (gauge dependent) perturbation, f = f̄(η, p) + δf(xi, pi),we then 
ompute the energy integrated 
ollision term
4π

∫

p3dpC [f ] = aσTne

[

−4ni(v
i
b −Bi)ρ̄γ + δργ − δI(n) +

3

4
nijδIij

]

, (2.122)and we have introdu
ed the gauge dependent brightness perturbation δI ≡ 4π
∫ dpp3δf andits se
ond moment

δIij ≡
∫ dΩε

4π
εijδI(ε) . (2.123)The expression Eq. (2.122) 
an be brought in expli
it gauge invariant form by substitutingthe gauge dependent variables with the 
orresponding gauge independent 
ounterparts. Aftersome manipulations we obtain

4π

∫

p3dpC [f ] = 4τ̇ ρ̄γ

[

Θ0 − niV
i
b − Θ +

1

16
nijΠ

ij
γ

]

, (2.124)where we have used the identity (2.94
, page 37). In view of adding the 
ollision term onthe right hand side of the hierar
hy (2.90, page 36), it is 
onvenient to rewrite it in terms ofmultipoles of the temperature �u
tuation Θ and transform to Fourier spa
e
4π

∫

p3dpC [f ] = −4τ̇ ρ̄γ



(ıkVb + 3Θ1)P1 +
9

2
Θ2P2 +

∑

ℓ≥3

(2ℓ+ 1)ΘℓPℓ



 . (2.125)A few remarks are in order at this point: as a 
onsequen
e of the 
onservation of energy inthe elasti
 
ollision, non-relativisti
 Thomson s
attering does not 
ontain a monopole, whilethe dipole 
orresponds to a velo
ity mismat
h between photons and baryons, as is apparentfrom the �rst term on the right hand side with 3Θ1 = −ıkVγ . The angular dependen
e of thes
attering generates a quadrupole moment. In the limit of very many 
ollisions, τ̇ ≫ H, allmultipoles ℓ > 1 are driven to zero, therefore in the strong 
oupling regime, the photons andbaryons velo
ity 
oin
ide and higher order moments are suppressed: thus the tight-
oupledphotons-baryons system 
an be des
ribed as an hydrodynami
al �uid in term of the zerothand �rst moments only.The Boltzmann hierar
hy, Eq. (2.90, page 36), supplemented with the above 
ollision termfor photons-ele
trons Thomson s
attering, now be
omes:
Θ̇0 + ıkΘ1 = 0 , (2.126a)

Θ̇1 +
1

3
ık(Θ0 + Φ + Ψ) +

2

3
ıkΘ2 = −τ̇(1

3
ıkVb + Θ1) , (2.126b)

Θ̇2 +
2

5
ıkΘ1 +

3

5
ıkΘ3 = −τ̇ 9

10
Θ2 (2.126
)

Θ̇ℓ +
ℓ

2ℓ+ 1
ıkΘℓ−1 +

ℓ+ 1

2ℓ+ 1
ıkΘℓ+1 = −τ̇Θℓ (ℓ ≥ 3) . (2.126d)Rewriting the above in terms of ma
ros
opi
 quantities and 
utting the hierar
hy at ℓ = 2



42 Cosmologi
al perturbation theorygives instead of Eq. (2.96, page 37)
Ḋg,γ +

4

3
k2Vγ = 0 , (2.127a)

V̇γ −
1

4
Dg,γ +

1

6
k2Πγ − Φ − Ψ = −τ̇(Vγ − Vb) , (2.127b)

Π̇γ −
8

5
Vγ = −τ̇ 9

10
Πγ . (2.127
)2.2.5.4 Polarization hierar
hyAs dis
ussed in � 2.2.5.2, photons s
attered at a right angle are are preferentially polarizedalong the dire
tion orthogonal to the s
attering plane (i.e. in the Eoutx dire
tion in Fig. 2.1when θ = π/2). Expanding the in
oming intensity in spheri
al harmoni
s a

ording to

I in(θ, φ) =
∑

ℓ

∑

m

IℓmYℓm(θ, φ) , (2.128)then the resulting Qout, from (2.114) is
Qout =

3σT
4π

√

2π

15
Re I22 , (2.129)whi
h shows that if the in
oming photon intensity as a fun
tion of dire
tion has a non-zero
omponent of Y22, asso
iated with an ℓ = 2 quadrupolar moment, then there will be a netlinear polarization of the outgoing distribution.In analogy with the intensity distribution fun
tion f , we denote by fQ = f̄Q(η, p) +

FQ(η, xi, p, ni) the perturbed distribution fun
tion in phase spa
e and by ΘQ the brightnessperturbation for the Stokes parameter Q,
ΘQ =

1

4

∫∞
0 f̄Qp3dp
∫∞
0 FQp3dp . (2.130)Then the 
ollisional Boltzmann equation for the brightness perturbation fQ in Fourier spa
eis (Bond & Efstathiou, 1984; Kosowsky, 1996)

Θ̇Q + ıkµΘQ = −τ̇
[

ΘQ +
1

2
(1 − P2)

(

Θ2 + ΘQ
2 − ΘQ

0

)

]

. (2.131)Expanding the equation in Legendre polynomials as in Eq. (2.85, page 36), we obtain theBoltzmann polarization hierar
hy:
Θ̇Q

0 + ıkΘQ
1 = − τ̇

2

[

Θ2 + ΘQ
0 + ΘQ

2

]

, (2.132)
Θ̇Q

1 +
1

3
ık
[

ΘQ
0 + 2ΘQ

2

]

= −τ̇ΘQ
1 , (2.133)

Θ̇Q
2 +

2

5
ıkΘQ

1 +
3

5
ıkΘQ

3 = − τ̇

10

[

9ΘQ
2 − Θ2 + ΘQ

0

]

, (2.134)
Θ̇Q
ℓ +

ℓ

2ℓ+ 1
ıkΘQ

ℓ−1 +
ℓ+ 1

2ℓ+ 1
ıkΘQ

ℓ+1 = −τ̇ΘQ
ℓ (ℓ ≥ 3) . (2.135)Polarization e�e
ts also feed ba
k into the temperature 
ollision term, modifying the ℓ = 2equation in the temperature hierar
hy (2.126) as follows:

Θ̇2 +
2

5
ıkΘ1 +

3

5
ıkΘ3 = − τ̇

10

[

9ΘQ
2 − Θ2 + ΘQ

0

]

. (2.136)



2.2 Perturbation equations 432.2.5.5 E and B polarizationFrom the the hierar
hy of equations (2.132) it is possible to determine the brightness pertur-bation for Q today, and de�ne the 
orresponding power spe
trum. However, the approa
husing Stokes parameters is limited by the fa
t that U and Q are not rotationally invariant,but are de�ned with respe
t to a �xed 
oordinate system on the sky. Not only the superpo-sition of di�erent modes is 
umbersome be
ause of the behavior of Q and U under rotation,but the 
oordinate system be
omes ambiguous and ill-de�ned on the whole sky, sin
e it isimpossible to de�ne a rotationally invariant orthogonal basis on the two-sphere.The solution is to 
onstru
t two spin 2 quantities from Q and U , whi
h one then expandsin the appropriate spin-weighted basis on the two-sphere (Zaldarriaga & Seljak, 1997), andredu
es to s
alar quantities by a
ting on them with spin raising and lowering operators.This manipulations yield two s
alar quantities whi
h are rotationally invariant, and thereforewell de�ned on the whole sky. Furthermore, one 
an expand these quantities in terms ofusual spheri
al harmoni
s and build two linear 
ombinations whi
h behave di�erently underparity transformation: the 
ombination labelled E, in analogy with the ele
tri
 �eld, isinvariant under a parity 
hange, while the B-type 
ombination 
hanges it sign, analogous tothe magneti
 �eld. Another terminology, sometimes found in the literature, is C mode for�
url� (
orresponding to the B-type) and G for �gradient� (
orresponding to the E-type).Another advantage of this de
omposition is that only the 
ross-
orrelation between E-polarization and temperature is needed, sin
e the 
ross-
orrelation between B and E or Tvanishes sin
e B has opposite parity. Furthermore, s
alar modes do not generate B polar-ization, due to the pe
uliar µ dependen
e of Thomson s
attering, while tensor modes do.Therefore, the separation of the polarization signal in E and B modes is useful to separates
alar from tensor 
ontribution, and to identify foreground 
ontamination or a lensing signal,whi
h 
an 
onvert E polarization into B polarization for s
alar modes.We do not give expli
it expressions here, whi
h are rather te
hni
al and are not neededin the following, but refer the reader to Zaldarriaga & Seljak (1997) instead. A similarde
omposition, but with a di�erent normalization has been proposed by Kamionkowski et al.(1997).
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Chapter 3Fundamental equations
The all sky pi
ture of CMB anisotropy delivered by COBE and more re
ently and with 30times more resolution by WMAP 
an be 
onsidered as a �ngerprint of the early Universe.More pre
isely, it is an a

urate reprodu
tion of the �u
tuations in the radiation-mattermixture at the epo
h of re
ombination.In this se
tion we su

in
tly explain the origin of this pi
ture, by starting with the be-havior of s
alar perturbations in a Universe 
ontaining one perfe
t �uid, � 3.1; many of thefundamental features of the anisotropies 
an be understood in a simple model with a mixtureof radiation and matter whi
h are 
oupled only gravitationally, as demonstrated in � 3.2 wherethe 
on
epts of adiabati
 and CDM iso
urvature initial 
onditions are introdu
ed; adding amassless neutrino 
omponent yields two new growing modes, the neutrino entropy/densityand velo
ity iso
urvature solutions, derived in � 3.3. Although the results of those two se
-tions are already known in the literature, the derivation presented in this work is original.We then re�ne the pi
ture of a
ousti
 os
illations by in
luding baryons in � 3.4, and sket
hthe origin of damping in � 3.5. Finally we derive the line of sight solution for the observedtemperature �u
tuations today and introdu
e the CMB angular power spe
tra in � 3.6. Theunderstanding and tools developed in the following will build the basis for the next 
hap-ters, where parameter extra
tion te
hniques will be dis
ussed (Chapter 5) and appli
ationspresented (Chapters 6 and 7).There is a ri
h literature on the 
osmi
 mi
rowave ba
kground but unfortunately an up-dated work whi
h en
ompasses both and introdu
tion to the �eld and more advan
ed ma-terial, 
overing the rapid evolution of the last few years, is presently la
king. Throughoutthis and the next 
hapter we give ample referen
es to the 
lassi
 and more re
ent resear
hpapers; as ba
kground material, Lineweaver et al. (1997) is a valuable sour
e whi
h presentsan introdu
tion to the CMB theory as well as some observational issues; Durrer (2001) isbuilt on a gauge invariant formalism similar to the one used here; Partridge (1995) is a goodintrodu
tory overview written at the onset of the re
ent data-driven epo
h. A rather 
ompletereview of both theory and data analysis is o�ered by Hu & Dodelson (2002).3.1 One perfe
t �uidWe begin by examining the behavior of s
alar perturbations in a �at (K = 0) universe whi
h
ontains a single perfe
t �uid, des
ribed by w = c2s = 
onst, and Γ = Π = 0.



48 Fundamental equationsSin
e the anisotropi
 stress vanishes, from Eq. (2.51, page 32) it follows Ψ = Φ. Theevolution of the perturbations is given by the two 
onservation equations (2.62�2.63, page33) supplemented by the Poisson equation (2.49, page 32), whi
h in Fourier spa
e read:
Ḋ − 3wHD = −(1 + w)k2V , (3.1)

V̇ + HV = Ψ +
c2s

1 + w
D , (3.2)

−k2Ψ =
3

2
H2D . (3.3)These equations 
an be 
ombined into a se
ond order equations for the density 
ontrast:

D̈ + (1 − 3w)HḊ − 3

2
H2(1 + 2w − 3w2)D + c2sk

2D = 0 (3.4)By de�ning a new variable x ≡ kη and the parameter ν ≡ 2/(1+3w), we obtain the followingequation for D ≡ Dxν−2 d2dx2
D +

2

x

ddxD +

[

c2s −
ν(ν + 1)

x2

] D
x2

= 0 , (3.5)For c2s 6= 0 the solution is a linear 
ombination of spheri
al bessel (jν) and von Neumann(nν) fun
tions of order ν (Abramowitz & Stegun, 1970)
D = C1jν(csx) + C2nν(csx) ≡ Zν(csx) . (3.6)Therefore the general solution of Eqs. (3.1) is

D = x2−νZν(csx) , (3.7)
V =

3

2
ν

[

Zν(csx)x
1−ν +

2 − ν

3ν(1 + ν)
x2−νZν−1(csx)

]

, (3.8)
Ψ = −3

2
ν2x−νZν(csx) . (3.9)The asymptoti
 behavior of the Bessel and von Neumann fun
tions is

jν ∝ xν for csx≪ 1, jν ∝ 1

x
cos(csx− γν) for csx≫ 1, (3.10a)

nν ∝ x−(ν+1) for csx≪ 1, nν ∝
1

x
sin(csx− γν) for csx≫ 1. (3.10b)with γν ≡ π(ν + 1)/2. For an expanding universe (x > 0) and ν > −1 (i.e. w < −1 or

w > −1/3) nν is divergent at early times, csx ≪ 1. Therefore we set C2 = 0 and we obtainthe asymptoti
 solutions (for w > −1/3)






















Ψ = Ψ0

D = −2

3

Ψ0

ν2
x2

kV =
2

(1 + ν)ν2
Ψ0x

for csx≪ 1 (3.11)
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





















Ψ = Ψ0x
−(1+ν) cos(csx+ γν)

D = −2

3

Ψ0

ν2
x1−ν cos(csx+ γν)

kV =
(ν − 2)Ψ0

3(1 + ν)
x1−ν cos(csx+ γν−1)

for csx≫ 1. (3.12)This solution was �rst dis
overed by Bardeen (1980). The Bardeen potential is 
onstant onsuper-horizon s
ales, and de
ays on
e inside the a
ousti
 horizon. On s
ales smaller thanthe a
ousti
 horizon (csx≪ 1) density perturbations os
illate: the gravitational attra
tion isresisted by the �uid pressure (w 6= 0) and this sets up a
ousti
 os
illations. The amplitude ofdensity and velo
ity �u
tuations remains 
onstant inside the horizon in the 
ase of radiation(ν = 1, w = 1/3), while it in
reases for w > 1/3 or w > −1/3. The behavior of the densityand velo
ity perturbations on s
ales larger then the horizon depends on the variable under
onsideration. While D, 
orresponding to the density 
ontrast in the 
omoving gauge, isgrowing, the density 
ontrast in the �at sli
ing gauge Dg remains 
onstant. Therefore thereis no universal 
riterion to establish the growth of perturbations outside the horizon: thebehavior depends on the 
hosen gauge. As we go to early times, x→ 0, perturbation theoryremains valid as long as it is possible to �nd a gauge in whi
h the largest perturbation variabledoes not diverge. We 
ome ba
k to this point in � 4.3, where we derive the most generalinitial 
onditions.The 
ase of dust w = c2s = 0 has a power-law solution on all s
ales. It su�
es to remarkthat Eq. (3.5) redu
es to d2dx2
D +

2

x

ddxD − 6

x2
D = 0 , (3.13)whose general solution is D = Ax2 +Bx−3. The growing exa
t solution is therefore























Ψ = Ψ0

D = −1

6
Ψ0x

2 ∝ a

kV =
1

3
Ψ0x ∝ a1/2

for dust, w = 0. (3.14)Clearly, in a dust universe perturbations always grow on sub-horizon s
ales, sin
e there is nopressure to 
ounterbalan
e the gravitational attra
tion.3.2 Cold dark matter and radiationIn this se
tion we investigate the evolution of perturbations in a �at universe 
ontaining onlyradiation and a pressureless matter 
omponent whi
h is de
oupled from radiation. Thus thematter has only a gravitational e�e
t and represents a 
old dark matter 
omponent. In thenext se
tion we in
lude massless de
oupled neutrinos in the pi
ture, while the role of baryons,whi
h are 
oupled to photons via Thomson s
attering, is investigated in � 3.4.3.2.1 Adiabati
 and iso
urvature modesIn this se
tion we use as density variable the density 
ontrast in the total 
omoving gauge
∆α, de�ned in Eq. (2.37, page 30). We identify the radiation with photons (subs
ript γ),



50 Fundamental equationsand we have wγ = c2γ = 1/3, while for matter wm = c2m = 0. We normalize the s
ale fa
torat the matter-radiation equality, so that
ρ̄m(aeq) = ρ̄γ(aeq) with aeq ≡ 1 hen
e ρ̄m

ρ̄γ
= a . (3.15)The total equation of state parameter and sound velo
ity are therefore

w =
1

3

1

a+ 1
and c2s =

1

3

4

4 + 3a
. (3.16)As long as we are 
onsidering times well before de
oupling, the photons form a tight 
oupled�uid with baryons, sin
e Thomson s
attering prevents the generation of anisotropi
 stress(and higher multipoles in the Boltzmann hierar
hy) in the photons 
omponent, Πγ = 0, aswe show in � 3.4. Therefore, via the anisotropi
 stress equation (2.51, page 32), the Bardeenpotentials are equal, Ψ = Φ. The Bardeen equation for Φ (2.67, page 34) is then

Φ̈ + 3H(1 + c2s)Φ̇ + 3(c2s − w)H2Φ = c2s△Φ + 3
2H2wΓ , (3.17)where Γ = Γrel is related to the relative entropy perturbation S ≡ Smγ = ∆m − 3

4∆γ byEq. (2.41, page 30). By using the Poisson equation we 
an rewrite the above as an equationfor the total density 
ontrast,
H−2D̈ + (1 − 6w + 3c2s)H−1Ḋ − 3

2(1 + 8w − 3w2 − 6c2s)D =

− c2s

(

k

H

)2
[

D − 3c2z(1 +w)S
]

,
(3.18)where we have introdu
ed c2z ≡ ρ̄γ ρ̄m(c2γ − c2m)/ [(1 + w)ρ̄] = a/(3a + 4).The energy 
onservation equation (2.60, page 33) reads for the radiation and matter
omponents:

Ḋg,γ +
4

3
k2Vγ = 0 (radiation), (3.19)

Ḋg,m + k2Vc = 0 (matter). (3.20)Subtra
ting (3.20) from (3.19) and using that
Dg,α

1 + wα
− Dg,β

1 +wβ
=

∆α

1 + wα
− ∆β

1 + wβ
= Sα,β (3.21)we obtain

Ṡ = −k2(Vm − Vγ) . (3.22)In order to �nd an evolution equation for the entropy S, we derive (3.22) and making use ofthe momentum 
onservation equation (2.63, page 33) after a lengthy manipulation we arriveat
H−2S̈ + (1 − 3c2z)H−1Ṡ =

(

k

H

)2 [ 1

3(1 + w)
D − c2zS

]

. (3.23)Together, Eqs. (3.18) and (3.23) des
ribe the evolution of adiabati
 (
urvature) and iso
ur-vature (dark matter) perturbations in a �at universe 
ontaining only dark matter and radi-ation.



3.2 Cold dark matter and radiation 51We start by 
onsidering large s
ales (k ≪ H) at early times, a→ 0. Then the right handside of (3.18) and (3.23) is negligible, thus D and S are de
oupled. Using the s
ale fa
tor aas variable, we obtain an homogeneous system














a2 d2da2
D − 2D = 0

a2 d2da2
S + a

ddaS = 0

(Large s
ales, radiation epo
h) (3.24)whose general solution 
onsists of four modes,
{

D = D0a
2 +D1a

−1

S = S0 + S1 ln a
. (3.25)We will 
all the mode with D0 6= 0,D1 = S0 = S1 = 0 the growing adiabati
 mode, while theone with S0 6= 0,D0 = D1 = S1 the growing iso
urvature mode (noti
e that for a < 1 the

S1 mode is indeed de
aying). As we show below, the iso
urvature mode at early times hasvanishing total density 
ontrast, Bardeen potential 
urvature perturbation, ζ = 0, hen
e itsname1.Consider �rst the growing adiabati
 mode: we 
an now restore the solution for D in thesour
e term on the right hand side of Eq. (3.23) to �nd the solution for S up to se
ond orderin k/H. The Bardeen potential is easily found from the Poisson equation, and the result is






























































D = D0a
2

S =
D0

64

(

k

H

)2

a2 ∝ a4

Φ = −3D0

2

(Ha
k

)2

= 
onst
kV =

1

2

k

HΦ ∝ a

ζ = −9D0

4

(Ha
k

)2

= 
onst (adiabati
, radiation epo
h). (3.26)
Clearly, we re
over the behavior already found in the single radiation �uid 
ase for thepotential. We also dis
over that the entropy perturbation grows as a4, but remains negligibleon large s
ales, thus the adiabati
ity 
ondition S ≈ 0 is maintained on large s
ales.For the growing iso
urvature mode we �nd, to the same approximation























































D =
S0

12

(

k

H

)2

a ∝ a3

S = S0

Φ = −S0

8
a

kV = −S0

8

k

Ha ∝ a2

ζ = −3S0

16
a

(iso
urvature, radiation epo
h). (3.27)
1The CDM iso
urvature mode is sometimes termed �isothermal� in the literature: this 
omes from the fa
tthat D = 0 implies δT

T
= −

ρ̄m

ρ̄γ
∆m ≈ 0 at early times. Intuitively, it takes only a small perturbation in theradiation 
omponent to 
ompensate for a �u
tuation in the matter at early times, be
ause the Universe isradiation dominated.



52 Fundamental equationsWe see that there is no generation of entropy on large s
ales (Ṡ = 0), however the iso
urvature
ondition Φ ≈ 0 is maintained only as long as a≪ 1. Naively we would expe
t that, as longas the s
ale 
onsidered is outside the horizon, the term 
ontaining S on the right hand side ofEq. (3.18) is suppressed as k2/H2, thus D (hen
e Φ) should not grow signi�
antly. However,sin
e Φ ∝ H2/k2, e�e
ts of magnitude k2/H2 in D are signi�
ant for Φ. This 
an be seenmore dire
tly by rewriting the right hand side of Eq. (3.17) as −c2sk2/H2Φ− 2(1 +w)c2sc
2
zS.Therefore even on super-horizon s
ale the term ∝ S a
t as a sour
e for Φ whenever c2sc2z issigni�
antly non-zero. This is the 
ase during the transition from the radiation to the matterdominated epo
h.Having established the behavior in the early epo
h, we now turn our attention to s
aleswhi
h enter the horizon when the universe is well matter dominated, i.e. to wavelengths su
hthat

k ≪ keq ≡ H(aeq) . (3.28)The e�e
ts of the radiation-matter transition are easiest to dis
uss by looking at the behaviorof the 
urvature perturbation ζ. To this end we rewrite the evolution equation (2.69, page34)as
ζ̇ = −c2sH

[

2

3(1 + w)

(

k

H

)2

Φ + 3c2zS

]

. (3.29)The term ∝ Φ on the right hand side is always negligible on super-horizon s
ales (k/H ≪ 1);for adiabati
 perturbations we also have S = 0, and thus we obtain
ζ = 
onst (adiabati
, all times), (3.30)the usual 
onservation law for ζ in the adiabati
 
ase. For the iso
urvature mode (S = S0 =
onst) we �nd by integration

ζ = −3S0

∫ a

0

da
a
c2sc

2
z −→
a→∞

−1

3
S0 (iso
urvature, matter epo
h). (3.31)The radiation-matter transition generates a 
urvature perturbation from the initial iso
urva-ture one, and this even on super-horizon s
ales.Sin
e ζ = 
onst in the matter era independently on the initial 
onditions, we 
an �ndthe value of the Bardeen potential in the matter epo
h simply by integrating the de�nition ofthe 
urvature perturbation, using that w = 
onst as well. We then obtain the relation (validonly in the regime where ζ = 
onst, w = 
onst)

Φ =
3(1 + w)

5 + 3w
ζ + Ca−

5+3w
2 , (3.32)and we 
an drop the se
ond term, whi
h is de
aying for w > −5/3. Therefore

Φ(a≫ aeq) = 
onst = 3
5ζ (matter epo
h, independent of IC). (3.33)For the adiabati
 mode, ζ = 
onst in the radiation era as well, therefore we 
an apply (3.32)with w ≈ 
onst = 1/3, getting

Φ(a≪ aeq) = 
onst = 2
3ζ (radiation epo
h, adiabati
). (3.34)



3.2 Cold dark matter and radiation 53Let us denote by Φ0 the value of Φ at the moment when the initial 
onditions for theperturbations are spe
i�ed, deep in the radiation era. The adiabati
 mode 
orresponds to
S0 = 0,Φ0 6= 0, while the iso
urvature mode has S0 6= 0,Φ0 = 0. From (3.33) we know that
Φ is 
onstant on super-horizon s
ales in the matter era, independent of the type of initial
onditions; we denote its value by ΦMD, and we wish to express it in terms of S0,Φ0. Foradiabati
 perturbations, ζ stays 
onstant through the transition, and therefore 
ombining(3.33) with (3.34)

ΦMD ≈ 9
10Φ0 (adiabati
, large s
ales). (3.35)For iso
urvature perturbations, the growth of ζ through the transition gives a non-zero Φ inthe matter epo
h, from (3.33) and (3.31) :

ΦMD ≈ −1

5
S0 (iso
urvature, large s
ales). (3.36)In 
on
lusion, we 
an summarize our results in terms of a transfer matrix as

(

Φ

S

)

a≫aeq =

(

9/10 −1/5

0 1

)(

Φ0

S0

)

. (3.37)It is often useful to use the 
urvature perturbation as a variable des
ribing the adiabati
mode, instead of Φ. In terms of the initial values of the 
urvature and entropy perturbations,
(ζ0, S0), the �nal values in the matter era are given by a transfer matrix of the form

(

ζ

S

)

a≫aeq =

(

Tζζ TζS
0 TSS

)(

ζ0
S0

)

. (3.38)From the above analysis, we 
on
lude that for s
ales k ≪ keq the transfer 
oe�
ients are
Tζζ = 1 , TζS = −1

3
, TSS = 1 . (3.39)For smaller s
ales, whi
h enter the horizon before the universe is 
ompletely matter domi-nated, the 
oe�
ients have to be found numeri
ally.3.2.2 A
ousti
 os
illationsWe have seen in � 3.1 that perturbations in a �uid of photons os
illate on s
ales smaller thanthe horizon. We now dis
uss the 
orresponding behavior in the presen
e of matter, and linkthe phase of the os
illations to the adiabati
 or iso
urvature initial 
onditions on large s
ales.Negle
ting the anisotropi
 stress, Πγ = 0, the 
onservation equations (2.60�2.61, page 33)for photons read

Ḋg,γ + 4
3k

2Vγ = 0 (3.40)
V̇γ − 1

4Dg,γ = 2Φ (3.41)where Φ 
an be 
onsidered as an external potential determined by the Poisson equation. We
an re
ast the above in a se
ond order equation for the density perturbation:
D̈g,γ + c2γk

2Dg,γ = 2Φ . (3.42)



54 Fundamental equationsAdiabati
 initial 
onditionsLet's 
onsider Eq. (3.42) deep in the matter era, when the driving for
e is just a 
onstant setby the dominating matter 
ontribution in the adiabati
 
ase. Then the general solution ofEq. (3.42) is
Dg,γ = C1 cos(cγkη) +C2 sin(cγkη) − 8Φ (3.43)
kVγ =

1

4cγ
[C1 sin(cγkη) − C2 cos(cγkη)] . (3.44)For small s
ales, where all 
hoi
es of density perturbation are equivalent, we re
over theos
illatory behavior already found in � 3.1. The density perturbations perform harmoni
os
illations around a zero point displa
ed by a 
onstant fa
tor.The 
onstants C1 and C2 are �xed by the initial 
onditions, adiabati
 or iso
urvature,established by mat
hing the above solution on large s
ales with the results of the previousse
tion. To this end, we shall use the following relation between Dg,γ and ∆γ , whi
h followsfrom the de�nitions of the variables:

1
4Dg,γ = 1

3∆m − 1
3S −HV − Φ . (3.45)From the momentum 
onservation equation (2.63, page 33) we obtain for the total velo
ityperturbation in the matter era

V̇ + HV = Φ , (3.46)with solution
V = V1a

−1 +
2

3
H−1Φ . (3.47)The term ∝ a−1 is de
aying, therefore we retain V ∼ 2

3H−1Φ. Inserting this into Eq. (3.45)and using that in the matter era Φ = 9/10Φ0 − S0/5 we obtain on large s
ales, where
∆m ∼ (k/H)2Φ ≪ Φ,

1
4Dg,γ(a≫ aeq) ≈ 
onst = −3

2Φ0 . (3.48)Thus on large s
ales and in the matter epo
h, Dg,γ is independent of the entropy perturbation,and is simply related to the primordial Bardeen potential.The adiabati
 mode stays de
oupled from the iso
urvature mode on super-horizon s
ales,therefore we 
an set the initial 
onditions for the solution (3.43�3.44) by taking its 
onstant-time super-horizon limit, i.e. k → 0, η = 
onst ≫ ηeq. This gives, with S0 = 0

1
4Dg,γ = 1

4C1 − 2ΦMD (3.49)and 
omparing with Eq. (3.48) and using again (3.35) we obtain
C1 = 4

3ΦMD . (3.50)The 
onstant C2 is set by noting that the adiabati
 
ondition S = 0 is preserved onsuper-horizon s
ales, and that, be
ause of energy-momentum 
onservation for matter andradiation, this implies
Vγ = Vm . (3.51)Sin
e

V =
4

4 + 3a
Vγ +

3a

4 + 3a
Vm (3.52)



3.2 Cold dark matter and radiation 55we have that V ≈ Vm for a≫ aeq, and with (3.47) it follows that
Vγ = Vm ≈ 2

3ΦH−1 . (3.53)Comparing this with the large s
ale limit of Eq. (3.44),
lim

k→0,η=
onst Vγ =
η

4

[

C1 − C2 lim
y→0

cos y

y

]

, (3.54)we see that we need to impose C2 = 0, otherwise Vγ would diverge in the large-s
ale limit
y → 0, and we re
over again (3.50) by using H = 2/η:

C1 = 4
3ΦMD and C2 = 0 . (3.55)In 
on
lusion, the adiabati
 solution is







Dg,γ =
4

3
Φ cos(cγkη) − 8Φ

kVγ = cγΦ sin(cγkη)
(adiabati
). (3.56)Iso
urvature initial 
onditionsAs we have seen in the previous se
tion, Φ = 0 is no longer maintained in the matter era foriso
urvature initial 
onditions. It is therefore 
onvenient to solve (3.42) at early times in theradiation regime, where we know that the driving term on the right hand side is Φ ∝ η (
f.Eq. (3.27, page 51)):

Dg,γ = C1 cos(cγkη) +C2 sin(cγkη) −
3

4
k−2η−1eq S0η , (3.57)

kVγ =
1

4cγ
[C1 sin(cγkη) − C2 cos(cγkη)] +

9

16
k−3η−1eq S0 . (3.58)The 
onstants C1 and C2 are determined by looking at the early time limit on super-horizon s
ales, η → 0, k = 
onst ≪ keq. From the early-times solution (3.27) we have that

Dg,γ → 0 for η → 0, and therefore we need to set C1 = 0. The early time limit for Eq. (3.58)gives
lim

η→0,k=
onst kVγ = − C2

4cγ
+

9

16
k−3η−1eq S0 , (3.59)while from the iso
urvature solution (3.27) 
ombined with (3.52) we have for a≪ aeq

lim
η→0,k=
onst kVγ = kV ∝ η2 → 0 . (3.60)By requiring that the left hand side of (3.59) vanishes we 
on
lude that

C2 =
3

4cγ
k−3η−1eq S0 . (3.61)In 
on
lusion, iso
urvature initial 
onditions ex
ite a sine os
illation in the radiation den-sity:











Dg,γ =
3

4
k−2η−1eq S0

[√
3k sin(cγkη) − η

]

kVγ = −3
√

3

16
k−2η−1eq S0

[√
3k cos(cγkη) − 1

]

(iso
urvature). (3.62)



56 Fundamental equationsAn heuristi
 argument (Hu & Sugiyama, 1995b) explains why adiabati
 initial 
onditionsex
ite the 
osine mode while iso
urvature initial 
onditions produ
e the sine mode: at earlytimes, the potential a
ting as a driving for
e on the right hand side of Eq. (3.42) is 
onstantfor adiabati
 initial 
onditions, while it is ∝ η in the iso
urvature 
ase. This mimi
s a 
osineand a sine for
ing term, respe
tively, and thus the 
orresponding modes get ex
ited. Anapproximated analyti
al solution valid until re
ombination and through the radiation-mattertransition 
an be found in Hu & Sugiyama (1995a).3.3 Neutrinos and initial 
onditionsIn this se
tion we extend the above treatment to in
lude massless neutrinos. They aredes
ribed as an additional relativisti
 
omponent, whi
h is de
oupled from the others belowa temperature of a few MeV, and therefore their distribution fun
tion obeys the 
ollisionlessBoltzmann equation. We shall see in the following that the anisotropi
 stress 
reated by freestreaming of neutrinos 
onsiderably 
ompli
ates the simple pi
ture of the previous se
tion.By in
luding one more 
omponent in the mixture, we generally expe
t two additionalmodes to arise, whi
h we will be able to identify with the so-
alled �neutrino iso
urvaturedensity� (NID) and �neutrino iso
urvature velo
ity� (NIV) modes. In the following, we shallrefer to both of them as to �neutrino iso
urvature modes�2, and we will sometimes 
all theneutrino density mode �neutrino entropy�, whi
h is a more appropriate de�nition in our view.These two modes were �rst found by Bu
her et al. (2000), who solved a formal expansion inpowers of η of the Einstein and 
onservation equations at early times and on large s
ales (i.e.for ηk → 0) in syn
hronous gauge, an analysis repeated in the gauge invariant formalism inTrotta (2001). The approa
h we propose here o�ers a more physi
al understanding and theapproximations we employ 
ould be extended to a re�ned analyti
al model of the sub-horizonstru
ture of the neutrino modes angular power spe
tra. We expli
itly give some details ofthe derivation, sin
e to our knowledge this 
al
ulation is new.We argue in � 3.3.4 that an �anisotropi
 stress mode�, whi
h is 
hara
terized by a non-vanishing Πν at early times, is non-physi
al, sin
e it leads to in
urable divergen
es in theperturbation variables.3.3.1 Evolution equations for a three 
omponents modelIn the presen
e of neutrinos, the ba
kground radiation energy density is written as
ρ̄r = ρ̄γ + ρ̄ν = ρ̄γ(1 + rν) , (3.63)where we have de�ned the 
onstant rν ≡ (7Nν/8)(4/11)

4/3 ≈ 0.68 for Nν = 3 neutrinofamilies. As before, the s
ale fa
tor is normalized to matter-radiation equality, the 
onformalHubble parameter is
H =

1 + η/2

η + η2/4
=

(1 + 7a)1/2

7a
, (3.64)2The term �iso
urvature� is somewhat abused for the neutrino density mode, see the remark after Eq. (3.93)on page 61. We nevertheless employ this terminology for simpli
ity and 
onsisten
y with the literature.



3.3 Neutrinos and initial 
onditions 57and the 
osmologi
al parameters as a fun
tion of the s
ale fa
tor are of the form
Ων(a) =

rν
(1 + rν)(1 + a)

, (3.65)
Ωγ(a) =

1

(1 + rν)(1 + a)
, (3.66)

Ωm(a) =
a

(1 + a)
. (3.67)We still negle
t the dynami
al e�e
t of baryons, whi
h to lowest order is unimportant, but
ontinue to assume that Thomson s
attering drives to zero all multipoles ℓ ≥ 2 in the Boltz-mann hierar
hy for photons, whi
h are then des
ribed as a relativisti
 perfe
t �uid. Neutrinosbe
ome 
ollisionless after neutrino de
oupling, therefore the �uid approximation is insu�-
ient. A neutrino anisotropi
 stress is generated by free streaming and to lowest order we 
utthe Boltzmann hierar
hy for neutrinos, Eq. (2.96, page 37), by setting to zero all moments

≥ 3. The goal is to derive se
ond order evolution equations for the three relevant and physi
alquantities: the total density 
ontrast D, the entropy perturbations in the dark matter, Smγ ,and in the neutrinos, Sνγ , supplemented by an evolution equation for the neutrino anisotropi
stress.The sour
e term in the Bardeen equation is modi�ed in two ways: there is an additionalentropy 
ontribution 
oming from the neutrino entropy perturbation Sνγ , and we have totake into a

ount the anisotropi
 stress term. This gives for the evolution equation of thetotal density 
ontrast D (
ompare with (3.18, page 50))
H−2D̈ + (1 − 6w + 3c2s)H−1Ḋ − 3

2(1 + 8w − 3w2 − 6c2s)D =

−
(

k

H

)2
{

[

c2sD − 3c2sc
2
z(1 + w)

(

Smγ −
rν

1 + rν
Sνγ

)]

+
2rν

3(1 + rν)(1 + a)

[

HΠ̇ν −
[

(1 + 3w) − 3c2z
]

H2Πν −
1

2
k2Πν

]

}

.(3.68)Equation (3.23, page 50) a
quires extra terms 
oming from Sνγ , reading
H−2S̈mγ+(1−3c2z)H−1

[

Ṡmγ − Ṡνγ

]

=

(

k

H

)2 [ 1

3(1 + w)
D − c2zSmγ −

4wrν
3(1 +w)(1 + rν)

Sνγ

]

.(3.69)In deriving the above equations we have made use of (2.38, page 30) and (3.22, page 50)together with the following useful relations:
1

4
∆γ =

1

3(1 + w)
D − 4rν

3(4 + 3a)(1 + rν)
Sνγ −

a

4 + 3a
Smγ , (3.70)

kVγ = kV − 4rν
(4 + 3a)(1 + rν)

(Vν − Vγ) −
3a

4 + 3a
(Vm − Vγ) . (3.71)We obtain an equation for the neutrino entropy perturbation by deriving the di�eren
e ofthe momentum 
onservation equation for neutrinos (Eq. (2.97, page 37) written for ν insteadof γ) and the momentum 
onservation for the photon �uid, (3.19, page 50), with the result

S̈νγ +
k2

3
Sνγ =

k4

6
Πν . (3.72)



58 Fundamental equationsThe 
oupled system (3.68), (3.69) and (3.72) des
ribes the evolution of adiabati
 andentropy perturbations in a mixture of photons, dark matter and radiation, on
e we spe
ify
Πν . However, on super-horizon s
ales and for early times, k/H ≪ 1, the anisotropi
 stress isunimportant, sin
e from (2.98, page 37) written for ν instead than for γ, it obeys

a
ddak2Πν =

8

5

k

HkVν ≈ 0 , (3.73)whi
h shows that on super-horizon s
ales there is no generation of anisotropi
 stress, a resultexpe
ted on the grounds of 
ausality arguments. At earlier times, the neutrinos were 
oupledto ele
trons via weak intera
tion pro
esses, whi
h isotropized the neutrino distribution fun
-tion suppressing any appre
iable anisotropi
 stress; hen
e we 
an assume that at the timeunder 
onsideration (just after neutrino de
oupling) there is no anisotropi
 stress to zerothorder in powers of a, i.e. Πν = O(a) at least.In the above approximation and for a≪ 1 we thus obtain the simple system






























a2 d2da2
D − 2D = 0 ,

a2 d2da2
Smγ + a

ddaSmγ = a
ddaSνγ ,

a2 d2da2
Sνγ = 0 ,

(3.74)whose general solution 
onsists of six modes,










D = D0a
2 +D1a

−1 ,

Smγ = S0 + S1 ln a+Nva ,

Sνγ = Nd +Nva .

(3.75)We re
ognize the growing and de
aying adiabati
 (the D0 and D1 terms, respe
tively) andiso
urvature dark matter (S0 and S1 terms, respe
tively) modes, and we also �nd two newnon-de
aying modes, a 
onstant neutrino entropy mode Nd, and a neutrino velo
ity mode
Nva (the reason for this terminology is explained below).In order to go beyond this large s
ales solution, we need to in
lude the e�e
t of theanisotropi
 stress. To this end, we re
ast Eq. (3.73) by substituting kVν with

kVν = kV − aH
k

[

1

1 + rν

ddaSνγ +
3(1 + rν)a

4

ddaSmγ] . (3.76)From now on we drop the last term on the right hand side, whi
h is always suppressed by apower of a ex
ept in the dark matter iso
urvature 
ase, whi
h we do not investigate furtherhere. For the total velo
ity, the 
onstraint equation (2.50, page 32), 
ombined with the theanisotropi
 stress equation (2.51, page 32) and the Poisson equation (2.49, page 32) yield, inthe early time a≪ 1 limit
kV =

H
k

(

3

4
D − 3a

4

ddaD − rν
1 + rν

k2Πν

)

. (3.77)The evolution equation (3.73) for the anisotropi
 stress then reads, for a≪ 1

a
ddak2Πν +

4

5

rν
1 + rν

k2Πν =
6

5
D − 6a

5

ddaD − 8a

5(1 + rν)

ddaSνγ . (3.78)



3.3 Neutrinos and initial 
onditions 59In the same limit and in terms of the s
ale fa
tor a, the equations for D and Sνγ be
ome(dropping the last term ∝ k2Πν on the right hand side of (3.68) whi
h is always negligible
ompared to the others):
a2 d2d2a

D − 2D = −
(

k

H

)2 rν
3(1 + rν)

Sνγ −
2rν

3(1 + rν)

[

a
ddak2Πν − 2k2Πν

]

, (3.79)
a2 d2d2a

Sνγ +
1

3

(

k

H

)2

Sνγ =
1

6

(

k

H

)2

k2Πν . (3.80)The system of 
oupled di�erential equations (3.78), (3.79) and (3.80) is too di�
ult to solveanalyti
ally. To �nd an approximate solution valid to leading order in powers of a for earlytimes, we treat the anisotropi
 stress iteratively as a perturbation to the large s
ale solution,Eq. (3.75), in analogy with the pro
edure in Hu & Sugiyama (1995a). More spe
i�
ally, weuse the large s
ale solution for D and Sνγ as a sour
e on the right hand side of Eq. (3.78) todetermine the anisotropi
 stress, then we re-insert the solution for Πν on the right hand sideof (3.79) and (3.80) to �nd self-
onsistent 
orre
tions to the large s
ale behavior.As an illustration, let us �rst 
onsider the adiabati
 growing mode, D = D0a
2,D1 = S0 =

S1 = Nd = Nv = 0. In that 
ase, the right hand side of (3.78) is dominated by the terms in
D, giving

a
ddak2Πν +

4

5

rν
1 + rν

k2Πν = −6

5
D0a

2 , (3.81)whi
h has the parti
ular solution
k2Πν = −3(1 + rν)D0

7rν + 5
a2 . (3.82)Noti
e that, although the above form of Πν ∝ a2 is of the same order as the adiabati
 solution

D ∝ a2, its 
ontribution on the right hand side of (3.79) 
an
els out be
ause of the fa
tor2 in the exponent. Thus it is 
onsistent to have negle
ted the anisotropi
 stress in the �rstpla
e when deriving the large s
ale solution.With the above approximation forΠν , from (3.80) we 
an determine the growth of neutrinoentropy perturbations in the adiabati
 mode, �nding to leading order in powers of a
Sνγ = − (1 + rν)D0

48(7rν + 5)

(

k

H

)2

a2 ∝ a4 ≪ D . (3.83)The growth of the dark matter entropy perturbation is also modi�ed by the 
oupling tothe neutrino entropy perturbations on the left hand side of (3.69, page 57), but the term
∝ Ṡνγ ∝ a4 has the same s
aling as the term ∝ D on the right hand side, and the approximatesolution is

Smγ =
1

64

[

1 − 1 + rν
3(7rν + 5)

]

D0

(

k

H

)2

a2 ∝ a4 ≪ D . (3.84)In 
on
lusion, the growing adiabati
 mode at early times in the presen
e of neutrinos and



60 Fundamental equationsanisotropi
 stress has the approximate solution (
ompare with the solution (3.26, page 51)):














































































































D = D0a
2

Smγ ∝
(

k

H

)2

a2 ∝ a4

Sνγ ∝
(

k

H

)2

a2 ∝ a4

k2Πν ∝ a2

Φ = −3

2

(

ka

H

)2

D0 = Φ0 = 
onst
Ψ = Φ0 +

3rν
7(1 + rν)

(

ka

H

)2

≡ Ψ0 = 
onst
kV =

1

2

k

HΦ0 ∝ a

ζ = −9D0

4

(Ha
k

)2

= 
onst
(adiabati
). (3.85)

The Bardeen potentials are no longer equal due to the anisotropi
 stress, the fra
tional
orre
tion being
∣

∣

∣

∣

∣

Φ0 − Ψ0

Φ0

∣

∣

∣

∣

∣

=
2

7

rν
1 + rν

≈ 0.1 , (3.86)of order 10%, in good agreement with Hu & Sugiyama (1995a).3.3.2 Neutrino entropy modeLet us now turn our attention to the Nd 6= 0 mode, with Nv = D0 = D1 = S0 = S1 = 0: thisis 
learly a neutrino entropy mode, sin
e Sνγ = 
onst for a→ 0.To determine the growth of perturbations in the total density D beyond the large s
alesolution D = 0, 
onsider the right hand side of Eq. (3.79): if the anisotropi
 stress goes atleast as a2, then the part 
ontaining Πν 
an
els (for Πν ∝ a2) or is subdominant with respe
tto the Sνγ term (for Πν = O(a3) or higher). In any 
ase, we 
an negle
t the anisotropi
 stressterm as a sour
e for D with respe
t to the neutrino entropy perturbation, with the 
aveatthat at the end of our 
al
ulation we have to 
he
k that this assumption is satis�ed - indeed,
f. Eq. (3.89). By this argument, we look for a parti
ular solution of
a2 d2d2a

D − 2D = −
(

k

H

)2 rν
3(1 + rν)

Nd , (3.87)whi
h is given by
D = − rν

9(1 + rν)
Nd

(

k

H

)2

ln(a) ∝ a2 ln(a) . (3.88)The logarithmi
 dependen
e 
an be negle
ted if we do not apply this solution over a toolarge time range (say, less than a few orders of magnitude), and repla
ed by the value of
ln(a) evaluated at the typi
al value of the s
ale fa
tor in the range 
onsidered, a∗, whi
h wereabsorb in the overall normalization by de�ning a new 
onstant N∗

d ≡ Nd ln(a∗).



3.3 Neutrinos and initial 
onditions 61We 
an now solve for Πν by inserting the above expression for D in Eq. (3.78, page 58),and observing that on the right hand side dSνγda = 0, thus obtaining
k2Πν = N∗

d

(

k

H

)2 rν
3(7rν + 5)

∝ a2 , (3.89)whi
h is 
onsistent with our initial assumption for Πν .Finally, the Bardeen potentials follow from the Poisson equation and the anisotropi
 stressequation, yielding
Φ =

rνN
∗
d

6(1 + rν)
= 
onst , (3.90)

Ψ = Φ

(

1 − 2rν
7rν + 5

)

= 
onst . (3.91)The gauge invariant 
urvature perturbation ζ is given by (2.27, page 28) and it 
an berewritten as
ζ =

3

2
Φ +

a

2

ddaΦ − rν
2(1 + rν)

(H
k

)2

k2Πν . (3.92)yielding for the neutrino entropy mode
ζ =

rνN
∗
d

1 + rν

(

1

4
− rν

6(7rν + 5)

)

= 
onst . (3.93)This results agree with the power law solution found by Bu
her et al. (2000), whi
h they
alled �neutrino iso
urvature density� mode; we prefer however to term this mode �neutrinoentropy�, sin
e the initial 
urvature perturbation does not vanish, and indeed is of the sameorder as the entropy perturbation.3.3.3 Neutrino velo
ity modeThe mode with Nv 6= 0 has vanishing entropy at early times, sin
e Sνγ → 0 for a → 0, butthe bulk velo
ity di�eren
e between neutrinos and photons in non-zero,
k(Vν − Vγ) = − Ṡνγ

k
= 
onst (3.94)hen
e its name.From the power-law solution for this mode (see Bu
her et al., 2000; Trotta, 2001) weexpe
t that the anisotropi
 stress goes to leading order as Πν ∝ a. Indeed, by repla
ing thelarge-s
ale solution D = 0, Sνγ = Nva on the right hand side of (3.78) we �nd the parti
ularsolution

k2Πν = − 8Nv

9rν + 5
a . (3.95)We now use this expression as a sour
e on the right hand side of (3.79) to determine the
orre
tions to D, and we 
an ignore the 
ontribution of the term ∝ Sνγ whi
h goes as a3
ompared to the part 
ontaining Πν , whi
h is dominant, being proportional to a. We thushave to solve

a2 d2da2
D − 2D = − 16rνNv

3(1 + rν)(9rν + 5)
a , (3.96)



62 Fundamental equationsand we �nd the parti
ular solution
D =

8rνNv

3(1 + rν)(9rν + 5)
a . (3.97)As already noti
ed in Bu
her et al. (2000), the Bardeen potentials are de
aying

Φ = − 4rνNv

(1 + rν)(9rν + 5)

(H
k

)2

a ∝ a−1 , (3.98)
Ψ = −Φ , (3.99)but this does not ne
essarily mean that perturbation theory breaks down for a → 0. Ingeneral, a solution is 
onsidered non divergent if it is possible to �nd a gauge in whi
h all theperturbation variables do no diverge in the limit a → 0. The syn
hronous gauge potentialsfor the neutrino velo
ity mode are indeed non-singular at early times (Bu
her et al., 2000). Infa
t, even though the Bardeen potential diverge, the gauge invariant 
urvature perturbation

ζ vanishes to leading order. This is most easily seen by making use of Eq. (2.32d, page 29),�nding
ζ =

1

2
(Ψ + Φ) = 0 , (3.100)and thus the velo
ity mode is indeed an iso
urvature mode.The leading order 
orre
tions to Smγ = 0 indu
ed by the neutrino modes 
an be obtainedas parti
ular solutions to Eq. (3.69, page 57), whi
h for early times reads

a2 dda2
Smγ + a

[ ddaSmγ − ddaSνγ] = −
(

k

H

)2 rν
3(1 + rν)

Sνγ . (3.101)Summarizing, the early time solutions for neutrino entropy (Nd 6= 0) and neutrino iso
urva-ture velo
ity (Nv 6= 0) initial 
onditions are:Neutrino entropy Neutrino velo
ity
Sνγ = Nd Sνγ = Nva

D = −
(

k

H

)2 rνN
∗
d

9(1 + rν)
∝ a2 D =

8rνNv

3(1 + rν)(9rν + 5)
a

Smγ = −
(

k

H

)2 rνNd

12(1 + rν)
∝ a2 Smγ = aNv

kV =
1

2

k

HΨ ∝ a kV =
k

HΨ = 
onst (3.102)
k2Πν =

(

k

H

)2 rνN
∗
d

3(7rν + 5)
∝ a2 k2Πν = − 8Nv

9rν + 5
a

Φ =
rνN

∗
d

6(1 + rν)
= 
onst Φ = − 4rνNv

(1 + rν)(9rν + 5)

(H
k

)2

a ∝ a−1

Ψ = Φ

(

1 − 2rν
7rν + 5

)

= 
onst Ψ = −Φ

ζ =
rνN

∗
d

1 + rν

(

1

4
− rν

6(7rν + 5)

)

= 
onst ζ = 0 .



3.3 Neutrinos and initial 
onditions 633.3.4 The divergent nature of the anisotropi
 stress modeOne 
ould ask whether it would be possible to ex
ite a growing �neutrino anisotropi
 stressmode�, 
hara
terized by initial 
onditions D = Sνγ = Smγ = Vνγ = Vmγ = 0 and Πν 6= 0for a → 0. Even though highly exoti
, su
h a mode, if it existed, should be in
luded if wewant to 
onsider the most general type of perturbations. We now show that this mode isdivergent in all gauges, and therefore is non-physi
al, sin
e it would lead to the breakdownof perturbation theory for a → 0. Alternatively, we 
an see it as a de
aying mode, whi
htherefore does not need to be 
onsidered sin
e it qui
kly disappears.Consider the anisotropi
 stress equation (2.51, page 32) with Πν = Π0 = 
onst on theright hand side,
Ψ = Φ − rν

(1 + rν)(1 + a)
H2Π0 . (3.103)Sin
e H = η−1 to leading order for a ≪ aeq, it follows that Ψ ∝ η−2. The fa
t that theBardeen potential diverges at early times is not by itself su�
ient to dis
ard the 
orrespondingmode, as we have seen in the example of the neutrino velo
ity mode. A ne
essary 
ondition,however, is the existen
e of a gauge in whi
h all of the perturbation variables 
onstru
tedout of A,B,C,E, δ, v, πL are non-divergent. For the neutrino velo
ity mode, this gauge isthe syn
hronous gauge. Clearly, sin
e Ψ is a gauge invariant variable, by 
onstru
tion itdoes not 
hange under a gauge transformation but the variables A,B,C,E do, a

ording tothe transformation laws (2.18, page 26). If we expand in a Laurent series around η = 0 thede�nition of Ψ, Eq. (2.25b, page 28), and we allow terms ηn with exponent n ≥ −2, be
auseof H = 1/η we obtain to leading order

A = Ψ ∝ η−2 . (3.104)In other words, in the radiation dominated universe a metri
 perturbation of the form A ∝
η−2 is gauge invariant. This 
an also be seen dire
tly from the transformation law for A,Eq. (2.18a, page 26): the partHT+Ṫ does not 
ontain terms∝ η−2 if T is written as a Laurentseries in η. We 
on
lude that Π0 6= 0 indu
es a divergen
e of A for early times, whi
h does notdisappear in any gauge. One 
ould 
on
eive to 
ombine A with other diverging variables to
onstru
t via 
an
ellation a non-diverging metri
 variable: this however would unavoidablyprodu
e divergent terms in the matter variables. Therefore a neutrino anisotropi
 stress modeis always de
aying in all gauges.In prin
iple, there is a whole hierar
hy of modes 
oming from setting Θℓ

ν 6= 0 for ℓ ≥ 3as initial 
onditions in the neutrino Boltzmann hierar
hy. As we noti
ed in � 2.2.4, higherorder moments are 
oupled to the potentials and to the velo
ity and density perturbations bysu

essive powers of kη. By reversing the argument, we see that Θν
ℓ−1 = O (Θν

ℓ /kη) impliesthat in the early Universe and on super-horizon s
ales, kη ≪ 1, 
hoosing Θℓ = O(1) for ℓ ≥ 3would produ
e divergent behavior in the lower-order multipoles of the hierar
hy. Sin
e for
ℓ ≥ 2 the multipole moments are gauge invariant, it follows that there is no gauge in whi
hsu
h a mode is growing. In summary, the adiabati
 and the general iso
urvature modespresented above 
onstitute the most general type of perturbation.



64 Fundamental equations3.4 The role of baryonsIn this se
tion, we go ba
k to the model of a Universe 
ontaining dark matter and photons,and re�ne the treatment given in � 3.2 by taking into a

ount the role of baryons in thedynami
 of the os
illations. For simpli
ity, we negle
t the 
orre
tions indu
ed by the neutrinosanisotropi
 stress, omitting neutrinos entirely.Before re
ombination photons intera
t with ele
trons via Thomson s
attering (see se
tion2.2.5). The time-s
ale for the s
attering pro
ess is set by the Compton s
attering time τ̇−1,whi
h represents the typi
al time between two 
ollisions. Tight 
oupling is an expansion inpowers of τ̇−1, assuming that the s
attering rate is rapid enough to equilibrate 
hanges in thephoton-baryons �uid, and in this limit moments ℓ ≥ 2 in the photon distribution fun
tion aresuppressed by su

essive powers of τ̇−1. Therefore to lowest order the photon distributionfun
tion is des
ribed by its zeroth and �rst multipoles only, and we 
an set Πγ = Θℓ≥3 = 0,whi
h justi�es the approximation taken in the previous se
tion. Therefore the trun
atedBoltzmann hierar
hy (2.127, page 42) gives for photons
Ḋg,γ +

4

3
k2V = 0 , (3.105)

V̇γ −
1

4
Dg,γ − 2Φ = −aσTne(Vγ − Vb) . (3.106)To ensure 
onservation of the total momentum, we need to supplement the 
onservationequation for baryons with the Thomson drag for
e term 
oming from the s
attering pro
ess,obtained as the �rst moment of the 
ollision term

F drag
j = aσTneργ

∫ dΩ
4π
njC [f ] . (3.107)The momentum 
onservation for baryons, Eq. (2.60, page 33), therefore gives

Ḋg,b + k2Vb = 0 (3.108)
V̇b + HVb − Φ = − 1

R
aσTne(Vb − Vγ) , (3.109)and we have de�ned R ≡ 3ρ̄b/(4ρ̄γ), whi
h 
an easily be estimated

R ≈
(

670

1 + z

)(

Ωbh
2

0.022

)

. (3.110)The set of Eqs. (3.105�3.106) and (3.108�3.109) des
ribes the evolution of perturbationsfor the tight-
oupled photon-baryon �uid, while the dark matter 
omponent enters via itsin�uen
e on the gravitational potential Φ. To lowest order in 1/τ̇ , 
ollisions for
e the baryonsand photons velo
ities to 
oin
ide, Vγ = Vb, whi
h via Eq. (3.22, page 50) implies Ṡbγ = 0,hen
e the entropy per baryon is 
onserved.Equations (3.105, 3.106 and 3.109) 
an now be 
ombined into the equation of a damped,for
ed harmoni
 os
illator:ddη [(1 +R)Ḋg,γ

]

+
k2

3
Dg,γ = −4

3
(2 +R)k2Φ . (3.111)By 
omparing with Eq. (3.42, page 53), we see that baryons have two e�e
ts: they 
hangethe e�e
tive mass of the system (fa
tor (1 + R) on the left hand side) and they displa
e



3.5 Damping 65the zero point of the os
illation by adding to the potential Φ. Both modi�
ations are a
onsequen
e of the fa
t that baryon add to the mass of the system but not to the restoringpressure, whi
h is still given by the photons alone.The time dependen
e of R is of the order of the Hubble time, hen
e large 
omparedto the time s
ale of one os
illation. For illustrative purpose, we 
an then negle
t the timedependen
e of R and obtain from Eq. (3.111)
D̈g,γ + c2sk

2Dg,γ = −4(2 +R)c2sk
2Φ , (3.112)where the sound speed of the 
oupled �uid is c2s = 1/(3(1 + R)). At early times, c2s → 1/3,as appropriate for radiation, while at late times c2s ≈ 0, when the universe is dominated bymatter. The homogeneous solution is still a superposition of sine and 
osine os
illations, butadding the baryons slows down the period by de
reasing c2s with respe
t to the pure photons�uid. This is responsible for a shift in the a
ousti
 peak positions and for a larger distan
ebetween the peaks in the CMB power spe
trum, see the explanations regarding the role ofthe shift parameter on page 89.The adiabati
 solution (3.56) be
omes

Dg,γ =
4

3
(1 +R)Φ cos(cskη) − 4(2 +R)Φ , (3.113)

kVγ =

(

1 +R

3

)1/2

Φ sin(cskη) . (3.114)The amplitude of the 
osine os
illation has in
reased by a fa
tor (1 + R), and the potentialwell has deepened by an extra fa
tor (1 + R/2). This displa
ement of the zero point of theos
illations indu
es a boost (de
rease) of the odd (even) peaks in the power spe
trum some-times denotes as �baryon driving�, whi
h is dis
ussed in � 4.1.2.2 and shown in Fig. 4.6 onpage 91. Finally, the amplitude of the velo
ity os
illation be
omes smaller, sin
e it is sup-pressed by a fa
tor cs with respe
t to the density and cs is smaller in the presen
e of baryons.This leads to a suppression of the Doppler 
ontribution to the a
ousti
 peak stru
ture. FromEq. (3.110) we obtain that at the moment of de
oupling, zde
 ≈ 1100, we have R ≈ 0.6.The solution to (3.111) for time-dependent R 
an be found in the WKB approximation (Hu& Sugiyama, 1995a), in whi
h 
ase the qualitative pi
ture sket
hed above slightly 
hanges:the sound speed be
omes k ∫ csdη, while the amplitude of the os
illations grows in time as
c
1/2
s . This 
an be seen simply by 
onsidering the quantity mωA2, whi
h for an harmoni
os
illator is an adiabati
 invariant: sin
e in our 
ase the e�e
tive mass m = (1 + R)1/2de
reases in time, it follows that the amplitude A ∼ (1 +R)−1/4 ∼ c

1/2
s .3.5 DampingIn the above dis
ussion, we have negle
ted the fa
t that re
ombination takes a �nite timeto 
omplete, and the a
ousti
 os
illations are not frozen instantly. This ��nite thi
kness� ofthe last s
attering surfa
e has a twofold e�e
t: photon di�usion and 
an
ellation. Di�usiondamping arises be
ause of the imperfe
t 
oupling between photons and baryons, so thatphotons di�use out of over-dense into under-dense regions and erase �ne s
ale anisotropies;
an
ellation o

urs for s
ales whi
h have the time to os
illate through re
ombination, so



66 Fundamental equationsthat the e�e
t of photons that last s
attered on a 
rest of the os
illation is 
an
elled bythe 
ontribution of the photons 
oming from a trough. Can
ellation produ
es a power lawdamping of the �u
tuations (Hu & Sugiyama, 1995a), while di�usion damping is exponentialand is by far the dominant e�e
t, and the one to whi
h we now turn our attention. It is oftenreferred to as �Silk damping� (Silk, 1968).In view of obtaining a dispersion relation ω(k) for photons a

urate to �rst order in τ̇−1,we look for solutions of the form Vγ ∝ exp ı
∫

ωdη. At this order we need to in
lude thephoton anisotropi
 stress, whi
h to �rst order in τ̇−1 from Eq. (2.127
, page 42) is given by(negle
ting polarization e�e
ts)
Πγ = τ̇−1 16

9
Vγ . (3.115)Using the anisotropi
 stress equation (2.51, page 32) we 
an substitute in the dipoleequation (2.127b, page 42) Φ = Ψ + H2Πγ . However, we assume that the os
illation times
ale is mu
h shorter that the expansion time s
ale, i.e. ω−1 ≪ H−1, so that we 
an negle
tthe term H2Πγ in the photon dipole. By the same token, in the following we also negle
t alltime dependen
ies of the potentials and of R 
ompared with the os
illation time s
ale.We now expand the baryon momentum 
onservation equation (3.109) up to se
ond orderin τ̇−1, and �nd, under the above assumptions

Vb = Vγ − τ̇−1R(ıωVγ − Φ) − τ̇−2(Rω)2Vγ + O(τ̇−3) . (3.116)Inserting this into Eq. (2.127b, page 42) we obtain
ıω(1 +R)Vγ =

1

4
Dg,γ + (2 +R)Φ − τ̇−1Vγ

[

(Rω)2 − 8

27
k2

]

. (3.117)To lowest order in τ̇−1 we have found in � 3.4 that the quantity 1
4Dg,γ+(2+R)Φ os
illates withthe same frequen
y as Vγ , see Eq. (3.112). Therefore we set 1

4Dg,γ + (2 +R)Φ ∝ exp ı
∫

ωdη,and using the photon monopole equation (3.105) we arrive at
ω2 =

k2

3(1 +R)
+ ıτ̇−1 ω

1 +R

[

R2ω2 +
8

27
k2

]

. (3.118)To zeroth order we �nd as before ω2 = k2/[3(1+R)], whi
h we 
an use to obtain the �rstorder solution
ω =

k
√

3(1 +R)
+ ıτ̇−1 k2

6(1 +R)

[

R2

(1 +R)
+

8

9

]

. (3.119)The imaginary term in the frequen
y indu
es an exponential damping of the os
illatorysolutions of the form exp(−k2/k2D), with the 
hara
teristi
 damping s
ale given by
k−1D =

∫

1

6τ̇

[

R2

(1 +R)2
+

8

9(1 +R)

]dη . (3.120)In
luding polarization e�e
ts via Eqs. (2.132, page 42) and (2.136, page 42) would in
reasethe damping, by 
hanging the numeri
al fa
tor 8/9 in the above equation to 16/15.



3.6 Observable quantities 673.6 Observable quantities3.6.1 Temperature �u
tuationsWe now 
al
ulate the �u
tuations in the CMB photon temperature on the sky. When thephoton mean free path be
omes larger than the horizon s
ale, 1/τ̇ ≫ 1/H, the Universebe
omes transparent and photons propagate along null geodesi
s (free streaming regime).In this se
tion we 
al
ulate the photon temperature today with the line of sight method:we formally integrate the Boltzmann equation along the photon path, and obtain the tem-perature measured today as an integral over a time dependent sour
e term. This approa
hin
ludes in prin
iple all the e�e
ts due to imperfe
t photons-ele
trons 
oupling and reion-ization as well, and it is the 
ore of the fast numeri
al algorithms for the integration of thephoton Boltzmann equation, su
h as CMBfast (Seljak & Zaldarriaga, 1996). Another deriva-tion of the same result based on a more physi
al understanding of the free streaming regime
an be found in Durrer (1990).Consider the 
ollisional Boltzmann equation for the photons temperature Θ(η, k, µ = k̂·n)(were we negle
t polarization)
Θ̇ + ıkµΘ + ıkµ(Ψ + Φ) = −τ̇

[

Θ + ıµkVb − Θ0 −
1

2
P2Θ2

]

, (3.121)and denote with
τ(η) ≡

∫ η0

η
τ̇dη̃ (3.122)the total opa
ity from the time η until today. Using the equalityddη (Θeıkµηe−τ) = eıkµηe−τ
[

Θ̇ + ıkµΘ + τ̇Θ
] (3.123)we obtain from (3.121)

Θ = −
∫ η0

0
eıkµ(η−η0)e−τ

[

τ̇

(

ıµkVb − Θ0 −
1

2
P2Θ2

)

+ ıkµ(Ψ + Φ)

]

. (3.124)The se
ond term on the right hand side 
an be integrated by parts and we drop theboundary term, whi
h 
ontributes only to the monopole and is thus unobservable, obtaining
Θ(η0, k, µ) =

∫ η0

0
dηeıkµ(η−η0)g(η)

[

−ıµkVb + Θ0 + 1
2P2Θ2 + Ψ + Φ

]

+

∫ η0

0
dηeıkµ(η−η0)e−τ (Ψ̇ + Φ̇) ,

(3.125)and we have de�ned the visibility fun
tion
g(η) ≡ τ̇ e−τ . (3.126)Equation (3.125) is an integral system of equations, sin
e moments ℓ < 3 of the photonstemperature appear on both sides. However, the left hand side 
an be determined given thetime evolution of an handful of quantities whi
h a
t as a sour
e on the right hand side: thephotons moments ℓ < 3 are 
al
ulated from the Boltzmann hierar
hy (2.126, page 41), thebaryon and CDM velo
ity and density perturbation from the �uid 
onservation equations



68 Fundamental equations(2.62�2.63, page 33), while the Bardeen potentials follow from the Poisson equation (2.49)and either the 
onstraint equation (2.50) or the anisotropi
 stress equation (2.51, page 32).Neutrinos 
an be in
luded via a 
ollisionless Boltzmann hierar
hy, Eq. (2.90, page 36). Thegreat advantage is that only the �rst few moments of the 
ollisional Boltzmann hierar
hy forphotons need to be 
omputed a

urately in order to obtain the sour
es of (3.125), redu
ingthe number of 
oupled di�erential equations whi
h needs solving from several thousands to afew dozens. This line of sight integration approa
h is the 
ore algorithm of all modern 
odesfor the 
omputation of the CMB power spe
trum (Seljak & Zaldarriaga, 1996).The visibility fun
tion g(η)dη in (3.125) en
odes the information regarding the ionizationhistory of the Universe, and 
an be interpreted as the probability that a given CMB photonwas last s
attered between η and η + dη. The sharp drop of the free ele
tron density neat de
oupling makes the visibility fun
tion sharply peaked around ηde
, 
f. the solid linein Fig. 6.15. When the Universe is reionized at later time, the visibility fun
tion be
omesnon-zero again, and the free streaming regime goes on
e again over in a 
ollisional regime(� 4.1.3.2).In the limit of instantaneous re
ombination, the LSS be
omes in�nitely thin and thevisibility fun
tion a delta fun
tion peaked at ηde
, while we 
an approximate e−τ with theHeaviside step fun
tion u(η − ηde
). In this limit, the tight 
oupled �uid approximationfor photons goes over dire
tly to the free streaming regime, and there is no generation ofphotons anisotropi
 stress nor polarization. Performing the time integral of (3.125) andsetting to zeroth order Vb = Vγ we �nd
Θ(η0, k, µ) = eıkµ(ηde
−η0)

[

Θ(OSW) + Θ(Dpl) + Θ(ISW)] , (3.127)where
Θ(OSW) ≡ [Θ0 + Ψ + Φ] (ηde
, k) =

[

1

4
Dg,γ + Φ + Ψ

]

(ηde
, k)
=

[

1

4
Ds,γ + Ψ

]

(ηde
, k) (3.128)
Θ(Dpl) ≡ −ıµkVγ(ηde
, k) (3.129)
Θ(ISW) ≡ ∫ η0

ηde
 dηeıkµ(η−η0)(Ψ̇ + Φ̇)(η, k) (3.130)The temperature �u
tuation 
onsists of three terms:
• The ordinary Sa
hs-Wolfe (OSW) part, Θ(OSW). The photons temperature monopole

Θ0 on the last s
attering surfa
e, together with the potential terms Φ and Ψ, re�e
tintrinsi
 inhomogeneities in the radiation �uid and in the metri
 at the moment of de-
oupling. On large s
ales, the ordinary SW e�e
t is responsible for the SW plateau inthe temperature power spe
trum, while on intermediate s
ales the os
illations of Dg,γprodu
e the familiar peak stru
ture.
• The Doppler term Θ(Dpl) ∝ kVb arises be
ause of the relative velo
ity of observerand emitter. Its 
ontribution shows up on the a
ousti
 peak s
ale.
• The integrated Sa
hs-Wolfe (ISW) e�e
t produ
es the term Θ(ISW), and it isindu
ed by a time dependen
e of the Bardeen potentials along the path of the photons.



3.6 Observable quantities 69The early ISW e�e
t is due to the fa
t the the universe is not 
ompletely matterdominated at re
ombination and therefore the potentials are not exa
tly 
onstant; thelate ISW is generated when the late universe be
omes dominated by the 
urvature or a
osmologi
al 
onstant term, both of whi
h indu
e a time dependen
e in the potentials.The dependen
e of the anisotropies on the 
osmologi
al parameters is presented in � 4.1.3.6.2 Angular power spe
traThe relevant quantities for the 
omparison of theoreti
al models and observations are thetemperature and polarization angular power spe
tra, whi
h we introdu
e in this se
tion. Werefer the reader to � 5.1.1 for pre
ise de�nitions of the terminology. We denote by 〈·〉 thetheoreti
al ensemble average over realizations.Temperature power spe
trumThe temperature �u
tuation in dire
tion n on the sky measured by an observer today (η0)and here (x0) is a superposition of plane wave 
ontributions (in a �at Universe)
Θ(η0,x0,n) =

1

(2π)3/2

∫ d3k Θ(η0,k,n)eıx0k (3.131)and ea
h Fourier mode 
an be expanded in spheri
al harmoni
s on the 2-sphere as
Θ(η0,k,n) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
aℓm(k, η0)Yℓm(n) , (3.132)where the expansion 
oe�
ients aℓm(k) are given by

aℓm(k) =

∫ dΩnΘ(k,n)Yℓm(n) (3.133)
= 4πΘℓ(k)Yℓm(k̂) . (3.134)In deriving the last expression we have expanded the temperature �u
tuation in Legendrepolynomials as in (2.84, page 36) and used the addition theorem and orthogonality relationfor spheri
al harmoni
s:

ℓ
∑

m=−ℓ
Yℓm(n)Y ∗

ℓm(n′) =
2ℓ+ 1

4π
Pℓ(n · n′) , (3.135)

∫ dΩnYℓm(n)Y ∗
ℓ′m′(n) = δℓℓ′δmm′ . (3.136)We 
an perform the harmoni
 expansion (3.132) dire
tly in real spa
e rather than in Fourierspa
e, with 
oe�
ients aℓm(x0) (for whi
h we will negle
t the argument x0 from now on),obviously related to aℓm(k) by

aℓm =
1

(2π)3/2

∫ d3 kaℓm(k)eıkx0 . (3.137)We are interested in the 2-point temperature 
orrelation fun
tion C on the sky betweentwo dire
tions n and n′. By 
hoosing our 
oordinate system in su
h a way that the dire
tion
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n 
orresponds to the z-axis, and introdu
ing spheri
al 
oordinates we 
an write n′ = (φ, ϑ)and n · n′ = cos(ϑ). If we assume statisti
al homogeneity and isotropy for the random�eld Θ, see � 5.1.1, then the 
orrelation fun
tion does not depend on the observer's position(homogeneity) nor on the azimutal angle φ (isotropy). Therefore

C(ϑ) ≡ 〈Θ(η0,x0,n) · Θ(η0,x0,n
′)〉

=
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(n · n′) ,
(3.138)where we have de�ned the CMB angular power spe
trum by

〈aℓm · a∗ℓ′m′〉 = δℓℓ′δmm′Cℓ . (3.139)The fa
t that Cℓ does not depend on x0 is a 
onsequen
e of the assumption of homogeneity,while isotropy requires that it does not depend on the index m, whi
h would introdu
e anazimutal dependen
e. It is also 
ustomary to assume that the aℓm's are Gaussian random�elds, as motivated by in�ation, but this is not stri
tly ne
essary at this stage. Eq. (3.138)shows that the angular power spe
trum is the harmoni
 transform of the 
orrelation fun
tionon the 2-sphere and for Gaussian variables it 
ontains the full statisti
al information. If the
aℓm's are Gaussian distributed, then the Fourier 
oe�
ients aℓm(k) are Gaussian randomvariables as well. From the assumption of homogeneity it follows that 〈aℓm(k)〉 = δ(D)(k),where δ(D) denotes the Dira
 delta fun
tion. Homogeneity and isotropy together imply that

〈|aℓm|2〉 =
1

(2π)3

∫ d3k〈|aℓm(k)|2〉 . (3.140)We now relate the angular power spe
trum to the temperature multipoles: this is doneby observing that the evolution equations (2.126, page 41) for Θℓ are independent of k̂, andtherefore we 
an write
Θℓ(η,k) = Θℓ(η, k)χ(k) , (3.141)where we assume that χ(k) are the Fourier 
omponents of a Gaussian, isotropi
 and homo-geneous random �eld. As a 
onsequen
e

〈χ(k) · χ∗(k′)〉 = δ(D)(k− k′) 〈|χ(k)|2〉 . (3.142)Now from (3.139) and using Eqs. (3.141), (3.140) and (3.134) we obtain
Cℓ = 4π

∫ dk
k
Pχ(k) |Θℓ(η0, k)|2 . (3.143)We shall later identify χ with the primordial 
urvature or entropy perturbation, see Eq. (4.5,page 79), and 
all

Pχ(k) ≡
k3

2π2
〈|χ|2〉 (3.144)the 
urvature (or entropy) power spe
trum: this quantity gives the 
ontribution to Cℓ perlogarithmi
 k-interval of the primordial �u
tuation.The photons transfer fun
tionΘℓ(η0, k) in Eq. (3.143) above is an intrinsi
ally 2-dimensionalquantity whi
h gives information about how the initial power is mapped onto the angular
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trum. It 
an be evaluated from Eq. (3.125, page 67), by observing that the angle
µ = k̂ · n in the integrand 
an be eliminated by repla
ing

eıkµ(η−η0)gıkµVb =
ddη (eıkµ(η−η0)gVb

)

− eıkµ(η−η0)ġVb − eıkµ(η−η0)gV̇b (3.145)and dropping the total derivative whi
h only gives an unobservable monopole term. Thereforewe 
an rewrite (3.125, page 67) as
Θ(η0, k, µ) =

∫ η0

0
dηeıkµ(η−η0)S(η, k) (3.146)with the sour
e term of the form

S(η, k) = g

[

V̇b
k

+ Θ0 −
Θ2

4
+ Ψ + Φ

]

− ġ

[

Vb
k

+
3

4

Θ2

k2

]

− g̈
3

4

Θ̇2

k2

+ e−τ (Ψ̇ + Φ̇) .

(3.147)Now we expand the plane wave in radial and angular eigenfun
tions, Bessel fun
tions andLegendre polynomials respe
tively, using the Rayleigh formula
eıkµ(η−η0) =

∑

ℓ

ıℓ(2ℓ+ 1)jℓ(k(η0 − η))Pℓ(µ) , (3.148)and we obtain for the temperature transfer fun
tion
Θℓ(η0, k) = ıℓ

∫ η0

0
dηS(η, k)jℓ(k(η0 − η)) . (3.149)This is shown in the top panels of Fig. 3.1 for adiabati
 and iso
urvature CDM initial 
ondi-tions.Together, Eqs. (3.149) and (3.143) allow the 
omputation of the CMB angular power spe
-trum and neatly split the geometri
 e�e
ts from the physi
s: all of the dynami
al evolution isen
oded in the sour
e fun
tion S(η, k), while the Bessel fun
tion a

ounts for the proje
tionfrom 3-dimensional k-spa
e on the 2-sphere. The generalization of this result for the K 6= 0
ase 
an be found in Zaldarriaga et al. (1998); Zaldarriaga & Seljak (2000); Lewis et al.(2000). The temperature and E-polarization spe
tra of a 
on
ordan
e model for adiabati
and iso
urvature CDM initial 
onditions are displayed in the top left panel of Fig. 4.9 onpage 94.Polarization power spe
trumAs mentioned in � 2.2.5.5, polarization of s
alar modes is 
onveniently des
ribed by the Epolarization mode, supplemented by the 
ross-
orrelator between E and T (temperature). Asfor temperature, we 
an formally integrate the Boltzmann equation for the Stokes parameter

Q, Eq. (2.131, page 42), along the line of sight and obtain
ΘQ(η0, k, µ) = −1

2

∫ η0

0
eıkµ(η−η0)g(η) (1 − P2)

(

Θ2 + ΘQ
2 − ΘQ

0

)

. (3.150)The E-polarization power spe
trum and the ET-
orrelator (supers
ript C) are de�ned as
〈aEℓm · a∗Eℓ′m′〉 = δℓℓ′δmm′CEℓ , (3.151)
〈aTℓm · a∗Eℓ′m′〉 = δℓℓ′δmm′CCℓ , (3.152)
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Figure 3.1: Temperature (top) and polarization (bottom) transfer fun
tion Θℓ(η0, k) and
∆E
ℓ (η0, k) for adiabati
 (left panels) and iso
urvature CDM (right panels) initial 
onditions.The 
olor s
ales are arbitrary, and have been 
hose as too highlight the features of the transferfun
tions. In parti
ular, the 
olor 
oding is not in s
ale between the di�erent plots.and in analogy with the treatment for the temperature spe
trum they 
an be 
omputed as asuperposition of k modes of a sour
e fun
tion integrated over time:

CEℓ = 4π

∫ dk
k
Pχ(k) |∆E

ℓ (η0, k)|2 , (3.153)
∆E
ℓ (η0, k) =

√

(ℓ+ 2)!

(ℓ− 2)!

∫ η0

0
dηSE(η, k)jℓ(k(η0 − η)) , (3.154)

SE(η, k) =
3g(η)

4k2(η0 − η)2

(

Θ2 + ΘQ
2 − ΘQ

0

)

. (3.155)The 
ross-
orrelator spe
trum is 
omputed using (3.149) as
CCℓ = 4π

∫ dk
k
Pχ(k) Θ∗

ℓ(η0, k)∆
E
ℓ (η0, k) . (3.156)The polarization transfer fun
tion ∆E

ℓ (η0, k) is plotted in Fig. 3.1 for adiabati
 and iso
ur-vature CDM initial 
onditions.



3.6 Observable quantities 73The degree of polarization is proportional to the magnitude of the temperature quadrupoleat last s
attering. Sin
e during the tight 
oupling regime the temperature quadrupole 
annotgrow, polarization is generated in the relatively short transition between the strong 
ouplingand the free streaming regime. To �rst order in τ̇−1, the temperature quadrupole is pro-portional to the temperature dipole, see (4.30, page 83). The polarization amplitude is thusproportional to the temperature dipole at re
ombination times the width of the last s
at-tering surfa
e (Zaldarriaga & Harari, 1995), resulting in a polarization signal two orders ofmagnitude lower than the temperature signal.3.6.3 Matter power spe
trumLet δ(η,x) denote the real-spa
e density 
ontrast in the matter 
omponent in the 
omovinggauge; hen
e δ 
orresponds to the gauge invariant variable ∆m de�ned in Eq. (2.37, page 30).We will drop the time dependen
e when not needed, and write δ instead of ∆m to simplifythe notation. For 
larity, the Fourier transform of the variables is denoted by a subs
ript �k�,in this se
tion only.The real spa
e 
orrelation fun
tion is de�ned as
ξ(r) ≡ 〈δ(x) · δ(x + r)〉 , (3.157)where 〈·〉 denotes an average over realizations, see � 5.1.1 for pre
ise de�nitions. It is theexpe
tation value of δ2 = δ(x + r) and δ1 = δ(x) under the 2-point probability distributionfun
tion for δ1, δ2. We write δ(x) as

δ(x) =
1

(2π)3/2

∫ d3kδke
ıkx (3.158)where we denote by δk the Fourier transform (in �at spa
e) of δ(x). We postulate that δ(x)is a Gaussian distributed, isotropi
 and homogeneous random �eld, see � 5.1.1, and thereforethe quantity 〈δ∗

k
·δk′〉 vanishes for k 6= k′ (homogeneity) and it only depends on the modulus,not the dire
tion of k (isotropy):

〈δ∗k · δk′〉 = (2π)3/2δ(D)(k − k′) Pm(k) (3.159)where δ(D) denotes the Dira
 delta fun
tion. We 
all Pm(k) the matter power spe
trum.Repla
ing (3.158) in (3.157) we obtain
ξ(r) =

1

(2π)3/2

∫ d3kPm(k)eıkr =
2√
2π

∫ dkk2 sin rk

rk
Pm(k) , (3.160)showing that the 
orrelation fun
tion is the Fourier transform of the matter power spe
trum.Our aim is to 
ompute the power spe
trum today as a fun
tion of the spe
tral distributionin the early Universe in the adiabati
 CDM s
enario. To this end, we make use of the resultsof linear perturbation theory presented in the previous se
tions for the growth of matterperturbations in a Universe 
ontaining CDM and photons only. Clearly, these 
omputationsare valid only as long as the s
ale 
onsidered is in the linear regime, i.e. δk ≪ 1. We onlysket
h the elements whi
h are needed in the following, referring the reader to e.g. Peebles(1980); Padmanabhan (1993); Liddle & Lyth (2000) for a full a

ount.



74 Fundamental equationsPerturbations δk over a 
omoving length λ ∼ k−1 behave di�erently depending whetherthey are outside (k < H) or inside (k > H) the Hubble length. For a given s
ale k, wedenote by ηent the time at whi
h that s
ale 
rosses inside the horizon, i.e. H(ηent) = k andby keq the wavelength whi
h enters the horizon at the time of matter-radiation equality, i.e.
keq = H(ηeq). We thus need to distinguish two 
ases: s
ales k > keq enter the horizon in theradiation dominated epo
h, while k < keq enter the horizon after matter domination. Weshall restri
t ourselves to length s
ales λ whi
h are large enough not to be wiped out by freestreaming, i.e. λ > λFS, see Padmanabhan (1993) for details.For k > keq and ηent < η < ηeq, δk(η) stays approximately 
onstant after horizon 
rossingbe
ause the radiation dominated epo
h suppresses the growth of perturbation in a dust-like
omponent; this is 
alled the Meszaros e�e
t (Meszaros, 1974). For η > ηeq the Universe ismatter dominated and the situation is analogous to the single �uid 
ase examined in � 3.1,and the perturbation grows as δk ∝ a, see Eq. (3.14, page 49). Wavelengths whi
h enterthe horizon in the matter dominated epo
h, k < keq, start growing as soon as they 
ross thehorizon, δk(η) ∝ a for η > ηent, by the same argument given above. Summarizing, we havethat

δk(η > ηent) ∝ 




δk(ηent) a
aeq for k > keq

δk(ηent) aeq
aent aaeq for k < keq , (3.161)and therefore we know δk for all subsequent times on
e we spe
ify δk(ηent), the value of thedensity 
ontrast for the wavelength k at the moment when that wavelength 
rossed inside thehorizon. Sin
e for a given wavelength ηent ∝ 1/k, horizon 
rossing happens at a di�erent timefor ea
h s
ale. We noti
e that in the se
ond line of Eq. (3.161) we 
an rewrite the fa
tor

aeq/aent as
aeq
aent =

(

ηeq
ηent)2

=

(

k

keq)2

∝ k2 , (3.162)where in the �rst equality we have used the fa
t that a ∝ η2 in the matter dominated universe.Given that the range of s
ales of 
osmologi
al interest is not too wide, we 
an make thefollowing power law Ansatz for the s
ale dependen
e of the perturbation at horizon 
rossing
δk(ηent) = Ak−α . (3.163)An important quantity is k3/(2π)3/2Pm(k), whi
h from (3.160) gives the 
ontribution perlogarithmi
 k-interval to the real spa
e 
orrelation fun
tion, and whi
h with the above Ansatzevaluates to

k3

(2π)3/2
Pm(k)

∣

∣

∣

ηent ∝ k3−2α = 
onst for α = 3/2 . (3.164)This quantity 
an also be interpreted as the varian
e of the mass 
ontained in spheres ofdiameter λ ∼ 1/k at horizon 
rossing, see e.g. Padmanabhan (1993); for the value α = 3/2the varian
e is the same on all s
ales.We might prefer to spe
ify our Ansatz not at horizon 
rossing, but rather for some �xedinitial time (the same for all s
ales) ηi. In order to relate δk(ηi) with δk(ηent), we noti
ethat on super-horizon s
ales k < H and for times ηent > η > ηeq we have δk ∝ a ∝ η2 fromEq. (3.14, page 49). For the 
ase k < H in the radiation epo
h, η < ηent < ηeq we 
an use the



3.6 Observable quantities 75adiabati
 solution (3.26, page 51) and the relation
δk ≡ ∆m =

3 + 3a

4 + 3a
D +

4

4 + 3a
S ≈ 3

4
D + S ∝ a2 ∝ η2 , (3.165)and the approximation is valid for a < aeq. In 
on
lusion, the 
omoving dark matter density
ontrast grows as η2 at all epo
hs while outside the horizon. Therefore we obtain (with

ηent > ηi for all s
ales of interest)
δk(ηent) =

(

ηent
ηi

)2

δk(ηi) ∝ k−2δk(ηi) . (3.166)It is 
ustomary to make a power law Ansatz for the matter power spe
trum at the time ηi ofthe form
Pm(k, ηi) = Bkn (3.167)and by the relation (3.166) the index n is related to α by
n = −2α+ 4 . (3.168)The value α = 3/2 whi
h yields a 
onstant-mass-varian
e on all s
ales at horizon 
rossing
orresponds to n = 1, the so-
alled �s
ale invariant spe
tral index�, also known as Harrison-Zel'dovi
h spe
trum (Harrison, 1970; Zel'dovi
h, 1972). The power spe
trum today thenbe
omes in terms of n, from (3.161)

δk(η0) ∝
{

kn−4 for k > keq
kn for k < keq . (3.169)The length s
ale whi
h 
rosses the horizon at equality, λeq ≈ 13/(Ωmh

2) Mp
 
orrespondsto a peak in the power spe
trum: �u
tuations on larger s
ales, k < keq ∼ 1/λeq retain theirprimordial shape, while perturbations on smaller s
ales have their spe
trum multiplied by k−4.The above arguments only apply in the linear region, i.e. for k<∼ 0.3 h/Mp
, above whi
hnon-linear growth of the �u
tuations invalidate perturbation theory and a full numeri
alsimulation is required to follow the evolution.Finally, we 
an easily relate the matter power spe
trum to the Bardeen potential byusing the Poisson equation (2.49, page 32). If we 
onsider the value of Ψk(ηent), the Fouriertransform ofΨ evaluated at horizon 
rossing, we have from the Poisson equation, noti
ing that
H(ηent) = 1/k, δk = ∆m ∼ ∆γ ∼ D by the adiabati
ity 
ondition, that Ψk(ηent) ∼ −δk(ηent).Therefore for the power spe
trum of the Bardeen potential, de�ned as

PΨ ≡ k3

2π2
〈|Ψk|2〉 (3.170)we have that

PΨ(k)
∣

∣

ηent ∝ k3Pm(k)
∣

∣

ηent ∝ kn−1 , (3.171)and the n = 1 s
ale invariant spe
trum 
orresponds to PΨ(ηent) = 
onst. Or we 
an spe
ify
PΨ at a �xed initial time ηi, in whi
h 
ase we obtain again from the Poisson equation

PΨ(k)
∣

∣

ηi
∝ k−1Pm(k)

∣

∣

ηi
∝ kn−1 . (3.172)



76 Fundamental equationsThe fa
t that there is no evolution in the power spe
trum of Ψ until horizon 
rossing isof 
ourse a 
onsequen
e of the fa
t that Ψk ≈ 
onst on super-horizon s
ales, as shown in� 3.2. The same s
aling applies for the power spe
trum of the gauge invariant 
urvatureperturbation ζ, whi
h is 
onstant on super-horizon s
ales for adiabati
 perturbations, andproportional to Ψ.



Chapter 4Parameter dependen
e
This 
hapter presents a brief review of the dependen
e of the CMB power spe
tra on thestandard 
osmologi
al parameters and on general initial 
onditions, building on the results ofthe previous se
tions. Understanding the impa
t of the parameters on the observable spe
trabuilds the framework for parameter extra
tion from data, whi
h is the subje
t of Part III.In � 4.1 we 
on
isely review the origin and main parameters dependen
ies of well knownfeatures of the power spe
trum: the large s
ale Sa
hs-Wolfe plateau, the a
ousti
 os
illations,and the damping tail. Introdu
tory reviews on this topi
 
an be found in e.g. Kosowsky(2002) and Hu et al. (1997). A detailed physi
al understanding in a fully analyti
al approa
his explained in Hu & Sugiyama (1995a,b, 1996). In view of e�
ient and a

urate parameterestimation, fundamental degenera
ies in the CMB spe
tra are best understood by introdu
inga set of analyti
al fun
tions of the parameters whi
h the CMB probes dire
tly, and upon whi
hthe spe
tra dependen
e is almost linear (Kosowsky et al., 2002). We 
all this new basis inparameter spa
e �normal parameters set�, and we illustrate it in � 4.2.In � 4.3 the CMB angular power spe
tra for general iso
urvature initial 
onditions in aUniverse 
ontaining CDM, baryons, photons and neutrinos are presented. The four modesadiabati
, CDM iso
urvature, neutrino density and neutrino velo
ity � along with a baryoniso
urvature mode whi
h is equal to the CDM mode up to a res
aling 
onstant � span thewhole spa
e of non-diverging solutions of Einstein's equations at early times (Bu
her et al.,2000), and thus their superposition 
onstitutes the most general type of initial 
onditions forCMB anisotropy.4.1 Standard parametersThe detailed shape of the CMB temperature and polarization spe
tra depends on the valueof the 
osmologi
al parameters and on the type of initial 
onditions in 
hara
teristi
 ways.However, 
ertain 
ombination of parameters lead to very similar spe
tra: this 
auses degen-era
ies among some parameters, whi
h 
annot be re
onstru
ted with CMB alone, but requirethe in
lusion of external data-sets.Polarization information helps breaking temperature degenera
ies be
ause of two 
hara
-teristi
 features: the �rst is that after de
oupling the polarization state is preserved by freestreaming, and the polarization spe
trum is only modi�ed by res
attering due to reionization(� 4.1.3.2). Therefore in a sense polarization is a more 
lean probe of the de
oupling than



78 Parameter dependen
etemperature. The se
ond reason is that while the a
ousti
 peaks in temperature are domi-nated by the monopole of the temperature �u
tuation on the LSS, the peaks in E-polarizationre�e
t the dipole 
omponent at de
oupling, i.e. the photon bulk velo
ity (� 4.1.2.1).In the following we revisit the main parameter dependen
e of the CMB spe
tra: for thesake of illustrating the physi
al e�e
ts involved, we divide the CMB power spe
trum inthree distin
t regions, 
orresponding to di�erent angular separations on the sky with theapproximate relation ϑ ∼ π/ℓ.
• Large s
ales: on s
ales larger than the Hubble radius at de
oupling, kηde
 ≪ 1, per-turbations are dominated by the ordinary Sa
hs-Wolfe e�e
t, given by the 
ombinationof the intrinsi
 temperature �u
tuations on the LSS and the gravitational redshift in-du
ed by 
limbing out of the potential well. In non-�at 
osmologies, or models witha 
onsiderable value of the 
osmologi
al 
onstant, the late ISW e�e
t also 
ontributes.This region 
orresponds roughly to the COBE s
ale, ℓ<∼ 30 and ϑ>∼ 7◦.Reionization produ
es a a 
hara
teristi
 in
rease of E-polarization on large s
ales, theso-
alled �polarization bump�.
• A
ousti
 region: inside the sound horizon photon pressure 
annot be negle
ted,and s
ales within the sound horizon k ∫ csη >∼ 1 os
illate, while gravitational infall be-
omes negligible be
ause of potential de
ay inside the horizon. On intermediate s
ales

50<∼ ℓ<∼ 600 the CMB power spe
trum displays a ri
h peak stru
ture, re�e
ting the
ontributions of density os
illations and Doppler term on the LSS. The early ISW ef-fe
t 
ontributes at roughly the 20% level up to the �rst a
ousti
 peak (for adiabati
models). Those s
ales have a typi
al angular separation on the sky ranging from about
10◦ down to a few 10′.

• Damping tail: wavelengths smaller than the di�usion damping s
ale 1/kD given in(3.120, page 66) are exponentially suppressed and this 
auses a drop in power above
ℓ ∼ 800 or ϑ<∼ 1′. This e�e
t 
ombines with res
attering due to reionization, whi
h alsoerases �ne-s
ale anisotropies.4.1.1 Large s
alesWe wish to investigate the expe
ted temperature �u
tuations on very large s
ales in the gen-eral 
ase of a superposition of primordial adiabati
 and iso
urvature CDM initial 
onditions.We look at wavelength k ≪ kde
 whi
h at de
oupling where still outside the horizon and we
onsider a zeroth order approximation whi
h negle
ts any anisotropi
 stress and the baryonin�uen
e (i.e. set R = 0). If we take de
oupling to happen well into matter domination,we 
an also negle
t the ISW 
ontribution sin
e the potentials are equal and 
onstant � seeEq. (3.14, page 49) � and to this level of approximation we 
an set Vb = Vγ . With thisapproximations we have for ea
h Fourier mode from Eqs. (3.128, page 68) and (3.129, page68)

Θ(η0, k, µ) = eıkµ(ηde
−η0)

[

1

4
Dg,γ + 2Φ − ıkµVγ

]

(ηde
, k) . (4.1)In the adiabati
 
ase, we 
an negle
t the 
ontribution of the Doppler term whi
h behavesas a sine and hen
e disappears on large s
ales, kηde
 ≪ 1, while the 
osine os
illation of



4.1 Standard parameters 79the density perturbation Dg,γ be
omes 
onstant, see (3.56, page 55). Therefore for adiabati
initial 
onditions, from the solution (3.56) it follows
Θ(η0, k, µ) ≈ eıkµ(ηde
−η0)

[(

1

3
ΦMD − 2ΦMD)+ 2ΦMD] (adiabati
), (4.2)where ΦMD denotes the value of Φ at de
oupling well within matter domination. On theright hand side, the term −2ΦMD 
omes from the solution (3.56), and its negative signre�e
ts the fa
t that the temperature is larger inside potential wells (Φ < 0), so that photonsare blushifted when they fall into the well. The term 2ΦMD represents the gravitationalredshift whi
h photons experien
e when they 
limb out of the potential as they free streamafter de
oupling, whi
h exa
tly 
an
els the gravitational blueshift term in the absen
e ofbaryons. In 
on
lusion we have

Θ(η0, k, µ) ≈ eıkµ(ηde
−η0) 1

3
ΦMD (adiabati
). (4.3)For iso
urvature initial 
onditions, we have that Dg,γ(ηde
) = 0, whi
h follows from (3.48,page 54) with the iso
urvature 
ondition Φ0 = 0. The Doppler term 
an again be negle
tedwith respe
t to the potential, be
ause from (3.53, page 55) we have that kVγ ∼ k/HΦ ≪ Φand (4.1) redu
es to

Θ(η0, k, µ) ≈ eıkµ(ηde
−η0)2ΦMD (iso
urvature), (4.4)the well-known result that iso
urvature initial 
onditions produ
e large s
ale �u
tuations sixtimes larger than in the adiabati
 
ase for the same value of the Bardeen potential on the lasts
attering surfa
e.More interestingly, we 
an relate the large-s
ale temperature �u
tuations to the amplitudeof the primordial 
urvature and entropy spe
tra. Rewriting (4.3�4.4) in terms of the 
urvatureand entropy perturbations in the radiation era via Eqs. (3.33�3.36, page 53), yields for thesour
e term (3.147, page 71)
S(η, k) = δ(η − ηde
) [ζ0

5
ψ(k) − 2

5
S0φ(k)

]

, (4.5)where ψ(k) and φ(k) are the Fourier 
omponents of random �elds whi
h we assume areGaussian distributed, isotropi
 and homogeneous, see � 5.1.1, evaluated at some initial time
ηi deep in the radiation epo
h. For their power spe
trum we make a power low Ansatz

Pψ(k)
∣

∣

ηi
≡ k3

2π2
〈|ψ(k)|2〉 = ζ2

0

(

k

kP)ns−1

, (4.6)
Pφ(k)

∣

∣

ηi
≡ k3

2π2
〈|φ(k)|2〉 = S2

0

(

k

kP)ne−1

, (4.7)
Pc(k)

∣

∣

ηi
≡ k3

2π2
〈ψ(k) · φ∗(k)〉 = ζ0S0

(

k

kP)nc−1

cos(∆c) . (4.8)The 
onstants ζ0 and S0 are dimensionless and positive, while the angle ∆c parameterizesthe 
orrelation between entropy and iso
urvature perturbations; the 
onstant kP is a pivots
ale, for whi
h a popular 
hoi
e is kP = 0.05 Mp
−1, and we have de�ned nc ≡ (ns + ne)/2.
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eThe power law index ns is the s
alar spe
tral index: ns ≈ 1 is a generi
 predi
tion ofin�ation, almost independently of the parti
ular model, and is 
alled �s
ale-invariant� orHarrison-Zel'dovi
h (Harrison, 1970; Zel'dovi
h, 1972) spe
tral index. The reason for thename is explained in � 3.6.3. Sin
e Ψ ∝ ζ up to 
onstant fa
tors, Ψ and ζ have the samespe
trum.From (3.143, page 70) the angular power spe
trum on large s
ales (ℓ<∼ 20) is then givenby
Cℓ =4π

∫ dk
k

[

ζ2
0

25

(

k

kP)ns−1

+
4S2

0

25

(

k

kP)ne−1

− 4

25
ζ0S0 cos(∆c)

(

k

kP)nc−1
]

×

× j2ℓ (k(η0 − ηde
)) . (4.9)The integral 
an be performed analyti
ally provided all the indexes are within the range
−3 < nX < 3 and in the approximation k(η0 − ηde
) ≈ kη0 (Gradshteyn & Ryzhik, 1965).The result is

Cℓ = 2π2

[

ζ2
0

25
f(ns, ℓ) +

4S2
0

25
f(ne, ℓ) −

4

25
ζ0S0 cos(∆c)f(nc, ℓ)

]

. (4.10)The fun
tion f 
ontains the dependen
e on the spe
tral indexes, and it is given by
f(n, ℓ) ≡ (η0kP)1−n

Γ(3 − n)Γ(ℓ− 1
2 + n

2 )

23−nΓ2(2 − n
2 )Γ(ℓ+ 5

2 − n
2 )
, (4.11)where Γ is the gamma fun
tion, whi
h for a s
ale invariant spe
trum, n = 1, evaluates to

f(n = 1, ℓ) =
1

π(ℓ(ℓ+ 1))
. (4.12)If both the 
urvature and entropy spe
tral indexes are 
lose to s
ale invariant (ns = ne =

1), we �nd that the so-
alled Sa
hs-Wolfe (SW) plateau for ℓ<∼ 20 is 
onstant:
ℓ(ℓ+ 1)

2π
Cℓ =

1

25
ζ2
0 +

4

25
S2

0 − 4

25
cos(∆c)ζ0S0 ≈ 10−10 , (4.13)and the numeri
al value is the measurement of the DMR instrument aboard the COBEsatellite averaged on s
ales <∼ 7◦ (Smoot et al., 1992). Clearly, un
orrelated entropy and
urvature perturbations (i.e. with cos(∆c) = 0) both add to the SW plateau, but a positive
orrelation (de�ned by cos(∆c) > 0) redu
es the power on large s
ales, while a negative
orrelation in
reases it, as shown in the top left panel of Fig. 4.9 on page 94. If there is no
orrelation, the iso
urvature Sa
hs-Wolfe plateau from (4.3) and (4.4) is 36 times larger thanthe adiabati
 one for the same value of Ψ at last s
attering, and 4 times larger for the sameamplitude of the primordial 
urvature and entropy perturbations, Eq. (4.13). In the pureadiabati
 
ase, S0 = 0, we obtain from (4.13) an estimate of the primordial amplitude of the
urvature perturbation:

ζ0 ≈ 5 · 10−5 . (4.14)For models with a non-zero 
osmologi
al 
onstant, the Universe be
omes Λ dominated for
a/a0 ≥ (Ωm/ΩΛ)1/3, and the potentials start again to de
ay. This produ
es a late time ISWwhi
h 
ontributes on large s
ales, where it is dominant with respe
t to the ordinary SW partdes
ribed above, produ
ing a rise of the SW plateau at low multipoles. The details di�er
onsiderably for adiabati
 and iso
urvature models, and also depend on the spe
tral index,see Hu & Sugiyama (1995b) for a detailed explanation.
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ousti
 regionThe stru
ture of the power spe
trum on intermediate s
ales is the result of several physi-
al e�e
ts, sometimes with 
ontrasting impa
ts. The most distin
tive features are a
ousti
os
illations and proje
tion.4.1.2.1 Peak lo
ationsS
ales krs = k
∫ ηde

0 csdη > 1 enter the horizon before de
oupling and thus Dg,γ os
illates as

cos(rsk) � 
f. (3.56, page 55) � for adiabati
 perturbations or as sin(rsk) � 
f. (3.62, page 55)� in the iso
urvature mode. Thus s
ales whi
h at the moment of de
oupling have rea
hedan extremum of their os
illation will yield 
orresponding peaks in the temperature powerspe
trum. Noti
e that sin
e the power spe
trum is a quadrati
 quantity, both maxima andminima of the os
illations give peaks. The k modes whi
h at re
ombination are at maximum
ompression or expansion are
k

(m)ad =
mπ

rs(ηde
) , m = 1, 2, 3, . . . (adiabati
), (4.15)
k

(m)is =
mπ + 1/2

rs(ηde
) , m = 0, 1, 2, . . . (iso
urvature). (4.16)The 
orresponding physi
al s
ale λphys = ade
π/k subtends an angle ϑ on the sky given bythe angular diameter distan
e relation (1.32, page 15), and the peaks in the angular powerspe
trum show up at ℓ ∼ π/ϑ or
ℓ(m) ∼ mπ

DA

ars
(ηde
) (adiabati
), (4.17)

ℓ(m) ∼ (1
2 +m)π

DA

ars
(ηde
) (iso
urvature). (4.18)Sin
e Dg,γ(k = k

(1)ad ) < 0, the �rst adiabati
 peak 
orresponds to a 
ompression maximum,while the �rst �iso
urvature hump� is an expansion maximum, Dg,γ(k = k
(0)is ) > 0. Inthe literature, ��rst a
ousti
 peak� usually designates the 
ompression peaks, i.e. the �rstadiabati
 extremum and the se
ond iso
urvature one, whi
h in the notation of (4.15�4.16)
orrespond both to the index m = 1. For a �at universe (K = 0) without 
osmologi
al
onstant (ΩΛ = 0) and a baryon 
ontent as inferred from BBN (Ωbh

2 ≈ 0.02), the lo
ationof the �rst a
ousti
 peak is approximately
ℓ(1) ∼ 220 (adiabati
) and (4.19)
ℓ(1) ∼ 330 (iso
urvature). (4.20)The WMAP data allow a very pre
ise determination of the position of the �rst peak,

ℓ(1) = 220.1 ± 0.8 (Page et al., 2003), thereby 
on�rming that the adiabati
 mode is thedominant one. However, subdominant iso
urvature 
ontributions 
annot be ruled out, seeChapter 7.The lo
ation of the peaks depends on the of initial 
onditions, but the inter-peaks distan
eis independent on the type of perturbations, and in the above estimate is ∆ℓ ≈ 220. The peakspa
ing depends on the baryon 
ontent, whi
h sets rs, and on the spatial geometry whi
h
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eenters in DA. A larger baryon 
ontent slows down the os
illations, thus de
reasing the soundhorizon and the spa
ing between peaks grows larger. The dependen
e of DA is primarily onthe 
urvature of the universe: in a 
rude approximation we negle
t ΩK ≪ Ωm and ΩΛ whenintegrating (1.34, page 15) up to zde
 ≈ 1100 ≫ 1 and negle
t Ωr as well (whi
h is not a goodapproximation for a large redshift) and we obtain
DA(zde
) ≈ 2ade


H0a0
Ω−1/2
m . (4.21)Therefore the peak position s
ales as Ω

−1/2
m , whi
h means that the peaks are shifted tolarger ℓ values in an open universe. Introdu
ing a non-zero 
osmologi
al 
onstant 
ompli
atesmatters, sin
e it is then possible to obtain the same value of the angular diameter distan
e,and hen
e the same peak lo
ation, by 
ompensating a 
hange in Ωm with a di�erent value of

ΩΛ, an e�e
t whi
h goes under the name of angular diameter distan
e degenera
y (Efstathiou& Bond, 1999; Mel
hiorri & Gri�ths, 2001). The angular diameter distan
e test is no longersu�
ient to determine alone the 
urvature of the universe, but an independent measurementof Ωm or ΩΛ is ne
essary.To illustrate this fundamental degenera
y, let us introdu
e the shift parameter Rshift,whi
h gives the �rst peak's position (in an adiabati
 model) with respe
t to its lo
ation in a�at referen
e model with Ωm = 1:
ℓ(1) = ℓ

(1)ref /Rshift , (4.22)whi
h 
an be evaluated from (4.17). To this end, we need the expli
it expression for thesound horizon at de
oupling, whi
h is given by
rs(ade
) =

∫ ade

0

cs
dηdãdã

=
1

H0a0

√
3

∫ ade
/a0
0

dx
[(

1 + 3Ωb

4Ωγ
x
)

(Ωmx+ Ωr + ΩKx2 + ΩΛx4)
]1/2

(4.23)(where all the ΩX 's are evaluated today). Negle
ting the 
urvature and 
osmologi
al 
onstantterm in the early universe (ade
/a0 ≪ 1) yields the approximate result
rs(ade
) ≈ 1

√
3H0a0Ω

1/2
m

(

aeq/a0

Req )1/2

×

× ln

[

1 +Req + 2Rde
 + 2
√

(1 +Rde
)(Req +R)

1 +Req + 2
√

Req ]

,

(4.24)where
R(a) ≡ 3Ωb

4Ωγ

a

a0
and Req ≡ R(aeq), Rde
 ≡ R(ade
) . (4.25)In order to �nd a simple approximate expression for Rshift, let us ignore the logarithmi
dependen
e on the parameters of rs, and negle
t the parameter dependen
e of the fa
tor

(aeq/a0)
1/2/R1/2eq as well; we shall relax those approximations in � 4.2. Then the soundhorizon for K 6= 0 models s
ales as

rs(ade
) ≈ α

√

|ΩK|
Ωm

, (4.26)
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e model with (Ωm,ΩΛ) = (1, 0) we have
DA(ade
)
ade
rs(ade
) = 2α , (4.27)with α being approximately the same fa
tor as in (4.26). For the shift parameter (4.22) of amodel with arbitrary (Ωm,ΩΛ) we then obtain the simple expression

Rshift ≈ 2

χ(∆η)

√

|ΩK|
Ωm

, (4.28)where ∆η is given in Eq. (1.34, page 15) and χ in Eq. (1.3, page 12). This handy expressiongives the approximate position of the �rst peak as a fun
tion of Ωm and ΩΛ, with ΩK obtainedfrom the 
onstrain 1 = Ωm+ΩΛ+ΩK. Here we have ignored the dependen
e on the radiation
ontent of the model, whi
h is expli
itly in
luded in (Eq. (6.5, page 126)). In the left panelof Fig. 4.1 we plot lines of Rshift = 
onst in the (Ωm,ΩΛ) plane, whi
h are not parallel tolines of 
onstant 
urvature (diagonal lines).Along with Rshift, two other physi
al quantities determine the stru
ture of the peaks:the baryon density Ωbh
2 
ontrols the relative height of the peaks, see � 4.1.2.2, while theamount of matter Ωmh

2 sets the redshift of equality, for a �xed relativisti
 energy 
ontent.Therefore by �xing the three quantities Rshift,Ωmh
2,Ωbh

2 we obtain models with almostindistinguishable power spe
tra in the a
ousti
 region. This is illustrated in the middle panelof Fig. 4.1, where a �at, a 
losed and an open model result 
ompletely degenerate, with theonly di�eren
e showing up on large s
ales be
ause of the di�erent amount of late ISW e�e
t.The right panel shows that 
onversely the �rst peak's position in three �at models 
an bevery di�erent if the shift parameters di�er, and therefore the statement that the �rst peakposition alone 
an determine the 
urvature of the Universe is impre
ise.Polarization peaks are displa
ed by π/2 with respe
t to temperature peaks, hen
e polar-ization maxima o

ur at temperature minima. This 
an be seen by expanding to �rst order in
τ̇−1 the polarization hierar
hy (2.132�2.135, page 42), �nding for the polarization monopoleand quadrupole

ΘQ
0 = −5

4
Θ2 and ΘQ

2 = −1

4
Θ2 . (4.29)The temperature quadrupole is found to the same order from the temperature hierar
hy,in
luding the polarization feedba
k as in (2.136, page 42), giving

Θ2 = −τ̇−1 8

15
ıkΘ1 . (4.30)The E-polarization sour
e term (3.155, page 72) be
omes in the instantaneous de
ouplingapproximation

SE = −τ̇−1(η0 − ηde
)−2 ı

k
Θ1(ηde
) , (4.31)showing that E-polarization probes the temperature dipole, i.e. the bulk velo
ity of thephotons-baryons �uid, at de
oupling. Sin
e Θ1 ∝ Vγ ∝ Ḋg,γ we see that polarization os-
illations are out of phase of π/2, as visible in the top left panel of Fig. 4.9 on page 94.
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Figure 4.1: Left panel: lines of 
onstant shift parameter (4.28) in the (Ωm,ΩΛ) plane (inblue) 
orrespond to models in whi
h the a
ousti
 peaks are in the same position; those linesare not parallel to lines of 
onstant 
urvature (in red, the line of Ωtot = 1 is the lo
us of �atmodels). Middle panel: a 
losed (blue, long-dashed), a �at (solid, red) and an open model(dotted green) with parameters 
orresponding to the three 
olored dots in the left panel onthe Rshift = 1.14 line are almost 
ompletely degenerate. Right panel: three �at models withdi�erent shift parameters (and values 
orresponding to the three 
olored squares in the leftpanel) exhibit a very di�erent peak stru
ture. In parti
ular, measuring the position of the�rst peak alone is not enough to determine the 
urvature of the Universe.4.1.2.2 Baryon signatureLet us now examine in more detail the role of baryons in the adiabati
 s
enario. The relevantquantity for the �nal temperature �u
tuations is, from Eqs. (3.128) and (3.129, page 68) with
Φ = Ψ

1

4
Dg,γ + 2Φ − ıµkVγ =

1

3
(1 +R)Φ cos(cskη) − (2 +R)Φ

+ 2Φ − ıµ

√
1 +R√

3
Φ sin(cskη) ,

(4.32)where we have inserted the adiabati
 solution (3.113�3.114, page 65) and expli
itly restoredthe Doppler 
ontribution. The e�e
t of baryons, R > 0, is twofold: the amplitude of the
osine os
illation is larger and the zero point is now displa
ed to −RΦ, i.e. the gravitationale�e
ts of falling into and 
limbing out of the potential at de
oupling no longer exa
tly 
an
elas in Eq. (4.2), where we had taken R = 0. Therefore a larger baryon 
ontent enhan
es
ompression peaks, whi
h 
orrespond to negative extrema of the 
osine1, while it suppressesexpansion peaks. This leads to a distin
tive signature of the baryon density on the CMBspe
trum: a larger baryon 
ontent boosts odd peaks and redu
es the even ones, hen
e apre
ise measurement of the �rst three peaks leads to an a

urate measurement of the baryon
ontent, as is evident from Fig. 4.6 on page 91.Up to now we have put aside the Doppler term Vγ ∝ sin(cskη): the sine is out of phaseof π/2 with respe
t to the density os
illation, and its maxima �ll in the zeros of the 
osine.In the absen
e of baryons, this would lead to an exa
t 
an
ellation and to the disappearan
e1Note that Φ < 0 inside potential wells, thus cos(cskη) < 0 indeed gives Dg,γ > 0, a

ording to Eq. (3.113,page 65), i.e. it 
orresponds to an overdensity with δT/T > 0.
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Figure 4.2: Contributions to the adiabati
 temperature spe
trum (solid) from the tempera-ture monopole (long-dashed), the temperature dipole (Doppler term, short dashed with label
Θ1), and ISW e�e
t (reprinted from Hu & Sugiyama, 1995a).of the a
ousti
 peaks: adding the density and velo
ity term in
oherently in quadrature for
R = 0 gives a 
onstant. However, R > 0 suppresses the Doppler term by a fa
tor (1 + R)(in quadrature) with respe
t to the density term, and the net e�e
t is that the velo
ity
ontribution partially �lls in the minima of the density os
illation without erasing the peakstru
ture, as shown in Fig. 4.2. Also the peak stru
ture for the velo
ity 
ontribution getsmore washed out by the free streaming 
onversion than for the density, a 
onsequen
e of thefa
t that the velo
ity term is multiplied by µ (Hu & Sugiyama, 1995a).4.1.2.3 Early ISW e�e
tAt re
ombination, the Universe is not 
ompletely matter dominated, sin
e ade
 ≈ 3aeq andthus the Bardeen potentials are not exa
tly 
onstant. This gives an early ISW 
ontributionto the anisotropy, whi
h is spread out over a large multipole range, adding in parti
ular tothe rise from the large s
ale plateau to the �rst a
ousti
 peak for the adiabati
 s
enario,
f. Fig. 4.2. Sin
e most of the 
ontribution 
omes from early times, when η ≪ η0, we 
anapproximatively set jℓ(k(η0 − η)) ≈ jℓ(kη0) and write for the ISW 
ontribution to (3.149,page 71)

Θ
(ISW)
ℓ = ıℓ

∫ η0

ηde
(Ψ̇ + Φ̇)jℓ(k(η0 − η)) ≈ ıℓ
[

Ψ̇ + Φ̇
]η0

ηde
 jℓ(kη0) . (4.33)The early ISW is more prominent if the epo
h of equality is delayed due to a smallermatter 
ontent or to a larger radiation 
ontent, for instan
e in the presen
e of extra relativisti
parti
les, as shown in � 6.1.4.1.3 Damping tail4.1.3.1 Re
ombinationTemperature �u
tuations on small angular s
ales are exponentially suppressed by di�usiondamping due to the breakdown of tight 
oupling at re
ombination, as dis
ussed in � 3.5. The
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t 
an be roughly in
orporated into the undamped solution (3.127, page 68) by multiplyingit with the damping fa
tor
D(k) ≡

∫ dηg(η)e−[k/kD(η)]2 ≈ e−[k/kD(ηde
)]2 , (4.34)using the damping length s
ale k−1D of Eq. (3.120, page 66).The main parameter dependen
e of the damping s
ale is easy to understand physi
ally:the matter 
ontent sets the horizon s
ale at de
oupling, while the baryon density 
ontrols theCompton s
attering time ∼ τ̇−1. Before re
ombination, photons di�use by a random walkover a typi
al length λD =
√
N/τ̇ , where N is the number of 
ollisions, N ∼ ητ̇ . Hen
e thedamping length s
ales as
λD ∼

√

ηde
/τ̇ ∝ ω−1/4
m ω

−1/2
b , (4.35)where the last proportion takes advantage of the fa
t that ne ∝ ωb (see Eq. (6.17, page137)) and ηde
 ∝ ω

−1/2
m if de
oupling happens in the matter dominated era. A more detailedestimate is given in Eq. (6.19, page 138), whi
h also in
ludes the e�e
t of the helium fra
tion,whi
h we have ignored here.Clearly, when re
ombination o

urs the mean free path goes to in�nity very rapidly, andtherefore the above argument no longer applies, and one has to use a more sophisti
atedanalysis. More details and pre
ise �tting formulas for (4.34) 
an be found in Hu & White(1997), while useful �tting formulas for many relevant re
ombination quantities are detailedin Hu & Sugiyama, 1996, Appendix E.4.1.3.2 ReionizationWhen the Universe is reionized, the free ele
tron fra
tion be
omes unity again and CMBphotons 
an be res
attered. Fairly little is known about the details of the reionization me
h-anism and its redshift dependen
e (for a review see Haiman, 2004) but the null dete
tion ofGunn-Peterson troughs indi
ates that the Universe was 
ompletely ionized after redshift ≈ 6(Be
ker et al., 2001), possibly for the se
ond time (Cen, 2003). The re
ent WMAP results(Spergel et al., 2003) seem to indi
ate that reionization happened quite early, at a redshift

zre ≈ 17, 
orresponding to an opti
al depth of τre ≈ 0.16 for a standard ΛCDM model.Reionization has two e�e
ts on the power spe
trum: temperature anisotropies on s
alesbelow the angle subtended by the horizon at re
ombination get washed out, and on the sames
ale there is a generation of polarized power. Let us take for simpli
ity a model in whi
hall the hydrogen is suddenly reionized at a redshift zre, and ignore helium reionization whi
hhappens around z ≈ 3 whi
h only 
ontributes a few per
ent. Then the 
orresponding opti
aldepth to reionization, τre, is given by
τre =

∫ tre
t0

cσTnedt
=
cσT
H0

∫ zre
0

ne(z)

(1 + z)

dz
[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ]1/2

.

(4.36)The free ele
tron density (per 
m3) 
an be expressed as (see Eq. (6.17, page 137))
ne(z) = 11.3 · 10−6(1 − Yp)ωb(1 + z)3 , (4.37)
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luded the Helium mass fra
tion Yp for future referen
e (see � 6.2.2). Fora �at Universe (ΩK = 0) and negle
ting the 
ontribution of radiation, whi
h is a goodapproximation if zre ≪ 100, the integral in (4.36) 
an be performed analyti
ally, giving (Hu& White, 1997)
τre = 4.6 · 10−2(1 − Yp)

Ωbh

Ωm

[

√

ΩΛ + Ωm(1 + zre)3 − 1
]

. (4.38)From the de�nition of the visibility fun
tion g, the probability that a photon last s
atteredbetween today and redshift z is
P (z) =

∫ z

0
g(z̃)dz̃ = 1 − e−τ(z) , (4.39)and therefore the fra
tion of photons whi
h arrive to us dire
tly from the re
ombination epo
his 1 − P (zre) = exp(−τre). Above the horizon s
ale at reionization, all photons 
ontributeto the anisotropy, while below that s
ale only the fra
tion exp(−τre) whi
h did not res
atter
ontribute. Thus power on small s
ales will be suppressed by a fa
tor exp(−2τre) and thereionization damping fa
tor is given by

Dre(k) =

{

1 for kτre ≪ 1

e−2τre for kτre ≫ 1
. (4.40)The angular s
ale subtended by the horizon at reionization 
an be found using (1.32),yielding the approximate s
aling (Tegmark & Silk, 1995)

ϑ ∝
√

Ωm

z
. (4.41)Without polarization information, reionization is highly degenerate with the spe
tral tiltand a tensor or iso
urvature 
ontribution whi
h would add power only on large s
ales: alarger reionization opti
al depth 
an easily be a

ommodated by adding tensors or an iso
ur-vature 
omponent an redu
ing at the same time the overall normalization, thereby exa
tly
ompensating the reionization power suppression. This degenera
y 
an be expressed by in-trodu
ing a suitable 
ombination of τre and the overall normalization, see Eq. (4.48) and
ompare Fig. 4.7. However, the 
hara
teristi
 signature of reionization is the generation ofpolarized power on the horizon s
ale of reionization, and the 
orresponding �polarizationbump�, 
learly visible in the bottom right panel of Fig. 6.16 on page 158, around ℓ ≈ 20 inthe E-polarization spe
trum 
an be used to break the degenera
ies with other parameters.The position and s
aling of this bump 
an easily be understood physi
ally (Zaldarriaga,1997): the temperature quadrupole at reionization, whi
h determines the reionization indu
edpolarization, is given by the free stream of the temperature monopole at de
oupling:

Θ2(ηre) = (Θ0 + 2Φ)(ηde
)j2 (k(ηre − ηde
)) . (4.42)Given that the k-os
illation of the monopole is mu
h slower than the one of the Besselfun
tion, rs ≪ ηre − ηde
, the �rst peak 
orresponds approximately to the maximum of theBessel fun
tion, whi
h o

urs for k ≈ 2/(ηre − ηde
). This translates into ℓ ≈ k(η0 − ηre) ≈
2(η0 − ηre)/(ηre − ηde
) ≈ 2

√
zre. This pe
uliar s
aling of the position of the reionization
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ebump in the E-spe
trum 
ould potentially be used to distinguish the e�e
t of a possible timevariation of the �ne-stru
ture 
onstant, see � 6.3.4.Only one parameter is su�
ient to 
hara
terize the simple model of sudden reionizationpresented above, namely the reionization redshift zre or equivalently τre; but it has beenshown that there are up to �ve prin
ipal reionization modes whi
h 
ould be extra
ted fromCMB measurements (Hu & Holder, 2003). Furthermore, it is possible to link the reionizationhistory to spe
i�
 stellar models and try to 
onstrain the parameters of star formation andevolution modelling using CMB data (Brus
oli et al., 2002; Holder et al., 2003; Kaplinghatet al., 2003a).4.2 Normal parametersThe physi
al understanding of the 
hara
teristi
 signature of the 
osmologi
al parameters
an be exploited to build a set of analyti
al fun
tions whi
h des
ribe quantities dire
tlyprobed by the CMB. We 
all su
h a set a �normal parameter basis�, be
ause the e�e
t of thenew parameters is almost orthogonal, in the sense that 
orrelations among the parametersshould be very small. The normal parameter set has the advantage of taking into a

ountthe most severe CMB degenera
ies, su
h as the geometri
al degenera
y des
ribed above,a feature whi
h improves the e�
ien
y of parameter spa
e exploration (see � 5.1.7). Thedependen
e of the CMB spe
trum on the normal parameters is almost linear over a widerange of values, a very important property whi
h makes them ideal as a basis set for theFisher matrix analysis, see the explanations in � 5.2 and � 6.2.5 for an appli
ation. In termsof the normal parameters, it is easy to disentangle and understand the physi
al e�e
ts on theCMB power spe
tra of ea
h parameter while keeping the other 
onstant, to the 
ontrary ofwhat happens for 
osmologi
al parameters.We have seen in � 4.1.2 that the shift parameter Rshift, the baryon and matter densitydetermine the lo
ation and relative height of the a
ousti
 peaks. We now expand those
onsiderations by introdu
ing a normal parameter set, based on the dis
ussion of Kosowskyet al. (2002), to whi
h the reader is referred for further details. See also Sandvik et al. (2004)for an appli
ation to parameter estimation te
hniques and Jimenez et al. (2004) for re
entimprovements in
luding the polarization spe
trum.
• The position of the peaks is set by the ratio between the angular diameter distan
erelation (1.32, page 15) and the physi
al size of the a
ousti
 horizon at de
oupling,Eq. (4.24, page 82). Hen
e a �rst normal parameter whi
h determines the overallangular s
ale is

A ≡ DA(ade
)
ade
rs(ade
) , (4.43)
f. Eq. (4.17), whi
h is just a general expression for the shift parameter. The s
ale fa
torat de
oupling ade
, or equivalently the redshift of de
oupling, depends upon Ωbh

2 andthe Ωm/Ωr, for whi
h Hu & Sugiyama (1996) provide an a

urate analyti
al �ttingformula. The e�e
t of a 
hange in A while keeping the other normal parameters �xedis displayed in Fig. 4.3.
• The radiation/matter ratio sets the epo
h of equality, whi
h in turn determines the
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Figure 4.3: Impa
t of the shift parameter (4.43) on the CMB temperature (left) and polar-ization (right) spe
tra, all other normal parameters kept �xed. The geometri
al proje
tione�e
t a�e
ts temperature and polarization in the same way. In the bottom panel, we plotthe per
ent di�eren
e with respe
t to the referen
e model (bla
k).amount of early ISW, thus we introdu
e the parameter
R ≡ Ωm

Ωr

ade

a0

, (4.44)whi
h gives the matter to radiation density ratio at the time of de
oupling. The boostof the �rst a
ousti
 peak due to the early ISW is visible in Fig. 4.4.
• The geometri
al degenera
y is along the energy density in the 
osmologi
al 
onstant,whi
h also gives the amount of late ISW e�e
t. Thus we use the parameter

V ≡ ΩΛh
2 . (4.45)As shown in Fig. 4.5, the impa
t is quite small in magnitude and solely on large angulars
ales, where 
osmi
 varian
e limits our ability to 
onstrain this parameter, making ofthe 
osmologi
al 
onstant one of the worst determinable parameters with CMB dataalone.

• The parameter A already in
ludes the e�e
t of the baryon density on the spa
ing andlo
ation of the peaks, whi
h is produ
ed by the dependen
e of the sound horizon onthe baryon 
ontent. Therefore keeping the other normal parameters and in parti
ular
A �xed while varying

B ≡ Ωbh
2 (4.46)isolates the baryon driving e�e
t on the a
ousti
 os
illations, whi
h sets the relativeheight of the peaks. Sin
e the polarization amplitude is proportional to the temperaturedipole at re
ombination, whi
h in turn is suppressed by a fa
tor (1 + R)1/2 with R ∝

Ωbh
2, a larger baryon density redu
es the height of polarization peaks (Fig. 4.6).
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Figure 4.4: Impa
t of a 
hange in the radiation to matter energy density ratio at de
oupling(4.44) on the temperature (left) and polarization (right) spe
tra, all other normal parameterskept �xed. This 
an more easily be interpreted as a shift in the epo
h of matter-radiationequality, whi
h 
hanges the amount of early ISW e�e
t 
ontribution around the �rst a
ousti
peak.

Figure 4.5: Impa
t of the energy density in the 
osmologi
al 
onstant (4.45) on the CMBtemperature (left) and polarization (right) spe
tra, all other normal parameters kept �xed.The impa
t is only on large angular s
ales due to the late ISW e�e
t, where measurementsare limited by 
osmi
 varian
e and therefore 
annot 
onstraint mu
h this parameter.
• The CMB spe
trum turns out to be almost linear in the 
ombination

M ≡ Ωmh
2

(

1 +
Ω2
r

a2de
Ω2
m

)1/2

= Ωmh
2

(

1 +
1

R

)1/2

, (4.47)
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Figure 4.6: Impa
t of the baryon density (4.46) on the CMB temperature (left) and polariza-tion (right) spe
tra, all other normal parameters kept �xed. A larger baryon 
ontent boostsodd peaks and suppresses even ones, see � 4.1.2.2. The height of the polarization peaks isredu
ed by a larger baryon 
ontent.whi
h is a re�nement of our previous approa
h of taking simply Ωmh
2 as a determiningparameter, see Kosowsky et al. (2002) for more details.

• A good way of taking into a

ount the degenera
y between the opti
al depth to reion-ization and the s
alar normalization des
ribed in � 4.1.3.2 is to adopt the parameter
T ≡ As exp(−2τre) , (4.48)where for the adiabati
 model 
onsidered here As ≡ ζ2

0 is the s
alar amplitude of thepower spe
trum of the gauge invariant 
urvature perturbation, 
f. Eq. (4.6, page 79).When adopting a 
hange in τre, the normalization As is also 
hanged as to keep thepower above the third peak un
hanged, thus avoiding arti�
ial degenera
ies with theother normal parameters, whi
h would disappear if one adopted a di�erent normaliza-tion 
onvention (Kosowsky et al., 2002), see Fig. 4.7.
• The s
ale dependen
e of the initial power spe
trum is des
ribed by the s
alar spe
tralindex ns, as in (4.6). A value ns > 1 (�blue index�) in
reases the power for waveve
torslarger than the pivot s
ale, and thus yields more power for large multipoles; the 
onverseis true for ns < 1 (�red index�), see Fig. 4.8. Therefore the impa
t on the CMB spe
trum
an be approximately modelled as

CℓT,E(ns) ≈ CℓT,E(ns = 1)

(

ℓ

ℓ0

)ns−1 (4.49)with ℓ0 a pivot point whi
h should be 
hosen as to mat
h kP (even though a di�erent
hoi
e will only 
orrespond to a 
hange in overall normalization).
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Figure 4.7: Impa
t of the parameter T de�ned in (4.48) on the CMB temperature (left) andpolarization (right) spe
tra, all other normal parameters kept �xed. In
reasing τre and theoverall normalization at the same time as to keep the power above the third peak un
hangedreveals the degenera
y between normalization and reionization. The only measurable e�e
tis at large s
ales, where the temperature signal is enhan
ed for smaller T (and hen
e larger
τre) as well as the reionization bump in the polarization spe
trum.

Figure 4.8: Impa
t of the s
alar spe
tral index on the CMB temperature (left) and polariza-tion (right) spe
tra, all other normal parameters kept �xed. A blue spe
trum (ns > 1) givesmore power at larger multipoles. The glit
hes are numeri
al artifa
ts.Given the above 
orresponden
es, we 
an transform from the 
osmologi
al parameterset (Ωm,ΩΛ,Ωb,Ωr, h) into the normal basis (A,R,V,B,M) and vi
e-versa by numeri
allyinverting the relations (4.43�4.47).



4.3 General initial 
onditions 934.3 General initial 
onditionsAs we have seen in � 3.2 and � 3.3, a Universe 
ontaining photons, massless neutrinos, 
olddark matter and photons 
oupled to baryons admits four growing modes for the perturbations.To this set, one should add a baryon iso
urvature entropy mode, whi
h we have not des
ribed,but whi
h behaves exa
tly as the 
old dark matter mode, only res
aled by an overall 
onstant
Ωb/Ω
dm (Gordon & Lewis, 2003). Thus without loss of generality, we 
an treat the CDMand baryon iso
urvature modes as one single mode, and restri
t our 
onsiderations to thefour modes: adiabati
, CDM iso
urvature, neutrino entropy and neutrino velo
ity.4.3.1 Angular power spe
tra for all modesThe numeri
al integration of the evolution equations is ne
essary to go beyond the earlytime approximative solutions derived earlier and obtain the full angular power spe
tra forthe di�erent types of initial 
onditions. Re
ent versions of 
amb in
lude the possibilityof spe
ifying neutrino entropy and velo
ity initial 
onditions, along with the adiabati
 andiso
urvature CDM ones. The resulting temperature and E-polarization spe
tra are displayedin Figures 4.9 and 4.10. Analogously to the adiabati
-CDM iso
urvature 
ase dis
ussed in� 4.1.1, in the most general 
ase the modes are arbitrarily 
orrelated with ea
h other, andea
h of them possesses its own spe
tral index. In the �gures we plot the 
orrelators for totalpositive 
orrelation between the modes, take s
ale invariant spe
tral indexes for all modes,
n = 1 and we �x the other 
osmologi
al parameters to a �at, 
on
ordan
e ΛCDM model withearly reionization, as emerged from the WMAP data for the pure adiabati
 
ase.The 
olle
tion of modes presents a wide variety of os
illatory stru
tures, and very di�erentamplitude ratios between the large-s
ale plateau and the peaks. Sin
e the perturbationequations are linear, the most general CMB power spe
trum is a positive de�nit superpositionof all the modes. From a phenomenologi
al point of view, we expe
t that widening the initial
ondition spa
e to in
lude all of the four possible modes, will lead to large degenera
iesbetween initial 
onditions and 
osmologi
al parameters. We dedi
ate � 7.2 to a thoroughinvestigation of this issue. On the other hand, if the neutrino iso
urvature modes were non-zero, their 
ontribution 
ould 
on
eivably allow to �t the CMB data without the need for a
osmologi
al 
onstant, a possibility whi
h we analyze and reje
t in � 7.3.4.3.2 Modes superpositionIn the purely adiabati
 s
enario, initial 
onditions for s
alar perturbations are des
ribed bytwo parameters, namely the overall normalization and the spe
tral index of the 
urvatureperturbation power spe
trum, as in Eq. (4.6, page 79). By enlargening the initial 
onditionsspa
e to in
lude all of the four possible modes, we add nine amplitudes (three for the CDMiso
urvature, neutrino density and velo
ity modes, and six for the 
orrelators between thefour modes) and three spe
tral indexes, for a total of 14 parameters des
ribing the mostgeneral initial 
onditions.Although the dependen
e of the modes on the amplitudes is trivial, the numeri
al sear
h inthe initial 
onditions parameter spa
e is 
ompli
ated by the positive de�niteness 
onditionson the total spe
trum. The total temperature (or polarization) angular power spe
trum
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Figure 4.9: Temperature and E-polarization angular power spe
tra for the four modes 
onsti-tuting the most general initial 
onditions for CMB anisotropies, Figure 1 of 2. The 
orrelatorsare for positive total 
orrelation between the modes, and we take all spe
tral indexes to beunity. The remaining 
osmologi
al parameters are �xed to a 
on
ordan
e, �at ΛCDM model.In the lower panel, the 
orrelators are plotted in absolute value. The four modes are: ad(adiabati
), 
i (CDM iso
urvature), nd (neutrino density/entropy), nv (neutrino velo
ity).obtained by superposing the modes must be positive
Cℓ =

4
∑

i,j=1

MijC
ij
ℓ ≥ 0 ∀ ℓ , (4.50)with the modes 
orrelation matrix M ∈ Pn, where Pn denotes the spa
e of n × n real,positive semi-de�nite, symmetri
 matri
es with in our 
ase n = 4, and the Cijℓ are 
omputedfor a �xed 
hoi
e of 
osmologi
al parameters when only the 
orresponding element of the
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Figure 4.10: Temperature and E-polarization angular power spe
tra for the four modes 
on-stituting the most general initial 
onditions for CMB anisotropies, Figure 2 of 2.
orrelation matrix is non-zero, i.e. for Mij = 1, all others vanishing. The elements of the
orrelation matrix are arranged so that the amplitudes of the pure modes are along thediagonal (so that Mii ≥ 0 for i = 1, . . . , 4) while the o�-diagonal elements are the 
orrelatorsamplitudes. Ea
h 
orrelator amplitude must satisfy S
hwartz' inequality
M2
ij ≤MiiMjj i, j = 1, . . . , 4 (4.51)be
ause of the positive de�niteness 
ondition (see Trotta, 2001, Appendix A for a proof), butin general the 
orrelators amplitudes 
an of 
ourse be negative. Finally, S
hwartz' inequalitybetween all pairs i 6= j of M is a ne
essary but not su�
ient 
ondition for the positivede�niteness of the 
orrelation matrix. A su�
ient 
ondition is that all sub-determinants of

M are positive or zero (see e.g. Heuser, 1993, proposition 172.5), giving the four su�
ient
onditions on the elements of M:
M11 ≥ 0 , (4.52a)
M11M22 −M2

12 ≥ 0 , (4.52b)
M11M22M33 + 2M12M23M

2
13M22 −M2

13M33 −M2
12M33 −M2

23M11 ≥ 0 , (4.52
)
detM ≥ 0 . (4.52d)When numeri
ally sear
hing the initial 
onditions parameter spa
e, the 
onditions (4.52)must be imposed by hand to avoid regions whi
h would lead to non-physi
al (i.e. negative)angular power spe
tra. This approa
h is used in Trotta et al. (2001) and some related issuesare dis
ussed in � 7.2.A more 
onvenient parametrization of the 
orrelation matrix is employed in Trotta et al.(2003), where the matrix M ∈ Pn is written as

M = UDUT , (4.53)
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U ∈ SOn, D = diag(d1, d2, . . . , dn) and di ≥ 0, i ∈ {1, 2, . . . , n}. Here SOn is the spa
e of
n×n real, orthogonal matri
es with det = 1 and n = 4. We 
an write U as an exponentiatedlinear 
ombination of generators Hi of SOn:

U = exp





(n2−n)/2
∑

i=1

αiHi



 , (4.54)with
H1 =













0 1 0 . . .

−1 0 0 . . .

0 0 0 . . .... ... ... . . .  , (4.55)and so on, with −π/2 < αi < π/2, i ∈ {1, 2, . . . , (n2 − n)/2}. In analogy to the Euler anglesin three dimensions, we 
an re-parameterize U in the form
U =

(n2−n)/2
∏

i=1

exp (ψiHi) , (4.56)with some other 
oe�
ients −π/2 < ψi < π/2, i ∈ {1, 2, . . . , (n2 − n)/2}, whose fun
tionalrelation with the αi's does not matter. The diagonal matrix D 
an be written as
D = diag (tan(θ1), . . . , tan(θn)) , (4.57)with 0 ≤ θi < π/2, for i ∈ {1, 2, . . . , n}. In this way, the spa
e of initial 
onditions for

n modes is e�
iently parameterized by the (n2 + n)/2 angles θi, ψj . In our 
ase, n = 4and the initial 
onditions are des
ribed by the ten dimensional hyper
ube in the variables
(θ1, . . . , θ4, ψ1, . . . , ψ6). This is of parti
ular importan
e for the numeri
al sear
h in theparameter spa
e. One 
an then go ba
k to the expli
it form of M using Eqs. (4.56), (4.57)and (4.53). This more e�
ient parametrization is employed in � 7.3.There is no optimal solution for an e�
ient and physi
ally motivated parametrizationof the initial amplitudes; another possibility, based on a ten-dimensional hypersphere, isemployed in the analysis of Bu
her et al. (2004).



The fundamental problem of s
ienti�
progress, and a fundamental one of ev-eryday life, is that of learning from expe-rien
e. Knowledge obtained in this wayis partly merely des
ription of what wehave already observed, but part 
onsistsof making inferen
es from past experien
eto predi
t future experien
e.Harold JeffreysTheory of probability
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Chapter 5Statisti
s and data analysis
We are now in a position to atta
k the task of a
tually determining the values of 
osmologi
alparameters from the observed CMB anisotropy. To this end, we need several statisti
al tools,whi
h we introdu
e in � 5.1.1. The emphasis is on their appli
ation to the CMB: we workout the 
osmi
 varian
e limit from �rst prin
iples in � 5.1.2, and we present the MaximumLikelihood prin
iple and its appli
ation to data analysis in � 5.1.3; we fo
us on the di�eren
esbetween the frequentist (� 5.1.4) and Bayesian approa
h (� 5.1.5) to statisti
s, explaining thepro
edures to assess likelihood and 
on�den
e intervals and their interpretation; we thendis
uss the implementation of two popular methods to sample the parameters spa
e, thetraditional gridding method (� 5.1.6) and the more e�
ient Monte Carlo sampling (� 5.1.7).In � 5.2 we explain the details of the Fisher matrix analysis, an handy and a

urate te
hniqueto produ
e fore
asts for the expe
ted 
apabilities in terms of parameters extra
tion of futureCMB observations. In the last se
tion, � 5.3, we o�er a brief histori
al review of the lastde
ade of CMB observation, presenting the data-sets whi
h are then exploited in Chapters 6and 7.5.1 Elements of probability and statisti
s5.1.1 Some 
on
epts of probability theoryWe work in real, three-dimensional spa
e, and we 
onsider a �eld X whi
h is de�ned in allpoints r ∈ R3 in su
h a way that the probability of obtaining the value X at the point ris P(X, r). We 
all X an in�nite dimensional random �eld and P its 1-point probabilitydistribution fun
tion (pdf). In order to fully des
ribe the random �eld X, we need to spe
ifynot only P, but also the 2-point pdf, denoted by P2(X1, r1,X2, r2), whi
h des
ribes theprobability of getting the value X1 at the point r1 and the value X2 at the point r2; then theprobability distribution for all triples of points, P3, and so on for an arbitrarily large numberof points.From the de�nition of probability, the n-point pdf's are not all independent, obeying therelations

Pn(X1, . . . ,Xn) =

∫

Pn+1(X1, . . . ,Xn,Xn+1)dXn+1 . (5.1)The �eld X is said to be statisti
ally homogeneous if its 1-point pdf is the same in all points
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s and data analysisof spa
e:
P(X, r) = P(X) (statisti
al homogeneity), (5.2)and statisti
ally isotropi
 if the 2-point pdf depends only on the distan
e between the pointsbut not on the dire
tion of the ve
tor joining them:

P2(X1, r1,X2, r2) = P2(X1,X2, r) (statisti
al isotropy), (5.3)with r ≡ |r1 − r2|. In 
osmology, all random �elds are assumed to be homogeneous andisotropi
. From now on we will always make this assumption. We denote with 〈·〉 theensemble average over realizations of the �eld X (expe
tation value). For a fun
tion f(X),its expe
tation value is
〈f(X)〉 ≡

∫

Ω
f(X)P(X)dX , (5.4)where the integration goes over all possible realizations of X de�ning the sample spa
e Ω.The expe
tation value of f(X) = X is 
alled the mean of X. Under the assumption ofisotropy, 〈X〉 is a 
onstant independent on r. Therefore in 
osmologi
al perturbation theorywe 
an always take the perturbations to have zero mean, sin
e a 
onstant o�set 
an alwaysbe reabsorbed in a rede�nition of the 
orresponding ba
kground quantity.Consider X(k), the harmoni
 transform of X with respe
t to the eigenfun
tions of theLapla
e operator; in R3 this is the usual Fourier transform. Then as a 
onsequen
e ofhomogeneity and isotropy, X(k) has the following properties:

〈X(k)〉 = δ(D)(k)〈X〉 (5.5)
〈X(k) ·X(k′)〉 = δ(D)(k − k′)g(k) (5.6)The real spa
e 
orrelation fun
tion is de�ned as

ξ(r) ≡ 〈X(r1) ·X(r1 + r)〉 . (5.7)It is the expe
tation value of X1 ≡ X(r1) and X2 = X(r1 + r) under the 2-point pdf,
ξ(r) =

∫ dX1

∫ dX2 P2(X1,X2, r)X1X2 , (5.8)where in writing ξ(r) instead of ξ(r) we have assumed statisti
al isotropy.The �eld X is 
alled spa
e ergodi
 if we 
an perform a spatial average instead of anensemble average and obtain the same result:
lim
R→∞

(

4

3
πR3

)−1 ∫

|r|<R
f [X(r)] d3r = 〈f [X]〉 . (5.9)Noti
e that ergodi
ity requires that the �eld is de�ned over an in�nite spa
e, su
h as R3.The temperature �eld of the CMB however lives on the two-sphere S2, whi
h is a 
ompa
tmanifolds and therefore not ergodi
. Therefore even if we 
ould measure the anisotropieswith no experimental error, we still would not be able to perform the ensemble average withperfe
t a

ura
y, see � 5.1.2.We denote by f̂ the estimator for f(X), i.e. a pro
edure applied to a random sampleof X to produ
e a numeri
al value for f , whi
h is 
alled the estimate. When applied to a



5.1 Elements of probability and statisti
s 101set of observations Xobs
1 ,Xobs

2 , . . . Xobs
n whi
h 
onstitute a random sample, the estimator f̂produ
es a distribution of estimates, and as su
h it too is a random variable.An important parti
ular 
ase is the Gaussian random �eld, for whi
h all the n-point pdf'sare Gaussian. The 1-point pdf is then

P(X) =
1√
2πσ

exp

(

−X2

2σ2

)

, (5.10)while the 2-point pdf is given in terms of the �eld's 
orrelation fun
tion ξ as
P2(X1,X2, r) =

1

2πσ2
√

1 − ξ2(r)
exp

(

−X
2
1 +X2

2 − 2ξ(r)X1X2

2σ2 [1 − ξ2(r)]

) (5.11)and the 2-point pdf (or equivalently, the 
orrelation fun
tion) 
ontains the full statisti
alinformation.The statement that the 
orrelation fun
tion determines the 2-point pdf 
ompletely is trueonly for a Gaussian �eld; in general, from (5.8) it is 
lear that after the integration ξ(r)only 
ontains part of the information en
oded in P2. For instan
e, Jones (1997) gives aninteresting 
ounter-example of a Gaussian and a non-Gaussian distribution with the same
orrelation fun
tion and yet with two di�erent 2-point pdf's.5.1.2 The origin of 
osmi
 varian
eIt is instru
tive to 
ompute expli
itly the varian
e of the observed Cℓ starting from basi
prin
iples. If we assume that the temperature �u
tuation Θ is an isotropi
 and homogeneousrandom �eld, then the 
oe�
ients of the harmoni
 expansion on the 2-sphere, the aℓm's, havezero mean and varian
e given by the true Cℓ's:
〈aℓm〉 = 0 (5.12)

〈a∗ℓm · aℓ′m′〉 = δℓℓ′δmm′Cℓ . (5.13)In�ation predi
ts that the aℓm's are very 
lose to Gaussian variables, so we make the assump-tion of Gaussianity and for the pdf of aℓm we take
P(aℓm) =

1√
2πCℓ

e
−
a2
ℓm

2Cℓ . (5.14)The true aℓm's are of 
ourse ina

essible to us, but from the measured temperature �u
tuationwe obtain an estimate whi
h we denote by âℓm. As an estimator for the power spe
trum wede�ne
Ĉℓ ≡

1

2ℓ+ 1

ℓ
∑

m=−ℓ
|â2
ℓm| =

Cℓ
2ℓ+ 1

V , (5.15)where we have introdu
ed the variable
V ≡

ℓ
∑

m=−ℓ

|â2
ℓm|
C2
ℓ

. (5.16)Eq. (5.15) implies an ergodi
 hypothesis, sin
e in the estimator we repla
ed the expe
tationvalue in (5.13) by an average over independent azimutal dire
tions by summing over m.
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s and data analysisThe variable V is a sum of 2ℓ + 1 squared Gaussian variables with unit varian
e, andtherefore (Kendall & Stuart, 1977) its pdf is the 
hi-square pdf with 2ℓ + 1 = l degrees offreedom (dof):
Pχ2

l
(V ) =

V
l−2

l

2l/2Γ(l/2)
e−V/2 . (5.17)From this we 
an write down the pdf for the estimator Ĉℓ, whi
h is

P(Ĉℓ) =
l

Cℓ
Pχ2

l

(

lĈℓ
Cℓ

) (5.18)whi
h shows that our estimator is distributed a

ording to a 
hi-square pdf. For l → ∞ theCentral Limit Theorem guarantees that the distribution will be
ome Gaussian, hen
e
lim
ℓ→∞

Ĉℓ = Cℓ (5.19)and the estimator is said to be 
onsistent. From (5.18) we 
an 
al
ulate the expe
tation valueof Ĉℓ, �nding
〈Ĉℓ〉 = Cℓ (unbiasedness), (5.20)and its varian
e

〈Ĉ2
ℓ 〉 − 〈Ĉℓ〉2 =

2

2ℓ+ 1
C2
ℓ (e�
ien
y). (5.21)We 
on
lude that the fa
t that there are only 2ℓ+ 1 independent dire
tions on the sky for agiven multipole ℓ limits the e�
ien
y of our estimator for the power spe
trum with varian
e

〈Ĉ2
ℓ 〉 − 〈Ĉℓ〉2
Cℓ

=
2

2ℓ+ 1
(
osmi
 varian
e). (5.22)Despite the fa
t that 
osmi
 varian
e is a fundamental statisti
al limit, an ingeniousmethod to 
ir
umvent it and to measure the temperature quadrupole with better than 
osmi
varian
e pre
ision has re
ently been proposed by Skordis & Silk (2004).5.1.3 The prin
iple of Maximum LikelihoodThe estimation problem 
an be generally stated as follows: starting from a limited number ofobservations, whi
h 
onstitute a random sample, one wants to re
onstru
t some properties ofthe underlying pdf. It is simpler to think of the properties of the pdf as unknown parameters,whi
h we seek to determine. Consider a set of n observations d =

{

dobs1 , dobs2 , . . . , dobsn

} ofthe variable X and a set of p parameters θ =
{

θobs1 , θobs2 , . . . , θobsp

}. The measurements havea 
onditional probability P(di|θ) to be observed given the value θ for the parameters. Theproblem at hand is to estimate the joint 
onditional probability
L(d|θ) ≡

n
∏

i=1

P(di|θ) (5.23)from the observations d. In the above de�nition, we thought of L as a fun
tion of the randomvariable X; however, on
e the observations have been done, we 
an think of L rather as afun
tion of the unknown parameters θ for a given value of d and 
all it the likelihood fun
tion(LF).
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s 103The maximum likelihood (ML) prin
iple a�rms that as an estimate for θ we should 
hoosethe value θ∗ whi
h makes the probability of the a
tual result obtained, d, as large as it 
anbe, i.e.
L(d|θ∗) ≥ L(d|θ) (Maximum Likelihood) (5.24)for all possible values of θ.Instead of maximizing the LF, one 
an minimize the quantity

L ≡ −2 lnL , (5.25)whi
h we will 
all lognormal LF.If the pdf is Gaussian, then the ML estimation redu
es to the usual least square �t:suppose that the measured dobsi are independent from ea
h other and Gaussian distributedaround their (unknown) true values di(θ), with varian
e given by the experimental error σobsi .Then minimizing L is equivalent to minimization of the quantity
χ2(θ) ≡

n
∑

i=1

(

dobsi − di(θ)

σobsi

)2

, (5.26)whi
h is 
alled the 
hi-square.Applied to the problem of parameter extra
tion from CMB data, the ML pres
riptionmeans that, given the measured power spe
trum, Cobs
ℓ , with errors σℓ, we have to minimizethe value of the 
hi-square by varying the 
osmologi
al parameters of interest. This pro
edureonly gives information about the set of parameters whi
h are the �most probable� to havegenerated the measurements at hand. However, quantifying the error on our estimate forthe parameters is a more subtle business, sin
e it involves dwelling into the exa
t de�nitionof what probability means. There is a long dispute going on among spe
ialists about the
orre
t interpretation of probability, and some fundamental issues are still unresolved. One
an take fundamentally two di�erent point of views on the subje
t, the orthodox (frequentist)approa
h or the Bayesian point of view, as we now explain. A good introdu
tion to Bayesianmethods and a 
omparison with the sampling theory approa
h 
an be found in Box & Tiao(1973), while Kendall & Stuart (1977) give full details about frequentist theory 
al
ulations.Jaynes (2003) is a very enjoyable book, whi
h provides a wider perspe
tive on the logi
of s
ien
e and probability theory. A useful textbook with many stimulating examples ofBayesian inferen
e is Ma
Kay (2003). Frodesen et al. (1979) � written by experimentalistswho have used on the �eld the methods des
ribed � is more praxis-oriented, and explains ina pra
ti
al way the statisti
al mambo-jumbo.5.1.4 Orthodox probabilities � Con�den
e intervalsThe orthodox de�nition of probability � also known as �sampling theory� approa
h � is basedon the empiri
al repeatability of the experiment, see e.g. Jaynes (2003). If an experiment isperformed N times and the out
ome A o

urs in M of this 
ases, then the probability of theout
ome A is

P (A) ≡ lim
N→∞

M

N
. (5.27)In the 
ase of 
ontinuous variables, the 
on
ept of probability is de�ned as the limitingpro
ess (5.27) rea
hed from a �nite subdivision in N equiprobable intervals of the sample
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s and data analysisspa
e (Kendall & Stuart, 1977, Se
tion 7.11, Vol. 1). The frequentist approa
h allows thede�nition and interpretation of ex
lusion regions or 
on�den
e intervals for the parameters,see below. It is the point of view usually adopted in parti
le physi
s, where an experiment 
anbe repeated many times under the same 
ir
umstan
es. It is not very popular in 
osmologythough, where there is only one parti
ular realization to observe.Con�den
e intervals � frequentistCon�den
e intervals in the frequentist approa
h have a straightforward interpretation: 
on-sider a random variable X whose pdf depends on the parameter θ whi
h we wish to estimatefrom a random sample {xobs1 , xobs2 , . . . , xobsN

} with an estimator θ̂. For instan
e, one 
anthink of θ as the true mean µ of a normal distribution, and the estimator as the samplemean, µ̂ = N−1
∑

i x
obs
i .The estimates are distributed a

ording to some pdf, whi
h we denote by Pe. Then a

100γ% 
on�den
e interval for the estimated parameter θ̂ is the range [θ1; θ2] su
h that theprobability 
ontent for the estimator is γ, i.e.
P (θ1 < θ̂ < θ2) ≡

∫ θ2

θ1

Pedθ = γ . (5.28)Noti
e that this is a statement about the probability of our estimate θ̂ to lie in a 
ertainrange, with the interpretation that, if we would draw the N samples L times under identi
al
ir
umstan
es, then the estimates produ
ed by θ̂ fall in the range [θ1; θ2] γL times. Thereforeat this stage we are merely making a statement of the distribution of our estimator. If wewant to 
onvert this into a 
on�den
e statement for the true value θ, we 
an say that there isa probability γ that the random interval [θ1; θ2] will 
over the true value θ. In other words,in the long run the limits θ1 and θ2 are su
h that the statement
θ1 < θ < θ2 (5.29)will be true in 100γ% of the 
ases.Unfortunately, the above interpretation is unappli
able to 
osmology, where we 
annotdraw new samples at will from the underlying distribution, but we have to 
ontent ourselveswith the only realization we happen to observe. However, we 
an still use as an estimatorthe least-square �t to the observed value, and interpret the result in frequentist's terms.Consider the least-square �t of (5.26), whi
h applied to the CMB power spe
trum is

χ2(θ) ≡
∑

ℓ

(

Cobs
ℓ − Cℓ(θ)

σobsℓ

)2

, (5.30)where the observed Cobs
ℓ are estimated using the estimator (5.15): sin
e ea
h term is a sumof 2ℓ+ 1 Gaussian variables squared (the âℓm's), its distribution be
omes Gaussian by virtueof the Central Limit Theorem only for large ℓ. The σobsℓ are the estimated errors from theobservations for ea
h multipole, and θ is the ve
tor 
ontaining the p 
osmologi
al parametersof interest. The fun
tional dependen
e of Cℓ(θ) is given by the underlying theory, whi
h wetry to falsify by 
omparing its predi
tions with the a
tual observations.The least-square estimate for θ � whi
h is equivalent to the ML estimator for Gaussianvariables � is the value θ∗ for whi
h the χ2 rea
hes the minimum value χ2∗, whi
h is 
alled
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s 105least square estimate. Until this point, the least-square estimation makes no assumptionsabout the underlying pdf for the variables. To the extent to whi
h the Ĉℓ's 
an be 
onsideredas independent Gaussian variables, then the quantity χ2∗ is distributed as a 
hi-square pdfwith f = n− p dof, denoted by Pχ2
f
, see (5.17). Here n is the number of multipoles observedand p the number of �tted parameters.Under these assumptions, the distribution Pχ2

f
provides a measure of the goodness of �t:assume that a given parameter set θ0 is the 
orre
t one, and that the measured 
hi-square inour Universe for θ0 is χ2

0; then if the measurement would be repeated many times in di�erentrealizations, the probability that the out
ome will be equal or larger than the true value χ2
0is

P (χ2 > χ2
0) =

∫ ∞

χ2
0

Pχ2
f
(u)du ≡ 1 − γ0 . (5.31)The interpretation in frequentist terms is straightforward: if some other parameters θ1 have

χ2(θ1) = χ2
1 ≫ χ2

0, the 
han
e that θ1 is the 
orre
t set and we are a
tually seeing arealization far out in the tail of the distribution is very small.It now remains to de�ne 
on�den
e intervals for the parameters basing on the above fre-quentist interpretation: a 100γ% 
on�den
e interval en
ompasses parameters whose measured
χ2 is smaller than the value of 
orresponding to the quantile1 of 1−γ for the distribution Pχ2

f
.In other words, if the measurements 
ould be repeated many times, in the long run the above
on�den
e interval would in
lude the true value of the parameters 100γ% of the time. Thusthe parameter spa
e outside the estimated 
on�den
e interval is a proper ex
lusion regionat the given 
on�den
e level. Noti
e that the frequentist 
on�den
e levels depend both onthe total number of parameters �tted and on the number of independent data points we areusing.We 
on
lude this se
tion with two remarks: �rstly, the above assumptions of Gaussianityand independen
y are only partially ful�lled by the Ĉℓ's, therefore the out
ome of su
ha frequentist analysis is only approximative (see Abroe et al., 2002 for a stri
tly 
orre
tfrequentist parameter estimation, whi
h involves the numeri
al sampling of the pdf whi
h wesimply took as a 
hi-square); and se
ond, the 
lean interpretation of the frequentist approa
his somewhat weakened by the fa
t that we are 
ompelled to invoke measurements in otherrealizations whi
h 
annot take pla
e, not even in prin
iple. Bayesian statisti
s takes insteada more pragmati
 approa
h, by dealing only with a
tual observations.5.1.5 Statisti
al inferen
e � Likelihood intervalsBayesian statisti
s does not 
onsider possible out
omes of measurements whi
h are never per-formed. Instead, it exploits the a
tual data to update our knowledge about the probabilityof a 
ertain statement, starting from our prior degree of belief. Criti
ism has been raisedagainst this approa
h be
ause the �nal inferen
e depends on the prior information available,and therefore seems to su�er from a 
ertain degree of subje
tivity. However, Bayesian infer-en
e 
an be applied to theories whi
h are not repeatable and are uns
ienti�
 in the frequentistpoint of view (e.g. the probability that it will rain tomorrow). It is based on Bayes' Theorem2,1Given the pdf P , x is said to be the quantile of q if it satis�es ∫∞

x
P(u)du = q.2Rev. Thomas Bayes, 1763.



106 Statisti
s and data analysiswhi
h is nothing more than rewriting the de�nitions of 
onditional probability:
P(A|B) =

P(B|A)P(A)

P(B)
(Bayes' Theorem). (5.32)In order to 
larify the meaning of this relation, let us write θ for A and d for B, obtaining

P(θ|d) =
L(d|θ)P(θ)

∫ dθP(d|θ)P(θ)
=
L(d|θ)P(θ)

P(d)
, (5.33)whi
h relates the posterior probability P(θ|d) for the parameters θ given the data d to thelikelihood fun
tion L(d|θ) if the prior pdf P(θ) for the parameters is known. The quantityin the denominator is independent of θ and it is 
alled the eviden
e of the data for a 
ertainmodel (Ma
Kay, 2003). It is important for model 
omparison, but here we shall regard itjust as a normalization 
onstant. In shortposterior =

likelihood× prioreviden
e . (5.34)The prior distribution 
ontains all the (subje
tive) knowledge about the parameters beforeobserving the data: our physi
al understanding of the model, our insight into the experimentalsetup and its performan
e, in short the amount of all our prior s
ienti�
 experien
e. Thisinformation is then updated via Bayes theorem to the posterior distribution, by multiplyingthe prior with the LF whi
h 
ontains the information 
oming from the data. The posteriorprobability is the base for inferen
e about θ: the most probable value for the parameters isthe one for whi
h the posterior probability is largest.Bayes' postulate3 states that in absen
e of other arguments, the prior probability shouldbe assumed to be equal for all values of the parameters over a 
ertain range, θmin ≤ θ ≤ θmax.This is 
alled a ��at prior�, i.e.
P(θ) = [H(θ − θmin)H(θmax − θ)]

p
∏

i=1

[θmax,i − θmin,i]−1 , (5.35)where H is the Heaviside step fun
tion and θmax,i > θmin,i ∀ i. This is one of the prin
ipal
on
eptual di�
ulties of Bayesian inferen
e: a �at prior on θ does not 
orrespond to a �atprior on some other set f(θ), obtained via a non-linear transformation f . Therefore the resultof Bayesian inferen
e do depend on the 
hoi
e of priors, even though this usually does not
onstitue a major obsta
le in pra
ti
al problems � see however Bu
her et al. (2004) for aninstru
tive example of the role of priors.We see from Eq. (5.33) that the Maximum Likelihood prin
iple is equivalent to Bayesianinferen
e in the 
ase of �at priors. We will always work with �at, top-hat priors unlessotherwise stated. There is however an important 
on
eptual di�eren
e. By writing theposterior distribution as
P(θ|d) =

P(θ,d)

P(d)
, (5.36)it follows that Bayes' Theorem imposes to maximise the joint probability P(θ,d) of θ,d, whileMaximum Likelihood requires that the 
onditional probability L(d|θ) should be maximised.3Bayes' postulate is also known � perhaps with an hint of sar
asm � as the Postulate of Equidistribution ofIgnoran
e.



5.1 Elements of probability and statisti
s 107Likelihood intervals � BayesianBayesian statisti
s use the LF to perform an interval estimation for θ: basing on Bayes'Theorem, Eq. (5.33), we not only 
onsider the ML point in parameter spa
e as the �mostlikely� value of the unknown parameter; we shall also interpret values further and furtheraway as less and less likely to have generated the parti
ular measurement at hand. Hen
elikelihood intervals drawn from the LF measure our �degree of belief� that the parti
ular setof observations was generated by a parameter belonging to the estimated interval. This isradi
ally di�erent from the frequentist interpretation sket
hed above.Let us simplify the notation by writing L(θ) instead of L(d|θ), sin
e now we 
onsiderthe LF as a fun
tion of the parameters given a data set d. Assume further that the LF is amultivariate Gaussian distribution in the p parameters θ, i.e.
L(θ) = (detC)−1/2(2π)−p/2 exp(−L/2) , (5.37)

L = −2 lnL = (θ − µ)TC−1(θ − µ) (5.38)where T denotes transposition, µ is the expe
tation value of the parameters µ ≡ 〈θ〉 and Cis the 
ovarian
e matrix
Cij ≡ 〈(θi − µi)(θj − µj)〉 . (5.39)From the likelihood one 
an then obtain the posterior distribution via (5.33), on
e the prioris spe
i�ed. For the prior distribution P(θ) a simple 
hoi
e are so-
alled ��at� priors, amultidimensional top-hat fun
tion over some range whi
h is supposed to en
ompass all thevalues of interest. Usually, in grid-based method the prior 
oin
ides with the extension ofthe grid, so that the prior is just a multipli
ative 
onstant and we 
an identify the likelihoodwith the posterior. As mentioned, this 
hoi
e is somewhat arbitrary, sin
e it depends on thebasis 
hosen for the parameters.We 
an Taylor expand a general LF around its maximum whi
h is given by our MLestimate θ∗ of µ, whi
h on average 
oin
ides with the true mean for a normal distribution,

〈θ∗〉 = µ. By de�nition of the ML point the �rst derivatives vanish, ∂L/∂θi(θ∗) = 0, and weobtain
L(θ) ≈ L(θ∗) +

1

2

∑

ij

(θi − θ∗i )
∂2L
∂θi∂θj

(θj − θ∗j ) . (5.40)If the LF is sharply peaked around θ∗, i.e. the errors on the parameters are small enough,then third order terms are unimportant and the above Gaussian form is a good enoughapproximation everywhere in parameter spa
e. By 
omparing with (5.38) we �nd that the
ovarian
e matrix 
an thus be estimated as
Ĉ = F−1 where Fij ≡

〈1

2

∂2L
∂θi∂θj

〉





θ
∗

(5.41)is 
alled Fisher information matrix (Kendall & Stuart, 1977, Chap.15, Vol.1).A

ording to our understanding of the LF as a measure of our degree of belief for thepossible values of θ, the probability that parameters within a 
ertain region from the MLpoint have generated the observations should be proportional to the likelihood 
ontent of theregion. The probability 
ontent depends on whether we are estimating all parameters jointly,or keeping some of them �xed to their ML value, or rather disregarding a 
ertain subset byintegrating over them (marginalization). We 
onsider ea
h 
ase in turn.



108 Statisti
s and data analysisEstimation of all p parameters jointly.Without loss of generality we 
an take in the following µ = 0 in Eq. (5.38), whi
h 
an alwaysbe a
hieved by shifting the origin of the 
oordinate system in parameter spa
e. Contours of
onstant likelihood de�ne hyperellipses in parameter spa
e with some probability 
ontent wewish to determine. To this aim we 
onsider the quadrati
 form
Q(θ) ≡ θTC−1θ (5.42)and for the LF (5.37) the 
ondition Q(θ) = Qsγ for some 
onstant Qsγ gives the 
ontoursof 
onstant likelihood. We write Qsγ to indi
ate that the numeri
al value of the 
onstantdepends on the number of parameters under 
onsideration, s, and on the desired probability
ontent of the hyperellipse, γ. It 
an be shown (Kendall & Stuart, 1977, Chap.8, Vol.1) thatthe quadrati
 form Q is 
hi-square distributed with s dof, whi
h allows us to relate Qsγ withthe probability 
ontent of the ellipse.If we want a 
on�den
e region 
ontaining 100γ% of the joint probability for all p param-eters, then s = p and Qpγ is determined by solving
∫ Qp

γ

0
Pχ2

p
(u)du = γ . (5.43)The proje
tion (not the interse
tion) of the hyperellipse Q(θ) = Qpγ onto ea
h of the param-eter axis gives the 
orresponding likelihood interval for ea
h parameter when all parameterare estimated simultaneously (whi
h we will 
all �joint likelihood interval�).It is a simple geometri
al problem to �nd an analyti
al expression for the joint likelihoodinterval for ea
h parameter: for the parameter 1 ≤ d ≤ p, the interse
tion of the hyperellipsewith the hyperplane de�ned by θd = c, with c a 
onstant, gives either an hyperellipse in p−1dimensions, or a point or else an empty set. The extrema of the joint likelihood interval forthe parameter d are given by the values of c for whi
h the p− 1 dimensional ellipse redu
esto a point.To �nd the equation of the p−1 dimensional ellipse we pro
eed as follows: de�ne C−1 ≡ Mand write Q(θ) = Qpγ in the form

θ̃
T
M̃θ̃ + 2c

∑

j 6=d
mdj θ̃j = Qpγ −mddc

2 , (5.44)where we have de�ned
θ̃ ≡ (θ1, . . . , θd−1, θd+1, . . . , θp) ∈ Rp−1 (5.45)

M̃ ≡























m11 . . . m1,d−1 m1,d+1 . . . m1p... ...
md−1,1 . . . md−1,1

md+1,1 . . . md+1,1... ...
mp1 . . . mpp























∈ R(p−1×p−1). (5.46)
Now we diagonalize the submatrix M̃,diag (λ1, . . . , λp−1) ≡ Λ = UTM̃U (5.47)
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s 109�nding the eigenvalues λi, i ≤ 1 ≤ p− 1 and eigenve
tors (u1, . . . , up−1), and after some alge-brai
 manipulations of (5.44) we arrive at the equation of the p− 1 dimensional hyperellipse
p−1
∑

i=1

λiz
2
i = Qpγ −mddc

2 +

p−1
∑

i=1

c2

λi





∑

j 6=d
mdjuji





2

, (5.48)where we have de�ned the new variables
zi ≡ (θ̃Ũ)i +

c

λi

∑

j 6=d
mdjuji , 0 ≤ i ≤ p− 1 . (5.49)The above hyperellipse be
omes degenerate if

p−1
∑

i=1

λiz
2
i = 0 (5.50)from whi
h we obtain a quadrati
 equation for c with solutions

cmin, max =
±
√

Qpγ
[

mdd −
∑p−1

i=1 λ
−1
i

(

∑

j 6=dmdjuji

)2
]1/2

. (5.51)It is easy to show that the positive de�niteness 
ondition for the Fisher matrix guaranteesthat the quantity under the square root in the denominator is always ≥ 0. In 
on
lusion, thejoint likelihood interval for the parameter θd with likelihood 
ontent γ is given by
cmin ≤ θd ≤ cmax . (5.52)Estimation of k < p parameters, the others �xed.We are sometimes interested in giving 
on�den
e intervals for some subset k < p of theparameters, while assuming the other p− k parameters as (exa
tly) known. Without loss ofgenerality we shall take the �rst k parameters as the one we are interested in, and we splitthe parameter ve
tor as

θ =

(

t

u

) (5.53)with t ∈ Rk and u ∈ Rp−k. Correspondingly we write the 
ovarian
e matrix in (5.38) as theFisher matrix estimate of (5.41),
C−1 = F =

(

A G

GT B

) (5.54)where A ∈ Rk×k, B ∈ Rp−k×p−k and G ∈ Rp−k×k.If the known parameters u are held �xed at their ML value, the LF for the parameters ofinterests t is simply the full LF restri
ted to the k subspa
e,
L (t|u∗) ∝ exp(−1

2
tTAt) , (5.55)



110 Statisti
s and data analysiswith an appropriate normalization 
onstant, and the new 
ovarian
e matrix V ∈ Rk×k forthe k parameters of interest is
V = A−1 (
onditional). (5.56)In parti
ular, we often 
onsider the best 
ase s
enario in whi
h all parameters but one aresupposed to be known exa
tly, say from independent observations or theoreti
al prejudi
e,and therefore k = 1. Then the 1σ likelihood interval for the �rst parameter only is the squareroot of the 
ovarian
e matrix element, and it is given by (all others �xed to their ML value)

σ1 =
1√
f11

. (5.57)Estimation of k < p parameters, the others marginalized.Instead of �xing some parameters, we may prefer to disregard them 
ompletely, by integratingover them in order to obtain the marginalized likelihood in the k parameter of interest:
L(t) ∝

∫

Ωu

L(t,u)du , (5.58)with a suitable normalization 
onstant so that the probability 
ontent of the marginalizedLF is equal to unity.The marginal LF for t is still a multivariate Gaussian, with the same 
ovarian
e matrixas the full LF, only with the last p− k rows and 
olumns deleted:
Vij =

[

F−1
]

ij
0 ≤ i, j ≤ k (marginalized). (5.59)This result 
an be obtained by performing expli
itly the integration (5.58) or more elegantlyby using the properties of the 
hara
teristi
 fun
tion (Kendall & Stuart, 1977, Chap.4, Vol.1).In terms of the splitting (5.54), the 
ovarian
e matrix for the marginalized distribution is

V =
[

A− GB−1GT
]−1

. (5.60)Very often one quotes marginalized likelihood intervals for one parameter alone, k = 1with all other parameters marginalized, in whi
h 
ase the 1σ error is given by
σ1 =

√

(F−1)11 . (5.61)If the parameters are un
orrelated, then F is diagonal, and �xing u or marginalizing overthem is equivalent, otherwise the resulting likelihood intervals for the parameter(s) of interestare in general di�erent, with the marginalized interval being broader.5.1.6 Gridding methodIn the numeri
al �t to the data, the shape of the LF is determined by evaluating the least-square estimator (5.26, page 103) at ea
h point on a grid in the p dimensional parameterspa
e and the minimization of the 
hi-square in the desired range of parameters gives the MLestimate.
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100γ% 68.3% 95% 95.4% 99% 99.7%Likelihood 
ontent (1σ) (1.96σ) (2σ) (2.58σ) (3σ)1 parameter, Q1

γ 1.00 3.84 4.00 6.63 9.002 parameters, Q2
γ 2.30 5.99 6.17 9.21 11.80Table 5.1: ∆χ2 = Qkγ for marginalized likelihood intervals in one parameter (k = 1) ormarginalized likelihood 
ontours in two parameters (k = 2) for the given joint likelihood
ontent.Assuming that the measurements are normally distributed around their true value wehave

L(d|θ) = Lmax exp
[

−χ2(θ)/2
]

. (5.62)From this we 
an use the above pres
riptions to determine likelihood or 
on�den
e intervalsfrom real data.In the frequentist analysis, the boundaries of the 
on�den
e regions represent ex
lusionplots at the given 
on�den
e level: they are found as the 
ontours of 
onstant χ2 using therelation (5.31, page 105), independently of the value of the 
hi-square at the ML point. InBayesian statisti
s, the likelihood intervals are instead drawn around the ML point, hen
etheir extension depends on the best �t value. This applies only to the gridding method, not tothe Monte Carlo sampling des
ribed below in � 5.1.7. It is 
ustomarily to quote marginalizedlikelihood intervals for one parameter only or to plot two-dimensional likelihood 
ontours toshow degenerate dire
tion between two parameters (also see below the paragraph dis
ussingthe maximization approa
h instead of marginalization); for these two 
ases, the 
ook-bookpres
ription for Bayesian (Maximum Likelihood) statisti
s on a grid of samples in parameterspa
e is:
• �nd the ML point Lmax in the grid of parameters by minimizing the χ2 of Eq. (5.30,page 104) and mark this point as χ2min, your least-square estimate of the best �t;
• determine the boundaries of the region 
ontaining 100γ% of likelihood as the values ofthe parameters for whi
h the χ2 has in
reased by an amount ∆χ2 = Qkγ (k = 1, 2 thenumber of parameters 
onsidered) with respe
t to χ2min.
• The values of Qkγ 
an be found for every desired likelihood 
ontent using the relation,
f. (5.31, page 105)

γ =

∫ Qk
γ

0
Pχ2

k
(u)du . (5.63)Table 5.1 displays the values of ∆χ2 for k = 1, 2 and for some popular 
hoi
es oflikelihood 
ontent.In a real situation, the LF 
omputed using (5.62) will not be exa
tly a multivariateGaussian, and the likelihood intervals obtained with this method will only approximativelyen
ompasses the stated probability 
ontent. There are methods whi
h improve on the as-sumption of a normal distribution presented here, see for instan
e Bond et al. (2000); Bartlettet al. (2000); Wandelt et al. (2001); Ja�e et al. (2003).
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s and data analysisFinally, noti
e that likelihood (Bayesian) 
ontours are usually mu
h tighter than the
on�den
e 
ontours drawn from the frequentist point of view. This is a 
onsequen
e of the MLpoint having often a χ2/f mu
h smaller than 1, be
ause the data-sets are highly 
onsistentwith ea
h other and also be
ause usually not all points are 
ompletely independent. For theCMB, this was the 
ase when one 
onsidered a 
ombination of several data-sets before WMAP,as we dis
uss in � 7.2. If we 
onsider the usual situation in whi
h likelihood 
ontours aredrawn in a two dimensional plane with all other parameters marginalized over, the frequentistapproa
h is more 
onservative than Bayesian statisti
s: the region 
orresponding to thedesired 
on�den
e level (frequentist) or likelihood 
ontent (Bayesian) γ, has bounds givenby χ2(θ) = Qγk, with k = 2 for Bayesian statisti
s and two-dimensional plots, and k =

f for frequentist statisti
s independently on the number of parameters 
onsidered. Sin
ein general and for reasonably good ML values χ2
min

<∼O(f) and f > 2, we have that theprobability/likelihood 
ontent is the same, i.e.
∫ ∞

Qγ
f

Pχ2
f
(u)du =

∫ ∞

Qγ
2

Pχ2
2
(u)du (5.64)only for Qγf > Qγ2 . When looking at Bayesian likelihood 
ontours one should thus keepin mind that a point more than, say, 3σ away from the ML point is not ne
essarily ruledout by data. In order to establish this, one has to look at 
on�den
e 
ontours, i.e. ask thefrequentist's question. This is pointed out in a penetrating way by Gawiser (2001).Maximization instead of marginalizationIn pra
ti
al appli
ations, involving up to a dozen parameters, it is an ex
eptionally demandingtask to perform the multidimensional integral of Eq. (5.58). A 
omputationally more feasiblealternative whi
h avoids the time 
onsuming integration is to maximize the parameters weare not interested in, u, for ea
h value of the parameters of interest, t, obtaining

L(t) ∝ max
u

L(t,u) . (5.65)If the distribution is Gaussian, then the two pro
edures give the same result: maximizing
L(t,u) 
orresponds to minimization over u of the quadrati
 form θTC−1θ, with the notationsof (5.53) and (5.54). Di�erentiating with respe
t to u, we �nd that the minimum of thequadrati
 form lies at

u = −B−1GT t , (5.66)and therefore
L(t) ∝ exp−1

2
tT
[

A− GB−1GT
]

t , (5.67)whi
h is the same result we found by marginalizing over u, Eq. (5.60). Numeri
al investiga-tions have found that maximization tends to underestimate errors when the assumption of aGaussian distribution is not a

urately ful�lled (Efstathiou et al., 1999).5.1.7 Markov 
hain Monte CarloA big pra
ti
al limitation to grid based parameter extra
tion te
hniques is that the numberof CMB spe
tra needed s
ales exponentially with the dimensionality of the parameter spa
e
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onsidered. Even with fast parallel 
omputing, the required 
omputational time qui
kly be-
omes very large, even for a moderate number of points in ea
h dimension. Interpolationalgorithms and other optimization te
hniques have been employed to 
ir
umvent this funda-mental limitation, allowing the handling of up to a dozen parameters (Tegmark et al., 2001).Nevertheless, this method shows a la
k of �exibility if one wants to add new data-sets orin
orporate new parameters or theoreti
al priors. At the latest with the 
oming of WMAPdata, the days of grid-based parameter extra
tion seem to be over, sin
e the a

ura
y ofWMAP-like data 
annot be exploited with the insu�
ient resolution and �exibility o�eredby this te
hnique.Markov 
hain Monte Carlo (hereafter MCMC) methods are now be
oming the standardtool to determine parameters from CMB data, 
ombine it with large s
ale stru
ture 
on-straints or investigate the e�e
t of di�erent priors. As advo
ated e.g. by Christensen et al.(2001), MCMC is a method to generate a sequen
e of (
orrelated) samples, 
alled a Markov
hain, from the posterior pdf of the parameters given the data, (5.33, page 106). The greatadvantages are that the 
omputational time s
ales approximately linearly with the number ofdimensions of the parameter spa
e, and that on
e the 
hain has properly 
onverged (see be-low for more details), the marginalized posterior distribution for the parameter(s) of interest
an be simply re
overed by plotting histograms of the sample list, thus avoiding 
ompletelythe 
ostly integration. It is easy to adjust the prior information or to in
lude new data-setsinto an existing 
hain without having to re
ompute it, with a pro
edure 
alled �importan
esampling�.One 
an think of the MCMC algorithm as an e�
ient integration te
hnique to evaluate theposterior distribution in Bayes' Theorem, Eq. (5.33, page 106). The Monte Carlo samplingdoes not rely on the assumption of Gaussian pdf's: indeed, the dire
t sampling of the posteriorpermits to reveal features due to its non-Gaussian distribution, and therefore vastly improveson the methods based on 
hi-square goodness-of-�t des
ribed above. Besides those undeniableadvantages over the grid method, the popularity of MCMC in the 
osmology 
ommunity hasbeen boosted by the timely publi
 release of the 
osmom
 pa
kage (Lewis & Bridle, 2002),whi
h integrates the 
ode 
amb for the 
omputation of the CMB power spe
tra4 and severaluseful tools for the generation and interpretation of Markov 
hains using CMB and other
osmologi
al data-sets. Further details about MCMC methods 
an be found e.g. in Gilkset al. (1996); Ma
Kay (2003).The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is the 
ore ofthe sample generation, and produ
es a Markov 
hain whose equilibrium distribution is thetarget probability density, here the posterior P(θ|d). The 
hain is started from a randompoint in parameter spa
e, θ0, and a new point θ1 is proposed with an arbitrarily proposaldensity distribution q(θn,θn+1). The transition kernel T (θn,θn+1) gives the 
onditionalprobability for the 
hain to move from θn to θn+1, and it must satisfy the �detailed balan
e�
P(θn+1|d)T (θn+1,θn) = P(θn|d)T (θn,θn+1) (5.68)so that the posterior P(θ|d) is the stationary distribution of the 
hain. This is a
hieved by4Both 
odes are available at: http://
osmologist.info.
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s and data analysisde�ning the transition kernel as
T (θn,θn+1) ≡ q(θn,θn+1)α(θn,θn+1) , (5.69)
α(θn,θn+1) ≡ min

{

1,
P(θn+1|d)q(θn+1,θn)

P(θn|d)q(θn,θn+1)

}

, (5.70)where α(θn,θn+1) gives the probability that the new point is a

epted. Sin
e P(θ|d) ∝
L(d|θ)P(θ) and for the usual 
ase of a symmetri
 proposal density, q(θn,θn+1) = q(θn+1,θn),the new step is always a

epted if it improves on the posterior, otherwise it is a

epted withprobability L(d|θn+1)P(θn+1)/L(d|θn)P(θn).The result is a sample list from the target distribution, from whi
h all the statisti
alquantities of interest 
an readily be evaluated. The samples are 
orrelated with ea
h other,a fa
t whi
h does not 
onstitute a problem for the statisti
al inferen
e on the parameters;however, importan
e sampling does require un
orrelated samples, whi
h 
an be obtained fromthe original 
hain by suitably �thinning� the 
hain, i.e. by retaining only one sample every
N , with N of the order of a few thousands. Other important pra
ti
al issues in working withMCMC methods involve:

• Burn in period: the initial samples need to be dis
arded, sin
e the 
hain is not yetsampling from the equilibrium distribution. The burn in 
an roughly be assessed bylooking at the evolution of the posterior and at the position of the 
hain in parameterspa
e as a fun
tion of the step number. When the 
hain is started at a random point ofthe parameter spa
e, the logarithm of the posterior pdf is large (and thus the posteriorprobability is small), and be
omes smaller at every step as the 
hain approa
hes theregion where the �t to the data is better. Only when the 
hain has moved in theneighborhood of the ML point the 
urve of the log posterior as a fun
tion of the stepnumber �attens around the best �t value. This is illustrated in the left panel of Fig. 5.1.Another useful diagnosti
 is the evolution in parameter spa
e of multiple 
hains, whi
hare started from di�erent points. In a well-behaved situation all of the 
hains 
onvergeafter the burn-in period to the same region around the ML point, see the right panelof Fig. 5.1 for an illustration.
• Convergen
e: assessing 
onvergen
e of the 
hain essentially means to know whenwe 
an stop, having gathered a number of samples large enough to 
orre
tly derive thestatisti
al quantities of interest. This is in general a di�
ult question, see e.g. Cowles &Carlin (1996); Mengersen et al. (1999) and referen
es therein. The 
osmom
 pa
kageo�ers several useful diagnosti
 tools, in
luding the Raftery & Lewis (1996) statisti
sand the Gelman & Rubin (1992b) 
riterion.
• Multiple 
hains: there is a debate among experts about the best strategy betweenhaving one long 
hain or rather several shorter ones running in parallel, see e.g. Gelman& Rubin (1992a,b); Raftery & Lewis (1996). Multiple independent 
hains o�er theadvantage of being 
omputed in parallel, and 
an be started in di�erent points ofthe parameter spa
e to ensure good mixing, i.e. an adequate exploration of the wholeparameter spa
e.
• Starting points: after the burn in period, the 
onverged 
hains do not depend on theinitial starting points. However, it is 
onvenient to start the 
hains in the proximity of
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Figure 5.1: Illustration of the burn-in period. Left panel: the logarithm of the (non-normalized) posterior, − lnP(θ|d), as a fun
tion of the step number for four Monte Carlo
hains. After the burn-in period (dotted, verti
al lines), the value �attens and the 
hains aresampling from the target distribution. Right panel: the four 
hains (in di�erent 
olors) arestarted in di�erent points of a 6-dimensional parameter spa
e and all 
onverge to the sameregion after the burn-in. The verti
al axis gives the number of steps.the parameter region where the best �t is supposedly lo
ated, so that 
onvergen
e willbe qui
kly a
hieved, and the sophisti
ated 
hoi
e of the starting points proposed byGelman & Rubin (1992b) is usually not ne
essary in 
osmologi
al appli
ations. Alsoone has to take into a

ount the fa
t that the MCMC is a lo
al algorithm, whi
h 
anbe trapped inside lo
al minima far away from the global minimum of the posterior, anissue whi
h is intimately related with the 
hoi
e of the proposal density. The use ofsimulated annealing algorithm via the introdu
tion of a �nite temperature for the MC
an sometimes help in a
hieving 
onvergen
e in a weird-shaped parameter spa
e.
• Proposal density: the optimal 
hoi
e of the proposal density is the key parameterfor an e�
ient implementation of the MCMC method. A simple possibility for the pro-posal density q(θn,θn+1) is a Gaussian with step size si along the parameter dire
tion
i, independently on the 
hain position. Finding the optimal value of si is a trade-o� be-tween a large step size, whi
h will result in almost all step being reje
ted and thereforein low e�
ien
y, and a too small value, for whi
h the 
hain performs a random walkand the tails of the distribution will not be adequately sampled, giving serious underes-timate of the likelihood intervals for the parameters. One 
an also roughly sample thedistribution with a short 
hain, 
onstru
t from the samples the 
ovarian
e matrix ofthe posterior distribution and use this information to 
onstru
t a new parameter basisapproximately aligned with the degenera
y dire
tions (Lewis & Bridle, 2002), whi
hensures a more e�
ient exploration. A sampling method whi
h exploits the knowndegenera
ies of the CMB and uses normal parameters as basis has been proposed by
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s and data analysisSlosar & Hobson (2003), and it 
an dramati
ally enhan
e the e�
ien
y of the MCMCalgorithm, espe
ially for large data-sets as the one expe
ted for the Plan
k satellite.5.2 Fisher matrix fore
astsAn important issue is to assess quantitatively the expe
ted performan
e of future CMB ex-periments in terms of the pre
ision rea
hed in the determination of 
osmologi
al parameters:this helps in understanding whether an observed degenera
y is a 
onsequen
e of the la
k ofpre
ision in the data, or else it is of fundamental nature and will not be lifted by up
omingor even ideal (i.e. 
osmi
 varian
e limited) measurements; it also gives estimates of the ne
es-sary instrumental 
hara
teristi
s to a
hieve a 
ertain pre
ision, and on the optimal observingstrategies, e.g. full sky 
overage versus high resolution mapping of a pat
h only.It is possible and indeed ne
essary at the development stage of a CMB experiment toinvestigate in detail the above questions by produ
ing mo
k realizations of the CMB sky andrun Monte Carlo simulations of the observations. From the theorist's point of view, however,it is often su�
ient and preferable to resort to a simpler alternative, whi
h gives quantitativeand a

urate results with very small 
omputational requirements: a Fisher matrix analysis(FMA) (Knox, 1995; Kosowsky et al., 1996; Tegmark et al., 1997; Zaldarriaga et al., 1997;Bond et al., 1997; Eisenstein et al., 1998b; Efstathiou & Bond, 1999; Tegmark et al., 2000).5.2.1 Experimental parametersAs explained in � 5.1.5, if the LF is a multivariate Gaussian then the Fisher informationmatrix de�ned in Eq. (5.41) is an estimate of the inverse of the 
ovarian
e matrix for theparameters under s
rutiny. Sin
e any LF 
an be expanded up to se
ond order in the vi
inityof the ML point as in (5.40), the goal is to 
ompute the Fisher matrix for the CMB powerspe
trum, in
luding the noise of the future experiment, and estimate from it the 
ovarian
ematrix using the results for Bayesian statisti
s presented in � 5.1.5.The estimator (5.15) for the CMB temperature power spe
trum (below we generalize theresult to in
lude polarization information as well, � 5.2.2) needs to be modi�ed to subtra
to� the noise 
ontribution and 
orre
t for the fa
t that the measured aℓm's are a smeared outversion of the true ones, resulting from the 
onvolution of the signal with the experimentalbeam, giving (Knox, 1995; Bond et al., 1997)
Ĉℓ ≡

(

1

2ℓ+ 1

ℓ
∑

m=−ℓ
|â2
ℓm| − w−1

b

)

eℓ(ℓ+1)/ℓ2b . (5.71)In the above expression, the two experimental parameters are the inverse weight per solidangle wb, whi
h a

ounts for the experimental noise, and the beam width ℓb, whi
h 
orre
tsthe smoothing due to the Gaussian pro�le of the beam. These two parameters are written interms of the fundamental spe
i�
ations of the experiments, namely the rms pixel noise (orsensitivity per resolution element) σb and the angular resolution θb (FWHM) expressed indegrees as
w−1
b = (σbθb)

2 and ℓb =
√

8 ln 2/θb . (5.72)In the limit of in�nite resolution, θb → 0, and no experimental noise, σb → 0, we re
over the
osmi
 varian
e limited estimator (5.15).
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asts 117As in � 5.1.2, we 
an now �nd the pdf for (5.71),
P(Ĉℓ) =

l

Cℓ + w−1
b eℓ(ℓ+1)/ℓ2

b

Pχ2
l

(

l
Ĉℓ + w−1

b eℓ(ℓ+1)/ℓ2b

Cℓ + w−1
b eℓ(ℓ+1)/ℓ2

b

)

, (5.73)re
alling l ≡ 2ℓ + 1 and the 
hi-square distribution displayed in Eq. (5.17). The 
orre
tionfor the noise and the beam size makes this estimator biased, i.e.
〈Ĉℓ〉 = Cℓ + w−1

b eℓ(ℓ+1)/ℓ2b , (5.74)whi
h is exa
tly what we need to 
ompensate for the experimental noise and beam width.From this it follows from (5.23) and (5.38) that the log-normal LF has the form
L(θ) =

∑

ℓ

l

[

ln
(

Cℓ(θ) + w−1
b eℓ(ℓ+1)/ℓ2b

)

+
Ĉℓ

Cℓ(θ) + w−1
b eℓ(ℓ+1)/ℓ2b

] (5.75)and we have dropped several normalization fa
tors whi
h do not depend on θ. Using (5.74)we then obtain for the Fisher information matrix de�ned in (5.41)
Fij =

ℓmax
∑

ℓ=ℓmin 1

(∆Cℓ)2
∂Cℓ
∂θi

∂Cℓ
∂θj







θ
∗

, (5.76)where the quantity (∆Cℓ)
2 is the standard deviation on the estimate of Cℓ, and takes intoa

ount both the 
osmi
 varian
e and the experimental error,
(∆Cℓ)

2 =
2

2ℓ+ 1

(

Cℓ + w−1
b eℓ(ℓ+1)/ℓ2b

)2
. (5.77)The sum over multipoles runs over the multipole 
overage of the experiment, between ℓminand ℓmax.Thus on
e the experimental parameters are spe
i�ed, the 
omputation of the Fisher ma-trix only requires the knowledge of the derivatives of the power spe
trum with respe
t to the
osmologi
al parameters. The derivatives are determined numeri
ally as double sided deriva-tives, see � 5.2.3, and this requires the 
omputation of 2p+ 1 spe
tra only for p parameters,whi
h is a very small 
omputational e�ort 
ompared with the full numeri
al exploration ofthe likelihood surfa
e.5.2.2 GeneralizationsIn this se
tion, we develop the ne
essary general ma
hinery whi
h re�nes the above resultsin
luding a more detailed experimental parametrization and polarization information.Most experiments present several frequen
y 
hannels, ea
h of them 
hara
terized by itsown sensitivity σT,Pc and angular resolution θT,Pc , both for temperature (T ) and E-polarization(P ). Furthermore, even full-sky experiments only 
over a fra
tion of the sky, sin
e pointsour
e subtra
tion, foreground removal and gala
ti
 plane 
uts have to be performed onthe full-sky maps. This 
an be approximately taken into a

ount by assigning a �
lean�fra
tion fsky to the experimental 
overage. These fa
tors are a

ounted for by generalizingthe expression (5.77) to (Efstathiou & Bond, 1999)

(∆Cℓ)
2 =

2

(2ℓ+ 1)fsky (Cℓ +B−2
ℓ

)2
, (5.78)
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s and data analysiswhere the inverse noise term Bℓ is given by
B2
ℓ ≡

∑

c

wce
−ℓ(ℓ+1)/ℓ2c (5.79)and wc, ℓc are given by (5.72) for ea
h 
hannel c.In the more general 
ase, we also want to in
lude E polarization and temperature-polarization 
orrelation (C) along with temperature information: then instead of a singlederivative we have a ve
tor of three derivatives with the weighting given by the the inverseof the 
ovarian
e matrix of the spe
tra, and the Fisher matrix is given by (Zaldarriaga &Seljak, 1997),

Fij =
ℓmax
∑

ℓ=ℓmin∑X,Y ∂CXℓ∂θi
Cov−1(CXℓCY ℓ)

∂CY ℓ
∂θj







θ
∗

(5.80)where Cov−1 is the inverse of the 
ovarian
e matrix for the spe
tra evaluated at the MLpoint θ∗, θi are the 
osmologi
al parameters we want to estimate and X,Y stands for T(temperature), E (polarization mode), or C (
ross-
orrelation of the power spe
tra for T and
E).For ea
h ℓ one has to invert the 
ovarian
e matrix and sum over X and Y . The diagonalterms of the 
ovarian
e matrix between the di�erent estimators are given by

Cov(C2
Tℓ) =

2

(2ℓ+ 1)fsky
(CT l +B−2

Tℓ )
2 (5.81)

Cov(C2
Eℓ) =

2

(2ℓ+ 1)fsky
(CEℓ +B−2

Pℓ )
2 (5.82)

Cov(C2
Cℓ) =

1

(2ℓ+ 1)fsky

[

C2
Cℓ + (CTℓ +B−2

Tℓ )(CEℓ +B−2
Pℓ )
]

, (5.83)and the o� diagonal terms are
Cov(CTℓCEℓ) =

2

(2ℓ+ 1)fsky
C2
Cℓ (5.84)

Cov(CTℓCCℓ) =
2

(2ℓ+ 1)fsky
CCℓ(CTℓ +B−2

Tℓ ) (5.85)
Cov(CEℓCCℓ) =

2

(2ℓ+ 1)fsky
CCℓ(CEℓ +B−2

Pℓ ) , (5.86)where B−2
Tℓ = B−2

ℓ given in Eq. (5.79) and B2
Pℓ is obtained using a similar expression butwith the experimental spe
i�
ations for the polarization 
hannels.5.2.3 A

ura
y issuesThe a

ura
y of the Fisher matrix predi
tions for the errors depends on a number of issues:

• The FMA assumes that the true values of the parameters are in the vi
inity of the MLpoint θ∗. The validity of the results therefore depends on this assumption, as well ason the assumption that the aℓm's are independent Gaussian random variables.
• This is a lo
al method based on a quadrati
 expansion of the LF. Only if the FMApredi
ted errors are small enough, the method is self-
onsistent and we 
an expe
t the
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al a

ount 119FMA predi
tion to 
orre
tly reprodu
e the exa
t behavior, and in parti
ular the 
or-relations between parameters, thus revealing the degenera
y dire
tions. The expansionup to se
ond order is exa
t if the dependen
e of the Cℓ on the parameters is linear,therefore great importan
e is atta
hed to the 
hoi
e of the parameter set with respe
tto the FMA is performed. As shown in Kosowsky et al. (2002), employing the normalparameters set dis
ussed in � 4.2 as a base, the a

ura
y of the FMA predi
tions isgreatly enhan
ed. This is be
ause the spe
tra are almost linear in the normal parame-ters in the vi
inity of the best �t.
• Spe
ial 
are must be taken when 
omputing the derivatives of the power spe
trum withrespe
t to the 
osmologi
al parameters. This di�erentiation strongly ampli�es anynumeri
al errors in the spe
tra, leading to larger derivatives, whi
h would arti�
iallybreak degenera
ies among parameters. Double�sided derivatives redu
e the trun
ationerror from se
ond order to third order terms, but the 
orre
t 
hoi
e of the step size isa trade-o� between trun
ation error and numeri
al ina

ura
y dominated 
ases (Presset al., 1992).5.3 CMB observations: a brief histori
al a

ountThe experimental status of CMB observations has made giant leaps over the last ten years,thanks to spe
ta
ular advan
ements in dete
tor te
hnology. As demonstrated in Chapter 6,CMB data nowadays provide stringent tests whi
h severely 
onstrain 
osmologi
al modelbuilding, and 
all for more re�ned theoreti
al and 
omputational approa
hes whi
h take intoa

ount subtle physi
al e�e
ts whi
h were so far ignored or thought to be irrelevant. Herewe provide a personal sele
tion of a few milestones of this development, in order to put the
urrent and future experimental a
hievements into a wider perspe
tive.The �rst dete
tion of temperature anisotropy 
ame in 1992 with the Di�erential Mi
rowaveRadiometer (DMR) aboard the COBE satellite after one year of observations on angulars
ales larger than 7◦ (Smoot et al., 1992; Wright et al., 1992) or multipoles <∼ 20. The keyresults of the full four year DMR observations are summarized in Bennett et al. (1996, seereferen
es therein): the quadrupole amplitude was measured for the �rst time, the spe
traltilt of the large s
ale spe
trum was found to be 
ompatible with an Harrison-Zel'dovi
hspe
trum and no eviden
e of non-Gaussianity of the �u
tuations was dis
overed in the data.The FIRAS instrument was devoted to the study of the CMB spe
trum (Fixsen et al., 1996),and obtained a pre
ision measurement of its temperature (T = 2.728 ± 0.002 K), while
onstraining deviations from a perfe
t bla
k body spe
trum to be less than about one partin 105 with 95% 
on�den
e.The Saskatoon and To
o data provided the �rst hint for the presen
e of the �rst adiabati
peak (Netter�eld et al., 1997; Miller et al., 1999; Knox & Page, 2000), but at the turningof the millennium several groups independently reported measurements of the temperatureanisotropy with a resolution of a few ar
minutes, su�
ient to unambiguously reveal the �rstpeak and start exploring the subsequent ones: BOOMERanG (de Bernardis et al., 2002; Net-ter�eld et al., 2002) and Maxima (Hanany et al., 2000; Lee et al., 2001), both balloon-bornebolometri
 experiments, mapped the multipole region 80<∼ ℓ<∼ 1000; the CBI (Padin et al.,2001) and DASI (Halverson et al., 2002) ground based interferometers 
overed a similar mul-
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s and data analysistipole range but with a 
ompletely di�erent te
hnology, whi
h had the advantage of being freefrom the 
alibration un
ertainty of bolometri
 re
eivers. The Ar
heops experiment (Benoitet al., 2003a), 
on
eived as a balloon-borne pre
ursor of the HFI bolometri
 instrument forthe Plan
k satellite, observed a larger portion of the sky, and thus provided an estimation ofthe temperature power spe
trum whi
h for the �rst time en
ompassed the �rst peak regionand also partially overlapped with the COBE measurement, in the range 15 ≤ ℓ ≤ 350. Giventhe experimental 
alibration un
ertainty of the bolometers, whi
h is about 10 − 20%, thispermits to test the relative 
alibration between COBE and the other experiments with datain the ℓ>∼ 50 region, and perform a 
omparison of the height of the �rst peak with respe
t tothe large s
ale plateau. All of this data generally agrees well on the position and shape of the�rst peak, but their resolution is insu�
ient to permit the re
onstru
tion of the subsequentones with high 
on�den
e (de Bernardis et al., 2002; Durrer et al., 2003b).From the point of view of parameter extra
tion, ea
h of the above data sets by its ownas well as their 
ombination leads to a broad agreement of an approximately �at Ωtot ∼ 1universe with s
ale invariant spe
tral index ns ∼ 1, with the 1σ likelihood intervals beingof the order of 10% and somewhat depending on the 
ompilation of data and on the priorassumed (Stompor et al., 2001; Lange et al., 2001; Pryke et al., 2002; Netter�eld et al.,2002). The estimation of the baryon density proved to be more 
ontroversial, be
ause ofdis
repan
ies and a la
k of resolution at the level of the se
ond and third peak: in parti
ular,the BOOMERanG 1998 and MAXIMA data seem to favor a baryon 
ontent about 50%larger than predi
ted by BBN, around Ωbh
2 ∼ 0.03 (Tegmark & Zaldarriaga, 2000; Langeet al., 2001; Stompor et al., 2001), a dis
repan
y whi
h disappears with the improved beamre
onstru
tion of the BOOMERanG 2000 observations (Netter�eld et al., 2002). In
lusion ofsupernovæ data or the Hubble Spa
e Teles
ope prior for the Hubble 
onstant, together withthe �atness determination, points toward a universe dominated by a 
osmologi
al 
onstant.Before the WMAP satellite delivered its results, ground based instruments pressed onand opened up two new observational dire
tions: very small s
ale observations (4′ − 5′)and E-polarization dete
tion. The CBI interferometer, in two di�erent 
on�gurations 
alled

Figure 5.2: The small s
ale temperature angular power spe
trum observed by CBI �mosai
�during two years and by ACBAR. The shaded region shows the ex
ess power at small s
ale,
ompatible with the SZ e�e
t. Reprinted from Readhead et al. (2004).
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Figure 5.3: The spe
ta
ular in
rease of the a

ura
y of CMB observations: in the left panel,a 
ompilation of pre-WMAP temperature power spe
trum measurements obtained between1996 (COBE) and 2003 (CBI) is 
ompared with the WMAP �rst year data in the right panel,released in February, 2003. The error-bars give the 1σ un
ertainty due to the measurementerrors, while the shaded region represent the 
osmi
 varian
e limit. Both �gures reprintedfrom Hinshaw et al. (2003a).�mosai
� and �deep �eld�, obtained measurements of the temperature power spe
trum up to
ℓ = 3500 (Sievers et al., 2003; Mason et al., 2003), and it was argued that the ex
ess powerobserved at high multipoles 
ould be due to the SZ e�e
t, from whi
h a pre
ise determinationof σ8 
ould possibly be obtained (Bond et al., 2002). The ACBAR experiment, a bolometri
instrument installed at the South Pole, found small s
ale power 
onsistent with the results ofCBI, without however being able to pla
e tighter 
onstraints on its origin (Goldstein et al.,2003; Kuo et al., 2004). More re
ently, the results of two years of observations with theCBI �mosai
� 
on�guration, give smaller errors in the ℓ ∼ 2000 region, due to the longerintegration time and to an improved absolute 
alibration derived from the WMAP data, seeFig. 5.2. Beside revealing e�e
ts due to se
ondary anisotropies as the SZ e�e
t, the smalls
ale measurements are helpful in better 
onstraining ns, τre and possible features in thepower spe
trum (like a �running�, i.e. a s
ale dependen
e of ns) be
ause of the larger leverarm they o�er when 
ombined with WMAP and large s
ale stru
ture data (Readhead et al.,2004).The DASI interferometer reported in the se
ond half of 2002 the �rst dete
tion of E-polarization, whi
h was observed on degree angular s
ales with almost 5σ 
on�den
e (Kova
et al., 2002), thereby opening the epo
h of polarization measurements.The �rst year WMAP data, unveiled in February 2003 (Bennett et al., 2003; Hinshawet al., 2003a), essentially 
on�rmed the pi
ture whi
h had emerged from pre-WMAP obser-vations, see Fig. 5.3: the height of the �rst peak was 
orre
ted by about 10%, showing morepower than in the previous data, while the large s
ale spe
trum 
on�rmed the DMR results.The se
ond peak is now a

urately outlined, while the full four years data should allow toobtain good resolution up to ℓ ∼ 1000 in temperature. The low power of the quadrupoleremains troublesome, sin
e it is still not 
lear whether it is pointing to new physi
s or just a
onsequen
e of systemati
al errors. The observation of the temperature-polarization 
orrela-
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s and data analysistion up to ℓ ∼ 500 (Kogut et al., 2003) has proved very useful in order to better 
onstrainparameters. The exquisite quality of the power spe
tra has tightened the 1σ likelihood inter-vals to a few per
ent for most 
osmologi
al parameters (Spergel et al., 2003), and the 
entralvalue has remained in the region preferred by earlier data, with two interesting ex
eptions:the TE data favor a mu
h larger reionization opti
al depth than previously thought, andthere seems to be a slight preferen
e for a �running� (i.e. s
ale dependent) spe
tral index(Peiris et al., 2003).A 
omplete overview of the evolution of data and of the 
osmologi
al parameters derivedfrom it 
an be found in the review by Bond et al. (2003).



Chapter 6Beyond standard parameters
This 
hapter is devoted to the investigation of three s
enarios involving non-standard 
osmo-logi
al parameters, and fo
uses on the ability of 
onstraining them using present and futureCMB observations: the existen
e of extra relativisti
 parti
les (� 6.1); the determination ofthe primordial helium mass fra
tion (� 6.2); and possible time variations of the �ne stru
ture
onstant (� 6.3).Until re
ently, the e�e
ts indu
ed by these parameters on the CMB where 
onsidered toosmall to be observable, or else irrelevant; however, the era of pre
ision 
osmology that weare entering requires on one hand that we 
he
k the 
onsequen
es of our assumptions on thestandard results for other parameters (as in the 
ase of the neutrino families and the heliumfra
tion); on the other hand, it allows us to put under 
lose s
rutiny very subtle e�e
ts whi
h
ould previously be safely negle
ted be
ause of the less a

ura
y of the data sets.6.1 Extra relativisti
 parti
lesThis se
tion is based on the work published in Bowen et al. (2002), whi
h was 
arried outfor the most part during my stay in Oxford. We investigate one possible modi�
ation tothe standard s
enario, namely variations in the parameter ωrel = Ωrelh

2 whi
h des
ribes theenergy density of relativisti
 parti
les. The original work has been performed in 2001, andtherefore the results presented here of the pre-WMAP data analysis are nowadays somewhatoutdated. However, the fo
us is on the degenera
ies involving ωrel and as su
h the 
on
lusionsdrawn are still valid. Furthermore, the subsequent analysis by several groups of the a
tualWMAP data permits a 
omparison between the fore
asts obtained with the Fisher matrixte
hnique in 2001 and the real 
ase, showing a very satisfa
tory agreement and validatingthe method used.After o�ering the motivations for our study in � 6.1.1, we review various physi
al me
ha-nisms that 
an lead to a 
hange in ωrel with respe
t to the standard value in � 6.1.2. In � 6.1.3,we illustrate how the CMB angular power spe
trum depends on this parameter and identifypossible degenera
ies with other parameters, then present in � 6.1.4 a likelihood analysisfrom pre-WMAP CMB data and show whi
h of the 
onstraints on the various parametersare a�e
ted by variations in ωrel. Se
tion 6.1.5 fore
asts the pre
ision in the estimation of
osmologi
al parameters for the spa
e missions WMAP and Plan
k, and then 
ompares thepredi
tions with a
tual data analysis performed on the �rst year WMAP data.



124 Beyond standard parameters6.1.1 MotivationCMB data analysis taking into a

ount variations in the density of relativisti
 parti
les hasbeen previously undertaken by many authors (Hannestad, 2000; Esposito et al., 2001; Knelleret al., 2001; Hannestad, 2001; Hansen et al., 2002; Zentner & Walker, 2002), giving rather
rude upper bounds, whi
h are signi�
antly improved only by in
luding priors on the ageof the universe or by in
luding supernovae (SN) or large s
ale stru
ture (LSS) data. It isworth emphasizing that there is little di�eren
e in the bounds on Neff , the e�e
tive numberof relativisti
 spe
ies, obtained from old and re
ent CMB data be
ause of the degenera
ydes
ribed in detail below. We fo
us here on the e�e
ts that the in
lusion of this parameter,
ωrel, has on the 
onstraints of the remaining parameters in the 
ontext of purely adiabati
models.As shown below � and as observed previously, see e.g. Hu et al. (1999) � there is a strongdegenera
y between ωrel and the physi
al density of non-relativisti
 matter, ωm ≡ Ωmh

2.This is important, be
ause an a

urate determination of ωm from CMB observations (and of
Ωm by in
luding the Hubble Spa
e Teles
ope result h = 0.72± 0.08) 
an be useful for a largenumber of reasons. First of all, determining the 
old dark matter 
ontent, ωcdm = ωm−ωb 
anshed new light on the nature of dark matter. The thermally averaged produ
t of 
ross-se
tionand thermal velo
ity of the dark matter 
andidate is related to ωm, and this relation 
an beused to analyze the impli
ations for the mass spe
tra in versions of the Supersymmetri
Standard Model, see e.g. Barger & Kao (2001); Djouadi et al. (2001); Ellis et al. (2001).The value of Ωm 
an be determined in an independent way from the mass-to-light ratios of
lusters, and the present value is 0.1 < Ωm < 0.2 (Carlberg et al., 1997; Bah
all et al., 2000).Furthermore, a pre
ise measurement of Ωm will be a key input for determining the redshiftevolution of the equation of state parameter w(z) and thus dis
riminating between di�erentquintessential s
enarios, see e.g. Weller & Albre
ht (2002).6.1.2 E�e
tive number of relativisti
 spe
iesThe energy density of relativisti
 parti
les 
an 
onveniently be parameterized via the e�e
tivenumber of relativisti
 spe
ies, Neff : in the standard model ωrel in
ludes photons and neutrinos,and it 
an be expressed as

ωrel = ωγ +Neff · ων (6.1)where ωγ is the energy density in photons and ων is the energy density in one a
tive neutrinofamily. In geometri
al units, where G = ~ = c = 1, one has ωx = 4π3/45 · gxT 4
x , where

gx and Tx are the relativisti
 degrees of freedom and the temperature of spe
ies x = γ, ν,respe
tively. Measuring ωrel thus gives a dire
t observation of the e�e
tive number of neu-trinos, Neff . Naturally there are only three a
tive neutrinos, and Neff is simply a 
onvenientparametrization for the extra possible relativisti
 degrees of freedom
Neff = 3 + ∆N . (6.2)Thus ωrel in
ludes energy density from all the relativisti
 parti
les: photons, neutrinos, andadditional hypotheti
al relativisti
 parti
les su
h as a light majoron or a sterile neutrino.Su
h hypotheti
al relativisti
 parti
les are strongly 
onstrained from standard Big-Bang nu-
leosynthesis (BBN), where the allowed extra relativisti
 degrees of freedom typi
ally are
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les 125expressed through the e�e
tive number of neutrinos, Neff = 3 + ∆NBBN. BBN bounds aretypi
ally about ∆NBBN < 0.2 − 1.0 (Burles et al., 1999; Lisi et al., 1999).One should, however, be 
areful when 
omparing the e�e
tive number of neutrino degreesof freedom at the time of BBN (neutrino de
oupling) and at the formation of the CMBR(photon de
oupling). This is be
ause the energy density in relativisti
 spe
ies may 
hangefrom the time of BBN (T ∼ MeV) to the time of last res
attering (T ∼ eV), as explainedin Hansen et al. (2002). For instan
e, if one of the a
tive neutrinos has a mass in therange eV < m < MeV and de
ays into sterile parti
les su
h as other neutrinos, majoronset
. with lifetime t(BBN) < τ < t(CMBR), then the e�e
tive number of neutrinos atCMBR would be substantially di�erent from the number at BBN (White et al., 1995). Su
hmassive a
tive neutrinos, however, do not look very natural any longer in view of the re
entexperimental results on neutrino os
illations (Fogli et al., 2001; Gonzalez-Gar
ia et al., 2001),showing that all a
tive neutrinos are likely to have masses smaller than 0.1 eV. One 
ouldinstead 
onsider sterile neutrinos mixed with a
tive ones whi
h 
ould be produ
ed in theearly universe by s
attering, and subsequently de
ay. The mixing angle must then be largeenough to thermalize the sterile neutrinos, and this 
an be expressed through the sterile toa
tive neutrino number density ratio ns/nν ≈ 4·104 sin2 2θ (m/keV)(10.75/g∗)3/2 (Dolgov &Hansen, 2002), where θ is the mixing angle, and g∗ 
ounts the relativisti
 degrees of freedom,su
h that ns/nν = 1 or ∆g∗ = 7/8 in
reases Neff by one unit. With ns/nν of order unitywe use the de
ay time, τ ≈ 1020(keV/m)5/ sin2 2θ se
, and one �nds, τ ≈ 1017(keV/m)4 yr,whi
h is mu
h longer than the age of the universe for m ∼ keV, so they would 
ertainlynot have de
ayed at t(CMBR). A sterile neutrino with a mass of a few MeV would seem tohave the right de
ay time, τ ∼ 105 yr, but this is ex
luded by standard BBN 
onsiderations(Kolb et al., 1991; Dolgov et al., 1998). More inventive models with parti
les de
aying duringlast res
attering 
annot simply be treated with an NCMB that is 
onstant in time, see e.g.Kaplinghat et al. (1999), and we will not dis
uss su
h possibilities further here.Even though the simplest models predi
t that the relativisti
 degrees of freedom are thesame at BBN and CMB times, one 
ould 
onstru
t models su
h as quintessen
e (Albre
ht &Skordis, 2000; Skordis & Albre
ht, 2002) whi
h e�e
tively 
ould 
hange ∆N between BBNand CMB (Bean et al., 2001). Naturally ∆N 
an be both positive and negative. For BBN,
∆N 
an be negative if the ele
tron neutrinos have a non-zero 
hemi
al potential (Kang &Steigman, 1992; Kneller et al., 2001), or more generally with a non-equilibrium ele
tronneutrino distribution fun
tion (Hansen & Villante, 2000). To give an expli
it (but highlyexoti
) example of a di�erent number of relativisti
 degrees of freedom between BBN andCMB, one 
ould 
onsider the following s
enario. Imagine another two sterile neutrinos, oneof whi
h is essentially massless and has a mixing angle with any of the a
tive neutrinos justbig enough to bring it into equilibrium in the early universe, and one with a mass of mνs = 3MeV and de
ay time τνs = 0.1 se
, in the de
ay 
hannel νs → νe + φ, with φ a light s
alar.The resulting non-equilibrium ele
tron neutrinos happen to exa
tly 
an
el the e�e
t of themassless sterile state, and hen
e we have ∆NBBN = 0. However, for CMB the pi
ture is mu
hsimpler, and we have just the stable sterile state and the majoron, hen
e ∆NCMB = 1.57.For CMB, one 
an imagine a negative ∆N from de
aying parti
les, where the de
ay produ
tsare photons or ele
tron/positrons whi
h essentially in
reases the photon temperature relativeto the neutrino temperature (Kaplinghat & Turner, 2001). Su
h a s
enario also naturally



126 Beyond standard parametersdilutes the baryon density, and the agreement on ωb from BBN and CMB gives a bound onhow negative ∆NCMB 
an be. Considering all these possibilities, we will therefore not makethe usual assumption, ∆NBBN = ∆NCMB, but instead 
onsider ∆NCMB as a 
ompletely freeparameter in the following analysis.The standard model value for Neff with three a
tive neutrinos is 3.044. This small 
or-re
tion arises from the 
ombination of two e�e
ts arising around the temperature T ∼ MeV.These e�e
ts are the �nite temperature QED 
orre
tion to the energy density of the ele
-tromagneti
 plasma (He
kler, 1994), whi
h gives ∆N = 0.01 (Lopez & Turner, 1999; Lopezet al., 1999). If there are more relativisti
 spe
ies than a
tive neutrinos, then this e�e
t willbe 
orrespondingly higher (Steigman, 2001). The other e�e
t 
omes from neutrinos sharing inthe energy density of the annihilating ele
trons (Di
us et al., 1982), whi
h gives ∆N = 0.034(Dolgov et al., 1997; Esposito et al., 2000
). Thus one �nds Neff = 3.044. An a

urateanalysis whi
h takes into a

ount both of this e�e
ts simultaneously has been performed byMangano et al. (2002) and the result indi
ates that the 
ombined e�e
t is slightly smaller,
Neff = 3.0395.6.1.3 CMB theory and degenera
iesAs explained in detail in Chapter 4, the stru
ture of the Cℓ spe
trum depends on a restri
ted
ombination of 
osmologi
al parameters, whi
h are physi
ally probed by the CMB; simpli-fying somewhat the normal parameters set introdu
ed in � 4.2, we fo
us here on the four
osmologi
al parameters

ωb , ωm , ωrel and Rshift , (6.3)the physi
al baryoni
 density ωb ≡ Ωbh
2, the energy density in matter ωm ≡ (Ωcdm + Ωb)h

2,the energy density in radiation ωrel and the shift parameter Rshift ≡ ℓref/ℓ, whi
h gives theposition of the a
ousti
 peaks with respe
t to a �at, ΩΛ = 0 referen
e model, see Eq. (4.22,page 82). In previous analysis (Efstathiou & Bond, 1999; Mel
hiorri & Gri�ths, 2001), theparameter ωrel has been kept �xed to the standard value, while here we will allow it to vary.It is therefore 
onvenient to write
ωrel = 4.13 · 10−5(1 + 0.135 · ∆NCMB) (6.4)(taking TCMB = 2.726 K), where ∆NCMB is the ex
ess number of relativisti
 spe
ies withrespe
t to the standard model, Neff = 3 + ∆NCMB, and we drop the subs
ript CMB fromnow on. The shift parameter Rshift depends on Ωm ≡ Ωcdm + Ωb, on the 
urvature Ωκ ≡

1 − ΩΛ − Ωm − Ωrel, and on Ωrel = ωrel/h
2 through

Rshift =

(

1 − 1√
1 + zdec

)

√

|Ωκ|
Ωm

2

χ(∆τ)

[

√

Ωrel +
Ωm

1 + zde
 −
√

Ωrel

]

, (6.5)where zdec is a fun
tion of the physi
al baryon density and χ(∆τ) is given in Eq. (1.33, page15). Eq. (6.5) generalizes the expression for Rshift given in (4.28, page 83) to the 
ase ofnon-
onstant Ωrel.By �xing the four parameters given in (6.3), or equivalently the set ωb, the redshift ofequality zeq ≡ ωm/ωrel, ∆N and Rshift, one obtains a perfe
t degenera
y for the CMBanisotropy power spe
tra on degree and sub-degree angular s
ales. On larger angular s
ales,
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Figure 6.1: Left panel: CMB degenera
ies between 
osmologi
al models. Keeping zeq, ωb and
R �xed while varying ∆N produ
es nearly degenerate power spe
tra. The referen
e model(solid line) has ∆N = 0, Ωtot = 1.00, ns = 1.00; the nearly degenerate model (dotted) has
∆N = 10, Ωtot = 1.05, ns = 1.00. The 
urves are normalized to the �rst peak. The positionof the peaks is perfe
tly mat
hed, only the relative height between the �rst and the othera
ousti
 peaks is somewhat di�erent in this extreme example, due to the early ISW e�e
t.The degenera
y 
an be further improved, at least up to the third peak, by raising the spe
tralindex to ns = 1.08 (dashed). Right panel: the matter power spe
tra of the models plotted inthe top panel together with the observed de
orrelated power spe
trum from the PSCz survey(Hamilton & Tegmark, 2002). The geometri
al degenera
y is now lifted.the degenera
y is broken by the late ISW e�e
t be
ause of the di�erent 
urvature and 
osmo-logi
al 
onstant 
ontent of the models. From the pra
ti
al point of view, however, it is stillvery di�
ult to break the degenera
y, sin
e measurements are limited by 
osmi
 varian
e onthose s
ales, and be
ause of the possible 
ontribution of gravitational waves.Allowing ∆N to vary, but keeping 
onstant the other three parameters ωb, zeq, and Rshift,we obtain nearly degenerate power spe
tra whi
h we plot in Fig. 6.1, normalized to the�rst a
ousti
 peak. The degenera
y in the a
ousti
 peaks region is now slightly spoiledby the variation of the ratio Ωγ/Ωrel: the di�erent radiation 
ontent at de
oupling indu
esa larger (for ∆N > 0) early ISW e�e
t, whi
h boosts the height of the �rst peak withrespe
t to the other a
ousti
 peaks. Nevertheless, it is still impossible to distinguish betweenthe di�erent models with present (pre-WMAP) CMB measurements and without externalpriors. Furthermore, a slight 
hange in the s
alar spe
tral index, ns, 
an reprodu
e a perfe
tdegenera
y up to the third peak.The main result is that, even with a measurement of the �rst three peaks in the angularspe
trum, it is impossible to put bounds on ωrel alone, even when �xing other parameterssu
h as ωb. Furthermore, sin
e the degenera
y is mainly in zeq, the 
onstraints on ωm fromCMB are also a�e
ted, see � 6.1.4.In Fig. 6.2 we plot the shift parameter Rshift as a fun
tion of ∆N , while �xing Ωm = 0.3and ΩΛ = 0.7. In
reasing ∆N moves the peaks to smaller angular s
ales, even though thedependen
e of the shift parameter on ∆N is rather mild. In order to 
ompensate this e�e
t,one has to 
hange the 
urvature by in
reasing Ωm and ΩΛ. We therefore 
on
lude that thepresent bounds on the 
urvature of the universe are weakly a�e
ted by ∆N . Nevertheless,
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Figure 6.2: The shift parameter Rshift as a fun
tion of ∆N with ΩΛ = 0.7 and Ωm = 0.3.The position of the peaks is only weakly a�e
ted by ∆N .when a positive (negative) ∆N is in
luded in the analysis, the preferred models are shiftedtoward 
losed (open) universes.6.1.4 Pre-WMAP 
onstraints from CMB and other data-setsIn this se
tion, we 
ompare pre-WMAP CMB observations with a set of models with 
os-mologi
al parameters sampled as follows: 0.1 < Ωm < 1.0, 0.1 < Ωrel/Ωrel(∆N = 0) < 3,
0.015 < Ωb < 0.2; 0 < ΩΛ < 1.0 and 0.40 < h < 0.95. We vary the spe
tral index ofthe primordial density perturbations within the range ns = 0.50, ..., 1.50 and we re-s
ale the�u
tuation amplitude by a pre-fa
tor C10, in units of CCOBE

10 . We also restri
t our analysisto purely adiabati
, �at models (Ωtot = 1) and we add an external Gaussian prior on theHubble parameter h = 0.65 ± 0.2.Constraints from CMB onlyThe theoreti
al models are 
omputed using the publi
ly available 
mbfast program (Seljak& Zaldarriaga, 1996) and are 
ompared with the BOOMERanG-98, DASI and MAXIMA-1 data. The power spe
tra from these experiments were estimated in 19, 9 and 13 binsrespe
tively, spanning the range 25 ≤ ℓ ≤ 1100. We approximate the experimental signal
CexB inside the bin to be a Gaussian variable, and we 
ompute the 
orresponding theoreti
alvalue CthB by 
onvolving the spe
tra 
omputed by 
mbfast with the respe
tive windowfun
tions. When the window fun
tions are not available, as in the 
ase of Boomerang-98, weuse top-hat window fun
tions. The likelihood for a given 
osmologi
al model is then givenby

L = (CthB − CexB )MBB′(CthB′ − CexB′) (6.6)
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Figure 6.3: Two-dimensional likelihood plots from analysis of CMB data.where CthB (CexB ) is the theoreti
al (experimental) band power andMBB′ is the Gaussian 
ur-vature of the likelihood matrix at the peak. This expression is a generalization of Eq. (5.30,page 104) for the 
ase of 
orrelated experimental points. We 
onsider 10%, 4% and 4% Gaus-sian distributed 
alibration errors (in µK) for the BOOMERanG-98, DASI and MAXIMA-1experiments respe
tively. We also in
lude the COBE data using Lloyd Knox's RADPa
kpa
kage (RADPa
k Website, 2001).In order to show the e�e
t of the in
lusion of ωrel on the estimation of the other parameters,we plot likelihood 
ontours in the ωrel − ωm, ωrel − ωb, ωrel − ns planes. Pro
eeding as inMel
hiorri et al. (2000), we 
al
ulate a likelihood 
ontour in those planes by maximizingthe other parameters as explained in � 5.1.5. In Fig. 6.3 we plot the likelihood 
ontoursfor ωrel vs ωm, ωb and ns. As 
an be seen, ωrel is very weakly 
onstrained to be in therange 1 ≤ ωrel/ωrel(∆N = 0) ≤ 1.9 at 1σ l.
. in all plots1. The degenera
y between ωreland ωm is evident in the left panel of Fig. 6.3. In
reasing ωrel shifts the epo
h of matter-radiation equality and this 
an be 
ompensated only by a 
orresponding in
rease in ωm. It isinteresting to note that even if we are restri
ting our analysis to �at models, the degenera
yis still present and that the bounds on ωm are strongly a�e
ted. We �nd ωm = 0.2 ± 0.1, tobe 
ompared with ωm = 0.13± 0.04 when ∆N is kept to zero. It is important to realize thatthese bounds on ωrel appear be
ause of our prior on h and be
ause we 
onsider �at models.When one allows h and Ωm to be free parameters, then the degenera
y is almost 
ompleteand there are no bounds on ωrel.In the 
entral and right panel of Fig. 6.3 we plot the likelihood 
ontours for ωb and ns. Aswe 
an see, these parameters are not strongly a�e
ted by the in
lusion of ωrel. The boundon ωb, in parti
ular, is 
ompletely una�e
ted by ωrel. There is however, a small 
orrelationbetween ωrel and ns: the boost of the �rst peak indu
ed by the ISW e�e
t 
an be 
ompensated(at least up to the third peak) by a small 
hange in ns (right panel).Sin
e the degenera
y is mainly in zeq, it is useful to estimate the 
onstraints we 
an puton this variable. In Fig. 6.4 we plot the likelihood 
urve on zeq alone obtained by maximizingover all other parameters. By integration of this probability distribution fun
tion we obtain
zeq = 3100+600

−400 at 68% l.
. (6.7)1Here as in the following, the abbreviation �l.
.� stands for �likelihood 
ontent�, in the Bayesian senseexplained in � 5.1.5.
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Figure 6.4: Likelihood probability distribution fun
tion for the redshift of equality.Adding other data-setsIt is interesting to investigate how well the 
onstraints from CMB-independent data-sets
an break the degenera
y between ωrel and ωm. The supernovae luminosity distan
e is veryweakly dependent on ωrel � see however Zentner & Walker (2002) � and the bounds obtainedon Ωm 
an be used to break the CMB degenera
y. In
luding the SN-Ia 
onstraints on the
Ωm − ΩΛ plane, 0.8Ωm − 0.6ΩΛ = −0.2 ± 0.1 (Perlmutter et al., 1999), we �nd

ωrel/ωrel(∆N = 0) = 1.120.35
−0.42 at 2σ% l.
. (6.8)It is also worth in
luding 
onstraints from galaxy 
lustering and lo
al 
luster abundan
es.The degenera
y between ωm and ωrel in the CMB 
annot be broken trivially by in
lusion oflarge-s
ale stru
ture (LSS) data, be
ause a similar degenera
y a�e
ts the LSS data as well(Hu et al., 1999). However, the geometri
al degenera
y is lifted in the matter power spe
trum,and a

urate measurements of galaxy 
lustering at very large s
ales 
an distinguish betweenvarious models. This is exempli�ed in the right panel of Fig. 6.2, where we plot three matterpower spe
tra with the same 
osmologi
al parameters as in the top panel, together with thede
orrelated matter power spe
trum obtained from the PSCz survey.The shape of the matter power spe
trum in the linear regime for galaxy 
lustering 
an be
hara
terized by the shape parameter

Γ ∼ Ωmh√
1 + 0.135∆N

e−(Ωb(1+
√

2h/Ωm)−0.06) . (6.9)From the observed data one has roughly (Bond & Ja�e, 1999) 0.15 ≤ Γ + (ns − 1)/2 ≤ 0.3.The in
lusion of this (
onservative) value on Γ gives
ωrel/ωrel(∆N = 0) = 1.400.49

−0.56 at 2σ% l.
. (6.10)a bound whi
h is less less restri
tive than the one obtained using the SN-Ia prior.A better 
onstraint 
an be obtained by in
luding a prior on the varian
e of matter per-turbations over a sphere of size 8h−1 Mp
, derived from 
luster abundan
e observations.Comparing with σ8 = (0.55 ± 0.05)Ω−0.47
m , we obtain

ωrel/ωrel(∆N = 0) = 1.270.35
−0.43 at 2σ% l.
. (6.11)
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ωrel/ωrel(∆N = 0) NeffCMB only 1.50+0.90

−0.90 0.04 . . . 13.37CMB + SN-Ia 1.12+0.35
−0.42 0.78 . . . 6.48CMB + PSCz 1.40+0.49
−0.56 1.81 . . . 9.59CMB + σ8 1.27+0.35
−0.43 1.82 . . . 7.59Table 6.1: Data analysis results: 2σ likelihood intervals on the e�e
tive energy density of rel-ativisti
 parti
les, ωrel/ωrel(∆N = 0), and on the 
orresponding e�e
tive number of neutrinospe
ies, Neff , for di�erent data set 
ombinations. Note that the bounds obtained with CMBdata only mainly re�e
t the priors used in the analysis.Our results are summarized in Table 6.1. Combination of present day CMB data withSN and with LSS data yields a lower bound Neff > 0.8 and > 1.8, respe
tively, with 2σlikelihood 
ontent. Our result is in good agreement with the analysis of Hannestad (2001),whi
h 
onsidered similar data sets. It is worth emphasizing the fa
t that Neff = 0 is ex
ludedat mu
h more than 2σ: this 
an be 
onsidered as a strong 
osmologi
al eviden
e of thepresen
e of a neutrino ba
kground, as predi
ted by the Standard Model. The upper boundsfor the 
ombined sets 
an be expressed as Neff < 6.5 for CMB+SN and Neff < 9.6 forCMB+LSS, at 2σ l.
.6.1.5 Fisher matrix fore
astIn this se
tion we perform a Fisher matrix analysis with the te
hnique explained is � 5.2 inorder to estimate the pre
ision with whi
h forth
oming satellite experiments will be able to
onstrain the parameter zeq.Table 6.2 summarizes the experimental parameters for WMAP and Plan
k employed inthe analysis, whi
h 
onsiders temperature information only. For both experiment we takea sky 
overage fsky = 0.50. These values are indi
ative of the expe
ted performan
e of theexperimental apparatus, but the a
tual values may be somewhat di�erent, espe
ially for thePlan
k satellite.As base parameters for the Fisher matrix analysis, we use the following nine dimensionalparameter set:

θ =
{

ωb, ωc, ωΛ,Rshift, zeq, ns, nt, r,Q} . (6.12)Here ns, nt are the s
alar and tensor spe
tral indi
es respe
tively and r ≡ CT2 /C
S
2 is the tensorto s
alar ratio at the quadrupole. We adopt a phenomenologi
al normalization parameter,given by

Q ≡
(

ℓmax
∑

ℓ=2

ℓ(ℓ+ 1)Cℓ

)1/2

, (6.13)so that Q e�e
tively measures the mean power seen by the experiment. The shift parameter
Rshift, in
luding the radiation 
ontent as in Eq. (6.5) takes into a

ount the geometri
aldegenera
y. Our purely adiabati
 referen
e model has parameters: ωb = 0.0200 (Ωb =

0.0473), ωc = 0.1067 (Ωc = 0.2527), ωΛ = 0.2957 (ΩΛ = 0.7000), (h = 0.65), Rshift = 0.953,
zeq = 3045, ns = 1.00, nt = 0.00 , r = 0.10, Q = 1.00. This is a �du
ial, 
on
ordan
e model,whi
h we believe to be in good agreement with most re
ent determinations of the 
osmologi
al
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k
ν (GHz) 40 60 90 100 150 220 350

θc (degrees) 0.46 0.35 0.21 0.18 0.13 0.09 0.08

σc/10
−6 6.6 12.1 25.5 1.7 2.0 4.3 14.4

w−1
c /10−15 2.9 5.4 6.8 0.028 0.022 0.047 0.44

ℓc 289 385 642 757 1012 1472 1619

ℓmax 1500 2000Table 6.2: Experimental parameters used in the Fisher matrix analysis for WMAP (�rst 3
hannels) and Plan
k (last 4 
hannels).parameters (�at universe, s
ale invariant spe
tral index, BBN 
ompatible baryon 
ontent,large 
osmologi
al 
onstant). Furthermore, we allow for a modest, 10% tensor 
ontributionat the quadrupole in order to be able to in
lude tensor modes in the Fisher matrix analysis.We plot the derivatives of Cℓ with respe
t to the di�erent parameters in Fig. 6.5. Generally,we note that derivatives with respe
t to the 
ombination of parameters des
ribing the matter
ontent of the universe (ωb and ωc, Rshift, zeq) are large in the a
ousti
 peaks region, ℓ > 100,while derivatives with respe
t to parameters des
ribing the tensor 
ontribution (nt, r) areimportant in the large angular s
ale region. Sin
e measurements in this region are 
osmi
varian
e limited, we expe
t un
ertainties in the latter set of parameters to be large regardlessof the details of the experiment. The 
urve for ∂Cℓ/∂Q is of 
ourse identi
al to the Cℓ'sthemselves. The 
osmologi
al 
onstant is a notable ex
eption: variation in the value of ωΛkeeping all other parameters �xed produ
es a perfe
t degenera
y in the a
ousti
 peaks region.Therefore we expe
t the derivative ∂Cℓ/∂ωΛ to be zero in this region. Small numeri
al errorsin the 
omputation of the spe
tra, however, arti�
ially spoil this degenera
y, erroneouslyleading to smaller predi
ted un
ertainties. In order to suppress this e�e
t, we set ∂Cℓ/∂ωΛ =

0 for ℓ > 200. From Eq. (5.76, page 117) we see that a large absolute value of ∂Cℓ/∂θileads to a large Fii and therefore to a smaller 1σ error (roughly negle
ting non-diagonal
ontributions). If the derivative along θi 
an be approximated as a linear 
ombination of theothers, however, then the 
orresponding dire
tions in parameter spa
e will be degenerate, andthe expe
ted error will be important. This is the 
ase for mild, featureless derivatives su
has ∂Cℓ/∂r, while strongly varying derivatives (su
h as ∂Cℓ/∂Rshift) indu
e smaller errors inthe determination of the 
orresponding parameter. Therefore the 
hoi
e of the parameter setis very important in order to 
orre
tly predi
t the standard errors of the experiment.Error fore
astThe quantity ǫi ≡ 1/
√
λi, where λi is the i-th eigenvalue of the Fisher matrix, is sometimesused as a rough indi
ation of the resolving power of an experiment. It expresses the a

u-ra
y with whi
h the i-th eigenve
tor of the Fisher matrix 
an be determined. The prin
ipal
omponents des
ribe to a good approximation whi
h linear 
ombinations of the 
osmologi
alparameters 
an be dire
tly measured with the CMB. In fa
t, they represent linear approxi-mations to the orthogonal normal parameters introdu
ed in � 4.2. For WMAP (Plan
k) thenumber of eigenve
tors with ǫi < 10−3 is 1 out of 9 (3 out of 9) and with ǫi < 10−2 is 3/9(6/9).
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kRedshift of equality δzeq/zeq 0.23 0.02Relativisti
 energy δωrel/ωrel 0.43 0.03E�e
tive ν families ∆Neff 3.17 0.24Baryons density δωb/ωb 0.12 < 0.01CDM density δωc/ωc 0.50 0.04Cosmologi
al 
onstant δωΛ/ωΛ 3.40 1.71Shift parameter δRshift < 0.01 < 0.01S
alar spe
tral index δns 0.15 0.01Tensor spe
tral index δnt 1.96 1.08S
alar-to-tensor ratio δr/r 5.22 2.67Normalization δQ 0.01 < 0.01Table 6.3: Fisher matrix analysis results: expe
ted 1σ errors for the WMAP and Plan
ksatellites. See the text for details and dis
ussion.Table 6.3 shows the results of our analysis for the expe
ted 1σ error on the physi
alparameters. Determination of the redshift of equality 
an be a
hieved by WMAP with
23% a

ura
y, while Plan
k will pinpoint it down to within 2% relative error. From ωrel =

(ωb+ωc)/zeq it follows that the energy density of relativisti
 parti
les, ωrel, will be determinedwithin 43% by WMAP and 3% by Plan
k. This translates into an impossibility for WMAPalone of measuring the e�e
tive number of relativisti
 spe
ies (∆Neff ≈ 3.17 at 1σ), whilePlan
k will be able to tra
k it down to ∆Neff ≈ 0.24. As for the other parameters, while thea
ousti
 peak' positions (through the value of Rshift) and the matter 
ontent of the universe
an be determined by Plan
k with high a

ura
y (of the order of or less than one per
ent),the 
osmologi
al 
onstant remains (with CMB data only) almost undetermined, be
ause ofthe e�e
t of the geometri
al degenera
y. One 
ould also see this as a 
onsequen
e of aninappropriate parameterization of the problem: we should in fa
t use the parameters whi
hthe physi
s of the CMB measures best, i.e. the prin
ipal 
omponents. The s
alar spe
tralindex ns and the overall normalization will be well 
onstrained already by WMAP (within
15% and 1%, respe
tively), while be
ause of the reasons explained above the tensor spe
tralindex nt and the tensor 
ontribution r will remain largely un
onstrained by both experiments.Generally, an improvement of a fa
tor ten is to be expe
ted between WMAP and Plan
k inthe determination of most 
osmologi
al parameters.Our analysis 
onsiders temperature information only. In
lusion of polarization measure-ments would tighten errors, espe
ially for the �primordial� parameters ns, nt and r (Zal-darriaga et al., 1997; Bu
her et al., 2001). This is espe
ially important for a WMAP-typeexperiment, sin
e a pre
ise determination of ns and an higher a

ura
y in ωm would greatlyimprove the pre
ision on Neff whi
h 
an be obtained with temperature only. By the timePlan
k will obtain his �rst results, polarization measurements will hopefully have been per-formed. Combination of polarization information with the WMAP temperature data wouldthen 
onsiderably improve the pre
ision of the extra
ted parameter values.A Fisher matrix analysis for ∆Neff was previously performed by Lopez et al. (1999)and repeated by Kinney & Riotto (1999) with the equivalent 
hemi
al potential ξ, ∆N =

15/7(2(ξ/π)2 + (ξ/π)4), and a strong degenera
y was found between Neff , h and ΩΛ, and to
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y really is between ωrel, ωm and
ns, and the degenera
y previously observed is thus explained be
ause they 
onsidered �atmodels, where a 
hange in ΩΛ is equivalent to a 
hange in ωm, ωm = (1 − ΩΛ − Ωb)h

2. Theresults regarding how pre
isely the future satellite missions 
an extra
t the relativisti
 en-ergy density, 
an be translated into approximately ∆Neff = 3.17 (ξ = 2.4) and ∆Neff = 0.24(ξ = 0.73) for WMAP and Plan
k respe
tively. However, in
luding neutrino os
illation leadsto equilibration of the di�erent 
hemi
al potentials, and hen
e BBN leads to the strongerbound |ξ| < 0.07 for all neutrino spe
ies (Dolgov et al., 2002).Comparison with WMAP data analysisAfter the release of the WMAP �rst year observations, several groups have independently
arried out an analysis similar to the one presented above (Crotty et al., 2003b; Hannestad,2003; Pierpaoli, 2003). Unfortunately, none of these works in
ludes tensor modes as in ourfore
asts, and one has to keep in mind that the FMA assumed temperature information onlyand experimental parameters as appropriate for the original mission spe
i�
ations, whi
hmay be slightly di�erent from the e�e
tive parameters for the �rst year only. Despite the fa
tthat the details of the data in
luded and the prior assumptions vary for ea
h work, the overallagreement of their �ndings with our fore
asts for WMAP is nonetheless very satisfa
tory. Webrie�y review their 
on
lusions and 
ompare them with the above predi
tions.In Crotty et al. (2003b) the 1σ error on Neff is found to be ∆Neff = 3.4 using WMAP dataonly (but in
luding the TE-spe
trum) and a weak top-hat prior on the Hubble parameter,
0.5 < h < 0.9, with the analysis limited to �at models only. This result has to be 
ontrastedwith the predi
tion above, whi
h for the full WMAP data gives (at 1σ) ∆Neff = 3.17. Aspredi
ted, the WMAP observations improve dramati
ally on the bounds for Neff from CMBonly, whi
h be
ome with the above assumptions −2.1 < ∆Neff < 6.9 (at 2σ likelihood
ontent).These �ndings are in good 
on
ordan
e with the more general set-up of Pierpaoli (2003),where 
urved models are 
onsidered as well, the CBI data are used together with the WMAPobservations and 
onstraints from the 2dF matter power spe
trum are also in
luded. In this
ase the results do not 
ompare dire
tly with our predi
tions be
ause of the in
lusion ofexternal 
onstraints in the form of the matter power spe
trum. The 95% likelihood intervalis then tighter be
ause of the more powerful observational data used, giving (without Hubbleprior) ∆Neff = 5.5.The quite 
omplete investigation of Hannestad (2003) also derives 
onstraints on theneutrino masses, and 
onsiders the e�e
ts of the in
lusion of further observational 
onstraints,su
h as a prior on the Hubble parameter, a prior on Ωm from supernovæ data, a BBN prioron ωb and the 2dF matter power spe
trum. Where 
omparable, the �ndings are entirely
ompatible with the other two works; in parti
ular, for the 
ase of massless neutrinos andWMAP data only, the 95% likelihood interval for �at models only and a weak top-hat prior
0.5 ≤ h ≤ 0.85 is ∆Neff = 8.9.
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Figure 6.5: Derivatives of Cℓ with respe
t to the 9 parameters evaluated at the referen
emodel des
ribed in the text. The numeri
al prefa
tor indi
ates that the 
orresponding 
urvehas been res
aled: thus 0.1ωb means that the displayed 
urve is 0.1 ·∂Cℓ/∂ωb. The derivative
∂Cℓ/∂ωΛ has been set to 0 for ℓ > 200 in order to suppress the e�e
t of numeri
al errors,thus taking into a

ount the geometri
al degenera
y.
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tionThis se
tion is based on the work Trotta & Hansen (2004), where the �rst determinationof the helium abundan
e from CMB data alone was presented. After giving the motivationunderlying this investigation in � 6.2.1, we dis
uss in � 6.2.2 the role of the helium massfra
tion for CMB anisotropies, and in parti
ular the details of the ionization history of theUniverse whi
h are relevant for 
onstraining the helium abundan
e with the CMB. We thenreview the standard Big-Bang Nu
leosynthesis s
enario for the abundan
e of light elementsand 
ompare its predi
tions with 
urrent astrophysi
al measurements in � 6.2.3; the present
onstraints from CMB data are presented in � 6.2.4, while the future potential of using theCMB as an independent way of determining the helium abundan
e is elu
idated in � 6.2.5.There we also explore the impa
t of helium for future a

urate determination of the baryonabundan
e.6.2.1 MotivationOur understanding of the baryon abundan
e has in
reased dramati
ally over the last fewyears, 
oming from two independent paths, namely BBN and CMB. Absorption featuresfrom high-redshift quasars allow us to measure pre
isely the deuterium abundan
e, D/H,whi
h 
ombined with BBN 
al
ulations provides a reliable estimate of the baryon to photonratio,
η10 ≡ nb

nγ
1010 . (6.14)An independent determination of the baryon 
ontent of the universe from CMB anisotropies
omes from the in
reasingly pre
ise measurements of the a
ousti
 peaks, via the 
hara
ter-isti
 signature of the photon-baryon �uid os
illations dis
ussed in � 4.1.2.2. The agreementbetween these two 
ompletely di�erent approa
hes is both remarkable and impressive (seedetails below). The time is therefore ripe to pro
eed and test the agreement between otherlight elements whi
h are also probed both by BBN and CMB.Helium being the most abundant of the light elements, it is natural to fo
us on this elementby exploring the dependen
y of CMB anisotropies on the value of the primordial helium massfra
tion Yp, de�ned as

Yp ≡ 4
nHe
nb

, (6.15)where nHe and nb denote the number densities of 4He atoms and baryons, respe
tively. If wedenote by nN and nP the number densities of neutrons and protons, respe
tively, and assumethat all neutrons are in He nu
lei, then a simple 
ounting argument gives the estimate
Yp =

2nN/nP
1 + nN/nP

≈ 0.25 , (6.16)where the numeri
al value 
omes from a rough approximation to the freeze-out value of theneutron to proton ratio nN/nP ≈ 1/7, see e.g. Kolb & Turner (1990). The detailed value of
Yp is predi
ted by BBN as a fun
tion of two parameters only, the baryon abundan
e and thenumber of relativisti
 degrees of freedom at BBN (Fields & Sarkar, 2004).The hope is that the CMB observations might provide an independent measurement of
Yp, a

urate enough to help 
larify the present-day dis
repan
ies between dire
t observations



6.2 The primordial helium fra
tion 137of the helium fra
tion derived from astrophysi
al systems, whose errors are seemingly domi-nated by systemati
s whi
h are hard to assess. The latest CMB data are pre
ise enough toallow taking this further step, and in view of the emerging �baryon tension� between BBNpredi
tions from observations of di�erent light elements (Cyburt et al., 2003) possibly requirestaking su
h a step. The advantage of using CMB anisotropies rather than the traditionalastrophysi
al measurements, is that the CMB provides a 
lear measurement of the primordialhelium fra
tion before it 
ould be 
hanged by any astrophysi
al pro
ess. On the other handthe dependen
e of the CMB power spe
trum on the primordial helium fra
tion is rather mild,a fa
t whi
h makes it presently safe to set the helium mass fra
tion to a 
onstant for thepurpose of CMB data analysis of other 
osmologi
al parameters, but will have an impa
t onthe baryon abundan
e determination from Plan
k quality data, as we show in � 6.2.5.6.2.2 The impa
t of helium on the CMB: ionization history revisitedWe now resume our dis
ussion of the re
ombination epo
h and reionization history of theUniverse sket
hed in � 4.1.3, and fo
us on the role of the helium mass fra
tion, 
onsidered hereas a free parameter. In a se
ond step, the aim will be to 
ombine the CMB results with theBBN predi
tions and 
ompare the result with the independent astrophysi
al determinationsof the light elements abundan
e. We thus have at our disposal three di�erent tools, ea
h ofwhi
h probes the same quantities at three vastly di�erent epo
hs of the 
osmi
 history. Itis important to stress that a good agreement among the three is by no means trivial, andthat testing their 
on
ordan
e is a powerful way to 
he
k the 
onsisten
y of the standard
osmologi
al s
enario. On the other hand, signi�
ant dis
repan
ies would ne
essary implythe need for new physi
s.The re
ent WMAP data allow us to determine with very high pre
ision the epo
h of pho-ton de
oupling, zdec, i.e. the epo
h at whi
h the ionized ele
tron fra
tion, xe(z) = ne/nH ,has dropped from 1 to its residual value of order 10−4. Here ne denotes the number densityof free ele
trons, while nH is the total number density of H atoms (both ionized and re
om-bined). The redshift of de
oupling has been determined to be zdec = 1088+1
−2 (Spergel et al.,2003), whi
h 
orresponds to a temperature of about 0.25 eV. Helium re
ombines earlier thanhydrogen, roughly in two steps: around redshift z = 6000 HeIII re
ombines to HeII, whileHeII to HeI re
ombination begins around z < 2500 and �nishes just after the start of Hre
ombination (Libarskii & Sunyaev, 1983; Hu et al., 1995; Seager et al., 1999, 2000).The baryon number density per m3 nb(z) is related to the baryon energy density today,

ωb, by
nb = 11.3(1 + z)3ωb (6.17)and we have nH = nb(1 − Yp). Usually, the ionization history is des
ribed in terms of

xe(z) = ne/(nb(1 − Yp)). However, for the purpose of dis
ussing the role of Yp, it is more
onvenient to 
onsider the quantity
fe(z) ≡ ne/nb (6.18)instead, the ratio of free ele
trons to the total number of baryons. For brevity, we will 
all

fe the free ele
tron fra
tion. On
e the baryon number density has been set by �xing ωb,one 
an think of Yp as an additional parameter whi
h 
ontrols the number of free ele
trons
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Figure 6.6: Evolution of the number density of ele
trons normalized to the number densityof baryons, fe = ne/nb, as a fun
tion of redshift for di�erent values of the helium fra
tion
Yp. The bla
k-solid 
urve 
orresponds to the standard value Yp = 0.24. The labels (a) to (d)indi
ate the four di�erent phases dis
ussed in the text.available in the tight 
oupling regime. The CMB power spe
trum depends on the full detailedevolution of the free ele
tron fra
tion, but we 
an qualitatively des
ribe the role of helium infour di�erent phases of the ionization/re
ombination history, displayed in Fig. 6.6.(a) Before HeIII re
ombination, all ele
trons are free, therefore fe(z > 6000) = 1 − Yp/2.(b) HeII progressively re
ombines and just before H re
ombination begins, fe has droppedto the value fe(z ≈ 1100) = 1 − Yp.(
) After de
oupling, a residual fra
tion of free ele
trons freezes out, giving fe(30<∼ z <∼ 800) =

f rese ≈ 2.7 · 10−5√ωm/ωb.(d) Reionization of all the H atoms gives fe(z <∼ 20) = 1 − Yp.During phase (a), the photon-baryons �uid is in the tight 
oupling regime. Howeverthe presen
e of ionized He in
reases di�usion damping, therefore having an impa
t on thedamping s
ale in the a
ousti
 peaks region: the di�usion damping length (3.120, page 66)in
luding helium 
an be approximated as (Hu & Sugiyama, 1995a)
λ2D ≈ 1.7 × 107

(

1 − Yp
2

)−1

ω−1
b ω−1/2

m a5/2 1

3
√

aeq/a+ 2
Mp
2 . (6.19)As expe
ted, a larger helium fra
tion implies an in
reased damping length, and thus an extrapower suppression on small s
ales.
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tion 139When the detailed energy level stru
ture of HeII is taken into a

ount (Seager et al., 2000),the transition to phase (b) is smoother than in the Saha equation approximation. Thereforethe plateau with fe = 1 − Yp is not visible in Fig. 6.6. Before H re
ombination, He atomsremain tightly 
oupled to H atoms through 
ollisions, with the same dynami
al behavior. Inparti
ular, it is the total ωb whi
h determines the amount of gravitational pressure on thephoton-baryons �uid, and whi
h sets the a
ousti
 peak enhan
ement/suppression, see � 4.1.2.Hen
e we do not expe
t the value of Yp to have any in�uen
e on the boosting (suppression)of odd (even) peaks. The redshift of de
oupling (transition between (b) and (
)) dependsmildly on Yp in a 
orrelated way with ωb, sin
e the number density of free ele
trons in thetight 
oupling regime (just before H re
ombination) s
ales as ne = fenb = nb(1− Yp). Hen
ean in
rease in ωb 
an be 
ompensated by allowing for a larger helium fra
tion. An analyti
alestimate along the same lines as in e.g. Kolb & Turner (1990) indi
ates that a 10% 
hange in
Yp a�e
ts zde
 by roughly 0.1%, whi
h 
orresponds to ∆zde
 ≈ 1. This is of the same orderas the 
urrent 1σ errors on zde
, obtained by �xing Yp = 0.24.After H re
ombination, the residual ionized ele
tron fra
tion f rese does not depend on Yp,but is inversely proportional to the total baryon density (phase (
)). As the CMB photonspropagate, they are o

asionally res
attered by the residual free ele
trons. The 
orrespondingopti
al depth, τ res is given by

τ res =

∫ tde

t0

nrese cσTdt
≈ 1.86 · 10−6

√

Ωm

∫ zde

0

(1 + z)2

[(1 + z)3 + ΩΛ/Ωm]1/2
dz .

(6.20)Performing the integral we 
an safely negle
t the 
ontribution of the 
osmologi
al 
onstantat small redshift, sin
e zde
 ≫ ΩΛ/Ωm. Retaining only the leading term, the approximatedopti
al depth from the residual ionization fra
tion is estimated to be
τ res ≈ 1.24 · 10−6(1 + zde
)3/2 ≈ 0.045, (6.21)independent of the 
osmologi
al parameters and of the helium fra
tion. Therefore after lasts
attering we do not expe
t any signi�
ant e�e
t on CMB anisotropies 
oming from theprimordial helium fra
tion, until the reionization epo
h, phase (d).As pointed out in � 4.1.3.2, CMB anisotropies are sensitive only to the integrated reionizedfra
tion if temperature information only is available, while spe
i�
 signatures are imprintedon the E-polarization and ET-
ross 
orrelation power spe
tra by the detailed shape of thereionization history. There are several physi
ally motivated reionization s
enarios, whi
h how-ever 
annot be 
learly distinguished at present (Haiman & Holder, 2003; Hansen & Haiman,2004). Therefore at the present level of a

ura
y it is safe for our purpose to assume an abruptreionization, i.e. that at the reionization redshift zre all the hydrogen was qui
kly reionized,thus produ
ing a sharp rise of ne from its residual value to nH . More pre
isely, zre is theredshift at whi
h xe(zre) = 0.5. In our treatment we negle
t HeII reionization, for whi
h thereis eviden
e at a redshift z ≈ 3 (see Theuns et al., 2002 and referen
es therein). This e�e
t issmall, sin
e one extra ele
tron released at z ≈ 3 would 
hange the reionization opti
al depthonly by about 1%. The e�e
t of HeIII reionization, whi
h happens still later, is even smaller.We also negle
t the in
rease of the helium fra
tion due to non-primordial helium produ
tion,
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Figure 6.7: CMB temperature (left panel) and polarization (right panel) power spe
tra andper
entage 
hange (bottom panels) for a 10% larger (smaller) value of the helium massfra
tion, Yp. The solid-bla
k line in the top panels 
orresponds to a standard ΛCDM model,with Yp = 0.24. The impa
t is at the per
ent level, and is almost indistinguishable in thetop panels. All other parameters are �xed to the value of our �du
ial model (Table 6.4), inparti
ular, we have τre = 0.166.whi
h has a negligible e�e
t on CMB anisotropies. Those approximations do not a�e
t theresults at today's level of sensitivity of CMB data: for WMAP noise levels, even in
lusion ofthe polarization spe
tra is not enough to distinguish between a sudden reionization s
enarioand a more 
omplex reionization history. At the level of Plan
k a more re�ned modelling ofthe reionization me
hanism will be ne
essary (Holder et al., 2003; Doroshkevi
h et al., 2003).In the sudden reionization s
enario adopted here, the relation between reionization redshiftand reionization opti
al depth, τre, is given by Eq. (4.38, page 87). On
e again, sin
e thenumber density of reionized ele
trons s
ales as ωb(1 − Yp), the redshift of reionization ispositively 
orrelated with Yp (for �xed opti
al depth and baryon density).As a result of the physi
al me
hanism des
ribed above, a 10% 
hange in Yp has a net impa
ton the CMB power spe
trum at the per
ent level. The impa
t on the CMB temperature andpolarization power spe
tra is highlighted in Fig. 6.7. In the temperature panel, we noti
ethat a larger helium fra
tion slightly suppresses the peaks be
ause of di�usion damping,while it has no impa
t on large s
ales. Polarization is indu
ed by the temperature quadrupole
omponent at last s
attering and the reionization bump indu
ed in the polarization spe
trum(see � 4.1.3.2) is 
learly visible in the polarization panel of Fig. 6.7 in the ℓ ≈ 15 region. A
hange in the helium fra
tion implies a shift of the redshift of reionization for a given (�xed)opti
al depth, and a 
onsequent shift of the position of the reionization bump via Eq. (4.41,page 87). The value of Yp does not a�e
t the height of the bump, whi
h is 
ontrolled by theopti
al depth and is proportional to τ2. This e�e
t is highlighted in the polarization panel ofFig. 6.7: a 10% 
hange in Yp indu
es roughly a 10% 
hange in the position of the bump. The
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tion 141subsequent two os
illatory features for ℓ<∼ 50 re�e
t the displa
ement of further se
ondaryreionization indu
ed polarization os
illations. However, sin
e the value of polarized power isvery low in that region, su
h se
ondary os
illations are very hard to dete
t pre
isely.In prin
iple, given an a

urate knowledge of the reionization history, the e�e
t of Yp onthe polarization bump would assist in the determination of the helium abundan
e. However,our ignoran
e of the reionization history prevents us from re
overing useful information outof the measured reionization bump. The displa
ement indu
ed by Yp is in fa
t degeneratewith a partial reionization, or with other, more 
omplex reionization me
hanisms. Hen
e
onstraints on Yp 
ome e�e
tively from the damping tail in the ℓ>∼ 400 region of the temper-ature spe
trum, whi
h needs to be measured with very high a

ura
y. Other light elementslike deuterium and helium-3 are mu
h less abundant, and will therefore have even smallere�e
t on the CMB power spe
trum, at the order of 10−5.6.2.3 Astrophysi
al measurements and BBN predi
tionsOn
e we �x the number of relativisti
 degrees of freedom by spe
ifying the number of masslessneutrino families, the standard model of Big-Bang Nu
leosynthesis (BBN) has only one freeparameter, namely the baryon to photon ratio η10 de�ned in (1.47, page 19), whi
h for longhas been known to be in the range 1 − 10 (Kolb & Turner, 1990). Thus by observing justone primordial light element one 
an predi
t the abundan
es of all the other light elements.Astrophysi
al measurementsThe deuterium to hydrogen abundan
e, D/H, is observed by Ly-α features in several quasarabsorption systems at high redshift, D/H = 2.78+0.44
−0.38 × 10−5 (Kirkman et al., 2003), whi
hin BBN translates into the baryon abundan
e, η10 = 5.9± 0.5. Using BBN one thus predi
tsthe helium mass fra
tion to be in the range 0.2470 < Yp < 0.2487. The dispersion in variousdeuterium observations is, however, still rather large, ranging from D/H = 1.65 ± 0.35 ×

10−5 (Pettini & Bowen, 2001) to D/H = 3.98+0.59
−0.67×10−5 (Kirkman et al., 2003), whi
h mostprobably indi
ates underestimated systemati
 errors.The observed helium mass fra
tion 
omes from the study of extragala
ti
 HII regionsin blue 
ompa
t galaxies. A 
areful study by Izotov & Thuan (1998) gives the value YP =

0.244±0.002; however, also here there is a large s
atter in the various observed values, rangingfrom Yp = 0.230±0.003 (Olive et al., 1997) over Yp = 0.2384±0.0025 (Peimbert et al., 2002)and Yp = 0.2391±0.0020 (Luridiana et al., 2003) to Yp = 0.2452±0.0015 (Izotov et al., 1999).Besides the large s
atter there is also the problem that the helium mass fra
tion predi
tedfrom observations of deuterium 
ombined with BBN, 0.2470 < Yp < 0.2487, is larger than(and seems almost in disagreement with) most of the observed helium abundan
es, whi
hprobably points towards underestimated systemati
 errors, rather than the need for newphysi
s (Cyburt et al., 2003; Barger et al., 2003b). Figure 6.8 is a 
ompilation of the abovemeasurements, and o�ers a dire
t 
omparison with the 
urrent (large) errors from CMBobservations, presented in � 6.2.4, and with the potential of future CMB measurements,dis
ussed in � 6.2.5.The observed abundan
e of primordial 7Li using the Spite plateau is possibly spoiled byvarious systemati
 e�e
ts (Ryan et al., 2000; Salaris & Weiss, 2001). Therefore it is moreappropriate to use the BBN predi
tions together with observations to estimate the depletion
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Figure 6.8: In the top panel we plot a few 
urrent dire
t astrophysi
al measurements of thehelium mass fra
tion Yp as Gaussian likelihood 
urves with standard deviation 
orrespondingto the given 1σ (statisti
al) error (blue/dark gray 
urves, on the left of the diagram), and thevalue inferred from deuterium measurements 
ombined with BBN (yellow/light gray 
urve,on the far right), see the text for referen
es. In the bottom panel, a dire
t 
omparison withCMB present-day a

ura
y (a
tual CMB data, bla
k dashed line, this work; the 1σ likelihoodinterval is 0.16 < Yp < 0.50) and with its future potential (Fisher matrix fore
ast for Plan
k� green/light gray 
urve � and a Cosmi
 Varian
e Limited experiment � orange/dark gray
urve).fa
tor f7 = 7Liobs/7Liprim instead of using 7Liobs to infer the value of η10 (Burles et al., 2001;Hansen et al., 2002).The numeri
al predi
tions of standard BBN (as well as various non-standard s
enarios)have rea
hed a high level of a

ura
y (Lopez & Turner, 1999; Esposito et al., 2000a,b; Burleset al., 2001), and the pre
ision of these 
odes is well beyond the systemati
 errors dis
ussedabove.BBN and the need for new physi
sIf the CMB-determined helium mass fra
tion turns out to be as high as suggested by BBN
al
ulations together with the CMB observation of Ωbh
2 (as dis
ussed above), this 
ouldindi
ate a systemati
 error in the present dire
t astrophysi
al helium observations.Alternatively, if the CMB 
ould independently determine the helium value with su�
ientpre
ision to 
on�rm the present helium observations, then this would be a smoking gun fornew physi
s. In fa
t, one 
ould easily imagine non-standard BBN s
enarios whi
h wouldagree with present observations of η10, while having a low helium mass fra
tion. All whatis needed is additional non-equilibrium ele
tron neutrinos produ
ed at the time of neutrino
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oupling whi
h would alter the n− p rea
tion. This 
ould alter the resulting helium massfra
tion while leaving the deuterium abundan
e un
hanged. One su
h possibility would be aheavy sterile neutrino whose de
ay produ
ts in
lude νe. A sterile neutrino with life-time of
1 − 5 se
 and with de
ay 
hannel νs → νe + φ with φ a light s
alar (like a majoron), wouldleave the deuterium abundan
e roughly untou
hed, but 
an 
hange the helium mass fra
tionbetween ∆Yp = −0.025 and ∆Yp = 0.015 if the sterile neutrino mass is in the range 1 − 20MeV (Dolgov et al., 1999). A simpler model would be standard neutrino os
illation betweena sterile neutrino and the ele
tron neutrino. The lifetime is about 1 se
 when the sterile statehas mass about 10 MeV, and the de
ay 
hannel is νs → νe + l + l̄ (with l any light lepton),and su
h masses and life-times are still un
onstrained for large mixing angle (Dolgov et al.,2000). Related BBN issues are dis
ussed by Shi et al. (1999); Di Bari & Foot (2001); Kirilova(2003). Su
h possibilities are hard to 
onstrain without an independent measurement of thehelium mass fra
tion.Another mu
h studied e�e
t of neutrinos is the in
reased expansion rate of the universe ifadditional degrees of freedom are present (for BBN), and the degenera
y between the totaldensity in matter and relativisti
 parti
les (for CMB), whi
h is presented in detail in � 6.1.The more general set-up would then be to allow Ne� as a further free parameter both in theCMB and BBN analysis, but be
ause of the very weak dependen
e of the CMB on Yp thiswould spoil any hope of being able to 
onstrain the helium fra
tion with the CMB; thereforewe 
hoose to �x Ne� = 3.04.Also, an ele
tron neutrino 
hemi
al potential 
ould potentially alter the BBN predi
-tions (Kang & Steigman, 1992; Lesgourgues & Pastor, 1999), however, with the observedneutrino os
illation parameters the di�erent neutrino 
hemi
al potentials would equilibratebefore the onset of BBN (Dolgov et al., 2002; Wong, 2002; Abazajian et al., 2002), hen
evirtually ex
luding this possibility (see however Barger et al., 2003a).6.2.4 WMAP Monte Carlo analysisWe use a modi�ed version of the publi
ly available Markov Chain Monte Carlo pa
kage
osmom
 as des
ribed in Lewis & Bridle (2002) in order to 
onstru
t Markov 
hains (see� 5.1.7) in our seven dimensional parameter spa
e. We sample over the following set of
osmologi
al parameters: the physi
al baryon and CDM densities, ωb ≡ Ωbh

2 and ωc ≡ Ωch
2,the 
osmologi
al 
onstant in units of the 
riti
al density, ΩΛ, the s
alar spe
tral index andthe overall normalization of the adiabati
 power spe
trum, ns and As ≡ ζ2

0 , 
f. Eq. (4.6, page79), the redshift at whi
h the reionization fra
tion is a half, zre, and the primordial heliummass fra
tion, Yp. We restri
t our analysis to �at models, therefore the Hubble parameter isa derived parameter,
h = [(ωc + ωb)/(1 − ΩΛ)]1/2 . (6.22)We 
onsider purely adiabati
 initial 
onditions and three massless neutrino families for thereason given above. We do not 
onsider either gravitational waves or massive neutrinos. Wein
lude the WMAP data from Kogut et al. (2003); Hinshaw et al. (2003b) (temperature andpolarization) with the routine for 
omputing the likelihood supplied by the WMAP team(Verde et al., 2003). We make use of the CBI (Pearson et al., 2003) and of the de
orrelatedACBAR (Kuo et al., 2004) band powers above ℓ = 800 to 
over the small angular s
ale regionof the power spe
trum.
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Figure 6.9: One-dimensional posterior likelihood distribution for the helium mass fra
tion,
Yp, using CMB data only. The solid-bla
k line is for all other parameters marginalized, thedashed-red line gives the mean likelihood.Sin
e Yp is a rather �at dire
tion in parameter spa
e with present-day data, we �nd thata mu
h larger number of samples is needed in order to a
hieve good mixing and 
onvergen
eof the 
hains in the full 7D spa
e. We use M = 4 
hains, ea
h 
ontaining approximately
N = 3 · 105 samples. The mixing diagnosti
 is 
arried out along the same lines as in Verdeet al. (2003), by means of the Gelman and Rubin 
riterion (Gelman & Rubin, 1992b). Theburn-in of the 
hains also takes longer than in the 
ase where Yp is held �xed, and we dis
ard6000 samples per 
hain.ResultsMarginalizing over all other parameters, we �nd that the helium mass fra
tion from CMBalone is 
onstrained to be

Yp < 0.647 at 99% l.
. (1 tail limit) (6.23)and 0.160 <Yp < 0.501 at 68% l.
. (2 tails). (6.24)Thus, for the �rst time the primordial helium mass fra
tion has been observed using the
osmi
 mi
rowave ba
kground. However, present-day CMB data do not have by far su�
ientresolution to dis
riminate between the astrophysi
al helium measurements, Yp ∼ 0.244, andthe deuterium guided BBN predi
tions, Yp ∼ 0.248, whi
h would require per
ent pre
ision.In Fig. 6.9 we plot the marginalized and the mean likelihood of the Monte Carlo samplesas a fun
tion of Yp. If the likelihood distribution is Gaussian, then the 2 
urves should beindistinguishable. The di�eren
e between marginalized and mean likelihood for Yp indi
atesthat the marginalized parameters are skewing the distribution, and therefore that 
orrelations
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Figure 6.10: Joint 68% and 99% likelihood 
ontours in the (ωb, Yp)-plane from CMB dataalone. The solid-blue line gives the BBN predi
tion (Burles et al., 1999), whi
h on this �gurealmost looks like a straight line.play an important role. Although the mean of the 1D marginalized likelihood is ratherhigh, 〈L(Yp)〉 = 0.33, the mean likelihood peaks in the region indi
ated by astrophysi
almeasurements, Yp ∼ 0.25. In view of this di�eren
e, it is important to understand the roleof 
orrelations with other parameters, and we will turn to this issue now.In Fig. 6.10 we plot joint 68% and 99% 
on�den
e 
ontours in the (ωb, Yp)-spa
e. Fromthe Monte Carlo samples we obtain a small and negative 
orrelation 
oe�
ient between thetwo parameters, 
orr(Yp, ωb) = −0.14. Baryons and helium appear to be anti
orrelated sim-ply be
ause present-day WMAP data do not map the peaks stru
ture to su�
iently high ℓ.Pre
ise measurements in the small angular s
ale region should reveal the expe
ted positive
orrelation between the baryon and helium abundan
es, whi
h is potentially important in or-der to 
orre
tly 
ombine BBN predi
tions and CMB measurements of the baryon abundan
e.We turn to this question in more detail in the next se
tion. In BBN the baryon fra
tionand helium fra
tion are 
orrelated along a di�erent dire
tion, 
f. Fig. 6.10. However, this
orrelation is very weak, and the BBN relation gives pra
ti
ally a �at line. Sin
e the twoparameters are not independent from the CMB point of view, it is in fa
t not 
ompletelya

urate to perform the CMB analysis with �xed helium mass fra
tion of Yp = 0.24 to get theerror-bars on the baryon fra
tion, and then re-input this baryon fra
tion (and error-bars) topredi
t the helium mass fra
tion from BBN. The most a

urate pro
edure is to analyse theCMB data leaving Yp as a free parameter, thereby obtaining the 
orre
t (potentially larger)error-bars on ωb upon marginalization over Yp.In view of the emerging baryon tension between CMB and BBN, it is important to 
he
kwhether allowing helium as a free parameter 
an signi�
antly 
hange the CMB determination



146 Beyond standard parametersof the baryon density or its error. In order to evaluate in detail the impa
t of Yp on the error-bars for ωb, we 
onsider the following three 
ases.(a) The usual 
ase, when the helium fra
tion for the CMB analysis is assumed to be knowna priori and is �xed to the 
anoni
al value Yp = 0.24.(b) A 
ase with a weak astrophysi
al Gaussian prior on the helium fra
tion, whi
h wetake to be Yp = 0.24 ± 0.01. As dis
ussed above, the error-bars of the astrophysi
almeasurements are typi
ally a fa
tor 5 tighter than this, but our prior is 
hosen toen
ompass the systemati
 spread between the di�erent observations.(
) The 
ase in whi
h we assume a uniform prior for Yp in the range 0 ≤ Yp ≤ 1, i.e. Yp is
onsidered as a totally free parameter.We do not �nd any signi�
ant 
hange in the error-bars for ωb in the three di�erent 
ases.The 
on�den
e intervals on ωb alone are determined to be (
ase (
)) 0.0221 < ωb < 0.0245 at68% l.
. (0.0204 < ωb < 0.0276 at 99 % l.
.). The standard deviation of ωb as estimated fromthe Monte Carlo samples is found to be σ̂b = 1.3 · 10−3. This is in 
omplete agreement withthe error-bars on ωb obtained by the WMAP team for the standard ΛCDM 
ase (Spergelet al., 2003). We 
on
lude that at the level of pre
ision of present-day CMB data, it is stillsafe to treat the baryon abundan
e and the helium mass fra
tion as independent parameters.This result is non-trivial, sin
e the fa
t that the damping tail is not yet pre
isely measuredabove the se
ond peak would a priori suggest that degenera
ies between Yp, ωb and ns 
ouldpotentially play a role on
e the assumption of zero un
ertainty on Yp is relaxed. The impa
tof Yp is small enough, and the error-bars on ωb large enough that a uniform prior on Yp 
anstill be a

ommodated within the un
ertainty in the baryon abundan
e obtained for 
ase (a).However, the Yp−ωb 
orrelation will have to be taken into a

ount to 
orre
tly analyze futureCMB data, with a quality su
h as Plan
k. We dis
uss this potential in the next se
tion.We observe the expe
ted 
orrelation between the redshift of reionization and the heliumfra
tion (Fig. 6.11), whi
h is dis
ussed above. The 
orrelation 
oe�
ient between the twoparameters is found to be rather large and positive, 
orr(Yp, zre) = 0.40. This 
orrelationprodu
es a noti
eable 
hange in the marginalized 1D-likelihood distribution for zre as we gofrom 
ase (a) to 
ase (
). Marginalization over the additional degree of freedom given by
Yp broadens 
onsiderably the error-bars on zre. In fa
t, the 68% 
on�den
e interval for zrein
reases by roughly 20% (and shifts to somewhat higher values), from 10.2− 20.9 (
ase (a))to 10.6− 23.3 (
ase (
)). Case (b) exhibits similar error-bars as 
ase (a). On the other hand,the determination of the reionization opti
al depth is not a�e
ted by the in
lusion of heliumas a free parameter, giving in all 
ases 0.08 < τre < 0.23. Correspondingly, the 
orrelationis less signi�
ant, 
orr(Yp, τre) = −0.11. We therefore 
on
lude that the di�eren
es in thedetermination of zre are due only to the variation of the amount of ele
trons available forreionization as Yp is 
hanged.Leaving Yp as a free parameter also has an impa
t on the relation between ωb and thes
alar spe
tral index, ns. The extra power suppression on small s
ales whi
h is produ
ed bya larger Yp 
an be 
ompensated by a blue spe
tral index, 
f. Fig. 6.12.
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Figure 6.11: Joint 68% and 99% likelihood 
ontours in the (Yp, zre)-plane (upper panel)and in the 
orresponding (Yp, τre)-plane (bottom panel) from CMB data alone. In the upperpanel, the solid-red line is the relation zre(Yp) from Eq. (4.38, page 87), obtained by �xing thereionization opti
al depth to the value τre = 0.166, while the other parameters are those of our�du
ial ΛCDM model. Although 
learly the exa
t shape of zre(Yp) depends on the parti
ular
hoi
e of 
osmology, it is apparent that the Yp − zre degenera
y is along this dire
tion. The
orrelation between Yp − τre is almost negligible with present-day data (bottom panel).6.2.5 Potential of future CMB observationsIn order to estimate the pre
ision with whi
h future satellite CMB measurements will beable to 
onstrain the helium mass fra
tion we perform a Fisher matrix analysis along thelines presented in � 5.2. As already emphasized, in order to obtain a reliable predi
tion, it isextremely important to 
hoose a parameter set whose e�e
t on the CMB power spe
trum isas linear and un
orrelated as possible. Here we improve upon the 
hoi
e made in � 6.1.5 byadopting the full set of normal parameters introdu
ed in � 4.2. Our nine dimensional basisparameter set is then
θ = {A,B,V,R,M,T , As, ns, Yp} , (6.25)where the s
alar power spe
trum normalization 
onstant is As = ζ2

0 , see (4.6, page 79). Thequantities A,B,V,R,M,T are de�ned in Eqs. (4.43�4.47, page 90). It has been shown thatthe normal parameter set is very well adapted to the FMA, whi
h give a

urate predi
tions(Kosowsky et al., 2002). Sin
e here we are interested in the predi
tions for B = Ωbh
2 and Yp,we do not need to expli
itly map the FMA fore
asts in the normal parameter spa
e onto the
osmologi
al parameter spa
e.The 
hoi
e of the physi
al parameter set makes it easy to implement in the FMA interest-ing theoreti
al priors. For instan
e, we are interested in imposing �atness in our fore
ast, in
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Figure 6.12: S
atter plot in the ωb − ns plane, with the value of Yp rendered following the
olor s
ale. Green 
orresponds roughly to the BBN preferred value.order to be able to dire
tly 
ompare present-day a

ura
y on Yp with the potential of Plan
kand of and ideal CMB experiment (see below). The prior on the 
urvature of the universeis imposed in the FMA by �xing the value of the parameter A to the one of the �du
ialmodel. In fa
t, the parameter A is a generalization of the shift parameter, whi
h des
ribesthe sideways shift of the a
ousti
 peak stru
ture of the CMB power spe
trum as a fun
tion ofthe geometry of the universe and its 
ontent in matter, radiation and 
osmologi
al 
onstant.Although imposing A = 
onst is not the same as having a 
onstant spatial 
urvature overthe full range of 
osmologi
al parameters, for the purpose of evaluating derivatives the two
onditions redu
e to the same. The fa
t that our �du
ial model is a
tually slightly open(see below), does not make any substantial di�eren
e in the results, apart from redu
ing thenumeri
al ina

ura
ies whi
h would arise had we 
omputed the derivatives around an exa
tly�at model. We 
an also easily impose a prior knowledge of the helium fra
tion, by �xingthe value of Yp, as is usually the 
ase for present CMB analyses, and investigate how thismodi�es the expe
ted error on the the baryon density.A

ura
y issuesWe numeri
ally 
ompute double sided derivative of the power spe
trum around the �du
ialmodel with 
osmologi
al parameters given in Table 6.4. We �nd it ne
essary to in
reasethe a

ura
y of 
amb by a fa
tor of 3 in ea
h of the �a

ura
y boost� values. As a �du
ialmodel, we use the best �t model to the WMAP data for the standard ΛCDM s
enario, asgiven in Table 1 of Spergel et al. (2003). However, in order to avoid numeri
al ina

ura
ieswhi
h arise when di�erentiating around a �at model, we redu
e slightly the value of ΩΛ by
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tion 149Parameter ValueBaryons Ωb 0.046Matter Ωm 0.270Dark Energy ΩΛ 0.720Radiation Ωrad 7.95 · 10−5Massless ν families Nν 3.04Total density Ωtot 0.990Hubble 
onstant h 0.72Opti
al depth τre 0.166Spe
tral index ns 0.99Normalization As 2 · 10−9Table 6.4: Cosmologi
al parameters for the �du
ial ΛCDM model around whi
h the FMA isperformed. We 
hoose a slightly open model to avoid numeri
al ina

ura
ies in the derivatives.imposing an open universe, Ωtot = 0.99.We perform the FMA for the expe
ted 
apabilities of Plan
k's High Frequen
y Instru-ment (HFI) and for an ideal CMB measurement whi
h would be 
osmi
 varian
e limited(CVL) both in temperature and in E-polarization (and we do not 
onsider the B-polarizationspe
trum), and therefore represents the best possible parameter measurement from CMBanisotropies alone. The 
ompli
ated issues 
oming from foreground removals, point sour
esubtra
tion, et
. are assumed to be already (roughly) taken into a

ount by the experi-mental parameters, see � 5.2.1 for de�nitions. These are the e�e
tive per
entage sky 
ov-erage fsky, the number of 
hannels, the sensitivity of ea
h 
hannel σT,Ec for temperature(T) and E-polarization (E) in µK and the angular resolution θT,Ec (in ar
min). For Plan
kHFI, we take the three 
hannels with frequen
ies 100, 143 and 217 GHz, with respe
tively
σTc=1,2,3 = 5.4, 6.0, 13.1 and σEc=2,3 = 11.4, 26.7 and we have fsky = 0.85 (Plan
k Website,2004) Sin
e the CVL is an ideal experiment, we put its noise to zero and assume perfe
tforegrounds removal, so that fsky = 1. In order to test the a

ura
y of our predi
tionsand 
ompare present-day results with the fore
asts, we also perform an FMA with WMAP�rst year parameters, obtaining ex
ellent agreement between the FMA results and the error-bars from a
tual data. For the purpose of 
omparison, we in
lude fore
asts for the fullWMAP four year mission, whi
h will also measure E-polarization and redu
e present-dayerrors on the temperature spe
trum by a fa
tor of two. We limit the range of multipolesto ℓ < 2000, be
ause at smaller angular s
ales non-primary anisotropies begin to dominate(Sunyaev-Zeldovi
h e�e
t). Seljak et al. (2003b) dis
uss the issue of numeri
al pre
ision ofthree di�erent CMB 
odes and 
on
lude that they are a

urate to within 0.1%. While thisis en
ouraging, it is not of dire
t relevan
e to this work, sin
e what matters in the 
omputa-tion of derivatives is not mu
h the absolute pre
ision of the spe
tra, but rather their relativea

ura
y.Fore
asts and dis
ussionTable 6.5 summarizes our fore
asts for the future measurements and 
ompares them with theresults obtained from WMAP a
tual data.
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ross + E-polarizationNo priors Flatness Flatness and
Yp = 0.24

∆Yp

Yp

∆ωb

ωb

∆Yp

Yp

∆ωb

ωb

∆ωb

ωbWMAP 4yrs 1 ∼ 50 2.92 ∼ 40 2.86 2.86Plan
k 7.60 1.31 4.96 1.26 0.70CVL 2.59 0.34 1.52 0.32 0.13Temperature + TE-
rossWMAP 1st yr 2 N/A N/A 71.25 5.04 5.04WMAP 4yrs 1 ∼ 75 4.10 ∼ 60 3.94 3.94Plan
k 8.91 1.74 6.60 1.63 0.74CVL 5.18 0.55 2.84 0.55 0.19Table 6.5: Fisher matrix fore
asts and 
omparison with present-day results for di�erent priorsand using di�erent 
ombinations of temperature and polarization CMB spe
tra. Errors arein per
ent with respe
t to the values of the �du
ial model, Yp = 0.24 and ωb = 0.0238 (1σl.
. all other marginalized).We noti
e that when the WMAP full four year data will be available (in
luding E-polarization), the error on the baryon density is expe
ted to de
rease by a fa
tor of twoto about 3%, 
ompared to today's 5% (assuming �atness). Nevertheless, in
lusion of Yp asa free parameter will still have no e�e
t on the determination of ωb for WMAP, i.e. Yp willremain an essentially �at dire
tion when marginalized over. While the determination of thehelium fra
tion will improve, the FMA 
annot reliably assess quantitatively how mu
h, sin
efor su
h large errors the likelihood distribution is not Gaussian and the quadrati
 approxi-mation breaks down. In the table we therefore give the FMA estimation as an indi
ation,with the 
aveat that the Fisher approximation is likely to be ina

urate for the real errorson Yp from WMAP's four year data-set.It is interesting that for Plan
k, the e�e
t of the helium fra
tion 
an no longer be negle
ted.In
lusion of the helium fra
tion in
reases the error on ωb by roughly 80%, from 0.7% to 1.3%.The 
orrelation between the two parameters will have to be taken into a

ount, as is evidentfrom Fig. 6.13. The expe
ted 
orrelation 
oe�
ient is 
orr(Yp, ωb) = 0.84 (0.91) for Plan
k(for CVL). The expe
ted 1σ error on Yp is about 5% for Plan
k, or ∆Yp ∼ 0.01. This is of thesame order as the spread in 
urrent astrophysi
al measurements. We 
on
lude that in Plan
k-a

ura
y data analysis, it will be ne
essary to in
lude the un
ertainty in the determinationof the helium mass fra
tion, at least in the form of a Gaussian prior over Yp of the type weused in the CMB data analysis presented above.Finally, measuring CMB temperature and polarization with 
osmi
 varian
e a

ura
ywould allow Yp to be 
onstrained to within 1.5%, or ∆Yp ∼ 0.0036 (assuming �atness). Su
han ideal measurement would be able to dis
riminate between the BBN-guided, deuteriumbased helium value and the 
urrent lowest, dire
t helium observations (
f. Fig. 6.8).Our fore
asts for the un
ertainty in the Helium mass fra
tion from future observations arein ex
ellent agreement with the �ndings of Kaplinghat et al. (2003b). There, the standard
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Figure 6.13: FMA fore
ast for the expe
ted errors from WMAP four year mission (dotted-bla
k), Plan
k (dashed-red) and a CVL experiment (solid-green). The ellipses en
ompass
1σ and 3σ joint likelihood regions for ωb − Yp (all other parameters marginalized). The axisvalues give the error in with respe
t to the �du
ial model values. This fore
ast is for the fullCMB information (Temperature, TE-
ross, E-polarization) and assumes �atness.deviation on Yp for Plan
k is estimated to be ∆Yp = 0.012. Kaplinghat et al. (2003b)also 
onsider an experiment (CMBPol) with 
hara
teristi
s similar to our CVL, for whi
hthey fore
ast ∆Yp = 0.0039, again in 
lose agreement with our result. In an earlier work,Eisenstein et al. (1998a) found for Plan
k (temperature and polarization) ∆Yp = 0.013, alsoin satisfa
tory 
on
ordan
e with our result. It should be noti
ed that the fore
ast reportedfor MAP in Table 2 of Eisenstein et al. (1998a), namely ∆Yp = 0.02, is nothing but theGaussian prior Yp = 0.24 ± 0.02 whi
h was assumed in their analysis.The main sour
e of improvement for the determination of Yp will be the better sampling ofthe temperature damping tail provided by Plan
k and the CVL. Polarization measurementshave mainly the e�e
t of redu
ing the errors on other parameters. In fa
t, we have 
he
kedthat ex
luding from our FMA the 2 ≤ ℓ ≤ 50 region of the E-polarization and ET-
orrelationspe
tra 
hanges the fore
ast pre
ision on Yp less than about 10-15% for Plan
k and less thana few per
ent for CVL. This supports the 
on
lusion that the low-ℓ reionization bump is notvery useful in measuring the helium abundan
e, be
ause of the degenera
y with zre.



152 Beyond standard parameters6.3 Time variations of the �ne-stru
ture 
onstantThe sear
h for observational eviden
e for time or spa
e variations of the `fundamental' 
on-stants that 
an be measured in our four-dimensional world is an extremely ex
iting area of
urrent resear
h, with several independent 
laims of dete
tions in di�erent 
ontexts emergingin the past few years. In parti
ular, possible time variations of the �ne-stru
ture 
onstant
an be tested with the CMB, and represent another line of investigation going beyond thestandard des
ription of 
osmology. The 
ontents of this se
tion summarize the latest result ofa rather large 
ollaboration I have been involved with, aimed at 
onstraining time variationsof the �ne-stru
ture 
onstant using CMB anisotropy. We thoroughly studied the issue of
ru
ial degenera
ies with other 
osmologi
al parameters and dis
ussing what improvements
an be expe
ted with forth
oming data-sets (Martins et al., 2002, 2004; Ro
ha et al., 2004).We motivate the sear
h for time variations of the �ne-stru
ture 
onstant in � 6.3.1, andreview the 
urrent observational status of observations other than the CMB in � 6.3.2. Afterpresenting the relevan
e of the �ne-stru
ture 
onstant for CMB anisotropies in � 6.3.3 and� 6.3.4, in � 6.3.5 we provide up-to-date WMAP 
onstraints on the value of α at the epo
h ofde
oupling; � 6.3.6 is dedi
ated to a detailed Fisher matrix analysis whi
h en
ompasses thestandard parameters plus the �ne-stru
ture 
onstant for the full WMAP four year data, forthe Plan
k satellite and for a 
osmi
 varian
e limited, ideal experiment.6.3.1 MotivationCosmology and astrophysi
s play an in
reasingly important role as testing ground for ourunderstanding of fundamental physi
s, sin
e they provide us with extreme 
onditions (thatone has no hope of reprodu
ing in terrestrial laboratories) in whi
h to 
arry out a plethora oftests and sear
h for new paradigms. Perhaps the more illuminating example is that of mul-tidimensional 
osmology: 
urrently preferred uni�
ation theories (Pol
hinski, 1998; Damour,2003a) predi
t the existen
e of additional spa
e-time dimensions, whi
h will have a num-ber of possibly observable 
onsequen
es, in
luding modi�
ations in the gravitational laws onvery large (or very small) s
ales (Will, 2001) and spa
e-time variations of the fundamental
onstants of nature (Martins, 2002; Uzan, 2003).The most promising 
ase, and the one that has been the subje
t of most re
ent work andspe
ulation, is that of the �ne-stru
ture 
onstant
α =

e2

~c
(6.26)where e is the ele
tron 
harge, c the speed of light and ~ Plan
k's 
onstant.There have been a number of re
ent reports of eviden
e for a time variation of fundamental
onstants (Webb et al., 2001, 2003; Murphy et al., 2001
; Ivan
hik et al., 2003), whi
h wereview below. Apart from their obvious dire
t impa
t if 
on�rmed, they are also 
ru
ial in adi�erent, indire
t way, sin
e they provide us with an important (and possibly even unique)opportunity to test a number of fundamental physi
s models, su
h as string theory. Indeedhere the issue is not if su
h a theory predi
ts su
h variations, but at what level it does so,and hen
e if there is any hope of dete
ting them in the near future, or if we have done italready.
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ture 
onstant 153On the other hand, the theoreti
al expe
tation in the simplest, best motivated model isthat α should be a non-de
reasing fun
tion of time (Damour & Nordtvedt, 1993; Santiagoet al., 1998; Barrow et al., 2002). This is based on rather general and simple assumptions,in parti
ular that the 
osmologi
al dynami
s of the �ne-stru
ture 
onstant is governed by as
alar �eld whose behavior is akin to that of a dilaton. If this is so, then it is parti
ularlyimportant to try to 
onstrain it at earlier epo
hs, where any variations relative to the present-day value should be larger. However, one of the interpretations of the Oklo results is that αwas larger at an epo
h 
orresponding to a redshift of about z ∼ 0.1 than today, whereas thequasar results indi
ate that α was smaller at z ∼ 2−3 than today, see below for more details.If both results are validated by future experiments, then the above theoreti
al expe
tationmust 
learly be wrong, whi
h would be a perfe
t example of using astrophysi
s to learn aboutfundamental physi
s. Playing devil's advo
ate, one 
ould 
ertainly 
on
eive that 
osmologi
alobservations of this kind 
ould one day prove string theory wrong. Indeed, it has been argued(Damour, 2003a,b) that even the results of Webb and 
ollaborators may be hard to explainin the simplest, best motivated models where the variation of the �ne-stru
ture 
onstant isdriven by the spa
etime variation of a very light s
alar �eld.Cosmi
 mi
rowave ba
kground anisotropies provide a tool to measure the �ne-stru
ture
onstant at high redshift, being mostly sensitive to the epo
h of de
oupling, z ∼ 1100.6.3.2 The observational statusThe re
ent explosion of interest in the study of varying 
onstants is mostly due to the resultsof Webb and 
ollaborators (Murphy et al., 2001b; Webb et al., 2001; Murphy et al., 2001
,a)of a 4σ dete
tion of a �ne-stru
ture 
onstant that was smaller in the past,
∆α

α
= (−0.72 ± 0.18) × 10−5 , z ∼ 0.5 − 3.5 ; (6.27)indeed, more re
ent work (Murphy et al., 2003; Webb et al., 2003) provides an even strongerdete
tion. These results are obtained through 
omparisons of various transitions (involvingvarious di�erent atoms) in the laboratory and in quasar absorption systems, using the fa
tthat the size of the relativisti
 
orre
tions goes as (αZ)2. A number of tests for possiblesystemati
 e�e
ts have been 
arried out, all of whi
h have been found either not to a�e
t theresults or to make the dete
tion even stronger if 
orre
ted for.A somewhat analogous (though simpler) te
hnique uses mole
ular hydrogen transitionsin damped Lyman-α systems to measure the ratio of the proton and ele
tron masses, µ =

mp/me (using the fa
t that ele
tron vibro-rotational lines depend on the redu
ed mass ofthe mole
ule, and this dependen
e is di�erent for di�erent transitions). The latest results(Ivan
hik et al., 2002) using two systems at redshifts z ∼ 2.3 and z ∼ 3.0 are
∆µ

µ
= (5.7 ± 3.8) × 10−5 , (6.28)or

∆µ

µ
= (12.5 ± 4.5) × 10−5 , (6.29)depending on whi
h of the (two) available tables of �standard� laboratory wavelengths isused. This implies a 1.5σ dete
tion in the more 
onservative 
ase, though it also 
asts some
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ura
y of the laboratory results, and on the in�uen
e of systemati
 e�e
tsin general.We should also mention a re
ent re-analysis (Fujii, 2002) of the well-known Oklo bound(Damour & Dyson, 1996). Using new Samarium samples 
olle
ted deeper underground (aim-ing to minimize 
ontamination), these authors again provide two possible results for both αand the analogous 
oupling for the strong nu
lear for
e, αs,
α̇

α
∼ α̇s
αs

= (0.4 ± 0.5) × 10−17yr−1 (6.30)or
α̇

α
∼ α̇s
αs

= −(4.4 ± 0.4) × 10−17yr−1 . (6.31)Note that these are given as rates of variation, and e�e
tively probe times
ales 
orrespondingto a 
osmologi
al redshift of about z ∼ 0.1. Unlike the 
ase above, these two values 
orrespondto two possible physi
al bran
hes of the solution. See Fujii (2002) for a dis
ussion of whythis method yields two solutions (and also note that these results have opposite signs relativeto previously published ones, Fujii et al., 2000). While the �rst of these bran
hes provides anull result, (6.31) is a strong dete
tion of an α that was larger at z ∼ 0.1, that is a relativevariation that is opposite to Webb's result (6.27). Even though there are some hints (
omingfrom the analysis of other Gadolinium samples) that the �rst bran
h is preferred, this is byno means settled and further analysis is required to verify it.Still we 
an spe
ulate about the possibility that the se
ond bran
h turns out to be the
orre
t one. Indeed this would de�nitely be the most ex
iting possibility. While in itselfthis wouldn't 
ontradi
t Webb's results (sin
e Oklo probes mu
h smaller redshift and thesuggested magnitude of the variation is smaller than that suggested by the quasar data), itwould have striking e�e
ts on the theoreti
al modelling of su
h variations. In fa
t, proof that
α was on
e larger than today's value would sound the death knell for any theory whi
h modelsthe varying α through a s
alar �eld whose behaviour is akin to that of a dilaton. Examplesin
lude Bekenstein's theory (Bekenstein, 1982) or simple variations thereof (Sandvik et al.,2002; Olive & Pospelov, 2002). Indeed, one 
an quite easily see (Damour & Nordtvedt, 1993;Santiago et al., 1998) that in any su
h model having sensible 
osmologi
al parameters andobeying other standard 
onstraints, α must be a monotoni
ally in
reasing fun
tion of time.Sin
e these dilatoni
-type models are arguably the simplest and best-motivated models forvarying α from a parti
le physi
s point of view, any eviden
e against them would be extremelyex
iting, sin
e it would point towards the presen
e of signi�
antly di�erent, yet undis
overedphysi
al me
hanisms.Finally, we also mention that there have been re
ent proposals (Braxmaier et al., 2001)of more a

urate laboratory tests of the time independen
e of α and µ using monolithi
resonators, whi
h 
ould improve 
urrent bounds by an order of magnitude or more.However, given that there are both theoreti
al and experimental reasons to expe
t thatany re
ent variations will be small, it is important to develop tools allowing us to measure
α in the early universe, as variations with respe
t to the present value 
ould be mu
h largerthen.
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onstant 1556.3.3 E�e
ts of α on the ionization historyThe reason why the CMB 
an be used as a probe of variations of the �ne-stru
ture 
onstant isthat these alter the ionization history of the universe. Here we present the dominant e�e
ts,see Hannestad (1999); Kaplinghat et al. (1999) for a detailed treatment.The impa
t of the �ne-stru
ture 
onstant on the CMB 
omes from the dependen
e of thedi�erential opti
al depth τ̇ (2.117, page 40) on the Thomson s
attering 
ross se
tion, whi
his
σT =

8πα2
~

2

3m2
ec

2
, (6.32)where we have reintrodu
ed the speed of light c and the Plan
k 
onstant ~, and me is the ele
-tron mass. Now the equilibrium ele
tron ionization fra
tion xeqe ≡ ne/nH goes approximatelyas

xeqe ∝
(me

T

)3/2
exp(−B/T ) , (6.33)where B is the Hydrogen binding energy

B = α2mec
2/2 (6.34)(see e.g. Kolb & Turner, 1990). If we ignore the fa
t that xe(z) does not pre
isely tra
k itsequilibrium value, and sin
e the exponential fa
tor dominates near re
ombination, we wouldsimply expe
t from T ∝ 1/a ∝ z that the reionization fra
tion be just a fun
tion of z/α2.This turns out to be approximately 
orre
t, even if the e�e
t of the fa
tor (me/T )3/2 andthe departure of xe from xeqe need to be taken into a

ount for a more pre
ise estimation(Kaplinghat et al., 1999).In general, around the de
oupling epo
h relevant for the CMB, the �ne-stru
ture 
onstant
an be expe
ted to evolve with redshift, α = α(z), but we 
an take a 
onstant value αde
 ≡

α(zde
) instead and 
onsider it as an e�e
tive value averaged over the re
ombination pro
ess.Summarizing, there are two important 
hanges in the reionization history brought about by a
hange in αde
, the value of α at the re
ombination epo
h, whi
h are best dis
ussed in termsof 
hanges on the visibility fun
tion g(z), de�ned in Eq. (3.126, page 67). A larger value of
αde
 with respe
t to α0, its value today, implies:

• an in
reased redshift of last s
attering: as estimated above, this follows from res
alingthe reionization fra
tions as z/α2de
, hen
e de
oupling happens earlier for a larger αde
,whi
h means that the sound horizon rs(zde
), see Eq. (4.24, page 82), is smaller. Asa 
onsequen
e, we expe
t a shift of the peaks' stru
ture to larger ℓ values, a

ordingto (4.17, page 81). This e�e
t will be degenerate with the shift parameter Rshift (4.22,page 82) or equivalently with the normal parameter A, Eq. (4.43, page 88), as shownin Fig. 6.14. There will also be a boost of the �rst a
ousti
 peak due to the in
reasedearly ISW e�e
t, see � 4.1.2.3.
• A narrower peak of the visibility fun
tion: by in
reasing αde
 the peak of the visibilityfun
tion is moved to a larger redshift, when the expansion rate is faster

Ṫ ∝ −H ∝ −(1 + z) (6.35)and thus the temperature and therefore xe drop faster, whi
h makes g(z) narrower, seeFig. 6.15. This leads to a smaller damping s
ale, 
f. Eq. (4.34, page 86), hen
e thesmall-s
ale power of the CMB spe
trum in
reases for αde
/α0 > 1.
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Figure 6.14: Left panel: derivatives of the temperature spe
trum with respe
t to αde
 and theshift parameter Rshift. We plot −∂Cℓ/∂αde
 to fa
ilitate the 
omparison with ∂Cℓ/∂Rshift.The two derivatives are perfe
tly in phase: this is responsible for the degenera
y betweenthe 
orresponding parameters (right panel, Fisher matrix analysis). Only the di�erent am-plitudes allow an experiment whi
h maps su�
iently high multipoles with high a

ura
y todistinguish between them, in parti
ular revealing the 
hange in the damping s
ale broughtabout by 
hanges in αde
. In the right panel, the Fisher matrix results 
ontain 1σ of thelikelihood (in
luding temperature only), and 
learly indi
ate a strong 
orrelation betweenthe two parameters (see Martins et al., 2002).In Fig. 6.16 we plot the resulting CMB temperature spe
trum, where the above mentioned
hanges are readily distinguishable.6.3.4 The role of reionizationAfter de
oupling, the CMB is essentially insensitive to how α varies, until the reionizationepo
h is rea
hed, at whi
h point Thomson s
attering be
omes e�e
tive again. If the value of αat reionization, αre ≡ α(zre), is di�erent from its value today, it will a�e
t the CMB spe
trumthrough a 
hange in the reionization opti
al depth τre. However, τre is itself dependent on the
osmologi
al model and possibly on a number of relevant non-linear physi
al pro
esses relatedto the astrophysi
al me
hanisms responsible for the reionization. In general, this problem issolved by treating τre as a free parameter, whi
h a

ounts for the relatively poor knowledgeof the details of the reionization history and in our 
ase for the un
ertainty about the exa
tvalue of α during the reionization epo
h. We 
on
lude that provided we treat τre as a freeparameter the la
k of a pre
ise knowledge of the value of α during the epo
h of reionizationis unimportant, and we 
an take αre = α0. On the more phenomenologi
al side, the resultsof Webb and 
ollaborators for the value of α at a redshift of 2− 3 would suggest that at theepo
h of reionization the possible 
hanges in α relative to the present day are already verysmall. Therefore one 
an 
al
ulate the e�e
t of a varying α by simply assuming two values



6.3 Time variations of the �ne-stru
ture 
onstant 157

Figure 6.15: Ionization fra
tion as a fun
tion of redshift (left panel) and visibility fun
tion asa fun
tion of 
onformal time (right panel) for di�erent values of the �ne-stru
ture 
onstantat de
oupling: αde
/α0 = 1 (solid), αde
/α0 = 1.03 (dotted), αde
/α0 = 0.97 (dashed).De
oupling happens earlier and the last s
attering surfa
e is narrower for αde
/α0 > 1.for the �ne-stru
ture 
onstant, one at low redshift, z <∼ 20, for whi
h we take today's valueby the above argument, and one around the epo
h of de
oupling, αde
, whi
h we want todetermine.As shown in � 4.1.3.2, reionization 
hanges the amplitude of the a
ousti
 peaks in thetemperature spe
trum, without a�e
ting their position and spa
ing, while introdu
ing thereionization bump at low ℓ in the polarization spe
trum. If the value of αde
 is di�erent fromthe value today (whi
h 
orresponds to αre), then the peaks in the polarization power spe
trumat small angular s
ales will be shifted sideways, while the reionization bump on large angulars
ales will remain �xed. This is illustrated in Fig. 6.16 (lower right panel). It follows that bymeasuring the separation between the a
ousti
 peaks and the bump, one 
ould in prin
iplemeasure both α and the reionization opti
al depth τre, as shown in Fig. 6.17. This holdstrue as long as one assumes a spe
i�
 reionization history, su
h as the sudden reionizations
enario used here. However, if we would allow for a more realisti
 reionization modelling,the detailed dependen
e of the reionization bump on the new reionization parameters is likelyto wash out this e�e
t. Nevertheless, with present-day a

ura
y the CMB data are sensitiveonly to the opti
al depth of reionization, as pointed out in � 6.2.2, whi
h justify the use ofthe simplest reionization modelling. Within this framework, the fa
t that τre unexpe
tedlyturned out to be as large as 0.16 as derived from the WMAP data (Spergel et al., 2003) makesthe prospe
ts of 
onstraining α with the CMB mu
h better be
ause of the above e�e
t.Finally, we point out that the modi�
ations dis
ussed above are dire
t 
onsequen
es of an
α variation, and that indire
t e�e
ts are usually present as well sin
e any variation of α isne
essarily 
oupled with the dynami
s of the Universe (Mota & Barrow, 2004). Here we takea pragmati
 approa
h and say that, sin
e the CMB is insensitive to the details of α variationsfrom de
oupling to the present day, we do not in fa
t need to spe
ify a redshift dependen
efor this variation � although we 
ould have spe
i�ed one if we so 
hose. At this stage,we prefer to fo
us on model-independent 
onstraints, and hen
e do not attempt to in
lude
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Figure 6.16: Contrasting the e�e
ts of varying αde
 (left) and reionization opti
al depth τre(right) on the CMB temperature (top) and polarization (bottom). The reionization bumpis not 
hanged by variations of αde
/α0. The bla
k lines are for the WMAP best �t model,with αde
/α0 = 1 and τre = 0.17.an expli
it modelling for the redshift dependen
e α(z). Nevertheless, given some model-independent 
onstraints one 
an always translate them into 
onstraints on the parametersof one's favorite model. Beside possible time variations of α, investigated here, one 
ouldalso envisage sear
hing for spatial variations on the last s
attering surfa
e (Sigurdson et al.,2003).6.3.5 CMB 
onstraints on α from WMAP aloneWe use a modi�ed version of 
mbfast whi
h in
ludes the e�e
ts of varying α des
ribedabove, to analyse the re
ent WMAP temperature and 
ross-polarization data adopting thelikelihood estimator method des
ribed in Verde et al. (2003). The models are sampled on anuniform grid in a 7 dimensional parameter spa
e as follows:
0.05 < Ωch

2 < 0.20 (0.01) ,

0.010 < Ωbh
2 < 0.028 (0.001) ,

0.500 < ΩΛ < 0.950 (0.025) ,

0.900 < αde
/α0< 1.050 (0.005) , (6.36)
0.06 < τre < 0.30 (0.02) ,

0.880 < ns < 1.08 (0.005) ,

−0.15 <
dnsd ln k

< 0.05 (0.01) .The numbers between parentheses give the step size along ea
h dire
tion; ns is the s
alarspe
tral index of the primordial power spe
trum, and dns/d ln k is the spe
tral index running,
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Figure 6.17: The separation in ℓ between the reionization bump and the �rst (solid lines),se
ond (dashed) and third (dotted) peaks in the polarization spe
trum, as a fun
tion of αat de
oupling and τ . A (somewhat idealized) des
ription of how α and τre 
an be measuredusing CMB polarization.i.e. we introdu
e a s
ale dependen
e of the spe
tral index of the form
ns(k) = ns(kP) +

dnsd ln k
ln

(

k

kP) , (6.37)where ns ≡ ns(kP) is a 
onstant and the pivot s
ale kP is 
hosen to be kP = 0.002Mp
−1.We only in
lude �at models, so that the Hubble parameter H0 ≡ 100h km s−1 Mp
−1 is aderived quantity. We don't 
onsider gravity waves or iso
urvature modes sin
e these furthermodi�
ations are not required by the WMAP data.The likelihood distribution fun
tion for αde
/α0, obtained after marginalization over theremaining parameters, see � 5.1.5, is plotted in Fig. 6.18, and gives the marginalized 
on�-den
e interval
0.95 < αde
/α0 < 1.02 (at 95% l.
.). (6.38)If we impose dns/d ln k = 0 we obtain instead
0.94 < αde
/α0 < 1.01 (at 95% l.
.). (6.39)It is interesting to 
onsider the 
orrelations between a α/α0 and the other parameters inorder to see how this modi�
ation to the standard model 
an 
hange our 
on
lusions about
osmology. In Fig. 6.19 we plot the likelihood 
ontours in the α/α0 − τre plane for two 
ases:using the temperature only WMAP data and in
luding the TE 
ross 
orrelation data. Thereis a 
lear degenera
y between these two parameters if one uses only temperature information:in
reasing the opti
al depth allows for an higher value of the spe
tral index nS and a lowervalue of α/α0. In
lusion of the TE data is already able to partially break this degenera
y,but, as we explain below, more detailed measurements of the polarization spe
tra are neededto 
onstraint separately the two parameters,
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Figure 6.18: Marginalized likelihood distribution fun
tion for variations in the �ne-stru
ture
onstant at the time of de
oupling obtained by an analysis of the WMAP data (TT+TE,one-year).One of the most unexpe
ted results from the WMAP data is the hint for a s
ale-dependen
eof the spe
tral index ns (see e.g. Peiris et al., 2003; Kinney et al., 2004). Su
h a dependen
eshould not be dete
table in most of the viable single �eld in�ationary models and, if 
on-�rmed, would have strong 
onsequen
es on the possibilities of re
onstru
ting the in�ationarypotential. For this reason we in
luded the running of the spe
tral index in our parameterset. In Fig. 6.20 we plot likelihood 
ontours in the α/α0 − dns/d ln k plane, showing that alower value of α/α0 would prefer the absen
e of running. As already pointed out in Beanet al. (2003), a modi�
ation of the re
ombination s
heme 
an therefore provide a possibleexplanation for the large value of dns/d ln k found from WMAP data.In previous (pre-WMAP) work, CMB-based 
onstraints on α were obtained with the helpof additional 
osmologi
al data-sets and priors, as in Martins et al. (2002). This pro
edurewas exposed to the 
riti
ism that di�erent data-sets 
ould possibly have di�erent systemati
errors that are impossible to 
ontrol and 
ould 
on
eivably 
onspire to produ
e the resultsquoted. The above results are obtain from WMAP only, and therefore eliminate this possibleun
ertainty. For earlier works and pre-WMAP 
onstraints, see also Avelino et al. (2000,2001); Battye et al. (2001); Hannestad (1999).6.3.6 Fisher matrix fore
asts and degenera
iesWe apply the Fisher matrix analysis (FMA) te
hnique explained in � 5.2 to the problem offore
asting the expe
ted pre
ision in the determination of αde
 with CMB anisotropy. Forthe a

ura
y reasons presented at length in � 5.2, � 6.1.5 and � 6.2.5, we 
hoose to employthe following 8 dimensional base parameter set
θ =

{

Ωbh
2,Ωmh

2,ΩΛh
2,Rshift, ns, Q, τre, αde
/α0

} (6.40)whi
h takes into a

ount the severe geometri
al degenera
y via the shift parameter Rshift,de�ned in Eq. (4.22). The quantity ns is the s
alar spe
tral index (without running) and Q
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Figure 6.19: Likelihood 
ontour plot in the αde
/α0 − τre plane in
luding temperature infor-mation only (TT) and TT+TE together from WMAP (68% and 95% l.
. from the insideout). The in
lusion of polarization data partially breaks the degenera
y between these twoparameters.a phenomenologi
al normalization parameter as in (6.13, page 131). We restri
t ourselves tos
alar modes and adiabati
 initial 
onditions.The maximum likelihood model around whi
h the FMA for Plan
k and the CVL isperformed has parameters ωb = 0.0200, ωm = 0.1310, ωΛ = 0.2957 (and h = 0.65),
Rshift = 0.9815, ns = 1.00, Q = 1.00, τ = 0.20 and α/α0 = 1.00. We di�erentiate arounda slightly 
losed model (as preferred by WMAP) with Ωtot = 1.01 to avoid extra sour
esof numeri
al ina

ura
ies, sin
e open and 
losed models are 
omputed by 
mbfast usingdi�erent numeri
al te
hniques whi
h would introdu
e unwanted ina

ura
ies.Regarding numeri
al a

ura
y issues in the 
omputation of the Fisher matrix, we imple-ment in the present work double�sided derivatives, whi
h redu
e the trun
ation error fromWMAP Plan
k

ν (GHz) 40 60 90 100 143 217

θc (ar
min) 31.8 21.0 13.8 10.7 8.0 5.5

σcT (µK) 19.8 30.0 45.6 5.4 6.0 13.1

σcE (µK) 28.02 42.43 64.56 n/a 11.4 26.7

w−1
c · 1015 (K2 ster) 33.6 33.6 33.6 0.215 0.158 0.350

ℓc 254 385 586 757 1012 1472

ℓmax 1000 2000

fsky 0.80 0.80Table 6.6: Experimental parameters for WMAP and Plan
k (nominal mission). Note thatwe express the sensitivities in µK. See � 5.2.1 for de�nitions.
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Figure 6.20: Likelihood 
ontour plot in the αde
/α0 − dns/d ln k plane, from WMAP tem-perature and ET 
orrelation data (68%, 95% and 99% l.
. from the inside out). A zero s
aledependen
e, as expe
ted in most of the in�ationary models, seems to be more 
onsistent witha value of αde
/α0 < 1.se
ond order to third order terms. The 
hoi
e of the step size is a trade-o� between trun
ationerror and numeri
al ina

ura
y dominated 
ases. For an estimated numeri
al pre
ision of the
omputed models of order 10−4, the step size should be approximately 5% of the parametervalue (Press et al., 1992), though it turns out that for derivatives in dire
tion of α and nsthe step size 
an be 
hosen to be as small as 0.1%. After several tests, we have 
hosen stepsizes varying from 1% to 5% for ωb, ωm, ωΛ and Rshift. This 
hoi
e gives derivatives withan a

ura
y of about 0.5%. The derivatives with respe
t to Q are exa
t, being the powerspe
trum itself.Predi
tions for WMAP's four year dataWe present here the main results of the Fisher matrix fore
asts; the full tables and moredetailed 
omments 
an be found in Ro
ha et al. (2004). We �rst 
on
entrate on the potentialof the WMAP four year data, and we 
ompare in Tables 6.7 and 6.8 the expe
ted errors fortwo 
ases, for the base set of parameters (6.40) with and without in
lusion of αde
/α0. Inboth 
ases, we take as referen
e model for the Fisher matrix the WMAP best �t model ofTable 1, in Spergel et al. (2003), but with a slightly larger 
osmologi
al 
onstant whi
h gives
Ωtot = 1.01, for the a

ura
y reasons explained above.Table 6.7 gives a

urate predi
tions for the errors on standard 
osmologi
al parameters, formodels in
luding non-�at 
osmologies. Clearly, with the WMAP sensitivity, E-polarizationalone will not 
onstrain mu
h the parameters, but 
ombining temperature information withthe polarization 
hannels will redu
e the errors on the baryon and matter density and on theshift parameter by about a fa
tor of three, with all other parameters marginalized over. Theerror on the 
osmologi
al 
onstant will remain of order unity, sin
e this is an expression of
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onstant 163Quantity 1σ errors (%)WMAP four yearmarg. �xed joint marg. �xed jointPolarization (EE) Temperature (TT)baryon density ωb 110.64 16.58 316.44 7.33 0.81 20.96matter density ωm 49.48 17.16 141.52 8.91 0.77 25.49
Λ density ωΛ 622.34 97.58 1779.93 113.30 83.39 324.06spe
tral index ns 69.43 4.89 198.58 6.68 0.53 19.11normalization Q 79.22 13.51 226.58 0.90 0.32 2.58shift parameter Rshift 46.52 13.04 133.06 9.25 0.59 26.47reionization opti
al depth τre 100.84 8.21 288.40 102.72 16.70 293.79Temp+Pol (TT+EE) All (TT+EE+TE)baryon density ωb 2.14 0.80 6.11 2.13 0.80 6.08matter density ωm 3.09 0.77 8.85 3.08 0.77 8.81
Λ density ωΛ 90.70 63.84 259.41 86.97 62.69 248.75spe
tral index ns 1.46 0.52 4.18 1.45 0.52 4.15normalization Q 0.52 0.32 1.48 0.52 0.32 1.48shift parameter Rshift 2.86 0.59 8.17 2.84 0.59 8.12reionization opti
al depth τre 10.52 7.45 30.08 10.41 7.44 29.78Table 6.7: Fisher matrix analysis results for a standard model with in
lusion of reionization(for the WMAP best �t model as the �sher analysis �du
ial model, with τre = 0.17): expe
ted

1σ errors from the WMAP-four year data. The 
olumn marg. gives the error with all otherparameters being marginalized over; in the 
olumn �xed the other parameters are held �xedat their ML value; in the 
olumn joint all parameters are being estimated jointly.the geometri
al degenera
y whi
h is fundamentally unbreakable without external priors. Thespe
ta
ular improvement of about a fa
tor 10 in determining τre with polarization informa-tion is a 
onsequen
e of the expe
ted measurement of the reionization indu
ed polarizationbump, whi
h breaks the degenera
y with normalization present with temperature alone. Thespe
tral index a

ura
y thus in
reases by a fa
tor 4, be
ause the better determination ofthe reionization opti
al depth assists into breaking the small s
ale degenera
y with ns. The
olumn ��xed� gives the best 
ase s
enario in whi
h all other parameters are assumed to beknown and �xed to their �du
ial model value. In this 
ase, the errors obtained by 
ombiningall 
hannels are below 1% for all parameters but the 
osmologi
al 
onstant.Let us now 
ompare this fore
asts with the 
orresponding entries in Table 6.8, where theparameter αde
/α0 has been added. The addition of a varying �ne-stru
ture 
onstant opensup new degenera
y dire
tions, hen
e the marginalized and joint error fore
asts get worse (butnot the errors with all other parameters �xed, of 
ourse). The most degenerate dire
tion iswith the shift parameter (marginalized errors larger by a fa
tor 7 with all 
hannels), asexpe
ted from the above 
onsiderations. Due to its e�e
t on the peak heights, the �ne-stru
ture 
onstant is largely degenerate with ωb up to the se
ond a
ousti
 peak; an a

uratemapping of the large multipole temperature spe
trum 
an nevertheless lift this degenera
y,also 
onstraining better ns, see Martins et al. (2002) for details. This explains the larger



164 Beyond standard parametersQuantity 1σ errors (%)WMAP four yearmarg. �xed joint marg. �xed jointPolarization (EE) Temperature (TT)baryon density ωb 173.74 16.58 496.91 14.09 0.81 40.30matter density ωm 260.62 17.16 745.40 13.76 0.77 39.36
Λ density ωΛ 637.28 97.58 1822.66 133.73 83.39 382.47spe
tral index ns 108.18 4.89 309.41 7.86 0.53 22.47normalization Q 96.60 13.51 276.30 2.33 0.32 6.67shift parameter Rshift 133.23 13.04 381.04 26.29 0.59 75.19�ne stru
ture 
onstant αde
 69.10 2.48 197.62 5.83 0.12 16.66reionization opti
al depth τre 228.69 8.21 654.07 103.86 16.70 297.05Temp+Pol (TT+EE) All (TT+EE+TE)baryon density ωb 7.50 0.80 21.44 7.41 0.80 21.18matter density ωm 5.48 0.77 15.66 5.46 0.77 15.62
Λ density ωΛ 91.57 63.84 261.91 87.48 62.69 250.20spe
tral index ns 2.03 0.52 5.82 2.03 0.52 5.81normalization Q 1.31 0.32 3.73 1.30 0.32 3.71shift parameter Rshift 14.34 0.59 41.01 14.17 0.59 40.53�ne stru
ture 
onstant αde
 3.08 0.11 8.80 3.05 0.11 8.71reionization opti
al depth τre 10.65 7.45 30.46 10.52 7.44 30.08Table 6.8: Fisher matrix analysis results for the model of Table 6.7 with in
lusion of αde
.errors on the baryon density and on the spe
tral index as we in
lude α in the parameter set.However, the opti
al depth determination remains almost una�e
ted, as a 
onsequen
e ofthe simultaneous measurement of the reionization bump's position and of the a
ousti
 peaksangular s
ale, thereby validating our method for the restri
ted 
lass of sudden reionizationmodels 
onsidered here.Predi
tions for Plan
k and an ideal experimentWe now fo
us on the Fisher matrix fore
asts for the expe
ted performan
e of the Plan
ksatellite, and 
ompare them with the results for an ideal CMB experiment, whi
h wouldmap both temperature and E-polarization with 
osmi
 varian
e limited (CVL) a

ura
y upto ℓ = 2000. Clearly, su
h a measurement is not feasible in pra
ti
e, be
ause of foregroundremoval and limited instrumental sensitivity, but it represents in prin
iple the best possibleparameters determination using CMB alone. The full results are tabulated in Table 6.9 andTable 6.10. In order to 
larify the role of 
orrelations between parameters, we plot in Figures6.21 and 6.23 the 2σ joint likelihood 
ontours for all 
ouples of parameters for Plan
k, andin Figures 6.22 and 6.24 for the CVL experiment.The �rst important fa
t is that E-polarization data alone from Plan
k will 
onstrain thestandard parameters better than the four year WMAP temperature data alone, 
ompareTable 6.7 with Table 6.9. This follows from the fa
t that the polarization spe
trum is less
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ale degenera
ies than the temperature spe
trum. Furthermore, as apparentfrom Fig. 6.21, degenera
y dire
tions for the temperature spe
trum are in many 
ases almostorthogonal to the dire
tions in the polarization 
hannel. This is espe
ially the 
ase for τre, andin fa
t 
ombining temperature and polarization information redu
es its marginalized errorfrom 16% (6%) for temperature (polarization) alone to 4%. In general, the WMAP four yearerror-bars will be approximately halved for all parameters by Plan
k. Another signi�
antaspe
t is that by 
omparing the temperature only 
olumn for Plan
k to the one for the CVLexperiment, we 
on
lude that Plan
k will be essentially 
osmi
 varian
e limited as far as thetemperature spe
trum is 
on
erned. This is not the 
ase for the polarization 
hannel, forwhi
h there will still be room for a substantial improvement over Plan
k's 
apabilities: theCVL experiment 
an do better than Plan
k by a fa
tor 5 or more on average. The 
omparisonof Figures 6.21 and 6.22 immediately 
on�rms this 
on
lusion, whi
h makes a strong 
ase fora post-Plan
k, polarization-dedi
ated experiment.When we add the �ne-stru
ture 
onstant to the Plan
k parameter set, the ellipses for tem-perature and polarization get larger for all the 
ouples of parameters involving degeneratedire
tions with α, 
ompare Fig. 6.23 with Fig. 6.21. As before, this happens mostly for the
Rshift, ns and τre using temperature information only. The degradation of the a

ura
y onthose parameters is less dramati
 than for WMAP, be
ause Plan
k will map the spe
trumto larger multipoles. It is remarkable that the 
ombined temperature and polarization errordoes not grow very mu
h when we add α, be
ause the degenera
ies are in di�erent dire
-tions for the two 
hannels. The �ne-stru
ture 
onstant is the only parameter whi
h Plan
kwill 
onstrain better with temperature only (0.7%) than with polarization only (2.7%, allothers marginalized), while the situation is opposite for τre, 27% for temperature and 9%for polarization. Combining the two 
hannels again lifts most of the degenerate dire
tions,and we 
on
lude that Plan
k will a
hieve an a

ura
y on αde
 of order 0.3% (1σ, all othersmarginalized), thus improving by about a fa
tor of 10 on the expe
ted performan
e of thefour year WMAP mission and a fa
tor of 5 on the 
urrent upper bound (obtained howeverunder the assumption of �atness). At the same time, the reionization opti
al depth will be
onstrained to about 4.5%. Our �ndings for αde
/α0 and τre are summarized in Fig. 6.25,where we 
ompare degenera
y dire
tions in the αde
/α0, τre plane for temperature alone, po-larization alone and the 
ombined 
hannels, for Plan
k and the CVL experiment. We alsosuperimpose the 
orresponding fore
ast for the WMAP four year mission (all 
hannels) inorder to fa
ilitate the 
omparison.The 
olumns in Table 6.10 regarding the CVL experiment and the 
orresponding Fig. 6.24give information about further improvements on Plan
k's parameter a

ura
y. As mentioned,a 
osmi
 varian
e limited measurement of polarization 
ould further redu
e Plan
k's error-bars by a fa
tor 2 to 3, rea
hing the highest possible a

ura
y from CMB alone. In parti
ular,our analysis indi
ate that CMB alone 
an 
onstrain variations of α up to O(10−3) at z ∼ 1100.Going beyond will require additional priors on the other parameters.
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Quantity 1σ errors (%)Plan
k HFI CVLmarg. �xed joint marg. �xed jointPolarization only (EE)baryon density ωb 6.21 1.11 17.75 0.48 0.25 1.38matter density ωm 3.37 0.39 9.64 0.70 0.03 1.99
osmologi
al 
onstant density ωΛ 37.37 22.87 106.89 11.40 9.99 32.61spe
tral index ns 1.53 0.96 4.38 0.30 0.08 0.86normalization Q 2.23 0.51 6.38 0.24 0.07 0.67shift parameter Rshift 3.33 0.35 9.52 0.65 0.03 1.86reionization opti
al depth τre 5.74 2.78 16.42 1.81 1.52 5.18Temperature only (TT)baryon density ωb 0.86 0.60 2.46 0.57 0.38 1.64matter density ωm 1.51 0.13 4.31 1.10 0.08 3.14
osmologi
al 
onstant density ωΛ 110.15 96.15 315.03 98.15 86.00 280.72spe
tral index ns 0.54 0.13 1.56 0.36 0.07 1.04normalization Q 0.20 0.11 0.56 0.17 0.07 0.50shift parameter Rshift 1.47 0.12 4.21 1.05 0.07 3.01reionization opti
al depth τre 16.50 8.28 47.20 14.02 5.89 40.09Temperature and Polarization (TT+EE)baryon density ωb 0.80 0.53 2.30 0.32 0.21 0.92matter density ωm 1.24 0.12 3.55 0.55 0.03 1.58
osmologi
al 
onstant density ωΛ 30.58 22.04 87.46 10.72 9.85 30.65spe
tral index ns 0.43 0.13 1.23 0.20 0.05 0.58normalization Q 0.19 0.10 0.53 0.14 0.05 0.41shift parameter Rshift 1.22 0.11 3.48 0.52 0.03 1.49reionization opti
al depth τre 4.04 2.65 11.56 1.73 1.48 4.96Table 6.9: Fisher matrix analysis results in
luding reionization (τre = 0.20): expe
ted 1σerrors for the Plan
k satellite and for 
osmi
 varian
e limited (CVL) experiment.
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Figure 6.21: Ellipses 
ontaining 95.4% (2σ) of joint 
on�den
e (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with in
lusion of reionization (τre = 0.20). Fisher matrix fore
ast forthe Plan
k HFI instrument.
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Figure 6.22: Ellipses 
ontaining 95.4% (2σ) of joint 
on�den
e (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with in
lusion of reionization (τre = 0.20). Fisher matrix fore
ast foran ideal 
osmi
 varian
e limited (CVL) experiment.
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Quantity 1σ errors (%)Plan
k HFI CVLmarg. �xed joint marg. �xed jointPolarization only (EE)baryon density ωb 6.46 1.11 18.47 1.09 0.25 3.12matter density ωm 7.75 0.39 22.17 1.61 0.03 4.60
osmologi
al 
onstant density ωΛ 41.61 22.87 119.01 11.60 9.99 33.17spe
tral index ns 4.14 0.96 11.85 0.77 0.08 2.22normalization Q 2.99 0.51 8.55 0.24 0.07 0.68shift parameter Rshift 9.56 0.35 27.33 1.19 0.03 3.40�ne stru
ture 
onstant αde
 2.66 0.06 7.62 0.40 < 0.01 1.14reionization opti
al depth τre 8.81 2.78 25.19 2.26 1.52 6.45Temperature only (TT)baryon density ωb 1.09 0.60 3.12 0.83 0.38 2.37matter density ωm 3.76 0.13 10.74 2.64 0.08 7.55
osmologi
al 
onstant density ωΛ 111.61 96.15 319.21 98.97 86.00 283.05spe
tral index ns 2.18 0.13 6.24 1.49 0.07 4.26normalization Q 0.20 0.11 0.57 0.18 0.07 0.50shift parameter Rshift 1.58 0.12 4.53 1.06 0.07 3.04�ne stru
ture 
onstant αde
 0.66 0.02 1.88 0.41 0.01 1.18reionization opti
al depth τre 26.93 8.28 77.02 20.32 5.89 58.11Temperature and Polarization (TT+EE)baryon density ωb 0.91 0.53 2.61 0.38 0.21 1.09matter density ωm 1.81 0.12 5.17 0.67 0.03 1.91
osmologi
al 
onstant density ωΛ 30.89 22.04 88.36 10.79 9.85 30.85spe
tral index ns 0.97 0.13 2.77 0.33 0.05 0.93normalization Q 0.19 0.10 0.54 0.14 0.05 0.41shift parameter Rshift 1.43 0.11 4.08 0.60 0.03 1.72�ne stru
ture 
onstant αde
 0.34 0.02 0.97 0.11 < 0.01 0.32reionization opti
al depth τre 4.48 2.65 12.80 1.80 1.48 5.15Table 6.10: Fisher matrix analysis results as in Table 6.9 but in
luding αde
.
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Figure 6.23: Ellipses 
ontaining 95.4% (2σ) of joint 
on�den
e (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with in
lusion of reionization (τre = 0.20) and time variations of the�ne-stru
ture 
onstant. Fisher matrix fore
ast for the Plan
k HFI instrument.
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Figure 6.24: Ellipses 
ontaining 95.4% (2σ) of joint 
on�den
e (all other parameters marginal-ized) using temperature alone (red), E-polarization alone (yellow), and both jointly (white),for a standard model with in
lusion of reionization (τre = 0.20) and time variations of the�ne-stru
ture 
onstant. Fisher matrix fore
ast for an ideal 
osmi
 varian
e limited (CVL)experiment.
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Figure 6.25: Ellipses 
ontaining 95.4% (2σ) of joint likelihood in the αde
/α0 − τre plane (allother parameters marginalized), for the Plan
k and 
osmi
 varian
e limited (CVL) experi-ments, using temperature alone (red), E-polarization alone (yellow), and both jointly (white).The dashed 
ontour represents the WMAP - 4years fore
ast using (TT+EE+TE) jointly.



Chapter 7Testing the paradigm of adiabati
ity
Combination of today's high quality CMB data with other 
osmologi
al data sets allows usto 
onstrain the eight parameters

θ = {Ω
dm,Ωb,ΩΛ, Nν , h, τre, ns, As} (7.1)with an a

ura
y of a few per
ent (Tegmark et al., 2004b), if we assume �atness, i.e. byimposing ΩK = 0. This is a spe
ta
ular a
hievement, even more so given the fa
t that many
ompletely independent measurements seem to be 
onverging towards the same values. Inthe previous se
tions we have dis
ussed the determination of most of the above parameters;here we highlight that the a

ura
y of parameter extra
tion depends 
ru
ially on the assump-tion that the initial 
onditions for the perturbations are purely adiabati
, and explore the
onsequen
es of relaxing this strong assumption by in
luding the most general type of initial
onditions in the problem.This 
hapter is organized as follows: we �rst present an introdu
tory survey on re
entCMB analysis involving iso
urvature modes, � 7.1; we then investigate in a spe
i�
 examplehow the in
lusion of iso
urvature modes spoils the pre
ise determination of the baryon densityfrom pre-WMAP CMB data in � 7.2; in � 7.3 we ask whether the presen
e of non-adiabati

ontribution 
an reprodu
e CMB and large s
ale stru
ture observations without the need for a
osmologi
al 
onstant, and we 
on
lude that ΩΛ 6= 0 is robust with respe
t to the in
lusion ofiso
urvature modes and to the use of a frequentist (rather than Bayesian) approa
h; �nally, in� 7.4 we give the future prospe
ts for the determination by WMAP and Plan
k of 
osmologi
alparameters independent of any assumption about the type of initial 
onditions.7.1 Introdu
tory surveyUntil re
ently, most of the literature has fo
used on parameter extra
tion assuming purelyadiabati
 initial 
onditions, be
ause the eviden
e for a �rst a
ousti
 peak around ℓ ≈ 220very soon ruled out the possibility of the simplest alternative, namely purely iso
urvatureCDM initial 
onditions, see e.g. Enqvist et al. (2000). Nevertheless, subdominant CDMiso
urvature 
ontributions 
annot be ex
luded, and the 
onstraints are even less stringentif one allows for a 
orrelated mixture, in whi
h 
ase the 
orrelator 
an 
an
el out mostof the iso
urvature 
ontribution on large s
ale (Langlois & Riazuelo, 2000; Amendola et al.,
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ity2002). This qualitative 
on
lusion holds even after the more pre
ise measurements of WMAP(Valiviita & Muhonen, 2003).In the works of Bu
her et al. (2001, 2002) the 
onsequen
es for parameter extra
tion areexamined when the most general initial 
onditions are allowed, with the 
on
lusion that onlya pre
ise measurement of polarization would allow for the simultaneous re
onstru
tion of
osmologi
al parameters and of the initial 
onditions 
orrelation matrix. The �rst attempt ofin
luding all the modes in a numeri
al parameter determination from real data is performedin Trotta et al. (2001), as illustrated in � 7.2, with the result that the pre-WMAP CMB data
an not 
onstrain to any extent the value of the baryon density and the Hubble parameterin the general initial 
onditions 
ase. After the release of the WMAP �rst-year data, twogroups have re-investigated the question of the most general initial 
onditions in the wakeof the improved measurements: Crotty et al. (2003a) 
onsider a 
orrelated mixture of theadiabati
 mode with ea
h of the iso
urvature modes in turn, �nding that the pre-WMAP
onstraints on the iso
urvature 
ontribution are signi�
antly improved; Bu
her et al. (2004)re�ne the analysis of Trotta et al. (2001) by using Monte Carlo methods, and simultaneouslyin
luding all the iso
urvature modes and six 
osmologi
al parameters, but the 
on
lusionsremained qualitatively the same. The bottom line is that the relaxing the assumption ofadiabati
ity spoils our ability to do pre
ision 
osmology.The phenomenologi
al approa
h gives useful hints on the �sti�ness� of 
urrent data, andindeed the possibility of a

ommodating iso
urvature modes has been 
onsiderably redu
edby WMAP. Although independent of any model for the generation of perturbations, thisapproa
h has the disadvantage of introdu
ing many new free parameters in the des
ription ofthe power spe
trum. To redu
e this number somewhat, all analyses so far have assumed thesame spe
tral index for all modes, an assumption whi
h is not really motivated. Sin
e the
urrent CMB data are in ex
ellent agreement with purely adiabati
 initial 
onditions, it is notsurprising however that there is no statisti
al eviden
e that su
h extra parameters should benon-zero. O

am's razor would therefore di
tate to sti
k to the simplest adiabati
 des
ription,la
king any eviden
e for a more 
ompli
ated model. However, there is no 
ompelling reasonwhy the physi
s of the early universe should boil down to only one degree of freedom.A se
ond reason why model-independent 
onstraints should be regarded with 
are is thatin any spe
i�
 implementation, some of the parameters will be 
orrelated. For instan
e, inthe 
urvaton s
enario (Moroi & Takahashi, 2001; Lyth & Wands, 2002; Enqvist & Sloth,2002; Lyth et al., 2003), the adiabati
 and residual iso
urvature modes are always totally
orrelated or anti-
orrelated. Therefore, not only the number of extra degrees of freedom isredu
ed, but possibly the parameter spa
e of the model is a highly 
onstrained subspa
e of themodel-independent parameter spa
e. For this reason it is interesting to derive model-spe
i�

onstraints, whi
h are more stringent than those obtained with a general phenomenologi
alparametrization. For instan
e, WMAP 
onstraints for the 
urvaton model have been derivedfor the 
ase of CDM and baryons iso
urvature �u
tuations (Gordon & Lewis, 2003; Lyth& Wands, 2003). The neutrino density mode 
an be generated from perturbations of theneutrino 
hemi
al potential (Lyth et al., 2003), and bounds have re
ently been derived forthis 
ase (Gordon & Malik, 2004). It seems more di�
ult to produ
e a neutrino velo
itymode: a working model is at present still la
king.Despite these di�
ulties, the CMB represents the most promising data set to learn about
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onditions 175the type of initial 
onditions realized in the observed Universe: it is our window to the veryearly universe.7.2 Pre
ision 
osmology and general initial 
onditionsIn this se
tion, based on the work published in Trotta et al. (2001), we investigate the extentto whi
h the determination of 
osmologi
al parameters depends on the assumptions aboutinitial 
onditions. We show in a spe
i�
 example how the allowed parameter range is enlargedwhen the usual requirement for purely adiabati
 initial 
onditions is relaxed. In order to limitthe 
omputational e�ort, we have 
hosen to vary some 
osmologi
al parameters and keep theothers �xed. We 
onsider �at models only, and we �x the total density parameter, the totalmatter density and the 
osmologi
al 
onstant density parameter as follows:
Ωtot ≡ ΩΛ + Ωm = 1 ,

Ωm ≡ Ω
dm + Ωb = 0.3 , (7.2)
ΩΛ = 0.7 ,where Ω
dm and Ωb are the density parameters of 
old dark matter (CDM) and baryonsrespe
tively, and ΩΛ denotes the density parameter due to a 
osmologi
al 
onstant, ΩΛ ≡

Λ/3H2
0 , and H0 ≡ 100h km s−1 Mpc−1 is the Hubble parameter today. With ΩΛ �xed tothe above values, we then vary the Hubble parameter h, the baryon density ωb ≡ Ωbh

2and the 
orrelation matrix M whi
h des
ribes the most general (i.e. mixed adiabati
 andiso
urvature) initial 
onditions, as explained in � 4.3. We also �x to unity the s
alar spe
tralindex, ns = 1 for all modes and 
ross-
orrelators. Even by varying only two 
osmologi
alparameters, our parameters spa
e is still 12-dimensional, sin
e the initial 
ondition 
orrelationmatrix introdu
es ten free amplitudes.We also investigate the following question: what is the preferred iso
urvature 
ontributionto the perturbations? We shall see that, with pre-WMAP CMB data, this question 
annotbe answered without strong assumptions about the 
osmologi
al parameters.7.2.1 Pre-WMAP data analysisOur analysis uses the COBE (Tegmark & Hamilton, 1997) and BOOMERanG (Netter�eldet al., 2002) data. For the latter, we take into a

ount the 
alibration and the beam sizeun
ertainties whi
h treated just like two additional (normally distributed) parameters of theproblem (�nuisan
e parameters�). The two 
osmologi
al parameters h, ωb are sampled on auniform grid as follows (the number in parenthesis is the step size):
0.50 < h < 0.80 (0.05) , (7.3)

0.015 < ωb< 0.085 (0.005) . (7.4)For ea
h grid point, we sear
h the initial 
ondition spa
e by minimizing the 
hi-square, asexplained in � 5.1.5. We look for the best �t point by using a downhill simplex method (Presset al., 1992) initiated after 
hoosing a starting point randomly. The positive semi-de�nitenessof the 
orrelation matrix M is ensured by penalty fun
tions whi
h guarantee that the 
on-ditions (4.52, page 95) are satis�ed (more details are given in Trotta, 2001). The best �t is
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Figure 7.1: CMB anisotropy temperature spe
trum for di�erent values of the 
osmologi
alparameters ωb and h. We plot the best-�t 
orresponding to a purely adiabati
 
ase (dashedline) and allowing general initial 
onditions, mixed models (solid line). The 
alibration andthe beam size of the BOOMERanG data have been optimized to �t the mixed model (soliderror bars) or the adiabati
 model (dotted error bars). The parameter 
hoi
e in the left panel(ωb = 0.02, h = 0.65) 
an be �tted by both models while the values ωb = 0.042, h = 0.65(right panel), 
an only be �tted by a mixed model.then estimated after 15, 000 minimization runs using this pro
edure. It turns out that thetopology of the χ2 surfa
e on our 14-dimensional parameter spa
e (in
luding the two abovenuisan
e parameters) is quite 
ompli
ated with many lo
al minima and large degenera
ies,whi
h 
onsiderably 
ompli
ates the numeri
al sear
h. We assume that the likelihood fun
tionis Gaussian, and we maximize instead of marginalize over the parameter we are not interestedin, see � 5.1.5.In Fig. 7.1 we show the best-�t spe
tra for two di�erent 
hoi
es of the 
osmologi
al pa-rameters ωb and h. Both of them are good �ts if we allow for mixed initial 
onditions.On the plot we have also indi
ated the redu
ed χ2, i.e. the value of χ2/F , where F is thenumber of degrees of freedom of the �t. For a �xed 
hoi
e of ωb, h the purely adiabati
model has only three parameters (the amplitude of the adiabati
 mode, and the two nuisan
eparameters). With 26 data points (7 from COBE and 19 from BOOMERanG) this leads to
FAD = 26 − 3 = 23 degrees of freedom. The mixed models have a symmetri
 4 × 4 matrixdetermining the initial amplitude, leading to a total of 12 parameters and hen
e FMIX = 14degrees of freedom. If we also vary ωb and h, the number of degrees of freedom is lowered bytwo. It is not surprising that for �xed values h = 0.65, ωb = 0.02, whi
h are well �tted bythe adiabati
 model, the redu
ed χ2 of the adiabati
 model is somewhat lower than the oneof the mixed model, sin
e FMIX < FAD (as an example, see top panel of Fig. 7.1). For themixed model, the absolute χ2 is always lower.For both models we determine the likelihood fun
tions of the 
osmologi
al parameters ωband h by maximizing the initial 
onditions 
orrelation matrix and the nuisan
e parameters.
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Figure 7.2: Left panel: the 
ontours of 68%, 95%, 99% likelihood 
ontent in the (ωb, h) planefor purely adiabati
 models (shadows of green, smaller 
ontours) and for mixed models (red toyellow, large 
ontours). The likelihoods are obtained by maximizing the nuisan
e parameters,and the initial 
onditions 
orrelation matrix M for mixed (i.e. general iso
urvature) models.For mixed models, the lowest χ2 
orresponds to even higher values of ωb and h than thoseshown in the plot. Right panel: the iso
urvature 
ontent γ de�ned in (7.5) of the best �t mixedmodel as fun
tion of the parameters (ωb, h). A larger value for γ indi
ates a predominan
eof the iso
urvature modes on the adiabati
 one.The result is shown in the left panel of Fig. 7.2 where the likelihood 
ontours in the (ωb, h)plane are indi
ated for purely adiabati
 and for mixed (general iso
urvature) models. Itis remarkable the extent to whi
h the innermost 1σ 
ontour opens up, on
e we allow foriso
urvature 
omponents. Strangely, the least likely region is the upper left 
orner whi
h
ontains the value of ωb = 0.019 ± 0.02 inferred from BBN (Burles et al., 2001) and theHubble spa
e teles
ope key proje
t value for the Hubble parameter (Freedman et al., 2001)of h = 0.72 ± 0.08. Moreover, there is absolutely no upper limit for ωb within the rangeinvestigated here! This is explained by the fa
t that the strongest features of a high baryondensity universe, the asymmetry between even and odd a
ousti
 peaks and the shift of thepeak position due to the 
hange in the sound velo
ity, 
an be fully 
ompensated by anadmixture of iso
urvature modes (see left panel of Fig. 7.1). A very high baryon density 
antherefore easily be a

ommodated into this framework. However, for high ωb and low h, itis di�
ult to �nd a good �t be
ause there is not enough power in the se
ondary peak regiondue to the early integrated Sa
hs-Wolfe e�e
t boosting the �rst peak.We de�ne the iso
urvature 
ontent of a mixed model as
γ ≡ M22 +M33 +M44trM , (7.5)where M11 denotes the adiabati
 mode amplitude. The iso
urvature 
ontent of the modelshown in the left panel of Fig. 7.1 is only γ = 0.12, while for the parameter 
hoi
e in the rightpanel one has γ = 0.69. Hen
e, if the 
osmologi
al parameters are 
lose to those 
hosen inthe left panel, we 
an 
on
lude that the 
osmi
 perturbations are predominantly adiabati
.In the right panel of Fig. 7.2 we plot the iso
urvature 
ontent, γ, of the best �t modelobtained by minimizing χ2 by variation of the initial 
onditions for given values of the 
os-mologi
al parameters. Clearly, the further away we move from the region of parameter spa
e
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itywell �tted by the purely adiabati
 model, the higher the iso
urvature 
ontribution needed to�t the data be
omes.The main non-adiabati
 
omponent of our best �ts is the neutrino entropy mode. Thiswas to be expe
ted, sin
e this mode and its 
orrelator with the adiabati
 mode 
an shift thepeak positions and 
an substantially add or subtra
t power from the se
ond peak (Bu
heret al., 2000). A 
ru
ial point is, therefore, to know whether su
h a mode 
an appear ina realisti
 stru
ture formation s
enario. It is known that for intera
ting spe
ies the non-adiabati
 part of the perturbations tends to de
ay with time. Therefore, the generation of aneutrino entropy 
omponent 
an only o

ur after neutrino de
oupling, that is at T . 1 MeV(see Gordon & Malik, 2004 for a dis
ussion). A neutrino iso
urvature perturbation 
ould alsobe due to a fourth spe
ies of sterile neutrinos whi
h may have de
oupled very early in thehistory of the Universe. The same remark also applies of 
ourse to the CDM iso
urvaturemode. Note that the energy density of this fourth neutrino type 
annot be very high, in ordernot to 
ontradi
t the light element abundan
es, but there is nothing whi
h prevents (at leastin prin
iple) the presen
e of large perturbations in this 
omponent.7.2.2 How important is the assumption of adiabati
ity?We have shown that in allowing for iso
urvature perturbations, one 
an �t very well pre-WMAP CMB data with 
osmologi
al parameters whi
h di�er 
onsiderably from the onespreferred by adiabati
 perturbations alone. More importantly, allowing for generi
 initial
onditions, the ranges of 
osmologi
al parameters whi
h 
an �t the CMB anisotropy dataopen up to an extent to be
ome nearly meaningless. On the other hand, assuming measure-ments of 
osmologi
al parameters from other methods like dire
t measurements of the Hubbleparameter whi
h yield h ∼ 0.65 and BBN whi
h implies ωb ∼ 0.02, we 
an use the CMB tolimit the iso
urvature 
ontribution in the initial 
onditions (or other un
onventional features)and thereby learn something about the very early universe, i.e., the in�ationary phase whi
hhas generated these initial 
onditions. For 
osmologi
al parameters in the range preferredby other CMB independent measurements (ΩΛ ∼ 0.7, Ωm ∼ 0.3, h ∼ 0.65, ωb ∼ 0.02) theiso
urvature 
ontribution in the initial 
onditions has to be relatively modest (γ . 0.3). Wehave also 
he
ked expli
itly that, given these 
osmologi
al parameters, a purely iso
urvaturemodel, i.e. one with M11 = 0, 
annot �t the data.Finally, and most importantly, our work shows the danger of 
alling parameter estimationby CMB anisotropy experiments a �parameter measurement� sin
e the results depend so sen-sitively (and quite unexpe
tedly) on the underlying model assumptions. We rather 
onsiderCMB anisotropies as an ex
ellent tool to test model assumptions or 
onsisten
y. In the lightof these �ndings, non-CMB measurements of 
osmologi
al parameters a
quire even more im-portan
e. In short, CMB is the ideal tool to investigate the primordial parameters for 
osmi
stru
ture formation (i.e. the initial 
onditions), while there are many other possibilities to
onstrain 
osmologi
al parameters (ΩX , h, et
), whi
h we have to use in order to obtain goodlimits for possible iso
urvature perturbations.As shown in Bu
her et al. (2001) and dis
ussed in � 7.4, CMB temperature anisotropiesalone, even if measured with optimal pre
ision limited by 
osmi
 varian
e, do not allow thedegenera
y between 
osmologi
al parameters and initial 
onditions to be removed. Polariza-tion measurements represent an additional non-trivial means to lift this degenera
y and might
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onstrain the 
ontribution of the iso
urvature modes to about 10% a

ura
y (Bu
her et al.,2001). The main reason for this is that polarization is mostly sensitive to the quadrupoleof the photon distribution rather than the photon density perturbation, these two quantitiesdepending in a di�erent way on the initial 
onditions. In the same vein, using the normal-ization of the matter power spe
trum (provided it 
an be measured a

urately) also helps tobreak some of the degenera
ies indu
ed by the iso
urvature modes, as we show in the nextse
tion.
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ity7.3 The 
osmologi
al 
onstant problemEver sin
e the beginning of modern 
osmology, one of the most enigmati
 ingredients hasbeen the 
osmologi
al 
onstant. Einstein (1917) introdu
ed it to �nd stati
 
osmologi
alsolutions (whi
h are, however, unstable). Later, when the expansion of the Universe hadbeen established, he reportedly 
alled it his �greatest blunder�. In relativisti
 quantum �eldtheory, for symmetry reasons the va
uum energy momentum tensor is of the form ǫgµν forsome 
onstant energy density ǫ. The quantity Λ = 8πGǫ 
an be interpreted as a 
osmologi
al
onstant. Typi
al values of ǫ expe
ted from parti
le physi
s 
ome, for example, from thesuper-symmetry breaking s
ale whi
h is expe
ted to be of the order of ǫ>∼ 1 TeV4 leading to
Λ>∼ 1.7×10−26 GeV2, and 
orresponding to ΩΛ>∼ 1058. Re
all that for the density parameter
ΩΛ ≡ ǫ/ρcrit = Λ/(8πGρcrit), where ρcrit = 8.1×10−47 h2 GeV4 is the 
riti
al density and thefudge fa
tor h is de�ned by H0 = 100h km s−1 Mpc−1, lying in the interval 0.5 . h . 0.8.
H0 is the Hubble parameter today.Su
h a result is 
learly in 
ontradi
tion with kinemati
al observations of the expansionof the universe, whi
h tell us that the value of Ωtot, the density parameter for the totalmatter-energy 
ontent of the universe, is of the order of unity, O(Ωtot) ∼ 1. For a long time,this apparent 
ontradi
tion has been a

epted by most 
osmologists and parti
le physi
ists,
onvin
ed that there must be some deep, not yet understood reason that va
uum energy� whi
h is not felt by gauge-intera
tions � does not a�e
t the gravitational �eld either,and hen
e we measure e�e
tively Λ = 0. This slightly unsatisfa
tory situation be
amereally disturbing in 1998, as two groups, whi
h had measured luminosity distan
es to typeIa supernovae, independently announ
ed that the expansion of the universe is a

eleratedin the way expe
ted in a universe dominated by a 
osmologi
al 
onstant (Riess et al., 1998;Perlmutter et al., 1999). More re
ent measurements, whi
h extend to higher redshift, seemto strengthen this 
on
lusion (Tonry et al., 2003; Riess et al., 2004), obtaining values of theorder O(Ωm) ∼ O(ΩΛ) ∼ 1 and 
annot be explained by any sensible high energy physi
smodel. Tra
king s
alar �elds or quintessen
e (Ratra & Peebles, 1988; Wetteri
h, 1988) andother similar ideas (Ferreira & Joy
e, 1997) have been introdu
ed in order to mitigate thesmallness problem � i.e., the fa
t that ǫ ∼ 10−46 GeV4. However, none of those is 
ompletelysu

essful and really 
onvin
ing at the moment, see Straumann (2003); Sahni (2004) forreviews.7.3.1 Does stru
ture formation need a 
osmologi
al 
onstant?After the supernovae Ia results, 
osmologists have found many other data-sets whi
h alsorequire a non-vanishing 
osmologi
al 
onstant. The most prominent fa
t is that CMBanisotropies indi
ate a �at universe, Ωtot = Ωm + ΩΛ = 1, while measurements of 
lus-tering of matter, e.g., the galaxy power spe
trum, require Γ ≡ hΩm ≃ 0.2. But also CMBdata alone, with some reasonable prior on the Hubble parameter, point to ΩΛ > 0 at highsigni�
an
e (Spergel et al., 2003).This 
osmologi
al 
onstant problem is probably the greatest enigma in present 
osmology.The supernova results are therefore under detailed s
rutiny, and there has been a signi�
antamount of work aiming at �nding an alternative explanation for the data, see e.g. Meszaros(2002); Blan
hard et al. (2003); Alam et al. (2004). Cosmologi
al observations are usually
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al 
onstant problem 181very sensitive to systemati
 errors whi
h are often very di�
ult to dis
over. Therefore, in
osmology an observational result is usually a

epted by the s
ienti�
 
ommunity only ifseveral independent data-sets lead to the same 
on
lusion. But this seems to be exa
tly the
ase for the 
osmologi
al 
onstant.It is therefore imperative to investigate in detail whether present stru
ture formation datadoes require a 
osmologi
al 
onstant, by asking whether enlarging the spa
e of models forstru
ture formation does mitigate the 
osmologi
al 
onstant problem. There are several waysto enlarge the model spa
e, e.g. one may allow for features in the primordial power spe
trum,like a kink (Barriga et al., 2001). Here we study the 
osmologi
al 
onstant problem in relationto the initial 
onditions for the 
osmologi
al perturbations.In a �rst step we dis
uss on
e more the usual results obtained assuming purely adiabati
models and we investigate the extent to whi
h pre-WMAP CMB data alone or 
ombined withlarge-s
ale stru
ture measurements require ΩΛ 6= 0 in a �at universe, presenting the �ndingspublished in Trotta et al. (2003). We shall �rst pro
eed with the usual Bayesian analysis,but we also dis
uss the results whi
h are obtained in a frequentist approa
h. We �nd thateven if ΩΛ = 0 is outside the high likelihood region in a Bayesian approa
h this is no longerthe 
ase from the frequentist point of view. In other words the probability that a model withvanishing ΩΛ leads to the present-day observed CMB and large-s
ale stru
ture data is notex
eedingly small.We then study how the results are modi�ed if we allow for general iso
urvature 
ontribu-tions to the initial 
onditions. In this �rst study of the matter power spe
trum from generaliso
urvature modes we dis
over that a COBE-normalized matter power spe
trum reprodu
esthe observed amplitude only if it is highly dominated by the adiabati
 
omponent. Hen
e theiso
urvature modes 
annot 
ontribute signi�
antly to the matter power spe
trum and do notlead to a degenera
y in the initial 
onditions for the matter power spe
trum when 
ombinedwith CMB data.7.3.2 CMB and large s
ale stru
ture data analysisThe pre-WMAP CMB measurements, from BOOMERanG (Netter�eld et al., 2002), MAX-IMA (Lee et al., 2001), DASI (Halverson et al., 2002), VSA (S
ott et al., 2003; Taylor et al.,2003), CBI (Pearson et al., 2003) and Ar
heops (Benoit et al., 2003a) are in very good agree-ment up to the third peak in the angular temperature power spe
trum of CMB anisotropies,
ℓ ∼ 1000. In our analysis we therefore use the COBE data (Smoot et al., 1992; Bennett et al.,1994) in the de
orrelated 
ompilation of Tegmark & Hamilton (1997) (7 points ex
luding thequadrupole) for the ℓ region 3 ≤ ℓ ≤ 20 and the BOOMERanG data to 
over the higher
ℓ part of the spe
trum (19 points in the range 100 ≤ ℓ ≤ 1000). Sin
e Ar
heops has thesmallest error bars in the region of the �rst a
ousti
 peak, we also in
lude this data-set (16points in the range 15 ≤ ℓ ≤ 350). In
luding any of the other mentioned data does not in�u-en
e our results signi�
antly. The BOOMERanG and Ar
heops absolute 
alibration errors(10% and 7% at 1σ, respe
tively) as well as the un
ertainty of the BOOMERanG beam sizeare in
luded as additional Gaussian nuisan
e parameters, and are maximized over. We makeuse of the Ar
heops window fun
tions available from the Ar
heops Website (2003), whilefor BOOMERanG a top-hat window is assumed. For the matter power spe
trum, we usethe galaxy-galaxy power spe
trum from the 2dF data whi
h is obtained from the redshift of
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ityabout 105 galaxies (Tegmark et al., 2002). We in
lude only the 22 de
orrelated points in thelinear regime, i.e., in the range 0.017 ≤ k ≤ 0.314 [h Mpc−1], and the window fun
tions ofTegmark et al. (2002) whi
h 
an be found at Tegmark's Website (2003).Our grid of models is restri
ted to �at universes and we assume purely s
alar perturbations.Sin
e the goal here is more to make a 
on
eptual point than to 
onsider the most generi
model, we �x the baryon density to the BBN preferred value Ωbh
2 ≡ ωb = 0.020 (Burleset al., 2001) and we investigate the following 3-dimensional grid in the spa
e of 
osmologi
alparameters:

0.35 < h < 1.00 (0.025) ,

0.00 < ΩΛ< 0.95 (0.05) , (7.6)
0.80 < ns < 1.20 (0.05) ,where ns is the s
alar spe
tral index, whi
h again we take to be the same for all modes, and thenumbers in parenthesis give the step size we use. The total matter 
ontent Ωm ≡ Ω
dm + Ωbis Ωm = 1 − ΩΛ, and Ω
dm indi
ates the 
old dark matter 
ontribution. For all models theopti
al depth of reionization is τ = 0 and we have three families of massless neutrinos. Forea
h grid point we 
ompute the ten CMB and matter power spe
tra, one for ea
h independentset of initial 
onditions, as explained in � 4.3. The initial 
ondition 
orrelation matrix M isparameterized using the ten dimensional hyper
ube parameters presented on page 96.For a given initial 
onditions 
orrelation matrix M and spe
tral index ns, we quantifythe iso
urvature 
ontribution to the CMB temperature anisotropy by the phenomenologi
alparameter β de�ned as

β ≡

∑

X=CI,NV,ND

〈

(ℓ(ℓ+ 1))C(X,X)

ℓ

〉

ℓ

∑

Y =AD,CI,NV,ND

〈

ℓ(ℓ+ 1)C(Y,Y )

ℓ

〉

ℓ

, (7.7)where the average 〈·〉 is taken in the ℓ range of interest, in our 
ase 3 ≤ ℓ ≤ 1000, andwhere C(X,X)

ℓ stands for the auto-
orrelator of the CMB anisotropies with initial 
onditions
X. This quantity measures the average power of the adiabati
 and iso
urvature modes overthe full multipole range, and therefore it gives a more phenomenologi
al des
ription of theiso
urvature 
ontribution than the parameter γ used in the previous se
tion, and de�ned inEq. (7.5, page 177).As highlighted in � 5.1.5, the 
orre
t interpretation of Bayesian statisti
s is in terms ofmost likely regions in parameter spa
e, while the frequentist approa
h is required in order toobtain ex
lusion intervals for the parameters. In order to answer the question of whether theCMB and large s
ale stru
ture data ex
lude with a given 
on�den
e the value ΩΛ = 0, weuse the frequentist statisti
s, and 
ompare the result with the usual Bayesian approa
h.7.3.3 Adiabati
 perturbationsWe �rst �t CMB data only (N = 42) by maximizing M = 7 parameters, i.e., the threenuisan
e parameters, ns, h, ΩΛ and the overall amplitude of the adiabati
 spe
trum, and we�nd (Bayesian likelihood intervals on ΩΛ alone):

ΩΛ = 0.80+0.10
−0.35 at 2σ and +0.12

−0.80 at 3σ. (7.8)
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Figure 7.3: Joint likelihood 
ontours (Bayesian, left panel) and 
on�den
e 
ontours (frequen-tist, right panel), with CMB only (solid lines,1σ, 2σ, 3σ 
ontours) and CMB+2dF (�lled)for purely adiabati
 initial 
onditions. In the right panel, the number of e�e
tive degrees offreedom is Feff = 31 for CMB alone Feff = 50 for CMB+2dF.The asymmetry in the intervals arises be
ause the value of ΩΛ for our maximum likelihood(ML) model is relatively large. One 
ould a
hieve a better pre
ision in determining the MLvalue of ΩΛ by using a �ner grid and varying ωb as well, whi
h has extensively been done inthe literature and is not the s
ope of this work. Moreover, the position of the a
ousti
 peaksin CMB anisotropies is mostly sensitive to the age of the universe at re
ombination, whi
hdepends only on Ωmh
2, and to the angular diameter distan
e, whi
h depends on Ωm, ΩΛand the 
urvature of the universe. When the universe is �at, the angular diameter distan
eis weakly dependent on the relative amounts of Ωm and ΩΛ as long as ΩΛ is not too large,see � 4.1.2 and Fig. 4.1 on page 84. Hen
e, one 
an a
hieve a su�
iently low value of Ωmh

2either via a large 
osmologi
al 
onstant or via a very low Hubble parameter, h<∼ 0.45.We now in
lude the matter power spe
trum Pm, assuming Pm = b2Pg, where Pg is theobserved galaxy power spe
trum and b some unknown bias fa
tor (assumed to be s
ale in-dependent), over whi
h we maximize. In
lusion of this data in the analysis breaks the ΩΛ,
h degenera
y, sin
e Pm is mainly sensitive to the shape parameter Γ ≡ Ωmh. We thereforeobtain signi�
antly tighter overall likelihood intervals for ΩΛ:

ΩΛ = 0.70+0.13
−0.17 at 2σ and +0.15

−0.27 at 3σ . (7.9)We plot joint likelihood 
ontours (Bayesian) for ΩΛ, h with purely adiabati
 initial 
onditionsin the left panel of Fig. 7.3. From the Bayesian analysis, one 
on
ludes that CMB and 2dFtogether require a non-zero 
osmologi
al 
onstant at very high signi�
an
e, more than 7σfor the points in our grid! Note that the ML point has a redu
ed 
hi-square χ̂2
F=56 = 0.59,signi�
antly less than unity.The frequentist analysis, however, ex
ludes a mu
h smaller region of parameter spa
e, 
f.the right panel of Fig. 7.3. The frequentist 
ontours must be drawn for the e�e
tive numberof degrees of freedom, i.e., using the number of e�e
tively independent data points. We 
antherefore roughly take into a

ount a 10% 
orrelation, whi
h is the maximum 
orrelationbetween data points given in Netter�eld et al. (2002); Benoit et al. (2003a), by repla
ing F



184 Testing the paradigm of adiabati
ityby the e�e
tive number of degrees of freedom, Feff = 0.9N −M , and rounding to the nextlarger integer (to be 
onservative). One 
ould argue that the BOOMERanG and Ar
heopsdata points are not 
ompletely independent, sin
e BOOMERanG observed a portion of thesame sky pat
h as measured by Ar
heops. This possible 
orrelation is di�
ult to quantify,but should not be too important sin
e the sky portion observed by Ar
heops is a fa
tor of10 larger than BOOMERanG's and therefore we ignore it here. The right panel of Fig. 7.3is drawn with Feff = 31 for CMB alone and Feff = 50 for CMB+2dF, but we have 
he
kedthat our results do not 
hange mu
h if we use a 5% 
orrelation.It is interesting to note that there are regions in the left panel whi
h are ex
luded witha 
ertain 
on�den
e by CMB data alone but are no longer ex
luded at the same 
on�den
ewhen we in
lude the 2dF data. In other words, it would seem that taking into a

ount moredata and therefore more knowledge about the universe, does not systemati
ally ex
lude moremodels, i.e., the CMB+2dF 
ontours are not always 
ontained in the CMB alone 
ontours.This apparent 
ontradi
tion vanishes when one realizes that the 
on�den
e limits on, e.g.,
ΩΛ alone in the frequentist approa
h are just the proje
tion of the 
on�den
e 
ontours ofthe right panel on the ΩΛ axis. One 
an readily verify in the right panel that the 
on�den
elimits for the 
ombined data-set are always smaller than the ones for CMB data alone. Thereare points with ΩΛ = 0 and h ≃ 0.40 whi
h are still 
ompatible within 2σ with both 2dFand CMB data, at the pri
e of pushing somewhat the other parameters. In the best �t with
ΩΛ = 0 shown in Fig. 7.4, one has to live with a red spe
tral index ns = 0.80. Furthermore,the 
alibration of the BOOMERanG and Ar
heops data points is redu
ed in this �t by 34%and 26%, respe
tively, i.e., more than 3 times the quoted 1σ systemati
 error.In both 
ases, it is 
lear that one 
an exploit the ΩΛ, h degenera
y to �t CMB dataalone with a model having ΩΛ = 0. For a �at universe like the one we are 
onsidering,one has then to use a mu
h smaller value of the Hubble parameter than the one indi
atedby other measurements, most notably the HST Key Proje
t (Freedman et al., 2001), whi
hgives h = 0.72 ± 0.08. The 2dF data are mainly sensitive to the shape parameter Γ ∼ 0.2,hen
e 2dF with Ωm = 1.0 would require an even lower value of h whi
h is not 
ompatible withCMB. Therefore in
lusion of 2dF data tends to ex
lude any �at model without a 
osmologi
al
onstant. Summing up, for purely adiabati
 initial 
onditions the Bayesian approa
h givesvery strong support to ΩΛ 6= 0; in the more 
onservative frequentist point of view, while ΩΛ 6=
0 
annot be ex
luded with very high 
on�den
e, the 
ombination of 2dF and pre-WMAPCMB data start to be in
ompatible with a �at universe with vanishing 
osmologi
al 
onstant.These 
on
lusions are in qualitative agreement with previous works using 
omparable data(Netter�eld et al., 2002; Pryke et al., 2002; Lewis & Bridle, 2002; Wang et al., 2002; Durreret al., 2003b; Rubino-Martin et al., 2003; Benoit et al., 2003b). In the next se
tion weinvestigate the stability of these well known results with respe
t to in
lusion of non-adiabati
initial 
onditions.7.3.4 Mixed adiabati
 and iso
urvature perturbationsWe now enlarge the spa
e of models by in
luding all possible iso
urvature modes with ar-bitrary 
orrelations among themselves and the adiabati
 mode as des
ribed in the previousse
tion, but with the restri
tion that all modes have the same spe
tral index. We �rst 
onsiderCMB data only and maximize over initial 
onditions. The number of parameters in
reases
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Figure 7.4: Best �t with ΩΛ = 0 and purely adiabati
 initial 
onditions, 
ompatible withCMB and 2dF data within 2σ 
on�den
e level (frequentist). In the right panel, only the 2dFdata points left of the verti
al, dotted line � i.e., in the linear region � have been in
ludedin the analysis. Note the low CMB �rst a
ousti
 peak in the left panel due to the joint e�e
tof the red spe
tral index and of the absen
e of early ISW e�e
t. In this �t, the 
alibration ofBOOMERanG (red/dark gray errorbars) and Ar
heops (green/light gray errorbars) has beenredu
ed by 34% and 26%, respe
tively. To appre
iate the di�eren
e, we plot the non re
al-ibrated value of the BOOMERanG and Ar
heops data points as diagonal/magenta 
rossesand verti
al/light blue 
rosses, respe
tively. Even though the �t is �by eye� very good, itseems highly unlikely that the 
alibration error is so large.by nine and the number of degrees of freedom de
reases 
orrespondingly with respe
t to thepurely adiabati
 
ase 
onsidered above.Likelihood (Bayesian, left panel of Fig. 7.5) and 
on�den
e (frequentist, right panel ofFig. 7.5) 
ontours widen up somewhat along the degenera
y line. The enlargement is lessdramati
 than in the 
ase of the baryon density presented in � 7.2. This is partially due toour prior of �atness whi
h redu
es the spa
e of models to those whi
h are almost degeneratein the angular diameter distan
e. Most of our models have the �rst a
ousti
 peak of theadiabati
 mode already in the region preferred by experiments, hen
e in most of the �ts,iso
urvature modes play a modest role, espe
ially in the parameter regions with large ΩΛ,
h (
f. Fig. 7.9 and the dis
ussion below). Nevertheless, be
ause of the ΩΛ, h degenera
y,even a modest widening of the 
ontours along the degenera
y line results in an importantenlargement of the likelihood limits. The ML point does not depart very mu
h from thepurely adiabati
 
ase, but now we 
annot 
onstrain ΩΛ at more than 1σ (Bayesian, CMBonly):

ΩΛ = 0.85+0.05
−0.35 at 1σ , (7.10)and no limits for 0.0 ≤ ΩΛ ≤ 0.95 at higher 
on�den
e.In Fig. 7.6 we plot the dark matter power spe
tra of the di�erent auto- (left panel) and



186 Testing the paradigm of adiabati
ity

0.40

0.50

0.60

0.70

0.80

0.90

1.00

H
u

b
b

le
 p

ar
am

et
er

 h

0.00 0.20 0.40 0.60 0.80

ΩΛ

General IC

H
u

b
b

le
 p

ar
am

et
er

 h

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80
ΩΛ

General IC

Figure 7.5: Joint likelihood 
ontours (Bayesian, left panel) and 
on�den
e 
ontours (frequen-tist, right panel), with CMB only (solid lines) and CMB+2dF (�lled) after maximization overgeneral iso
urvature initial 
onditions. The likelihood/probability 
ontent is 1σ, 2σ, 3σ, fromthe 
enter to the outside. The dis
onne
ted 1σ region in the left panel is an arti�
ial featuredue to the grid resolution. In the right panel, the number of e�e
tive degrees of freedom is
Feff = 22 for CMB alone Feff = 41 for CMB+2dF.
ross-
orrelators (right panel) for a 
on
ordan
e model. The norm of ea
h pure mode (AD, CI,ND, NV) is 
hosen su
h that the 
orresponding CMB power spe
trum is COBE-normalized.The 
ross-
orrelators are normalized a

ording to totally 
orrelated spe
tra, i.e.

M(X,Y) =
√

MXMY/2 , (7.11)where M(X,Y) denotes the norm of the 
ross-
orrelator between the modes X,Y and MXthe norm of the pure mode X. A 
ru
ial result is that the COBE-normalized amplitudeof the adiabati
 matter power spe
trum is nearly two orders of magnitude larger than theiso
urvature 
ontribution. The main reason for this is the amplitude of the Sa
hs-Wolfeplateau whi
h is about 1
3Φ for adiabati
 perturbations and 2Φ for iso
urvature perturbations,where Φ is the gravitational potential at last s
attering, see Eq. (4.3) and Eq. (4.4, page 79).This di�eren
e of a fa
tor of about 36 in the power spe
trum on large s
ales is 
learly visiblein the 
omparison of PAD and PCI (the di�eren
e in
reases at smaller s
ales). The 
ase ofthe neutrino modes is even worse sin
e they start with vanishing dark matter perturbations.That the CDM iso
urvature matter power spe
trum is mu
h lower than the adiabati
 onehas been known for some time (see e.g. Stompor et al., 1996; Pierpaoli et al., 1999). However,it was not re
ognized before that the same holds true for the neutrino iso
urvature matterpower spe
tra as well, and � more importantly � that this leads to a way to break the strongdegenera
y among initial 
onditions whi
h is present in the CMB power spe
trum alone.In an analysis with general initial 
onditions in
luding the 2dF data only we obtain verybroad likelihood and 
on�den
e 
ontours whi
h ex
lude only the lower right 
orner of the

(ΩΛ, h) plane. In 
ontrast to the CMB power spe
trum, the matter power spe
trum 
an be�tted with extremely high adiabati
 and iso
urvature 
ontributions, whi
h are then typi
ally
an
elled by large anti-
orrelations between the spe
tra. This behavior is exempli�ed fora model with general iso
urvature initial 
onditions and ΩΛ = 0.70, h = 0.65, ns = 1.0
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Figure 7.6: Dark matter power spe
tra of the di�erent auto- (left panel) and 
ross-
orrelators(right panel) for a 
on
ordan
e model with ΩΛ = 0.70, h = 0.65, ns = 1.0, ωb = 0.020,with the 
orresponding CMB power spe
trum COBE-normalized. The 
olor and line style
odes are as follows: in the left panel, adiabati
 (AD): solid/bla
k line; CDM iso
urva-ture (CI): dotted/green line; neutrino density (ND): short-dashed/red line; neutrino ve-lo
ity (NV): long-dashed/blue line; in the right panel, AD: solid/bla
k line (for 
ompari-son), 〈AD,CI〉: long-dashed/magenta line, 〈AD,ND〉: dotted/green line, 〈AD,NV〉: short-dashed/red line, 〈CI,ND〉: dot-short dashed/blue line, 〈CI,NV〉: dot-long dashed/light-blueline, and 〈ND,NV〉: dot-short dashed/bla
k line. The adiabati
 mode is by far dominantover all others.in Fig. 7.7. The best �ts with 2dF data only are dominated by large iso
urvature 
ross-
orrelations. Clearly, the resulting CMB power spe
trum is highly in
onsistent with theCOBE data. Hen
e su
h �bizarre� possibilities are immediately ruled out on
e we in
ludeCMB data. Conversely, moderate iso
urvature 
ontributions 
an help �tting the CMB data,and do not in�uen
e the matter power spe
trum, whi
h is 
ompletely dominated by theadiabati
 mode alone.Combining CMB and 2dF data we �nd now (Bayesian, mixed iso
urvature models):
ΩΛ = 0.65+0.22

−0.25 at 2σ and +0.25
−0.48 at 3σ . (7.12)The likelihood limits are larger than for the purely adiabati
 
ase but it is interesting that theBayesian analysis still ex
ludes ΩΛ = 0 at more than 3σ even with general initial 
onditions,for the 
lass of models 
onsidered here. Be
ause of the above explained reason, the wideningof the limits is not as drasti
 as one might fear. Therefore, 
ombination of CMB and LSSmeasurements turn out to be an ideal tool to 
onstrain the iso
urvature 
ontribution to theinitial 
onditions.From the frequentist point of view, one noti
es that the region in the ΩΛ, h plane whi
his in
ompatible with data at more than 3σ is nearly independent on the 
hoi
e of initial
onditions (
ompare the right panels of Fig. 7.3 and Fig. 7.5). Enlarging the spa
e of initial
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Figure 7.7: Con
ordan
e model �t with general iso
urvature initial 
onditions and 2dF dataonly. The total spe
trum (solid/bla
k) is the result of a large 
an
ellation of the purelyadiabati
 part (long-dashed/red) by the large, negative sum of the various 
orrelators (dot-ted/magenta, plotted in absolute value). The short-dashed/green 
urve is the sum of thethree pure iso
urvature modes, CI, ND and NV. Note that the resulting total spe
trum isless than one tenth of the purely adiabati
 part.
onditions seemingly does not have a relevant bene�t on �tting CMB and 2dF data with orwithout a 
osmologi
al 
onstant. The reason for this is that the (COBE-normalized) matterpower spe
trum is dominated by its adiabati
 
omponent and therefore the requirement
Ωmh ∼ 0.2 remains valid. In Fig. 7.8 we plot the best �t model with general initial 
onditionsand ΩΛ = 0. We summarize our likelihood and 
on�den
e intervals on ΩΛ (this parameteronly) in Table 7.1.In Fig. 7.9 we plot the iso
urvature 
ontribution to the best �t models with CMB and 2dFin terms of the parameter β de�ned in (7.7). The best �t with ΩΛ = 0 has an iso
urvature
ontribution of about 40%. We 
an put a 
onstraint on the maximal iso
urvature 
ontributionallowed by 
ombining this plot with the ex
lusion plot obtained with the frequentist approa
h,Fig. 7.5 right panel. The result is that frequentist statisti
s limits the iso
urvature 
ontent
β to be

β <∼ 0.4 (2σ 
.l.). (7.13)7.3.5 Do iso
urvature perturbations mitigate the Λ problem?There are three main 
on
lusions we 
an draw from these results. The �rst one is not new, butseems to be dangerously forgotten in re
ent 
osmologi
al parameters estimation literature:namely that likelihood 
ontours 
annot be used as �ex
lusion plots�. The latter are usually
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Figure 7.8: Best �t with general iso
urvature models and ΩΛ = 0. As for the purely adiabati

ase, even with general initial 
onditions the absen
e of the 
osmologi
al 
onstant suppressesin an important way the height of the �rst peak. In both panels we plot the best total spe
-trum (solid/bla
k), the purely adiabati
 
ontribution (long-dashed/red), the sum of the pureiso
urvature modes (short-dashed/green) and the sum of the 
orrelators (dotted/magenta,multiplied by −1 in the left panel and in absolute value in the right panel). The matterpower spe
trum is 
ompletely dominated by the adiabati
 mode, while the 
orrelators playan important role in 
an
elling unwanted 
ontributions in the CMB power spe
trum at thelevel of the �rst peak and espe
ially in the COBE region. For this model we have an iso
ur-vature 
ontent β = 0.39, while the BOOMERanG and Ar
heops 
alibrations are redu
ed by
28% and 12%, respe
tively. The 
olor 
odes for the error-bars are the same as in Fig. 7.4.substantially wider, less stringent. A more rigorous possibility are frequentist probabilities,whi
h however su�er from the dependen
e on the number of really independent measurementswhi
h is often very di�
ult to 
ome by.Se
ondly, we have found that in COBE-normalized �u
tuations, the matter power spe
-trum has negligible iso
urvature 
ontributions and is essentially given by the adiabati
 mode.Hen
e the shape of the observed matter power spe
trum still requires Ωmh ≃ 0.2, indepen-dent of the 
hoi
e of initial 
onditions. Due to this behavior, the 
ondition Ω = ΩΛ +Ωm = 1requires either a 
osmologi
al 
onstant or a very small value for the Hubble parameter, inde-pendently from the iso
urvature 
ontribution to the initial 
onditions.The third 
on
lusion 
on
erns the presen
e of a 
osmologi
al 
onstant from pre-WMAPCMB data 
ombined with the 2dF matter power spe
trum: For �at models, a likelihood(Bayesian) analysis strongly favors a non-vanishing 
osmologi
al 
onstant. Even if we allowfor iso
urvature 
ontributions with arbitrary 
orrelations, a vanishing 
osmologi
al 
onstantis still outside the 3σ likelihood range. It is possible that there are open models, whi
h we didnot 
onsider here, in whi
h the NV mode would be dominant,: this be
ause it presents a �rsta
ousti
 peak at ℓ = 170 in �at models, whi
h would be displa
ed to a larger multipole value,as preferred by data, in an open Universe, thereby possibly giving a good �t to CMB data
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Figure 7.9: Iso
urvature 
ontent 0.0 ≤ β ≤ 1.0 of best �t models with CMB and 2dF data.The 
ontours are for β = 0.20, 0.40, 0.60, 0.80 from the 
enter to the outside.Purely adiabati
Bayesian1 Frequentist2Data-sets ΩΛ 1σ 2σ 3σ 1σ 2σ 3σ F χ2/FCMB 0.80 +0.08
−0.08

+0.10
−0.35

+0.12
− < 0.93 − − 35 0.58CMB +2dF 0.70 +0.05

−0.05
+0.13
−0.17

+0.15
−0.27 ΩΛ

<0.90
>0.15 < 0.92 < 0.92 56 0.59General iso
urvatureCMB 0.85 +0.05

−0.35 − − − − − 26 0.74CMB+2dF 0.65 +0.15
−0.10

+0.22
−0.25

+0.25
−0.48 < 0.90 < 0.92 < 0.95 47 0.67

1 Likelihood interval.
2 Region not ex
luded by data with given 
on�den
e.Table 7.1: Likelihood (Bayesian) and 
on�den
e (frequentist) intervals for ΩΛ alone (all otherparameters maximized). A bar, −, indi
ates that at the given likelihood/
on�den
e level theanalysis 
annot 
onstraint ΩΛ in the range 0.0 ≤ ΩΛ ≤ 0.95. Where the quoted interval issmaller than our grid resolution, an interpolation between models has been used.and allow for the observed shape parameter Γ with a reasonable value of h. This questionremains to be investigated in detail.The situation 
hanges 
onsiderably in the frequentist approa
h. There, even for purelyadiabati
 models, ΩΛ = 0 is still within 3σ for a value of h ≤ 0.48 whi
h is marginallydefendable. The 
on
lusion does not 
hange very mu
h when we allow for generi
 initial
onditions.
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osmology independent of initial 
onditions 1917.4 Pre
ision 
osmology independent of initial 
onditionsAs we have seen, it is di�
ult to simultaneously 
onstrain both the type of initial 
onditionsand the 
osmologi
al parameters using CMB alone. The future high a

ura
y measurementsof CMB polarization will help substantially in breaking degenera
ies between initial 
ondi-tions. The degenera
ies in the parameter dependen
e of temperature and polarization arealmost orthogonal, and polarization 
an therefore lift ��at dire
tions� in parameter spa
e.To determine 
osmologi
al parameters independently on the initial 
onditions, one in-
ludes general iso
urvature modes, and then marginalize over them. Bu
her et al. (2002,2001) 
onsidered fore
asts for WMAP and Plan
k, and found that admitting iso
urvaturemodes would ruin the ability of WMAP to determine the 
osmologi
al parameters with tem-perature information only. They also highlighted that polarization measurements would bede
isive in assisting into the re
onstru
tion of the 
osmologi
al parameters when allowingfor general iso
urvature initial 
onditions. Their results were obtained with a Fisher matrixanalysis on a 
osmologi
al parameter set whi
h, a

ording to Kosowsky et al. (2002), leads tolarge overestimates of the expe
ted errors. We have reprodu
ed their study (Trotta & Durrer,2004), using for the Fisher matrix fore
ast the normal parameter set des
ribed in � 4.2 sothat we obtain fore
asts not for the highly degenerate dire
tions de�ned by the 
osmologi
alparameters, but rather for orthogonal 
ombinations whi
h are well measured by the CMB.Along these dire
tions, fore
asts are mu
h more reliable. The main features are summarizedin Fig. 7.10, where we plot the expe
ted 1σ error in per
ent for the six quantities whi
h aredire
tly probed by the CMB with good a

ura
y (see �gure 
aption). We omit the energydensity in the 
osmologi
al 
onstant, whi
h is ill-determined with CMB alone be
ause of the
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ast for the per
ent 1σ errors on six quantities whi
h arewell determined by CMB alone with and without in
lusion of general iso
urvature initial
onditions. The left (right) panel is a fore
ast for WMAP four year mission (Plan
k). Fromleft to right, on the abs
issa axis: the baryon density, ωb, the angular diameter distan
e

DA, the redshift of matter-radiation equality zeq, the s
alar spe
tral index ns, the s
alaradiabati
 amplitude AAd and a fun
tion of the opti
al depth to reionization, τre. In thelegend, �AD� means that only adiabati
 �u
tuations were in
luded, �iso� means that generaliso
urvature modes were in
luded and marginalized over. �TT� uses temperature informationalone, �T+P� has temperature, E-T 
orrelation and E-polarization.
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itygeometri
al degenera
y. We do not restri
t our analysis to �at models, but in
lude spa
eswith non-zero 
urvature.For WMAP the errors on normal parameters will in
rease roughly by a fa
tor ten withrespe
t to the purely adiabati
 s
enario if one marginalizes over general initial 
onditions,when temperature information alone is 
onsidered (
f. �rst and third bar in the left panel).When the full polarization information is in
luded, however, the errors will still be withinapproximately 10 to 30% even in the general iso
urvature s
enario. From the right panel, wededu
e that for the Plan
k experiment the worsening of the errors will be mu
h less if the highquality polarization information is in
luded. Roughly speaking, by in
luding iso
urvaturemodes we expe
t errors whi
h are larger than in the adiabati
 
ase by about a fa
tor of two,but mostly still within the few per
ent a

ura
y. These �ndings are in qualitative agreementwith Bu
her et al. (2001), while providing a quantitatively more reliable estimate of theexpe
ted a

ura
y.This shows that the CMB alone will be able to provide high pre
ision 
osmology even ifthe strong assumption of purely adiabati
 initial 
onditions will be relaxed. Combining CMBresults with other observation whi
h independently 
onstrain the 
osmologi
al parameters,will enable us to fully open this window to the mysterious epo
h of the very early universe.
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