
Turbo charging time-dependent density-functional theory
with Lanczos chains

Dario Rocca,1,2,a! Ralph Gebauer,3,2 Yousef Saad,4 and Stefano Baroni1,2,b!

1Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy
2CNR-INFM DEMOCRITOS Theory@Elettra Group, I-34014 Trieste, Italy
3The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11,
I-34014 Trieste, Italy
4Department of Computer Science and Engineering, University of Minnesota, and Minnesota
Supercomputing Institute, Minneapolis, Minnesota 55455, USA

!Received 9 January 2008; accepted 27 February 2008; published online 16 April 2008"

We introduce a new implementation of time-dependent density-functional theory which allows the
entire spectrum of a molecule or extended system to be computed with a numerical effort
comparable to that of a single standard ground-state calculation. This method is particularly well
suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using
a superoperator formulation of linearized time-dependent density-functional theory, we first
represent the dynamical polarizability of an interacting-electron system as an off-diagonal matrix
element of the resolvent of the Liouvillian superoperator. One-electron operators and density
matrices are treated using a representation borrowed from time-independent density-functional
perturbation theory, which permits us to avoid the calculation of unoccupied Kohn–Sham orbitals.
The resolvent of the Liouvillian is evaluated through a newly developed algorithm based on the
nonsymmetric Lanczos method. Each step of the Lanczos recursion essentially requires twice as
many operations as a single step of the iterative diagonalization of the unperturbed Kohn–Sham
Hamiltonian. Suitable extrapolation of the Lanczos coefficients allows for a dramatic reduction of
the number of Lanczos steps necessary to obtain well converged spectra, bringing such number
down to hundreds !or a few thousands, at worst" in typical plane-wave pseudopotential applications.
The resulting numerical workload is only a few times larger than that needed by a ground-state
Kohn–Sham calculation for a same system. Our method is demonstrated with the calculation of the
spectra of benzene, C60 fullerene, and of chlorophyll a. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2899649$

I. INTRODUCTION

Time-dependent density-functional theory1 TDDFT
stands as a promising alternative to cumbersome many-body
approaches to the calculation of the electronic excitation
spectra of molecular and condensed-matter systems.2 Ac-
cording to a theorem established by Runge and Gross in the
mid-1980s,1 for any given initial !t=0" state of an
interacting-electron system, the external, time-dependent,
potential acting on it is uniquely determined by the time
evolution of the one-electron density, n!r , t", for t!0. Using
this theorem, one can formally establish a time-dependent
Kohn–Sham !KS" equation from which various one-particle
properties of the system can be obtained as functions of time.
Unfortunately, if little is known about the exchange-
correlation !XC" potential in ordinary density-functional
theory !DFT",3,4 even less is known about it in the time-
dependent case. Most of the existing applications of TDDFT
are based on the so-called adiabatic local density or adia-
batic generalized gradient approximations !generically de-
noted in the following by the acronym ADFT",5 which

amount to assuming the same functional dependence of the
XC potential upon density as in the static case. Despite the
crudeness of these approximations, optical spectra calculated
from them are in some cases almost as accurate as those
obtained from more computationally demanding many-body
approaches.2 TDDFT is in principle an exact theory. Progress
in understanding and characterizing the XC functional will
substantially increase the predictive power of TDDFT, while
!hopefully" keeping its computational requirements at a sig-
nificantly lower level than that of methods based on many-
body perturbation theory.

Linearization of TDDFT with respect to the strength of
some external perturbation to an otherwise time-independent
system leads to a non-Hermitian eigenvalue problem whose
eigenvalues are excitation energies, and whose eigenvectors
are related to oscillator strengths.6 Not surprisingly, this ei-
genvalue problem has the same structure that arises in the
time-dependent Hartree–Fock theory,7,8 and the dimension of
the resulting matrix !the Liouvillian" is twice the product of
the number of occupied !valence" states Nv with the number
of unoccupied !conduction" states Nc. The calculation of the
Liouvillian is by itself a hard task that is often tackled di-
rectly in terms of the unperturbed KS eigenpairs. This ap-
proach requires the calculation of the full spectrum of the
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unperturbed KS Hamiltonian, a step that one may want to
avoid when very large basis sets are used. The diagonaliza-
tion of the resulting matrix can be accomplished using itera-
tive techniques,9,10 often, but not necessarily, in conjunction
with the Tamm–Dancoff approximation,11–13 which amounts
to enforcing Hermiticity by neglecting the anti-Hermitian
component of the Liouvillian. The use of iterative diagonal-
ization techniques does not necessarily entail the explicit
construction of the matrix to be diagonalized, but just the
availability of a black-box routine that performs the product
of the matrix with a test vector !“H" products”". An efficient
way to calculate such a product without explicitly calculating
the Liouvillian can be achieved using a representation of the
perturbed density matrix and of the Liouvillian superoperator
borrowed from time-independent density-functional pertur-
bation theory !DFPT".14–18 Many applications of TDDFT to
atoms, molecules, and clusters have been performed within
such a framework, see, for example, Refs. 5, 19, and 20. This
approach is most likely to be optimal when a small number
of excited states is required. In large systems, however, the
number of quantum states in any given energy range grows
with the system size. The number of pseudodiscrete states in
the continuum also grows with the basis-set size even in a
small system, thus making the calculation of individual
eigenpairs of the Liouvillian more difficult and not as mean-
ingful. This problem is sometimes addressed by directly cal-
culating the relevant response function!s", rather than indi-
vidual excitation eigenpairs.2,9,17,21 The price paid in this
case is the calculation and further manipulation !inversion,
multiplication" of large matrices for any individual fre-
quency, a task which may again be impractical for large
systems/basis sets, particularly when an extended portion of
a richly structured spectrum is sought after. For these
reasons, a method to model the absorption spectrum
directly—without calculating individual excited states and
not requiring the calculation, manipulation, and eventual dis-
posal of large matrices—would be highly desirable.

Such an alternative approach to TDDFT, which avoids
diagonalization altogether, was proposed by Yabana and
Bertsch.22 In this method, the TDDFT KS equations are
solved in the time domain and susceptibilities are obtained
by Fourier analyzing the response of the system to appropri-
ate perturbations in the linear regime. This scheme has the
same computational complexity as standard time-
independent !ground-state" iterative methods in DFT. For
this reason, real-time methods have recently gained popular-
ity in conjunction with the use of pseudopotentials !PPs" and
real-space grids,23 and a similar success should be expected
using plane-wave !PW" basis sets.24,25 The main limitation in
this case is that, because of stability requirements, the time
step needed for the integration of the TDDFT KS equations
is very small !of the order of 10−3 fs in typical PP applica-
tions" and decreasing as the inverse of the PW kinetic energy
cutoff !or as the square of the real-space grid step".25 The
resulting number of steps necessary to obtain a meaningful
time evolution of the TDDFT KS equations may be exceed-
ingly large.

In a recent letter a new method was proposed26 to calcu-
late optical spectra in the frequency domain—thus avoiding

any explicit integration of the TDDFT KS equations—which
does not require any diagonalization !of either the unper-
turbed KS Hamiltonian or the TDDFT Liouvillian" nor any
time-consuming matrix operations. Most important, the full
spectrum is obtained at once without repeating time-
consuming operations for different frequencies. In this
method, which is particularly well suited for large systems
and PW, or real-space grid, basis sets, a generalized suscep-
tibility is represented by a matrix element of the resolvent of
the Liouvillian superoperator, defined in some appropriate
operator space. This matrix element is then evaluated using a
Lanczos recursion technique. Each link of the Lanczos
chain—that is calculated once for all frequencies—requires a
number of floating-point operations which is only twice as
large as that needed by a single step of the iterative calcula-
tion of a static polarizability within time-independent
DFPT.14–16 This number is in turn the same as that needed in
a single step of the iterative diagonalization of a ground-state
KS Hamiltonian or a single step of Car–Parrinello molecular
dynamics.

The purpose of the present paper is to provide an ex-
tended and detailed presentation of the method of Ref. 26
and to introduce a few methodological improvements, in-
cluding a new and more efficient approach to the calculation
of off-diagonal elements of the resolvent of a non-Hermitian
operator and an extrapolation technique that allows one to
substantially reduce the number of Lanczos recursion steps
needed to calculate well converged optical spectra. The paper
is organized as follows. In Sec. II we introduce the linearized
Liouville equation of TDDFT, including the derivation of an
expression for generalized susceptibilities in terms of the re-
solvent of the Liouvillian superoperator, the DFPT represen-
tation of response operators and of the Liouvillian superop-
erator, and the extension of the formalism to ultrasoft PPs;27

in Sec. III we describe our new Lanczos algorithm for
calculating selected matrix elements of the resolvent of the
Liouvillian superoperator; in Sec. IV we present a bench-
mark of the numerical performance of the new method, and
we introduce an extrapolation technique that allows for an
impressive enhancement of it; Sec. V contains applications
of the new methodology to the spectra of C60 fullerene and to
chlorophyll a; Sec. VI finally contains our conclusions.

II. LINEARIZED TDDFT

The time-dependent KS equations of TDDFT read1

i
##v!r,t"

#t
= ĤKS!t"#v!r,t" , !1"

where

ĤKS!t" = −
1
2

#2

#r2 + vext!r,t" + vHXC!r,t" !2"

is a time-dependent KS Hamiltonian and vext!r , t" and
vHXC!r , t" being the time-dependent external and Hartree
plus XC potentials, respectively. In the above equation, as
well as in the following, quantum-mechanical operators are
denoted by a hat “ˆ” and Hartree atomic units !$=m=e=1"
are used. When no confusion can arise, local operators, such
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as one-electron potentials V̂ will be indicated by the diagonal
of their real-space representation v!r" as in Eq. !2".

Let us now assume that the external potential is split into
a time-independent part, vext

! !r", plus a time-dependent per-
turbation, vext! !r , t", and let us assume that the #’s satisfy the
initial conditions

#v!r,0" = #v
! !r" , !3"

where #v
! are ground-state eigenfunctions of the unperturbed

KS Hamiltonian ĤKS
! ,

ĤKS
! #v

! !r" = %v
! #v

! !r" . !4"

To first order in the perturbation, the time-dependent KS
equations can be cast into the form

i
##v!!r,t"

#t
= !ĤKS

! − %v
! "#v!!r,t" + !vext! !r,t"

+ vHXC! !r,t""#v
! !r" , !5"

where

#v!!r,t" = ei%vt#v!r,t" − #v
! !r" !6"

are the orbital response functions, which can be chosen to be
orthogonal to all of the unperturbed occupied orbitals %#v

! &.
Equation !1" can be equivalently expressed in terms of a

quantum Liouville equation,

i
d&̂!t"

dt
= #ĤKS!t", &̂!t"$ , !7"

where &̂!t" is the reduced one-electron KS density matrix
whose kernel reads

&!r,r!;t" = '
v=1

Nv

#v!r,t"#v
*!r!,t" , !8"

and the square brackets indicate a commutator. Linearization
of Eq. !7" with respect to the external perturbation leads to

i
d&̂!!t"

dt
= #ĤKS

! , &̂!!t"$ + #V̂HXC! !t", &̂!$ + #V̂ext! !t", &̂!$

+ O!v!2" , !9"

where &̂! is the unperturbed density matrix, &̂!!t"= &̂!t"− &̂!,
V̂ext! is the perturbing external potential, and V̂HXC! is the lin-
ear variation of the Hartree plus XC potential induced by
n!!r , t"=&!!r ,r ; t",

vHXC! !r,t" =( ) 1
*r − r!*

'!t − t!"

+
'vXC!r,t"
'n!r!,t!" +n!!r!,t!"dr!dt!. !10"

In the ADFT, the functional derivative of the XC potential is
assumed to be local in time, 'vXC!r , t" /'n!r! , t!"
=(XC!r ,r!"'!t− t!", where (XC!r ,r!" is the functional de-
rivative of the ground-state XC potential, calculated at the
ground-state charge density, n!!r": (XC!r ,r!"
= *'vXC!r" /'n!r!"*n!r"=n!!r". In this approximation the pertur-

bation to the XC potential, Eq. !10", therefore reads

vHXC! !r,t" =( (!r,r!"n!!r!,t"dr!, !11"

where (!r ,r!"=1 / *r−r!*+(XC!r ,r!". By inserting Eq. !11"
into Eq. !9", the linearized Liouville equation is cast into the
form

i
d&̂!!t"

dt
= L · &̂!!t" + #V̂ext! !t", &̂!$ , !12"

where the action of the Liouvillian super operator L onto &̂!,
L · &̂! is defined as

L · &̂! " #ĤKS
! , &̂!$ + #V̂HXC! #&̂!$, &̂!$ , !13"

and V̂HXC! #&̂!$ is the linear operator functional of &̂! whose
!diagonal" kernel is given by Eq. !11". By Fourier analyzing
Eq. !12" we obtain

!) − L" · &̃!!)" = #Ṽext! !)", &̂!$ , !14"

where the tilde indicates the Fourier transform and the hat,
which denotes quantum operators, has been suppressed in &̃!
and Ṽext! in order to keep the notation simple. In the absence
of any external perturbations !Ṽext!)"=0", Eq. !14" becomes
an eigenvalue equation for &̂!, whose eigenpairs describe free
oscillations of the system, i.e., excited states.6 Eigenvalues
correspond to excitation energies, whereas eigenvectors can
be used to calculate transition oscillator strengths and/or the
response of system properties to any generic external pertur-
bation.

One is hardly interested in the response of the more gen-
eral property of a system to the more general perturbation.
When simulating the results of a specific spectroscopy ex-
periment, one is instead usually interested in the response of
a specific observable to a specific perturbation. The expecta-
tion value of any one-electron operator can be expressed as
the trace of its product with the one-electron density matrix.
The Fourier transform of the dipole linearly induced by the
perturbing potential V̂ext! , for example, therefore reads

d!)" = Tr!r̂&̃!!)"" , !15"

where r̂ is the quantum-mechanical position operator and &̃!
is the solution to Eq. !14". Let us now suppose that the ex-
ternal perturbation is a homogeneous electric field,

ṽext! !r,)" = − E!)" · r . !16"

The dipole given by Eq. !15" therefore reads

di!)" = '
j

*ij!)"Ej!)" , !17"

where the dynamical polarizability *ij!)" is defined by

*ij!)" = − Tr!r̂i!) − L"−1 · #r̂ j, &̂
!$" . !18"

Traces of products of operators can be seen as scalar prod-
ucts defined on the linear space of quantum-mechanical op-
erators. Let Â and B̂ be two general one-electron operators.
We define their scalar product as
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,Â*B̂- " Tr!Â†B" . !19"

Equation !18" can thus be formally written as

*ij!)" = − ,r̂i*!) − L"−1 · ŝ j- , !20"

where

ŝ j = #r̂ j, &̂
!$ !21"

is the commutator between the position operator and the un-
perturbed one-electron density matrix. The results obtained
so far and embodied in Eq. !20" can be summarized by say-
ing that within TDDFT the dynamical polarizabilty can be
expressed as an appropriate off-diagonal matrix element of
the resolvent of the Liouvillian superoperator. A similar con-
clusion was reached in Ref. 17 in the context of a slightly
different formalism. This statement can be extended in a
straightforward way to the dynamic linear response of any
observable to any local one-electron perturbation. It is worth
noticing that the operators that enter the definition of the
scalar product in Eq. !20" are orthogonal because r̂i is
Hermitian and ŝ j anti-Hermitian !being the commutator of
two Hermitian operators", and the trace of the product of one
Hermitian and one anti-Hermitian operators vanishes.

A. Representation of density matrices and other
one-electron operators

The calculation of the polarizability using Eq. !18" or
!20" implies that we should be able to compute
!L−)"−1 · #r̂ j , &̂!$ in a superoperator linear system. The latter
task, in turn, requires an explicit representation for the
density-matrix response &̃!, for its commutator with the un-
perturbed Hamiltonian, for local operators, such as r̂ j or
V̂HXC! , for their commutators with the unperturbed density
matrix, as well as for the Liouvillian superoperator, or at
least for its product with any relevant operators Â such as
L · Â.

A link between the orbital and density-matrix represen-
tations of TDDFT expressed by Eqs. !5" and !9" can be ob-
tained by linearizing the expression !8" for the time-
dependent density matrix,

&!!r,r!;t" = '
v

##v
! !r"#v

!*!r!,t" + #v!!r,t"#v
!*!r!"$ , !22"

whose Fourier transform reads

&̃!!r,r!;)" = '
v

##v
! !r"#̃v

!*!r!,− )" + #̃v!!r,)"#v
!*!r!"$ .

!23"

Equation !23" shows that &̃!)" is univocally determined by
the two sets of orbital response functions, x!" %#v!!r ,)"& and
y!" %#v

!*!r ,−)"&. A set of a number of orbitals equal to the
number of occupied states, such as x! or y!, will be nick-
named a batch of orbitals. Notice that &̃!)" is not Hermitian
because the Fourier transform of a Hermitian, time-
dependent, operator is not Hermitian, unless the original op-
erator is even with respect to time inversion. Because of the
orthogonality between occupied and response orbitals
!,#v

! *#v!
! -=0", Eq. !22" implies that the matrix elements of &̂!

between two unperturbed KS orbitals which are both occu-
pied or both empty vanish !&vv!

! =&cc!
! =0", as required by the

idempotency of density matrices !&̂2= &̂" in DFT. As a con-
sequence, in order to calculate the response of the expecta-
tion values of a Hermitian operator Â such as in Eq. !15", one
only needs to know and represent the occupied-empty !vc"
and empty-occupied !cv" matrix elements of Â, Avc and Acv.
In other terms, if we define P̂='v*#v

! -,#v
! *" &̂! and Q̂"1

− P̂ as the projectors onto the occupied- and empty-state
manifolds, respectively, one has that

Tr!Â&̃!!)"" = Tr!Â!&̃!!)"" , !24"

where Â!= P̂ÂQ̂+ Q̂ÂP̂ is the vc-cv component of Â, which
can be easily and conveniently represented in terms of
batches of orbitals. To this end, let us define the orbitals,

av
x!r" " Q̂Â#v

! !r" = '
c

#c
!!r"Acv, !25"

av
y!r" " !Q̂Â†#v

! !r""* = '
c

#c
!*!r"Avc. !26"

One has then

Acv = ,#c
! *av

x- , !27"

Avc = ,#c
!**av

y- . !28"

If Eqs. !27" and !28" are used to represent density matrices,
then the free oscillations corresponding to setting Ṽext! =0 in
Eq. !14" would be described by Casida’s eigenvalue
equations.6

For simplicity and without much loss of generality, from
now on we will assume that the unperturbed system is time-
reversal invariant, so that the unperturbed KS orbitals, #v

!

and #c
! , can be assumed to be real. The two batches of

orbitals ax" %av
x!r"& and ay " %av

y!r"& will be called the batch
representation of the Â operator and indicated with the nota-
tion !ax ,ay" or !%av

x& , %av
y&". Scalar products between operators

!traces of operator products" can be easily expressed in terms
of their batch representations. Let !%bv

x& , %bv
y&" be the batch

representation of the operator B̂. If either of the two opera-
tors, Â or B̂, has vanishing vv and cc components, one has

,Â*B̂- = Tr!Â†B"

= '
cv

!Acv
* Bcv + Avc

* Bvc"

= '
v

!,av
x*bv

x- + ,av
y*bv

y-" . !29"

If Â is Hermitian, its batch representation satisfies the
relation ay!r"=ax!r"*, whereas anti-Hermiticity would imply
ay!r"=−ax!r"*. Due to time-reversal invariance and the con-
sequent reality of the unperturbed KS orbitals, the batch rep-
resentation of a real !imaginary" operator is real !imaginary",
and the batch representation of a local operator V̂ !which is
Hermitian, when real, or non-Hermitian, when complex" sat-
isfies vv

y!r"=vv
x!r".
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In order to solve the superoperator linear system,
Eq. !14", using the batch representation, one needs to work
out the batch representation of ṼHXC! !r ,)" as a functional of
&̃!, as well as of the various commutators appearing therein.
The charge-density response to an external perturbation
reads

n!!r" = '
v

#v
! !r"!#̃v!!r,)" + #̃v

!*!r!,− )""

= '
v

#v
! !r"!xv!!r" + yv!!r"" , !30"

where !%xv!& , %yv!&" is the batch representation of the density-
matrix response &̃!. The Hartree-plus-XC potential response
is

vHXC! #&̃!$!r" =( (!r,r!"n!!r!"dr!

= '
v
( (!r,r!"#v

! !r!"!xv!!r!" + yv!!r!""dr!.

Using Eqs. !25" and !26" the batch representation of the
Hartree-plus-XC potential response therefore reads

vHXC,v!x !r" = Q̂'
v!
( #v

! !r"(!r,r!"#v!
! !r!"!xv!

! !r!"

+ yv!
! !r!""dr!

= Q̂'
v!
( Kvv!!r,r!"!xv!

! !r!" + yv!
! !r!""dr!,

!31"

vHXC,v!y !r" = vHXC,v!x !r" , !32"

where

Kvv!!r,r!" " (!r,r!"#v
! !r"#v!

! !r!" !33"

#see Eq. !11"$. Let !%vv!
x& , %vv!

y&" be the batch representation
of a local operator V̂!. The batch representation of the
commutator between V̂! and the unperturbed density matrix,
V̂"= #V̂! , &̂!$, reads

vv"
x!r" = Q̂#V̂!, &̂!$#v

! !r" = vv!
x!r" , !34"

vv"
y!r" = − vv"

x!r" . !35"

The batch representation of the commutator between the
unperturbed Hamiltonian and the density-matrix response,
&̃"= #Ĥ! , &̃!$, reads

xv"!r" = Q̂#Ĥ!, &̃!$#v
! !r" = !Ĥ! − %v

! "xv!!r" , !36"

yv"!r" = − !Ĥ! − %v
! "yv!!r" . !37"

The batch representation of the product of the Liouvillian
with the density-matrix response !L · &̃!" appearing in
Eq. !14" reads

L)x!

y!
+ = )D + K K

− K − D − K +)x!

y!
+ , !38"

where the action of the D and K superoperators on batches
of orbitals is defined as

D%xv!r"& " %!Ĥ! − %v
! "xv!r"& , !39"

K%xv!r"& " .Q̂'
v!
( Kvv!!r,r!"xv!!r!"dr!/ . !40"

Note that, according to Eqs. !38"–!40", the calculation of the
product of the Liouvillian with a general one-electron opera-
tor in the batch representation only requires operating on a
number of one-electron orbitals equal to the number of oc-
cupied KS states !number of electrons", without the need to
calculate any empty states. In particular, the calculation of
Eq. !40" is best performed by first calculating the HXC po-
tential generated by the fictitious charge density n̄!r"
='vxv!r"#v

! !r", and then applying it to each unperturbed oc-
cupied KS orbital, #v

! !r". The projection of the resulting or-
bitals onto the empty-state manifold implied by the multipli-
cation with Q̂ is easily performed using the identity Q̂=1
−'v*#v

! -,#v
! *, as it is common practice in DFPT.

Following Tsiper,28 it is convenient to perform a 45°
rotation in the space of batches and define

qv!r" = 1
2 !xv!r" + yv!r"" , !41"

pv!r" = 1
2 !xv!r" − yv!r"" . !42"

Equations !41" and !42" define the standard batch represen-
tation !SBR" of the density-matrix response. The SBR of the
response charge density is

n!!r" = 2'
v

#v
! !r"qv!r" . !43"

The SBR of a general one-electron operator is defined in a
similar way. In particular, the SBR of a real Hermitian
operator has zero p component, whereas the SBR of the
commutator of such an operator with the unperturbed density
matrix has zero q component. The SBR of the TDDFT
Liouville equation, Eq. !14", reads

) ) − D
− D − 2K )

+)q!

p!
+ = ) 0

%Q̂vext!r"#v
! !r"&

+ . !44"

In conclusion, the batch representation of response density
matrices and of general one-electron operators allows one to
avoid the explicit calculation of unoccupied KS states, as
well as of the Liouvillian matrix, which is mandatory when
!very" large one-electron basis sets !such as PWs or real-
space grids" are used to solve the ground-state problem. This
representation is the natural extension to the time-dependent
regime of the practice that has become common since the
introduction of time-independent DFPT.14,16,30

B. Ultrasoft pseudopotentials

The formalism outlined above applies to all-electron as
well as to PP calculations performed using norm-conserving
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PPs, which give rise to an ordinary KS ground-state eigen-
value problem. Ultrasoft pseudopotentials !USPPs",27 in-
stead, give rise to a generalized KS ground-state eigenvalue
problem and the time evolution within TDDFT has to be
modified accordingly.24,25 The generalization of the TDDFT
formalism to USPPs has been presented in full detail in Ref.
25, and here we limit ourselves to report the main formulas.

In the framework of USPPs, the charge density is written
as a sum n!r , t"=nUS!r , t"+naug!r , t". The delocalized contri-
bution nUS is represented as the sum over the squared moduli
of the KS orbitals: nUS!r , t"='v*#v!r , t"*2. The augmentation
charge naug, instead, is written in terms of the so-called aug-
mentation functions Qnm

I !r",

naug!r,t" = '
v

'
n,m,I

Qnm
I !r",#v!t"*+n

I -,+m
I *#v!t"- . !45"

The augmentation functions, as well as the functions +n
I !r"

"+n!r−RI", are localized in the core region of atom I. Each
+ consists of an angular momentum eigenfunction times a
radial function that vanishes outside the core radius. Typi-
cally one or two such functions are used for each angular
momentum channel and atom type. The indices n and m in
Eq. !45" run over the total number of such functions for atom
I. In practice, the functions Qnm!r" and +n!r" are provided
with the PP for each type of atom.

The advantage of using USPPs over standard norm-
conserving PPs comes from this separation of the strongly
localized contributions to the charge density from the more
delocalized contributions. The square moduli of the KS or-
bitals only represent the latter part of n!r , t", and therefore
fewer Fourier components in the representation of the orbit-
als are sufficient for a correct representation of the charge
density. As a consequence the kinetic energy cutoff which
determines the size of the basis set can be chosen much
smaller in typical USPP applications than in corresponding
calculations with norm-conserving PPs. As shown in Ref. 25,
the smaller basis set not only reduces the dimensions of the
matrices during the computation, but it allows also for a
faster convergence of spectroscopic quantities, when calcu-
lated both with real-time or with spectral Lanczos techniques
!see Sec. III".

The generalized expression for the USPP charge density
given above entails a more complicated structure of the KS
eigenvalue problem. Instead of the standard eigenvalue Eq.
!4", one now has

ĤKS
! #v

! !r" = %v
! Ŝ#v

! !r" , !46"

where the overlap operator Ŝ is defined as

Ŝ = 1̂ + '
n,m,I

qnm
I *+n

I -,+m
I * , !47"

with qnm
I =0drQnm

I !r" and 1̂ the identity operator. Conse-
quently, the equation for the time-dependent KS orbitals,
Eq. !5", also contains the overlap operator in the USPP
formalism,

iŜ
##v!!r,t"

#t
= !ĤKS

! − Ŝ%v
! "#v!!r,t" + !vext! !r,t"

+ vHXC! !r,t""#v
! !r" . !48"

Using the same derivation as before, but starting from
Eq. !48" instead of Eq. !5", we arrive at a SBR of the TDDFT
Liouville equation in the USPP formalism. It has the same
form as Eq. !44" above, but with the superoperators D and K
replaced by

DUS%xv!r"& = %!Ŝ−1Ĥ! − %v
! "xv!r"& , !49"

KUS%xv!r"& = .Ŝ−1Q̂'
v!
( Kvv!!r,r!"xv!!r!"dr!/ , !50"

and the right-hand side of Eq. !44" by

) 0

%Ŝ−1Q̂vext!r"#v
! !r"&

+ . !51"

In this case the projector onto the empty-state manifold is
defined as

Q̂ = Ŝ − '
v

Ŝ*#v
! -,#v

! * . !52"

The inverse overlap operator Ŝ−1 appearing in these expres-
sions can be cast in the form

Ŝ−1 = 1̂ + '
n,m,I,J

,nm
IJ *+n

I -,+m
J * , !53"

which is very similar to the Ŝ operator itself, given in Eq.
!47", except the fact that Ŝ−1 generally connects +-functions
localized on different atoms. The numbers ,nm

IJ can be ob-
tained from the condition ŜŜ−1= 1̂. If the atoms are kept at
fixed positions, as it is the case here, the overlap operator is
independent of time and the ,’s need to be calculated only
once for all.

III. GENERALIZED SUSCEPTIBILITIES FROM
LANCZOS RECURSION CHAINS

According to Eq. !20", the polarizability can be ex-
pressed as an appropriate off-diagonal matrix element of the
resolvent of the non-Hermitian Liouvillian !super-" operator
between two orthogonal vectors. The standard way to calcu-
late such a matrix element is to solve first a linear system
whose right-hand side is the ket of the matrix element, and to
calculate then the scalar product between the solution of this
linear system with the bra.9,17 The main limitation of such an
approach is that solving linear systems entails the manipula-
tion and storage of a large amount of data and that a different
linear system has to be solved from scratch for each different
value of the frequency. In the case of a diagonal element of
a Hermitian operator, a very efficient method, based on the
Lanczos factorization algorithm !Ref. 31, p. 185 and ff." is
known, which allows us to avoid the solution of the linear
system altogether.32–35 Using such a method !known as the
Lanczos recursion method" a diagonal matrix element of the
resolvent of a Hermitian operator can be efficiently and
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elegantly expressed in terms of a continued fraction
generated by a Lanczos recursion chain starting from the
vector with respect to which one wants to calculate the
matrix element.32–35 The generalization of the Lanczos
recursion method to non-Hermitian operators is straightfor-
ward, based on the Lanczos biorthogonalization algorithm
!Ref. 36, p. 503". This generalization naturally applies to the
calculation of an off-diagonal matrix element between vec-
tors that are not orthogonal. Less evident is how to encom-
pass the calculation of off-diagonal matrix elements between
orthogonal vectors. In Ref. !26" such matrix elements were
treated using a block version of the Lanczos biorthogonaliza-
tion. This approach has the drawback that a different
Lanczos chain has to be calculated for the response of each
different property to a given perturbation !i.e., for each dif-
ferent bra in the matrix element corresponding to a same
ket". In the following, we generalize the recursion method of
Haydock and co-workers,32–35 so as to encompass the case of
an off-diagonal element of the resolvent of a non-Hermitian
operator without resorting to a block variant of the algorithm
and allowing us to deal with the case in which the left and
the right vectors are orthogonal. This will allow us to calcu-
late the full dynamical response of any dynamical property to
a given perturbation, from a single scalar Lanczos chain.

We want to calculate quantities such as

g!)" = ,u*!) − A"−1v- , !54"

where A is a non-Hermitian matrix defined in some linear
space, whose dimension will be here denoted n, and u and v
are elements of this linear space, which we suppose to be
normalized: 1u1= 1v1=1, where 1v12= ,v *v-. For simplicity,
and without loss of generality in view of applications to
time-reversal invariant quantum-mechanical problems, we
will assume that the linear space is defined over real num-
bers. Let us define a sequence of left and right vectors,
%p1 , p2¯pk¯ & and %q1 ,q2¯ ,qk¯ &, from the following
procedure, known as the Lanczos biorthogonalization
algorithm !Ref. 36, p. 503",

-1q0 = +1p0 = 0, !55"

q1 = p1 = v , !56"

+ j+1qj+1 = Aqj − * jqj − - jqj−1, !57"

- j+1pj+1 = ATpj − * jpj − + jpj−1, !58"

where

* j = ,pj*Aqj- , !59"

and + j+1 and - j+1 are scaling factors for the vectors qj+1 and
pj+1, respectively, so that they will satisfy

,qj+1*pj+1- = 1. !60"

Thus, from an algorithmic point of view, the right-hand sides
of Eqs. !57" and !58" are evaluated first with * j obtained
from Eq. !59". Then, the two scalars + j+1 and - j+1 are deter-
mined so that Eq. !60" is satisfied. Equation !60" only gives
a condition on the product of + j+1 and - j+1. If we call q̄ and
p̄ the vectors on the right-hand sides of Eqs. !57" and !58",

respectively, this condition is that + j+1- j+1= ,q̄ * p̄-. In
practice one typically sets

+ j+1 = 2*,q̄*p̄-* , !61"

- j+1 = sign!,q̄*p̄-" . + j+1. !62"

The set of q and p vectors thus generated are said to be links
of a Lanczos chain. In exact arithmetics, it is known that
these two sequences of vectors are mutually orthogonal to
each other, i.e., ,qi * pj-='ij, where 'ij is the Kronecker
symbol.

The resulting algorithm is described in detail, e.g., in
Refs. 31 and 36. Let us define Qj and Pj as the !n. j"
matrices,

Qj = #q1,q2, . . . ,qj$ , !63"

Pj = #p1,p2, . . . ,pj$ , !64"

and let ek
j indicate the kth unit vector in a j-dimensional

space !when there is no ambiguity on the dimensionality of
the space, the superscript j will be dropped". The following
Lanczos factorization holds in terms of the quantities calcu-
lated from the recursions Eqs. !56"–!58"

AQj = QjTj + + j+1qj+1ej
jT, !65"

ATPj = PjTjT + - j+1pj+1ej
jT, !66"

PjTQj = Ij , !67"

where Ij indicates the !j. j" unit matrix and Tj is the
!j. j" tridiagonal matrix,

Tj =3
*1 -2 0 ¯ 0

+2 *2 -3 0 ]
0 +3 *3 ! 0

] 0 ! ! - j

0 ¯ 0 + j * j

4 . !68"

In the present case, because of the special block structure of
the Liouvillian superoperator and of the right-hand side ap-
pearing in Eq. !44", at each step of the Lanczos recursion one
has that Lqj is always orthogonal to pj, so that, according to
Eq. !59", * j =0. Let us now rewrite Eq. !65" as

!) − A"Qj = Qj!) − Tj" − + j+1qj+1ej
jT. !69"

By multiplying Eq. !69" by uT!)−A"−1 on the left and by
!)−Tj"−1e1

j on the right, we obtain

uTQj!) − Tj"−1e1
j = uT!) − A"−1Qje1

j

− + j+1uT!) − A"−1qj+1ej
jT!) − Tj"−1e1

j .

!70"

Taking the relation Qje1
j =q1"v into account, Eq. !70" can be

cast as

g!)" = ,/ j*!) − Tj"−1e1
j - + 0 j!)" , !71"

where

154105-7 Turbo charging TD-DFT J. Chem. Phys. 128, 154105 "2008!

Downloaded 10 Oct 2008 to 147.122.16.65. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



/ j = QjTu !72"

is an array of dimension j, and

0 j!)" = + j+1,u*!) − A"−1qj+1-,ej
j*!) − Tj"−1e1

j - !73"

is the error made when truncating the Lanczos chain at the
jth step. Neglecting 0 j!)" we arrive at the following approxi-
mation to g!)" defined in Eq. !54":

ḡj!)" 5 ,/ j*!) − Tj"−1e1
j - . !74"

This approximation is the scalar product of two arrays of
dimension j: ḡj!)"= ,/ j *1 j-, where 1 j is obtained by solving
a tridiagonal linear system,

!) − Tj"1 j = e1
j , !75"

Tj is the tridiagonal matrix of Eq. !68", and / j is given by
Eq. !72".

Three important practical observations should be made
at this point. The first is that solving tridiagonal systems is
extremely inexpensive !its operation count scales linearly
with the system size". The second is that the calculation of
the sequence of vectors / j from Eq. !72" does not require the
storage of the Qj matrix. In fact, each component / j is the
scalar product between one fixed vector !u" and the Lanczos
recursion vector qj, and it can be therefore calculated on the
fly along the Lanczos recursion chain. We note that a slightly
better approach to evaluating Eq. !74" would be via the LU
factorization of the matrix )−Tj. If )−Tj =L),jU),j, then
ḡ!)"= ,U),j

−T/ j *L),j
−1 e1-, which can be implemented as the sca-

lar product of two sequences of vectors. We finally observe
that the components of / j decrease rather rapidly as functions
of the iteration count, so that only a relatively small number
of components have to be explicitly calculated. This will turn
out to be essential for extrapolating the Lanczos recursion, as
proposed and discussed in Sec. IV. The components of
1 j = !)−Tj"−1ej also tend to decrease, although not as rapidly.
In fact, this is used to measure convergence of the Lanczos
or Arnoldi algorithms for solving linear systems, see, e.g.,
Ref. 37.

From the algorithmic point of view, much attention is
usually paid in the literature to finding suitable precondition-
ing strategies that would allow one to reduce the number of
steps that are needed to achieve a given accuracy within a
given iterative method.9 Although preconditioning can cer-
tainly help reduce the number of iterations, it will, in general,
destroy the nice structure of the Lanczos factorization, Eq.
!65", which is essential to avoid repeating the time-
consuming factorization of the Liouvillian for different fre-
quencies. In the next section we will show how a suitable
extrapolation of the Lanczos coefficient allows for a substan-
tial reduction of the number of iterations without affecting
!but rather exploiting" the nice structure of the Lanczos
factorization, Eqs. !66" and !65".

We conclude that the nonsymmetric Lanczos algorithm
allows one to easily calculate a systematic approximation to
the off-diagonal matrix elements of the resolvent of a non-
Hermitian matrix. It is easily seen that, in the case of a
diagonal matrix element, this same algorithm would lead to a
continued-fraction representation of the matrix element.

Although the representation of Eq. !71", which is needed in
the case of a nondiagonal element, is less elegant than the
continued-fraction one, its actual implementation is in prac-
tice no more time consuming from the numerical point of
view.

The idea of using the Lanczos algorithm to compute
functions such the one in Eq. !54" is not new. In control
theory, this function is called a transfer function, and it is
used to analyze the frequency response of a system much like
it is done here. Using the Lanczos algorithm for computing
transfer functions has been considered in, e.g., Refs. 38 and
39. The Lanczos and Arnoldi methods are also important
tools in the closely related area of model reduction in control
theory, see, e.g., Ref. 40.

IV. BENCHMARKING THE NEW ALGORITHM
AND ENHANCING ITS NUMERICAL PERFORMANCE

In this section we proceed to a numerical benchmark of
the new methodology against the test case of the benzene
molecule, a system for which several TDDFT studies already
exist and whose optical spectrum is known to be accurately
described by ADFT.23,24,26,41 A careful inspection of the con-
vergence of the calculated spectrum with respect to the
length of the Lanczos chain allows us to formulate a simple
extrapolation scheme that dramatically enhances the numeri-
cal performance of our method. All the calculations reported
in the present paper have been performed using the
Quantum ESPRESSO distribution of codes for PW DFT
calculations.42 Ground-state calculations have been
performed with the PWscf code contained therein, whereas
TDDFT linear response calculations have been performed
with a newly developed code, soon to be included in the
distribution.

A. Numerical benchmark

The benchmark has been performed using the
Perdew–Burke–Ernzerhof43 !PBE" XC functional and USPPs
!Refs. 25, 27, and 44" with a PW basis set up to a kinetic
energy cutoff of 30 Ry !180 Ry for the charge density". This
corresponds to a wavefunction basis set of about 25 000
PWs, resulting in a Liouvillian superoperator whose dimen-
sion is of the order of 750 000. Periodic boundary conditions
have been used, with the molecule placed horizontally flat in
a tetragonal supercell of 30.30.20a0

3. The absorption
spectrum is calculated as I!)"2) Im!*̄!)"", where *̄ is the
spherical average !average of the diagonal elements" of the
molecular dipole polarizability. A small imaginary part has
been added to the frequency argument, )→)+ i0, so as to
regularize the spectrum. This shift into the complex fre-
quency plane has the effect of introducing a spurious width
into the discrete spectral lines. In the continuous part of the
spectrum, truncation of the Lanczos chain to any finite order
results in the discretization of the spectrum, which appears
then as the superposition of discrete peaks. The finite width
of the spectral lines has in this case the effect of broadening
spectral features finer than the imaginary part of the fre-
quency, thus reestablishing the continuous character of the
spectrum. The optimal value of the imaginary part of the
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frequency is slightly larger than the minimum separation be-
tween pseudodiscrete peaks and depends in principle on the
details of the system being studied, as well as on the length
of the Lanczos chain and on the spectral region. Throughout
our benchmark we have rather arbitrarily set 0=0.02 Ry.
Later in this section, we will see that the length of the Lanc-
zos chain can be effectively and inexpensively increased up
to any arbitrarily large size. By doing so, the distance be-
tween neighboring !pseudo-" discrete states in the continuum
correspondingly decreases, thus making the choice of 0
noncritical.

In Fig. 1 we report our results for the absorption spec-
trum of the benzene molecule. The agreement is quite good
with both experimental data45 and previous theoretical
work.23,24,26,41 Above the ionization threshold the TDDFT
spectrum displays a fine structure !wiggles", which is not
observed in experiments and that was suggested in Ref. 41 to
be due to size effects associated with the use of a finite
simulation cell. Finite-size effects on the fine structure of the
continuous portion of the spectrum are illustrated in Fig. 2,
where we display the spectrum of benzene as calculated us-
ing two simulation cells of different sizes.

Our purpose here is not to analyze the features of the

benzene absorption spectrum, which are already rather well
understood !see, e.g., Ref. 26", nor to dwell on the compari-
son between theory and experiment, but rather to understand
what determines the convergence properties of the new
method and how they can be possibly improved. The number
of iterations necessary to achieve perfect convergence lies in
this case in between 2000 and 3000: The improvement with
respect to Ref. 26 is due to the smaller basis set, made pos-
sible by the use of USPPs, as discussed in Ref. 25. It is worth
noting that the convergence is faster in the low energy por-
tion of the spectrum. This does not come as a surprise be-
cause the lowest eigenvalues of the tridiagonal matrix gen-
erated by the Lanczos recursion converge to the
corresponding lowest eigenvalues of the Liouvillian, and the
lower the state the faster the convergence.

A comparison between the performance of the new
method with a more conventional approach based on the
diagonalization of the Liouvillian is not quite possible be-
cause the two methodologies basically address different as-
pects of a same problem. While the former addresses the
global spectrum of a specific response function, the latter
focuses on individual excited states, from which many dif-
ferent response functions can be obtained, at the price of
calculating all of the individual excited states in a given en-
ergy range. It suffices to say that it would be impractical to
obtain a spectrum over such a wide energy range as in Fig. 1
by calculating all the eigenvalues of a Liouvillian. Using a
localized basis set, which is the common choice in most
implementations of Casida’s equations, it would be ex-
tremely difficult to resolve the high lying portion of the one-
electron spectrum with the needed accuracy; using PW or
real-space grid basis sets, instead, the calculation of very
many individual eigenpairs of the Liouvillian matrix whose
dimension easily exceeds several hundred thousands would
be a formidable task.

The comparison with time propagation schemes is in-
stead straightforward and more meaningful. Typical time
steps and total simulation lengths in a time propagation ap-
proach are of the orders of 10−18 and 10−14 s, respectively,
which amounts to about 10 000 time propagation steps.25

The computational workload at each time step depends on
the propagation algorithm. One commonly used technique
relies on a fourth-order Taylor expansion of the propagator,
together with so-called enforced time-reversal symmetry.46

In this case, each time step requires eight H" products and
one evaluation of the Hartree plus XC potentials. In the
Lanczos approach, each step requires two H" products and
one evaluation of the potentials. Furthermore, the response
orbitals must be kept orthogonal to the ground-state orbitals.
This results in a computational effort which is markedly
lower for one recursion step than for one time propagation
step. Considering both the larger number of propagation
steps and the more expensive workload at each step, we can
conclude that our approach is definitely more efficient than
the time propagation method to compute linear response
spectra.

FIG. 1. !Color online" Absorption spectrum calculated using Lanczos
method with ultrasoft pseudopotentials. The figure shows the curve at dif-
ferent numbers of recursive steps; a vertical shift has been introduced for
clarity.

FIG. 2. !Color online" Comparison with experimental results of the con-
verged spectrum of benzene for two different sizes of the cell; for the larger
cell the structure in the continuum decreases and reproduces the experimen-
tal curve better. Theoretical results have been scaled so as to obtain the same
integrated intensity as experimental data.

154105-9 Turbo charging TD-DFT J. Chem. Phys. 128, 154105 "2008!

Downloaded 10 Oct 2008 to 147.122.16.65. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



B. Analysis

In Fig. 3 we report the values of the + coefficients and of
the last component of the / vectors #see Eqs. !61" and !72"$,
as functions of the Lanczos iteration count, calculated when
the direction of both the perturbing electric field and the
observed molecular dipole are parallel to each other and ly-
ing in the molecular plane !this would correspond to calcu-
lating, say, the xx component of the polarizability tensor". It
is seen that the / components rapidly tend toward zero,
whereas the +’s tend to a constant. Closer inspection of the
behavior of the latter actually shows that the values of the
+’s are scattered around two close, but distinct, values for
even and odd iteration counts. The - coefficients #see Eq.
!62"$ are, in general, equal to the +’s and only in correspon-
dence to few iterative steps they assume a negative sign.

All the calculated quantities, +, -, and /, are subject to
occasional oscillations off their asymptotic values. The ob-
served oscillations in the coefficients - j and + j can be partly
explained from their definitions, namely, Eqs. !61" and !62".
Note at first that there is a risk of a division by zero in Eq.
!61". The occurrence of a zero scalar product ,q̄ * p̄- is known
as a breakdown. Several situations can take place. A lucky
breakdown occurs when one of the vectors q̄ or p̄ is zero.
Then the eigenvalues of the tridiagonal matrix are exact ei-
genvalues of the matrix A, as the space spanned by Qj !when
q̄=0" becomes invariant under A or the space spanned by Pj

!when p̄=0" becomes invariant under AT. Another known
situation is when neither q̄ nor p̄ are zero but their inner
product is exactly zero. This situation has been studied ex-
tensively in the literature: See, e.g., Refs. 47–49. One of the
main results is that when this breakdown takes place at step
j, say, then it is often still possible to continue the algorithm
by essentially bypassing step j and computing qj+2 , pj+2 or

some qj+l , pj+l, where l!1, directly. Intermediate vectors are
needed to replace the missing qj+1 , . . .qj+l−1 and
pj+1 , . . . pj+l−1, but these vectors are no longer biorthogonal,
resulting in the tridiagonal matrix being spoiled by bumps in
its upper part. The class of algorithms devised to exploit this
idea are called look-ahead Lanczos algorithms !LALAs", a
term first employed in Ref. 47. Finally, an incurable break-
down occurs when no pair qi+l , pj+l with some l31 can be
constructed which has the desired orthogonality properties.
Note that this type of breakdown cannot occur in the
Hermitian Lanczos algorithm because it is a manifestation of
the existence of vectors in the right subspace !linear span of
Qj" that are orthogonal to all the vectors of the left subspace
!linear span of Pj", which is impossible when these spaces
are the same !Qj = Pj in the Hermitian case". Clearly, exact
breakdowns !inner product ,q̄ * p̄- exactly equal to zero" al-
most never occur in practice. Near breakdowns correspond to
small values of these inner products that determine the ob-
served jumps in the coefficients + j ,- j. The components of
the / j’s can also show jumps in their magnitude since the
vectors qj will occasionally display large variations in norm.
In finite-precision arithmetics the occurrence and precise lo-
cation of !near-" breakdowns would also depend on the nu-
merical details of the implementation. Nevertheless in our
experience the Lanczos recursion always converges to the
same final spectrum whose calculation is therefore robust.

In order to understand what determines this robustness,
we note that our algorithm amounts to implicitly solving a
linear system by an iterative procedure based on a Lanczos
scheme. This procedure is mathematically equivalent to the
bi conjugate gradient BiCG algorithm.37 The observed ro-
bustness is therefore consistent with what is known of
BiCG.37 In BiCG, the vector iterates lose their theoretical
!bi-" orthogonality and the scalars used to generate the recur-
rence may correspondingly display very large oscillations,
yet the solution of the linear system, which is a linear com-
bination of the vector iterates, usually converges quite well.
Because of this inherent robustness of the algorithm, we pre-
ferred not to use any of the several available LALAs. The
shortcomings that these algorithms are designed to cure not
being critical, the marginal advantages that they may possi-
bly provide are outweighed by the drawback of losing the
nice tridiagonal structure of the Tj matrices generated by
them.

Another difficulty with generic Lanczos algorithms is
the loss of biorthogonality of the Lanczos vectors. As was
mentioned earlier, in exact arithmetic, the left and right
Lanczos vectors are orthogonal to each other. In the presence
of round off, a severe loss of orthogonality eventually takes
place. This loss of orthogonality is responsible for the ap-
pearance of the so-called ghost or spurious eigenpairs of the
matrix to be inverted. As soon as the linear span of the
Lanczos iterates is large enough as to contain a representa-
tion of an eigenvector to within numerical accuracy, the sub-
sequent steps of the Lanczos process will tend to generate
replicas of this eigenvector. At this point the Lanczos bases
!left or right spaces" become linearly dependent to within
machine precision. From the point of view of solving the
systems !)−A"x=v, the effect of these replicated eigenval-

FIG. 3. !Color online" !a" Numerical behavior of the components of the / j

vector given by Eq. !72". Apart for some out of scale oscillation they tend
rapidly to a value near zero. !b" Numerical behavior of + j coefficients given
by Eq. !61". They tend rapidly to a constant value even if some larger scale
oscillation is present. In the inset the same data are shown on a different
scale and with different colors for odd !green" and even !red" coefficients.
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ues is not very important. Indeed, when thinking in terms of
the BiCG algorithm, after the underlying sequence of
approximations xj =Qj!)−Tj"−1e1

j obtained from the BiCG
algorithm converges to x= !)−A"−1v, further iterations will
only add very small components to xj. As a result the contri-
butions of these replicas are bound to be negligible and this
is observed in practice. Thus, ghost eigenvectors have very
small, if any, oscillator strengths and their contribution to the
wanted inner products ,u *xj-, which approximate g!)" in Eq.
!54", will be negligible, in general.

C. Extrapolating the Lanczos recursion chain

The fast decrease of the components of / j implies that
the quality of the calculated spectrum depends only on the
first few hundreds of them. Specifically, if we set the com-
ponents of the / j vector equal to zero in Eq. !71" after, say,
300–400 iterations, but we keep the dimension of the
tridiagonal matrix Tj of the order of 2–3000, the resulting
spectrum appears to be still perfectly converged. Unfortu-
nately, a relatively large number of iterations seems to be
necessary to generate a tridiagonal matrix of adequate di-
mension. The regular behavior of the +’s for large iteration
counts suggests an inexpensive strategy to extrapolate the
Lanczos recursion. Let us fix the dimension of the
tridiagonal matrix in Eq. !71" to some very large value !say,
N!=10 000" and define an effective / j vector /N

N!
and Tj ma-

trix TN
N!

by setting the kth component of /N
N!

equal to zero for
k!N and the kth component of + equal to the appropriate
estimate of the asymptotic value for odd or even iteration
counts, obtained from iterations up to N. In general, as pre-
viously noted, it very seldom occurs that - j and + j have a
different sign, and we found that extrapolating them to the
same positive value does not invalidate significantly the ac-
curacy of the extrapolation.

In Fig. 4 we display the spectra IN!)" obtained from the
extrapolation procedure just outlined, which from now on
will be referred to as the biconstant extrapolation of the
Lanczos coefficients. One sees that the extrapolated spectrum
is at perfect convergence already for a very modest value of
N in between N=500 and N=1000, a substantial improve-
ment with respect to the results shown in Fig. 1. Note that

this extrapolation procedure, although necessarily approxi-
mate, offers a practical solution to the problem of recovering
a continuous spectrum from a limited number of recursion
steps. As the dimension of the tridiagonal matrix appearing
in Eq. !71" can be made arbitrarily large at a very small cost,
the distance between neighboring pseudodiscrete eigenvalues
in the continuous part of the spectrum can be made corre-
spondingly small, thus allowing us to chose the imaginary
part of the frequency basically as small as wanted.

A qualitative insight into the asymptotic behavior of the
Lanczos recursion coefficients can be obtained from the anal-
ogy with the continued-fraction expansion of the local den-
sity of states !LDOS" for tight-binding !TB" Hamiltonians, a
problem that has been the breeding ground for the applica-
tion of Lanczos recursion methods to electronic-structure
theory.32–35 Since the late 1970s it has been known that the
coefficients of the continued-fraction expansion of a
connected LDOS asymptotically tend to a constant—which
equals one-fourth of the band width—whereas they oscillate
between two values in the presence of a gap: In the latter
case the average of the two limits equals one-fourth of the
total band width, whereas their difference equals one-half the
energy gap.50 These results can be easily verified in the case
of a one dimensional TB Hamiltonian with constant hopping
parameter + which leads to the continued fraction,

g!)" =
1

) −
+2

) −
+2

) − ¯

=
) − 2)2 − 4+2

2+2 , !76"

where the sign of the square root has to be chosen so as to
make Im g!)"40 for Im )→0+. In this case, one sees that
the imaginary part of Green’s function !which equals the
LDOS" is nonvanishing over a band that extends between
−2+ and 2+. In the case where consecutive hopping param-
eters of the recursion chain oscillate between two values, +1
and +2, which we assume to be positive, resulting Green’s
function reads

g!)" =
1

) −
+1

2

) −
+2

2

) − ¯
=

)2 + +1
2 − +2

2 − 2!)2 + +1
2 − +2

2"2 − 4)2+1
2

2)+1
2 . !77"

In this case we obtain two bands between *+1−+2* and +1
++2 and between −!+1++2" and −*+1−+2*.

In our case, the relevant band width of the Liouvillian
superoperator extends from minus to plus the maximum ex-
citation energy. In a PP-PW PP scheme, in turn, the latter is
of the order of the PW kinetic energy cutoff Ecut, whereas the
gap is of the order of twice the optical gap 5. We conclude
that the asymptotic values for the + and - coefficients of the
Liouvillian Lanczos chain are !+1++2" /25Ecut /2 and *+1
−+2*55. In Fig. 5!a" we report the behavior of the values of
the + coefficients of the Liouville Lanczos chain calculated

FIG. 4. !Color online" Convergence of the absorption spectrum of benzene
using the extrapolation procedure described in the text. After N iterations the
components of / j are set to zero and the +’s are extrapolated. The curves
have been shifted vertically for clarity.
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for benzene, versus the iteration count, for different PW
kinetic energy cutoffs. In Fig. 5!b" the average asymptotic
value is plotted against the kinetic energy cutoff, demonstrat-
ing a linear dependence +65 1

2Ecut, in remarkable agreement
to the qualitative analysis described above. Also the differ-
ence between the asymptotic values for odd and even
iteration counts !*+6

odd−+6
even*50.46 Ry" is in remarkable

qualitative agreement with the optical gap !5=0.38 Ry".

V. APPLICATION TO LARGE MOLECULES:
FULLERENE AND CHLOROPHYLL A

In order to demonstrate the applicability of our method-
ology to large molecular systems, we present now the results
obtained for the prototypical cases of fullerene C60 and
chlorophyll a.

Let us begin with fullerene, a molecule whose spectrum
has already been the subject of extensive experimental51,52

and theoretical22,41,51,53–55 studies. Our calculations have
been performed with the molecule lying in a cubic supercell
with side length of 35a0, using the PBE XC functional.
USPPs !Ref. 44" have been used, with a PW basis set with a
kinetic energy cutoff of 30 Ry for the wavefunctions and
180 Ry for the charge density. This corresponds to almost
60 000 PWs, with a dimension of the full Liouvillian exceed-
ing 14.106. The Lanczos recursion is explicitly computed
up to different orders N, as indicated in Sec. III, and then
extrapolated up to N!=20 000, as discussed in Sec. IV !this
value has been chosen rather arbitrarily because both the
numerical workload and the resulting accuracy depend very
little on it, as long as it is large enough". In order to regular-
ize the solution of the tridiagonal linear system, Eq. !75", the
spectrum has been calculated at complex frequencies whose
imaginary part is !also rather arbitrarily" taken as
0=0.02 Ry. In Fig. 6!a" we report the calculated absorption
spectrum between 0 and 40 eV. We see that, upon biconstant
extrapolation, the calculated spectrum is already very good
after as few as 500 iterations, and practically indistinguish-
able from convergence after 1500 iterations. The resulting
spectrum depends very little on the precise choice of 0 as
long as its value is smaller than the distance between neigh-
boring eigenvalues of the tridiagonal matrix of Eq. !75"

!this distance goes to zero in the continuous portion of the
spectrum as N! grows large" and larger than the desired res-
olution of the calculated spectrum.

The overall shape of our calculated spectrum is in sub-
stantial agreement to that calculated in Refs. 22, 41, and 54
using the real-time approach to TDDFT. In spite of the small
atomic basis set used in Ref. 54, the number of integration
steps that was found to be necessary to reach an acceptable
accuracy !6000" is rather larger than ours. In Refs. 22 and 41
where a real-space grid representation of the KS equations
was adopted, instead, the number of time steps employed is
one to two orders of magnitude larger than ours !30–40 000".
Considering that several H" products are necessary at each
time step in real-time approaches, whereas only two are
needed at each Lanczos recursion, we see that our combined
use of the Liouville–Lanczos algorithm with biconstant ex-
trapolation and USPPs with PWs allows for a substantial
reduction of the numerical workload, while keeping the full
accuracy allowed by the XC functionals currently available.

The absorption spectrum of C60 is characterized by a
low-lying and well structured portion !between, say, 3 and
7 eV" dominated by 7→7! transitions, followed by a
broader feature between 14 and 27 eV determined by transi-
tions from both 8 and 7 molecular orbitals. In Fig. 6!b" we
compare our converged spectrum with the experimental re-
sults of Ref. 51. Despite a slight redshift compatible with
that found in the calculations of Ref. 51, the overall shape of
the TDDFT spectrum is in good agreement to experiment.

FIG. 5. !Color online" !a" Behavior of +’s coefficients of benzene for dif-
ferent values of the kinetic energy cutoff. !b" The asymptotic values +6

plotted as a function of the kinetic energy cutoff; the figure shows that they
can be connected by a straight line with slope of about 0.5.

FIG. 6. !Color online" !a" Convergence of the absorption spectrum of
fullerene calculated between 0 and 40 eV. The curves have been shifted
vertically for clarity. !b" The fully converged absorption spectrum of
fullerene compared with experimental results !Ref. 51" in the energy range
between 2 and 7 eV. Theoretical results have been scaled so as to match the
integrated intensity of the experimental data.
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Note that the theoretical results reported in Ref. 51, which
were obtained by calculating individual eigenpairs of
Casida’s equation, could hardly be extended to such a broad
energy range as covered in the present calculation because
too many lines would have to be calculated.

An even more challenging test is chlorophyll, a molecule
which is of fundamental importance for life on Earth since it
is responsible for the photosynthetic process. There are sev-
eral different forms of this molecule, and we will focus on
chlorophyll a !C55H72MgN40". Historically the interpretation
of the visible spectrum of chlorophyll relies on the four-
orbital Gouterman model of porphyrins56 in which only the
two highest occupied molecular orbitals and the two lowest
unoccupied molecular orbitals are considered. In the last few
years there have been several calculations of its low energy
spectrum relying on different ab initio techniques.57–62

Despite the fact that TDDFT seems to produce spurious
charge transfer states in the visible region,60 according to our
calculations the overall shape of the low energy part of spec-
trum seems to be correctly predicted. Our calculations have
been performed using a supercell of dimensions 35.45
.55a0

3 with the PW91 XC functional63 and USPPs.44 Mo-
lecular orbitals were expanded in PWs up to a kinetic energy
cutoff of 30 Ry, while 180 Ry were used for the charge den-
sity. The PW basis sets consist of more than 120 000 PWs,
while the dimension of the Liouvillian superoperator exceeds
42.106. In this case the imaginary part of the frequency was
set to 0=0.002 Ry to better compare the results with experi-
ments. In Fig. 7!a" we display the convergence of the spec-
trum with respect to the number of Lanczos steps, using the
usual biconstant extrapolation of the coefficients, as calcu-
lated over a wide range of energy between 0 and 40 eV. In
Fig. 7!b" we compare the visible part of the spectrum calcu-
lated in this work with the experimental results obtained in
diethyl solution in Ref. 64. The agreement with experiment
is clearly good but the Soret !B" band located in the indigo
region of the spectrum at 430 nm is slightly redshifted in the
calculation, while the red band !Q" has an opposite, blue-
shifted behavior. How much of this discrepancy has to be
attributed to the limitations of the ADFT alone, or to a com-
bination of them with the neglect of solvation effects remains
to be ascertained.

VI. CONCLUSIONS

In this paper we have presented a new algorithmic ap-
proach to linearized TDDFT that combines the advantages of
the more conventional real-time and Casida’s eigenvalue
methods, while avoiding many of their drawbacks. This ap-
proach results from the combination of many elements which
are individually not new in different communities, ranging
from condensed matter and quantum chemistry, to control
theory/engineering and signal processing. In particular, it is
the natural extension to the dynamical regime of DFPT, a
method made popular in the condensed-matter community
by the calculation of static properties !such as dielectric,
piezoelectric, elastic" and by the calculation of phonons and
related properties in crystals. The main features of the new
method are that it is tailored to the calculation of specific

responses to specific perturbations and that the computa-
tional burden for the calculation of the complete spectrum of
a given response function in a wide frequency range is com-
parable to that of a single static ground-state or response-
function calculation. Of course, in principle, the absorption
spectrum of any system extends up to infinite frequency. In
practice, however, it is bounded from above by the f-sum
rule,65 so that a finite !and usually fairly small, as seen" num-
ber of Lanczos iterations suffices to capture it. We believe
that, from the algorithmic point of view, the new method is
close to optimal in its application range and that it opens thus
the way to the simulation of the dynamical properties of
large and very large molecular and condensed-matter sys-
tems. Assuredly, it cannot yield any better results than
granted by the quality of the XC functional used to imple-
ment it. Devising new XC functionals capable of properly
describing the electron-hole interaction responsible, e.g., of
Rydberg and excitonic effects in the low-lying portion of the
spectrum of molecular and extended systems, respectively,
remains a major problem to be addressed and solved.
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