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1 Introduction

Entanglement quantifiers are crucial quantities to explore quantum field theories, quantum
gravity models, condensed matter systems and quantum information theory.

The geometric entanglement between complementary spatial regions is studied by con-
sidering a quantum system in a state described by its density matrix ρ and a spatial bi-
partition A ∪ B of the entire space. Assuming that the Hilbert space can be factorised as
H = HA ⊗ HB, the reduced density matrix ρA ≡ TrHB ρ ≡ TrBρ of the region A is ob-
tained by tracing out the degrees of freedom corresponding to the complementary region.
The reduced density matrix ρA is both hermitean and positive semidefinite, hence it can
be written as ρA ∝ e−KA , where the proportionality constant guarantees the normalisa-
tion condition TrAρA = 1. The hermitean operator KA is the modular Hamiltonian (also
known as entanglement Hamiltonian) of the region A [1]. The spectrum of the modular
Hamiltonian provides interesting quantities like e.g. the entanglement entropy.

The modular Hamiltonian KA allows to introduce a family of unitary operators U(τ) =
e−iτKA , parameterised by τ ∈ R, that generates a flow O(τ) ≡ U(τ)OU(−τ) for any
operator O localised in A, which is called modular flow of the operator O [2]. The modular
flow of O satisfies TrA

(
ρAO

)
= TrA

(
ρAO(τ)

)
. The modular flow provides the intrinsic

internal dynamics induced by the reduced density matrix of a subsystem.
The modular Hamiltonian is known analytically in terms of the fundamental fields of

the model in few cases. A seminal result due to Bisognano and Wichmann [3, 4] states that
the modular Hamiltonian of half-space x > 0 for a Lorentz invariant quantum field theory
in its vacuum is given by the boost generator in the x-direction. Other analytic expres-
sions of modular Hamiltonians have been found for conformal field theories by combining
this crucial result with the conformal symmetry. For a conformal field theory in generic
spacetime dimension and in its ground state, this analysis provides the modular Hamil-
tonian of a spherical region [5–7]. In 1 + 1 dimensions, where the conformal symmetry
has infinitely many generators, the Bisognano-Wichmann modular Hamiltonian and the
conformal transformations allow to find the modular Hamiltonians in some other cases of
physical interest [8, 9], including time-dependent scenarios [9] and spatially inhomogeneous
systems [10]. All these modular Hamiltonians are local because the corresponding densities
are local operators.

Very few analytic expressions of modular Hamiltonians are available in the literature
that cannot be found through the result of Bisognano and Wichmann and the conformal
symmetry, even in conformal field theories. An important example is the modular Hamil-
tonian of the 1 + 1 dimensional massless Dirac fermion in the ground state for the union
of disjoint intervals on the infinite line. By employing the modular Hamiltonian on the
lattice obtained by Peschel [11], this modular Hamiltonian has been written by Casini
and Huerta [12], who found also the corresponding modular flow for the Dirac field. This
modular Hamiltonian is very interesting because, beside a local term, it contains also a
bi-local operator that induces a mixing along the modular flow between the field evaluated
in two different points. The correlators of the Dirac field along the modular flow generated
by this modular Hamiltonian have been obtained in [13], verifying that they satisfy the
Kubo-Martin-Schwinger (KMS) condition [1]. The validity of this condition guarantees the
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uniqueness of the modular flow [2]. Further analyses of this modular Hamiltonian and of
its modular flow are reported in [14, 15].

Physical boundaries heavily influence the entanglement of complementary spatial re-
gions. For instance, in two-dimensional boundary conformal field theories [16–18], the
Affleck-Ludwig boundary entropy [19] occurs in the entanglement entropy [20]. The role of
a physical boundary has been studied also through algebraic quantum field theory meth-
ods [21, 22].

A class of modular Hamiltonians in two-dimensional conformal field theories can be
found through boundary conformal field theory techniques [9]. This approach allows to
explain various features of some entanglement spectra [9, 10, 23–28]. The modular Hamil-
tonians of more complicated configurations can be found by employing techniques based on
the specific model. The typical example is the massless Dirac fermion, where the modular
Hamiltonians of an arbitrary number of disjoint intervals on the infinite line when the en-
tire system is in its ground state [12] and of an interval on the circle when the system is in
a thermal state [15, 29, 30] have been found. Other interesting related studies are [31–33].

In this manuscript we consider the massless Dirac fermion in its ground state on the
half-line x > 0. Imposing boundary conditions at x = 0 that guarantee the energy conser-
vation, two inequivalent models (phases) are allowed. These two phases are characterised
by different conservation laws. In particular, either the charge or the helicity is preserved
but not both of them. Instead, for the massless Dirac field on the line both these sym-
metries are preserved. Furthermore, on the half-line the two components of the massless
Dirac field are coupled through the boundary condition.

In this model, we study the modular Hamiltonians KA of an interval A on the half-line.
Analytic expressions for KA in terms of the components of the Dirac field are obtained in
both phases. Beside the expected local term, also a bi-local term occurs which involves
fields evaluated in two conjugate points within the interval. This bi-local term breaks either
the vector or the axial symmetry. This is the main difference with respect to the bi-local
term in the modular Hamiltonian of two disjoint equal intervals on the line for the massless
Dirac fermion in the ground state found in [12], which preserves both these symmetries.

The modular flows of the Dirac field generated by these modular Hamiltonians are
also obtained. Depending on the phase, the modular flow mixes fields with either different
chirality or different charge evaluated in conjugate points. The characteristic symmetry
of each phase is preserved along the corresponding modular flow. We find the two-point
correlators of the fields along the modular flow that satisfy the KMS condition.

The outline of the manuscript is as follows. In section 2 we discuss the massless Dirac
fermion on the half-line and its correlation functions. In section 3 we derive the modular
Hamiltonians KA of an interval in the two phases. The corresponding entanglement en-
tropies are computed in Sec 4. The modular flows of the components of the Dirac field and
their correlators are discussed in section 5 and in section 6 respectively. Some interesting
limiting regimes are considered in section 7. In Sec 8 we study KA and its flow in the space-
time. The results are summarized in section 9. In the appendices A), (B and C we provide
some technical details, the derivations of some expressions reported in the main text and
further analyses, including some results for the massless Dirac fermion in spacetimes that
are invariant under spatial translations.
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2 Dirac fermions on the half-line

In this section we summarise the main properties of massless Dirac fermions on the half-line
R+ ≡ [0,∞), fixing also the notation adopted throughout the manuscript.

2.1 Bulk dynamics

The massless Dirac field ψ(t, x) is the following doublet made by the two complex fields

ψ(t, x) =
(
ψ1(t, x)
ψ2(t, x)

)
. (2.1)

In the bulk of the half-line, it satisfies the scale invariant equation of motion

(γt∂t − γx∂x)ψ(t, x) = 0 x > 0 (2.2)

where
γt =

( 0 1
1 0

)
γx =

( 0 −1
1 0

)
. (2.3)

Denoting the Hermitean conjugation through the asterisk, the energy-momentum ten-
sor for the Dirac field (2.1) can be written in terms of the following components1

Ttt(t, x) = i
2 [(∂xψ∗) γtγx ψ − ψ∗ γtγx (∂xψ)](t, x) (2.4)

Txt(t, x) = i
2 [(∂tψ∗) γtγx ψ − ψ∗ γtγx (∂tψ)](t, x) . (2.5)

The equation of motion (2.2) implies the local energy conservation of the energy-momentum
tensor

∂tTtt(t, x)− ∂xTxt(t, x) = 0 x > 0 . (2.6)

The bulk dynamics is invariant both under the vector phase transformation

ψr(t, x) 7−→ ei θv ψr(t, x) θv ∈ [0, 2π) (2.7)

and under the axial phase transformation

ψr(t, x) 7−→ ei(−1)r θa ψr(t, x) θa ∈ [0, 2π) . (2.8)

Denoting by jt(t, x) and jx(t, x) the components of the current corresponding to the
vector U(1) symmetry and by kt(t, x) and kx(t, x) the components of the current corre-
sponding to the axial U(1) symmetry, we have that

jt(t, x) = kx(t, x) = [ψ∗ψ](t, x) jx(t, x) = kt(t, x) = [ψ∗γtγxψ](t, x) . (2.9)

These currents are locally conserved when the equation of motion (2.2) holds, namely

∂tjt(t, x)− ∂xjx(t, x) = 0 ∂tkt(t, x)− ∂xkx(t, x) = 0 x > 0 (2.10)

and they describe the electric and helical transport in the system.
1The remaining components can be obtained from the symmetry and tracelessness conditions.
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2.2 Boundary conditions

In order to fully determine the dynamics on the half-line R+, the boundary condition at
x = 0 must be imposed. This choice deeply influences the symmetry content of the model.

We adopt the most general boundary conditions that ensure global energy conserva-
tion. This means that the vanishing of the energy flow through the boundary is imposed,
namely [16–18]

Txt(t, 0) = 0 t ∈ R . (2.11)
This boundary condition can be satisfied in two ways: either

ψ1(t, 0) = eiαv ψ2(t, 0) αv ∈ [0, 2π) t ∈ R (2.12)

or
ψ1(t, 0) = e−iαa ψ∗2(t, 0) αa ∈ [0, 2π) t ∈ R (2.13)

which provide a scale invariant coupling of fields with different chirality at x = 0.
We remark that αv and αa parametrise all self-adjoint extensions [34] of the

Hamiltonian
h =

( i ∂x 0
0 − i ∂x

)
x ∈ R+ (2.14)

which is obtained by rewriting the equation of motion (2.2) in the form

i ∂tψ(t, x) = hψ(t, x) . (2.15)

The boundary conditions (2.12) and (2.13) lead to different conservation laws for
the system. In particular, the boundary condition (2.12) preserves the vector symme-
try and breaks the axial one, while the opposite holds in the model where (2.13) is im-
posed. Thus, on the half-line the basic physical requirement of energy conservation (i.e. the
self-adjointness of the Hamiltonian) implies that either the vector symmetry or the axial
symmetry is necessarily broken. Instead, for the massless Dirac fermion on the infinite line
both these symmetries are preserved. At quantum level this feature provides two different
phases for the massless Dirac fermion on the half-line, which are characterised by either the
conservation of the charge or by the conservation of the helicity (but not both of them) [35].
Throughout this manuscript we will refer to these two inequivalent models respectively as
vector phase and axial phase.

2.3 Quantization

The quantum fields ψr(t, x) in (2.1) satisfy the equation of motion (2.2), the following the
equal-time anti-commutation relations[

ψr1(t, x1) , ψ∗r2(t, x2, )
]
+ = δr1r2 δ(x1 − x2) (2.16)[

ψr1(t, x1) , ψr2(t, x2)
]
+ =

[
ψ∗r1(t, x1) , ψ∗r2(t, x2)

]
+ = 0 (2.17)

and also a boundary condition that is either (2.12) or (2.13). These fields can be described
in terms of two mutually anticommuting algebras A+ and B+ generated respectively by{

a(k) , a∗(k)
} {

b(k) , b∗(k)
}

k > 0 (2.18)

which satisfy the canonical anticommutation relations.
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2.3.1 Vector phase

In the vector phase, where the boundary condition (2.12) is imposed. We denote the
components of the Dirac field by

λ(t, x) =
(
λ1(x+ t)
λ2(x− t)

)
x ∈ R+ t ∈ R (2.19)

can which be written as [36]

λ1(x+ t) =
∫ ∞

0

[
a(k) e−ik(x+t) + eiαv b∗(k) eik(x+t)

]dk
2π (2.20)

λ2(x− t) =
∫ ∞

0

[
e−iαv a(k) eik(x−t) + b∗(k) e−ik(x−t)

] dk
2π . (2.21)

Notice that each component λr depends on the angle αv and involves the same generators
of A+ and B+, which is not the case of the Dirac fermion on the line.2

For the vacuum expectation values of the fields in (2.20) and (2.21) in the Fock repre-
sentation of A+ and B+, one finds

〈λ1(x1 + t1)λ∗1(x2 + t2)〉 =C(t12 + x12) (2.24)
〈λ2(x1 − t1)λ∗2(x2 − t2)〉 =C(t12 − x12) (2.25)
〈λ1(x1 + t1)λ∗2(x2 − t2)〉 =eiαv C(t12 + x̂12) (2.26)
〈λ2(x1 − t1)λ∗1(x2 + t2)〉 =e−iαv C(t12 − x̂12) (2.27)

where we have introduced

t12 ≡ t1 − t2 x12 ≡ x1 − x2 x̂12 ≡ x1 + x2 (2.28)

and
C(ζ) ≡ 1

2πi(ζ − iε) = 1
2πi

[
P.V. 1

ζ
+ iπ δ(ζ)

]
ε > 0 . (2.29)

In this phase the axial symmetry (2.8) is broken, hence the nontrivial correlation func-
tions (2.26) and (2.27) that mix different helicities are allowed.

We find it convenient to collect the correlation functions (2.24), (2.25), (2.26) and (2.27)
at equal times t1 = t2 ≡ t into the following matrix

C(x, y;αv) ≡
(
〈λ1(x+ t)λ∗1(y + t)〉 〈λ1(x+ t)λ∗2(y − t)〉
〈λ2(x− t)λ∗1(y + t)〉 〈λ2(x− t)λ∗2(y − t)〉

)

=
(

C(x− y) eiαC(x+ y)
e−iαC(−x− y) C(−x+ y)

)
. (2.30)

2On the infinite line R, two copies of A+ and B+ are needed to write the components of the Dirac field as

ψ1(x+ t) =
∫ ∞

0

[
a1(k) e−ik(x+t) + b∗1(k) eik(x+t)

]dk
2π (2.22)

ψ2(x− t) =
∫ ∞

0

[
a2(k) eik(x−t) + b∗2(k) e−ik(x−t)

]dk
2π . (2.23)
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It is worth discussing the meaning of the phase factor eiαv in (2.12) and the possibility
to absorb it through the field redefinition

λ1(x+ t) 7−→ λ1(x+ t) λ2(x− t) 7−→ e−iαvλ2(x− t) (2.31)

which leaves invariant both the equations of motion (2.2) and the equal-time canonical
relations (2.16) and (2.17). This leads us to describe the boundary condition at x→∞.

The boundary condition at x→∞ can be studied by introducing the following family
of states

Φ(h) =
(∫ ∞

0
h(p) a∗(p) dp

2π

)
Ω h ∈ D(R+) (2.32)

where Ω is the Fock vacuum and D(R+) is the space of C∞ functions with compact support
in R+. It is well known that the Fourier transform

ĥ(y) =
∫ ∞
−∞

h(p) e−ipy dp
2π =

∫ ∞
0

h(p) e−ipy dp
2π (2.33)

is a smooth function that is rapidly decreasing as |y| → ∞. We take h ∈ D(R+) such that

ĥ(0) =
∫ ∞

0
h(p) dp

2π 6= 0 . (2.34)

Within the family of one-particle states (2.32) defined by (2.32) and (2.34), one can evaluate
the following expectation values

〈Ω|λ1(x+ t)|Φ(h)〉 = ĥ(t+ x) 〈Ω|λ2(x− t)|Φ(h)〉 = e−iαv ĥ(t− x) (2.35)

which imply
lim
x→∞
x 6=−t

〈Ω|λ1(x+ t)|Φ(h)〉 = lim
x→∞
x 6=t

〈Ω|λ2(x− t)|Φ(h)〉 = 0 . (2.36)

However, considering the limit along the components of the light cone, given by t = −x
and t = x, one finds

lim
x→∞
x=−t

〈Ω|λ1(x+t)|Φ(h)〉 = ĥ(0) 6= 0 lim
x→∞
x=t

〈Ω|λ2(x−t)|Φ(h)〉 = e−iαv ĥ(0) 6= 0 . (2.37)

Comparing (2.12) and (2.37), we conclude that the phase eiαv cannot be absorbed in λ2 as
in (2.31) at x = 0 and at x =∞ simultaneously.

Finally we observe that the angle αv has a simple physical interpretation in the context
of scattering theory: the boundary induces a non-trivial one-body scattering matrix, which
describes the particle reflection at x = 0. The angle αv defines the scattering phase shift
of an outgoing particle with respect to an incoming one.

2.3.2 Axial phase

The axial phase implements the boundary condition (2.13). Denoting by χr(t, x) the com-
ponents of the Dirac field in this phase throughout the manuscript, we have that these
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fields can be decomposed through the generators of A+ and B+ introduced in section 2.3.1.
These decompositions read

χ1(x+ t) =
∫ ∞

0

[
e−iαa b(k) e−ik(x+t) + a∗(k) eik(x+t)

] dk
2π (2.38)

χ2(x− t) =
∫ ∞

0

[
e−iαa a(k) eik(x−t) + b∗(k) e−ik(x−t)

] dk
2π (2.39)

which depend on the angle αa. The corresponding correlation functions on the vacuum are

〈χ∗1(x1 + t1)χ1(x2 + t2) = C(t12 + x12) (2.40)
〈χ2(x1 − t1)χ∗2(x2 − t2)〉 = C(t12 − x12) (2.41)
〈χ∗1(x1 + t1)χ∗2(x2 − t2)〉 = eiαa C(t12 + x̂12) (2.42)
〈χ2(x1 − t1)χ1(x2 + t2)〉 = e−iαa C(t12 − x̂12) . (2.43)

Notice that the violation of the electric charge conservation is manifest in (2.42) and (2.43).
Comparing (2.24), (2.25), (2.26) and (2.27) with (2.40), (2.41), (2.42) and (2.43) respec-
tively, we observe that at equal times t1 = t2 ≡ t we can write(

〈χ∗1(x+ t)χ1(y + t)〉 〈χ∗1(x+ t)χ∗2(y − t)〉
〈χ2(x− t)χ1(y + t)〉 〈χ2(x− t)χ∗2(y − t)〉

)
= C(x, y;αa) . (2.44)

Thus, the matrices (2.30) and (2.44) coincide, except for the angles αv and αa.
The discussion made in section 2.3.1 about the meaning of the phase eiαa in (2.13)

and the possibility to reabsorb it through a redefinition of the fields (2.45) can be easily
adapted also to this phase, arriving at the same conclusion.

Since in the vector phase both components of the doublet λ(t, x) defined in (2.1)
transform in the same way under the vector phase transformations (2.7), in the axial phase
we find it convenient to introduce the following doublet

χ(t, x) =
(
χ∗1(x+ t)
χ2(x− t)

)
(2.45)

whose components transform in the same way under the axial phase transformations (2.8).
At this point, in order to treat both phases in a unified way, we introduce the doublet

ψ(t, x) =
(
ψ1(x+ t)
ψ2(x− t)

)
ψ(t, x) ≡

 λ(t, x) vector phase
χ(t, x) axial phase

(2.46)

with λ and χ given by (2.19) and (2.45) respectively. With this notation the boundary
conditions (2.12) and (2.13) take the form

ψ1(t) = eiα ψ2(−t) α ≡

αv vector phase
αa axial phase .

(2.47)
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3 Modular Hamiltonians of an interval on the half-line

The massless Dirac fermion is described by a quadratic field theory, hence the modular
Hamiltonian of an interval A = [a, b] ⊂ R+ on the half-line for a massless Dirac fermion in
its ground state can be written in the following quadratic form

KA =
∫
A

∫
A

:ψ∗(0, x)HA(x, y)ψ(0, y) : dx dy (3.1)

where : · · · : denotes the normal product in the oscillator algebras A+ and B+ and ψ(t, x)
is the two-components field in (2.46).

The kernel HA(x, y) in (3.1) is the 2× 2 matrix given by [11, 37, 38]

HA(x, y) = log
(
CA(x, y;α)−1 − I

)
x, y ∈ A (3.2)

where I is the identity matrix and CA is the reduced correlation functions matrix, obtained
by restricting the correlation functions matrix (given by (2.30) in the vector phase and
by (2.44) in the axial phase) to the interval A.

In order to obtain an explicit expression for HA, the spectral problem associated to
the reduced correlation functions matrix CA must be solved. This means that we have to
find the eigenvalues σs and the eigenfunctions Φs,p(x) such that∫ b

a
CA(x, y;α) Φs,p(y) dy = σs Φs,p(x) x ∈ A (3.3)

where s and p are two parameters specified below.

3.1 The spectral problem

In order to solve the spectral problem (3.3) for the massless Dirac field on the half-line when
the subsystem is the interval A = [a, b] ⊂ R+, let us first consider the auxiliary spectral
problem corresponding to the massless Dirac field in its ground state on the infinite line
and where the bipartition of the line is given by the two disjoint equal intervals Asym ≡
[−b,−a] ∪ [a, b] ⊂ R and by its complement on the line. This auxiliary spectral problem
reads ∫

Asym
C(x− y)φs,p(y) dy = σs φs,p(x) x ∈ Asym (3.4)

where C(x− y) is the distribution defined in (2.29). The solution of this spectral problem
can be found by specialising to Asym the solution of the spectral problem corresponding to
an arbitrary number of disjoint intervals of generic lengths on the line, which has been found
in [12] by employing [39]. The explicit form of the spectral data {σs, φs,p | s ∈ R, p = 1, 2}
for (3.4) has been reported in the appendix A (see (A.1) and (A.2)).

The spectral problem (3.3) can be solved through the auxiliary spectral problem (3.4)
by first observing that the latter one can be rewritten as follows∫ b

a
C(x− y)φs,p(y) dy +

∫ b

a
C(x+ y)φs,p(−y) dy = σs φs,p(x) x ∈ Asym . (3.5)

– 8 –
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Since Asym is symmetric under reflection with respect to the origin at x = 0, we can
conclude that (3.5) holds also for x 7→ −x. This observation provides another identity that
can be combined with (3.5). This leads to write the solution of (3.3) in terms of φs,p and
α as follows

Φs,p(x) ≡
(

Φ(1)
s,p(x)

Φ(2)
s,p(x)

)
=
(
eiα φs,p(x)
φs,p(−x)

)
. (3.6)

We stress that the function φs,p in (3.6) is the solution of the spectral problem (3.4) in
Asym. The completeness and orthonormality of the system {φs,p(x) : x ∈ Asym, s ∈ R, p =
1, 2} implies that (3.6) form a complete set of orthonormal eigenfunctions in A, namely

2∑
p=1

∫ ∞
−∞

Φ(i)
s,p(x)Φ(j)

s,p(y) ds = δij δ(x−y)
2∑
i=1

∫ b

a
Φ(i)
s,p(x)Φ(i)

r,q(x) dx = δpq δ(s− r) (3.7)

where the overline indicates the complex conjugation.

3.2 The kernel HA

The solution of the spectral problem (3.3) leads us to write the reduced correlation functions
matrix through its spectral representation

CA(x, y;α) =
2∑
p=1

∫ +∞

−∞
σs Φs,p(x) Φ∗s,p(y) ds . (3.8)

The relation (3.2) tells us that CA and HA share the same eigenfunctions and that, since
the eigenvalues σs ofCA are (A.1), the eigenvalues ofHA are given by −2πs = log(1/σs−1)
with s ∈ R. Thus, the spectral representation of the kernel HA reads

HA(x, y) = − 2π
2∑
p=1

∫ +∞

−∞
s Φs,p(x) Φ∗s,p(y) ds . (3.9)

Expressing the eigenfunctions (3.6) through the explicit form of φs,p given in (A.2), we find

2∑
p=1

Φs,p(x) Φ∗s,p(y) =
(

m(x, y) e−is[w(x)−w(y)] − eiαm(x,−y) e−is[w(x)−w(−y)]

− e−iαm(−x, y) e−is[w(−x)−w(y)] m(−x,−y) e−is[w(−x)−w(−y)]

)
(3.10)

where we have introduced
w(x) ≡ log

[(x+ b)(x− a)
(x+ a)(b− x)

]
(3.11)

that plays an important role throughout our analysis, and m(x, y) is defined in terms of
the functions mp(x) in (A.3) as follows

m(x, y) ≡
2∑
p=1

mp(x)mp(y) = (b− a) (x y + a b)
π
√

(b2 − x2)(x2 − a2) (b2 − y2)(y2 − a2)
. (3.12)

The integration in (3.9) can be performed by observing that∫ ∞
−∞

s e−is[w(ηxx)−w(ηyy)] ds = iπ
[

ηx
w′(x) ∂x −

ηy
w′(y) ∂y

]
δ
(
w(ηxx)− w(ηyy)

)
(3.13)
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where ηx, ηy ∈ {−1,+1}. The support of the Dirac delta function in (3.13) is given by the
zeros of the following function

zw(ηxx, ηyy) ≡ w(ηxx)− w(ηyy) . (3.14)

A crucial role is played by the point x̃ conjugate to x defined as

x̃ ≡ a b

x
. (3.15)

Notice that, if x ∈ A, then also x̃ ∈ A.
The integration in (3.9) of the diagonal elements of the matrix (3.10) provides Dirac

delta functions localised where zw(x, y) = 0 and zw(−x,−y) = 0. These equations are
solved by y = x and y = −x̃, but only the former solution is allowed because the latter one
does not belong to R+ when x ∈ A. Thus, for these integrals we have to use∫ ∞
−∞

s e−is[w(x)−w(y)] ds = −
∫ ∞
−∞

s e−is[w(−x)−w(−y)] ds = iπ
w′(x)w′(y) (∂x − ∂y) δ(x− y)

(3.16)
which tells us that the diagonal elements in (3.10) lead to local terms in the modular Hamil-
tonian. Instead, the off-diagonal elements of (3.10) give Dirac delta functions localised on
the zeros of zw(x,−y) and zw(−x, y). They are y = x̃ and y = −x, but only the former
solution is allowed because −x /∈ R+ when x ∈ A. Thus, for the integration in (3.9) of the
off-diagonal elements of (3.10) we need∫ ∞

−∞
s e−is[w(x)−w(−y)] ds = −

∫ ∞
−∞

s e−is[w(−x)−w(y)] ds (3.17)

= iπ
2w′(x)w′(y)

[
ab

y2 ∂xδ(x− ỹ) + ab

x2 ∂yδ(y − x̃)
]

which tells us that these terms give origin to bi-local terms in the modular Hamiltonian.
The above discussion suggests to separate the diagonal terms and the off-diagonal

terms in (3.10). This leads to write the kernel (3.9) as follows

HA(x, y) = H loc
A (x, y) +Hbi-loc

A (x, y) (3.18)

where H loc
A and Hbi-loc

A give origin respectively to the local terms and the bi-local terms in
the modular Hamiltonian. More explicitly, the matrices in the r.h.s. of (3.18) are

H loc
A (x, y) ≡ −2π iM+(x, y)

( (∂x − ∂y) δ(x− y) 0
0 − (∂x − ∂y) δ(x− y)

)
(3.19)

and
Hbi-loc

A (x, y) ≡ −2π iM−(x, y)
( 0 eiαD(x,−y)
− e−iαD(x,−y) 0

)
(3.20)

where we have introduced

M±(x, y) ≡ (x y ± a b)
√

(b2 − x2)(x2 − a2) (b2 − y2)(y2 − a2)
4(b− a) (a b+ x2) (a b+ y2) (3.21)
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and
D(x,−y) ≡ ab

y2 ∂xδ(x− ỹ) + ab

x2 ∂yδ(y − x̃) (3.22)

that satisfies the relation D(−x, y) = −D(x,−y).
The decomposition (3.18) leads to write the modular Hamiltonian (3.1) as follows

KA = K loc
A +Kbi-loc

A (3.23)

where K loc
A is a local operator, while Kbi-loc

A is a bi-local operator, which are discussed in
section 3.2.1 and section 3.2.2 respectively.

Setting either α = αv or α = αa in the above expressions, we obtain the corresponding
results respectively for the vector phase and for the axial phase.

3.2.1 Local term

The local term in (3.23) reads

K loc
A ≡

∫ b

a

∫ b

a
:ψ∗(0, x)H loc

A (x, y) ψ(0, y) : dx dy (3.24)

where the kernel H loc
A (x, y) has been defined in (3.19).

The Dirac delta functions occurring in H loc
A (x, y) guarantee that (3.24) is a local oper-

ator because it can be written as an integral over A of fields evaluated at the same point.
This integral can be found by first plugging (3.19) into (3.24) and then integrating by parts.
Exploiting the fact that [∂xM+(x, y)− ∂yM+(x, y)] |x=y = 0, we find that (3.24) becomes

K loc
A = 2π

∫ b

a
βloc(x)Ttt(0, x) dx (3.25)

where the operator Ttt(t, x) is the normal ordered version of the energy density (2.4),
namely

Ttt(t, x) ≡ i
2 :
[(

(∂xψ∗1)ψ1 − ψ∗1 (∂xψ1)
)
(x+ t)−

(
(∂xψ∗2)ψ2 − ψ∗2 (∂xψ2)

)
(x− t)

]
: (3.26)

and the weight function reads

βloc(x) ≡ 2M+(x, x) = 1
w′(x) = (b2 − x2) (x2 − a2)

2 (b− a) (a b+ x2) (3.27)

which satisfies
βloc(x̃) = ab

x2 βloc(x) ⇐⇒ βloc(x̃)
x̃

= βloc(x)
x

. (3.28)

3.2.2 Bi-local term

The bi-local term in the decomposition (3.23) of the modular Hamiltonian (3.1) reads

Kbi-loc
A ≡

∫ b

a

∫ b

a
:ψ∗(0, x)Hbi-loc

A (x, y) ψ(0, y) : dx dy (3.29)

where the kernel Hbi-loc
A (x, y) is defined in (3.20).
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The operator (3.29) is bi-local because the Dirac delta functions in Hbi-loc
A (x, y) allow

to write it as an integral over A of fields evaluated at different (conjugated) points. This
integral can be computed by plugging (3.20) into (3.29) first and then integrating by parts.
Since M−(x, ab/x) = 0, we find that (3.29) becomes

Kbi-loc
A = 2π

∫ b

a
βbi-loc(x)Tbi-loc(0, x, x̃;α) dx (3.30)

where we have introduced the following bi-local operator

Tbi-loc(t, x, y;α) ≡ i
2

{
eiα :

[
ψ∗1(y + t)ψ2(x− t) + ψ∗1(x+ t)ψ2(y − t)

]
: (3.31)

− e−iα :
[
ψ∗2(y − t)ψ1(x+ t) + ψ∗2(x− t)ψ1(y + t)

]
:
}

and the weight function is

βbi-loc(x) ≡ a b (b2 − x2) (x2 − a2)
2 (b− a)x (a b+ x2)2 = βloc(x̃)

x+ x̃
(3.32)

which satisfies

βbi-loc(x̃) = x2

a b
βbi-loc(x) ⇐⇒ x̃ βbi-loc(x̃) = xβbi-loc(x) . (3.33)

The final form for the modular Hamiltonian of the interval A ⊂ R+ is (3.23), where
K loc
A and Kbi-loc

A are the operators given by (3.25) and (3.30) respectively.

3.2.3 Modular Hamiltonians in the vector and axial phases

The explicit expressions of the modular Hamiltonians (3.23) for the interval A ⊂ R+ on
the half-line when the Dirac field is in the ground state can be written by first using (3.25)
and (3.30) and then performing the substitutions (ψ, α) 7→ (λ, αv) for the vector phase and
(ψ, α) 7→ (χ, αa) for the axial phase into the operators (3.26) and (3.31), where λ and χ

have been defined in (2.19) and in (2.45) respectively.
In the local term (3.25), taking into account that the fermion fields anticommute under

the normal product, we observe that Ttt in (3.26) has the same form when expressed in
terms of λ or χ. This is a consequence of the fact that Ttt is invariant under both the
vector and the axial transformations given in (2.7) and (2.8) respectively.

In the bi-local term (3.30), the bi-local operator (3.31) in the vector phase reads

T vector
bi-loc (t, x, y;αv) ≡ i

2

{
eiαv :

[
λ∗1(y + t)λ2(x− t) + λ∗1(x+ t)λ2(y − t)

]
:

− e−iαv :
[
λ∗2(y − t)λ1(x+ t) + λ∗2(x− t)λ1(y − t)

]
:
}

(3.34)

while in the axial phase it becomes

T axial
bi-loc(t, x, y;αa) ≡

i
2

{
eiαa :

[
χ1(y + t)χ2(x− t) + χ1(x+ t)χ2(y − t)

]
:

− e−iαa :
[
χ∗2(y − t)χ∗1(x+ t) + χ∗2(x− t)χ∗1(y + t)

]
:
}
. (3.35)
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These expressions depend explicitly on the angle determining the boundary condition
at x = 0.

It is instructive to compare these modular Hamiltonians to the modular Hamiltonian
of two disjoint equal intervals Asym on the line, obtained as a special case of the modular
Hamiltonian of the union of a generic number of disjoint intervals on the line found in [12].
Also the modular Hamiltonian of Asym ⊂ R can be written as the sum of a local term and
a bi-local one

KAsym = K loc
Asym +Kbi-loc

Asym (3.36)

where

K loc
Asym = 2π

∫
Asym

βloc(x)Ttt(0, x) dx Kbi-loc
Asym = 2π

∫
Asym

βbi-loc(x)Tbi-loc(0, x,−x̃) dx .

(3.37)
In these expressions Ttt(t, x) is the normal ordered energy density (3.26), the weight func-
tions βloc(x) and βbi-loc(x) are (3.27) and (3.32) respectively and the bi-local operator
Tbi-loc(t, x, y) occurring in the bi-local term is defined as follows

Tbi-loc(t, x, y) ≡ i
2

{
:
[
ψ∗1(x+ t)ψ1(y + t)− ψ∗1(y + t)ψ1(x+ t)

]
:

+ :
[
ψ∗2(x− t)ψ2(y − t)− ψ∗2(y − t)ψ2(x− t)

]
:
}

(3.38)

where we remark that the fields in this operator are given by (2.22) and (2.23).
In the local term (3.25), the weight function and the functional dependence on the

fermion fields in the integrand are the same occurring in the local term K loc
Asym of the

modular Hamiltonian of Asym on the line, that is the first expression in (3.37). However, we
stress that the fermionic fields on the half-line are given by (2.20), (2.21), (2.38) and (2.39),
which depend explicitly on the angles αv and αa characterising the boundary condition at
x = 0.

As for the bi-local terms, comparing (3.30) and the second expression in (3.37), one
observes that, while the same weight function occurs in the integrands, the corresponding
bi-local operators are very different. Indeed, we have that (a) the operator (3.38) is in-
variant under both vector (2.7) and axial (2.8) transformations, while this is not the case
for (3.34) and (3.35) which preserve separately only the vector and axial symmetry; (b) the
point conjugate to x in the integrand of Kbi-loc

Asym is −x̃, which belongs to the opposite interval
in Asym with respect to x, while in the integrand of (3.30) both x and its conjugate point x̃
belong to the interval A; hence also the self-conjugate point x =

√
a b (where x = x̃) occurs;

(c) the bi-local operators (3.34) and (3.35) depend explicitly on the boundary conditions
through the angular parameter characterising the corresponding phase.

4 Entanglement entropies

The Rényi entropies are defined through the moments of the reduced density matrix TrAρnA
for integers n > 2 as

S
(n)
A ≡ 1

1− n log
[
TrAρnA

]
. (4.1)
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They provide the entanglement entropy SA by means of the following analytic continuation
of the integer parameter n

SA ≡ lim
n→1

S
(n)
A = − ∂n

(
TrAρnA

)∣∣
n=1 . (4.2)

In a two dimensional conformal field theory, the moments of the reduced density matrix
have been computed as the correlation functions of the branch point twist fields Tn [20].

When the interval A = [0, b] is adjacent to the boundary of the half-line and the entire
system is in the ground state, TrρnA = 〈Tn(b)〉 ∝ (2b/ε)−∆n is the one-point function of the
twist field, where ε is the ultraviolet cutoff and ∆n is the conformal dimension of the twist
field given by

∆n ≡
c

12

(
n− 1

n

)
(4.3)

which is proportional to the central charge c of the model.
When the interval A = [a, b] on the half-line is not adjacent to the boundary, TrρnA can

be found as the two-point function of the twist fields. Combining the Rényi entropies of
two disjoint equal intervals on the line [40–43] with the method of the images, one obtains

TrAρnA = 〈Tn(a) T ∗n(b)〉 = cn

[
(a+ b)2 ε2

4 a b (b− a)2

]∆n

Fn(r) r ≡ (b− a)2

(b+ a)2 (4.4)

where r is the cross ratio of the endpoints of the interval and of their images, while cn
is a constant. The function Fn(r) depends on the full operator content of the boundary
conformal field theory, hence it encodes also the conformal boundary state, in a highly
non-trivial way. These one-point and two-point correlation functions of twist fields allow
to construct the following ultraviolet finite combinations

S
(n)
[0,a] + S

(n)
[0,b] − S

(n)
[a,b] = 1

n− 1 logRn Rn ≡
Tr[a,b]ρ

n
[a,b](

Tr[0,a]ρ
n
[0,a]

)(
Tr[0,b]ρ

n
[0,b]
) . (4.5)

A relevant quantity encoding some properties of the boundary is the Affleck-Ludwig
boundary entropy log(g) [19]. Considering a conformal field theory in its ground state
either on the half-line or on the line, the Affleck-Ludwig boundary entropy can be found
by combining the Rényi entropies S(n)

[0,`] of an interval of length ` adjacent to the boundary
of the half line and the Rényi entropies S̃(n)

[0,`] of an interval of length 2` on the line as
follows [9, 20, 44, 45]

S
(n)
[0,`] −

1
2 S̃

(n)
[0,2`] = log(g) . (4.6)

The massless Dirac field is a conformal field theory with c = 1. In this model, the
Rényi entropies and the entanglement entropy can be evaluated also through the reduced
correlation functions matrix respectively as [37, 38]

S
(n)
A = 1

1− n tr
[
gn(CA)

]
gn(γ) ≡ log

[
γn + (I− γ)n

]
(4.7)

and
SA = tr

[
g(CA)

]
g(γ) ≡ − γ log γ − (I− γ) log(I− γ) (4.8)
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where I is the 2× 2 identity matrix, γ is a generic 2× 2 matrix and g(γ) ≡ −∂ngn(γ)|n=1.
By employing the spectral representation of CA in (4.8), for the entanglement entropies

S
(n)
A with integer n > 1, which are given by S(1)

A ≡ SA and (4.7) for n > 2, we find

S
(n)
A =

2∑
p=1

∫
Aε

∫ +∞

−∞
gn(σs) tr

[
Φs,p(x) Φ∗s,p(x)

]
ds dx (4.9)

where σs is (A.1), gn(σ) is defined in (4.8) for n = 1 and in (4.7) for n > 2, and Aε ≡
(a + ε, b − ε) with ε → 0+ has been introduced to regularise the integral. By using (A.2)
and (3.6), we find

tr
[
Φs,p(x) Φ∗s,p(x)

]
= |φs,p(x)|2 + |φs,p(−x)|2 = mp(x)2 +mp(−x)2 (4.10)

where the explicit expressions ofmp(x) are given in (A.3). Notice that (4.10) is independent
of both the parameters α and s. The independence of s leads to the factorisation of the two
integrals in (4.9); hence we can evaluate them separately. By using

∫+∞
−∞ gn(σs) ds = π(n+1)

12n ;
for the entanglement entropies we obtain

S
(n)
A = n+1

12n log
[ (2b/ε−1)(2a/ε+1)([b−a]/ε−1)2

(b+a)2/ε2−1

]
= n+1

6n log
[ 2
√
ab(b−a)

(a+b)ε

]
+O(ε) .

(4.11)
We remark that this expression is independent of α.

Plugging (4.4) into (4.1) and comparing the resulting expression with (4.11), we find
that

Fn(r) = 1 (4.12)

identically in both the phases and for any choice of the boundary condition parameter. A
similar simplification has been observed also in [12] for the massless Dirac fermion in its
ground state on the line when the subsystem is the union of disjoint intervals, and further
explored in [46–48]. Lattice results in the XX chain with open boundary conditions for the
bipartition that we are considering have been discussed in [49].

The entanglement entropies for an interval A = [0, b] adjacent to the boundary are
given by (4.9) with Aε ≡ (0, b− ε). The result is

S
(n)
A = n+ 1

12n log(2b/ε− 1) = n+ 1
12n

(
log(b/ε) + log 2

)
+O(ε) . (4.13)

From (4.11) and (4.13), we find that the UV finite combination (4.5) in this model
reads

S
(n)
[0,a] + S

(n)
[0,b] − S

(n)
[a,b] = n+ 1

12n log
([

(a+ b)2 − ε2
]
(2a− ε)

(b− a− ε)2 (2a+ ε)

)
= n+ 1

6n log
(
b+ a

b− a

)
+O(ε) .

(4.14)
In order to evaluate the Affleck-Ludwig boundary entropy for the massless Dirac field

through (4.6), we have to consider the entanglement entropies of an interval A = [a, b] of
length ` = b−a on the line, when the entire system is in its ground state. For the massless
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Dirac field, the underlying spectral problem is solved by the eigenvalues (A.1) and by the
following eigenfunctions [12, 37]

φs(x) =
√

b− a
2π(b− x)(x− a) e−isw(x) w(x) ≡ log

(
x− a
b− x

)
x ∈ A . (4.15)

The corresponding entanglement entropies are

S̃
(n)
A = 2

∫
Aε

∫ +∞

−∞
gn(σs)

∣∣φs(x)
∣∣2dsdx= n+1

6n log
(
b−a
ε
−1
)

= n+1
6n log

(
`

ε

)
+O(ε) (4.16)

where Aε = (a+ ε, b− ε) and the factor 2 occurs because the two components of the Dirac
field give the same contribution. By using (4.13) and (4.16), we can specialise (4.6) to our
case, finding g = 1, which has been obtained also in [19, 50] through different methods.

5 Modular flows of the Dirac field

The reduced density matrix ρA ∝ e−KA generates the one-parameter family of unitary
operators given by {ρiτ

A : τ ∈ R} that defines an automorphism on the operator algebra
known as modular flow [1].

The modular flow of the two components of the Dirac field are defined as

ψr(τ, x) ≡ ρiτ
A ψr(x) ρ−iτ

A = e−iτKA ψr(x) eiτKA x ∈ A r ∈ {1, 2} (5.1)

where the initial configuration ψr(x) in the right hand side is defined by (2.46) at t = 0.
The fields (5.1) can be found by solving the following differential equations

i dψr(τ, x)
dτ

=
[
KA , ψr(τ, x)

]
− x ∈ A r ∈ {1, 2} . (5.2)

The modular Hamiltonian KA can be decomposed as in (3.23); hence the r.h.s. of (5.2)
is the sum of two terms determined by the local operator K loc

A in (3.25) and by the bi-local
operator Kbi-loc

A in (3.30). Both these contributions can be evaluated by means of the equal-
time anticommutators (2.16) and (2.17). As for the term provided by K loc

A in (3.25), by
using the expression of Ttt in (3.26) one obtains[

K loc
A , ψr(τ, y)

]
− = 2π i (−1)r−1Bloc(y)ψr(τ, y) (5.3)

where the differential operator Bloc is defined in terms of the weight function (3.27) as
follows

Bloc(y) ≡ βloc(y) ∂y + 1
2 ∂yβloc(y) . (5.4)

The contribution of the bi-local operator Kbi-loc
A in (3.30) to the r.h.s. of (5.2) can be found

by exploiting the expression (3.31). The result reads[
Kbi-loc
A , ψr(τ, y)

]
− = 2π i (−1)r e−i(−1)rα βbi-loc(y)ψk(τ, ỹ) k 6= r (5.5)

where the weight function (3.32) occurs and ỹ is the point conjugate to y.
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The two partial differential equations in (5.2) are coupled because both the components
of the Dirac field occur in (5.5). In order to study the resulting system of partial differential
equations, we find it convenient to introduce the following doublet of fields

Ψ(τ, x) ≡
(
ψ1(τ, x)
ψ2(τ, x̃)

)
. (5.6)

By using (5.3) and (5.5) with y = x and y = x̃, combined with (5.2), in terms of the
doublet (5.6) we obtain the following system of four partial differential equations

d

dτ

(Ψ(τ, x)
Ψ(τ, x̃)

)
= 2π

[
B(x)⊕B(x̃)

](Ψ(τ, x)
Ψ(τ, x̃)

)
(5.7)

where the 4× 4 block diagonal matrix within the square brackets is a differential operator
expressed through the 2× 2 matrix differential operator defined as

B(x) ≡
(

Bloc(x) − eiαβbi-loc(x)
e−iαβbi-loc(x̃) −Bloc(x̃)

)
(5.8)

in terms of the differential operator Bloc(x) introduced in (5.4). The solution of the system
of partial differential equations in (5.7) can be found by solving

d

dτ
Ψ(τ, x) = 2πB(x) Ψ(τ, x) x ∈ A (5.9)

with the initial condition
Ψ(0, x) =

(
ψ1(x)
ψ2(x̃)

)
. (5.10)

This system can be solved by first performing a suitable transformation that decouples the
two equations in (5.9). Each of the two resulting decoupled equations defines the flow of
a one-parameter abelian group that can be determined through a standard technique. All
the details of this procedure are reported in appendix B.

The solution of (5.9) and (5.10) is one of the main results of this manuscript. It reads
ψ1(τ, x) =

[
P (ξ;x)

((
a b+ x ξ

)
ψ1(ξ)− a b

ξ
eiα(ξ − x)ψ2(ab/ξ)

)]∣∣∣∣
ξ=ξ(τ,x)

ψ2(τ, x) =
[
P (ξ;x)

((
a b+ x ξ

)
ψ2(ξ)− a b

ξ
e−iα(ξ − x)ψ1(ab/ξ)

)]∣∣∣∣
ξ=ξ(−τ,x)

(5.11)

where

P (ξ;x) ≡
√

βloc(ξ)
βloc(x) (a b+ x2)(a b+ ξ2) (5.12)

and ξ(τ, x) can be defined in terms of the function w(x) introduced in (3.11) as follows

ξ(τ, x) =
(b− a)

(
e2πτ+w(x) − 1

)
+
√

(b− a)2(e2πτ+w(x) − 1
)2 + 4ab

(
e2πτ+w(x) + 1

)2
2
(
1 + e2πτ+w(x)) .

(5.13)
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Figure 1. Modular evolution of the arguments of the fields mixed by the modular flow in the
r.h.s’s of (5.11), for a point x (solid lines) and its conjugate x̃ (dashed lines) at τ = 0. The blue and
the red curves correspond to the first and the second equation in (5.11) respectively. The vertical
dotted line identifies the point

√
ab. In the left panel x <

√
ab, while x >

√
ab in the right panel.

This function describes the modular evolution (parameterised by τ ∈ R) of any point x ∈ A.
It satisfies

ξ(0, x) = x ξ(τ, x) ∈ (a, b) and ξ(−τ, x̃) = a b

ξ(τ, x) ≡ ξ̃(τ, x) . (5.14)

Notice that, since x =
√
ab is self-conjugate under (3.15), the second expression in (5.14)

implies that ξ(τ,
√
ab ) ξ(−τ,

√
ab ) = ab for any τ ∈ R.

In figure 1, we show the arguments of the fields in the r.h.s.’s of (5.11) in the half-plane
parameterised by (ξ, τ), by employing (5.13). We consider a point x ∈ (a, b) at τ = 0,
whose conjugate point is x̃. The blue curves represent the arguments ξ(τ, x) and ab/ξ(τ, x)
occurring in the first equation of (5.11), while the red curves correspond to ξ(−τ, x) and
ab/ξ(−τ, x), which appear in the second equation of (5.11). At τ = 0, the solid and the
dashed curves pass through x and x̃ respectively. A solid curve and the corresponding
dashed one having the same colour intersect at one of the points whose coordinates are
(ξ, τ) = (

√
ab ,±τ0), depending on the position of x with respect to

√
ab, where τ0 is

obtained by solving ξ(τ0, x) =
√
ab. The value of τ0 can be determined from (B.7), (C.13)

and (3.11), finding 2πτ0 = |w(
√
ab )− w(x)| = |w(x)| because w(

√
ab ) = 0.

We find it instructive to write the explicit expressions of the solution (5.11) in the two
inequivalent phases by using (2.46). In the vector phase, the modular flow of the massless
Dirac field is

λ1(τ, x) =
[
P (ξ;x)

((
a b+ x ξ

)
λ1(ξ)− a b

ξ
eiαv

(
ξ − x

)
λ2(ab/ξ)

)]∣∣∣∣
ξ=ξ(τ,x)

λ2(τ, x) =
[
P (ξ;x)

((
a b+ x ξ

)
λ2(ξ)− a b

ξ
e−iαv

(
ξ − x

)
λ1(ab/ξ)

)]∣∣∣∣
ξ=ξ(−τ,x)

. (5.15)
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This modular flow mixes fields with different chiralities, but the electric charge is preserved.
The mixing is non-local because it involves a field in ξ and another one in its conjugate
point ab/ξ.

In the axial phase, the modular flow reads
χ1(τ, x) =

[
P (ξ;x)

((
a b+ x ξ

)
χ1(ξ)− a b

ξ
e−iαa

(
ξ − x

)
χ∗2(ab/ξ)

)]∣∣∣∣
ξ=ξ(τ,x)

χ2(τ, x) =
[
P (ξ;x)

((
a b+ x ξ

)
χ2(ξ)− a b

ξ
e−iαa

(
ξ − x

)
χ∗1(ab/ξ)

)]∣∣∣∣
ξ=ξ(−τ,x)

. (5.16)

This bi-local modular flow mixes fields with different electric charge, but the chirality is
preserved, contrary to (5.15).

6 Correlation functions along the modular flow

The correlation functions of the fermion fields λr(τ, x) and χr(τ, x), evolving trough the
modular flow generated by the modular HamiltonianKA, describe the quantum fluctuations
along the modular “time” τ . They can be obtained by first employing either (5.15) or (5.16)
and then by writing the initial data in the Fock representation of the algebras A+ and B+,
i.e. using either (2.20) and (2.21) or (2.38) and (2.39) for the initial field configurations.

The derivation significantly simplifies by adopting the identity w(ξ(τ, x)) = 2π τ+w(x)
written in the exponential form instead of the cumbersome explicit expression (5.13).

We find it convenient to introduce the following distribution

W (τ ;x, y) ≡ ew(x) − ew(y)

2πi(x− y)
1

ew(x)+πτ − ew(y)−πτ − iε
(6.1)

where the first factor in the r.h.s. is regular at x = y; indeed, from (3.11) we have

ew(x) − ew(y)

x− y
= 2(b− a) (x y + a b)

(b− x)(x+ a) (b− y)(y + a) . (6.2)

We remark that (6.1) satisfies

W (τ ± i ;x, y) = W (−τ ; y, x) = W (τ ;x, y) . (6.3)

By using (3.11), we find that for the interval A ⊂ R+ the distribution (6.1) becomes

W (τ ;x,y) = (b−a)(ab+xy)
πi
[
(x−a)(b+x)(b−y)(y+a)eπτ−(y−a)(b+y)(b−x)(x+a)e−πτ−iε

] . (6.4)

The distribution (6.1) represents the modular counterpart of (2.29). Indeed, analo-
gously to the conventional time evolution, where all the correlators (2.24), (2.25), (2.26)
and (2.27) are written in terms of the distribution (2.29), we find that all the non-vanishing
correlators of the fields along the modular flow can be expressed in terms of (6.1).
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After some algebra, we find that the eight non-vanishing two-point functions in the
vector phase can be written as follows

〈λ1(τ1, x1)λ∗1(τ2, x2)〉 = 〈λ∗1(τ1, x1)λ1(τ2, x2)〉 = W (τ12;x1, x2) (6.5)
〈λ2(τ1, x1)λ∗2(τ2, x2)〉 = 〈λ∗2(τ1, x1)λ2(τ2, x2)〉 = W (τ12;x2, x1) (6.6)
〈λ1(τ1, x1)λ∗2(τ2, x2)〉 = 〈λ2(τ2, x2)λ∗1(τ1, x1)〉 = eiαvW (τ12;x1,−x2) (6.7)
〈λ∗1(τ1, x1)λ2(τ2, x2)〉 = 〈λ∗2(τ2, x2)λ1(τ1, x1)〉 = e−iαv W (τ12;x1,−x2) (6.8)

where we have adopted the notation

τ12 ≡ τ1 − τ2 . (6.9)

The vacuum expectation values (6.5), (6.6), (6.7) and (6.8) satisfy some basic proper-
ties. First, the Hilbert space structure of the theory provides the following relations

〈λ∗r1(τ1, x1)λr2(τ2, x2) 〉 = 〈λ∗r2(τ2, x2)λr1(τ1, x1) 〉 (6.10)
〈λr1(τ1, x1)λ∗r2(τ2, x2) 〉 = 〈λr2(τ2, x2)λ∗r1(τ1, x1) 〉 . (6.11)

Second, they obey the modular equations of motion following from (5.9) when x1 6= x2.
For instance, we have that[ 1

2π ∂τ1 −Bloc(x1)
]
〈λ1(τ1, x1)λ∗1(τ2, x2)〉 = − eiαvβbi-loc(x1)〈λ2(τ1, x̃1)λ∗1(τ2, x2)〉 . (6.12)

By exploiting (6.5) and (6.7), this equation is equivalent to the following one satisfied
by (6.1) (in the limit ε→ 0)[ 1

2π ∂τ −Bloc(x)
]
W (τ ;x, y) + βbi-loc(x)W (τ ;−x̃, y) = 0 . (6.13)

Notice that the partial differential equation (6.12) involves both x and x̃, keeping trace of
the bi-local character of the modular evolution. We remark that equations similar to (6.12)
hold for all correlation functions in (6.5), (6.6), (6.7) and (6.8). Their validity provides a
valuable consistency check of the whole construction.

A fundamental property satisfied by the correlation functions (6.5), (6.6), (6.7)
and (6.8) is the Kubo-Martin-Schwinger (KMS) condition [1]

〈λr1(τ1, x1)λ∗r2(τ2 + τ + i, x2) 〉 = 〈λ∗r2(τ2 + τ, x2)λr1(τ1, x1) 〉 (6.14)
〈λ∗r1(τ1, x1)λr2(τ2 + τ + i, x2) 〉 = 〈λr2(τ2 + τ, x2)λ∗r1(τ1, x1) 〉 (6.15)

where r1, r2 ∈ {1, 2}, whose validity is a consequence of the first equality in (6.3). From
these KMS relations, one infers that the expectation values (6.5), (6.6), (6.7) and (6.8)
behave like thermal correlators with inverse temperature β = 1 in our units. We remark
that the KMS condition is a distinguishing property of the modular group (see Theorem
1.2 in chapter VIII of [2]); hence their validity provides a strong check of our results.

We find worth observing that the mixed correlators (6.7) and (6.8) vanish at the self-
conjugate point x1 = x2 =

√
ab, as it an be verified by using (6.4). This implies that at
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this point the states λ1(τ1,
√
ab ) Ω and λ2(τ2,

√
ab ) Ω, where Ω is the Fock vacuum, are

orthogonal for any τ1, τ2 ∈ R.
Notice that the two properties in (6.3) hold for a distribution W(τ ;x, y) of the form

W(τ ;x, y) = g(x, y)
2πi

(
ew(x)+πτ − ew(y)−πτ − iε

) (6.16)

where w(x) and g(x, y) are real functions and g(y, x) = g(x, y). This class of distributions
includes the ones occurring in the modular correlators of the massless Dirac field for various
interesting cases like the bipartition of the infinite line given by a generic number of disjoint
intervals when the entire system is in its ground state [13, 15] and the ones discussed in
the appendix B.2.1.

The above analysis can be adapted to write the corresponding quantities for the axial
phase. In the axial phase, the correlators of the fields along the modular flow read

〈χ1(τ1, x1)χ∗1(τ2, x2)〉 = 〈χ∗1(τ1, x1)χ1(τ2, x2)〉 = W (τ12;x1, x2) (6.17)
〈χ2(τ1, x1)χ∗2(τ2, x2)〉 = 〈χ∗2(τ1, x1)χ2(τ2, x2)〉 = W (τ12;x2, x1) (6.18)
〈χ∗1(τ1, x1)χ∗2(τ2, x2)〉 = 〈χ2(τ2, x2)χ1(τ1, x1)〉 = eiαa W (τ12;x1,−x2) (6.19)
〈χ1(τ1, x1)χ2(τ2, x2)〉 = 〈χ∗2(τ2, x2)χ∗1(τ1, x1)〉 = e−iαa W (τ12;x1,−x2) . (6.20)

The crucial difference with respect to the vector phase is that the mixed correlation func-
tions (6.19) and (6.20) are not invariant under the vector phase transformation (2.7).

The correlators (6.17), (6.18), (6.19) and (6.20) satisfy the KMS condition, namely

〈χr(τ1, x1)χ∗r(τ2 + τ + i, x2) 〉 = 〈χ∗r(τ2 + τ, x2)χr(τ1, x1) 〉 (6.21)
〈χr1(τ1, x1)χr2(τ2 + τ + i, x2) 〉 = 〈χr2(τ2 + τ, x2)χr1(τ1, x1) 〉 (6.22)
〈χ∗r1(τ1, x1)χ∗r2(τ2 + τ + i, x2) 〉 = 〈χ∗r2(τ2 + τ, x2)χ∗r1(τ1, x1) 〉 . (6.23)

The correlators along the modular flow provide the symmetry content along the mod-
ular evolution. The invariance of (6.5)–(6.8) and of (6.17)–(6.20) under translations in the
modular parameter τi 7−→ τi + τ0 implies the conservation of the modular “energy”. The
invariance of (6.5)–(6.8) under vector transformations (2.7) and the invariance of (6.17)–
(6.20) under axial transformations (2.8) lead to the existence respectively of a conserved
vector charge Qv and of a conserved axial charge Qa in the corresponding phases.

7 Special bipartitions

In this section we consider some limiting regimes for the position of the interval A = [a, b]
on the half-line. In all these limits, the modular flow of the Dirac field becomes local.

7.1 Interval at large distance from the boundary

The first case that we find worth considering is an interval of length ` at large distance
from the boundary. This limit can be performed by first setting b = a + `, x = a + v
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with v ∈ [0, `] and then sending a → ∞. In this limit, for the conjugate point we have
x̃ = a+ ṽ +O(1/a), where ṽ ≡ `− v, and the function (3.11) simplifies to

w(x) = log
(

v

`− v

)
. (7.1)

The weight functions (3.27) and (3.32) in the modular Hamiltonian become respectively

βloc(x) = β0(v) +O(1/a2) βbi-loc(x) = O(1/a) β0(v) ≡ v(`− v)
`

(7.2)

where one recognises that β0(v) is the weight function occurring in the modular Hamiltonian
of an interval of length ` in the infinite line (see (B.22)) [5, 7].

In order to get the modular flow of the Dirac field, one first observes that, in this
limit, (5.13) becomes

ξ(τ, x) = a+ ζ(τ, v) +O(1/a) ζ(τ, v) ≡ ` v e2πτ

`+ (e2πτ − 1)v . (7.3)

This allows to write the modular evolutions of the fields in this regime by specifying (B.17)
to this case. The result reads

ψ1(τ, x) =
[√

∂vζ ψ1(a+ ζ)
]∣∣∣
ζ=ζ(τ,v)

ψ2(τ, x) =
[√

∂vζ ψ2(a+ ζ)
]∣∣∣
ζ=ζ(−τ,v)

. (7.4)

where we used that β0(ζ)
β0(v) = ∂vζ.

The two-point functions of these fields is obtained by first observing that, in this
limiting regime, (6.4) becomes (we also introduce y = a+ z)

W (τ ;x, y) = `

2πi
[
(`− z) v eπτ − (`− v) z e−πτ − iε

] (7.5)

and then employing this result in the correlators of section 6 expressed through this
function.

7.2 Interval adjacent to the boundary

The case of an interval A = [0, b] at the beginning of the half-line can be studied by taking
the limit a→ 0 in the above results.

In this limit, the function (3.11) becomes

w(x) = log
(
x+ b

b− x

)
x ∈ [0, b) (7.6)

and for the weight functions (3.27) and (3.32) we find

βloc(x) → β0(x) βbi-loc(x) → 0 β0(x) ≡ b2 − x2

2b . (7.7)

Thus, in this limit the bi-local operator in the modular Hamiltonian (3.23) vanishes and
the remaining local term becomes the modular Hamiltonian found in [9] for an interval
adjacent to the boundary of the half line, specialised to the model that we are considering.
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The modular flow of the Dirac field when the interval is adjacent to the boundary can
be found by specifying the analysis of the appendix B.2 to this case. In particular, β0(x)
is the weight function obtained in (7.7). By using (B.7), the corresponding ξ(τ, x) can
be written in terms of w(x) in (7.6), where we remark that x ∈ (0, b), hence the inverse
function w−1(y) is defined when y > 0. This result reads

ξ(τ, x) = b
e2πτew(x) − 1
e2πτew(x) + 1

= b
x cosh(πτ) + b sinh(πτ)
b cosh(πτ) + x sinh(πτ) τ 6 τ0 . (7.8)

Notice that the limit a→ 0 of (5.13) gives (7.8) when τ 6 τ0 and ξ = 0 when τ > τ0.
Alternatively, we can take the limit a → 0 in the modular flow (5.11), observing that

the mixing terms vanish. The modular flow of the Dirac field can be written through β0(x)
in (7.7) as follows

ψ1(τ, x) =
[√

∂xξ ψ1(ξ)
]∣∣∣
ξ=ξ(τ,x)

ψ2(τ, x) =
[√

∂xξ ψ2(ξ)
]∣∣∣
ξ=ξ(−τ,x)

. (7.9)

Considering the arguments the fields in the r.h.s.’s of these expressions, we observe that
the curves ξ(τ, x) and ξ(−τ, x) shown in the left panel of figure 2 intersect the boundary
ξ = 0 at τ = −τ0 and τ = τ0 respectively, where 2πτ0 = |w(x)|, with w(x) given by (7.6).
At these points either (2.12) or (2.13) holds, hence the chirality of the corresponding field
changes. Notice that ξ → b as |τ | → ∞.

The correlators of these fields can be found by first taking a→ 0 in (6.4), that gives

W (τ ;x, y) = b

iπ
[
(x+ b)(b− y) eπτ − (y + b) (b− x) e−πτ − iε

] (7.10)

and then employing this result into the expressions in section 6 written in terms of
this function.

7.3 Semi-infinite line separated from the boundary

Another interesting bipartition of the half-line to consider is the one where the subsystem
A is the semi-infinite line separated from the boundary of the half-line at x = 0, namely
A = [a,+∞) with a > 0. This case corresponds to the limit b→ +∞ of the results for the
interval in the half-line.

In this limiting regime, the function (3.11) becomes

w(x) = log
(
x− a
x+ a

)
x > a (7.11)

and for the weight functions (3.27) and (3.32), occurring in the local and in the bi-local
term of the modular Hamiltonian (3.23), we find respectively (see also [51])

βloc(x) = β0(x) +O(1/b) βbi-loc(x) = β0(x)
x

+O(1/b) β0(x) ≡ x2 − a2

2a . (7.12)

We remark that, despite the fact that βbi-loc(x) is non-vanishing in this regime, the modular
Hamiltonian becomes local because x̃ → ∞ in this limit and the fields {ψr(x̃) : r = 1, 2}
occurring in the bi-local term (3.30) vanish (see (2.36)).
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Figure 2. Modular evolution through the arguments of the fields for a point x at τ = 0 when
A = [0, b] (left panel, see (7.8)) and when A = [a,+∞) (right panel, see (7.13)), discussed in
section 7.2 and in section 7.3 respectively.

The function ξ(τ, x) can be constructed by using (B.6), (B.7) and (B.14), with the
weight function β0(x) defined in (7.12). The result reads

ξ(τ, x) = − a e
w(x)+2πτ + 1
ew(x)+2πτ − 1

= a
x cosh(πτ)− a sinh(πτ)
a cosh(πτ)− x sinh(πτ) . (7.13)

This expression diverges when τ → τ0, where τ0 = |w(x)|
2π and w(x) is (7.11).

The fields along the modular flow are obtained by specifying (B.17) to this case, find-
ing (7.9) with β0(x) and ξ(τ, x) given in (7.12) and (7.13) respectively, where x > a. The
limit b→ +∞ of (5.11) provides the same result.

The arguments of the fields provided by the r.h.s. of (B.17) give the curves shown in
the right panel of figure 2. The blue and the red curves are ξ(τ, x) and ξ(−τ, x) respectively
and they intersect at (ξ, τ) = (x, 0). Furthermore, they diverge as τ → τ0 or τ → −τ0
respectively, where 2πτ0 = |w(x)|, with w(x) given by (7.11). The occurrence of τ0 is due
to the presence of the boundary. Indeed, for the semi-infinite line in the line [3, 4], one
finds that ξ(τ, x) = x e2πτ , that diverges as τ → +∞ (see also the corresponding comment
in the appendix B.2.1). Thus, the internal dynamics of a semi-infinite line depends also
on its complement.

The correlators of the fields along this modular flows can be written by employing the
results discussed in section 6 and observing that the function W (τ ;x, y) in this regime can
be obtained by plugging (7.11) into (6.1), that gives

W (τ ;x, y) = a

πi
[
(x− a)(y + a) eπτ − (y − a) (x+ a) e−πτ − iε

] . (7.14)
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Combining the modular Hamiltonian of this limiting regime and the one obtained in
the section 7.2 for the interval adjacent to the boundary, we can write the full modular
Hamiltonian KA∪B [1] associated to the bipartition A ∪B of the half-line where A = [0, `]
is an interval of length ` adjacent to the boundary and B = [`,+∞) is its complement.
It reads

KA∪B = KA ⊗ 1B − 1A ⊗KB (7.15)

where 1A and 1B denote the identity operators on HA and HB respectively, while

KA = 2π
∫ `

0

`2 − x2

2` Ttt(0, x) dx KB = 2π
∫ ∞
`

x2 − `2

2` Ttt(0, x) dx (7.16)

are the modular Hamiltonians respectively of the interval A = [0, `] adjacent to the bound-
ary and of its complement, that is a semi-infinite line at distance ` from the boundary.

Let us remark that, considering the system on the line, in its ground state and the
bipartition A∪B of the line where the finite subsystem is the interval A = (−`, `), the full
modular Hamiltonian is (7.15) where KA and KB are very similar to the operators reported
in (7.16).3 Indeed, only the integration domains are different, which are A = (−`, `) for
KA and B = (−∞,−`) ∪ (`,+∞) for KB, as expected.

8 Modular evolution in the spacetime

The modular evolution whose initial field configurations (at τ = 0) are either (2.20)
and (2.21) in the vector phase or (2.38) and (2.39) in the axial phase at t = 0 has been
described in section 5. It is worth investigating the most general modular evolution where
also the physical time t is involved.

For the massless Dirac field, the physical time can be included by exploiting the fact
that each component ψr of the Dirac field depends only on one of the light-cone coordinates

u± ≡ x± t x > 0 . (8.1)

In these coordinates and on the half line, ψr satisfy the following anti-commutation
relations

[ψ1(u+) , ψ∗1(v+)]+ = δ(u+ − v+) [ψ2(u−) , ψ∗2(v−)]+ = δ(u− − v−) (8.2)
[ψ1(u+) , ψ∗2(v−)]+ = eiαδ(u+ + v−) [ψ2(u−) , ψ∗1(v+)]+ = e−iαδ(u− + v+) . (8.3)

Here we consider two intervals u± ∈ [a , b], which parameterise the grey diamond D
shown in figure 3. By employing the spectral problem discussed in section 3.1 in the form

∫ b

a
C(u+−v+)dv+ eiα

∫ b

a
C(u++v−)dv−

e−iα
∫ b

a
C(−u−−v+)dv+

∫ b

a
C(−u−+v−)dv−


(

eiαφs,p(v+)
φs,p(−v−)

)
=σs

(
eiαφs,p(u+)
φs,p(−u−)

)

(8.4)
3The modular Hamiltonian KB can be found as the limit b→ +∞ of KAsym .
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and repeating the analysis described in section 3, we obtain the modular Hamiltonian KA

in the coordinates u±. It can be decomposed again as

K = K loc +Kbi-loc (8.5)

The local term is

K loc = 2π
∫ b

a
βloc(u)

(
T(1)(u)− T(2)(u)

)
du = 2π

∫ b

a
βloc(u)Ttt(0, u) du (8.6)

where
T(r)(u) ≡ i

2 :
[
(∂uψ∗r )ψr − ψ∗r (∂uψr)

]
: (u) (8.7)

and Ttt(0, u) is obtained from (3.26). The bi-local term in (8.6) can be written by intro-
ducing ũ ≡ ab/u conjugate to u as

Kbi-loc =2π
∫ b

a
βbi-loc(u)

(
Tbi-loc(u, ũ;α) + Tbi-loc(ũ, u;α)

)
du

=2π
∫ b

a
βbi-loc(u)Tbi-loc(0, u, ũ;α) du (8.8)

which contains the bi-local hermitean operator

Tbi-loc(u, v;α) ≡ i
2 :
[
eiα ψ∗1(u)ψ2(v)− e−iα ψ∗2(v)ψ1(u)

]
: (8.9)

and Tbi-loc(0, u, v;α) follows from (3.31). The weight functions βloc(z) and βbi-loc(z) are
defined in (3.27) and (3.32) respectively. Furthermore, by restricting to the slice defined
by constant t = 0, one finds that (8.6) and (8.8) become (3.25) and (3.30) respectively.

The modular flow is defined by

i dψ1(τ, u+)
dτ

=
[
K ,ψ1(τ, u+)

]
− ψ1(0, u+) = ψ1(u+) (8.10)

i dψ2(τ, u−)
dτ

=
[
K ,ψ2(τ, u−)

]
− ψ2(0, u−) = ψ2(u−) (8.11)

where u± ∈ [a, b] and, according to (2.46), the initial configurations ψ1(u+) and ψ2(u−) in
the vector and axial phases are given by (2.20)–(2.21) and (2.38)–(2.39) respectively. Using
that the mixed anti-commutators (8.3) vanish for u±, v± ∈ [a, b], we can analyse (8.10)
and (8.11) and solve them exactly as in section 5, finding

ψ1(τ, u+) =
[
P (ξ;u+)

((
a b+ ξ u+

)
ψ1(ξ)− a b

ξ
eiα(ξ − u+

)
ψ2(ab/ξ)

)]∣∣∣∣
ξ=ξ(τ,u+)

ψ2(τ, u−) =
[
P (ξ;u−)

((
a b+ ξ u−

)
ψ2(ξ)− a b

ξ
e−iα(ξ − u−)ψ1(ab/ξ)

)]∣∣∣∣
ξ=ξ(−τ,u−)

(8.12)

where P (ξ;u±) has been defined in (5.12). At t = 0 the expressions in (5.11) are recovered.
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Figure 3. Three pairs of modular trajectories. Each pair is made by conjugate trajectories whose
initial points at τ = 0 are indicated through the same symbol (filled or empty).

The solution (8.12) for the modular flow of the Dirac field allows us to write the
coordinates of the generic point along the modular trajectory in the spacetime

x(τ) = ξ(τ, p+,0) + ξ(−τ, p−,0)
2 t(τ) = ξ(τ, p+,0)− ξ(−τ, p−,0)

2 τ ∈ R (8.13)

where p±,0 denote the light-cone coordinates of the initial point (at τ = 0) of the modular
trajectory. In figure 3 we show some modular trajectories obtained through (8.13). A filled
marker denotes an initial points p±,0 = u±,0, while the empty version of the same marker
denotes the conjugate initial point such that p±,0 = ab/u±,0. These are the initial points
of two conjugate modular trajectories (a solid curve and a dashed curve in figure 3) that
determine the modular evolution of the field in the spacetime. In figure 3 three pairs of
modular trajectories are shown. Notice that the modular trajectory passing through the
point whose light-cone coordinates are u± =

√
ab coincides with its conjugate trajectory

(see the solid black curve and the yellow dashed curve in figure 3). Changing the initial
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point, the resulting pairs of modular trajectories span the entire grey diamond D in figure 3.
Any modular trajectory begins in the lower vertex of D as τ → −∞ and ends into the upper
vertex of D as τ → +∞.

The correlation functions along the modular flow in the light cone coordinates can be
obtained from (8.12). By adopting the notation ur± ∈ [a, b] with r ∈ {1, 2} for the two
points, in the vector phase we find

〈λ1(τ1, u1+)λ∗1(τ2, u2+)〉 = 〈λ∗1(τ1, u1+)λ1(τ2, u2+)〉 = W (τ12;u1+, u2+) (8.14)
〈λ2(τ1, u1−)λ∗2(τ2, u2−)〉 = 〈λ∗2(τ1, u1−)λ2(τ2, u2−)〉 = W (τ12;u2−, u1−) (8.15)
〈λ1(τ1, u1+)λ∗2(τ2, u2−)〉 = 〈λ2(τ2, u2−)λ∗1(τ1, u1+)〉 = eiαv W (τ12;u1+,−u2−) (8.16)
〈λ∗1(τ1, u1+)λ2(τ2, u2−)〉 = 〈λ∗2(τ2, u2−)λ1(τ1, u1+)〉 = e−iαv W (τ12;u1+,−u2−) . (8.17)

In the axial phase, this analysis leads to

〈χ1(τ1, u1+)χ∗1(τ2, u2+)〉 = 〈χ∗1(τ1, u1+)χ1(τ2, u2+)〉 = W (τ12;u1+, u2+) (8.18)
〈χ2(τ1, u1−)χ∗2(τ2, u2−)〉 = 〈χ∗2(τ1, u1−)χ2(τ2, u2−)〉 = W (τ12;u2−, u1−) (8.19)
〈χ∗1(τ1, u1+)χ∗2(τ2, u2−)〉 = 〈χ2(τ2, u2−)χ1(τ1, u1+)〉 = eiαa W (τ12;u1+,−u2−) (8.20)
〈χ1(τ1, u1+)χ2(τ2, u2−)〉 = 〈χ∗2(τ2, u2−)χ∗1(τ1, u1+)〉 = e−iαa W (τ12;u1+,−u2−) . (8.21)

9 Conclusions

In this manuscript we have studied the modular Hamiltonians of an interval A = [a, b] ⊂
R+ for the boundary conformal field theory defined by the massless Dirac fermion on
the half-line, in both the inequivalent phases that can be introduced by imposing the
global conservation of energy, where either the charge or the helicity is preserved. These
modular Hamiltonians have been obtained in terms of the components of the Dirac field
as the sum of the local term (3.25), where the energy density (3.26) occurs, and the bi-
local terms given by (3.30) and (3.31). Each bi-local term involves fields that must be
evaluated in two conjugate points x and x̃ = ab/x within the interval A. Moreover,
the modular Hamiltonians preserve the global symmetry characterising the phase, that is
either the vector phase transformation (2.7) or the axial phase transformation (2.8). In
this respect we recall that the bi-local terms in the modular Hamiltonians for the massless
Dirac field defined on translationally invariant spaces [12, 29–32] preserve both vector and
axial symmetry.

Another main result of this manuscript are the modular flows of the Dirac field, given
by (5.15) in the vector phase and by (5.16) in the axial phase. These flows mix two modular
trajectories that start at conjugate points at τ = 0 (see figure 1) of fields having different
chirality in the vector phase and different charge in the axial phase. By employing these
results, we have found the correlation functions of the fields along the modular flow, which
are (6.5)–(6.8) in the vector phase and (6.17)–(6.20) in the axial phase. These correlators
satisfy the KMS condition, which characterises the modular flow [2]. Furthermore, these
correlation functions satisfy the modular equation of motion determined by the modular
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flow (see e.g. (6.12)). The above results, first obtained at t = 0 have been also extended in
the diamond region shown in figure 3.

As for the entanglement entropies of the interval on the half-line, the expression (4.11)
has been found and, by considering the special case where the interval is adjacent to the
boundary, the Affleck-Ludwig boundary entropy g = 1 has been obtained, in agreement
with [19, 50].

In the model considered in this manuscript only reflection occurs at the boundary. In
a companion manuscript [52], the results obtained here are employed to study the modular
Hamiltonians of equal disjoint intervals on the line placed symmetrically with respect to a
defect that allows both reflection and transmission.

It would be interesting to find the modular Hamiltonians of bipartitions involving
many disjoint intervals for other conformal field theory models (see [40–43, 47, 53] for
the entanglement entropies). In [54–57] some entanglement hamiltonians for free quantum
field theories have been obtained as the continuum limit of the corresponding entangle-
ment Hamiltonians of the lattice model [11, 37, 38, 58]. The contours of the entanglement
entropies are also interesting related quantities to consider [59, 60]. It would be instructive
to study also the modular Hamiltonians found in this manuscript through lattice calcu-
lations. The modular Hamiltonians for free quantum field theories in higher dimensions
and in the presence of boundaries are also natural operators to explore (see e.g. [61] for
the entanglement entropies). It is important to study also the modular Hamiltonians in
quantum field theories where the conformal symmetry does not occur [54, 57]. They could
provide important insights to understand some features of the renormalisation group flows,
even in the cases where the conformal symmetry is broken only by boundary terms [62–64].
Finally, let us mention that it is important to address the above open problem also in the
context of the AdS/BCFT correspondence [65–72].
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A Spectral problem for two equal intervals on the line

In this appendix we report the explicit form of the solution of the spectral problem (3.4)
for the union Asym ≡ [−b,−a] ∪ [a, b] ⊂ R of two disjoint equal intervals on the line [12].

The eigenvalues in (3.4) can be written in terms of the real parameter s as follows

σs = tanh(πs) + 1
2 s ∈ R . (A.1)

The eigenfunctions in (3.4) are

φs,p(x) = ΘA(x)mp(x) e−i sw(x) p ∈ {1, 2} x ∈ Asym (A.2)
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where the function w(x) occurring in the phase is defined in (3.11), the functions mp(x)
determining the amplitude are

m1(x) =
√
b(b− a)
π(a+ b)

x− a√
(b2 − x2)(x2 − a2)

m2(x) =
√
a(b− a)
π(a+ b)

x+ b√
(b2 − x2)(x2 − a2)

(A.3)
and ΘA(x) can be written in terms of the Heaviside step function Θ as follows

ΘA(x) = Θ(x+ b) Θ(−a− x)−Θ(x− a) Θ(b− x) . (A.4)

This expression is non vanishing only in Asym. In particular, ΘA(x) = +1 when x ∈ (−b,−a)
and ΘA(x) = −1 when x ∈ (a, b).

B Modular flow from a shift operator

In this appendix we discuss the solution of the partial differential equation that allows to
determine the modular flows reported in section 5. In the appendix B.1 the solution of the
general case is derived and in the appendix B.2 we describe its application to some cases
characterised by local modular Hamiltonians.

B.1 General case

The general form of the partial differential equation underlying the modular flows discussed
in this manuscript reads

∂tψ(t, x) = V (x) ∂xψ(t, x) + Y (x)ψ(t, x) ψ(0, x) = ψ(x) (B.1)

where ψ(x) corresponds to the given initial configuration of the field.
In order to solve (B.1), first one identifies a proper multiplicative factor that simplifies

the form of the equation. In particular, let us redefine the field ψ(t, x) as

ψ(t, x) = A(x) Ψ(t, x) (B.2)

where A(x) satisfies the ordinary differential equation V A′ + Y A = 0, which can be also
written as d

dx logA = −Y/V , whose solution reads

A(x) ≡ A(x0) e−γ(x;x0) γ(x;x0) ≡
∫ x

x0

Y (y)
V (y) dy . (B.3)

Plugging (B.2) into (B.1), the partial differential equation for Ψ(t, x) becomes

∂tΨ(t, x) = V (x) ∂xΨ(t, x) Ψ(0, x) = ψ(x)
A(x) ≡ Ψ(x) (B.4)

where Ψ(x) provides the known initial configuration. When Y (x) vanishes identically, we
have that A(x) = 1 identically.

The unique solution of the partial differential equation (B.4) can be written in terms
of the shift operator etV (x) ∂x as follows [73]

Ψ(t, x) = etV (x) ∂x Ψ(x) = et ∂wF (w) = F (w(x) + t) = Ψ
(
ξ(t, x)

)
(B.5)
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where we have introduced

w′(x) = 1
V (x) Ψ(ζ) = F (w(ζ)) (B.6)

and
ξ(t, x) ≡ w−1(w(x) + t

)
(B.7)

which satisfies ξ(0, x) = x.
By employing the auxiliary variable ζ ≡ w(x) + t and (B.6), one finds that

∂tξ(t, x) = V
(
ξ(t, x)

)
∂xξ(t, x) =

V
(
ξ(t, x)

)
V (x) . (B.8)

We observe that (B.7) can be obtained also through the method of the characteristics.
This method is based on the first equation in (B.8), which gives w(ξ) − w(ξ0) = t, once
combined with (B.6), where w(ξ0) = w(ξ)|t=0 and ξ|t=0 = x. Thus, w(ξ) = w(x)+ t, which
is equivalent to (B.7).

Finally, from (B.2), (B.3) and (B.4), we can construct the solution of (B.1) as follows

ψ(t, x) = A(x0) e−γ(x;x0) Ψ
(
ξ(t, x)

)
= A(x0) e−γ(x;x0) ψ

(
ξ(t, x)

)
A
(
ξ(t, x)

) (B.9)

where in the last expression we can employ (B.3) to get A(ξ(t, x)) = A(x0) e−γ(ξ(t,x);x0).
The final expression for the solution of (B.1) can be written as

ψ(t, x) = eγ(ξ(t,x);x0)

eγ(x;x0) ψ
(
ξ(t, x)

)
≡ eΓ(t,x) ψ

(
ξ(t, x)

)
(B.10)

where
Γ(t, x) =

∫ ξ(t,x)

x

Y (y)
V (y) dy (B.11)

which is independent of x0. Since ξ(0, x) = x, it is straightforward to check that the
solution (B.10) satisfies the initial condition ψ(0, x) = ψ(x), as required in (B.1).

B.2 Modular flows from local modular Hamiltonians

In various cases of physical interest [5, 7–9], the modular Hamiltonian of the interval
A = [a, b] at t = 0 for the Dirac field reads

KA = 2π
∫
A
β0(x)Ttt(0, x) dx (B.12)

where Ttt(t, x) is the energy density and β0(x) is a weight function that characterises the
underlying case.

The modular flow of the Dirac field generated by (B.12) is given by (5.1). It can be
found by solving the following partial differential equation with a given initial configuration
for the field

i ∂ψ(τ, x)
∂τ

=
[
KA , ψ(τ, x)

]
− = i 2π

(
β0(x) ∂xψ(τ, x) + 1

2 ∂xβ0(x)ψ(τ, x)
)
. (B.13)
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This differential equation corresponds to the special case of (B.1) where V (x) and Y (x)
are obtained from weight function β0(x) occurring in (B.12) as follows

t = 2π τ V (x) = β0(x) Y (x) = 1
2 β
′
0(x) . (B.14)

This implies that the modular flow ψ(τ, x) can be found by specialising to this case the
general solution (B.10) derived in the appendix B.1. The function w(x) in (B.6) and
therefore also ξ(τ, x) in (B.7) cannot be written without the explicit expression of β0(x).
Indeed, in this case the equations in (B.8) hold for ξ(τ, x) with V (x) given in (B.14).

Specialising the function γ(x;x0) in (B.3) to the case defined by (B.14), we obtain

γ(x;x0) = 1
2 log

(
β0(x)
β0(x0)

)
(B.15)

hence the function multiplying the field in (B.10) becomes

eΓ(τ,x) =
(
β0(ξ(τ, x))
β0(x)

)1/2
. (B.16)

Thus, the solution (B.10) in the special case defined in (B.14) reads

ψ(τ, x) =

√
β0
(
ξ(τ, x)

)
β0(x) ψ

(
ξ(τ, x)

)
=
√
∂xξ(τ, x) ψ

(
ξ(τ, x)

)
(B.17)

where (B.8) has been used. Since ξ(0, x) = x, the initial condition ψ(0, x) = ψ(x) is
satisfied.

The solution (B.17) tells us that the modular flows generated by the modular Hamil-
tonians (B.12) are local because they do not mix fields localised in different points.

B.2.1 Examples with translation invariance

We find worth enumerating some interesting configurations where the bipartition involves
a single interval A and whose modular Hamiltonian takes the local form (B.12). In these
examples the underlying system is invariant under spatial translations.

Let us consider a configuration characterised by its weight function β0(x). This weight
function allows to find w(x) through (B.6) and (B.14). Then, the function ξ(τ, x) is con-
structed through (B.7) and (B.14). The modular flow for the massless Dirac field can be
found by specialising the expression (B.17) to the case of interest.

In the following cases, where the underlying system is translations invariant, the solu-
tion (B.17) can be employed to find the correlators of the components ψr (with r ∈ {1, 2})
of the Dirac field along the modular flow

〈ψr(τ1, x1)ψ∗r (τ2, x2)〉 =

√
β0
(
ξ(τ1, x1)

)
β0
(
ξ(τ1, x2)

)
β0(x1)β0(x2) 〈ψ

(
ξ(τ1, x1)

)
ψ∗
(
ξ(τ2, x2)

)
〉 . (B.18)

More explicitly, in the following cases one finds that this correlator takes the form (6.16)

〈ψr(τ1, x1)ψ∗r (τ2, x2)〉 = W (τ ;x, y) =
G(x, y)

(
ew(x) − ew(y))

2πi
(
ew(x)+πτ − ew(y)−πτ − iε

) (B.19)
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where we have introduced the antisymmetric function G(x, y) ≡ g(x, y)/[ew(x)−ew(y)]. We
observe that (B.19) satisfies the following partial differential equation[ 1

2π ∂τ −Bloc(x)
]
W (τ ;x, y) = 0 Bloc(x) ≡ β0(x) ∂x + 1

2 ∂xβ0(x) (B.20)

under the condition that G(x, y) is a solution of (we recall that w′(x) = 1/β0(x))

(
∂x + 1

2 Bw(x, y)
)
G(x, y) = 0 Bw(x, y) ≡ β′0(x)

β0(x) + ew(x) + ew(y)(
ew(x) − ew(y))β0(x)

. (B.21)

In the following cases, it turns out that Bw(x, y) is independent of the underlying bipar-
tition and that G(x, y) is proportional to the two-point correlator of the entire system
with x, y ∈ A.

The first example that we consider is given by a system in its ground state on the line,
where the bipartition is defined by a single interval A = [a, b] ∈ R and by its complement [5–
7]. The modular Hamiltonian takes the local form (B.12) with (see also (4.15))

β0(x) ≡ (b− x)(x− a)
b− a

w(x) = log
(
x− a
b− x

)
. (B.22)

The function w(x) provides ξ(τ, x) as follows

ξ(τ, x) = w−1(w(x) + 2π τ
)

= a+ b ew(x) e2πτ

1 + ew(x) e2πτ = (b− x) a+ (x− a) b e2πτ

b− x+ (x− a) e2πτ . (B.23)

For any x ∈ (a, b), we have that ξ(τ, x) → a as τ → −∞ and ξ(τ, x) → b as τ → +∞
in (B.23). Instead, ξ(τ, a) = a and ξ(τ, b) = b for any τ ∈ R.

The correlators along the modular flow are given (B.19) with

G(x, y) = 1
x− y

. (B.24)

It is worth considering the limiting regime of this first example where the subsystem
becomes the semi-infinite line x > 0 (i.e. a = 0 and b → +∞), which corresponds to
the case studied by Bisognano and Wichmann [3, 4]. In this limit, from (B.22), we have
β0(x) = x with x > 0 and the expression (B.23) reduces to ξ(τ, x) = x e2πτ with x > 0,
which are the dilations of the semi-infinite line parameterised by τ .

The expression (B.12) describes also the modular Hamiltonian of an interval A = [a, b]
on a circle of finite length L, when the entire system is in its ground state. We remark that
we consider anti-periodic boundary conditions. Non local terms can occur in the modular
Hamiltonian if other boundary conditions are imposed [31, 32, 74]. In this case, which has
been already studied in [8, 9], the weight function β0(x) and the corresponding w(x) read
respectively

β0(x) ≡ L

π

sin[π(b− x)/L] sin[π(x− a)/L]
sin[π(b− a)/L] w(x) = log

(sin[π(x− a)/L]
sin[π(b− x)/L]

)
. (B.25)
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The expression of w(x) allows to write ξ(τ, x) as

ξ(τ, x) = L

2π i log
(
eiπ(b+a)/L + ei2πb/L ew(x)+2πτ

eiπ(b−a)/L + ew(x)+2πτ

)
(B.26)

and the correlators along the modular flow as (B.19) with

G(x, y) = 1
sin[π(x− y)/L] . (B.27)

The last example is given by an interval A = [a, b] ⊂ R on the infinite line and a system
at finite temperature 1/β. In this case the modular Hamiltonian has the local form (B.12)
with [8, 9]

β0(x) ≡ β

π

sinh[π(b− x)/β] sinh[π(x− a)/β]
sinh[π(b− a)/β] w(x) = log

(sinh[π(x− a)/β]
sinh[π(b− x)/β]

)
. (B.28)

This expression for w(x) leads to the corresponding ξ(τ, x), which can be written as

ξ(τ, x) = β

2π log
(
eπ(b+a)/β + e2πb/β ew(x)+2πτ

eπ(b−a)/β + ew(x)+2πτ

)
(B.29)

and to the corresponding correlators along the modular flow, which are (B.19) with

G(x, y) = 1
sinh[π(x− y)/β] . (B.30)

Notice that the first case can be obtained either from the second one in the limit
L→∞ or from the last one in the limit β →∞.

B.2.2 Modular flow of a primary field in CFT

A conformal field theory in two space-time dimensions contains the symmetric, conserved
and traceless energy momentum tensor {Tµν(t, x) : µ, ν = t, x}. Let us consider

T±(t± x) = 1
2
[
Txt(t, x)± Ttt(t, x)

]
(B.31)

the chiral right and left-moving combinations of the energy-momentum tensor. Introducing
A = [a, b], we are interested in the flows of a primary field of the theory generated by the
modular Hamiltonians

K±A = 2π
∫
A
β0(u±)T±(u±) du± u± = x± t . (B.32)

Consider, for instance, any right-moving primary field φ(v+) with conformal dimension
h. By employing the transformation law [75][

T+(u+) , φ(v+)
]
− = i

(
δ(u+ − v+) ∂v+φ(v+)− hφ(v+) ∂u+δ(u+ − v+)

)
(B.33)

and assuming that β0(a) = β0(b) = 0, we find

i∂τφ(τ,v+) = [K+
A , φ(τ,v+) ]−= i2π

(
β0(v+)∂v+ψ(τ,v+)+h ψ(τ,v+)∂v+β0(v+)

)
(B.34)
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which generalises (B.13) to an arbitrary conformal dimension h. Notice that the differential
equation (B.34) determining the modular flow of φ is given by (B.1) with

t = 2π τ V (x) = β0(x) Y (x) = hβ′0(x) . (B.35)

Specifying the solution (B.10) to this case, one obtains

φ(τ, v+) =
[
β0
(
ξ(τ, v+)

)
β0(v+)

]h
φ
(
ξ(τ, v+)

)
=
[
∂v+ξ(τ, v+)

]h
φ
(
ξ(τ, v+)

)
. (B.36)

where we recall that ξ(τ, x) = w−1(w(x) + 2π τ) and w′(x) = 1/β0(x).
This solution leads to the following two-point function along the modular flow

〈φ(τ1, u+)φ(τ2, v+)〉 =
[
∂u+ξ(τ1, u+) ∂v+ξ(τ2, v+)

]h 〈φ(ξ(τ1, u+)
)
φ
(
ξ(τ2, v+)

)
〉 (B.37)

whose explicit expression depends on the entire system through β0(x) and the underlying
state. For instance, when the entire system is on the infinite line, in its ground state and
the subsystem is the interval [a, b] ∈ R, we have that (B.37) becomes

〈φ(τ1, u+)φ(τ2, v+)〉 =
[ ∂u+ξ(τ1, u+) ∂v+ξ(τ2, v+) ]h

2π i
[
ξ(τ1, u+)− ξ(τ2, v+)− i ε

]2h (B.38)

where ξ(τ, x) is given by (B.23). Specialising (B.38) to h = 1/2, we recover (B.19)
with (B.22) and (B.24).

The modular evolution of a left-moving primary field of dimension h is obtained
from (B.36) by replacing v+ with v−.

We remark that the explicit form of the weight function β0(x) has not been specified
in the above discussion. For the special case of a two dimensional conformal field theory in
its ground state and the bipartition defined by the single interval A = [a, b], the modular
trajectory ξ is given by (B.23) and the result (B.36) has been already reported in [5, 6, 15].

C Modular flows from bi-local modular Hamiltonians

In this appendix we describe the derivation of the modular flows of the massless Dirac field
generated by two different bi-local modular Hamiltonians. In the appendix C.1 the case of
the interval in the half-line is considered, obtaining (5.11), while in appendix C.2 we discuss
the case given by two disjoint equal intervals on the line, that has been solved in [12]. In
the appendix C.3 we report a partial differential equation satisfied by the correlators of the
Dirac field along the modular flow generated by the modular Hamiltonian of two disjoint
intervals in a generic configuration on the line.

C.1 Interval on the half-line

In the following we discuss the derivation of (5.11) as the solution of the system of the two
coupled partial differential equations (5.9) with the initial condition (5.10).
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By using (3.28) to find −βloc(x̃)∂x̃ = βloc(x) ∂x, the system (5.9) can be written as[
d

dτ
− 2π βloc(x) ∂x

]
Ψ(τ, x) = 2πM(x) Ψ(τ, x) Ψ(τ = 0, x) ≡ Ψ(x) (C.1)

where

M(x) ≡

 1
2 ∂xβloc(x) − eiαβbi-loc(x)
e−iαβbi-loc(x̃) −1

2 ∂x̃βloc(x̃)

 (C.2)

which provides the coupling betweyen the two equations.
In order to write the system (C.1) in a simpler form, we redefine the fields in Ψ(τ, x) as

Ψ(τ, x) = M(x) Ψ̃(τ, x) M(x) ≡
(
c(x) 0

0 c(x̃)

)
(C.3)

in terms of the function c(x) satisfying the condition

βloc(x) c′(x) = − 1
2 c(x) ∂xβloc(x) (C.4)

which leads to
c(x) = c0√

βloc(x)
(C.5)

where c0 is a non vanishing constant. By plugging (C.3) into (C.1) and exploiting (C.4),
one finds that Ψ̃(τ, x) must solve the following system[

d

dτ
− 2π βloc(x) ∂x

]
Ψ̃(τ, x) = 2π b(x) Jα Ψ̃(τ, x) (C.6)

where we have introduced

b(x) ≡ c(x̃)
c(x) βbi-loc(x) =

√
βloc(x)βloc(x̃)
x+ x̃

= b(x̃) =
√
a b (b2 − x2) (x2 − a2)
2 (b− a) (a b+ x2)2 (C.7)

which is independent of the constant c0 and the constant matrix Jα can be written in terms
of the Pauli matrices σ1 and σ2 as follows

Jα ≡
( 0 − eiα

e−iα 0

)
= − i

[
σ1 sin(α) + σ2 cos(α)

]
. (C.8)

The unitary matrix Jα, that satisfies also J−1
α = −Jα, provides the dependence on α

in (C.6). This matrix can be diagonalised through the unitary matrix Uα, namely

Jα = U−1
α

( i 0
0 −i

)
Uα Uα ≡

1√
2

(−i e−iα 1
i e−iα 1

)
. (C.9)

We find it convenient to introduce the following linear combinations of fields(
µ̃1(τ, x)
µ̃2(τ, x̃)

)
≡ Uα

(
ψ̃1(τ, x)
ψ̃2(τ, x̃)

)
. (C.10)
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Indeed, by employing (C.9) and (C.10) into (C.6), we observe that the partial differential
equations for the fields µ̃1(τ, x) and µ̃2(τ, x̃) are decoupled. They read

[
d

dτ
− 2π βloc(x) ∂x

]
µ̃1(τ, x) = 2π i b(x) µ̃1(τ, x)

[
d

dτ
+ 2π βloc(x̃) ∂x̃

]
µ̃2(τ, x̃) = − 2π i b(x̃) µ̃2(τ, x̃)

(C.11)

where the second equation tells us that x̃ is a convenient spatial variable for µ̃2.
Since one of the equation in (C.11) is obtained from the other one by exchanging

(τ, x) ↔ (−τ, x̃) and µ̃1 ↔ µ̃2, the solution of this system can be constructed from the
solution of a single partial differential equation given by[

d

dτ
− 2π βloc(x) ∂x

]
µ̃(τ, x) = 2π i b(x) µ̃(τ, x) . (C.12)

This partial differential equation belongs to the class defined by (B.1), whose solu-
tion has been derived in the appendix B.1. In particular, (C.12) corresponds to the case
defined by

t = 2π τ V (x) = βloc(x) Y (x) = i b(x) . (C.13)

Following the discussion reported in the appendix B.1, one first introduces ξ(τ, x)
from (B.7), that in this case becomes

ξ(τ, x) = w−1(w(x) + 2π τ
)

(C.14)

where w(x) is given by (3.11) and its explicit expression of ξ(τ, x) has been reported
in (5.13). Then, one specialises the integral in (B.3) to the case defined by (C.13), finding∫

b(ξ)
βloc(ξ)

dξ = ω(ξ) + const ω(ξ) ≡ arctan
(
ξ/
√
ab
)
. (C.15)

This allows to write the solution of (C.12) by specifying (B.10) to this case. The result
reads

µ̃
(
τ, ξ(τ, x)

)
= eiω(ξ(τ,x))

eiω(ξ(0,x)) µ̃
(
ξ(τ, x)

)
(C.16)

where µ̃(x) corresponds to the initial configuration at τ = 0 and we have adapted the
notation of (B.10) to this case.

The result (C.16) allows to find the solution of the system of decoupled partial differ-
ential equations in (C.11) as(

µ̃1(τ, x)
µ̃2(τ, x̃)

)
=
(

ei ∆ω(ξ(τ,x)) µ̃1
(
ξ(τ, x)

)
ei ∆ω(ξ(−τ,x̃)) µ̃2

(
ξ(−τ, x̃)

) ) (C.17)

where the function ∆ω(ξ(τ0, x)), that must satisfy ∆ω(ξ(0, x)) = 0 to match the initial
configuration, is defined as

∆ω
(
ξ(τ0, x)

)
≡ ω

(
ξ(τ0, x)

)
− ω

(
ξ(0, x)

)
= ω

(
ξ(τ0, x)

)
− ω(x) . (C.18)
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By first combining (C.10) and (C.17) and then using (5.14), it is straightforward
to obtain(

ψ̃1(τ, x)
ψ̃2(τ, x̃)

)
= U−1

α

(
ei ∆ω(ξ(τ,x)) 0

0 ei ∆ω(ξ̃(τ,x))

)
Uα

(
ψ̃1
(
ξ(τ, x)

)
ψ̃2
(
ξ̃(τ, x)

) ) . (C.19)

Since arctan(1/y) = π
2 − arctan(y) for y > 0, we have

∆ω
(
ξ̃(τ0, x)

)
= ω

(
ξ̃(τ0, x)

)
− ω(x̃) = −∆ω

(
ξ(τ0, x)

)
(C.20)

hence (C.19) can be written as(
ψ̃1(τ, x)
ψ̃2(τ, x̃)

)
=

 cos
[
∆ω

(
ξ(τ, x)

)]
− eiα sin

[
∆ω

(
ξ(τ, x)

)]
e−iα sin

[
∆ω

(
ξ(τ, x)

)]
cos
[
∆ω

(
ξ(τ, x)

)]
 (

ψ̃1
(
ξ(τ, x)

)
ψ̃2
(
ξ̃(τ, x)

) ) . (C.21)

The unitary 2× 2 matrix in the r.h.s. provides the mixing of different fields along the
modular flow. Setting θ = ∆ω(ξ(τ, x)), this matrix can be written in terms of the Pauli
matrices σ1 and σ2 and of the 2× 2 identity matrix I as follows

e−Jαθ = cos(θ) I− i sin(θ)
[
σ1 sin(α) + σ2 cos(α)

]
=
( cos(θ) − eiα sin(θ)
e−iα sin(θ) cos(θ)

)
. (C.22)

Notice that e−Jαθ becomes orthogonal when α = 0.
The modular evolution of the doublet (5.6) is obtained by combining the fields redefi-

nition (C.3) and (C.21). The result reads(
ψ1(τ, x)
ψ2(τ, x̃)

)
= M(x)

(
ψ1
(
ξ(τ, x)

)
ψ2
(
ξ̃(τ, x)

) ) (C.23)

where

M(x) ≡ M(x)

 cos
[
∆ω

(
ξ(τ, x)

)]
− eiα sin

[
∆ω

(
ξ(τ, x)

)]
e−iα sin

[
∆ω

(
ξ(τ, x)

)]
cos
[
∆ω

(
ξ(τ, x)

)]
 M

(
ξ(τ, x)

)−1
. (C.24)

We can rewrite (C.23) considering ψ2(τ, x) instead of ψ2(τ, x̃) in the second component
of (C.23). By first using (5.14) and then (C.20), one obtains
ψ1(τ,x) = c(x)

(
cos
[
∆ω

(
ξ(τ,x)

)] ψ1
(
ξ(τ,x)

)
c
(
ξ(τ,x)

) −eiα sin
[
∆ω

(
ξ(τ,x)

)] ψ2
(
ξ̃(τ,x)

)
c
(
ξ̃(τ,x)

) )

ψ2(τ,x) = c(x)
(

cos
[
∆ω

(
ξ(−τ,x)

)] ψ2
(
ξ(−τ,x)

)
c
(
ξ(−τ,x)

) −e−iα sin
[
∆ω

(
ξ(−τ,x)

)] ψ1
(
ξ̃(−τ,x)

)
c
(
ξ̃(−τ,x)

) )
(C.25)

which can be rewritten by observing that (3.28) and (C.5) give c(ξ̃) = ξ√
ab
c(ξ), and that

cos
[
∆ω

(
ξ(±τ,x)

)]
= ab+ξ x√

(ab+ξ2)(ab+x2)
sin
[
∆ω

(
ξ(±τ,x)

)]
=

√
ab(ξ−x)√

(ab+ξ2)(ab+x2)
(C.26)
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where ξ = ξ(±τ, x) in the r.h.s.’s. This rewriting leads to the final result reported in (5.11).
Finally, let us remark that (C.23) and (C.24) lead to(

ψ1(τ, x)
eiα ψ2(τ, x̃)

)
= M(x)

∣∣
α=0

(
ψ1
(
ξ(τ, x)

)
eiα ψ2

(
ξ̃(τ, x)

) ) (C.27)

where M(x)|α=0 is the mixing matrix (C.49) determining the modular flow of the Dirac
field on the line generated by the modular Hamiltonian of two disjoint equal intervals (see
the appendix C.2).

C.2 Two disjoint equal intervals on the line

In order to make this manuscript self-consistent, in the following we find it worth deriving
the modular flow of the massless Dirac field in the ground state and the correlators of the
resulting field when the subsystem is given by two disjoint equal intervals in the infinite
line Asym ≡ [−b,−a] ∪ [a, b] ⊂ R, by adapting to this case the procedure discussed in the
appendix C.1 for the interval in the half-line. This analysis corresponds to a special case
of the results obtained in [12, 13] for the union of a generic number of disjoint intervals
with arbitrary lengths.

The modular flow of the Dirac field is the solution of the following system of partial
differential equations

d

dτ


ψ1(τ, x)
ψ1(τ,−x̃)
ψ2(τ, x)
ψ2(τ,−x̃)

 = 2π
[
Bsym(x)⊕

(
−Bsym(x)

) ]


ψ1(τ, x)
ψ1(τ,−x̃)
ψ2(τ, x)
ψ2(τ,−x̃)

 (C.28)

where the 2 × 2 matrix differential operator Bsym(x) can be expressed in terms of Bloc

defined in (5.4) as follows

Bsym(x) ≡
(

Bloc(x) −βbi-loc(x)
− βbi-loc(−x̃) Bloc(−x̃)

)
. (C.29)

The block diagonal structure in (C.28) implies that we can focus on the doublet given by

Ψ(τ, x) ≡
(
ψ(τ, x)
ψ(τ,−x̃)

)
(C.30)

that must solve the following system of partial differential equations

d

dτ
Ψ(τ, x) = 2πBsym(x) Ψ(τ, x) . (C.31)

Since βloc(−x̃) ∂(−x̃) = βloc(x) ∂x, the system (C.31) can be also written as[
d

dτ
− 2π βloc(x) ∂x

]
Ψ(τ, x) = M sym(x) Ψ(τ, x) Ψ(τ = 0, x) ≡ Ψ(x) (C.32)

where

M sym(x) ≡ 2π

 1
2 ∂xβloc(x) −βbi-loc(x)
−βbi-loc(−x̃) 1

2 ∂(−x̃)βloc(−x̃)

 . (C.33)
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From (3.15), (3.27) and (3.32), one observes that

βloc(−x̃) = βloc(x̃) βbi-loc(−x̃) = −βbi-loc(x̃) ∂(−x̃)βloc(−x̃) = −∂x̃βloc(x̃)
(C.34)

which allow to compare (C.33) and (C.2), finding

M sym(x) = M(x)
∣∣
α=0 . (C.35)

In order to write the system (C.32) in a simpler form, one introduces the doublet
Ψ̃(τ, x) through the function c(x) defined in (C.5) as follows

Ψ(τ, x) = M(x) Ψ̃(τ, x) M(x) ≡
(
c(x) 0

0 c(−x̃)

)
. (C.36)

Since for c(x) the condition (C.4) holds, the doublet Ψ̃(τ, x) is a solution of the follow-
ing system

[
d

dτ
− 2π βloc(x) ∂x

]
Ψ̃(τ, x) = 2π b(x) J Ψ̃(τ, x) J ≡ Jα

∣∣
α=0 =

( 0 −1
1 0

)
(C.37)

where b(x) is the function introduced in (C.7), that satisfies

b(x) = c(−x̃)
c(x) βbi-loc(x) = − c(x)

c(−x̃) βbi-loc(−x̃) = b(−x̃) . (C.38)

Comparing (C.37) with (C.6), we observe that the partial differential equation to solve
for two equal disjoint intervals on the line corresponds to the partial differential equation
underlying the interval on the half-line in the special case given by α = 0.

The diagonalisation in (C.9) tells us that J = U−1 diag(i ,−i)U , where U ≡ Uα=0;
hence it is natural to introduce(

µ̃−(τ, x)
µ̃+(τ,−x̃)

)
≡ U

(
ψ̃(τ, x)
ψ̃(τ,−x̃)

)
U ≡ Uα

∣∣
α=0 = 1√

2

(−i 1
i 1

)
. (C.39)

Combining (C.37) and (C.39), one finds that µ̃−(τ, x) and µ̃+(τ, x̃) satisfy the following
decoupled partial differeential equations

[
d

dτ
− 2π βloc(x) ∂x

]
µ̃−(τ, x) = 2π i b(x) µ̃−(τ, x)

[
d

dτ
− 2π βloc(−x̃) ∂(−x̃)

]
µ̃+(τ,−x̃) = − 2π i b(x) µ̃+(τ,−x̃) = − 2π i b(−x̃) µ̃+(τ,−x̃)

(C.40)
where one equation can be obtained from the other one by exchanging (τ, x)↔ (τ,−x̃) and
µ̃− ↔ µ̃+. Notice that the sign of τ remains unchanged in this case. From (C.40), we ob-
serve that the underlying partial differential to solve is again (C.12), whose solution (C.16)
can be employed also in this analysis.
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In this case, by inverting the function w(x) in (3.11), one finds that we need to introduce

ξ±(τ, x) =
(b− a)

(
e2πτ+w(x) − 1

)
±
√

(b− a)2(e2πτ+w(x) − 1
)2 + 4ab

(
e2πτ+w(x) + 1

)2
2
(
1 + e2πτ+w(x)) .

(C.41)
It is worth combining these expressions and the Heavyside step function Θ(x) to define

ξ(τ, x) ≡ Θ(x) ξ+(τ, x) + Θ(−x) ξ−(τ, x) . (C.42)

In terms of this ξ(τ, x) and of (C.18), the solution of (C.40) reads(
µ̃−(τ, x)
µ̃+(τ,−x̃)

)
=
(

ei ∆ω(ξ(τ,x)) µ̃−
(
ξ(τ, x)

)
e−i ∆ω(ξ(τ,−x̃)) µ̃+

(
ξ(τ,−x̃)

) ) . (C.43)

By using this result and (C.39), one obtains(
ψ̃(τ, x)
ψ̃(τ,−x̃)

)
= U−1

(
ei ∆ω(ξ(τ,x)) 0

0 e−i ∆ω(ξ(τ,−x̃))

)
U

(
ψ̃
(
ξ(τ, x)

)
ψ̃
(
ξ(τ,−x̃)

) ) . (C.44)

Now it is useful to observe that

ξ(τ,−x̃) = − a b

ξ(τ, x) ≡ − ξ̃(τ, x) (C.45)

that allows to write (C.44) as(
ψ̃(τ, x)
ψ̃(τ,−x̃)

)
= U−1

(
ei ∆ω(ξ(τ,x)) 0

0 e−i ∆ω(−ξ̃(τ,x))

)
U

(
ψ̃
(
ξ(τ, x)

)
ψ̃
(
−ξ̃(τ, x)

) ) . (C.46)

Since arctan(−1/y) = arctan(y)− π
2 sign(y) for y ∈ R, in this expression we can use that

∆ω(− ξ̃(τ, x)) = ω(− ξ̃(τ, x))− ω(−x̃) = ∆ω
(
ξ(τ, x)

)
. (C.47)

By employing this observation in (C.46) first and then the fields redefinition (C.36),
we find that the modular flow of the doublet (C.30) reads(

ψ(τ, x)
ψ(τ,−x̃)

)
= M(x)

(
ψ
(
ξ(τ, x)

)
ψ
(
−ξ̃(τ, x)

) ) (C.48)

where the mixing matrix is

M(x) ≡ M(x)

 cos
[
∆ω

(
ξ(τ, x)

)]
− sin

[
∆ω

(
ξ(τ, x)

)]
sin
[
∆ω

(
ξ(τ, x)

)]
cos
[
∆ω

(
ξ(τ, x)

)]
 M

(
ξ(τ, x)

)−1
. (C.49)

By using (C.36), the result (C.48) can be written as
ψ(τ, x) = c(x)

(
cos
[
∆ω

(
ξ(τ, x)

)] ψ(ξ(τ, x)
)

c
(
ξ(τ, x)

) − sin
[
∆ω

(
ξ(τ, x)

)] ψ(−ξ̃(τ, x)
)

c
(
−ξ̃(τ, x)

) )

ψ(τ,−x̃) = c(−x̃)
(

cos
[
∆ω

(
ξ(τ, x)

)] ψ(−ξ̃(τ, x)
)

c
(
−ξ̃(τ, x)

) + sin
[
∆ω

(
ξ(τ, x)

)] ψ(ξ(τ, x)
)

c
(
ξ(τ, x)

) )
(C.50)
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where we remark that the second equation is equivalent to the first one; indeed, by renaming
the spatial variable, it becomes

ψ(τ, x) = c(x)
(

cos
[
∆ω

(
−ξ̃(τ, x)

)] ψ(ξ(τ, x)
)

c
(
ξ(τ, x)

) + sin
[
∆ω

(
−ξ̃(τ, x)

)] ψ(−ξ̃(τ, x)
)

c
(
−ξ̃(τ, x)

) )
(C.51)

where

cos
[
∆ω

(
−ξ̃(τ, x)

)]
= cos

[
∆ω

(
ξ(τ, x)

)]
sin
[
∆ω

(
−ξ̃(τ, x)

)]
= − sin

[
∆ω

(
ξ(τ, x)

)]
.

(C.52)
Summarising, when the bipartition of the infinite line is determined by Asym, the

modular flow of both the components of the Dirac field reads

ψ(τ, x) = c(x)
(

cos
[
∆ω

(
ξ(τ, x)

)] ψ(ξ(τ, x)
)

c
(
ξ(τ, x)

) − sin
[
∆ω

(
ξ(τ, x)

)] ψ(−ξ̃(τ, x)
)

c
(
−ξ̃(τ, x)

) ) . (C.53)

By using (3.28), (C.5) and (C.34), we find it worth writing this expression also as

ψ(τ, x) =
[
P (ξ;x)

((
a b+ x ξ

)
ψ(ξ)− a b

ξ

(
ξ − x

)
ψ(−ab/ξ)

)]∣∣∣∣
ξ=ξ(τ,x)

(C.54)

where P (ξ;x) has been defined in (5.12) and ξ(τ, x) is given by (C.42).
Employing the modular flow (C.54) and the correlators for the Fock vacuum of the

fields (2.22) and (2.23) on the line, one finds that the correlators of the two components of
the Dirac field along the modular flow read [13, 15]

〈ψ1(τ1, x1)ψ∗1(τ2, x2)〉 = W (τ12;x1, x2) (C.55)
〈ψ2(τ1, x1)ψ∗2(τ2, x2)〉 = W (τ12;x2, x1) (C.56)

where W is the function defined in (6.1) with w(x) given by (3.11).

C.3 Two disjoint intervals on the line: modular equation of motion

The modular Hamiltonian of a subregion made by the union of a generic number of disjoint
intervals on the line for the massless Dirac field and the corresponding modular flow have
been studied by Casini and Huerta in [12], while the correlators the Dirac field along the
modular flow have been found in [13].

The modular Hamiltonian of two disjoint intervals A ≡ [a1, b1]∪ [a2, b2] on the line can
be written as the sum KA = K loc

A +Kbi-loc
A , where the local term K loc

A and the bi-local term
Kbi-loc
A are defined respectively as [12]

K loc
A = 2π

∫
A
βloc(x)Ttt(0, x) dx Kbi-loc

A = 2π
∫
A
βbi-loc(x)Tbi-loc(0, x, xc) dx (C.57)

where Ttt(t, x) is the local operator (3.26), while Tbi-loc(t, x, xc) is the bi-local operator (3.38).
The weight functions in (C.57) can be written as follows

βloc(x) = 1
w′(x) βbi-loc(x) = βloc(xc(x))

x− xc(x) (C.58)
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where

w(x) = log
[
−(x− a1)(x− a2)

(x− b1)(x− b2)

]
(C.59)

and xc(x) is the point conjugate to x ∈ A satisfying the condition w(xc(x)) = w(x), namely

xc(x) ≡ (b1b2 − a1a2)x+ (b1 + b2) a1a2 − (a1 + a2) b1b2
(b1 − a1 + b2 − a2)x+ a1a2 − b1b2

. (C.60)

We remark that x and its conjugate point xc(x) belong to different intervals in A.
For the symmetric configuration A = Asym, we have that (C.59) becomes (3.11)

and (C.60) simplifies to xc(x) = −x̃ = −ab/x; hence the two expressions in (C.58) re-
duce to (3.27) and (3.32); hence the final result is the modular Hamiltonian reported
in (3.36), (3.37) and (3.38).

The correlators of the components of the Dirac field along the modular flow found
in [13, 15] read

〈ψ1(τ1, x1)ψ∗1(τ2, x2)〉 = W (τ12;x1, x2) (C.61)
〈ψ2(τ1, x1)ψ∗2(τ2, x2)〉 = W (τ12;x2, x1) (C.62)

with

W (τ ;x, y) = ew(x) − ew(y)

2πi(x− y)
1

ew(x)+πτ − ew(y)−πτ − iε
(C.63)

where the function w(x) is given by (B.22) for a single interval and by (C.59) for the union
of two disjoint intervals on the line.

We remark that (C.63) satisfies the properties given in (6.3) and this implies that the
modular correlators obey the KMS condition [13].

For two disjoint intervals, the differential equations (C.31), defining the modular flow
of the massless Dirac field, imply that in the limit of ε → 0 (C.63) satisfies the following
modular equation of motion( 1

2π ∂τ − βloc(x) ∂x −
1
2 ∂xβloc(x)

)
W (τ ;x, y) + βbi-loc(x)W (τ ;xc, y) = 0 (C.64)

where βloc(x) and βbi-loc(x) are defined in (C.58) in terms of the function w(x) in (C.59).
We remark that the occurrence of the last term in the l.h.s. of (C.64) is due to the fact

that the modular Hamiltonian contains also a bi-local term. Indeed, for a single interval
(a, b) on the line, the modular correlators (which are (C.61) and (C.62) with w(x) given
by (B.22)) satisfy a modular equation of motion like (C.64) with βbi-loc(x) = 0 identically
and βloc(x) = β0(x) defined in (B.22).
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