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Abstract

We present recent results aiming at assessing the coveiguerties of Bayesian
and frequentist inference methods, as applied to the r&cmtion of super-
symmetric parameters from simulated LHC data. We discussstatistical
challenges of the reconstruction procedure, and hightlghtalgorithmic dif-
ficulties of obtaining accurate profile likelihood estinsate

1 Introduction

Experiments at the Large Hadron Collider (LHC) have alrestdyted testing many models of particle
physics beyond the Standard Model (SM), and particulantitte is being paid to the Minimal Super-
symmetric SM (MSSM) and to other scenarios involving sefttpken supersymmetry (SUSY).

In the last few years, parameter inference methodologies lbeen developed, applying both Fre-
guentist and Bayesian statistics (see elg!,|[1-6]). Whiteeffficiency of Markov Chain Monte Carlo
(MCMC) techniques has allowed for a full exploration of nidithensional models, the likelihood func-
tion from present data is multimodal with many narrow feagiimaking the exploration task with con-
ventional MCMC methods challenging. A powerful alternatio classical MCMC has emerged in the
form of Nested Sampling [7], a Monte Carlo method whose prynam is the efficient calculation
of the Bayesian evidence, or model likelihood. As a by-pmdthe algorithm also produces samples
from the posterior distribution. Those same samples cantaused to estimate the profile likelihood.
MULTINEST [8], a publicly available implementation of the nested shngpalgorithm, has been shown
to reduce the computational cost of performing Bayesiatyaisatypically by two orders of magnitude
as compared with basic MCMC techniquesuMiNEST has been integrated in tiSaperBayeS codé
for fast and efficient exploration of SUSY models.

Having implemented sophisticated statistical and scanmiethods, several groups have turned
their attention to evaluating the sensitivity to the choiéegriors [4/9[10] and of scanning algorithms
[11]. Those analyses indicate that current constraintxarestrong enough to dominate the Bayesian
posterior and that the choice of prior does influence thdtiaguinference. While confidence intervals
derived from the profile likelihood or a chi-square have nwrfal dependence on a prior, there is a sam-
pling artifact when the contours are extracted from sampleduced from Bayesian sampling schemes,
such as MCMC or MLTINEST [10].

Given the sensitivity to priors and the differences betwienintervals obtained from different
methods, it is natural to seek out a quantitative assessofiémeir performance, namely theioverage:
the probability that an interval will contain (cover) theérvalue of a parameter. The defining property
of a 95% confidence interval is that the procedure adopteitsfestimation should produce intervals that
cover the true value 95% of the time; thus, it is reasonabthézk if the procedures have the properties
they claim. While Bayesian techniques are not designed edgtterage as a goal, it is still meaningful
to investigate their coverage properties. Moreover, teguentist intervals obtained from the profile
likelihood or chi-square functions are based on asympegpigroximations and are not guaranteed to
have the claimed coverage properties.

Here we report on recent studies investigating the covepaggerties of both Bayesian and Fre-
quentist procedures commonly used in the literature. We fhiighlight the numerical and sampling
challenges that have to be met in order to obtain a suffigidniih-resolution mapping of the profile

Available from:www. superbayes. org


http://arxiv.org/abs/1105.5244v1

likelihood when adopting Bayesian algorithms (which angidslly designed to map out the posterior
mass, instead).

For the sake of example, we consider in the following theated mMSUGRA or Constrained Min-
imal Supersymmetric Standard Model (CMSSM), a model withHyfastrong universality assumptions
regarding the SUSY breaking parameters, which reduce thiauof free parameters to be estimated
to just five, denoted by the symb@&: common scalarr(), gaugino {n, ;) and tri-linear 1) mass
parameters (all specified at the GUT scale) plus the ratioigg$ivacuum expectation valuesa 5 and
sign(i), wherey is the Higgs/higgsino mass parameter whose square is cethfraim the conditions
of radiative electroweak symmetry breaking (EWSB).

2 Coverage study of the CMSSM
2.1 Accelerated inference from neural networks

Coverage studies require extensive computational expeadivhich would be unfeasible with standard
analysis techniques. Therefore, in Ref.l[12] a class of macearning devices called Artificial Neural

Networks (ANNs) was used to approximate the most computaliip intensive sections of the analysis
pipeline.

Inference on the parameters of inter@stequires relating them to observable quantities, such as
the sparticle mass spectrum at the LHC, denotedanhyover which the likelihood is defined. This is
achieved by evolving numerically the Renormalization Gr&guations (RGEs) using publicly avail-
able codes, which is however a computationally intensivegadure. One can view the RGEs simply
as a mapping fron® — m, and attempt to engineer a computationally efficient regregion of the
function. In [12], an adequate solution was provided by adHayer perceptron, a type of feed-forward
neural network consisting of an input layer (identified waf), a hidden layer and an output layer (iden-
tified with the value ofm(®) that we are trying to approximate). The weight and biasesidefithe
network were determined via an appropriate training prosedinvolving the minimization of a loss
function (here, the discrepancy between the valuend®) predicted by the network and its correct
value obtained by solving the RGESs) defined over a set of 4@M0ing samples. A number of tests on
the accuracy and noise of the network were performed, shpwicorrelation in excess of 0.9999 be-
tween the approximated value nf(®) and the value obtained by solving the RGEs for an independent
sample. A second classification network was employed tindisish between physical and un-physical
points in parameter space (i.e., value€bthat do not lead to physically viable solutions to the RGES).
The final result of replacing the computationally expen&&Es with the ANNSs is presented in Fig. 1,
which shows that the agreement between the two methodseéfiext; within numerical noise. By using
the neural network, a speed-up factor of ab®ut 10* compared with scans using the explicit spectrum
calculator was observed.

2.2 Coverage results for the ATLAS benchmark

We studied the coverage properties of intervals obtainethfo so-called “SU3” benchmark point. To
this end, we need the ability to generate pseudo-expergweitt © fixed at the value of the benchmark.
We adopted a parabolic approximation of the log-likelihdaakction (as reported in Ref, [13]), based on
the measurement of edges and thresholds in the invariarg digtsbutions for various combinations of
leptons and jets in final state of the selected candidate S&i8ts, assuming an integrated luminosity
of 1 fb~! for ATLAS. Note that the relationship between the spartinksses and the directly observable
mass edges is highly non-linear, so a Gaussian is likely sodmor approximation to the actual likelihood
function. Furthermore, these edges share several souf@stematic uncertainties, such as jet and
lepton energy scale uncertainties, which are only apprateéty communicated in Ref. [13]. Finally, we
introduce the additional simplification that the likeliltb® also a multivariate Gaussian with the same
covariance structure. We constructélt pseudo-experiments and analyzed them with both MCMC
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Fig. 1: Comparison of Bayesian posteriors obtained by solving t8&&fully numerically (black lines, giving
68% and 95% regions) and neural networks (blue lines anésponding filled regions), from simulated ATLAS
data. The red diamond gives the true value for the benchnwank adopted. Fromi [12].

(using a Metropolis-Hastings algorithm) anduMriNEST. Altogether, our neural network MCMC runs
have performed a total d@fx 10! likelihood evaluations, in a total computational effortagiroximately

2 x 10* CPU-minutes. We estimate that the solving the RGEs fully evically would have taken
about 1100-CPU years, which is at the boundary of what isbieEatoday, even with a massive parallel
computing effort.

The results are shown in Figl 2, where it can be seen that tlleod® have substantial over-
coverage for 1-d intervals, which means that the resultifgrénces are conservative. While it is difficult
to unambiguously attribute the over-coverage to a spedfise, the most likely cause is the effect of
boundary conditions imposed by the CMSSM. Whris composed of parameters of interéstand
nuisance parameters, the profile likelihood ratio is defined as

(1)

where ) is the conditional maximum likelihood estimate (MLE) ¢fwith 6 fixed andé, > are the
unconditional MLEs. When the fit is performed directly in thgace of the weak-scale masses (i.e.,
without invoking a specific SUSY model and hence bypassiggniapping® — m), there are no
boundary effects, and the distribution-e2 In A(m) (whenm is true) is distributed as a chi-square with
a number of degrees of freedom given by the dimensionality.o8ince the likelihood is invariant under
reparametrizations, we expeeR In \(#) to also be distributed as a chi-square. If the boundary ik suc

thatm(d, 1)) # r or m(6, 1)) # 1, then the resulting interval will modified. More importantbne
expects the denominatal(f, 1)) < L(in) sincem is unconstrained, which will lead te21n A(9) <
—21In A(m). In turn, this means more parameter points being includeshyrgiven contour, which leads
to over-coverage.

The impact of the boundary on the distribution of the profikellhood ratio is not insurmount-
able. It is not fundamentally different than several comrmagamples in high-energy physics where an
unconstrained MLE would lie outside of the physical paranepace. Examples include downward
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Fig. 2: Coverage for various types of intervals for the CMSSM partanse from10* realizations, employ-
ing MCMC for the reconstruction (each pseudo-experimemeeonstructed with0° samples). Green/circles
(red/squares) is for the 68% (95%) error. From [12].

fluctuations in event-counting experiments when the sigatalis bounded to be non-negative. Another
common example is the measurement of sines and cosines ioignaingles that are physically bounded
between—1, 1], though an unphysical MLE may lie outside this region. The sif this effect is related
to the probability that the MLE is pushed to a physical boumdH this probability can be estimated, itis
possible to estimate a corrected threshold-@in A. For a precise threshold with guaranteed coverage,
one must resort to a fully frequentist Neyman Constructi@rsimilar coverage study (but without the
computational advantage provided by ANNSs) has been captietbr a few CMSSM benchmark points
for simulated data from future direct detection experiradidd]. Their findings indicate substantial
under-coverage for the resulting intervals, especialbycotain choices of Bayesian priors. Both works
clearly show the timeliness and importance of evaluatirgdbverage properties of the reconstructed
intervals for future data sets.

3 Challenges of profile likelihood evaluation

For highly non-Gaussian problems like supersymmetricrpatar determination, inference can depend
strongly on whether one chooses to work with the posteristridution (Bayesian) or profile likelihood
(frequentist) [[4], 10, 15]. There is a growing consensus lib#t the posterior and the profile likelihood
ought to be explored in order to obtain a fuller picture of $ketistical constraints from present-day and
future data. This begs the question of the algorithmic gmistavailable to reliably explore both the
posterior and the profile likelihood in the context of SUS¥pbmenology.

The profile likelihood ratio defined in Eq.](1) is an attraetighoice as a test statistics, for un-
der certain regularity conditions, Wilks [16] showed thia¢ distribution of—21n A\(#) converges to a
chi-square distribution with a number of degrees of freedpren by the dimensionality of. Clearly,
for any given value of), evaluation of the profile Iikelihgod requires solving a nmaisation prob-

lem in many dimensions to determine the conditional MLEWhile posterior samples obtained with
MULTINEST have been used to estimate the profile likelihood, the acgurasuch an estimate has
been questioned [11]. As mentioned above, evaluating pidélihoods is much more challenging than
evaluating posterior distributions. Therefore, one stiodt expect that a vanilla setup fordMTINEST
(which is adequate for an accurate exploration of the piostdistribution) will automatically be op-
timal for profile likelihoods evaluation. In Ref. [17] the egtion of the accuracy of profile likelihood
evaluation from MULTINEST was investigated in detail. We report below the main results

The two most important parameters that control the paransgesece exploration in MLTINEST
are the number of live points;;,. — which determines the resolution at which the parameteresim
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Fig. 3: 1-D profile likelihoods from present-day data for the CMSSMameters normalized to the global best-
fit point. The red solid and blue dotted vertical lines reprishe global best-fit point¢ = 9.26, located in
the focus point region) and the best-fit point found in thes sta-annihilation regiony> = 11.38) respectively.
The upper and lower panel show the profile likelihood @ngf values, respectively. Green (magenta) horizontal
lines represent théo (20) approximate confidence intervals. UUTINEST was run with 20,000 live points and
tol = 1 x 10~* (a configuration deemed appropriate for profile likelihostireation), requiring approximately 11
million likelihood evaluations. From [17].

explored — and a tolerance parametdr which defines the termination criterion based on the acgura
of the evidence. Generally, a larger number of live pointagsessary to explore profile likelihoods
accurately. Moreover, settingl to a smaller value results in M.TINEST gathering a larger number of
samples in the high likelihood regions (as termination isyged). This is usually not necessary for the
posterior distributions, as the prior volume occupied lghHikelihood regions is usually very small and
therefore these regions have relatively small probahitigss. For profile likelihoods, however, getting
as close as possible to the true global maximum is cruciattzréfore one should sgil to a relatively
smaller value. In Ref[[17] it was found thaf;,, = 20,000 andtol = 1 x 10~ produce a sufficiently
accurate exploration of the profile likelihood in toy modeilat reproduce the most important features of
the CMSSM parameter space.

In principle, the profile likelihood does not depend on theick of priors. However, in order
to explore the parameter space using any Monte Carlo teabnmm set of priors needs to be defined.
Different choices of priors will generally lead to diffeteregions of the parameter space to be explored
in greater or lesser detail, according to their posteriorsitg. As a consequence, the resulting profile
likelihoods might be slightly different, purely on numeazigrounds. We can obtain more robust profile
likelihoods by simply merging samples obtained from scaith different choices of Bayesian priors.
This does not come at a greater computational cost, givémttesponsible Bayesian analysis would es-
timate sensitivity to the choice of prior as well. The reswait such a scan are shown in Hig. 3, which was
obtained by tuning MLTINEST with the above configuration, appropriate for an accurabélpriikeli-
hood exploration, and by merging the posterior samples freordifferent choices of priors (sele [17] for
details). This high-resolution profile likelihood scanngiMULTINEST compares favourably with the
results obtained by adopting a dedicated Genetic Algortéchnique([1l], although at a slightly higher
computational cost (a factor ef 4). In general, an accurate profile likelihood evaluation alagut an
order of magnitude more computationally expensive thanpimgpout the Bayesian posterior.



4 Conclusions

As the LHC impinges on the most anticipated regions of SUS’dpater space, the need for statistical
techniques that will be able to cope with the complexity ofS¥Uohenomenology is greater than ever.
An intense effort is underway to test the accuracy of parameterence methods, both in the Frequentist
and the Bayesian framework. Coverage studies such as tipresented here require highly-accelerated
inference techniques, and neural networks have been démataasto provide a speed-up factor of up to
30,000 with respect to conventional methods. A crucial improvetenuired for future coverage in-
vestigations is the ability to generate pseudo-experisnfeom an accurate description of the likelihood.
Both the representation of the likelihood function and thiditst to generate pseudo-experiments are now
possible with the workspace technology in RooFit/RooStE8$. We encourage future experiments to
publish their likelihoods using this technology. Finallyy accurate evaluation of the profile likelihood
remains a numerically challenging task, much more so thamthpping out of the Bayesian posterior.
Particular care needs to be taken in tuning appropriatelye8an algorithms targeted to the exploration
of posterior mass (rather than likelihood maximisation)e Wave demonstrated that theuMrINEST
algorithm can be succesfully employed for approximatirggtofile likelihood functions, even though it
was primarily designed for Bayesian analyses. In particitles important to use a termination criterion
that allows MULTINEST to explore high-likelihood regions to sufficient resolutio
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