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Relax, there is nothing wrong with the transposition paper. 

People aren’t ready for this yet. 

 

 

Barbara McClintock to Mel Green 

1969  
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Abstract 
 

 

One of the most intriguing discoveries in the recent decades is that “the genome is a work 

in progress”, constantly gaining and loosing chunks of sequence, in order to provide new 

potentially favorable combinations for adaptation. The old genetic concept that the 

genome is static, has prevailed until the 1950s, when it was first suggested that there is a 

lot more to DNA than just genes. Indeed, genetic material is dynamic and the greatest 

part of most organisms genome is occupied by non-coding DNA, especially DNA 

fragments deriving from elements capable of moving to new locations: transposable 

elements (TEs). TEs are mobile DNA fragments, whose remnants occupy nearly half of 

mammalian genome  and up to 90% of the genome of some plants (SanMiguel et al., 

1996). Since almost the 1950, when Barbara McClintock discovered them in maize 

(McClintock, 1951), extensive efforts have been devoted to understand the function of 

these interspersed repeats. Unfortunately, due to their imperceptible activity, TEs have 

been largely underappreciated and dismissed as ‘junk DNA’. When researchers identified 

long interspersed element-1 (LINE-1 or L1) insertions to be responsible for haemophilia 

A, in 1988 (Kazazian et al., 1988), TEs gained new attention. LINE-1 elements are the 

only active, autonomous TEs present in the mammalian genome. These molecules, able 

to create polymorphisms among individuals and genomic mosaicism among populations 

of cells, are major sources of structural variations in humans and are responsible for 124 

genetic diseases (Hancks and Kazazian, 2016). In particular, the discovery of LINE-1 

mobilization in neurogenesis (Muotri et al., 2005, Coufal et al., 2009) urged the scientific 

community to investigate the potential involvement of mobile elements in 

neuropsychiatric disorders (Bundo et al., 2014 , Guffanti et al., 2016, Shpyleva et al., 

2017 ) and neurodegenerative diseases (Li et al., 2012). 

 

Nowadays, that LINE-1 activity has been proven in vitro (Moran et al., 1996) and in vivo 

(Ostertag et al., 2002), the establishment of the real rate of retrotransposition remains a 

challenge for scientists in this field. One of the main reasons is the lack of reliable 

methods to detect elements present in a small minority of cells, or unique to a single cell. 

This is exacerbated by the technical complexity of deconstructing non-reference, 

chimeric regions of the genomes through experimental or computational means.  
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Until very recently, assays using ligation-mediated PCR techniques have been considered 

the gold standard for proving and quantifying current retrotransposon activity. 

Unfortunately, both positive and negative changes in the number of repeats detected with 

these techniques can occur by a multitude of mechanisms not directly related to the 

retrotransposition molecular mechanism. Among the most common retrotransposition-

independent rearrangements we can remember non-homologous recombination mediated 

deletions and duplications.  

 

In this thesis, we focus on the effects of LINE-1 elements on genome stability. To this 

purpose, we describe three different bioinformatics methods for the study of the hallmarks 

of LINE-1 mediated genome instability: direct insertion, double strand breaks (DSBs), 

and post-insertional rearrangements.  

 

The increasing availability of large amounts of sequencing data produced by Next-

generation sequencing technologies (NGS), calls for the development of genomics 

techniques targeted for retrotransposons study, to fully exploit the available resources. 

Therefore a scalable approach, such as the Splinkerette Analysis of Mobile Elements 

(SPAM) method proposed here, is of substantial interest to assist the current and future 

development in the study of transposable elements. Importantly, SPAM allowed us to 

target exclusively full-length LINE-1 elements (FL-L1) present in the frontal cortex (FC) 

and the kidney (K) of Alzheimer’s disease affected patients (AD) and controls (CTRL) 

and to test if LINE-1 polymorphisms can be a relevant source of structural variants 

associated with AD risks. This is accomplished combining a PCR-based enrichment of 

FL-L1 elements with an ad hoc bioinformatic pipeline. The remarkable performance of 

our integrative method is achieved in part because of its ability to detect LINE-1 insertion 

sites with great precision and in part because of its scalability. Embedded in the 

methodology is the flexibility to perform the same technique in different organism and 

considering different classes of TEs. Using SPAM, we observed for the first time an 

unexpectedly high level of retrotransposition in the kidney. In association with the SPAM 

approach, we performed TaqMan based copy number variation (CNV) analysis to 

evaluate the content of potentially active L1s in the different tissues of AD and CTRL 

individuals. Finally, we employed high density arrays to compare the occurrence of FL-

L1 elements in correspondence of genomic variations detected in AD and CTRL patients. 

Overall, we show that the content of FL-L1 sequences in AD is significantly lower than 
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in CTRL, that de-novo integrations are not associated to the disease but that FL-L1 

polymorphisms can be a relevant source of structural variants associated to AD risk. 
 

Then, we investigated which mechanism underlies the regulation of olfactory receptor 

choice in mouse olfactory epithelium, characterizing Olfr2 locus-specific genomic 

rearrangements. To perform this task, we combined PacBio single molecule sequencing 

with a complementary high-fidelity paired-end Illumina sequencing for accurate 

identification of breakpoints in a locus where a very high repeat concentration, especially 

LINE elements, provides more chances for recombination events to occur between 

retrotransposon fragments. Surprisingly, the analysis revealed hundreds of heterozygous 

structural variants in the vicinity of the locus, among which deletions are the most 

abundant. The presence and characteristics of particular genomic features associated with 

the observed deletions, suggest us that the same principal mechanism is operating in the 

formation of all the deletions: micro-homology mediated end joining (MMEJ) of double 

strand breaks (DSB). Further experiments will tell us if the observed SV are involved in 

the regulation of the receptor. 

 

Intrigued by the idea that SV in Olfr2 region could be initiated by LINE-1 induced DSB 

lesions, for the first time, we profiled endogenous double strand breaks (DSB) 

distribution in mouse olfactory epithelium (at p6 and 1m) and liver (at p6). To this 

purpose, we performed a chromatin immunoprecipitation and sequencing (ChIP-Seq) 

analysis of γ-H2AX (an early response marker for DNA-DSBs). Little is known about 

the differential distribution of γ-H2AX throughout the genome at physiological 

conditions. In the light of our results, γ-H2AX signal is stronger in gene rich, transcribed 

regions where it co-localizes with regulatory sites. Thus, suggesting a possible 

involvement of DBSs in resolving topological stress and promoting interactions between 

regulatory regions. 

 

The research described in this thesis is aimed at enhancing our understanding of the 

consequences of LINE-1 activity and their potential importance in health and disease.  
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1 Introduction 

 

 

 

1.1 Structural Variations (SVs) 

 

 

Genomic mutations, affecting DNA sequence length and orientation, are major 

contributors to phenotypic diversity and disease (Alkan et al., 2011). 

Differences between genomes can range from single nucleotide polymorphisms to large 

rearrangements called structural variants (SVs) such as insertions, deletions, inversions, 

translocations and copy-number-variations. These modifications can be beneficial, 

neutral or deleterious and act in concert to produce an enormous number of possible 

genomic configurations, driving evolution (Ewing and Jensen, 2014).  

 

 
 
Figure 1.1  Classes of SV. The schematic depicts the most common classes of SV: deletions, novel 
sequence insertions, mobile-element insertions, tandem duplications, interspersed duplications, inversions 
and translocations (Alkan et al., 2011).   
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In the mouse genome for example, 29% of SVs result from DNA recombination-, 

replication- and repair-associated processes, but 54% is due to retrotransposons: LINEs 

(25%), LTRs (14%) and SINEs (15%), followed by satellite repeats (15%) and 

pseudogenes (2%) (Yalcin et al., 2011). In the human genome, retrotransposable elements 

occupy an impressive 40%, and are responsible for nearly the 10% of the reference 

specific indels larger than 100 bp (Xing et al., 2009). From these numbers is evident the 

key role of retrotransposons in mediating genome stability.  Retrotransposable elements, 

dynamically contribute to genome reshaping by insertion mediated expansion and post-

insertion mediated rearrangements.  

 

Unfortunately, although increasing evidence highlights the important role of transposable 

elements mediated SVs in gene regulation and disease (including genetic disorders, 

psychiatric problems, and cancer), their global impact is still largely uncharacterized. 

This is mostly due to the technical complexity of deconstructing chimeric regions of the 

genomes through experimental or computational means.  

 

Nowadays, high-throughput sequencing, is driving a quiet revolution in genetics and 

genomics. This technology, allowing the precise, quick and reasonably priced sequencing 

of multiple genomes, provides new opportunities for reliably detecting genomic 

polymorphisms in different individuals and cells. At the same time, the necessity to 

discover patterns in large, often noisy and overwhelming datasets, demands efficient 

bioinformatic tools for their analysis.  

To this end, this thesis aims to carry out a detailed computational analysis on transposable 

elements mediated genomic rearrangements in a physiologic context such as olfactory 

receptor choice and a pathologic context such as Alzheimer’s disease. 

The important role of repetitive sequences in the generation of SVs is examined in this 

chapter.    
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1.2 Repetitive elements (REs) 

 

 

Approximately 50% of the human genome and 40% of mouse genome consists of 

repeated sequences including satellite-DNA (satDNA), segmental duplications (SDs) 

also called low copy repeats (LCRs), pseudogenes, and transposable elements (TEs) 

(Muñoz-López and García-Pérez, 2010).  

This great proportion of genome occupancy may be explained by the important role of 

repeated elements in genetic variation and regulation (Feschotte and Pritham, 2007). 

Repeated elements actively reshape the genome through a balanced give-and-take of 

sequence that creates diversity among individuals and variability among populations of 

cells, with important implications for health and disease (O’Donnell and Burns, 2010). 

Their regulation properties include chromatin preservation and nuclear organization, 

regulation of coding sequence expression of nearby genes and damage-repair through 

recombination mechanisms (Shapiro and von Sternberg, 2005).  

In the following paragraphs, we briefly consider each class of repeats. 

 

 

 

1.2.1 Satellite-DNA  

 

 

Microsatellites or Simple Sequence Repeats (SSRs), are tandem repetitions of mono-di-

tri or tetra nucleotides present in coding and non-coding regions of the genome 

(occupying the 3% of human and mouse genome) that may vary in length between 

individuals and generations. For this reason, when the repetitions are located in neutral 

regions of the genome, microsatellites can be employed for DNA fingerprinting and 

identification purposes. On the other hand, microsatellite expansions occurring within 

genes can lead to severe diseases such as fragile X syndrome (Richards et al., 1991) and 

Huntington’s disease (Budworth and McMurray, 2013). 

Minisatellites or variable number of tandem repeats (VNTRs) are repetitions of longer 

stretches of nucleotides (10-100 bp), generally GC rich and mainly associated with 

constitutive heterochromatin. Their function is reflected by their location in the genome. 

VNTRs are concentrated in delicate regions, such as centromeres (in mouse) and 
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telomeres (in humans) where they protect chromosome ends from losing coding sequence 

during cell divisions. Moreover, these repeats have also been implicated in centromere 

condensation, sister chromatid pairing, gene regulation and imprinting. Associated with 

chromosomal fragile sites, satellite-DNA, constitutes a very unstable part of the genome 

and is prone to rearrangements (Ramel, 1997).  

 

 

 

1.2.2 Low copy repeats (LCRs) 

 

 

Low copy repeats, also called segmental duplications, are long sequences (from 1 kbp to 

400 kbp) characterized by a high degree of identity (commonly >95%) that occur mainly 

in centromeric, pericentromeric and telomeric regions, accounting for the ∼5% of human 

DNA and of ∼2% of mouse DNA (Sharp et al., 2005). 

LCRs, are highly dynamic regions that mediate recombination events resulting in 

genomic instability and Non-Allelic-Homologous-Recombination (NAHR) mediated 

rearrangements (including deletions, duplications, inversions, translocations), that 

facilitate the formation of copy number variations (CNVs) (Bailey et al., 2004). LCR 

rearranged regions often contain genes, gene fragments, pseudogenes, ERV sequences 

and transposable elements such as LINEs (long interspersed repetitive elements) and 

SINEs (short interspersed nuclear elements). In particular, an enrichment of Alu repeat 

sequences has been reported at the boundaries of human segmental duplications, 

suggesting repetitive-element-homology-based-recombination as a possible source of 

LCR expansion. Interestingly, mouse segmental duplications are enriched in LTR and 

recent LINE-1 retrotransposons but (unlike humans) not in SINEs (Sheen et al., 2000) .  

LCR-mediated CNVs can arise both meiotically and somatically as shown by the finding 

that identical twins can differ in CNVs and that different organs and tissues vary in copy 

number in the same individual (Hastings et al., 2009b). In humans CNVs appear to be 

implicated in evolution as well as in predisposition to dozens of neurological disorders 

such as autism (Sebat et al., 2007), schizophrenia (Walsh et al., 2008), intellectual 

disability (Cooper et al., 2011) and genomic disorders like Prader-Willi and Angelman 

syndromes (Ledbetter et al., 1981). Genomic disorders are a group of diseases caused by 
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rearrangements of the human genome due to inherent genomic instability that results in 

susceptibility to structural variation mutagenesis. The exceptional presence of elevated 

levels of aneuploidy and retrotransposition in neurons compared to other cell types 

encourages the suspect that somatic genome variation may contribute to functional 

diversity in the human brain. 

Changes in copy number might change the levels of expression of genes included in the 

regions of variable copy number, provide the genes with new domains and therefore new 

functionalities and create gene sequence redundancy so that some copies become free to 

evolve new or modified functions or patterns of expression, while other copies maintain 

the original function (Goodier and Kazazian, 2008). Intrigued by these findings, in this 

thesis, we compare the occurrence of FL-L1 elements in correspondence of CNVs 

detected in the genome of Alzheimer’s disease affected patients and controls, in order to 

characterize the repeat content in genomic variations potentially associated with the 

neurodegenerative disease. 

 

 

 

1.2.3 Pseudogenes 

 

 

Pseudogenes are not-fully-active gene copies that contain mutations in the coding 

sequence (Tutar, 2012). These elements can originate by spontaneous inactivating 

mutations, by transposable elements activity or by decay of genes that have been 

duplicated during evolution. According to the formation mechanisms they can be divided 

in two groups: processed pseudogenes and unprocessed pseudogenes. Processed 

pseudogenes are formed through LINE retrotransposition. These elements normally do 

not contain an upstream promoter sequence, nor introns, end in a poly(A) tail, and are 

flanked by short direct repeats. Unprocessed pseudogenes, originated from decay of 

duplicated genes, have introns and regulatory sequences but are usually inactive due to 

frameshift mutations and premature stop codons. 
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Among the potential functions of pseudogenes, we can list: gene expression regulation, 

formation of chimeric transcripts and creation of diversity reservoirs. 

 

 

 

1.2.4 Transposable elements (TEs) 

 

 

Transposable elements (TEs) occupy an impressive 45% of the human genome and 38% 

of mouse genome (Muñoz-López and García-Pérez, 2010). Interestingly, the genome of 

simpler organisms like fish, fly and worm is composed by a lower fraction of transposable 

elements (respectively 10%, 12% and 10%) suggesting a functional role of “junk” DNA 

in complex organism development and evolution.  

 

 
 
Figure 1.2.4  TE abundance among different organisms. Transposable elements (TEs) occupy the 45% 
of the human genome, the 38% of mouse genome, 12 % of fly genome and 10% of fish and worm genomes. 

 

Transposable elements are indeed a rich source of evolutionary novelties and play an 

important role in adaptation providing new genomic material to the cell and creating new 

sequence combinations that may confer a fitness advantage in a population (Feschotte 

and Pritham, 2007). Moreover, due to their ability to respond quickly to environmental 

changes and stress conditions (e.g. chemicals, temperature, starvation, DNA-damage, 

osmotic shock and oxidative stress), TEs translate changes in the external environment 
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into changes at the genomic level (Casacuberta and González, 2013). Not surprisingly, 

TEs compose the largest part of most plant genomes. These are only few of the potential 

benefits of TEs which have also many negative effects including severe genetic disorders 

(Payer et al., 2017) and cancer (Burns, 2017). Given the potential deleterious effects of 

TEs the host has generated multiple mechanisms controlling their proliferation 

including methylation of repetitive element sequences (Bourc’his and Bestor, 2004) and 

chromatin condensation, RNA interference (RNAi)-based silencing (Aravin et al., 

2008), APOBEC3 mediated nucleic acid editing (Refsland and Harris, 2013) and 

accumulation of repeat proteins like ORF1p in discrete cytoplasmic aggregates called 

stress granules (SG) in cell stress conditions (Goodier et al., 2007). Defects in these 

surveillance mechanisms were shown to increase transposable element activity with 

potentially dramatic consequences. 

 

 

 

1.2.4.1 Classes of TE 

 

 

There are two major groups of transposable elements, distinguishable by their 

transposition mechanism. Class II elements or DNA transposons comprise about 3% of 

the human genome and the 4% of the mouse genome and move by a so-called cut-and-

paste mechanism(Lander et al., 2001; Mouse Genome Sequencing Consortium et al., 

2002). Since no active DNA-transposons are present in mammals we will move directly 

to class I elements or retrotransposable elements (REs) (Campos-Sánchez et al., 2016). 

Retrotransposons move by a copy-and-paste mechanism involving reverse transcription 

of an RNA intermediate and insertion of its cDNA copy at a new position within the host 

genome. On the basis of the presence or absence of long terminal repeats (LTRs), all 

retrotransposons can be divided into two major groups. The first group consists of LTR-

containing elements like LTR retrotransposons and tyrosine recombinase 

retrotransposons. The second group is called non-LTR retrotranspsons, and the main 

representatives of this group are long interspersed nuclear elements (LINEs), short 

interspersed nuclear elements (SINEs), and processed pseudogenes. Endogenous 

retroviruses (ERVs) and LINEs are referred to autonomous REs because they encode the 

proteins necessary for their proliferation and transposition. SINEs, SVA and processed 
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pseudogenes are non-autonomous elements and take advantage of LINE enzymatic 

machinery to retrotranspose.  

 

 
 
Figure 1.2.4.1  The transposable element content of the human genome. About 45% of the human 
genome can currently be recognized as being derived from transposable elements, the vast majority of 
which are non-LTR retrotransposons such as LINE-1, Alu and SVA elements. Figure readapted from 
(Casacuberta and González, 2013). 

 

 

 

1.2.4.1.1 Long terminal repeat (LTR) containing elements 

 

 

LTR-containing elements occupy about 8% of the human genome and the 10% of the 

mouse genome (Jern and Coffin, 2008). The consensus structure of LTR-retrotransposons 

contains long terminal repeats (LTRs) in direct orientation, a gag gene, encoding for a 

structural protein with nucleic acid binding activity, and pol, which encodes polyprotein 

with protease, reverse transcriptase, ribonuclease H, and integrase activities but lacks the 

env (envelope) gene present in the retroviruses (Novikova, 2009). Their activity is 

reportedly very limited in humans, but they still carry enormous potential to regulate gene 

expression and gene networks (Lamprecht et al., 2010). For example, the LTR of 

Endogenous retroviruses (ERVs) contain regulatory sequences such as promoters, 

enhancers and polyadenylation signals. ERVs constitute about 5% of the human DNA 

(Khodosevich et al., 2002) and ~10% of mouse DNA (Jern and Coffin, 2008) end are 

thought to be the inactive residues of ancient germ-cell retroviral infections. Most of the 

ERVs present in mammalian genomes result from homologous recombination between 
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two LTR and therefore lack the internal genes and contain solo LTRs. Even if most of the 

ERV present in the mammalian genome is unable to transcribe and transpose, ERVs have 

been proposed to be involved in cancer (Kassiotis, 2014), multiple sclerosis (Antony et 

al., 2011) and schizophrenia (Leboyer et al., 2013). 

 

 

 

1.2.4.1.2 Long interspersed nuclear elements (LINEs) 

 

 

Long interspersed nuclear elements (LINEs) are autonomous non-LTR retrotransposons 

that occupy the 17% of human genome (Lander et al., 2001) and the 19% of mouse 

genome (Mouse Genome Sequencing Consortium et al., 2002). LINEs-1 (or L1s) are 

believed to be the only currently active autonomous transposable-elements in humans. 

However, most of the LINE-1s present in the genome are inactive due to mutations, 

truncations and rearrangements. Only 100 elements are potentially able to retrotranspose 

in human and 3000 in mouse (Erwin et al., 2014).  

The human FL-L1 is 6 kb long. It has a 900-nt-long 5′ untranslated region (UTR) that 

functions as an internal promoter for RNA polymerase II, two open reading frames (ORF1 

and ORF2), a short 3′UTR, and a poly(A) tail. The mouse LINE-1 5′ UTR is distinguished 

from the human one by having tandem repeats. ORF1 encodes for an RNA binding 

protein, while ORF2 encodes for a protein with endonuclease and reverse transcriptase 

activity (Scott and Devine, 2017). LINE-1 integrations usually present typical hallmarks 

such as frequent 5' truncations, the presence of a 3' poly(A) tail and variable-length target 

site duplications (TSDs). These elements can potentially integrate at a very large number 

of sites in the genome since their endonuclease preferentially cleaves DNA at a short 

consensus sequence but, because of the specificity of the consensus motif, they are 

enriched in AT-rich genomic regions, that present a low-recombination frequency and are 

gene-poor (Jurka, 1997). 
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Endonuclease-independent retrotransposition occurs when LINE-1s integrate into 

already present DNA lesions, like the ones present in the telomeres, resulting in 

retrotransposon-mediated DNA repair. In this case, since retrotransposition is not 

involved, LINE-1s integrate at atypical target sequences, are mainly truncated at their 3' 

ends and lack TSDs (Morrish et al., 2002).  

 

 
 
Figure 1.2.4.1.2  LINE-1 retrotransposition cycle. LINE-1 mRNA (red) is exported into the cytoplasm, 
translated, and L1 encoded proteins (LINE-1 ORF1p, LINE-1 ORF2p) bind to their own mRNA (cis 
preference) and form ribonucleoprotein complexes which are reimported into the nucleus. Subsequently, 
LINE-1 RNA is reverse transcribed and the cDNA is inserted into the genome by a mechanism named 
target primed reverse transcription (TPRT). Frequently, reverse transcription fails to procede to the 5’ end, 
resulting in truncated non-functional LINE-1 de novo insertions. Readapted from www.pei.de. 

 

 

The enzymatic machinery of a retrotransposition-competent LINE-1 principally 

transposes its own copies; this phenomenon is called “cis-preference” of LINE-1 

transposition. However, LINE-1s are capable of transposing other non-autonomous 

sequences in “trans”, like Alu retrotransposons, SVA and pseudogenes. When reverse-

transcription fails to procede to the 5’ end, the inserted copies result inactive. Otherwise, 

epigenetic (methylation of CpG dinucleotides, modifications of the histone tails) and 

post-transcriptional silencing methods promote the inactivation of potentially 

propagating, active LINE-1 elements.  

Retrotransposition occurs mainly in the germ cells but it can also produce somatic 

alterations, leading to differences among individuals and populations of cells of the same 
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individual. According to the symbiotic theory (Reilly et al., 2013) “it is advantageous for 

any transposable element to promote host mating, securing the propagation of the master 

elements to the next generation”. This speculation may explain why insertional events 

occur in the brain (neurons and glia) and in the testes: “advantageous mutations in the 

brain can result in an increase of the cognitive faculties and therefore in better cultural 

and social performances which can promote host sexual reproduction”. While LINE-1 

activity in germline and early-embryonic cells, ensures LINE-1 transmission to the next 

generations. 

LINE-1 retrotransposition has been detected in human embryonic stem cells (Coufal et 

al., 2009), in human fetal brain (Coufal et al., 2009) and during adult neurogenesis in the 

hippocampus (Muotri et al., 2009) suggesting that neural progenitor cells retain 

retrotransposition activity in adult stages. Moreover, adult human brain cells present a 

higher LINE-1 copy number than extra brain tissues. Muotri and colleagues in 2005 

demonstrated that LINE-1 rerotransposons mobilize during neural development, 

furthermore the presence of megabase sized somatic CNVs in the brain hints at mobile-

DNA role in neuronal mosaicism and plasticity. LINE-1s in particular, are known to 

produce large DNA rearrangements (mostly deletions and duplications) upon insertion 

and recombination (Hedges and Deininger, 2007), providing motifs that can be recruited 

by the host either for the regulation of its own genes or within its coding sequences. 

Indeed, LINE-1 mediated SVs altering the phenotype are very few. This is not surprising 

considering that protein coding genes occupy less than the 10% of the mammalian 

genome. Yet, the host places further controls on LINE-1 mobility (listed in chapter 1.1.4). 

Although most LINE-1 associated structural variations within the human populations 

with an allelic frequency higher than 1% appear to be neutral, specific disease phenotypes 

result from non-recurrent or private insertion and recombination between LINE-1 

elements: Haemophilia A (Kazazian et al., 1988), glycogen storage disease (Burwinkel 

and Kilimann, 1998) and Alport syndrome (Segal et al., 1999) are just some examples. 

Moreover, LINE-1s activity has been shown altered in neuropsychiatric disorders such as 

autism (Shpyleva et al., 2017) and schizophrenia (Guffanti et al., 2016) but little is known 

about LINE-1 role in neurodegenerative diseases. In this thesis, we are going to 

investigate if FL-LINE-1 polymorphisms can be a relevant source of structural variants 

associated to Alzheimer’s disease risks.  
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1.2.4.1.2.1 Effects of LINE-1 elements 

 

 

In the previous section, we introduced LINE-1-mediated recombination, one of the many 

effects of LINE-1 elements peppering our genome with stretches of homologous 

sequences. But L1-retrotransposition affects the cells in many other ways: 

  

- First of all, due to their conformation, LINE-1s can alter the expression of nearby 

genes (Elbarbary et al., 2016). 

LINE-1 elements possess functional sense and antisense promoters so they can initiate 

both upstream and downstream transcription and even regulate tissue-specific expression 

of some genes (Lavie et al., 2004). Moreover, LINE-1s possess a polyA tail, that can lead 

to pausing in transcriptional elongation and formation of truncated transcripts when the 

retrotransposon integrates in an intron of a gene. Finally, splice sites within LINE-1s 

residing in introns can lead to new exons within genes (Yalcin et al., 2011). 

Obviously, due to their mobilization effects, LINE-1 can affect genomic structure, 

disrupting the exons in which they are inserted and generating target site deletions and 

duplications. A LINE-1 insertion obliterated 46 kb of the gene encoding pyruvate 

dehydrogenase complex, component X (PDHX) and caused pyruvate dehydrogenase 

complex deficiency (Miné et al., 2007).  

 

- LINE-1 can act as vectors for flanking sequences leading to their expansion in the 

genome (Pickeral et al., 2000). 

When the weak LINE-1 poly(A) signal is ignored, and the LINE-1 transcription 

terminates at a downstream genomic signal, occurs the so called 3’ transduction. This 

phenomenon accompanies from 10 to 20% of all L1 mobilizations. 5’ transduction is most 

rare than 3’ transduction and occurs when transcription initiates from a chance upstream 

promoter. The length of the additional sequences (that may include exons and regulatory 

sequences) varies from a small number of bases to over 1 kb. LINE-1s can also shuttle to 

new genomic locations other repeats like Alus and SVA that are unable to mobilize and 

take advantage of the LINE-1 machinery.  
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- LINE-1 can alter the chromatin state (Slotkin and Martienssen, 2007). 

Since chromatin condensation suppresses the activity of LINE elements, after their 

integration these molecules become “boosters” that promote the spread of inactivation 

to the surrounding regions altering the expression of the nearby genes.  

 

 
 
Figure 1.2.4.1.2.1  Effects of LINE-1 elements insertions. LINE-1 elements can affect genome structure 
and gene activity in many ways. a. Integrating a copy in an exon, LINE-1s can disrupt a gene, b. Repairing 
pre-existing DSB, c. Promoting 3’ and 5’ transduction. d. Integrating in an intron, the new LINE-1 copy 
can provide a premature polyadenylation signal to the host gene inducing the formation of truncated 
transcripts. e. Altering the chromatin state. f. Providing sense and antisense portable promoters. 

 

 

 

1.2.4.1.2.2 Characterizing LINE-1 mediated SV 

 

 

Because of TEs importance in shaping the genomic structure and their potentially 

dangerous retrotranspositional activity, the knowledge of the extent of LINE-1 

mobilization is fundamental. To this purpose, a crucial step involves the ability to map 

integration sites at the genome-wide level. The repetitive nature of transposable elements 

makes this task really challenging, and several different approaches have been developed 

in the last years, leading to contrasting opinions about the real rate of somatic 

retrotransposition. Commonly used procedures including ligation-mediated PCR 
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techniques, or more recently array hybridization enrichment and high-throughput 

sequencing have suboptimal power. This is due to the struggle of determining the exact 

positions of elements that are present in highly homologous sequences in hundred 

thousand genomic locations and are often nested (inserted into pre-existing TEs). Despite 

ongoing progress in next-generation sequencing technologies (NGS), none of the actual 

approaches is capable of capturing the full spectrum of SV events with high sensitivity 

and specificity, especially in complex, repetitive regions. Among the physical constraints 

that impede an exhaustive LINE-1 detection, chromatin structure must be taken into 

account: is compact genome selecting against insertions into euchromatin or condensed 

regions are just difficult to study?  

So far, our understanding of LINE-1 related SVs is limited by the low resolution of most 

recent surveys, such as those solely based on microarrays, which are not able to precisely 

indicate the breakpoint of the SVs. On the other hand, short-read dependent SVs detection 

tools are not optimized to detect long SVs (such as FL-L1 elements), especially when 

they exceed the paired-end insert size, and are prone to false positive calls due to 

alignment errors. Such errors may occur when the number of bases in the reads, matching 

the reference genome is too few and when the number of reads supporting a SV is small. 

The task becomes even more challenging when the goal is identifying individual somatic 

variations, present in a small minority of cells, or unique to a single cell. Increasing 

evidence is suggesting that somatic variations as well as polymorphic insertions (present 

in a restricted number of individuals) make up a consistent portion of each individuals 

LINE-1 profile (Streva et al., 2015). Since both somatic and polymorphic insertions arise 

from currently active, mobile LINE-1 elements, these SVs also represent the most 

interesting subset of repeats to study (Burns and Boeke, 2012). Unfortunately, they are 

also the less characterized. Intuitively, young events, private or population-specific, are 

underrepresented in the reference sequence of the genome, originally derived from a 

mixed pool of individuals. While, ancient, widespread, fixed mobile element relics, make 

the most abundant fraction of annotated repeats. Continuous efforts (1,000 Genomes 

Project (The 1000 Genomes Project Consortium, 2015), euL1db (Mir et al., 2015, p. 1), 

dbRIP (Wang et al., 2006) are made to fill the gap in the annotation of LINE-1 

polymorphism. However, there is currently no comprehensive approach to confidently 

identify these variations. In order to increase the chances to target the rare events, 

extensive amplification and high depth of sequencing become fundamental. However, 

whole genome amplification introduces artifacts (Pugh et al., 2008) and higher coverage 
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of sequencing inevitably requires higher costs. Alternative, single molecule sequencing 

approaches and single-cell based approaches, provide solutions to some of the most 

vexing problems that face second generation sequencing. Single molecule sequencing 

approaches, like PacBio, allow reliable mapping of long SVs across repeat expansions, 

but suffer a high error rate (Rhoads and Au, 2015). Targeted, single-cell sequencing, 

offers the highest sensitivity in detecting sporadic SV events, but the percentage of the 

genome that is covered for each cell, and the total number of cells that can be tested with 

this approach, is limited. Meanwhile, as methods develop to detect insertions present in 

smaller proportions of cells, validation becomes progressively more difficult, imposing 

the use remarkably sensitive instruments, such as digital PCR to detect and quantify rare 

events.  

These constraints result in inexact estimates of rare, large SVs, in the current research. 

 

In this regard, in this thesis: 

We develop a new technique for reliably and efficiently identifying annotated, 

polymorphic and somatic FL-L1 integration sites in the human genome with single-base 

resolution; 

Then, we take advantage of dense arrays to correlate CNVs with genomic repeats such as 

the LINE-1 elements; 

Finally, we combine different state of the art approaches to investigate the formation 

mechanisms of SVs in a complex region such as mouse Olfr2 locus. 

 

 

1.2.4.1.3 Short interspersed nuclear elements (SINEs) 

 

 

Short interspersed nuclear elements comprise about 12% of the human genome 

(Gogvadze and Buzdin, 2009) and the 5% of mouse genome (Walters et al., 2009). These 

elements are generally quite short (<700 bp) and do not code the proteins necessary to 
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their mobilization: they consist of a 5’ region, a body and a poly(A) tail or, sometimes, 

another A-rich stretch on their 3′end. Therefore, they are not autonomous in their 

transposition. It is generally accepted that LINEs provide their reverse transcriptase to 

SINE, non-autonomous elements. In this way LINE elements allow the proliferation of a 

valuable factor of genetic variation (Beck et al., 2011). Among SINE elements, the 

members of Alu subfamily, represent the most abundant repeats in humans, occupying 

almost the 11% of the genome (Deininger, 2011). Multiple features 

predispose Alu elements to successful recombination, including their proximity in the 

genome (one insertion every 3 kb, on average), the high GC content of their sequence 

(∼63%), and the remarkable sequence similarity (70%–100%) among Alu subfamilies. 

The recombinogenic-nature of these elements is reflected in the various forms of cancer 

and genetic disorders associated with Alu-mediated recombination events (Payer et al., 

2017). Among the positive consequences of Alu-recombination-mediated-events we can 

list the evolution of the human glycophorin gene family. The event occurred through 

several duplication steps that involved recombination between Alu elements and Alu-

recombination-mediated-deletions (ARMDs): one of the actors that played a role in 

shaping the unique traits of the human and chimpanzee lineages (Sen et al., 2006).  

 

 

 

1.3 RE mediated genomic rearrangements 

 

 

In addition to canonical insertion events, because of their high copy number and sequence 

similarity, retrotransposons can create genomic rearrangements by several additional 

recombination processes. Among the principal mechanisms we can find: 

- nonallelic homologous recombination (NAHR) (Stankiewicz and Lupski, 2002) 

mediated insertion/deletion between two retrotransposons from the same family; 

- nonhomologous-end-joining (NHEJ) mediated deletion (Han et al., 2008); 

- and nonclassical-endonuclease-independent insertions of the retrotransposons (Morrish 

et al., 2002) 
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Proliferation of mobile elements significantly promotes genome instability (Kines et al., 

2014) via insertional mutagenesis and generation of double-strand-breaks (DSB), 

which have themselves been established as potent inducers of genetic instability. The 

consequences of genetic instability are particularly evident in humans, where a loss of 

repair capacity is associated with cancer predisposition, genetic syndromes and 

aging. Age dependent increase in transposition occurring in terminally differentiated 

neurons has been reported in Drosphila brain (Perrat et al., 2013). However, it is not 

known whether transposon expression is a cause or a consequence of aging and 

neurodegenerative diseases. Other repetitive genomic sequences, such as segmental 

duplications and microsatellites, also promote genetic instability resulting in disease 

phenotypes. Repetitive regions not only have the potential to form loops and non-B-DNA 

conformations (Zhao et al., 2010) but are potentially subjected to DNA breakage caused 

by active retrotransposition and persistent single strandedness due to extensive 

transcription, secondary structures or replication pausing which made preferential sites 

for double strand breaks (Hastings et al., 2009b). 

 

 

 

1.3.1 Double strand breaks (DSBs) 

 

 

DSBs are considered one of the most lethal forms of DNA damage as they can lead to 

dangerous mutagenic rearrangements or apoptosis (Lieber, 2010). 

They form as the result of two single stranded nicks in opposing DNA strands occurring 

sufficiently close to one another (10-20 bp) (Khanna and Jackson, 2001). TEs can produce 

DSBs during the generation of a new genomic copies, a process that requires the 

disruption and repair of DNA. LINE-1 elements, as the only autonomous TEs present in 

the human and mouse genome, play a significant role in generating endogenous DSBs in 

host cells (Gasior et al., 2006). LINE-1 copies employ a self-encoded endonuclease to 

create a nick in the target DNA that produces a free DNA end that can be used as a cDNA 

primer to enter the genome at consensus (TT/AAAA) sequences resulting in the creation 

of hotspots for new EN cleavage and recombination-mediated rearrangements  (Tremblay 

et al., 2000). Therefore, a high expression of LINE-1 protein may cause significant DNA 

damage when the integration of the LINE-1 copy does not occur, resulting in structural 
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variation formation. LINE-1 associated somatic CNV formation at LINE-1 loci harboring 

the endonuclease consensus sequence, is reportedly a consequence of extensive LINE-1 

expression induced DSBs occurring during neural differentiation in the brain (McConnell 

et al., 2013, Cai et al., 2014). 

Moreover, the protein kinase ATM, fundamental in many DNA repair signaling 

processes, was demonstrated to be involved in LINE-1 retrotransposition (Gasior et al. 

2006, Coufal et al., 2011), thus suggesting an additional correlation between LINE-1 and 

DNA-DSBs repair systems. ATM is activated by double-strand DNA breaks and 

subsequently phosphorylates downstream substrates leading to the activation of a DNA 

damage checkpoint and cell cycle arrest. 

Other endogenous agents producing DSBs are transcription (Kim and Jinks-Robertson, 

2012), replication stress (Zeman and Cimprich, 2014) and oxidative stress (Woodbine 

et al., 2011). Among the exogenous agents producing DSBs we can list: ionizing radiation 

(IR), radiomimetic drugs, genotoxic stress, ultraviolet light, anti-cancer drugs such as 

DNA replication inhibitors, tobacco smoke and topoisomerase I and II inhibitors (Mehta 

and Haber, 2014). 

 

In the next subsection, endogenous agents producing DSBs will be briefly examined in 

preparation for the study on endogenous DSBs in mouse OE, one of the topics of this 

thesis. 

 

 

 

1.3.1.1 Transcription 

 

 

Transcription is, one of the main endogenous processes increasing the occurrence of 

double-strand breaks in the genome that are repaired by recombination (Schwer et al., 

2016). 

Transcription stimulates recombination via collisions with the replication machinery, 

formation of R-loops, non-B DNA structures, engagement of topoisomerases, alteration 

in DNA base composition and promotion of DNA damage resulting in different types of 

rearrangements such as deletions, duplications, inversions and translocations (Kim and 

Jinks-Robertson, 2012). 
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Formation of transcription-associated DSBs caused by the binding of transcription factors 

to promoters can be related to torsional stress associated with transcription initiation. 

DSBs at gene promoters have been proposed to reduce topological stress and induce 

chromatin relaxation to facilitate transcription initiation and full expression of long genes 

(like genes involved in neuronal development and synaptic function).  

Type II DNA topoisomerases (TOP2), RNA polymerase II (Pol II), CTCF and DNAse I 

are important players in transcription regulation. 

Type II DNA topoisomerases enzymes regulate DNA topology by generating transient 

double stranded breaks during replication and transcription, recombination, DNA repair, 

chromatin remodeling, chromosome condensation, and segregation (Uusküla-Reimand et 

al., 2016).  

CTCF and cohesin proteins are key architectural components of the genome that anchor 

long-range interactions which structure chromosomal domains, flanking the boundaries 

of topologically associating domains (TADs) (Ong and Corces, 2014). CTCF participates 

in transcription mediating the formation of loops aimed to promote interactions between 

various regulatory regions, such as promoters and enhancers. As reported by Madabushi 

and collegues in 2015, the transcription factor binding site motif is the most highly 

enriched at TOP2B binding sites and CTCF peaks are enriched in the surrounding of the 

TSS of genes that incur DSBs.  

An additional cause of TSS associated DSBs is the formation of R-loops. R-loops are 

frequent in highly transcribed genes and result from a stable RNA:DNA hybrid generated 

when the nascent RNA reanneals to the transcribed strand leaving the non-transcribed 

single strand of DNA naked (Skourti-Stathaki and Proudfoot, 2014). The ssDNA filament 

can become the target of DNA-modifying enzymes such as activation-induced deaminase 

(AID) that can deaminate single-stranded DNA at cytidines leading to the generation of 

uracil lesions in DNA (Basu et al., 2009). The resulting U/G mismatches are then 

converted into DSBs through the co-opted activities of the base excision repair (BER) 

and mismatch repair (MMR) pathways. 

During transcription, when transient separation of DNA complementary strands occurs, 

the naked single-stranded DNA may assume a particular non B-DNA conformation that 

stabilize R-loops (Zhao et al., 2010). Guanine rich (G-rich) sequences and trinucleotide 

repeats are particularly prone to form non B-DNA conformation (Zhao et al., 2010). 

G-rich sequences form G-quadruplex or G4 DNA, which is comprised of a stacked array 

of G quartets that form loops which affect genome stability blocking transcription and 
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replication (Bochman et al., 2012). An important involvement of G4 DNA in genome 

instability is class-switch recombination is immune system, a process that allows 

activated B cells to modulate antibody production (Matthews et al., 2014).  

Transcription thus has the potential to modify the genetic landscape by locally altering 

mutation rates, by stimulating loss of heterozygosity and by generating diverse types of 

rearrangements that include deletions, duplications, inversions and translocations (Kim 

and Jinks-Robertson, 2012). 

 

 

 

 1.3.1.2 Replication stress 

 

 

Replication stress, defined as the slowing and stalling of the replication fork progression 

and/or DNA synthesis, is a serious problem for genome stability and cell survival (Zeman 

and Cimprich, 2014). It occurs when physical barriers impede the fork progression, when 

nucleotides are in limited number or misincorporated, when chromatin is condensed and 

when the replication origins are too sparse (Mirkin and Mirkin, 2007).  

Among the physical barriers to replication fork progression we can list DNA lesions, 

ssDNA, unusual DNA conformations and conflicts between the transcription and 

replication machineries. 

Repetitive elements that form secondary structures, for example, represent very difficult 

sequences to replicate leading to an increased chance DSBs and genomic instability. Not 

properly unfolded secondary structures and nucleotide repeats promote fork stalling and 

polymerase slippage with consequent expansions and contractions of the repeat sequence. 

The genomic distribution of the replication-origin is another factor that significantly 

affects the performance of the replication fork. An exaggerate replication initiation, like 

the one produced by constitutively active oncogenes, can consume nucleotide reservoirs 

and slow down the replication fork speeds which in turn results in increased DNA damage 

(Wilhelm et al., 2016). On the other side, DNA sequences like the common fragile sites 

(CFS) that harbor too few replication origins can lead to under-replication and loss of 

genetic information (Franchitto, 2013). CFS are poorly accessible heterochromatic 

regions that replicate later than accessible, transcriptionally active euchromatic regions 

like Early Replicating Fragile Sites (ERFS). In ERFS sites, the concentration of genes is 
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high, as well as the DNA/RNA machinery collisions resulting in the formation of unstable 

ssDNA structures and R-loops (Mortusewicz et al., 2013). Nicks and gaps can be 

therefore both the result and the cause of replication stress. When encountered by the 

replicating machinery these lesions can trigger the activation of several stress response 

mediators that induce chromatin changes in the surroundings causing perturbations in the 

nearby gene expression (Downs et al., 2007). 

 

 

 

1.3.1.3 Oxidative stress 

 

 

Oxidative stress refers to the imbalance due to excess of reactive oxygen species (ROS) 

or oxidants over the capability of the cell to mount an effective antioxidant response (Ray 

et al., 2012). Oxidative stress results in macromolecular damage of nucleic acids, 

proteins, and lipids and is implicated in various disease states such as atherosclerosis 

(Mügge, 1998), diabetes (Ha et al., 2008), cancer (Liou and Storz, 2010), 

neurodegeneration (Andersen, 2004), and aging (Haigis and Yankner, 2010). ROS such 

as superoxide anion (O2
−), hydrogen peroxide (H2O2), and hydroxyl radical (HO•), 

consist of radical and non-radical oxygen species formed by the partial reduction of 

oxygen. These molecules are generated through both endogenous and exogenous routes. 

Endogenous ROS are produced through leakage of these species from the mitochondrial 

electron transport chain (Zorov et al., 2014). Cytosolic enzyme systems, and by-products 

of peroxisomal metabolism are also endogenous sources of ROS. Generation of ROS also 

occurs through exposure to numerous exogenous agents and events including ionizing 

radiation (IR) (Yamamori et al., 2012), UV (Heck et al., 2003), cytokines (Yang et al., 

2007), growth factors (Sattler et al., 1999), chemotherapeutic drugs (Arun et al., 2016), 

environmental toxins (Al-Gubory, 2014), and macrophages during the inflammatory 

response (Forman and Torres, 2001).  

Apurinic/apyrimidinic sites (AP) are one of the most abundant signs of damage generated 

by ROS. Another major type of DNA damage is the single-strand-breaks SSB, followed 

by DSBs. DNA damage mainly targets gene promoter regions, as they contain GC-rich 

sequences that are highly sensitive to oxidative DNA damage and are not protected by 

transcription-coupled repair (Maynard et al., 2009). 
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The brain is especially susceptible to the assaults perpetrated by reactive oxygen species. 

This is because the organ is an important metabolizer of oxygen (one fifth of the body 

consumption), contains a large amount of fatty acids that can undergo peroxidation, is 

rich in pro-oxidant elements like iron and has relatively feeble protective antioxidant 

mechanisms. In brain tissue, ROS are generated by microglia and astrocytes and modulate 

synaptic and non-synaptic communication between neurons and glia (Popa-Wagner et al., 

2013). ROS also interfere with increased neuronal activity by modifying the myelin basic 

protein and can induce synaptic long-term potentiation, a form of activity-dependent 

synaptic plasticity and memory consolidation (Massaad and Klann, 2011). 

An increasing number of studies report the prevalence of oxidative stress and 

mitochondrial abnormalities in numerous neuropsychiatric disorders such as depression 

(Bakunina et al., 2015), Alzheimer’s diseases (Manoharan et al., 2016), or schizophrenia 

(Bitanihirwe and Woo, 2011). Impaired mitochondrial function may contribute to the 

damage both by increasing reactive oxygen species and by reducing ATP required for 

DNA repair. A common denominator of all these pathologies is an increased 

inflammatory response of the brain. The oxidative burst occurring when neutrophils 

generate reactive oxygen species (ROS) during phagocytosis is in fact is a double weapon 

that contributes to host defense, but can also result in collateral damage of host tissues.  

 

 

 

1.3.2 Age related DNA damage 

 

 

DNA damage accumulation is regarded as one of the principal causes of aging, defined 

as progressive organic functional decline, with loss of homeostasis and increased 

probability of illness and death (Schumacher et al., 2008). 

Among age related DNA-changes it is possible to list DSB, telomere erosion, 

mitochondrial damage induced by reactive oxygen species and extensive demethylation 

(Jung and Pfeifer, 2015).  

The age specific global demethylation (Wood and Helfand, 2013) involves mainly 

repetitive regions of the genome and can result in the reactivation of retrotransposons and 

increase of genome instability. It can be observed in most cancer types (Szyf et al., 2004), 

inflammatory diseases (Strietholt et al., 2008) and age-related neurodegenerative diseases 



 

 23 

like Alzheimer’s disease (AD) (Chouliaras et al., 2013). Deterioration of central nervous 

system appears to be a critical part of the aging process (Mattson and Magnus, 2006). 

This may be due to the low DNA repair capacity of the post-mitotic brain tissue which 

can result in the accumulation of lesions generated by free radicals and reactive oxygen 

species (ROS). Thus, DNA damage may initiate a progressive cognitive decline in the 

elderly, affecting the expression of selectively vulnerable genes involved in synaptic 

plasticity, learning, memory and neuronal survival. 

Senescence in the human frontal cortex (FC) is associated with a reduced expression of 

genes involved in signal transduction, long-term potentiation, memory storage, vesicle 

trafficking, and protein turnover. Among the transcripts known to increase their 

expression in the elderly FC we can list genes that mediate stress responses and repair 

like the ones involved in protein folding, antioxidant defense and metal-ion homeostasis 

and genes involved in in inflammatory and immune responses (Lu et al., 2004). 

 

 

 

1.3.2.1 Alzheimer's disease (AD) 

 

 

The ageing of the human brain is a cause of cognitive decline in the elderly and the major 

risk factor for Alzheimer's disease, especially late onset Alzheimer’s disease (LOAD). 

Late onset Alzheimer’s disease differs from the less frequent (5% of all AD cases) 

familial early onset Alzheimer’s disease (FAD) for the tardive age of onset (well beyond 

65) and for the diagnostic markers (Tanzi, 2012). 

Familial forms of AD are caused by rare and usually highly penetrant mutations in three 

genes (APP, PSEN1 and PSEN2), all of which increase the production of the amyloid-β 

peptide (Aβ), the principal component of β-amyloid in extracellular senile plaques 

causing neuronal loss (particularly in hippocampus and cerebral neocortex) and brain 

atrophy. Other neuropathological changes occurring in AD are intra-neuronal 

neurofibrillary tangles (aggregates of hyper-phosphorylated and misfolded tau), neuropil 

threads (axonal and dendritic segments containing aggregated and hyper-phosphorylated 

tau), and dystrophic neurites (abnormal neuronal processes containing hyper-

phosphorylated tau). AD is also associated with neurovascular dysfunction. High blood 

pressure and small vessel diseases are known to increase the risk of ischemic disease of 
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the brain which may trigger pro-inflammatory and endothelial reactions. Blood vessel 

diseases are estimated to contribute to approximately 40% of all dementias worldwide, 

including AD. 

LOAD patients, compared with FAD patients, show an overrepresentation of 

inflammatory markers (creatinine), impaired renal function (high concentration of Blood 

Urea Nitrogen) and a higher frequency of the ε4-allele of the apolipoprotein E gene 

(APOE). Interestingly both Amiloyd Precursor Protein (APP) gene and Presenilin 1 (PS1) 

show gradual demethylation at the promoter in LOAD. 

As reported in the previous paragraphs, extensive genomic demethylation is a typical sign 

of aging with consequences on gene expression and transposable elements mobilization. 

So, we started wondering about a possible involvement of LINE-1 elements, the only 

active retrotransposons in humans, in an LOAD. Recent studies already reported an 

involvement of LINE-1-elements in neuropsychiatric disorders like autism (Shpyleva et 

al., 2017) and schizophrenia (Bundo et al., 2014). Moreover, accumulating evidence 

indicates that the genomic DNA in the brain contains distinctive somatic genomic 

variations compared with non-brain tissue (Erwin et al., 2016a).  

Considering these evidences, we decided to investigate, for the first time, the role of 

LINE-1 retrotranspsons in Alzheimer Disease, one of the most devastating 

neurodegenerative diseases. 

 

 

 

1.3.3 γH2AX 

 

 

The DNA-damage response (DDR) enables the cells to sense DNA damage, propagate 

DNA damage signals, and activate signaling cascades that subsequently activate a 

multitude of cellular responses, until the resolution of the lesions. DDR is characterized 

by the early phosphorylation of the H2AX histone at the site of DNA damage which can 

increase DNA accessibility and recruit the different repair proteins necessary to initiate 

the repair of DSBs (Turinetto and Giachino, 2015). Spontaneous γ-H2AX foci are 

detectable in both normal and cancer cells, likely as a result of endogenous DSBs. The 

basal level of foci varies with the cell type, but commonly 1–2 foci/cell have been 

observed in normal tissues while in proliferating cancer cell lines the number is larger 
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and more variable (Wang et al., 2014). A unique advantage of using γ-H2AX foci as a 

DSB biomarker is that these foci are formed regardless of the phase in the cell cycle (Mah 

et al., 2010). H2AX phosphorylation not only occurs at interphase but also during the 

mitotic phase where chromatin is more condensed. γH2AX also appears to be a great 

DSB marker due to its high sensitivity and almost immediate formation (within seconds) 

after DSB induction, while the maximal number of foci is reached within 1 min and the 

maximum in 9 to 30min after DNA damage. With time, also the size of the foci increases 

up to 30 Mbp. Importantly, the γ-H2AX foci level is linearly related to the number of 

DSBs. It must be said that, γ-H2AX foci may not exclusively reflect DSBs. DSB-

independent background foci may be caused by ATR-mediated H2AX phosphorylation 

in growing cells with dis-regulated DNA metabolism and in response to heat (Wang et 

al., 2014). 

Although, γ-H2AX foci formation is not an exclusive indicator of DSBs, it is still the best 

marker based on its cell phase-independent formation, tight correlation with repair 

kinetics and repair pathway independence. As γ-H2AX is formed de novo it is a more 

reliable DSB marker than other DNA repair proteins that are present in the cell even when 

there is no DNA damage. Moreover, γH2AX foci detection allows the distinction of the 

temporal and spatial distribution of DSB formation (Bonner et al., 2008). For this reason, 

we performed a chromatin immunoprecipitation and sequencing (ChIP-Seq) analysis of 

γ-H2AX to study endogenous double strand breaks (DSBs) distribution in mouse 

olfactory epithelium and liver. 

 

  

 

1.4 SV formation 

 

 

In the previous chapters were presented TEs, DSBs and SVs: the main actors responsible 

for genomic instability. 

Due to the high density of repetitive elements in mammalian genomes, it is not surprising 

that we can find them as substrates for genomic SVs at a post-insertional stage. In fact, if 

we consider them as tracks of homologous sequences it is clear that they have the 

potential to alter those DNA repair processes which rely on homologous recombination 

(Burwinkel and Kilimann, 1998), thus resulting in genomic alterations.   
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1.4.1 Place of SV formation 

 

 

Genomic architecture of a certain region is an important predictor of its stability. 

Unstable genomic loci such as common fragile sites (CFS), recombination hotspots, AT 

rich palindrome sequences, core duplicons, and G-quadruplexes are more prone to 

recombination events. Among with repeat rich regions, heterocromatic regions (such as 

centromeres and telomeres), scaffold attachment sequences and replication origins and 

terminators are enriched in SV (Korbel et al., 2007, Huang et al., 2010). Noticeably, gene 

rich, accessible and early replicated genomic regions tend to be more elongated and 

exhibit more structural variations than gene poor, inaccessible and late replicated 

genomic regions (Hu et al., 2013).  

In particular, very large genes (like neuronal genes) are more prone to DNA-breakage 

related events since:  

1) the possibility of transcription and replication machineries collision increases when 

transcription requires more than a single cell cycle to complete (Helmrich et al., 2011); 

2) TOP2B recruited to resolve positive supercoiling that arises during transcription 

induces DSBs that if not faithfully re-ligated, can potentially lead to genome 

rearrangements in flanking genomic regions (Uusküla-Reimand et al., 2016). 

 

In this thesis, we provide further insights about how the physical properties of the DNA 

sequence underlying a certain locus, influence the propensity for a specific SV formation 

mechanism. In particular, we developed a computational pipeline for classifying SV 

occurring in the surroundings of a particular olfactory receptor gene, and inferring their 

formation mechanism. 

 

 

 

1.4.1.1 Olfactory receptors (OR) 

 

 

Rearrangement prone regions, like sub-telomeres and peri-centromeres, are characterized 

by a patchwork of repeats, frequent DSB, segmental duplications (which are known to 

induce NAHR and NHEJ) and wide-spread SV (Linardopoulou et al., 2005). 



 

 27 

Interestingly, in this gene poor jungle, flourish most of the olfactory receptors genes 

(ORs) in both human and mouse genomes which appear as dense clusters distributed 

throughout the chromosomes. The curious locations of OR in these regions, and in repeat 

rich regions in general, raised a suggestive hypothesis: subtelomeres and pericentromeres 

may “function as nurseries for the generation of diversity in this multigene family” (Trask 

et al., 1998).  

 

According to the above-mentioned hypothesis, in these dynamic regions OR can be 

duplicated or modified without affecting proximal, dosage sensitive genes.   

Given the high frequency of CNVs (deletions, duplications and other complex 

rearrangements) affecting OR loci (Hasin et al., 2008), and in particular evolutionarily 

“young” OR genes and pseudogenes, some authors proposed that SV may be at the basis 

of OR organization. Moreover, the bias for CNV-enriched OR in close proximity to 

centromeres and telomeres as well between tandemly oriented segmental duplications, 

suggests that NAHR and NHEJ similar mechanism are likely to play a role in the 

diversification (new functions or regulation patterns) among OR. 

Olfactory receptors are members of the seven-transmembrane-domain, large family of G-

protein coupled receptors (GPCRs). With almost 1400 OR genes (including pseudogenes) 

in mouse genome and more than 750 in the human genome, ORs represent the largest 

mammalian gene superfamily (Niimura and Nei, 2005). 

The coding regions of these genes are short, spanning only 1000 bp and intronless and 

are located in dense clusters throughout the chromosomes. These clusters are rarely 

interrupted by other genes and are located in gene poor, repeat-rich regions of the genome.  

In the nose ORs are expressed in the main olfactory epithelium (MOE) where they are 

believed to recognize odors (conscious odor perception) and in the vomeronasal organ 

(VMO) where they recognize pheromones (unconscious odor perception). Some OR are 

also transcribed in other tissues such as lung, kidney, colon, prostate, testis and germ cell 

tumors suggesting other non-olfaction related functions of ORs. In dendrites and axons 

of olfactory sensory neurons (OSN), OR genes are expressed in a monogenic and 

monoallelic fashion and the molecular mechanism regulating this activation/repression 

process is still unknown. What has been proven is that the process starts with a high 

number of silenced ORs and each neuron decides to de-repress only one allele of one 

gene of them. The produced OR protein elicits a feedback signal that prevents the 

activation of other OR genes. Speculations on this regard include chromatin 
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modifications, DNA editing and transposable-element-mediated regulation. So, 

chromosomal sequence context seems to play an important role in monoallelic gene 

expression. 

The surroundings of OR genes share common feature with the flanking regions of other 

monoallelically expressed genes like vomeronasal, Igs and chaderins. The first common 

characteristic between monoallelically expressed genes is asynchronous replication 

(Donley et al., 2013). Asynchronous replication occurs when one allele replicates before 

the other but unlike monoallelic expression, asynchronous DNA replication is 

independent of whether a gene is expressed in a given cell type or not. Probably the 

genomic context in which the alleles reside plays the most important role. The regions 

surrounding monogenically expressed genes contain high densities of LINE-1 sequence 

(especially full-length), reduced density of SINE elements and a low GC content (Allen 

et al., 2003). LINE elements are known to be employed for repeat-induced gene silencing 

(the best-studied example is X inactivation in female cells where they promote 

heterochromatin to spread throughout the X chromosome (DISTECHE and BERLETCH, 

2015)). SINE elements on the other hand are reportedly abundant in gene rich regions 

and depleted in proximity of imprinted genes. The GC poor content found in the 

surroundings of OR genes may be associated with the abundance of LINE-1 sequences 

in these regions: recent LINE-1 insertions prefer to integrate in AT rich regions due to 

the target specificity of ORF2 protein (Tremblay et al., 2000).  

 

 

 

1.4.2 Moment of SV formation 

 

 

SVs such as insertions and deletions can arise both meiotically (the rearrangement 

occurred in germ cells, is present in every tissue of the individual and can be inherited) 

and mitotically (different organs and tissues vary in copy number in the same individual).  

Genomic disorders such as α-thalassemia, which is caused by α-globin gene deletions, 

derive from a rearrangement occurred in the germ cells (Horst et al., 1984) while disorders 

such as cancer depend mostly on a somatically occurred mutation (Piccolo and Frey, 

2008). 
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Recurrent rearrangements that share the same size and genomic content in unrelated 

individuals are more frequently observed in early replicating regions of the genome 

whereas non-recurrent rearrangements that have a unique size and genomic content at a 

given locus in unrelated individuals are more frequently observed in late replicating 

regions (Gu et al., 2008). Early replicating regions are known to be hypomethylated gene 

rich regions, with a high GC content, that contain actively transcribed genes. As already 

discussed, transcription itself is an important agent of genome instability (Kim and Jinks-

Robertson, 2012). At the same time, regions of reduced rates of replication, prone to 

polymerase pausing, are also liable to passive breakage under prolonged stalling 

conditions (Mirkin and Mirkin, 2007). 

 

 

 

1.4.3 Mechanism of SV formation 

 

 

While point mutations usually reflect errors of DNA replication and repair, gross genomic 

rearrangements, such as the ones examined in this work, are often the result of other 

mechanisms mediated by genomic structural features.  

When a rearrangement occurs in the genome, the SV breakpoint regions can give 

important clues about the mechanism mediating its formation. The breakpoints are the 

novel sequence junctions (start-end coordinates) identified by comparing the structure of 

a rearranged genome to that of the reference genome, so their annotated position is based 

on the coordinate system of the reference genome (Quinlan and Hall, 2012). This concept 

can cause some confusion since it entirely depends on the accuracy of reference genome 

annotation. For example, an insertion in the experimental genome may reflect a deletion 

in the reference genome.  

Interestingly, breakpoints are often clustered in a highly nonrandom manner. Unstable 

loci, more prone to recombination events, are often genomic regions enriched in repeats 

such as centromeres, telomeres and sub-telomeres. Therefore, repeated sequences and 

repetitive elements in particular, providing large regions of sequence similarity, appear 

to be ideal substrates for recombination events.  
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Indeed, all the general mechanisms that give rise to SVs listed above involve repeated 

sequences to a certain extent. 
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Insertional mechanisms: 

 

- transposition of mobile elements.  

 

Recombination based mechanisms: 

 

- non-allelic homologous recombination (NAHR); 

- non-homologous end-joining (NHEJ); 

- microhomology-mediated end joining (MMEJ). 

 

 Replication-based-mechanisms: 

 

- Serial Replication Slippage (SRS); 

- Fork Stalling and Template Switching (FoSTeS); 

- Microhomology-Mediated Break-Induced Replication (MMBIR). 

 

 

 

1.4.3.1 Insertional mechanisms 

 

 

Mobile elements, extensively described in the dedicated section, are DNA sequences that 

are capable of integrating themselves or a copy into the genome at a new site within the 

cell of its origin. DNA transposons, mobilize through a cut-and-paste mechanism and are 

inactive in human and mouse. DNA retrotransposons, such as active LINE elements, use 

a copy-and-paste mechanism to insert extra copies of themselves into new genomic 

locations making up for the 0.3% of all mutations in the human genome (Ayarpadikannan 

and Kim, 2014).  

Consequences of these mutations might be: 

 

            - DSB formation; 

            - gene disruption if a transposable element integrates into an exon; 

- alternative splicing if the transposable element integrates into an intron; 
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- premature polyadenylation and consequent formation of truncated transcripts; 

- chromatin state alterations; 

- regulation of gene expression; 

- repair of already present DSB like the ones present in the telomeres; 

- increased recombination rate; 

- unequal crossing-over. 

 

The genetic instability produced by mobile-elements inserting into new genomic 

locations may have severe consequences for the cell or the organism. The effects of 

harmful unrepaired insertions may be evident (such as Apert syndrome (Bochukova et 

al., 2009) and Duchenne-muscular-dystrophy (Smith et al., 2011)) or become apparent 

only later in life (such as mental disorders and cancer (Piccolo and Frey, 2008)). 

 

Non-homologous end joining (NHEJ) repair (described in a few paragraphs) resolves 

most of DSBs left by the endonuclease during unsuccessfull retrotransposition events, 

which occasionally results in deletions and rearrangements in human cells. Viceversa, in 

cells deficient in non-homologous end joining (NHEJ), mobile elements can insert into 

pre-existing DNA breaks, repairing them (Sen et al., 2007). 

 

 

 

1.4.3.2 Recombination based mechanisms 

 

 

1.4.3.2.1 Non-allelic homologous recombination (NAHR) 

 

 

Non-allelic (or ectopic) homologous recombination occurs during mitosis and meiois and 

involves genomic regions comprised between long stretches of directly-oriented or 

inverted repeats (LCR, Alu, LINE) that share almost perfect homology (> 95%) to repair 

DNA breaks and gaps (Gu et al., 2008). Interspersed TEs therefore play an important role 

in the DSB repair pathway offering alternative non-allelic tracts of homology with which 

the invading strand can anneal. NAHR can result from crossover between interacting 

homologies in non-allelic position on the same chromosome (produces mostly deletions) 
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or homologous chromosomes (produces deletions and duplications), rarely between non-

homologous chromosomes. If the same chromosomal position in the sister chromosome 

or homologue is employed for the repair, no change in structure occurs and the HR 

process leaves no trace. Homologous recombination is unavailable in non-cycling cells 

such as post mitotic neurons where the sole pathway available is NHEJ (Carvalho and 

Lupski, 2016).  

 

 

 

1.4.3.2.2 Non-homologous end joining (NHEJ) 

 
 

Non-homologous end joining is the number one DSB repair mechanism. NHEJ does not 

require a homologous template (sister chromatid or homologue) to join the break ends 

but employs short homologous sequences (1–4 bp microhomologies) exposed in single-

stranded overhangs on the DSB ends for base pairing. It is capable to re-store the pre-

break situation by direct ligation of compatible ends, but frequently leaves small 

insertions (often from retrotransposons and mitochondrial DNA) or deletions (1-10 bp) at 

the breakpoint. Consequences of an inefficient repair are gross chromosomal 

rearrangements such SVs. NHEJ can function in both dividing and non-dividing cells, 

available during all phases of the cell cycle, it is most active during G1. In the absence of 

NHEJ damaged cells may activate MMEJ, in extreme cases apoptosis. An unrepaired 

DSB can become the substrates for frequent translocations (Lieber, 2010). 

 

 

 

1.4.3.2.3 Microhomology-mediated end joining (MMEJ) 

 

 

Microhomology-mediated end joining is an alternative non-homologous DSB repair 

pathway that relies on microhomologies (5-25 bp) on either side of the break to join and 

stabilize the broken DNA (McVey and Lee, 2008). Repair by MMEJ therefore leads to 

deletion of the DNA sequence between the microhomologies. Recurrent rearrangements, 

occurring in recombination hotspots and presenting clustered breakpoints, are mostly the 
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result of non-allelic homologous recombination (NAHR) mechanisms while non-

recurrent rearrangements that vary in size and have scattered breakpoints are probably 

reconducible to replicative and non-replicative microhomology-mediated mechanisms 

such as NHEJ, MMEJ and MMBIR (Verdin et al., 2013). Among the unique features 

which are characteristic of MMEJ over NHEJ we can list the longer microhomology 

stretches (5-25 be in MMEJ vs 1-4 bp in NHEJ), and the highly mutagenic nature of the 

first. MMEJ probably assumes a more important role in break repair if DNA ends are not 

readily compatible. For this reason it always results in deletions and is frequently 

associated with translocations (McVey and Lee, 2008). 

 

Recently it was demonstrated how MMEJ resolves somatic deletions generated by LINE-

1 endonuclease cutting activity in the brain (Erwin et al., 2016a). In this thesis we provide 

further evidence supporting this very interesting result, characterizing the breakpoints of 

hundreds of deletions detected in olfactory epithelium. 

 

 

 

 1.4.3.3 Replication based mechanisms  

 

 

Low fidelity and reduced processivity of the error prone replication process often result 

in aberrant replication and SV formation (Liu et al., 2012).  

 

 

1.4.3.3.1 Replication slippage  

 

 

Replication slippage (Streisinger et al., 1966) occurs during DNA replication in repetitive 

regions such as microsatellites when the polymerase enzyme encounters a hairpin or 

another non-linear DNA conformation. At this point the primer and the template strands 

can dissociate and reanneal in correspondence of another repeat beyond the skipped 

barrier, where polymerase reloads and replication resumes. Replication-slippage results 
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in deletions, repeat expansions and frameshift mutations. Serial replication slippage 

(SRS) occurs when two or more consecutive forward slippages occur in cis or trans 

orientation resulting in complex rearrangements (Chen et al., 2005). 

 

 

 

1.4.3.3.2 Replication fork stalling and template switching (FoSTES) 

 

 

According to the FoSTES model genomic regions containing symmetrical features like 

low copy repeats (LCRs) may confuse the DNA replication machinery, causing single or 

multiple replication fork stalling and switching events before resuming replication on the 

original DNA template, resulting in rearrangements such as deletions and duplications. 

The presence of complementary template microhomology (2–5 bp) allows annealing and 

priming during mitosis with the consequent formation of a 'join point' between two distant 

segments of the genome resulting in close proximity in three-dimensional space (Lee et 

al., 2007). 

 

 

 

1.4.3.3.3 Microhomology-mediated break-induced replication (MMBIR) 

 

 

Microhomology-mediated break-induced replication is invoked when the necessity is to 

repair a single-stranded DNA damage event generated during replication. Single-stranded 

DNA stretches occur in replication forks, from stalled transcription complexes, at 

excision repair tracts, or at secondary structures in DNA such as cruciforms or hairpins 

caused by inverted repeats and possibly in other situations such as in promoter regions 

and replication origins. 

A typical characteristic of SVs (deletions, duplications, translocations, and inversions) 

resulting from MMBIR is that microhomology junctions are followed by stretches of 

DNA sequence derived from elsewhere. Interestingly, during the repair process, MMBIR 

could increase genome subsceptibility to future MMBIR events creating LCRs that are 
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going to provide the homology necessary for NAHR and the formation secondary 

structures (Hastings et al., 2009a).  

 

 

 

Thus, such “errors of replication” may provide a mechanism for the maintenance of 

genome plasticity and, conceivably over longer periods of time, genome evolution. 
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2 Materials and Methods 

 

 

Due to the complex nature of structural variants, it is not straightforward to find a simple 

way to characterize all types of them. Therefore, since the complete range of structural 

DNA variation cannot be investigated with a single procedure, we decided to focus on 

the effects on genome stability of one class of mobile elements that are LINE in different 

contexts, adopting specific strategies for: 

 

• identify novel FL-L1 insertions 

• quantify FL-L1 insertions in different tissues 

• characterize LINE-1 content in genomic variations 

• explore LINE role in the generation of structural variants such as deletions 

• profile double strand breaks: cause and effect of structural variants 

 

In this chapter, we are going to describe all the techniques that have been used to address 

each of the specific tasks described in this thesis.  

In each section, bioinformatics analyses are complemented with essential wet lab 

experiments and validations. Accordingly, even if this thesis is focused on the 

computational methods to study transposable elements mediated SVs, for the sake of 

knowledge, in this chapter, we are going to describe also the experimental techniques that 

have been used to address each of the three specific tasks described in this thesis.  

 

In the first part of the chapter, we illustrate a novel experimental technique developed in 

our laboratory called SPAM, SPlinkerette Analysis of Mobile Elements. This procedure 

allows us to target exclusively FL-L1 elements present in the frontal cortex (FC) and the 

kidney (K) of Alzheimer’s disease affected patients (AD) and controls (CTRL), 

combining a PCR-based enrichment of LINE-1 5’end and their flanking genomic portions 

with an ad hoc bioinformatic pipeline. Then, we describe the TaqMan based copy number 

variation (CNV) analysis, carried out to evaluate the content of potentially active LINE-

1s in the different areas of the brain and kidney of AD and CTRL individuals. Finally, we 
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show how we employed high density arrays to compare the occurrence of FL-L1 elements 

in correspondence of genomic variations detected in AD and CTRL patients. 

 

In the second part, we present the steps of the study performed to explore the possible 

function of LINE-1 induced somatic genomic variation in the regulation of olfactory 

receptor choice in mouse olfactory epithelium. To perform this study, we combine the 

benefits of short Illumina reads and long PacBio reads to describe the SV profile of the 

surroundings of an active olfactory receptor gene. 

 

In the third part we describe the approach adopted to study endogenous double strand 

breaks (DSBs) distribution in mouse olfactory epithelium and liver. To this purpose, we 

performed a chromatin immunoprecipitation and sequencing (ChIP-Seq) analysis of γ-

H2AX. 
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2.1 Analysis of FL-L1 elements in the genomes of AD post-mortem brains 

  

 

2.1.1 Identification of novel FL-L1 insertions: The SPAM technique 

 

 

Several strategies have been adopted to map the exact insertion sites of repetitive 

elements, most of them based on ligation-mediated PCR techniques (Arnold and 

Hodgson, 1991, Eggert et al., 1998), or more recently on array hybridization enrichment 

(Shukla et al., 2013) and high-throughput sequencing (Ewing and Kazazian, 2011, Lee et 

al., 2012). Results have been overall mixed.  

This is due to the challenges of determining the exact positions of elements that are 

present in highly homologous sequences in hundred thousand genomic locations and are 

often nested. Moreover, the available short-read dependent SV detection tools are not 

optimized to detect long insertions, especially when they exceed the paired-end insert 

size. 

Most studies have focused on the 3’end  LINE-1 region (Ewing and Kazazian, 2010, 

Erwin et al., 2016), aiming at the identification of both the integer (1%) and the 

5’truncated forms (99%) of LINE-1 elements present in the human genome. Streva and 

colleagues, in 2015 proposed a method to investigate specifically polymorphic LINE-1 

in the human genome, to this aim, they focused on the 5’end LINE-1 region. In the 

meanwhile, we were developing our technique. Importantly, in this work, we analyze 

only the small fraction of LINE-1s that retain their potential to impact genomic structure 

and gene expression: FL-L1 elements. Intact LINE-1-elements are 6kb long molecules 

that harbor the complete machinery necessary for their retrotransposition and therefore 

are still able to mobilize and give rise to novel LINE-1 integration sites.  

This technique consists of a specific series of steps: the Splinkerette enrichment PCR, 

Illumina sequencing of the amplicons, bioinformatic pipeline and validation PCR. 
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2.1.1.1 Samples 

 

 

SPAM was performed on gDNA samples extracted using a standard phenol-chloroform 

extraction method from frontal cortex and kidney of 4 AD patients and 4 not affected 

individuals of a Brazilian cohort, provided by the Brain Bank of Sao Paulo. 

 

 

CODE GENDER AGE CLINICAL BRAAK CERAD CONDITION 

7660 M 72 2 6 C AD 

2682 M 82 3 6 C AD 

7466 M 87 0.5 4 B AD 

9345 F 90 1 4 A AD 

2149 F 76 0 1 0 CTRL 

9269 F 88 0 3 0 CTRL 

6868 F 89 0 2 0 CTRL 

929 F 61 0 0 0 CTRL 

 

Table 2.1.1.1  SPAM samples. Spam was performed on the FC and the K of four AD affected patients and 
4 CTRLs. 

 

 

 

2.1.1.2 Splinkerette enrichment PCR 

 

 

In order to effectively target the boundary between a FL-L1 and its flanking genomic 

regions, we set up the Splinkerette Analysis of Mobile Elements (SPAM) technique, 

inspired by the Splinkerette PCR (spPCR) protocol. This technique, developed to amplify 

the genomic DNA flanking a known sequence, allows efficient and specific mapping of 

transposable elements. Designing the primers at the very 5’ of the LINE sequences (Lavie 

et al., 2004) allowed us to target only the FL-L1 elements. 
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Figure 2.1.1.2  The SPAM PCR schematic protocol. (a) Representation of a LINE-1 sequence (in yellow) 
inserted in the genome. (b) The SPAM protocol starts with genomic DNA (gDNA) fragmentation by 
sonication, that produces sticky-ends fragments. (c) gDNA fragments are filled in in order to obtain blunt 
ends and an Adenine is added to the 3’ends. (d) Fragments ligation to synthetic double strand adapters, 
followed by a first round of PCR with primers complementary to the adapter and the LINE-1’s 5’UTR. (e) 
Nested PCR with primers complementary to the adapter and the LINE-1’s 5’UTR, harboring the Illumina 
barcodes and adapters. (f) 2x300 paired-end MiSeq Illumina sequencing. 

 

 
SPAM 

oligonucleotides 

Sequence 5’ -> 3’ 

Long strand 

adapter 

CGAAGAGTAACCGTTGCTAGGAGAGACCGTGGCTGAATGAGACTGGTGTCGACACTAGTGGT 

Short strand 

adapter 

Phosph - CCACTAGTGTCGACACCAGTCTCTAATTTTTTTTTTCAAAAAAAG 

Fw1 CGAAGAGTAACCGTTGCTAGGAGAGACC 

Fw2 GTGGCTGAATGAGACTGGTGTCGAC 

Rev1 CGTCCGTCACCCCTTTCTTTGACTCG 

Rev2 CTTGCGCTTCCCAGGTGAGG 

 
Table 2.1.1.2  Spam primers and adapters. 

 
Primer design performed by Paolo Vatta and experiment performed by Marta Maurutto  
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2.1.1.3 Library preparation 

 

 

Two µg of genomic DNA was sheared in 100 µL nuclease-free water by sonication with 

a Bioruptor NGS, to obtain an average fragments size of 300 bp (7 cycles: 30 seconds of 

sonication at max power followed by 90 seconds of stop). Since sonicated gDNA 

fragments present irregular sticky ends, samples were processed with an end-repair 

reaction (inspired by Illumina protocols for sequencing libraries preparation) in order to 

get blunt-ended fragments. Samples were end-repaired for 30 minutes at 20°C in a final 

volume of 50 µL, using 5 µL 10X T4 Ligase buffer with 10 mM ATP (NEB), 2 µL 10 

mM dNTPs, 1 µL T4 DNA Polymerase (NEB), 1 µL Klenow large fragment (NEB) and 

1 µL Polynucleotide Kinase (NEB). Reactions were purified using the Qiaquick PCR 

purification kit (Qiagen) following manufacturer’s instructions. A 3’-end Adenine was 

added to the blunt end purified fragments in a final volume of 50 µL, using 5 µL NEB 

buffer 2, 1 µL Klenow fragment (3’→5’ exo-) and 10 µL 1 mM dATPs, for 30 minutes 

at 37°C. Fragments were purified using the Qiaquick PCR purification kit (Qiagen) and 

eluted in 30 µL of milliQ sterile water. 

SPAM adapters were designed in order to have blunt ends and a 3’ protruding T at the 

longest strand. The adapters were assembled as follows: long strand and short strand 

oligonucleotides (Sigma) were resuspended in TE buffer and mixed to a final 

concentration of 50 µM, denatured at 95°C for 5 minutes and annealed by slow cooling 

to RT. In order to increase variability, adapters were ligated to sheared genomic DNA by 

three independent ligations per sample, using 8 µL of gDNA, 2 µL of adapters 50 µM, 5 

µL of 10X T4 Ligase buffer with 10 mM ATP (NEB) and 2.5 µL of T4 DNA Ligase 

(NEB) in a final volume of 50 µL. The reactions were performed at 16°C ON, plus 1 hour 

at 37°C after the addition of extra 0.5 µL T4 DNA Ligase. The ligations of each sample 

were pooled together, purified using the Qiaquick PCR purification kit (Qiagen), and 

eluted with 40 µL of 10 mM Tris-HCl pH 7.4. 

Nested PCRs were performed to enrich LINE-1 insertion sites using forward primers 

specific to the adapter sequence, and reverse primers specific to the LINE-1’s 5’UTR 

sequence (Uren et al., 2009). Tags and barcodes necessary for the Illumina MiSeq 

sequencing were added to nested forward and reverse primers. Three independent 

primary PCRs per sample were performed in a final volume of 50 µL in a thermocycler 

(ABI) using 5 µL of purified ligated gDNA fragments, 240 nM S forward primer specific 
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to the adapter, 240 nM 5UTR 1° reverse primer specific to LINE-1’s 5’UTR, 250 nM 

dNTPs, 1X High Fidelity PCR buffer (Invitrogen), 2 mM MgSO4 (Invitrogen) and 1.25 

U of Platinum® Taq High Fidelity (Invitrogen). PCR protocol was as follows: 2min at 

94°C, 30 cycles of 15s at 94°C, 30s at 68°C and 3min at 68°C, followed by a final 

elongation of 5min at 68°C. 

Three nested PCRs were performed in a final volume of 50 µL using 1 µL of primary 

PCR product, 240 nM 2° SPLINK2, 240 nM 2° reverse primer specific to LINE-1’s 

5’UTR, 250 nM dNTPs, 1X High Fidelity PCR buffer (Invitrogen), 2mM MgSO4 

(Invitrogen) and 1.25 U of Platinum® Taq High Fidelity (Invitrogen) with the following 

protocol: 2min at 94°C, 25 cycles of 15s at 94°C, 30s at 60°C and 5min at 68°C, and final 

elongation of 5min at 68°C. 

The three nested PCR reactions were mixed, denatured at 95°C for 10 minutes and rapidly 

cooled down by the addition of milliQ water at 4˚C up to 500 µL. Reactions were purified 

using Microcon® DNA Fast Flow Centrifugal Filters (Millipore) following manufacturer 

instructions. A small amount of purified amplicons were stored for future PCR 

validations, while the rest (~70 µL) were precisely quantified by Bioanalyzer, and loaded 

on a 2% TAE electrophoretic gel. Smeared samples were cut from size 200 bp to 1000 

bp and gel extracted with QIAquick Gel Extraction Kit following manufacturer 

instructions, in order to remove any large concatamer and amplicons too short to contain 

a sufficient amount of genomic and LINE-1 sequence to be successfully mapped. Samples 

were quantified again with Bioanalyzer, pooled and sequenced. 

 

Experiment performed by Marta Maurutto  

 

 

2.1.1.4 Sequencing 

 

 

SPAM samples were sequenced using the Illumina MiSeq technology (300 bp paired-end 

set-up). Different reverse nested primers with different barcodes were used to perform 

the secondary PCR, allowing samples to be sequenced in multiplex. Sequencing was 

performed by IGA Technologies (Udine, Italy). For each sample, we obtained on average 

8.6 million reads.  
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2.1.1.5 Nomenclature 

 

 

The following nomenclature, assigned to the outcomes of the bioinformatics analyisis, 

will be used throughout the thesis: reads in a pair will be referred with R1 (forward) and 

R2 (reverse); fragment is used to indicate an assembled reads pair (R1 + R2); 

MapFragment indicates a fragment containing the expected LINE 5' portion and a 

mappable unique genomic sequence; MapCluster indicates the integration site after 

clustering of two or more non-identical overlapping MapFragments; Annotated 

Integration Site (AIS) is used to indicate an integration site already known; Non-

annotated Integration site (NIS) is used to indicate an integration site not present in 

RepeatMasker and not reported in literature; Polymorphic Integration site (PIS) is used 

to indicate an IS not present in the reference genome, but annotated as retrotransposon 

insertion polymorphism (MRIP) in the euL1db. This database collects results obtained in 

32 studies containing >900 samples, >140,000 sample-wise insertions and almost 9000 

distinct merged insertions. 

 

 
 
Table 2.1.1.5 SPAM nomenclature  In the table is schematically described the nomenclature used 
throughout the thesis. 

 

 

 

2.1.1.6 Bioinformatic pipeline 

 

 

Before proceeding with the paired-end reads assembly, a quality check of raw reads was 

performed with FastQC (version v0.10.1) (Andrews, 2010). ADEPT error-detection 

program (version 1.1) (Feng et al., 2016) was employed to assess and correct PCR and 

sequencing errors within paired-end reads (-p parameter) before removing read duplicates 

Paired-end reads Sequences (forward and reverse) coming from both ends of an amplicon
Fragment Assembly of forward and reverse reads according to their overlap region
Mapfragment Uniquely mapping fragment containing the specific portion of the L1 sequence ampified and a mappable unique genomic sequence
Mapcluster IS
IS INTEGRATION SITE, genomic reagion where a cluster of at least 2 overlapping mapfragments have been mapped
AIS ANNOTATED INTEGRATION SITE, IS present in the reference genome
NIS NON ANNOTATED INTEGRATION SITE, IS not present in the reference genome
PIS POLYMORPHIC INTEGRATION SITE, IS not present in the reference genome but annotated in the euL1db (MRIP)
Germinal IS IS present in both the frontal cortex and the kidney of the same individual
Single Tissue IS IS present in only one tissue of the individual
Private IS IS present in only one individual
Public IS IS present in more than one individual
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with FastUniq (parameters –t q) (version 1.1) (Xu et al., 2012). Trimmomatic (version 

0.32) (Bolger et al., 2014) was employed to trim the adapters and clip and filter low 

quality bases, using the following parameters: leading = 0, trailing = 0, sliding = 3:10, 

minlen = 25, clip = '2:30:12:10:true'. 

Every read-pair was analyzed and classified accordingly to several controls to ensure the 

selection exclusively of those pairs supporting a unique genomic LINE-1 integration site. 

The first part of the pipeline is made of a Perl script making extensive usage of BioPerl 

libraries. We assembled every read pairs using Cap3 (Huang and Madan, 1999) with R2 

in reverse complement without using quality values. The read pairs that did not align for 

at least 30 bp at 80% identity were classified as NORALIGN and discarded. The 

assembled fragments were checked for the presence of the nested forward primer plus the 

final part of the adapter’s long strand 

(GTGGCTGAATGAGACTGGTGTCGACACTAGTGGT). We noticed the formation 

of concatamers in our initial analysis and all of them contained the hairpin sequence 

(TTTTTTTGAAAAAAA) in reverse complement inside the fragment sequence. 

Therefore, every fragment has been checked against the hairpin sequence allowing 2 

mismatches (mm) at maximum. Fragments containing the reverse complement of the 

hairpin sequence were classified as HAIRPIN and discarded. Then we checked the 

remaining fragments for the presence of human LINE sequence using BLASTN with 

default parameters against a selection of human LINE sequences extracted from the 

REPBASE database. The fragments not containing the expected LINE-1 sequence in the 

expected position were classified as NOREP and discarded. We trimmed the portions of 

the remaining fragments overlapping the adapter’s long strand and the LINE-1, 

discarding and classifying as NOSPACE all the trimmed fragments resulting shorter than 

30 bp. The remaining fragments were mapped on the human reference genome Hg19 

(GRCh37 Feb. 2009, downloaded from UCSC) using BLASTN with the following 

parameters: word_size 20, evalue 1e-10, perc_identity 90. If the length, evalue and 

percentage identity of the first two BLAST hits were identical, the fragment was classified 

as BLNOUNIQUE and discarded. If the BLAST result was shorter than 30 bp or less 

than 50% of the query fragment, the fragment was classified as BADBLRES and 

discarded. Similarly, if no BLAST results were obtained, the fragment was classified as 

NOBLAST and discarded. All the remaining fragments were classified as BLASTRES 

and the match collected in the result table. Among all the putative BLASTRES we 

retained only the ones containing the entire sequence (0 mismatches) of the synthetic 
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adapter flanking the genomic portion. Moreover, in order to avoid technical redundancy, 

we retained only one BLASTRES among identical BLASTRES of the same individual. 

These were classified as MapFragments. The way in which MapFragments were mapped 

allowed us to precisely predict the IS at the boundary between the 5’ of the FL-L1 and 

the flanking genomic region. However, we allowed a range of 10 bp around the predicted 

IS nucleotide in order to include possible mismatches or sequencing errors that could 

create a slightly shifted mapping of the IS. All the IS in the range of 10 bp and on the 

same strand were clustered together to form what we named MapCluster. MapFragments 

and MapClusters were associated to overlapping/flanking coding gene structures (gene, 

exon, intron, 5’UTR, 3’UTR, promoter, intergenic region) based on Ensembl 75 (Feb 

2014). Every intergenic element was associated to the closest gene up to a distance of 

10Kb. MapFragments and MapClusters were annotated as AIS, NIS or PIS according to 

the overlap/distance of the IS and the 5’ end of the closest LINE-1 sequence using the 

annotation from RepeatMasker, downloaded from the UCSC genome browser. Elements 

whose IS had a distance bigger than 30 bp from the closest LINE-1 5' end and/or displayed 

opposite orientation were considered as NIS or PIS. IS that were detected in more than 

one tissue of the same individual were classified as “Germinal”, while IS detected in only 

one tissue were defined as “Single tissue”. IS detected in only one individual were 

classified as “Private”, IS detected in more than one individual as “Public”. 

 

 

 
 

Figure 2.1.2.6  Schematic representation of the principal steps of the SPAM bioinformatics pipeline. 
Every read pair (R1 and R2) is assembled using Cap3. If the resulting Fragment contains the expected 
LINE-1 portion and its genomic portion maps on a unique position over the genome it is called a 
MapFragment. Overlapping MapFragments create a MapCluster.  
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2.1.1.6.1 FL-L1 coverage 

 

 

To assess the ability of SPAM to detect FL-L1 elements, we first sought to determine if 

the technique was efficient for retrieving reference, full-length elements. 

The two LINE-1-specific primers used in the SPAM reaction were both designed at the 

very 5' of a canonical LINE-1 (the sequence comprised between the two primers goes 

from base 191 to base 256) in order to match only the full-length L1Hs.  

To identify the reference LINE-1 sequences detectable with the two primers and, among 

them, the LINE-1 elements effectively targeted by SPAM (AIS), we mapped the two 

primers on the Hg19 genome admitting an increasing number of mismatches with Bowtie 

(version 1.0.0, -v 0,1,2,3 -y -a -c). The resulting fragments comprised between the two 

primers were then associated with the closest LINE-1. Overlapping LINE-1s represented 

the set of reference LINE-1s theoretically targetable with our primers. Intersecting the 

coordinates of the AIS with the reference LINE-1s targetable with our primers admitting 

0,1,2,3 mismatches, we could infer the number of likely FL-L1s effectively targeted with 

SPAM. 

 

An important information about the position where MapFragments match the reference 

FL-L1 sequence can be retrieved in the *blastres.tab tables, at the column hrepend (end 

of the match in the LINE-1 repeat). This is an important parameter that allows us to 

evaluate if we got the right match based on the used repeat specific primers. 

 

 

 

2.1.1.6.2 SPAM Efficiency 

 
 

In order to measure SPAM efficiency in detecting AIS, PIS and NIS we tried to put the 

minimum threshold of MapFragments necessary to define an IS at 3 or 5 instead of 2 and 

we plotted the total number of IS detected in the three different categories according to 

each threshold. The same analysis was performed taking into account the tissue and the 

condition. 
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Then, a rarefaction-like analysis was performed by plotting the average number of 

different IS identified sampling an increasing number of reads, in order to assess whether 

the sequencing depth was sufficient to retrieve all the IS (AIS, PIS, and NIS) present in 

our samples. Looking at the curve slope in the rarefaction plot it is possible to infer 

whether IS detection is close to saturation or not. Indeed, when the curve becomes flat it 

means that a higher sequencing depth would result in very few additional IS. The analysis 

was performed for each sample using R statistical software v. 3.3.2, starting from the total 

number reads of each sample and performing 100 simulations with increasing numbers 

of randomly sampled reads (step 100000) in order to count the average number of unique 

MapClusters (average number of different IS per sample size in 100 simulations) obtained 

by increasing the sampling size of reads. 

 

 

 

2.1.1.6.3 Chromatin accessibility  

 

 

In order to explore LINE-1 integration sites distribution in the genome we compared the 

average distance in bp (bedtools closest version 2.16.2) of AIS, AIS that we targeted 

admitting 2 mm to the primers, AIS that we should have targeted with 2 mm but we did 

not, NIS and PIS from DNAse I cluster regions present in the human genome (coordinates 

of DNAse1 hypersensitivity regions were downloaded from UCSC genome browser) 

with that of a random sample of IS (generated through bedtools shuffle).  

 

 

 

2.1.1.6.4 Differential integration analysis 

 

 

We performed a differential integration analysis in order to find genomic locations 

differentially targeted by LINE-1 insertions in frontal cortex and kidney of both 

conditions (AD and CTRL). The analysis generated a list of genes showing differences 

in the number of associated MapFragments and a list of IS with a differential coverage of 

MapFragments in the two conditions. 
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The statistical analyses were performed using the edgeR statistical software version 3.2.0 

and corresponding statistical tests. The analyses were performed at the MapCluster level, 

considering the number of MapFragments associated to each MapClusters, and at the 

gene level considering the number of MapFragments associated to every gene (max 

distance 10Kb) and the number of MapClusters associated to every gene (max distance 

10Kb). In the analysis, the number of MapFragments are used as a quantitative measure 

in a similar way as the counts of mapped reads is used in an RNAseq experiment. The 

MapFragments counts were normalized using the calcNormFactors, 

estimateCommonDisp and estimateTagwiseDisp functions and the differential analysis 

using the exactTest function of the edgeR package. Resulting p-values were corrected 

using the FDR method. We considered as significant the results showing a p-value ≤ 0.1. 

 

 

 

2.1.1.6.5 Gene ontology enrichment analysis 

 

 

To assess the implications of IS associations on gene function, we examined NIS and PIS 

closest genes (≤ 10000 bp) with respect to Gene Ontology (GO) functional category 

classification using GOseq (Young et al., 2010) R Bioconductor package (version 1.22.0). 

This package provides methods for performing Gene ontology analysis, taking into 

account the length bias. This normalization is very important to avoid biased enrichments 

in long genomic loci (typical of neuronal genes). Only results showing the GOseq 

parameter numDEInCat (in our study corresponding to the number of GO term associated 

test genes) higher than 10 and over-represented pvalue < than under-represented pvalue 

were FDR adjusted and reported for NIS. Such filters were not applied for PIS, due to the 

small number of IS associated genes in this category. 

We considered the three GO divisions: biological process, molecular function, and 

cellular component. The proportion of genes associated with each GO term was compared 

between: AD vs AD + CTRL, CTRL vs AD + CTRL, K versus FC + K, FC versus FC + 

K, FC AD vs FC, FC CTRL vs FC, K AD vs K, K CTRL vs K, random IS (of the same 

number and width of the real NIS+PIS) versus FC + K. 

Gene ontology analysis considering the same comparisons was performed also with 

GREAT (version 3.0.0), using the following settings: single nearest gene within 1000 Kb.  
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2.1.1.7 Validation PCR  

 

 

The validation was performed by a unique round of PCR using three primers: one forward 

primer designed on the genomic DNA at the insertion site (upstream the LINE-1 element), 

one reverse primers designed against the very beginning of the LINE-1 5’UTR, and one 

reverse primer designed on the genomic sequence downstream the LINE-1 insertion in 

order to detect in the same PCR reaction the presence or absence of the LINE-1 insertion. 

In particular, the primers used for the HLA-genotyping assay were designed on the 

sequences of the human reference genome Hg19 (human assembly GRCh37 Feb. 2009, 

also known as hg19, downloaded from UCSC) with (HLA haplotypes DBB/MANN) or 

without the HLA insertion. The PCR was performed on 200 ng of genomic DNA in a 

final volume of 20 µL (except for the IS-HLA assay that was performed in 50 µL) using 

240 nM of each primer, 200 µM dNTPs, 1X ExTaq PCR buffer (Takara) and 1.25 U of 

ExTaq (Takara) with the following protocol: 10 min at 94°C, 40 cycles of 30s at 94°C, 

30s at 60°C, 1 min at 72°C, and final elongation of 5min at 72°C. PCR products were run 

on a Midori Green stained 2% agarose gel, and, for the first test, bands were extracted 

using the Qiagen Gel extraction kit following manufacturer’s instructions and Sanger 

sequenced to confirm the specificity of the PCR products. 

For analysis of Hardy Weinberg Equilibrium (HWE), allele frequencies and Odds ratio 

Chi square test was used. Statistical significance was defined as p<0.05. 

The ddPCR experiment was performed with the QX200 Droplet Digital PCR System by 

Bio-Rad. The ddPCR assay designed on the housekeeping gene RPP30 was previously 

published by White and colleagues (White et al., 2014), as well as the probe and the 

reverse primer designed on the 5’UTR of the LINE-1 element. We designed the forward 

primers specific for each different genomic location where the IS were inserted and we 

adapted the protocol with some minor modifications. Each reaction was performed in 20 

µL using the ddPCR Supermix for Probes (No dUTP) by Bio-Rad with 900 nM of each 

primer, 250 nM of each probe and 50 ng of gDNA. The cycling conditions were: 10 min 

at 95°C, 40 cycles of 30 s at 94°C and 1 min at 64°C, with a final incubation of 10 min at 

98°C. A 2°C/s ramp rate was performed at each step of the PCR. Data analysis was 

performed using the QuantaSoft Software by Bio-Rad. 

 

Validation performed by Marta Maurutto  
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2.1.1.8 Gene expression analysis of the genes located near AIS and PIS 

 

 

Genotype data of structural variants (SVs) of 445 individuals from 5 different populations 

(Great Britain (GRB), Finland (FIN), Yoruba (YRI), Northern Europeans from Utah 

(CEU) and Tuscany (TSI)) were downloaded from the 1000 Genomes Project (phase 3) 

website, while gene expression data from a lymphoblastoid cell line (LCL) of the same 

individuals were obtained from the ‘RNA sequencing project’ section of the GEUVADIS 

website on the same date. 

AIS and PIS characterized by an FDR corrected p-value <0.1 in the differential 

integration analysis were compared with all SVs from the previously downloaded 1000 

GP data through a bedtools analysis, in order to find matching SVs. The ‘closest’ function 

of the toolkit allows comparing two sets of genomic coordinates reporting the closest hit 

for every set of coordinates in the query. AIS and PIS genomic coordinates were used as 

the query, while SVs genomic coordinates from the 1000 GP represented the database. 

Database SVs found to be closer than 10 bps to significant AIS and PIS were considered 

to be a match. 

The BBduk functionality of the toolkit BBTools has been used to assess the presence of 

a query nucleotide sequence specific for PIS which did not match with SVs from the 1000 

genome project in fastq data relative to individuals from the 1000 genome project. 

In order to assess the impact on gene expression of matched SVs, the expression levels 

of each matched SV’s closest coding gene between individuals carrying the SV (“1/1” or 

“1/0”) and individuals not carrying the SV (“0/0”) were compared. Furthermore, the same 

analysis was performed for all genes found in a range of 500 kbp around each SV. 

A custom python script was used in order to associate each genotype with the correct 

gene expression data for each SV and each individual. P-value was calculated through 

R’s Student’s t-Test function. The same analysis was performed for assessing the 

expression of each exon of the genes of interest. 

 

Analysis performed by Giovanni Spirito  
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2.1.2 Quantification of FL-L1 insertions in different tissues 

 

 

In order to study the copy number variation of potentially FL-L1 elements in the human 

genome we decided to adopt the qPCR technique with Taqman probes, as previously 

performed by Coufal and colleagues for the total LINE-1 elements (full-length and 

truncated). In particular, we designed a new Taqman assay on the 5’UTR sequence of a 

canonical L1Hs element (Lavie et al., 2004) to be sure to amplify only the complete full-

length sequences.  

 

Experiment performed by Marta Maurutto 

 

 

2.1.2.1 Samples 

 

 

The genomic DNA samples used in the copy number variation (CNV) analysis were 

extracted from human autopsy specimens of two different cohorts of patients.  

The Spanish cohort, received from the Bellvitge Neuropathology Institute in Barcelona 

comprised samples of frontal cortex from 10 AD patients at the final Braak stages V-VI 

(severe AD), 10 patients at Braak stages I-II (mild AD), and 7 healthy controls. 

The Brazilian cohort, provided by the Brain Bank of Sao Paulo, comprised samples of 

frontal cortex, temporal cortex, hippocampus, cerebellum and kidney from 10 AD 

patients at Braak stages IV-VI and 10 not affected individuals at Braak stages 0-II. 

Genomic DNA was extracted using a standard phenol-chloroform extraction method. 

 
Cohort Condition Patients Braak NFT Age Gender (F:M) PMD 

Spanish 

cohort 

CTRL 7 0 70 ± 8 2:5 3 ± 1 

early AD 14 I-II 73 ± 12 4:9 8 ± 6 

late AD 10 V-VI 80 ± 4 5:5 10 ± 5 

Brazilian 

cohort 

CTRL 9 0-III 80 ± 15 6:3 N.A. 

AD 8 III-VI 83 ± 10 4:4 N.A. 

 
Table 2.1.2.1  CNV Samples. Two cohorts of AD affected patients and CTRLs were screened for FL-L1 
CNV.  
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2.1.2.2 FL-L1 CNV analysis 

 

 

The quantitative real-time PCR with Taqman probes was performed according to Coufal 

et al. with minor technical modifications. The new assay employed in the copy number 

variation analysis of full-length elements was designed on the 5’UTR sequence of an 

L1Hs (L1-Ta) element. According to the sequences present in the LINE-1 database 

(http://l1base.molgen.mpg.de/), 114 of the 146 elements in the Human FL-L1 (Ens84.38) 

database are detected by the assay. Coordinates in the L1Hs sequence for the assay are 

from base 98 to base 254. The assay for the invariant inner control was designed on the 

glyceraldeyde 3-phosphate dehydrogenase (GAPDH) sequence. A target area of 204 

bases between exon 3 and exon 4 was selected. Taqman probes and primers were 

designed using the online tool Primer3 (http://primer3.ut.ee/). The experiment was 

performed in triplicate, and data were analyzed with the 2-Ct method. 

The three replicas were analyzed individually and considering the mean values for each 

sample with a two-tailed Mann Whitney statistical test. P < 0.05 was considered 

significant. 

 

 

 
 
Table 2.1.2.2  CNV Primers 

 

 

Experiment performed by Marta Maurutto  
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2.1.3 Characterization of LINE-1 content in genomic variations 

 

 

LINE-1 content in CNVs was evaluated performing an analysis of genomic CNVs using 

the Illumina Infinium high-density chip. We considered both the number of 

retrotransposons that were in overlap with the CNVs and their coverage values in order 

to increase the resolution of the study of LINE-1 copy number performed with the qPCR 

technique. 

 

 

2.1.3.1 Samples  

 
 

 
 
Table 2.1.3.1 Illumina Infinium high-density chip samples   
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2.1.3.2 The Illumina Infinium high-density chip assay  

 

 

Illumina® Infinium OMNI 5 arrays were selected due to their exceptional SNP probes 

density and ultra-high coverage of the whole Human genome (>4.3e+9 probes). 96 

samples were genotyped according to manufacturer’s protocols (Illumina Infinium LCG 

Quad Assay) and analyzed using the PennCNV tool (v. 2014 May 07, parameters: ‘-

confidence’) (Wang et al., 2007). The required PFB file (Population Frequency of B 

allele) was downloaded from the PennCNV site (downloaded from: 

YALE_Merged_PFB_hg19.pfb, v. 2014 Aug 18). We strictly followed the recommended 

steps, during which, 91193 records were discarded due to a lack of PFB information for 

the markers. In addition, samples C01_S005_A_FC, C09_S018_A and C01_S006_A_K 

showed quality issues and metadata inconsistency and were not considered for further 

analyses. Identified CNVs were filtered by confidence scores, keeping only CNVs with 

a score higher than 30 which led to the identification of 6040 total CNVs. Finally, CNVs 

that were probably split were joined using the PennCNV’s clean.pl script with default 

parameters leading to a final number of 5675 total CNVs. 	

 

Analysis performed by Gabriele Leoni 

 

 

 

2.1.3.3 CNV annotation and bioinformatics analysis  

 

 

Filtered and joined CNVs were grouped by sample, tissue, and type of CNV. 

Dissimilarities in the distributions of lengths and counts were evaluated for each group 

of CNV using the R statistical software (version 3.3.2.). We generated several LINE-1 

collections from different sources. LINE-1 sequences were first retrieved from three 

L1base dbs in genome build hg38 (FL-L1, LINE-1 with intact ORF2 and LINE-1 longer 

than 4500 bp) (Penzkofer et al., 2017). We converted their coordinates by aligning the 

sequences to genome build hg19 using a local megablast (version 2.4.0, parameters: ‘-

perc_identity 100’). From the results, we kept only coordinates that presented full 

coverage and 100% of sequence identity with the reference genome. From UCSC table, 
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RepeatMasker annotation was retrieved in genome build hg19 and in addition, also 

coordinates of the elements targeted by the qPCR experiments, and TaqMan probes 

coordinates were taken into account.  

Additionally, from the RepeatMasker annotations, we generated a subset composed of 

only-LINE-1 sequences longer than 4500 bp. 

Bedtools suit (v2.25) was used to calculate the coverage and the number of overlaps 

between each CNV and LINE-1 from the different collections (bedtools coverage: default 

parameters, bedtools intersect: “-wa” and “-loj”). Coverage was intended as the 

percentage of nucleotides in a CNV covered by an LINE-1 element over its total length. 

For each sample, we also calculated a total coverage by using the sum of the CNVs 

lengths and the sum of the LINE-1 fragments in overlap with them, and we used these 

values to draw the boxplots and perform the statistical analyses. 

 

Analysis performed by Gabriele Leoni 
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2.2 Analysis of LINE mediated SV in Olfr2 locus  

 

 

 

2.2.1 Exploring LINE role in the generation of structural variants such as deletions 

 
 
Despite ongoing progress in Next-generation sequencing technologies (NGS), none of 

the actual approaches is capable of capturing the full spectrum of SV events with high 

sensitivity and specificity, especially in complex, repetitive regions.  

The highly repetitive structure of Olfr2 locus and the somatic nature of the regulatory 

variation that we are looking for, make our task really challenging. 

Combining PacBio single molecule sequencing for reliable mapping across repeat 

expansions and low complexity regions with a complementary high-fidelity paired-end 

Illumina sequencing for accurate identification of breakpoints we try to overcome the 

limits of the aforementioned techniques. While with Multiple Displacement 

Amplification we tried to increase the possibility to target the rare event occurred in the 

GFP-positive cells expressing the receptor collected by Laser Capture Microdissection. 

 

 

 

2.2.1.1 Animals  

 

 

B6;129P2Olfr2tm1Mom/MomJ (Jackson) mice were kindly provided by the professor 

Anna Menini (SISSA). All animal experiments were performed in accordance with 

European guidelines for animal care and following SISSA Ethical Committee 

permissions. Mice were housed and bred in SISSA non-SPF animal facility, with 12-hour 

dark/light cycles and controlled temperature and humidity. Mice had ad libitum access to 

food and water. 

The hybrid B6;129P2Olfr2tm1Mom/MomJ mice (C57BL/6 x129 genetic background) 

were chosen because they contain a GFP gene inserted at the 3’ of the Olfr2 locus (Bozza 

et al. 2002), an OR expressed in a small amount of OSN. Since this conformation gives 
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rise to a bicistronic mRNA, cells that naturally activate the transcription of Olfr2, become 

fluorescent, therefore amenable to be identified. 

 

 

 

2.2.1.2 Sample preparation for Laser Capture Microdissection 

 

 

OE samples were prepared from 6 days old B6;129P2-Olfr2tm1Mom/MomJ (Olfr2-GFP 

mice). After decapitation, the skin and the jaw were removed from the heads, and the 

samples were left overnight in 1× ZincFix fixative (BD Biosciences) diluted in DEPC-

treated water. After a 4-h cryoprotection step in a 30% sucrose1× ZincFix solution, heads 

were included in Frozen section medium Neg-50 (Richard Allan Scientific) and snap 

frozen in liquid nitrogen. Frozen blocks were brought into a cryostat (Microm 

International) and left for 60 min at −21°C. Serial coronal sections of mouse heads (14 

µm) were cut with a clean blade, transferred on PEN-coated P.A.L.M. MembraneSlides 

(P.A.L.M. Microlaser Technologies), and immediately stored at −80°C. Before usage, the 

slides were brought to room temperature and air-dried for 2 min. The MOE was 

morphologically identified and different pools of GFP-positive and GFP-negative OSNs 

were selected with the fluorescent microscope, microdissected, and collected with a Zeiss 

P.A.L.M. LCM microscope (Carl Zeiss Inc.) in P.A.L.M. tubes with adhesive caps and 

immediately used for subsequent whole genome amplification. 

 

Experiments performed by Alice Urzi 

 

 

2.2.1.3 Whole genome amplification (WGA) 

 

 

To evaluate the most efficient WGA protocol we amplified genomic DNA (from 10 

olfactory neurons and from bulk genomic DNA from OE) using multiple displacement 

amplification (MDA). 

 

Experiments performed by Alice Urzi 
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2.2.1.4 Multiple Displacement Amplification (MDA) 

 

 

Different pools of 10 GFP positive cells were collected by LCM from B6;129-Olfr2-GFP 

mice at the age of p6and immediately amplified with Multiple Displacement 

amplification. 

Multiple displacement amplification is a non-PCR based DNA amplification technique. 

This method can rapidly amplify minute amounts of DNA samples to a reasonable 

quantity for genomic analysis. The reaction starts by annealing random hexamer primers 

to the template: DNA synthesis is carried out by a high-fidelity enzyme, called f29 DNA 

polymerase, at a constant temperature. In this work, we used Repli-g Single Cell kit 

(QIAGEN), a commercially available MDA kit specialized for single cells starting 

material. We followed the manufactures instructions and we incubated the samples for 

amplification 16 hours at 30°C. After amplification, MDA products were checked on 

0.8% agarose gel before and after column purification with QIAquick PCR purification 

kit. Compared with conventional PCR amplification techniques, MDA generates larger 

sized products (5-10 kb) without PCR amplification biases: for this reason, we chose 

MDA amplification as definitive method to produce starting DNA material to use in 

downstream analysis. Nevertheless, we were aware of possible MDA amplification 

artifacts, in fact, we included a non-MDA control sample in the experiment.  

As a control of successful Olfr2 locus amplification we checked the presence of Olfr2 

coding sequence (CDS) in the amplified product performing control PCR on each MDA 

replicate, before proceeding with subsequent long-range amplifications. 

 

Experiments performed by Alice Urzi  



 

 60 

2.2.1.5 Long-Range PCR amplification of 50 kb Olfr2 locus  

 

 

Purified MDA products and bulk genomic DNA coming from the very same mouse line 

(without any MDA amplification) were used as template for long-range PCR 

amplification of 50 kb genomic sequence around Olfr2 TSS.  

 

For a first Pac Bio sequencing, the 50 kb around Olfr2 gene were divided into 11 

amplicons of about 5 kb each.  

We performed locus amplification on 11 MDA biological replicates (MDA I-XI), each 

derived from a pool of 10 GFP-positive cells collected by LCM. In parallel, we performed 

Olfr2 locus amplification also from bulk genomic DNA, extracted from OE (gDNA-OE) 

and not amplified by MDA. Bulk OE DNA sample is a “negative biological control” 

because it consists of whole OE cell population among which Olfr2-expressing cells 

(GFP positive) represented around the 0.1% of the total olfactory sensory neurons. 

The best PCR products from each of 11 MDA biological replicas were purified and 

pooled together for Pac Bio sequencing in parallel with PCR products from bulk OE 

genomic DNA  

 

For the subsequent Illumina sequencing, the 50 kbp sequence locus was divided into 13 

amplicons with a size ranging from about 400 bp to about 5k bp (amplicon 2 was divided 

into three sub-amplicons for Illumina sequencing:2.1, 2.2 and 2.7). We performed the 

PCR amplification using a long-range PCR amplification kit (QIAGEN) following the 

manufacture’s instruction. For each PCR-reaction we used about 100 ng of purified MDA 

product or bulk genomic DNA. PCR products were check on 0.9% agarose gel and 

purified with QIAquick PCR purification kit (QIAGEN) following the manufacture’s. 

Purified products were quantified with Nano Drop (ThermoScientific). 

 

For Illumina sequencing we performed long-range PCR of Olfr2 locus on two different 

MDA biological replicas out of 11 (MDA-V and MDA-XI) and on bulk genomic DNA 

from OE (OE sample). Finally, 13 PCR amplicons for each sample were sequenced for a 

total of 39 Illumina libraries. 

 

Experiments performed by Alice Urzi  
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2.2.1.6 Illumina sequencing, read quality check and mapping 

 

  

A 300 bp Illumina MiSeq paired-end sequencing was performed at IGA technology 

Services (Udine, Italy). Quality check and trimming were performed with FastQC 

(version v0.10.1) (Andrews, 2010) and Trimmomatic (version 0.32) (Bolger et al., 2014) 

on Illumina reads. 

In preparation for variant-calling, the alignment of high-fidelity Illumina paired-end reads 

over mouse reference genome (mm10, NCBI build GRCm38) was performed using 

Burrows-Wheeler mapping software (version 0.7.10) BWA-MEM (default parameters 

for paired-end mapping and –M option). The gapped aligner was chosen in anticipation 

of the subsequent SV detection (Li and Durbin, 2009). 

 

 

 

2.2.1.7 Pac Bio sequencing 

 

 

About 5kb long-range PCR products of each amplicon of the two samples (OE and MDA) 

were pooled together in equimolar ratio to reach 2micrograms of total DNA and 

sequenced on the PacBio RSII platform at GATC Biotech in Germany, to obtain long 

PacBio reads.  
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2.2.1.8 Variation discovery  

 

 

Sorted and indexed BAM files (samtools, version 0.1.18) were scanned for the presence 

of variations (small insertions, deletions, tandem duplications and inversions) with Pindel 

(default parameters, insert size 500) (Ye et al., 2009). 

Pindel was chosen as this tool is known to reliably identify medium sized SVs, especially 

large deletions, starting from paired-end reads. Pindel employs a combined Split 

Read/read-Pair approach, searching for clusters of split reads using balanced splits as 

seeds and evaluation of the span and orientation of paired-end reads (Karakoc et al., 

2012). 

The analysis was limited to the 50 Kb Olfr2 locus extended by 10 Kb at the 3’ and 10 Kb 

at the 5’. Only variations in the 70 Kb regions were considered (parameter –c 

chr7:106967606-107037605). 

Variations not covered by at least 5 reads in at least one sample (MDAV, XI or OE) were 

discarded. Variation coverage was calculated by dividing the number of alternative allele 

supporting reads by the coverage of reference reads. 

 

 

 

2.2.1.9 Deletion validation with single molecule PB reads 

 

 

Variant callers are known to be prone to false positive calls due to alignment errors. Such 

errors may occur when the number of bases in the reads, matching the reference genome, 

is too few and when the number of reads supporting a SV is small. This problem 

exacerbates in highly repetitive regions. 

For this reason, we decided to use a PacBio read data set, complementary to the Illumina 

one, to increase the accuracy of variation prediction in Olfr2 locus. 

Illumina split reads supporting the deletions were aligned over PB long reads using blastn 

(version 2.2.29+, parameters word_size 20, perc_identity 80, evalue 1e-10). Each 

Illumina read supporting a deletion present in the OE sample was aligned over all PB 

reads coming from the same sample and over all reads coming from the MDA sample 

and vice-versa). 
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In order to consider validated with PB a deletion detected with Pindel, at least one query 

Illumina fasta sequence supporting the deletion should align for its entire length (± 10 

nucleotides) over at least one corresponding subject PB read, regardless the sample.  

 

 

 

2.2.1.10 Repeat coverage 

 

 

Repeat description in correspondence of the deletions longer than 50 bp was performed 

with bedtools intersect (version 2.16.2) (Quinlan and Hall, 2010) according to UCSC’s 

repeatmasker (http://www.repeatmasker.org) annotation (version open-4.0) . 

 

 

 

2.2.1.11 Deletion Clustering 

 

 

This analysis was performed in order to reduce the complexity of the detected deletions. 

Deletions supported by 5 or more Illumina reads in at least one sample, supported by at 

least 1 PB read were clustered together if they overlapped a minimum of two LINE 

elements reported in the reference genome. 

 

 

 

2.2.1.12 PCR validation assay 

 

 

Selected deletions were validated by PCR assays performed with ExTaq DNA-

Polymerase (Takara) following the manufacture’s protocol. A list of validation primers 

used is shown in table 2.2.1.12. 

According to the putative band length expected by the primers position and observed in 

the gel, it was possible to precisely retrieve bioinformatically the exact Pindel ID of the 

validated deletion, among many overlapping possible ones. Sanger sequences, then, were 
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manually checked using BLAT (Kent, 2002) and BLAST (Altschul et al., 1990) to verify 

if they reflected the deletions detected in silico accordingly with the Illumina and PB split 

reads. 

 

 
 
Table 2.2.1.12  List of primers used for Pindel deletion validation PCR assays. Primers were designed 
on the forward strand. 

 

 

 

2.2.1.13 DRS discovery 

 

 

This analysis was limited to search microhomology regions in a range of 60 bp (30 bp 

upstream and 30 bp downstream) around the deletions breakpoints of the 125 clustered 

deletions. 

60 bp 3’ and 5’ reference fasta sequences (bedtools getfasta version 2.16.2) were scanned 

with a custom python script to look for the longest direct repetitive sequences (DRS) 

among them. 

Annotation of the LINE-1s present in the reference genome (repeat masker version open-

4.0) in those regions was performed with bedtools intersect (version 2.16.2). 

Clustal omega (Larkin et al., 2007) multiple sequence alignment was employed to look 

for a relationship between the 125 microhomology regions. 

Blast2 and ClustalO were employed to determine the percentage of sequence 

conservation between the repetitive elements at the deletion breakpoints. 

The same analysis was performed creating a random set of deletions in the 70kb locus 

(bedtools shuffle version 2.16.2). 

To assess the significance of the difference in the proportions of the real and random 

microhomology regions a statistical test of Equal or Given Proportion (prop.test) was 

performed with R software. We evaluated statistically whether the observed length 
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microhomology regions was significantly different from what was expected by chance 

performing a Student’s t-Test (t.test) to compare the average length of real and random 

DRSs.  

GC content of real and random motifs was measured with the online tool Genomics % 

GC Content calculator (Science Buddies). 
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2.3 Chip Seq analysis of endogenous γ-H2AX in mouse olfactory epithelium and 

liver 

 
 
 

2.3.1 Profiling double strand breaks: cause and effect of structural variants 

 

 

Endogenous DNA double-strand breaks are thought to be the principal cause of genomic 

instability in all cells since their misrepair may lead to mutations, deletions, and 

rearrangements. 

γH2AX is known to be an important, early player of the repair cascade on the chromatin 

flanking the DSBs. For this reason, it is often employed as a marker of DSB. However, 

the determinants controlling the distribution of γH2AX are still unknown. 

Most research relying on chromatin immunoprecipitation (ChIP) methods to understand 

how γH2AX contributes to double-strand break repair in mammalian cells starts from 

artificially induced, often target specific DNA breaks (Madabhushi et al., 2015, Katsube 

et al., 2014, Redon et al., 2009). 

In our exploratory study, we try to profile spontaneous γH2AX signal at physiological 

conditions. 

 

 

 

2.3.1.1 Samples 

 

 

In order to investigate how γ-H2AX distributes in the mouse genome we performed a 

chromatin immune-precipitation (IP) and sequencing experiment in C57BL/6J mice, 

analyzing OE at 6 days (p6) and 1 month (1m) after birth and liver (L) at p6. For each IP 

experiment, OE and L were pooled together from about 10 mice in order to get a suitable 

quantity of chromatin. 

For each condition, we sequenced two different biological IP replicates, each derived 

from different pools of mice. In parallel we sequenced a same quantity of INPUT sample 

(total starting chromatin) as control.  
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2.3.1.2 Chromatin Immunoprecipitation (ChIP) 

 

 

Mouse tissues were lysed and cross-linked in freshly prepared 1% formaldehyde solution. 

The crosslinking reaction was stopped by adding Glycine (0.125 M), then the tissue was 

homogenized using a Dounce homogenizer and sonicated.  

100 µg of chromatin sample was immuno-precipitated O/N with 2 µg of anti-phospho-

Histone H2A.X (Ser139) Antibody (clone JBW301, Millipore) or with IgG-conjugated 

magnetic beads. DNA was de-crosslinked at 65°C O/N and extracted with standard 

phenol/chloroform protocol. Finally, extracted DNA was quantified with Picogreen. For 

each sample, 10 ng of IP DNA and input DNA were sent for Illumina sequencing libraries 

construction. 

 

Experiments performed by Alice Urzi 

 

 

 

2.3.1.3 ChIP samples sequencing and peak calling 

 

 

ChIP samples were sequenced with Illumina High Seq paired-end sequencing at Deep 

Seq facility of School of Life Sciences, Queen's Medical Centre at Nottingham 

University. A filtering pipeline was used to filter reads with low sequencing score and 

reads aligning to adapter sequences. First, raw reads were trimmed against adapters using 

scythe (https://github.com/vsbuffalo/scythe). The remaining reads were quality trimmed 

using sickle (https://github.com/najoshi/sickle). Reads passing the filters were mapped to 

the mouse reference genome (build mm10/GRCm38) using bwa (Li and Durbin, 2009). 

Duplicates were marked using picard tools and reads with mapping quality below 60 were 

filtered out together with duplicates and improper pairs. The subsequent filtering, sorting, 

and mate fixing steps were performed using samtools (version 0.1.19) (Li et al., 2009). 

Peak calling was performed on the filtered data using epic (version 0.1.18), a peak caller 

based on SICER (Xu et al., 2014) suitable to identify diffused domains of enrichment, 

which is the pattern expected for the γ-H2AX signal. Peaks overlapping blacklisted 
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genomic regions were removed using intersectbed from bedtools suite. Blacklisted 

regions are artifact regions that tend to show artificially high signal (excessive 

unstructured anomalous reads mapping), often corresponding to repetitive regions such 

as centromeres and telomeres. Blacklisted regions for mm9 were downloaded from 

https://sites.google.com/site/anshulkundaje/projects/blacklists and lifted to mm10 using the 

UCSC Genome Browser liftOver tool. To obtain a representative set of ChIP-seq peaks 

for each biological condition (liver at P6, OE at P6 and OE at 1 month) we considered 

the intersection of the peak sets obtained in the two replicates and these were used in 

subsequent analyses.  

 

Analysis performed by Fei Sang and Margherita Francescatto. 

 

 

 

2.3.1.4 Peak genomic distribution 

 

 

Peak annotation was performed with ChIP-seq NEBULA online-tool specific for ChIP 

experiments on histone modifications (Boeva et al., 2012). Default parameters were used 

for the analysis. 

 

Analysis performed by Margherita Francescatto. 

 

 

 

2.3.1.5 Gene ontology enrichment analysis 

 

 

Gene ontology (GO) enrichment analysis was performed using GREAT online tool 

(McLean et al., 2010). For each peak, the nearest TSS was annotated within 1 Mb. Each 

sample dataset (foreground dataset) was analyzed using all the other sample datasets as 

background dataset. Only GO terms with FDR<0.01 were included in the output. 

 

Analysis performed by Alice Urzi.  
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2.3.1.6 Peak annotation with respect to mouse CpG islands 

 

 

The annotation of the peaks identified with respect to CpG islands was performed using 

the AnnotatePeak.pl function of the HOMER suite of tools (Heinz et al., 2010). 

 

Analysis performed by Margherita Francescatto. 

 

 

 

2.3.1.7 Comparison of ChIP-seq peaks with L and OE expression data 

 

 

Liver CAGE expression data 

 

Liver expression data was derived from the mouse tissue catalog of FANTOM5 

consortium. The table containing normalized expression values across all mouse samples 

profiled within phases I and II of the FANTOM5 project (Arner et al., 2015) was 

downloaded from FANTOM5 website 

(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/mm9.cage_peak_phase1and

2combined_tpm_ann.osc.txt.gz). The data corresponding to liver neonatal samples closer 

to the age of mice for which we have ChIP-seq data (N6, N7, N10, N20, N25 and N30) 

was filtered in order to retain only CAGE peaks with at least 1tpm (tpm=tags per million) 

in all samples.  

 

 

OE expression data 

 

Expression data from the work of Ibarra-Soria and colleagues (Ibarra-Soria et al., 2014) 

was used to create a bed file containing TSS coordinates (transcription start site +40 bp 

to make it generally comparable to CAGE peaks), corresponding annotation and average 

expression across the 6 replicates. 

 

Analyses performed by Margherita Francescatto. 
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2.3.1.8 Comparison of ChIP-seq peaks with chromatin segmentation of the L 

mouse genome 

 

 

We downloaded 11 ChIP-seq datasets: 

- 7 liver histone marks (H3k27ac, H3k27me3, H3k36me3, H3k4me1, H3k4me3, 

H3k79me2, H3k9ac) and corresponding input were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31039. 

- liver CTCF and Pol2 ChIP-seq and corresponding input were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29184. 

The data was binned using the chromhmm-tools (https://github.com/daler/chromhmm-

tools/blob/master/chromhmm_signalize.py). The file config.txt was created following 

instructions from chromhmm-tools manual. 

The signal was then binarized using ChromHMM (Ernst and Kellis, 2012) function 

"BinarizeSignal" and the HMM chromatin state model was built using the function 

"LearnModel", specifying 10 states and the genome build of interest (mm9). 

The relative enrichment of the states belonging to the segmentation so created with 

respect to the g-H2AX peaks identified in the three conditions was calculated using the 

function "OverlapEnrichment". To identify peaks corresponding to enhancer regions as 

characterized by ChromHMM model we intersected (intersectbed) each of the three peak 

sets with the bed file containing the 10-state segmentation of the genome and extracted 

peaks overlapping state 3. 

 

Analyses performed by Margherita Francescatto. 
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2.3.1.9 Comparison of ChIP-seq peaks distribution with respect to gene clusters. 

 

 

Top 10 mouse gene cluster (ranking based on the number of genes associated with each 

cluster) features and coordinates were kindly provided us by Massimiliano Volpe 

(Stazione Zoologica Anton Dohrn, Naples). Massimiliano developed a tool to identify 

potential genic clusters in the genome. This tool combines in a unique cluster each 

genomic interval in which at least two genes, residing in the same chromosome are closer 

than 500kb and share the same domain (Biomart Pfam annotation). OE, L and random 

peaks distribution with respect to mouse gene clusters (all 10 clusters, olfactory receptor 

clusters, Vomeronasal Clusters, Immunoglobulin Clusters, Zinc Finger clusters and 

Homeobox clusters) was performed with bedtools closest (version 2.16.2). Random peaks 

were created with bedtools shuffle (version 2.16.2), imposing no overlap between random 

peaks and real peaks. We used again bedtools shuffle to randomize the distribution of 

gene clusters. This was performed in order to compare the distribution of real peaks and 

random peaks with respect to real clusters, with the distribution of real peaks and random 

peaks with respect to random clusters. 

 

 

 

2.3.1.10 Comparison of ChIP-seq peaks distribution with CTCF, Pol II and DNAse 

data. 

 

 

CTCF and Pol II datasets (olfactory bulb 8weeks, liver 8weeks) were downloaded from 

UCSC genome browser, ENCODE Chip-seq (Robertson et. al 2017): 

https://www.genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeLicrTfbs. Liver (8 

weeks, C57BL/6 DNAse I DGF) and Whole Brain (8 weeks, C57BL/6 DNAse I DGF) 

DNAse I datasets (no olfactory epithelium DNAse I dataset was available) were 

downloaded from http://ucscbrowser.genap.ca/cgi-

bin/hgTrackUi?db=mm9&g=wgEncodeUwDgf. 

Peak distribution and gene cluster distribution with respect to CTCF, Pol II and DNAse 

data was assessed with bedtools closest (parameters – d, t first version 2.16.2). 
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Because the peak calling is not an exact process, we accepted two features to overlap if 

they were located within 1kb of each other.  

 

 

 

2.3.1.11 ChIP-seq peaks with respect to different class of repeats 

 

 

OR gene clusters, L, OE and random Peaks were associated with the proximal repeats 

(LINE, SINE, LTR and satellite from rmsk, version) with bedtools closest (parameters – 

d, t first, version 2.16.2). 
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3 Results 

 

 

 

3.1 Analysis of FL-L1 elements in the genomes of AD post-mortem brains 

 

 

In this first section of results, we focus on FL-L1 elements induced SVs. FL-L1 are the 

only autonomous transposable elements present in the human genome able to influence 

chromosome integrity and gene expression upon reinsertion (Belancio et al., 2009). 

 

LINE-1s mobilize during neuronal differentiation and generate “genomic plasticity” in 

neurons by causing variation in genomic DNA sequences and by altering the 

transcriptome of cells (Singer et al., 2010). Neuronal genetic diversity resulting from 

LINE-1 mediated copy number variations (CNVs), and LINE-1 integration, therefore, 

could result in individual differences in behavior and disease. 

 

Given that: 

- LINE-1s activity has been shown altered in neuropsychiatric disorders (Bundo et 

al., 2014,  Shpyleva et al., 2017),  

- age specific global demethylation involves mainly repetitive regions of the 

genome and can result in the reactivation of retrotransposons (Bollati et al., 2011),  

- late onset Alzheimer’s disease (LOAD) is an age related neurodegenerative 

disease (Isik, 2010), 

 

we decided to compare the activity and distribution of FL-L1 in the genome of LOAD 

affected patients and CTRLs.  

 

This study, performed with different methodologies, on a brain and an extra brain tissue, 

aims at investigating if FL-L1s polymorphisms can be a relevant source of structural 

variants associated with AD risks. 
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3.1.1 Identifying novel FL-L1 insertions 

 

 

 

3.1.1.1 The SPAM technique 

 

 

To understand the impact of retrotransposition in AD, it is essential to delineate the 

position of LINE-1 insertions in the genome. In order to unambiguously map only active 

LINE-1 elements present in the human genome, still able to mobilize and give rise to 

novel LINE-1 integration sites, we established a novel method called SPlinkerette 

Analysis of Mobile elements (SPAM). This technique, inspired by the splinkerette PCR 

(spPCR) protocol (see methods), is based on a specific targeting of FL-L1 elements, 

followed by an accurate bioinformatics estimation of their distribution.  

 

SPAM analysis was performed on frontal cortex and kidney samples of 4 AD patients 

and 4 CTRLs. 

From the neuropathological point of view, the controls were clinically healthy 

individuals, at Braak stages 0-III, while AD patients were demented individuals at Braak 

stages IV-VI (view table in materials and methods). Braak staging is a classification 

system of AD progression based on the spreading of neurofibrillary tangles in 

symptomatic and non-symptomatic individuals (Braak and Braak, 1995). During the first 

two stages, clinically silent, neurofibrillary tangles (NFTs) are confined mainly to the 

transentorhinal region of the brain; at stages III and IV, incipient Alzheimer’s disease, 

there is also an involvement of limbic regions, at the last two stages (V-VI), called the 

neocortical stages, NFTs are present in all the subdivisions of the cerebral cortex and the 

disease is fully developed. Progression through Braak Stages benchmarks regressions in 

cognitive function. 

To perform the experiment, gDNA was extracted from frozen tissues using a standard 

phenol-chloroform extraction method and sheared by sonication. This was done in order 

to avoid amplification biases linked to the irregular genomic distribution of restriction 

enzyme recognition sites. gDNA fragments were then end-repaired, an adenine was added 

at the 3’end of the blunted gDNA fragments and finally ligated to a synthetic double 

stranded adapter, harboring an extra thymine protruding at the 3’end. 
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After the first round of PCR, a nested round of PCR was performed with primers specific 

for the adapter and the 5’UTR LINE-1 sequence, in order to amplify the genomic region 

upstream to the LINE-1 element, comprised between the adapter and the LINE-1 5’UTR. 

The tags and barcodes inserted in the nested primers allowed the following Illumina 

MiSeq sequencing in multiplex with 300 bp paired-end set-up. Considering the total 

LINE-1 elements reported in RepeatMasker, the primers used in the SPAM protocol can 

detect the majority of FL-L1 elements of the Hs family (the most recent and still active 

LINE-1 family in the human genome), and part of the LINE-1 elements from the older 

L1Pa family. 

 

 

 

3.1.1.2 The SPAM Bioinformatic pipeline 

 

 

A series of computational analyses have been used to unambiguously map amplified 

LINE-1-containing genomic fragments. After quality check performed using FastQC 

(Andrews, 2010) we performed a paired-end error correction with ADEPT (Feng et al., 

2016) and a De Novo read duplicate removal with FastUniq (Xu et al., 2012). 

Paired end error correction was performed in preparation for the important De Novo read 

duplicate removal step. Error detection (and correction) at the single nucleotide level 

becomes very important in a technique like ours, where the goal is to unambiguously 

detect somatic integration events which can be characterized by low read coverage. De 

Novo read duplicate removal then, took care of duplicates introduced by PCR 

amplification which otherwise could have led to subsequent misleading coverage of the 

detected FL-L1 integration sites. Trimming was performed with Trimmomatic (Bolger et 

al., 2014) to cut off bases below the threshold quality. At this point, MiSeq paired-end 

reads were assembled to create sequencing data for the entire PCR amplicon, overcoming 

the limit of Illumina read size. Indeed, only the assembled fragments containing the 

correct synthetic adapter sequence and aligning on an LINE-1 consensus sequence were 

aligned on the human reference genome Hg19. To rigorously define data produced at 

each experimental and bioinformatics step (see materials and methods), we introduced an 

ad hoc nomenclature reported in table 3.1.1.2. 
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Table 3.1.1.2  Output of the bioinformatics pipeline. For each sample and tissue are reported the total 
number of raw reads, cleaned reads resulting from ADEPT FastUniq and Trimmomatic filtering steps, total 
MapFragments, and specific AIS, PIS and NIS MapFragments and MapClusters. 

 

Uniquely mapped fragment containing the full sequence of the synthetic adapter, the 

amplified L1-5’UTR sequence, and a flanking unique genomic sequence were called 

MapFragments. Overlapping MapFragments were then classified in MapClusters which 

in turn were divided in Annotated Integration Sites (AIS) or Non annotated Integration 

Sites (NIS) according to the presence of the LINE-1 element in the reference genome and 

in Polymorphic Integration Sites (PIS) if not reported in the reference genome, but 

annotated in the euL1db. If polymorphic IS are expected to be present in more than one 

individual of the species, the fraction of NIS present in only one individual (that we called 

private) represents potential De Novo events that occurred either in the parental genome 

of the individual carrying the insertion (present in every cell of the individual), or in some 

cell of the individual (somatic events).  

The relaxation of the epigenetic repression that occurs during early developing germline 

is a dangerous window in which LINE-1 elements can mobilize and integrate into new 

genomic locations (Zamudio and Bourc’his, 2010). A new integration occurring in the 

germline is likely to be vertically inherited. Moreover, LINE-1 transcripts appear to be 

competent for mobilization also in the early embryos after being carried over by the 

gametes through fertilization (Gerdes et al., 2016). Inherited insertions and insertions 

occurred in the early embryo development, are going to be present in all the cells of the 

individual and can be transmitted to the next generation. On the other hand, somatic 

insertions present only in one or a subset of cells, are not inherited from a previous 

generation. These insertions are going to be very hard to detect without a single-cell, high 

coverage, sequencing approach, unless they do not undergo clonal expansion (Doucet-

O’Hare et al., 2015). 

Paired-end reads Sequences (forward and reverse) coming from both ends of an amplicon
Fragment Assembly of forward and reverse reads according to their overlap region
Mapfragment Uniquely mapping fragment containing the specific portion of the L1 sequence ampified and a mappable unique genomic sequence
Mapcluster IS
IS INTEGRATION SITE, genomic reagion where a cluster of at least 2 overlapping mapfragments have been mapped
AIS ANNOTATED INTEGRATION SITE, IS present in the reference genome
NIS NON ANNOTATED INTEGRATION SITE, IS not present in the reference genome
PIS POLYMORPHIC INTEGRATION SITE, IS not present in the reference genome but annotated in the euL1db (MRIP)
Germinal IS IS present in both the frontal cortex and the kidney of the same individual
Single Tissue IS IS present in only one tissue of the individual
Private IS IS present in only one individual
Public IS IS present in more than one individual
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Therefore, we further categorized the IS as “germinal” or “Single tissue” according to the 

presence of the IS in both tissues (these events are indicative of a germinal insertion 

event) or only one tissue (these events are suggestive of a somatic insertion or a lack of 

saturation). IS detected in only one individual were classified as “Private”, IS detected in 

more than one individual as “Public”. 

 

 

 

3.1.1.3  FL-L1 IS characterization 

 

 

For each sample processed with SPAM, we obtained on average 8.6 million reads which 

were analyzed with the described bioinformatics pipeline. This analysis allowed the 

identification of 4634 total IS: 1197 AIS, 3312 NIS and 125 PIS (Figure 3.1.1.3a). 

 

 
Figure 3.1.1.3a  IS characterization. NIS constitute the most abundant fraction of the detected IS (72%), 
followed by AIS (26%) and PIS (3%). 

 

In particular: 1099 AIS, 282 NIS, and 93 PIS were observed in the AD frontal cortex, 

1100 AIS, 371 NIS and 92 PIS were observed in the CTRL frontal cortex, while 1075 

AIS, 512 NIS and 91 PIS were observed in the AD kidney, and 1107 AIS, 2290 NIS and 

92 PIS were observed in the CTRL kidney, with an always surprisingly higher number of 

NIS detected at the level of kidney as compared to frontal cortex.   

IS
 AIS

 NIS

 PIS

LINE1 IS distribution
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Table 3.1.1.3a  Output of the bioinformatics pipeline. For each sample and tissue are reported the total 
number of raw reads, cleaned reads resulting from ADEPT FastUniq and Trimmomatic filtering steps, total 
MapFragments, and specific AIS, PIS and NIS MapFragments and MapClusters. 

 

Almost the 92% (1063) of total AIS and 93% (117) of total PIS were detected in both 

tissues of the same individual, while only the 1.8% (60) of NIS was classified as germinal, 

suggesting the presence of a high frequency of somatic retrotranspositional events 

occurring in small subgroups of cells (Fig 3.1.1.3b and c). 

 

 
Figure 3.1.1.3b  Germinal and single tissue IS. Almost the 92% (1063) of total AIS and 93% (117) of 
total PIS were detected in both tissues of the same individual, while only the 1.8% (60) of NIS was classified 
as germinal, suggesting the presence of a high frequency of somatic retrotranspositional events occurring 
in small subgroups of cells.  

sample Raw reads Cleaned reads Total MF MF AIS MF PIS MF NIS AIS PIS NIS
AD_2682_FC 10488367 7093742 65597 60398 3727 1472 1045 48 105
AD_2682_K 8080106 5340255 43106 39357 2555 1194 955 47 182
AD_7466_FC 4413193 3066722 26412 24387 1385 640 906 40 83
AD_7466_K 11818784 8177208 35038 32250 1688 1100 962 40 237
AD_7660_FC 9476392 6080119 51718 47366 2950 1402 1006 51 120
AD_7660_K 7009944 4716034 34132 31076 2008 1048 920 48 138
AD_9345_FC 9185377 6104185 18013 16697 925 391 865 51 49
AD_9345_K 8258682 5723887 35596 32020 1810 685 933 50 29
CTRL_2149_FC 7411790 4692759 52648 48554 2945 1149 981 47 84
CTRL_2149_K 7904994 5344456 21961 18869 1098 1994 838 45 776
CTRL_6868_FC 7575055 4904224 48746 45147 2478 1121 1011 42 99
CTRL_6868_K 8470822 5481726 52450 48632 2611 1207 1035 41 120
CTRL_9269_FC 8296109 5717890 47049 43151 2619 1279 967 50 140
CTRL_9269_K 14005434 8719913 55092 48531 2982 3579 1010 53 1222
CTRL_929_FC 8260141 5385605 44890 41360 2286 1244 989 43 132
CTRL_929_K 7598435 4904250 20841 18905 1031 905 883 44 232
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Figure 3.1.1.3c  Germinal and somatic IS per condition. The Venn diagrams represent the number of 
Public and Private AIS, PIS and NIS between the individuals. The number of shared AIS and PIS between 
individuals (Public) is proportionally much higher than the number of shared NIS. As proposed by Ewing 
and Kazazian in 2010, non-reference insertions are also plausibly more recent insertions that are more likely 
to be absent from the reference due to lower allele frequency.  
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As shown in Figure 3.1.1.3d, we noticed that AIS tended to be defined by a higher number 

of MapFragments compared to NIS (on average ~38 mf/AIS depending on the sample, 

versus ~47 mf/PIS, ~9 mf/NIS), and this is likely due to the fact that AIS and PIS which 

are fixed in the human genome or deriving from early germinal retrotranspositional 

events, are more easily detectable by the technique. On the other hand, NIS, are probably 

present in one or fewer cells of the sample.  

 

 

   

  
Figure 3.1.1.3d  MapCluster fragment counts. The graphs report the distribution of the number of 
MapFragments per MapCluster for each individual. AIS and PIS are on average defined by a higher number 
of MapFragments compared to NIS. 

 
It is not surprising that the majority of both AIS (~92%) and PIS (~65%) were classified 
as public (present in more than one individual), while public NIS represented only the 
1.5% of total NIS (Fig. 3.1.1.3e).  
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Figure 3.1.1.3e  Common and private IS. The Venn diagrams represent the number of germinal and single 
tissue IS in frontal cortex and kidney of each individual. The number of shared AIS and PIS between the 
two tissues is proportionally much higher than the number of shared NIS.  
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3.1.1.4  SPAM reveals extensive somatic retrotransposition in the kidney  
 

 

One of the most unexpected outcomes of this study is the incredibly high number of NIS 

detected in the kidney of AD and CTRL patients. 

The total number of AIS and PIS that we detected in the kidney was comparable to the 

one detected in the frontal cortex, with the majority of them common between the two 

tissues. On the other hand, looking at the total number of NIS, it is apparent the difference 

between the two tissues. 613 NIS were detected in the frontal cortex and 2764 total NIS 

were detected in the kidney. Only a small number is common between the two tissues.  

   

 

Figure 3.1.1.4  Somatic retrotransposition in the kidney. The 81.5% of non-annotated integrations 
detected with our technique occurred only in the kidney. The majority of AIS and PIS is common between 
the two tissues: kidney specific AIS and PIS represent the 4% and 2.4% respectively. 

SPAM analysis, therefore, revealed the presence of an unexpectedly high level of somatic 

retrotransposition in the kidney, commonly considered a static organ, with very low 

cellular turnover capability. Only recently, Rinkevich and colleagues demonstrated that 

cellular precursors that work as a staminal niche are present in the mouse kidney, 

constantly maintaining and preserving the renal tissue throughout life. The presence of 

proliferating cells in the kidney might be the cause of such a high number of detected FL-

LINE-1s. We remark also that both patients and CTRL individuals are elderly people, 

and kidney disfunction is a consequence of age. Impaired renal function, which might 

trigger hypertension, proinflammatory and endothelial reactions in the elderly, 

consequently, might promote cerebrovascular pathology and AD (Panegyres and Chen, 

2013). Concerning our samples, we observed a higher level of retrotranposition in the 

kidney of CTRL individuals. Therefore, other age related pathologies, not directly related 
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to AD (e.g. diabetes or even cancer), might explain the observed LINE-1 burst in the 

kidney. 

Clinical data or medical records of patients and controls included in the analysis might be 

useful to understand whether these individuals were affected by other pathologies.   
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3.1.1.5 FL-L1 IS genomic distribution 

 

 

Retrotransposition events can potentially introduce a new LINE-1 element in every 

genomic position: a coding gene, a regulatory feature or a neutral region. So, we also 

considered the location of the IS with respect to gene annotations, and we observed that 

1580 (~47.7%) NIS were in overlap with an annotated gene. Of these, 135 overlapped an 

exon, 1405 an intron and 40 a promoter region (Fig 3.1.1.5). Concerning PIS, only 43 

(~34.4% of the total) were in overlap with an annotated gene, in particular at the level of 

an intron. Concerning AIS, ~33% (397) of the total AIS was gene-associated, of which 

20 AIS were exonic, 367 intronic and 10 associated to a promoter.  

Moreover, 785 NIS and 24 PIS were in antisense orientation in respect to the gene and 

795 NIS and 19 PIS shared the same strand of the gene, while 266 AIS were in antisense 

orientation and 131 AIS were in sense position. 

The reason why a high percentage of the AIS and PIS are in antisense orientation in 

respect to genes, while the percentage of sense and antisense NIS is equivalent, might be 

linked to a mechanism of negative selection: AIS, that are fixed in the genome have been 

likely subjected to an evolutionary pressure against dangerous integrations in sense 

orientation (Erwin et al., 2014). On the contrary, PIS, which derive from more recent 

integrations, and NIS that did not undergo the same degree of negative selection, display 

a higher amount of sense integrations. 

 

a  b  

 
Figure 3.1.1.5  IS genomic distribution. (a) AIS, PIS and NIS distribution in the genome (intergenic, 
exonic, intronic, promoter) and (b) proportion of sense and antisense genic IS.  
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3.1.1.6 Mitochondrial IS 

 

 

Besides the FL-L1 insertions falling in the genomic DNA that where included in the main 

analysis of this study, SPAM revealed also the presence of MapFragments falling in the 

mitochondrial DNA. 

These mf corresponded to 45 IS: 20 IS (for a total of 61 mf) in AD affected patients and 

42 IS (for a total of 144 mf) in CTRLs. 4 of these IS were exonic, 31 were located in the 

promoter and 10 were intergenic. Giving the high concentration of genes in the small 

mitochondrial (mt) genome it is not surprising to find the majority of the IS associated to 

a gene. Differently from the nuclear ISs, the genomic portion of different MapFragments 

supporting the same mt Mapcluster showed a staggered pattern at the breakpoint junction. 

This may suggest the presence of multiple integrations occurring in the same place in 

multiple mitochondria. 

Surprisingly, one IS, detected in one single individual, appeared to be germinal (present 

in both the FC and the K of the same individual). The germinal IS was validated with two 

rounds of nested PCR on the gDNA. Sanger sequencing of the validated band confirmed 

the result. However, it remains to be assessed if we are dealing with Nuclear 

Mitochondrial DNA sequences (NUMTs) or LINE-1 integrations in the mitochondrial 

genome. Indeed, NUMT are known to be associated with transposable elements that are 

thought to mediate mtDNA integration in the nuclear genome (Ju et al., 2015).   
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a  
 

 b                                                                   

 

c    

 
Figure 3.1.1.6  Mitochondrial IS. (a) In the Circos is represented the mitochondrial distribution of the 
detected IS. IS detected in the AD sample are represented in green, IS detected in the CTRL sample are 
represented in black. Genes are colored in orange. (b) The germinal mitochondrial IS was validated with 
two rounds of nested PCR on the gDNA. (c) Genome browser screenshot of MapFragments supporting the 
same mt MapCluster. Curiously, the MapFragments show a staggered pattern at the breakpoint junction. 

 

 

 

3.1.1.7 FL-L1 coverage 

 

SPAM technique was developed to target exclusively FL-L1 elements. To this aim, the 

primers of the enrichment PCR were designed at the very 5’ of the LINE sequences (Lavie 

et al., 2004). The positive outcome of the enrichment is appreciable in figure 3.1.1.7. As 

expected, fragments that passed the filtering steps, align at 211 bp from the beginning of 

the putative 6000 bp FL-L1 sequence, exactly where the nested primers were designed.  

In particular, considering the AIS that we effectively targeted among all the targetable 

ones, we observed that SPAM is able to identify the 93% of the LINE-1 integration sites 
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detectable with our primers with 0 mismatches. Admitting an increasing number of 

mismatches, we observed that the percentage of the detected L1Hs decreased, while the 

number of detected L1PA, increased. 

 

a  b  

 
Figure 3.1.1.7  SPAM specificity. (a) The first graph reports the total number of Blastres (y axis) that map 
at 211 bp from the beginning of the FL-L1’s 5’UTR (x axis), that is exactly the position where the SPAM 
nested primer was designed. (b) The second graph represents the AIS primer match, demonstrating that 
admitting an increasing number of SPAM primer mismatches the percentage of the SPAM detected AIS 
decreases. In grey (SPAM +) is reported the number of AIS effectively detected with the SPAM 
bioinformatics pipeline, in black (SPAM -) the number of AIS that we should target according to our 
primers match on the reference genome but we do not. 

 

 

 

3.1.1.8 SPAM Efficiency 

 

 

In order to make the most of our data and, at the same time, exclude from the analysis 

MapFragments deriving from PCR duplicates (see materials and methods) we put the 

minimum threshold of mf necessary to define an IS at 2 non 100% overlapping 

MapFragments. If we put this threshold at 3 or 5 we notice that the total number of AIS 

remains almost the same while we notice a very pronounced decline in the number of 

NIS. This suggests us that AIS and PIS are germinal events, covered by many 

MapFragments while NIS are likely to be somatic events, covered by a few 

MapFragments. This trend remains the same regardless the tissue or the condition 

considered.  
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Figure 3.1.1.8a  AIS and NIS number according to the minimum MapFragment threshold defining 
an IS. In the barplot is represented the total number of AIS, PIS, and NIS detectable admitting an increasing 
number of MapFragments to define a MapCluster. The number of AIS and PIS remains almost the same 
regardless the MapFragment threshold, while the number of NIS dramatically decreases. 

 

Then, a rarefaction analysis was performed in order to investigate SPAM ability in 

detecting new LINE-1 insertions with these experimental settings, in particular with this 

sequencing depth. By plotting the average number of different new IS computed sampling 

an increasing number of reads, the detection of AIS and PIS almost reached the saturation, 

while the detection of NIS did not, suggesting a high number of different somatic 

insertions present in the cells analyzed and a lack of saturation at our sequencing depth 

(Fig. 3.1.1.9b), most of them undetected at the depth used in our sequencing. This is 

particularly true for two samples, both K CTRL (samples 9269 and 2149). We cannot 

exclude that the high LINE-1 content in the kidney of these 2 CTRLs may be caused by 

another pathology (e.g. cancer) affecting the tissue. 
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Figure 3.1.1.8b  Rarefaction plots. By plotting the average number of different new IS computed sampling 
an increasing number of MapFragments, the detection of AIS almost reached the saturation, while the 
detection of NIS did not, suggesting the presence of a high number of different somatic insertions present 
in the DNA samples. 

 

 

 

3.1.1.9 Technical Validation by PCR of IS detected by SPAM  

 

 

In order to estimate SPAM capacity in detecting FL-L1 elements we tried to validate AIS, 

PIS, and NIS. For each of these IS we performed a first round of PCR and a nested PCR 

using two couples of primers with the forward primers designed on the genomic DNA at 

the insertion site, and the reverse primers designed against the very beginning of the 
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LINE-1 5’UTR. Primary PCRs were performed on genomic DNA and/or SPAM product. 

Digital Droplet PCR (ddPCR) was also employed in order to increase the chances to 

detect very rare events (e.g. somatic NIS covered by 2 or a few MapFragments). For the 

droplet PCR we selected ISs covered by MapFragments containing the full probe and 

reverse primer designed on the 5’UTR of the LINE-1 element (without mismatches) by 

White and colleagues in 2014. Overall, we were able to validate only germinal IS covered 

by two or more MapFragments. 

 

 
 

Table 3.1.1.9  Technical Validation by PCR of IS detected by SPAM: In this table are reported the main 
features of the IS validated by PCR. In column IS SPAM we define the type of IS; in Tissue SPAM we 
report the tissue in which the IS was detected; in MapFragments min coverage per sample we report the 
minimum coverage in terms of MapFragments of that IS among different samples; in Closest gene we 
report the name of the first IS closest gene; in Genomic location we report the position of the IS with respect 
to its closest gene; in gDNA PCR, SPAM product PCR and ddPCR we report the validation strategy; in 
Validated in we report the tissues in which the IS was validated regardless the SPAM prediction; in Zygosity 
we report the condition of the ISs validated with ddPCR. 

 

 

 

3.1.1.10 Chromatin accessibility 

 

 

Chromatin state of the master LINE-1 elements and chromatin states of the target regions 

are important factors influencing LINE-1 mobilization. 

Chromatin state varies across the genome creating fluctuations in DNA fragility. From a 

biological point of view, active, fragile chromatin coincides with nuclease 

hypersensitivity, and facilitates LINE-1 integration, whereas condensed heterochromatin 

hinders it (Singer et al., 2010). From a technical point of view, the accessibility of 

chromatin could be an important determinant of experimental bias. Heterochromatic 

regions may be more resistant to shearing by sonication than euchromatic regions 

IS SPAM Tissue  SPAM MapFragments min coverage per sample Closest gene Genomic location gDNA PCR SPAM product PCR ddPCR Validated  in Zygosity
AIS FC, K >=41 RB1 Intronic Y Y N FC, K  
AIS FC, K >=61 PRKG1 Intronic Y Y N FC, K
AIS FC, K >=2 ROBO2 Intergenic Y N Y FC, K Homozygous
AIS FC, K >=3 KIRREL3 Intergenic Y Y N FC, K
AIS FC, K >=2 COL11A1 Intronic Y Y N FC, K
PIS FC, K >=33 HYDIN Intronic Y N N FC, K
PIS FC, K >=30 ERC2 Intronic Y N N FC, K
PIS FC, K >=35 MED12L Intronic Y N N FC, K
PIS FC, K >=15 COMMD10 Intronic Y N Y FC, K
NIS FC, K >=2 KCND3 Intergenic Y Y N FC, K Homozygous
NIS FC, K >=57 CABS1 Intergenic Y N Y FC, K Heterozygous
NIS FC, K >=58 FAM98A Intergenic Y N Y FC, K Heterozygous
NIS  K >=2 RARLYL Intronic Y N Y FC, K Heterozygous
NIS FC, K >=23 CCNA1 Intergenic Y N Y FC, K Heterozygous
NIS K >=2 RYR3 Intronic Y N Y FC, K Heterozygous
NIS K >=2 DIS3L2 Intronic Y N Y FC,K Homozygous
NIS FC >=2 FRG2C Intergenic Y N Y FC,K Homozygous
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(Teytelman et al., 2009), resulting in a loss of information and an underestimate of LINE-

1 elements located in these inaccessible regions. 

In order to ascertain the role of chromatin state during integration and evaluate if PCR 

amplification was favored within open chromatin regions we compared the average 

distance of AIS, AIS targeted admitting 2 mm in the primers, AIS that we should have 

targeted with 2 mm but we did not, NIS and PIS from open chromatin regions of the 

human genome with that of random IS. Purifying selection may also explain IS 

distribution with respect to open chromatin regions (DNAse I accessible sites). 

Interestingly, all classes of IS, excluding PIS, appeared to be closer to 

DNAse I hypersensitive regions (Student’s t-Test pvalue 2e-16) with respect to random 

IS (Fig 3.1.1.10). Since the effectively detected AIS were not closer to open chromatin 

regions than the AIS that we did not target, we can exclude that this was dependent on a 

technical issue. Interestingly, PIS appeared to be more distant from 

DNAse I hypersensitive regions than AIS and NIS, and therefore probably less prone to 

expression and in case retrotransposition. This may suggest that a closed chromatin 

material might be ideal for the host genome to coopt new genetic material. 

 

 
 
Figure 3.1.1.10  Chromatin accessibility. By comparing the average distance of AIS (red), AIS that we 
should have targeted with 2 mm but we did not (ocra), AIS targeted admitting 2 mm in the primers (green), 
NIS (light blue) and PIS (blue) from open chromatin regions of the human genome with that of random IS 
(pink), we observed that all classes of IS appeared to be significantly closer to open chromatin regions than 
random IS. PIS appeared to be more distant from DNAse I hypersensitive regions than AIS and NIS, 
meaning that probably they are less prone to expression and in case retrotransposition.  

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●●●

●●●

●●

●

●●●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

0

2000

4000

6000

AIS AIS_2mm_SPAMno AIS_2mm_SPAMyes NIS PIS random

IS

di
st

an
ce

IS distance from open chromatin regions



 

 92 

3.1.1.11 LINE-1 differential integration in AD and CTRL samples 

 

 

In order to understand whether IS can present a different pattern of distribution in AD 

samples and controls, we tried to find genomic locations differentially targeted by LINE-

1 insertions (AIS, NIS and PIS) in frontal cortex, kidney, and in the two conditions, AD 

and CTRLs, by performing a differential integration analysis. Statistically significant 

differences were detected in differential coverage of MapFragments per specific 

MapClusters and MapFragments per Gene. 

Considering an FDR-adjusted p-value <0.1, 18 AIS, 42 PIS could be considered 

significant in the comparison between AD and CTRLs (frontal cortex and kidney 

together). No significant NIS were observed but we cannot exclude that this result could 

have been determined by the lack of saturation.  
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Figure 3.1.1.11  LINE-1 differential integration in the genome. The Manhattan plots report IS and genes 
showing differences in the number of associated MapFragments in the comparison AD vs CTRL. The AIS 
and PIS having a significant differential MapFragments association (FDR-adjusted p-value <0.1) were 
chosen for validation by PCR. On the x axis are reported the chromosomes while on the y is reported the –
log10 of the pvalue (not adjusted). The blue threshold indicates a pvalue of –log10(1e-5) while the red 
threshold indicates a pvalue of –log10(5e-8). 

 

For both AIS and PIS we decided to validate by PCR the IS with the lowest FDR-adjusted 

p-value associated to the following genes: MGAT5, PLK2/SNK, CCSER1 and HS3ST1 

for the AIS category, and TMEM56-RWDD, ID4, KIF20B, PIP, IL1RL1, DACT1 and 

HLA-DQA1 for PIS to confirm the confidence of the computational predictions. For all 

these IS, an assay comprising a FW primer complementary to the upstream genomic 

sequence, a REV primer on the 5’UTR LINE-1 sequence and a REV primer on the 

downstream genomic sequence were designed, in order to be able to amplify from gDNA, 

in the same PCR reaction, part of the allele containing the LINE-1 5’UTR and/or the 
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allele without the insertion. All the gDNA samples used in these analyses derived from 

individuals with an age ≥ 70 years. We report our results for each gene below. 

 

Concerning AIS: 

 

- the IS associated to MGAT5 (N-acetylglucosaminyltransferase V), a 

glycosyltransferase involved in cellular survival and migration (de Freitas Junior 

and Morgado-Díaz, 2016) was amplified in all samples analyzed with SPAM (AD 

and CTRLs) apparently in homozygosis, meaning that the differential integration 

previously observed, was determined by a failure of SPAM in detecting the AIS 

in all samples; 

- the IS associated to PLK2/SNK (Polo-like kinase 2/serum-inducible kinase), a 

regulator of synaptic plasticity, recently demonstrated to be involved in Aβ 

production (Lee et al., 2017) was detected by SPAM in two out of four SPAM 

CTRLs and none AD samples. Since the bionformatic result was confirmed by 

PCR, we decided to extend the PCR validation to a larger sample. We processed 

a total of 187 AD and 25 CTRL samples: the allelic frequencies that we obtained 

were 0.08 and 0.06 respectively, meaning that no significant difference between 

AD and CTRL could be detected.  

- The AIS associated to CCSER1 (Coiled-Coil Serine Rich Protein 1), a gene 

involved in alpha-synuclein gene triplications associated with Parkinson’s 

Disease (Olgiati et al., 2015), was detected by SPAM in two out of four AD 

samples and none CTRL. In this case, we processed a total of 100 AD and 65 

CTRL samples: the allelic frequencies that we obtained were 0.12 for both groups. 

 

Concerning PIS with significantly higher coverage in CTRLs as compared to AD 

samples: 

 

 

-  The IS associated to TMEM-RWDD gene (transmembrane protein 56- RWD domain 

containing), was searched on a total of 100 AD and 25 CTRL samples: the allelic 

frequencies that we obtained were 0.135 and 0.180 respectively.  

-  A total of 28 AD and 25 CTRL samples were analyzed for the IS associated to ID4 

(Inhibitor of DNA Binding 4), a transcription factor expressed during neurogenesis in 
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CNS and peripheral nervous system. The allelic frequencies that we obtained were 0.036 

and 0.040 respectively. 

 

Concerning PIS with significantly higher coverage in AD samples as compared to 

CTRLs: 

 

- KIF20B (Kinesin Family Member 20B) is a kinesin involved in the 

morphogenesis of the cortical pyramidal neurons (McNeely et al., 2017). The IS 

associated to the gene was screened in 99 AD and 25 CTRL samples and the 

allelic frequencies that we obtained were 0.076 and 0.060 respectively.  

- PIP (Prolactin Induced Protein) is a protein involved in the reproductive and 

immunological systems (Hassan et al., 2009). The IS associated to the gene was 

screened in 100 AD samples and 25 CTRLs and the allelic frequency that we 

obtained for both the groups was 0.1.  

- IL1RL1 (Interleukin 1 Receptor Like 1) gene encodes for a receptor (ST2) that 

interacts with IL-33, contributing to the regulation of immune responses and 

tissue homeostasis (Balato et al., 2016). The IS associated to this gene was 

screened on 96 AD samples and 61 CTRLs: the allelic frequencies that we 

obtained were 0.078 and 0.041 respectively.  

- The gene DACT1 (Dishevelled Binding Antagonist Of Beta Catenin 1) encodes 

for a protein with an important role as intracellular signaling regulator, whose 

mutations have been demonstrated to be risk factors for human neural tube defects 

(Shi et al., 2012). We validated the presence of a DACT1-associated PIS on 28 

AD samples and 25 CTRLs and the allelic frequencies were 0.161 and 0.100 

respectively. 

- The PIS showing the most significant result (since present in 3 out of 4 AD 

samples and none of the CTRLs) was located in the intergenic region between the 

HLA-DRB1 and the HLA-DQA1 genes, inside the MHC class II locus, the most 

variable region in the human genome. This PIS (IS-HLA) corresponds to a known 

FL-L1 polymorphism of the human population and reported to be present in the 

so-called MANN and DBB MHC haplotypes (Horton et al., 2008). The analysis, 

performed on 410 AD samples and 239 CTRLs, actually did not show a different 

incidence of the IS-HLA, whose allelic frequency in AD samples was 0.138 and 

in CTRL samples 0.126.  
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3.1.1.12 Gene ontology enrichment analysis 

 

 

To assess the implications of FL-L1 IS on gene function we examined the set of NIS and 

PIS associated genes with respect to gene ontology (GO) functional category 

classifications. To avoid biased enrichments associated to longer genomic loci (typical of 

neuronal genes) we used the GOseq package (see materials and methods for details) 

which specifically avoids this bias. To analyze enrichments at the tissue level, the set of 

genes associated to the NIS from FC and K were compared to the set of genes associated 

to all the identified NIS from the whole experiment (FC + K). In addition, to analyze 

enrichments at the disease level, the set of genes associated to the NIS from FC or K of 

AD patients were compared to the set of genes associated to all the NIS identified in the 

specific tissue from the whole experiment. The strategy of using the total sets of identified 

NIS (from whole experiment or from each specific tissue) as a reference in the 

comparison further ensures us that our results will not be affected by any length bias.  

Of the different comparisons performed only two gave significant results suggesting 

intriguing functional outcomes of retrotransposition events and their involvement in AD.  

 

At the tissue level, the genes associated to NIS in FC with respect to the genes associated 

to all the identified NIS (FC + K) are significantly enriched for biological processes such 

as cell junction organization, neuron differentiation; molecular functions associated to 

protein phosphatase activity; cellular components such as cell projection and plasma 

membrane. This result suggests that retrotransposition effectively tags genes associated 

to neural differentiation, learning and memory (Temtamy et al., 2008).  
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Table 3.1.1.12a  GO analysis of NIS associated genes in all FC. In the table are reported the GO terms 
significantly enriched (FDR adj pvalue < 0.1) in the set of genes associated to FC (distance <= 10000 bp) 
with respect to FC + K NIS associated genes (distance <= 10000 bp). The analysis was performed with 
GOseq package (Young et.al 2010), which returns a data frame with several columns. The first column 
gives the name of the GO category, the second gives the p-value for the associated category being over 
represented amongst test genes. The third column gives the p-value for the associated category being under 
represented amongst test genes. The p-values have not been corrected for multiple hypothesis testing. The 
fourth and fifth columns give the number of test genes in the category and total genes in the category 
respectively. Then are reported the GO term, its ontology (MF, BP or CC) and the FDR adjusted over 
represented pvalue. 

 

 

At the disease level, the genes associated to NIS in FC from AD patients with respect to 

the genes associated to NIS in FC from all samples (AD + CTRL) result significantly 

enriched for functions related to signal transduction and receptor activity. This result 

suggests that in the FC of AD patients, loci associated to signal transduction pathways 

are more targeted by retrotransposition events. Indeed, it was demonstrated that these 

genes present reduced expression in FC of elderly people (Lu et al., 2004). Finding these 

pathways enriched in the FC of the patients may be suggestive of a potential correlation 

between aging, LINE-1 mobilization and progression of the disease.  

The same analysis executed on the PIS did not result in any significant enrichment. 

 

 
 

Table 3.1.1.12b  GO analysis of NIS associated genes in AD FC samples. In the table are reported the 
GO terms significantly enriched (FDR adj pvalue < 0.1) in the set of genes associated to AD FC NIS 
(distance <= 10000 bp) with respect to FC NIS associated genes (distance <= 10000 bp).  

 

The GO analysis performed with the tool GREAT on the same comparisons showed a 

unique but interesting significant result. Panther pathway term: Alzheimer’s disease 

presenilin pathway emerged in the comparison NIS AD K against AD + CTRL K.  
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3.1.1.13 AIS and PIS influence on gene expression  

 

 

In order to evaluate whether the differentially integrated FL-L1 elements could have an 

impact on the expression of nearby genes, we compared the genomic coordinates of the 

18 AIS and 42 PIS with an FDR corrected p-value <0.1, with those of known genomic 

structural variations (SVs), and screened the expression level of the closest coding genes 

in 445 individuals harboring or not the SV. 

As expected, no AIS matched with SVs, while one AIS was found in overlap with a 9.5 

Kb deletion (hg19 coordinates: chr2:4,777,625-4,787,178), corresponding to CTCF 

binding site. Since only one individual carrying this SV was found, no further analyses 

on the impact of the LINE-1 insertion on gene expression could be performed. 

On the other hand, 28 PIS matched with known SVs. For most of them no estimations on 

the functional impact could be made, because of the unavailability of complete expression 

data, or rare incidence of the SV, or because the analysis did not reach the statistical 

significance. The latter was mostly due to the high variance in expression levels of the 

same genes in different individuals that were randomly selected from different 

populations.  

However, we identified a PIS able to negatively influence the expression of its 4 closest 

genes and of a non-coding expressed anti-sense RNA (Fig 3.1.1.13d). This FL-L1 

element is located in the chromosome 6 HLA locus (hg19 coordinates: chr6:32589880-

32589881), 315 bp downstream the IS-HLA, and results to be present in 5.6% of the 

overall analyzed population (25 on 445 individuals) and 4.8% of all individuals included 

in the 1000 GP (122 out of 2504 total individuals). Since the expression of each exon of 

the four nearby genes is significantly downregulated, we can infer that the IS has an effect 

on the overall gene expression. The same conclusion was taken for the HLA-IS (detected 

in 70 out of 445 individuals) described in section 3.1.1.11. Interestingly, the insertion in 

the HLA locus disrupts an LTR sequence which was previously demonstrated to be a 

transcribed enhancer region (Thurman et al., 2012, Andersson et al., 2014) with a possible 

role as gene expression modulator, at least in immune cells. Transcription factor binding 

sites for TBP, TAF1 and Pol II are present in correspondence of the IS, suggesting a 

possible regulatory role of the element (Figure 3.1.1.13d).  
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Figure 3.1.1.13  HLA locus. (a,b) Genome browser screenshot of the PIS located in the intergenic region 
between the HLA-DRB1 and the HLA-DQA1 genes. The L1HS insertion in the HLA locus disrupts an 
LTR sequence which was previously demonstrated to be a transcribed enhancer region. (c) This PIS (IS-
HLA) corresponds to a known FL-L1 polymorphism reported to be present in the so-called MANN and 
DBB MHC haplotypes (Horton et al., 2008). (d) The PIS in the HLA locus significantly downregulates the 
expression of its nearby genes.  
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3.1.2 Quantification of FL-L1 insertions in different tissues 

 

 

 

3.1.2.1 FL-L1 CNV analysis in AD post-mortem brains. 

 

 

In order to study the copy number variation of potentially FL-L1 elements in the human 

genome we decided to adopt the qPCR technique with Taqman probes, as previously 

performed by Coufal and colleagues for the total LINE-1 elements (full-length and 

truncated). 

In particular, we designed a new Taqman assay on the 5’UTR sequence of a canonical 

L1Hs element in order to be sure to amplify only the complete full-length sequences.  

The primers and probe were blasted against the Human full-length, intact LINE-1 

Element (Ens84.38) to identify which elements were detected by the assay designed. Of 

the 146 elements contained in FL-L1, 114 are recognized by the assay (Penzkofer et al., 

2017). The analysis was performed on the gDNA extracted from frontal cortex, temporal 

cortex, cerebellum, hippocampus, and kidney of 9 healthy individuals and 8 AD patients, 

belonging to the same Brazilian cohort. From the neuropathological point of view, the 

controls were clinically healthy individuals, at Braak stages 0-III, while AD patients were 

demented individuals at Braak stages III-VI. 

By performing the qPCR for the FL-L1 element we observed the presence of a lower 

amount of FL-L1s in the AD frontal cortex tissue as compared to controls, while no 

differences could be observed in the temporal cortex, nor in the hippocampus, which are 

both heavily involved and damaged by the disease (Fig 3.1.2.1). An unexpected finding 

was the lower copy number in the cerebellum and kidney of AD patients. Indeed, 

cerebellum is a brain structure that is not primarily involved in AD as well as the kidney, 

but apparently not stable from the retrotransposon-mobilization point of view. The same 

analysis was performed on a Spanish cohort composed of healthy controls, patients at 

Braak stages I-II (early AD), and patients at the final AD Braak stages V-VI (late AD). 

In this case, we observed a progressive and always significant decrease in the content of 

LINE-1 full-length sequences starting from the healthy controls group to the group of 

patients affected by late AD. In particular we observed a decrease of ~14% between 

controls and early AD patients, ~20% between controls and late AD patients, and finally 
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~7% between early and late AD patients, confirming the trend previously observed in the 

Brazilian cohort (Fig. 3.1.2.1b). 

 

   

   

 
Figure 3.1.2.1  The LINE-1 copy number variation analysis. We performed a qPCR analysis with 
Taqman probes of FL-L1 copy number in different brain tissues and kidney of different cohorts of patients. 
For the Brazilian cohort (8 AD patients and 9 controls) we observed a lower amount of FL-L1 elements in 
AD frontal cortex, cerebellum and kidney compared to controls. No differences were observed in the 
temporal cortex and hippocampus. In the case of the Spanish cohort (7 healthy controls, 14 patients at Braak 
stages I-II, and 10 patients at the final AD Braak stages V-VI) only frontal cortex samples were analyzed, 
and a progressive and always significant decrease in the content of FL-L1 sequences starting from the 
healthy controls group to the group of patients at the final stages of the disease were detected.   
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3.1.3 Characterization of LINE-1 content in genomic variations 

 

 

 

3.1.3.1 Genomic CNV analysis with Illumina Infinium high-density chip 

 
 

In order to increase the resolution in the study of LINE-1 copy number and to understand 

whether the lower amount of LINE-1 elements observed in AD patients with the qPCR 

experiment could be due to a loss of larger genomic fragments resulting from genomic 

rearrangements, we performed an analysis of genomic CNV using the Illumina Infinium 

high-density chip on the same cohort of Brazilian individuals examined with the Taqman 

assay, 7 Spanish CTRLs, and 8 Spanish Late AD affected patients examined with the 

Taqman and 2 more Spanish CTRLs and 16 late AD patients that were not examined 

before. 

CNVs were investigated for LINE-1 content taking advantage of various LINE-1 

collections. We evaluated both the number of retrotransposons that were in overlap with 

the CNVs and their coverage values (see Materials and Methods for further information). 

Interestingly, significant differences in agreement with the results obtained with the 

qPCR experiments could be observed. In particular, in the Spanish FC Hetero-dels, the 

average coverage values of FL-L1 elements in AD samples (23 individuals) was higher 

when compared to CTRL FC (9 individuals) (Figure 3.1.3.1a). This difference remained 

significant also after the adding of the Brazilian FC samples, although Brazilian samples 

alone showed the same but not significant trend, probably because of the small sample 

size (7 AD and 9 CTRLs). The Spanish cohort, presented statistically significant 

differences also in the coverage of the LINE-1 elements targeted by the Taqman assay, 

which are mostly non-integer L1s longer than 4500 bp (~90% of the total) (Figure 

3.1.3.1b). These evidences are in agreement with our Taqman results, proving that 

putatively FL-L1 elements are significantly enriched in heterozygous deletions in AD 

patients, as compared to CTRL samples. 
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a  
 

b 

 
Figure 3.1.3.1  Illumina Infinium high-density chip assay. Spanish cohort. (a) Performing the analysis 
considering only the LINE-1 elements longer than 4500 bps reported in the L1base, a higher coverage of 
these elements could be detected in AD frontal cortex samples at the level of deletions in heterozygosis, 
compared to control samples. This data confirm the presence of a lower amount of FL-L1 elements in AD 
samples than in CTRLs as already observed with the qPCR experiment (b) By performing the same kind 
of analysis, but considering only the LINE-1 elements detectable with the primers employed in the Taqman 
assay, we observe the same, significant trend. 
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In this section of the thesis we profiled the different FL-L1 makeup of AD affected 

patients and CTRLs. FL-L1, due to their potential for instability, can be a relevant source 

of structural variants and allelic heterogeneity in the human genome. It is not coincidence 

that one of the most interesting polymorphisms found in this study is located in the MHC 

locus, the most variable region of the genome. Indeed, regions containing active genes 

are known to be more mutable than regions containing non-active genes as well as regions 

containing a high density of genes such as gene clusters. 

The high gene density, extreme polymorphism, and clustering of genes are all 

characteristics shared by one of the largest mammalian multigene families: olfactory 

receptor genes (OR). So, as HLA genes are characterized by extreme genetic 

polymorphism, OR genes may be expected to exhibit pronounced variability as well, 

leading to a multitude of different and specialized OR loci in individual genomes in order 

to accomplish the complex task of reliably distinguishing thousands of odors (Andersson 

et al., 2014).  

 In the next section, the genomic landscape of cells expressing an OR gene and cells not 

expressing the same OR gene, will be compared in order to look for alterations from the 

reference and differences in DNA sequence between the active and an inactive allele.  
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3.2 Analysis of LINE mediated SVs in Olfr2 locus 

 

 

 

3.2.1 Exploring LINE role in the generation of structural variants such as deletions 

 

 

Mobile elements affect genome stability creating structural variations through their de 

novo insertions and post-insertional genomic rearrangements (O’Donnell and Burns, 

2010). 

In the previous chapter, we discussed about how active LINE-1 mobilize, integrating 

extra copies of themselves into new genomic locations. However, LINE elements capable 

of autonomous retrotransposition represent only a small fraction of the total forms present 

in human and mouse genome. In fact, most of the retrotransposons are no more able to 

mobilize due to 5' truncations, mutations and rearrangements (Brouha et al., 2003).  

In this chapter, we will focus on another significant source of genetic variation which can 

be related with LINE elements introduced in the previous chapter: genomic 

rearrangements. 

Using a high-throughput sequencing approach, we explore LINE induced genomic 

variation in a locus where a very high repeat concentration provides more chances for 

recombination events to occur between retrotransposons, trying to face the technical 

difficulty of mapping breakpoints within repeated elements. 

 

With this analysis, our aim is to investigate mechanisms underlying the regulation of 

olfactory receptor choice in mouse olfactory epithelium, characterizing locus-specific 

genomic rearrangements. 
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3.2.1 Olfr2 Locus 

 

 

The olfactory receptor (OR) genes are the largest G-protein coupled receptor mammalian 

gene family and are expressed in a monogenic and monoallelic fashion in olfactory 

sensory neurons (OSNs). Each mouse olfactory sensory neuron monoallelically expresses 

one out of approximately 1400 OR genes (Niimura and Nei, 2005).  

Among all the OR genes we decided to focus on Olfr2 due to the availability of a knock-

in mouse model (B6;129-Olfr2-GFP mice). In this mouse a GFP sequence was inserted 

at the 3’ of Olfr2 coding sequence, an olfactory receptor (OR) expressed in a small 

number of olfactory sensory neurons (OSNs). Since this configuration gives rise to a 

bicistronic mRNA, OSNs naturally expressing Olfr2 co-express also GFP and cells that 

naturally activate the transcription of Olfr2 become fluorescent and therefore easy to 

detect and isolate. 

 

 

 
 

Figure 3.2.1  GFP construct inserted at the 3’ of Olfr2. In this experiment, we took advantage of a 
transgenic mouse line where a GFP gene was inserted at the 3’ of Olfr2 in order to easily identify fluorescent 
cells expressing the receptor. Both pictures come from Bozza et al.,2002.  
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3.2.2 Characterizing genomic rearrangements in the expressed locus 

 

 

Eleven overlapping PCR products, each nearly 5000 bp long for a total of nearly 50 kb 

of sequence around Olfr2 transcription start site (TSS) were amplified from GFP+ cells 

(collected by LCM and amplified by MDA) expressing the receptor, and from bulk 

genomic DNA (extracted from OE of an age-matched mouse from the same litter and not 

amplified by MDA). We consider the GFP+ cells (MDA sample) the test where we expect 

to find the regulatory element, and the bulk genomic DNA (OE sample) the control. OE 

sample is both a “technical positive control” not subjected to MDA amplification and 

therefore “artifacts free” and a “negative biological control” where we do not expect to 

find the SV which might potentially regulate the expression of the receptor, if any. Bulk 

genomic DNA consists of a whole OE cell population in which Olfr2-expressing cells 

(GFP positive) represented only the 0.1% of the total olfactory sensory neurons. 

 

 

Figure 3.2.2 Amplicons distribution over Olfr2 locus. Genome browser screenshot of the 50kb Olfr2 
locus. The amplicons are numbered from 1 to 11, starting from the 5’ to the 3’. GFP construct is located in 
correspondence of amplicon 7.  
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3.2.4 Repetitive elements in OR clusters 

 

 

Olfr2 locus genomic environment is very complex, with a high density of annotated TEs 

(Fig 3.2.2), especially LINEs. 

This is not surprising since monoallelically expressed genes are known to be flanked by 

high densities of LINE-1 elements, especially FL-L1s, and only a few short interspersed 

nuclear elements (SINEs), in sharp contrast with biallelically expressed genes (Allen et 

al., 2003).   

80 different repetitive elements are annotated by Repeat Masker in the 50 kb regions 

around the Olfr2 locus, covering almost the 70% of the locus. The remaining 30% consist 

of non-repetitive genomic DNA. LINE-1s appeared to be the most abundant TEs present 

in the locus (29 elements, covering 27341bp), followed by LTRs (12 elements covering 

3944 bp), SINEs (11 elements occupying 1594 bp), simple repeats (18 elements, 1227 

bp) and low complexity repeats (10 LCR, 703 bp). 

Interestingly, LINE-1 enrichment is a characteristic not only of our locus but of all 

monoallelically expressed genes and specifically of OR-clusters, which show a peculiar 

enrichment for this class of retrotransposons compared with other classes of repeats. A 

high LINE-1 concentration in a locus is known to function as substrate for homologous 

pairing and in general increase chances for recombination events to occur between 

retrotransposons (Han et al., 2008), which can lead to chromosomal breaks and 

rearrangements. Therefore, in order to handle the problem of SV reconstruction in this 

repeat-rich region, we combined PacBio single molecule sequencing for reliable mapping 

across repeat expansions with a complementary high-fidelity paired-end Illumina 

sequencing for accurate identification of breakpoints.  
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a                                                                  

 
b 

 
Figure 3.2.4  Repeat occupancy of OR.  (a) LINE elements, covering the 55% of Olfr2 locus, become the 
most abundant class of repeats in this region; (b) LINE enrichment is a general feature of olfactory receptor 
gene culsters. Per-class statistics for clusters (ClustCov) are reported in orange and randomizations 
(MeanRandomCov) are reported in blue. 

 

 

 

3.2.5 Illumina sequencing 

 

 

For Illumina sequencing we performed long range PCR of Olfr2 locus on two different 

MDA biological replicas out of 11 (MDA-V and MDA-XI samples) and on bulk genomic 

DNA from OE (OE sample). Finally, 13 PCR amplicons for each sample were sequenced 

for a total of 39 Illumina libraries.  

Illumina reads were mapped onto the mouse reference genome MouseGRCm38/mm10 

assembly. On average 6.5 million read pairs were mapped onto the genome per individual 

(see Materials and Methods). We obtained a good coverage of Olfr2 locus, comparable 

between MDA and OE samples. Looking at the reads coverage comparing the 5’ and 3’ 

regions with respect to Olfr2 TSS, we observed that the most covered amplicons were 

located upstream the Olfr2 gene.   
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3.2.6 PacBio sequencing 

 

The best PCR products from each of 11 MDA biological replicas were purified and 

pooled together for Pac Bio sequencing in parallel with PCR products from bulk OE 

genomic DNA. Pac Bio reads from MDA and OE samples were firstly mapped on the 

reference genome (MouseGRCm38/mm10 assembly) to verify the 50kb Olfr2 locus 

coverage with PCR amplification. For both the samples we were able to cover almost of 

the targeted locus, 82% and 72% of reads were mapped for MDA sample and gDNA-OE 

sample respectively. Unfortunately, long range PCR amplification failed for amplicon 7, 

due to the presence of the long IRES-GFP construct (in this study we used 

B6;129P2Olfr2tm1Mom/MomJ mice that contain a GFP gene inserted at the 3’ of the 

Olfr2 locus in order to identify fluorescent cells that naturally activate the transcription 

of Olfr2). PCR failure was observed also for amplicon 2 due to high density of repetitive 

sequences in this amplicon (89% of bp in this amplicon were part of repeated elements) 

which made very difficult primer designing.  

 

 
 

a 

 
 

b 

 

 
Figure 3.2.5  Sequencing coverage of 50kb Olfr2 locus. Olfr2 50 kb locus Illumina (a) and PacBio (b) 
coverage in MDA sample and OE samples is represented plotting the number of reads for the 50 kb locus 
coordinates. OE coverage is represented in red, MDAV coverage is represented in light green and MDA 
XI coverage is represented in dark green. The numbers “7” and “2” indicate the amplicons which were not 
correctly amplified.   
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3.2.7 Identification of non-annotated structural variants from Illumina reads 

 

 

Due to the high density of TE in this region and the presence of putative endonuclease 

cutting sites, we expected the presence of non-annotated genomic SVs in the area (Korbel 

et al., 2007, Huang et al., 2010). Variation discovery on each PCR amplicon was 

performed with Pindel starting from Illumina, mapped reads. In this way, we certainly 

missed SV spanning 2 or more amplicons but, giving the fact that no band-size selection 

was performed for the library preparation, we expected to target the “full spectrum” of 

SV detectable by Pindel, contained in each amplicon delimited by its specific primers. 

It must be stressed that Pindel was chosen as it is known to perform better when the goal 

is to target medium-sized SVs, especially large deletions. Overall in the Olfr2 locus, we 

identified almost 2400 deletions, 34 inversions, 407 tandem duplications and 806 

insertions covered by at least 5 bp in at least one sample (MDAV, MDAXI, and OE).  

 

 
 
Table 3.2.7  SV detected with Pindel on Illumina reads. 

 

Among all the detected SV, we selected only SVs longer than 50 bp and covered by at 

least 5 bp for conceptual and technical reasons. Indeed, from an exploratory point of view, 

we’re looking for transposable element mediated SVs, so large rearrangements. 

Unfortunately, from a technical point of view, we have to deal with the limits of current 

SV callers: 5 reads appeared to be a good threshold to consider reliable an SV call and 50 

bp of minimum SV length was imposed in prevision of the following validation with 

PacBio reads of SVs detected with Pindel.  

Interestingly, in both MDA and OE samples, all the variations supported by Illumina 

reads were found in a “heterozygous condition” with a small number of reads supporting 

the non-annotated variant and a high number of reads supporting the annotated reference 

sequence. The low read coverage level of the non-reference allele, may suggest a low-

DELETIONS INVERSIONS TANDEM DUPLICATIONS INSERTIONS
MDAV 749 12 116 200
MDA XI 826 15 100 424
MDAV-XI 241 2 76 65
MDAV-OE 62 2 15 10
MDAXI-OE 55 0 6 14
MDAV-MDAXI-OE 238 1 92 58
OE 220 2 2 35
TOTAL 2391 34 407 806



 

 113 

level somatic mosaicism for SVs occurring in one or just a few cells, ideally the neurons 

expressing the receptor.  

 

 

 

3.2.8 Genomic deletions in Olfr2 locus 

 

 

Genomic deletions are the most abundant SVs found in the Olfr2 locus. For this reason, 

we decided to focus our attention, firstly, on this category.  

Deletion length ranged from a maximum of 5141 bp (deletions longer than the amplicon 

size were discarded, as artifacts), to a minimum of 50 bp (because of the imposed cutoff 

size). 

In agreement with a general higher coverage for the amplicons upstream the Olfr2 TSS 

(1-5) compared with the coverage of those downstream (6-11), deletion distribution was 

found to be prominent at the 5’ of Olfr2 coding sequence.  

 

 
 

Table 3.2.8  Deletions detected with Pindel on Illumina reads (length >= 50 bp) 

 

Given that all the amplicons have a similar length ranging from 3500 bp to 5500 bp (only 

amplicon 2, divided in 3 parts for technical reasons, was much shorter than the others), 

the fact that the deletions located at the 5’ of the coding sequence are not only the most 

abundant but also, on average, the longest might suggest that SVs upstream the gene may 

regulate its expression as already suggested by Serizawa and collegues in 2000. 

As expected, amplicon 6, which contains the Olfr2 coding sequence, presented a very low 

number of deleted sequences. Moreover, compared to the other amplicon the deletions of 

amplicon 6 were also very short (for example, the average deletion length in amplicon 6 

is 517 bp, while in amplicon 3 is 2911 bp). 

AMPLICONS
1 2.1 2.2 2.7 3 4 5 6 8 9 10 11

MDAV 17 196 9 99 135 94 26 24 9 63 57 20
MDAXI 35 81 6 48 277 285 61 4 15 4 7 3
MDAV+MDAXI 10 75 2 12 68 33 8 5 4 7 15 2
MDAV+OE 21 27 0 4 0 2 3 1 3 1 0 0
MDAXI+OE 17 3 0 6 10 11 5 0 3 0 0 0
MDAV+MDAXI+OE 43 120 0 4 27 13 7 5 11 6 2 0
OE 161 10 0 0 7 1 4 1 35 1 0 0
sum 304 512 17 173 524 439 114 40 80 82 81 25
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Figure 3.2.8  Illumina coverage of 5’ and 3’ amplicons with respect to Olfr2 TSS. 3’ amplicons are 6-
11 while 5 prime amplicons are 1-5. MDAV (orange); MDAXI (green); OE (blue). 

 
 
 

3.2.9 Validation of Illumina supported deletions with Pac Bio long reads 

 

 

Variant callers are known to be prone to false positive calls due to alignment errors. Such 

errors may occur when the number of bases in the reads, matching the reference genome, 

is too few and when the number of reads supporting a SV is small. This problem 

exacerbates in highly repetitive regions. 

For this reason, we decided to use a PacBio read data set, for an in-silico validation of 

Illumina supported deletions, in order to increase the accuracy of variation prediction in 

Olfr2 locus, a very repetitive region. 

PacBio RS single-molecule technology provides previously unprecedented sequencing 

read lengths, making it useful for the detection of long SVs even in low complexity 

regions. Moreover, PacBio long reads by definition are not affected by sequencing 

amplification bias. Unfortunately, these sequences contain random errors involving 10–

15% of nucleotides.  

Illumina sequencing, on the other hand, offers stable lengths of short reads with errors 

most likely to be grouped at the ends of the reads. 

Herein, we combined the advantages of the short reads of a second-generation sequencing 

technology (Illumina reads from this study had an average length of 300 bp) with the long 

reads of the PacBio platform (PacBio RS reads from this study had a mean length of 2459 
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bp) in order to increase the accuracy of variation prediction in Olfr2 locus, a very 

repetitive region. 

Each Pindel deletion supported by Illumina reads was checked for the presence of any 

additional supporting Pac Bio read (see Materials and Methods). 

 

 
 
Figure 3.2.9  Pindel deletion supported by Illumina and PacBio reads. In this example, the black bar 
on the top of the UCSC genome browser screenshot represents the coordinates (bed format) of a deletion 
detected with Pindel starting from Illumina reads, the lowest bar represents the sequence (fasta format) of 
an Illumina read supporting the deletion, the middle bar represents the sequence (fasta format) of a PacBio 
read supporting the same deletion.  

After this filtering process, that we consider as a first validation step, the number of 

deletions dramatically decreased. Only 149 deletions (6%) were supported by at least 1 

PacBio read (min PacBio reads supporting a deletion =1, max PacBio reads supporting a 

deletion = 69).  

 

 
 
Table 3.2.9  Deletions detected with Pindel on Illumina reads supported by PacBio reads. 

 

Looking at the frequency of deletion length distribution, after Pac Bio filtering, we could 

appreciate that the number of very small and very long deletions was reduced, with the 

majority of deletions having a length ranging from ca. 2000 to 4000 bp. Deletions in 

amplicon 2, 6, 8 and 9 did not have any Pac Bio supporting reads.  

Interestingly, 19 deletions validated with only MDA PacBio reads were present in both 

Illumina MDAV, MDAXI replicates but not in OE. These deletions, mostly located 

upstream the coding sequence, in amplicon 3, may be the putative SV involved in Olfr2 

expression.    

Deletions detected by Pindel on Illumina reads supported by PacBio reads
AMPLICONS

1 3 4 5 9 10 11
MDAV 0 19 13 5 4 2 0
MDA XI 0 31 22 1 0 0 1
MDAV-XI 1 12 6 1 1 1 1
MDAV-OE 0 0 0 1 0 0 0
MDAXI-OE 2 0 0 0 0 0 0
MDAV-MDAXI-OE 9 1 2 0 0 2 0
OE 9 0 0 1 1 0 0
sum 21 63 43 9 6 5 2
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3.2.10 Repetitive elements in deletions 

 

 

LINE elements, the most abundant repeats in Olfr2 locus, appeared to be also the repeat 

class mostly affected by deletions. Looking at the percentage of bases covered by 

deletions detected with Pindel and supported by Illumina reads we can observe that 

deletions covered 98% of LINE, 85% of SINE and 79% LTR sequence. This event is 

even more pronounced looking at the loss of LINE sequences (77%) compared to SINEs 

and LTRs (46% and 36% of bp covered, respectively) resulting from deletions supported 

by PacBio reads.  

 

 
 
Figure 3.2.10  Repeat coverage for Olfr2 deletions. Deletions bp coverage for different classes of 
repetitive elements is shown. LINE coverage is represented in orange, LTR coverage in green and SINE 
coverage in blue. For each class, the number of bp covered in the locus (first column for each group), the 
number of bp covered by Pindel deletions (second column), and the number of bp covered by Pindel 
deletions supported by PB reads (third column). 
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3.2.11 Deletion clustering 

 

 

In order to reduce the complexity of the detected deletions we clustered together deletions 

supported by at least 1 PB and 5 or more Illumina reads in at least one sample (MDAV, 

MDAXI or OE) if they overlapped the same LINE elements (a minimum of 2 LINE 

elements should be overlapped by every considered deletion) reported in the reference 

genome. The clustering resulted in a subset of 125 deletions, intersecting 2 to 5 LINEs, 

out of 149 original deletions. Only one clustered deletion involved a FL-L1 at one 

boundary. Although chromosomal breakage could originate anywhere in the genome, it 

is tempting to speculate that LINE sequences themselves may be involved in break 

formation (Erwin et al., 2016b). To verify it, a random set of deletions of the same number 

and length of the 125 clustered deletions was created in the 70kb locus to compare the 

frequency of observed characteristics in the real deletions versus a randomly selected 

population.  

 

 

 

3.2.12 Inferring mechanisms of deletion formation 

 

 

The presence and characteristics of particular genomic features associated with the 

observed deletions suggested us that the same principal mechanism could operate in the 

formation of all the deletions: microhomology mediated end joining (MMEJ). 

Homologous sequences ranging from 5 to 25 bp were found in proximity of the 

breakpoint junctions. Moreover, sequence motifs and transposable elements were found 

in the breakpoint regions. GC content in the homologous sequences flanking real and 

random deletions was also evaluated and found to be significantly different. 
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3.2.12.1 5-25 bp Microhomology between the breakpoints  

 

 

Microhomology is defined as one or more base pairs (bp) of perfectly matching sequence 

shared between the proximal and distal reference sequences surrounding the breakpoints. 

Direct repeated homologous sequences (DRS) ranging from 4 bp up to 17 bp (8 bp on 

average) were present at the breakpoints. 120 times over 125 the homology was 5 bp or 

more suggesting MMEJ as the major mechanism of repair to double strand breaks.  

92 times one DRS was removed by the deletion process and the other retained (figure 

3.2.12.1a, case 1), 13 times both DRS were inside the deletion and therefore removed by 

the deletion process (case 2), 2 times left and right DRS were deleted but an extra DRS 

was present in the retained portion (case 3), 14 times both DRS were external to the 

deletion and so retained (case 4).   

 

1 

 

2 

 

3 

 

4 

 

Figure 3.2.12.1a  Schematic representation of DRS position at deletion breakpoints.  

 
In order to assess whether these microhomology regions were significantly enriched in 

our data set we generated a random deletion data set. In the random dataset DRS had an 

average length of 6 bp. Using a Student’s t Test we observed that DRS occurring at the 

boundaries of real deletions are significantly longer than DRS occurring at the boundaries 

of random deletions (pvalue < 2 e-16). 
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a 

 

b 

 

Figure 3.2.12.1b  DRS length distribution boxplot. a. DRS occurring at the boundaries of real clustered 
deletions are significantly longer than DRS occurring at the boundaries of random deletions (pvalue < 2 e-
16). b. This is true also considering the DRS occurring at the boundaries of all the deletions (non clustered, 
original subset). In the boxplot the average length is represented by the red dot. 

 

 

 

3.2.12.2 Presence of known sequence motifs in the DRS 

 
 

Particular genomic architectural features were found in all breakpoint regions and some 

of them were known as being significantly associated with structural break resolution. 

Identified motifs belonged to different categories including meiotic recombination 

hotspots (genome locations where many recombination events are concentrated), 

polymerase beta frameshift hotspots (Chuzhanova et al., 2009), hamster and human 

APRT deletion hotspots (Smith and Adair, 1996), FOXO recognition elements (Alkhatib 

et al., 2012) , indel super - hotspot motifs (Ball et al., 2005), and immunoglobulin heavy 

chain class switch repeats (Abeysinghe et al., 2003, Chuzhanova et al., 2009). The 

presence of these motifs at the breakpoints was checked in the sequenced data set and the 

randomly generated data sets in order to assess whether these motifs were enriched in our 

samples.  
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3.2.12.3 Repetitive elements at the 3’ and 5’ of the deletions 

 

The well-known capacity of sequence motifs to predispose to DNA breakage led us to 

analyze the nucleotide context of the breakpoint regions (60 bp around the breakpoints). 

Most of the deletions (122/125) presented repetitive elements at their 3’ and 5’ 

breakpoints harboring the microhomology region (3/125 presented a repetitive element 

only at one end). These numbers are particularly interesting if compared with the ones of 

the random deletion dataset. Only 23/125 random deletions harbored repetitive elements 

at both breakpoints, 51 random deletions presented no repetitive elements at all at the 

breakpoint region and 51 random deletions involved only one repetitive element. 

The Blast2 analysis were performed to determine the percentage of sequence identity 

between the repetitive elements bridging the deletion boundaries. We found evidence that 

27 deletions displayed more than 70% homology between LINE elements present at the 

left and right breakpoint. This may suggest that LINE elements could be involved in the 

restoration of DSBs occurring within repeated sequences. When the deletion bridges two 

LINEs, the transposable elements may help to repair the DNA lesions forming secondary 

structures which can bring distant DNA segments close to each other and therefore, 

promoting the recombination between them. On the other hand, LINE sequences 

themselves may be involved in break formation. Interestingly, even when the homology 

region between repetitive elements overlapping the deletion breakpoints was very small, 

it corresponded to the DRS located in the 60 bp surroundings of the left and the right 

breakpoint. 

 

 

 

3.2.12.4 GC-rich microhomology  

 
 

Reportedly (Verdin et al., 2013), base composition influences MMEJ. In particular, GC 

rich motifs increase the stability of the annealed pairs during MMEJ (Kent et al., 2015). 

So, we next asked whether GC content in the real deletions DRS was higher than the 
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random deletions DRS. The percent of GC of the real DRS (39.5% in all DRS, 44% in 

DRS longer than 8 bp) resulted to be significantly higher than the ones of the random 

DRS (34% in all DRS, 36.6% in DRS longer than 8 bp) consistently with previous 

findings. From this data we could conclude that the observed deletions may be the result 

of a microhomology-mediated mechanisms of double strand break (DSB) resolution such 

as MMEJ. 

 

 

 

3.2.13 Validation of Pindel deletions with PCR  

 

 

In parallel to Pac Bio validation, Pindel deletions were validated independently by end-

point PCR in order to answer the following questions: 

 

• Is SV calling based only on Illumina reads reliable? 

• Is MDA amplification inducing artifacts? 

• Is PCR amplification inducing artifacts? 

• Are DRS real? 

 

 

 

 3.2.13.1 Is SV calling based only on Illumina reads reliable? 

 

 

The in-silico validation with PacBio reads, performed on the deletions detected with 

Pindel, resulted in a considerable loss of information. Indeed, the 94% of deletions 

detected with Pindel was discarded because no PacBio read supported them. However, 

by randomly checking Illumina coverage of deletions with no PacBio coverage we could 

appreciate a perfect fit between Illumina reads and Pindel calls.  
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Figure 3.2.13.1a  Intersection between deletions detected with Pindel and Illumina supporting reads. 
UCSC genome browser view of deletions 662 and 314 located on amplicon 6 that lacked PacBio coverage. 

 

So, assuming that Pindel SV calling is reliable, the lack of PacBio coverage of the 

majority of the detected deletions may have at least two explanations: either most of the 

deletions detected with Pindel and supported by Illumina reads are artifacts or we are not 

at saturation with PacBio reads and we require a higher sequencing depth to increase the 

chances to target rare events. 

 

To investigate this issue, we decided to include in the validation pool also deletions 

supported by Illumina reads but not by Pacbio reads. Among all the deletions that lacked 

PacBio support we focused on the ones present in both MDA samples, our samples of 

interest, and OE sample, the control. Moreover, since most of the deletions were 

concentrated upstream the Olfr2 TSS we decided to focus on amplicons 1-5. Amplicon 2 

was not taken in consideration since it has no PB coverage at all. 

Because of the highly repetitive nature of the locus and given the nested deletion pattern, 

designing the probes appeared to be very challenging. To overcome these difficulties, and 

maximize the chances of success, we decided to focus on the deletions showing the 

highest Illumina read coverage and design the primers on the mapped side of a consensus 

of the reads supporting the deletions at their 5’ and 3’.  

Overall, we selected for validation 6 deletions: 3 of them without any PacBio coverage. 

One deletion located in amplicon 1, one located in amplicon 3, two located in amplicon 

4 and two located in amplicon 5. PCR validations were performed on the same amplified 

PCR products (MDA and OE) which were sent for Pac Bio and Illumina sequencing. 
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Table 3.2.13.1  PCR validated deletions summary information. For each deletion validated by PCR all 
the related information is summarized. PCR_validated= sample where deletion was validated by PCR; 
ID_Pindel (best match) = ID of Pindel deletion which is supported by Sanger sequence with the highest 
nucleotide precision; deletion_bp= length of deleted sequence; NON-del_band_bp= length of non-deleted 
sequence; expected_del_band= length of expected deleted PCR band; cov_MDA V% , MDAXI%, OE 
(Ref/Alt)= Illumina reads coverage for each sample calculated by the number of alternate reads (Alt), 
supporting the deletion and the number of reference reads (Ref), supporting the reference sequence; MDA 
and OE-PB reads= number of supporting PB reads for sample. 

 

 
 
Figure 3.2.13.1b  PCR validation results. Green rectangles indicated validated deleted and non-delted 
band for each validation assay. MDA_PB and OE_PB represent MDA and OE PCR amplicon samples 
sequenced by Pac Bio; MDA_ill and OE_ill represent MDA and OE PCR amplicon samples sequenced by 
Illumina. 

 

Putative “deleted” PCR bands were extracted from agarose gel and re-sequenced by 

Sanger sequencing. Interestingly, for each PCR reaction we were able to amplify both the 

deleted and the non-deleted sequence, although with variable efficiency. Confirmed 
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Sanger sequences were intersected with the coordinates of the respective Pindel deletions, 

presenting perfect match at the boundary. 

 

 
 
Figure 3.2.13.1c  Sanger sequences supporting selected Pindel deletions. UCSC genome browser view 
of Sanger sequences for amplicons 1, 3, 4 and 5 are indicated by the yellow arrows. Red arrows indicate 
the Pindel deletions supported by Sanger sequences. Detailed Repeat Masker annotation is activated. 

Since we were able to validate also deletions without any PB supporting read, our second 

hypothesis is confirmed: maybe we need a higher PacBio coverage for an exhaustive 

description of our locus or we have to relax the parameters orthe alignment PB illumine. 

 

 

 

3.2.13.2 Is MDA amplification inducing artifacts? 

 

 

It is well known that MDA amplification induces artifacts (Lasken and Stockwell, 2007, 

Treiber and Waddell, 2017 ) but working with low number of cells requires whole-

genome amplification (WGA) techniques to increase DNA starting quantity.  

In order to be aware of possible SV false calls, resulting from MDA induced chimeric 

fragments we adopted a “technical positive control” that did not undergo MDA 

amplification: OE DNA sample. Deletions present in both MDA samples and OE samples 

can-not be MDA induced artifacts.  

Independent PCR validations confirmed two deletions at the 5’ of Olfr2 TSS, both 

supported by Pac Bio reads and shared by two MDA replicates. A third deletion, not 
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supported by PacBio reads nor by OE Illumina reads, unexpectedly, was validated also 

in the OE sample. On one side this evidence may exclude the possibility of a possible 

MDA-induced chimeric nature of the deletions but most probably it can be a clue of a 

lack of sequencing saturation. 

 

 

 

3.2.13.3 Is PCR amplification inducing artifacts? 

 

 

In order to exclude the possibility of considering as real events, deletions that are artifacts 

resulting from the initial Olfr2 locus PCR amplification, we performed a validation also 

on total MDA amplified starting material prepared for PCR amplification. Amplicon 3 

deletion was successfully validated from both bulk OE DNA and total MDA amplified 

DNA. This allows us to confidently exclude the presence of a PCR induced artifact. 

 
 
Figure 3.2.13.3  Validation on total MDA amplified starting material for amplicon3-deletion. 
Validated amplicon 3-deletion bands are shown for three MDA replicates (I, X, XI) and from total gDNA 
expected from OE (bulk OE DNA) in the green rectangle. 
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3.2.14 Are DRS real? 
 

All validated deletions were characterized by the presence of DRSs. Interestingly, not 

only DRSs detected bioinformatically on clustered deletions were recovered, but DRSs 

were detected also at the borders of validated deletions not covered by PacBio reads and 

therefore excluded from the clustering. 

 
 Amplicon 1 Amplicon 3 Amplicon 4 Amplicon 4 Amplicon 5 Amplicon 5 

ID_Pindel 199 300 159 149 260 256 

MDA_PB_reads 1 1 0 0 9 0 

OE_PB_reads 0 0 0 0 0 0 

DRS motif TCCCATCCTCCC ATTTTGAT GAGAGG CCTAG GTACCAATT GTACCAATT 

 
Table 3.2.14  DRS are present in all the validated deletions. For each deletion validated by PCR all the 
related information is summarized. ID_Pindel (best match) = ID of Pindel deletion which is supported by 
Sanger sequence with the highest nucleotide precision; MDA and OE-PB reads= number of supporting PB 
reads for sample. DRS sequence = microhomology motif flanking the boundaries of the deletions. 
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Apart from simple self-insertion, investigated with the SPAM technique and described in 

the previous results section , LINE-1 elements appear to alter the primary structure of the 

genome also providing material for DNA recombination (Burwinkel and Kilimann, 1998) 

leading to deletion and duplication of sequence within the repeats. 

The abundance of MMEJ mediated deletions, alternative LINE-1 endonuclease target 

sites and extensive LINE-1 occupancy of the whole locus seem to be predictors of an 

unstable genomic region, prone to DNA breakage, rearrangements and structural 

variation where the detected deletions may have arisen from a repair process of existing 

DNA lesions. 

The same dynamics may potentially be an advantageous feature of all Olfr genes: a 

strategy to create diversity.  

The renewal ability of olfactory epithelium (OE), constantly regenerating mature OSNs, 

makes this tissue an ideal substrate for LINE-1 mobilization. At the same time, the high 

activity and direct exposure to external environment of OE, result in the accumulation of 

DNA damage and the loss of genomic integrity consequent to inefficient repair 

mechanisms. 

To obtain further insights into this issue, we profiled DSB distribution in olfactory 

epithelium. 
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3.3 Chip Seq analysis of endogenous γ-H2AX in mouse olfactory epithelium and liver 

 

 

 

3.3.1 Profiling double strand breaks: cause and effect of structural variants 

 

 

 

3.3.1.1 γ-H2AX peak characterization 

 

 

Phosphorylation of histone H2AX (γ-H2AX), occurs in response to DSB as an early 

signal to recruit the DNA-damage repair protein machinery . Therefore, γ-H2AX can be 

a suitable indicator for the presence of DNA-DSBs in different tissues. Most research 

relying on chromatin immunoprecipitation (ChIP) methods, to understand how γH2AX 

contributes to double-strand break repair in mammalian cells, starts from artificially 

induced, often target specific DNA breaks. Little is known about the differential 

distribution of γ-H2AX marker for DSB throughout the genome at physiological 

conditions. To address this question, we used the ChIP-seq technique to profile the 

chromosomal distribution of γ-H2AX in C57BL/6J mice OE (at p6 and 1m) and L (at p6). 

 

In order to obtain reliable ChIP enriched regions for each biological condition (OE and L 

at p6 and OE at 1 month) we intersected the peak sets of two replicates (A and B). For 

comparison, a random set of peaks (shuffled peaks) was generated as a control dataset to 

use in all the analysis. 
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IP samples peaks peak length (average bp) Replicates IntersectBed
Lp6A 31469 3782

23363 (74.2%)
Lp6B 45791 5875

OEp6A 28465 5755
16050 (56.4%)

OEp6B 34280 3855
OE1mA 23110 4360

10298 (44.6%)
OE1mB 23406 4458  

 
Table 3.3.1.1  ChIP-seq peak calling output. Peaks were called with EPIC tool, number of peaks and 
peak lengths for each biological replicate are indicated. For each sample peaks from two biological 
replicates were intersected and intersected sample datasets were used in following analysis.  

 
Almost 6000 peaks were in common among the three samples, while the number of Lp6 

exclusive peaks (almost 1200), doubled the number of OE1m peaks (6000) and was six 

times higher than the number of OEp6 sample (2000).  

 

 

Figure 3.3.1.1  ChIP-seq sample peaks intersection. Venn diagram of peaks intersection among different 
ChIP-seq sample datasets.  
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3.3.1.2 γ-H2AX peaks genomic distribution 

 

 

In order to gain insights about γ-H2AX distribution, we looked at the position in the 

genome of the detected peaks. From a first glance at the cariotype, the profile looked very 

similar in the different datasets. 

 

 

Figure 3.3.1.2a  Peaks distribution with respect to the caryotype. Ensembl view of all mouse 
chromosomes. Chip-seq peaks are indicated with different color per sample: Lp6 (red); OE1m (blue); OEp6 
(green)  

 
The samples continued to present similar patterns as we proceeded describing the signal 

more in detail. 

In particular, the enrichment of the peaks in mouse genome was mostly found in 

correspondence of gene bodies, peaking from 0 to 10kb downstream the transcription 

start site (TSS). This was in sharp contrast with the distribution of shuffled peaks, mainly 

enriched at the intergenic level.  

Moreover, more than 20% of real peaks and 3% of random peaks covered GC-rich 

regions, namely very sensitive to DNA damage. This result is aligned with the previous 

ones, since GC-rich regions are considered gene markers in vertebrate genomes (Han and 

Zhao, 2009). 
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Figure 3.3.1.2b  ChIP-seq peaks genome annotation. Peaks genome distribution was performed with the 
bioinformatics tool NEBULA; the genomic regions were considered with respect to gene start site (TSS). 
For each sample the proportion of peaks falling in each genomic region is shown. NEBULA legend: Gene 
Down=gene downstream (3’UTR), Ehn= enhancer, Imm.Down.=Immediate downstream (5’UTR), 
Interg.=intergenic, Intrag.=intragenic, Prom=promoter. Real sample peaks were represented in blue, 
shuffled peaks were represented in grey. 
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Figure 3.3.1.2c  ChIP-Seq peaks distribution around TSS. Peaks genome distribution with respect to 
annotated TSS was performed with the bioinformatics tool NEBULA. For real and shuffled peak datasets 
peak density was plotted with the distance from annotated TSSs. 

 

 
 

Table 3.3.1.2  Percentage of peaks overlapping CpG islands. For each sample the percentage of peaks 
overlapping CpG islands is shown. 

  

Sample dataset CpG overlapping peaks (%)
Lp6 21.66
OEp6 24.21
OE1m 20.88
shuffle 3.01
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3.3.1.3 Gene Ontology enrichment analysis 

 

 

To examine whether our peaks were associated with genes with specific functions, we 

performed gene ontology analysis using GREAT. We compared the enrichment of each 

sample dataset (foreground dataset) against total number of sample peaks (background 

dataset). Interestingly “sensory perception of smell” was the only biological function 

enriched in olfactory epithelium of older mice (OE1m). While younger mice showed an 

enrichment of biological functions related processes linked to neuron innervation like 

“axon choice point recognition” and “collateral sprouting”. This is coherent with the fact 

that at six days after birth (p6) OE is not completely mature and cell proliferation rate is 

high while at 1 m OSNs innervation pattern is complete and a slower cell proliferation 

rate parallels a decline in apoptosis and OSNs regeneration. 

Among the terms enriched in liver we can list, “common bile tract development” and 

“negative regulation of hepatocyte growth”. These results are consistent with the age of 

the mice: at birth, biliary epithelium is still immature, and its maturation continues during 

the first years of life through hepatoblasts differentiation into periportal hepatocytes and 

adult hepatic progenitor cells (Strazzabosco and Fabris, 2012).  

Overall these data may suggest a possible association of γ-H2AX peaks with 

development. 
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Figuure 3.3.1.3: ChIP-seq peaks enrichment for GO Biological Process. “Biological Process” GO 
enrichment analysis was performed by GREAT tool. Top 10 GO categories were shown for each sample. 
For each peaks the nearest TSS was annotated. Only p-values < 0.0001 were considered in the output 
results. 
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3.3.1.4 Regulatory sites of transcription colocalize with γ-H2AX peaks 

 

 

Since our results show an enrichment of OE and L peaks around gene TSS and, starting 

from the hypothesis that γ-H2AX is a marker of DSB, we decided to explore peak 

distribution with respect to the principal transcription regulatory regions involved in 

chromatin remodelling: Type II DNA topoisomerases (TOP2), RNA polymerase II (Pol 

II), CTCF and DNAse I.  

Unfortunately, no public dataset was found for TOP2 genomic distribution, so we focused 

our attention on the other three sites. Moreover, among the available datasets, there was 

no information for olfactory epithelium. Olfactory bulb, cortex and whole brain tissues, 

were chosen instead, as they are the closer tissue types we could find data for.  
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3.3.1.4.1 DNAse I regulatory sites 

 

 

DNAse I hypersensitive sites are indicators of open chromatin regions where it is possible 

to find many different regulatory elements including promoters, enhancers, insulators and 

silencers as well as TSS and regions of early replication (Boyle et al., 2008). According 

to our results, showing an enrichment of H2AX peaks in genic regions and around the 

TSS, and in agreement with what obtained in other works (Lensing et al., 2016) we 

expected to find our peaks distributed in proximity of these regions. 

Indeed, about 70-75% of peaks for each sample fell within 1kb of a DNAse I. Looking at 

shuffled dataset, this was true only for 25% of peaks, confirming our prediction. 

 

 
 
Figure 3.3.4.1a  Percentage of peaks overalpping DNAse I sensible sites in different datasets. Lp6 
(red); OE1m (green); OEp6 (blue); random peaks (black).  
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3.3.1.4.2 CTCF regulatory sites 

 

 

A similar analysis was performed to investigate peak distribution with respect to CTCF 

binding sites. CTCF proteins participate in transcription mediating the formation of loops 

aimed to promote interactions between various regulatory regions, such as promoters and 

enhancers (Ong and Corces, 2014). CTCF peaks are known to be enriched in the 

surrounding of the TSS of genes that incur DSBs where they co-localize with DNAse I 

hypersensitivity sites and TOP2B (Uusküla-Reimand et al., 2016). 

Similarly to what we observed for DNAse I, the percentage of the peaks falling within 1 

kb from a CTCF binding site (almost 30%), was higher than the proportion of random 

peaks. 

 

 
Figure 3.3.1.4.2  Percentage of peaks overalpping CTCF binding sites different datasets. Lp6 (red); 
OE1m (green); OEp6 (blue); random peaks (black).  



 

 138 

3.3.1.4.3 Pol II regulatory sites 

 
 

In order to test transcription-coupled enrichment of γ-H2AX without external damage we 

compared the distribution of H2AX peaks with RNA polymerase II binding sites. 

The enzyme co-localizes with DNAse I hypersensitivity sites, showing a binding 

preference for open chromatin regions, and is reported to be in close association with 

CTCF and topoisomerase proteins at TSS. Endogenous γ-H2AX foci were reported at the 

TSS of genes undergoing Pol II stalling consequent to hyper-activated transcription (Seo 

et al., 2012).  

About 10-15% of peaks for each dataset fall in a 1 kb interval surrounding Pol II binding 

sites, suggesting an association between peaks and actively transcribed genes. This 

motivated us to investigate the correlation between γ-H2AX and expression. 

 

Similar results were obtained comparing the peaks with brain and olfactory bulb 

datasets. 

 

 
 

Figure 3.3.1.4.3  Percentage of peaks overalpping Pol II binding sites in different datasets. For each 
chart, the dataset used is indicated. Lp6 (red); OE1m (green); OEp6 (blue); random peaks (black).  



 

 139 

3.3.1.5 γ-H2AX peaks correlation with gene expression 

 

 

Transcription is, reportedly, one of the most important endogenous agents producing DSB 

(Kim and Jinks-Robertson, 2012, Schwer et al., 2016). The fact that H2AX signal is 

enriched in proximity of active chromatin markers supports this hypothesis. In this 

paragraph, we are going to investigate further the correlation between γ-H2AX peaks and 

gene expression in OE and L. To accomplish this task, we explored peak distribution 

within tissue specific, active TSS.  

 

 

 

3.3.1.6 Pol II-overlapping γ-H2AX peaks correlation with OE and L active TSSs 

 

 

Here, we compared the proportion of peaks overlapping both Pol II binding sites and 

active TSS, for each sample, including the shuffle dataset. As expected most of the peaks 

which already overlap Pol II binding sites, overlap also an active TSS (about 71 to 75%).  

 

 
 

Table 3.3.1.6  Pol II-overlapping peak correlation with active TSSs. The column “Pol II-overlapping 
peaks” indicates the number of γ-H2AX peaks overlapping Pol II binidng sites; the column “L_TSSs-
overlapping peaks” indicates the Pol II-overlapping peaks that were also associated to a TSS active 
according to the FANTOM5 liver dataset (numbers in brackets indicate the corresponding percentage out 
of the total number of Pol II-associated peaks); similarly the column “OE_TSSs-overlapping peaks” 
indicates the number of Pol II-associated peaks overlapping one active TSS according to the OE dataset. 

  

Sample dataset Pol II overlapping peaks L-TSSs overlapping peaks OE-TSSs overlapping peaks
Lp6 4043 3016 (75%) 2918 (71%)

OEp6 3126 2335 (74%) 2322 (74%)
OE1m 1525 1097 (72%) 1080 (72%)
shuffle 745 447 (60%) 425 (57%)
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3.3.1.7 γ-H2AX peaks correlation with OE active TSSs 

 

 

Comparison with TSSs active in the OE 

 

OE-active TSSs overlapping γ-H2AX peaks belonging to any of the three considered 

peak sets have higher expression levels with respect to OE-active TSSs that do not overlap 

γ-H2AX peaks. 

More in general, we noticed that OE-active TSSs in overlap with real peaks show a 

higher expression level than OE-active TSSs not in overlap with real peaks or in overlap 

with shuffle peaks. This trend is observable regardless the age or the tissue considered. 

OE samples presented a slightly higher, but not yet significant, expression level than OE-

active TSSs in overlap with liver peaks. 

  

 
 

Figure 3.3.1.7a  ChIP-seq peaks comparison with active OE-TSS. Left panel: per each sample, the 
expression values of OE-active TSSs falling within and without the peaks are compared. Right panel: fold 
induction of OE-active TSSs expression values is shown for each sample.  
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Figure 3.3.1.7b  Comparison of peaks p-values with respect to active-TSSs. Top panels are referred to 
TSSs active in L and bottom panels to TSSs active in OE. For each sample the p-values of peaks associated 
to a TSS is compared with the p-values of peaks not associated to a TSS. 

 

Given that most of the γ-H2AX peaks that overlap an active TSS in the L dataset also 

overlap an active TSS in the OE dataset, we hypothesize that often the same expressed 

gene is overlapped, regardless the tissue. 

 

 
 

Table 3.3.1.7  Peak overlap with active TSSs. The column “L_TSSs-overlapping peaks” indicates the 
number of γ-H2AXpeaks that were associated to a TSS active according to the FANTOM5 liver dataset; 
similarly the column “OE_TSSs-overlapping peaks” indicates the number of γ-H2AXpeaks that were 
associated to a TSS active according to the RNA-seq OE dataset; the column “L and OE_TSSs-overlapping 
peaks” indicates the number of γ-H2AXpeaks that were associated to a TSS active in both L and OE 
datasets. The last column expresses the percentage of γ-H2AXpeaks that were associated to a TSS active 
in both L and OE datasets.  

Sample dataset L-TSSs overlapping peaks OE-TSSs overlapping peaks L and OE-TSSs overlapping peaks 
Lp6 4040 4490 3541 (87.6%)

OEp6 3119 3630 2802 (89.8%)
OE1m 152 1935 1352 (88.7%)
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3.3.1.8 Chromatin segmentation 

 

 

A chromatin segmentation analysis was performed with the aim of explaining the 

observed data according to different chromatin states of the mouse genome (see details 

in Methods and Materials). 

 To create a human readable annotation of the states identified and an interpretation of 

their meaning, we report a summary of the marks enriched for each state and 

corresponding function and used these to formulate a short description for the state itself. 

 

 
 

Table 3.3.1.8  Summary of marks enriched for each state. For each chromatin state, enriched mark, level 
of enrichment, mark description and short state description are indicated. +++= maximum enrichment; += 
minimum enrichment; NA= no enrichment. 

 

Chromatin states 2, 4 and 7 presented the strongest enrichment in the three datasets 

(ChromHMM). This is consistent with the observation that a very large proportion of the 

peaks is located in gene bodies and suggests that this deposition pattern is linked to a 

regulatory function of g-H2AX within the gene bodies in physiological conditions. As 

expected, and consistently with previous observations, for the set of randomly distributed 

peaks no enrichment is detected for all states. 
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Figure 3.3.1.8  Fold enrichment between samples among different chromatin states. White and blue 
colored squares represent, respectively, no enrichment and tha maximum enrichment. 

 

 

 

3.3.1.9 Peaks overlapping active enhancers 

 

 

We previously found that γ-H2AX signal is associated with broadly transcribed genes 

particularly involved in age specific biological processes and it is further enriched near 

the TSSs of generally expressed genes. Consistent with this notion, we wanted to 

investigate whether γ-H2AX signal tends to occur within putative enhancers. Since the 

accepted chromatin signature for active enhancers is the presence of both the H3K4me1 

and the H3K27ac marks (Calo and Wysocka, 2013), we extracted the set of peaks 

overlapping chromatin segments in state 3 and compared their distribution with respect 

to γ-H2AX real and random peaks. 

Indeed, the proportion of real peaks co-localizing with γ-H2AX signal was higher than 

the proportion of random peaks. 

 

 

 
Table 3.3.1.9  Percentage of peaks overlapping active enhancers. For each sample, the percentage of 
peaks in overla with state-3 marks (active enhancers) is indicated.  

Sample dataset State 3 overlapping peaks
Lp6 20.76%

OEp6 19.57%
OE1m 16.36%
shuffle 3.73%
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3.3.1.10 γ-H2AX peaks enrichment for different classes of repeats 

 

 

In order to further describe the genomic context of the detected γ-H2AX signal, we sought 

to characterize peak distribution with respect to different classes of repeats, including 

SINEs, LINEs, LTRs, DNA Transposons and satellite repeats. The plots showed the 

presence of a marked bias towards SINEs, coherent with the SINE gene-centered 

distribution (Elbarbary et al., 2016). The results are also consistent with the low 

concentration of LINE-1 elements in highly expressed genes regions (Graham and 

Boissinot, 2006). 

 

 
 

Figure 3.3.1.10  ChIP-seq peaks enrichment for different classes of repetitive elements. For all the 
samples the percentage of peaks coverage (bp) for each class of repeats is shown. Real peaks are shown in 
red and random peaks are shown in green. Black lines represent standard deviation. 

 
Given the well-known involvement of the B1 and B2 SINE lineages in segmental 

duplications within the mouse genome (Jurka et al., 2005) we decided to investigate also 

γ-H2AX distribution around gene clusters.  
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3.3.1.11 Do DSBs initiate recombination events? 

 

To summarize, our analysis revealed that γ-H2AX peaks: 

 

- are enriched at the gene body; 

- are enriched at the TSS; 

- involve broadly expressed genes, 

- are linked with the developmental stage of the tissue; 

- are associated with DNAse I open chromatin regions; 

- are associated with CTCF binding sites; 

- are associated with Pol II binding sites; 

- overlap active enhancers; 

- are enriched for SINE elements. 

 

 

All together these findings suggest us that γ-H2AX distribution in the genome is far from 

being random but the peaks are preferentially distributed near specific genomic regions. 
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3.3.1.12 γ-H2AX peaks distribution with respect to gene clusters 

 

 

Clustered genes are thought to be the result of extensive rearrangements on a common 

precursor such as duplication, unequal crossing-over, transposition, including 

retrotransposition and mutation.  

One characteristic shared by many gene clusters is conserved CTCF sites at 5′ and 3′ of 

the loci (Kim at al., 2006, Tchurikov et. al 2013). 

Comparing the distribution of CTCF peaks (public dataset) and CTCF-overlapping γ-

H2AX peaks with respect to gene clusters considering different intervals, within and 

outside the clusters, we noticed that CTCF peaks were not enriched inside the clusters but 

distributed outside of them together with CTCF.  

As expected, the peaks were depleted also inside Olfr2 cluster, extensively studied in the 

previous result section, but preferentially distributed outside it. Interestingly, the only 

exception was one OE1m γ-H2AX peak falling inside the Olfr2 locus, in proximity of 

amplicon 3 and amplicon 1 validated deletions. According to this finding we can 

speculate that the deletions described in the previous section may have arisen from a 

repair process of existing DNA lesions. 

 

 
a                                                                b 

Figure 3.3.1.11  Peak distribution with respect to gene clusters. (a) CTCF-overlapping γ-H2AX peaks 
distribution with respect to OR-gene clusters. CTCF-overlapping peaks were intersected with olfactory 
clusters to see the percentage of peaks falling inside the clusters and within different range of intervals 
outside the clusters. Too few peaks fall within 0 and 100 kb to be visible in the plot. (b) OE g-H2AX peak 
localization with respect to validated deletions. Amplicon 1 and amplicon 3 deletions are indicated by red 
arrows; OE g-H2AX peak is indicated by green arrow.  

0

20

40

60

80

Liver_p6 OE_p6 OLFB_CTCF OE_1m
Peaks

%

distance
distance_100000_1000000

distance_1000000_10000000

distance_more_10000000

% Peaks in overlap with OB CTCF from Olfr clusters



 

 147 

4 Discussion 

 

 

In this thesis we have presented results that suggest that LINE-1-mediated rearrangements 

have an important role in the formation of SVs in mammalian genomes. Leveraging next-

generation sequencing technologies we investigated SVs resulting from three main 

mechanisms related to LINE-1 elements: LINE-1 integration in new genomic locations, 

LINE-1 mediated rearrangements and LINE-1 induced double strand breaks. 

 

 

 

4.1 Analysis of FL-L1 elements in the genomes of AD post-mortem brains 

 

 

In this study we introduced the Splinkerette Analysis of Mobile Elements (SPAM) 

technique, which was developed in order to unambiguously map only active FL-L1 

elements present in the human genome, still able to mobilize and give rise to novel LINE-

1 integration sites . 

Inspired by the splinkerette PCR (spPCR) protocol, SPAM technique, starts with a PCR 

enrichment step which allows us to effectively target the boundary of a FL-L1 element 

and its flanking genomic region. Then it proceeds with an accurate bioinformatics 

pipeline to unambiguously map amplified LINE-1-containing genomic fragments and 

estimate their distribution. 

In comparison with other similar techniques, SPAM has several advantages. First of all, 

most studies still focus on the 3’ LINE-1 region (Ewing and Kazazian, 2010, Erwin et al., 

2016), aiming at the identification of both the integer (1%) and the 5’truncated forms 

(99%) of LINE-1 elements present in the human genome. Importantly, focusing on the 

very 5’ LINE-1 region, we significantly reduce the complexity of the targetable repeats 
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and we analyze only the small fraction of LINE-1s that retain their potential to impact 

genomic structure and gene expression: FL-L1 elements. Second, SPAM is a very precise 

technique, that allows LINE-1 Integration Sites (L1-IS) discovery with the single base 

precision. Third, SPAM is also a very efficient technique: we identified nearly 100% of 

the FL-L1 reference integration sites detectable with our primers with 0 mismatches. The 

fourth advantage of our technique is its scalability. Here we present SPAM as a valuable 

method to detect FL-L1 elements in the human genome, but, embedded in the 

methodology is the flexibility to perform the same technique in different organisms and 

considering different classes of TE. 

After developing and optimizing the SPAM technique, we used it to discover annotated 

(AIS), polymorphic (PIS), and non-annotated FL-L1 integration sites in the human 

genome of Alzheimer’s disease affected patients (AD) and controls (CTRL). 

 

 SPAM analysis was performed on a brain tissue (frontal cortex) and an extra brain tissue 

(kidney) of 4 AD patients and 4 CTRLs. This choice was motivated by the desire to study 

the effect of FL-L1 retrotransposition in a tissue severely affected by the disease, where 

active retrotransposition was already demonstrated to occur, and a control tissue, stable 

from the retrotransposition point of view and not directly related to the disease. 

 

This study identified many novel LINE-1 insertions, the majority of which were private, 

single tissue insertions (72%). Anyway, in relation with the disease, the most interesting 

IS appeared to be the less abundant ones (3%): PIS. Polymorphic Integration Sites are 

recent insertions events present in a restricted number of individuals and therefore not 

annotated in the human reference genome, arising from currently active, mobile LINE-1 

elements (Burns and Boeke, 2012). Accordingly, PIS, presented many characteristics in 

common with AIS compared to PIS: from MapFragments coverage, to genomic 

distribution.  

The most intriguing result about PIS emerged from the differential integration analysis 

between AD and CTRL samples. Statistically significant differences were detected in 

differential coverage of MapFragments per specific MapClusters and MapFragments per 

Gene. Considering an FDR-adjusted p-value <0.1, 18 AIS, 42 PIS and 0 NIS presented a 

significantly different coverage in terms of MapFragments in the comparison between 

AD and CTRLs (frontal cortex and kidney together). Among the PIS, the IS showing the 

most significant result (since present in 3 out of 4 AD samples and none of the CTRLs) 
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was located in the intergenic region between the HLA-DRB1 and the HLA-DQA1 genes, 

inside the MHC class II locus, the most variable region in the human genome. This PIS 

(IS-HLA) corresponds to a known FL-L1 polymorphism of the human population and is 

reported to be present in the MANN and DBB MHC haplotypes (Horton et al., 2008). 

Unfortunately, the validation, performed on 410 AD samples and 239 CTRLs, actually 

did not show a different incidence of the IS-HLA, whose allelic frequency in AD samples 

was 0.138 and in CTRL samples 0.126. However, both the abovementioned PIS and an 

IS very close to it were found able to negatively influence the expression of its 4 closest 

genes and of a non-coding expressed anti-sense RNA. A possible explanation resides in 

the genomic position of the ISs. The FL-L1 insertion in the HLA locus, during its 

integration, disrupted an LTR sequence which was previously demonstrated to be a 

transcribed enhancer region (Thurman et al., 2012, Andersson et al., 2014) with a possible 

role as gene expression modulator. Transcription factor binding sites for TBP, TAF1 and 

Pol II in correspondence of the IS, further suggest a possible regulatory role of the 

disrupted transposable element. 

 

In order to assess the implications of FL-L1 IS on gene function we examined the set of 

NIS and PIS associated genes with respect to GO functional category classifications. No 

significant enrichment was appreciable for PIS while some interesting hints about FL-L1 

preferential IS sites emerged looking at the enrichments of NIS associated genes. In 

agreement with what observed in other works, our results suggests that retrotransposition 

effectively tags genes associated to neural differentiation, learning and memory 

(Temtamy et al., 2008). Interestingly, in the FC of AD patients, the most targeted loci are 

associated to signal transduction pathways and receptor activity, already known to be 

compromised in the elderly (Lu et al., 2004, Mobley et al., 2014). This is intriguing and 

suggestive of a pathogenic role of FL-L1 insertions in the brain. Signaling dysfunctions 

resulting from insertions in these regions, are reported in relation with Schizophrenia, and 

might promote the disease (Guffanti et al., 2016). 

Looking more in general at FL-L1 IS distribution, regardless from the disease, unexpected 

outcomes emerge. The first surprising outcome of our analysis is the discovery of 45 FL-

L1 IS in the mitochondrial genome: 20 IS (for a total of 61 mf) in AD affected patients 

and 42 IS (for a total of 144 mf) in CTRLs, most of them located in the gene body. The 

prevalence of gene associated IS is not surprising giving the high concentration of genes 

in the small mitochondrial (mt) genome. The unexpected finding was the presence of a 
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germinal IS (present in both the FC and the K of the same individual) that we managed 

to validate. We cannot exclude that we are dealing with Nuclear Mitochondrial DNA 

sequences (NUMTs) integrated in the human genome in proximity of a LINE-1 

transposable element (Ju et al., 2015). 

 

The second surprising outcome of this study is the incredibly high number of NIS detected 

in the kidney of AD and CTRL patients, almost five times higher than the number of NIS 

detected in the FC. The unexpectedly high level of somatic retrotransposition in this tissue 

is not correlated with AD. It may be the consequence of aging, of other pathologies 

affecting the individuals object of our study or it may be linked to the activity of the 

staminal niches that maintain and preserve the renal tissue throughout life (Rinkevich et 

al., 2014, Hishikawa et al., 2015).  

Several lines of evidence suggest that LINE-1 elements are active in the normal somatic 

tissues of the brain and in cancers (Shukla et al., 2013, Doucet-O’Hare et al., 2015), but 

the extent of somatic activity in other normal tissues is still largely unexplored. This is 

mostly due to the technical complexity of confidently detecting (and validating) in bulk 

tissue non-reference LINE-1 retrotransposition events unique to a single cell. With our 

method, we were able to discover thousands of unpredicted FL-L1 non-annotated IS. But, 

since our technique is not quantitative, this number may be just suggestive of an 

incredibly high level of unexplored LINE-1 mosaicism in human tissues. A potential 

perspective to determine the real rate of somatic transposition would be to adapt targeted 

LINE-1 discovery methods, such as SPAM, to single cell sequencing technologies 

(Evrony et al., 2012, Upton et al., 2015). Here, to increase the chances to validate very 

rare events (e.g. somatic NIS covered by 2 or a few MapFragments) in bulk genomic 

DNA, we took advantage of Digital Droplet PCR (ddPCR). Unfortunately, even 

employing this remarkably sensitive instrument, we were not able to validate any somatic 

IS.   

Thus, in order to evaluate the content of potentially active LINE-1s in different tissues of 

AD and CTRL individuals we performed a TaqMan based CNV analysis. The 

experiment, performed on different brain tissues from different cohorts of individuals 

(Spanish, and Brazilian) as well as in the kidney, revealed the presence of a lower amount 

of FL-L1s in the AD frontal cortex, cerebellum and kidney tissues as compared to 

controls, while, surprisingly, no differences could be observed in the hippocampus, which 
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is known to be heavily compromised by the disease. Again, unexpectedly, kidney resulted 

to be unstable from the retrotransposon-mobilization point of view.  

To understand if the loss of FL-L1 in the tissues of AD affected patients could be 

attributable to a loss of larger genomic fragments resulting from genomic rearrangements, 

we took advantage of high density arrays to compare the occurrence of FL-L1 elements 

in correspondence of genomic variations detected in AD and CTRL patients. The 

analysis, performed using the Illumina Infinium high-density chip revealed a considerable 

amount of deleted genome sequence in the brain. In the FC of the Spanish cohort in 

particular, we were able to detect statistically significant differences in the coverage of 

the putative FL-L1 elements targeted by the Taqman assay, which resulted to be 

significantly enriched in heterozygous deletions in AD patients, as compared to CTRL 

samples. Unfortunately, we didn’t reach the significance level in the Brazilian cohort 

were the same trend was observed. Since age is a very important variable in a pathology 

like LOAD, our concern is that it may have influenced the result. Indeed, while Brazilians 

AD patients and CTRLs are aged matched (~80 years old), Spanish CTRLs are younger 

(70 ± 8 years old) than Spanish AD patients (~80 years old).  

 

 

To summarize, our study revealed that FL-L1 polymorphisms can be a relevant source of 

structural variants associated to AD risk, and suggested that somatic LINE-1 

retrotransposition might occur more broadly than previously appreciated. A key goal for 

the future will be to understand exactly how these polymorphisms affect LINE-1-

mediated diseases, including Alzheimer.  
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4.2 Analysis of LINE-1 mediated SVs in Olfr2 locus 

 

 

While recent advances in sequencing technology facilitated the process of SV discovery 

in multiple genomes, the phenotypic impact of most of these SVs remains unclear. For 

example, one possible function of DNA rearrangements could be controlling OR gene 

choice in mouse olfactory epithelium. Mouse OSN express, from a family of more than 

1000 genes, one single OR gene, mono-allelically (Chess et al., 1994). Various 

hypotheses have been made about the control mechanism of OR gene expression but so 

far, little is known about it. In our opinion genomic organization is an important 

determinant of OR gene choice via DNA rearrangements in the olfactory neurons (Kratz 

et al., 2002, Clowney et al., 2012, Hoppe et al., 2006). In the present work, therefore, we 

investigated the involvement of locus-specific mechanisms for the control of OR gene 

expression.  

To perform this study, we characterized the SV profile of a locus distinguished by a very 

high abundance of repetitive elements, especially LINE-1 retrotransposons: mouse Olfr2 

locus, in order to find the putative SV that regulates the expression of the receptor. Olfr2 

was chosen among other receptors due to the availability of a transgenic mouse line 

(B6;129-Olfr2-GFP mice) where a GFP gene was inserted at the 3’ of the Olfr2 gene. 

This made cells that naturally activated the transcription of Olfr2 fluorescent, and easy to 

detect. A total of 10 cells expressing the receptor (GFP+) were collected and their material 

was amplified via MDA, to increase the DNA starting quantity. As a control, we used 

bulk genomic DNA that did not undergo MDA amplification. 

 

Then, we sequenced 50 kb of sequence around Olfr2 transcription start site (TSS) starting 

from cells expressing the receptor (that we called MDA sample) and from bulk genomic 

DNA (that we called OE sample) combining PacBio single molecule sequencing for 

reliable mapping across repeat expansions with a complementary high-fidelity paired-end 

Illumina sequencing for accurate identification of breakpoints in a locus where a very 

high repeat concentration made read mapping really challenging. Indeed, inaccurate 

mapping in repetitive regions and poor coverage, can often induce variant callers to return 

false positive results. In order to overcome the risk of dealing with false SV calls produced 

by an Illumina based tool such as Pindel, we retained only SVs longer than 50 bp, covered 

by at least 5 reads and among them, SVs supported by at least one PacBio read. 
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Surprisingly, the analysis revealed hundreds of heterozygous structural variants in the 

vicinity of the locus, among which, deletions were the most abundant. This gives us hint 

of the incredible complexity of the region. Interestingly, the number of reads supporting 

the non-annotated variant was always much lower than the number of reads supporting 

the annotated reference sequence. This may suggest the presence of somatic mosaicism 

for deletions occurring in one or just a few cells. Potentially, among the somatic genome 

variations detected in the neurons expressing the receptor (MDA samples), there are also 

the ones which explain the functional diversity of the cells. Because of the filters applied 

(see methods), the vast majority of deletions detected with Pindel was discarded. Relaxing 

the stringency is a way to improve the sensitivity; however, this may come at the cost of 

specificity. Considering that we were able to validate also deletions without PB coverage 

and supported by a number of Illumina reads lower than the imposed threshold of 5, we 

realized that relaxing the stringency of the imposed parameters (e.g. decrease blastn word 

size and increase the e-value in order to increase the number of matching PacBio and 

Illumina reads) would perhaps result in a more accurate profile of this region. While, 

single cell sequencing, probably would help to reduce the complexity of the SV pattern 

in the locus.  

 

In order to be sure that potentially interesting SVs detected in the samples expressing the 

receptor are not merely the result of amplification induced artifacts we took some 

precautions. First, to exclude MDA induced artifacts (Lasken and Stockwell, 2007, 

Treiber and Waddell, 2017 ), we focused on deletions present in both MDA samples and 

OE sample (our technical and biological control); deletions present in OE samples can-

not be MDA induced artifacts because no MDA amplification was necessary for bulk 

gDNA. Second, to exclude artifacts resulting from the initial Olfr2 locus PCR 

amplification, we performed a validation also on total MDA amplified starting material 

prepared for PCR amplification. Deletions passing these filters, like the one present in 

amplicon three, represent good candidate regulatory features. 

 

Gross genomic rearrangements, such as the ones examined in this thesis, are often the 

result of other mechanisms mediated by genomic structural features. The high number of 

retrotransposable element in the locus and the presence of matching repeats in the 

immediate vicinity of the sequenced breakpoints made us think about a possible LINE 

involvement in deletion formation. Repetitive elements have been implicated in genome 
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rearrangements (Han et al., 2008), and LINE elements themselves, providing large 

regions of sequence similarity, serve as recombination templates.  

 

On the other hand, it has previously been suggested that olfactory receptor genes flourish 

in repeat rich and rearrangement prone regions, like sub-telomeres and peri-centromeres, 

(Linardopoulou et al., 2005). Interestingly, LINE enrichment isn’t just a peculiarity of 

our locus. We fond this trend persisting in monoallelically expressed genes. In particular 

OR-clusters, show a peculiar enrichment for this class of retrotransposons compared with 

other classes of repeats. 

 

Our findings suggest also an important role played by MMEJ for the generation of the 

deletions. Microhomology-mediated end joining is an alternative non-homologous DSB 

repair pathway that relies on microhomologies (5–25 bp) on either side of the break to 

join and stabilize the broken DNA. As a consequence of this repair mechanism, the DNA 

sequence between the microhomologies is often deleted and typical direct repetitive sites 

(DRS) can be retrieved at the boundaries of the SV. Although chromosomal breakage 

could originate anywhere in the genome, it is tempting to speculate that LINE sequences 

themselves may be involved in break formation (Erwin et al., 2016b). Indeed, MMEJ 

repair resolves most of DSBs left by the endonuclease cutting activity during LINE-1 

mobilization events, and was recently proposed as the mechanism responsible for the 

formation of kb long deletions in the brain (Erwin et al., 2016a). Due to the high density 

of LINE-1 elements in Olfr2 region, we started wondering if the rearrangements observed 

in Olfr2 locus could be the result of this repair mechanism as well.  

In order to elucidate it, we further reduced the complexity of the deletion pattern, 

clustering together SVs overlapping the same LINE-1 elements annotated in the reference 

genome. Interestingly, the 98% of the clustered deletions overlapped a repetitive element 

at both their 3’ and 5’ breakpoints. Among them, one fourth displayed more than 70% 

homology between LINE elements present at the left and right breakpoint. This is in sharp 

contrast with what observed at the breakpoints of random deletions distributed in the same 

chromosome. In fact, only the 18% of random deletions harbored repetitive elements at 

both breakpoints. This may suggest a scenario where LINE elements restore DSBs 

occurring within repeated sequences, bringing distant DNA segments close to each other 

and promoting their recombination. LINE sequences themselves therefore, may be at the 

same time involved in break formation and break resolution. 
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It must be highlighted that most LINE-1 elements annotated in Olfr2 locus object of our 

study are truncated, and among the clustered deletions, only one involves a FL-L1 at one 

boundary. For this reason, we propose that MMEJ could be the DSB resolving mechanism 

of chromosomal breaks and rearrangements mediated by recombination events occurring 

between truncated retrotransposons (Han et al., 2008).  

The presence of typical hallmarks associated with the real deletions but not with the 

random deletions, suggested us that the same principal mechanism is operating in the 

formation of all the deletions. First of all, direct repeated homologous sequences (DRS) 

ranging from 4 bp up to 17 bp were present at the breakpoints of the clustered deletions 

(4 bp up to 17 bp) and were significantly longer than DRS occurring at the boundaries of 

random deletions (pvalue < 2 e-16). Second, some of the DRS motifs at the breakpoints 

are already known for being significantly associated with structural break resolution. 

Examples are: meiotic recombination hotspots, polymerase beta frameshift hotspots 

(Chuzhanova et al., 2009), hamster and human APRT deletion hotspots (Smith and Adair, 

1996), FOXO recognition elements (Alkhatib et al., 2012) , indel super - hotspot motifs 

(Ball et al., 2005), and immunoglobulin heavy chain class switch repeats (Abeysinghe et 

al., 2003, Chuzhanova et al., 2009). Third, GC content of the real deletions DRS was 

significantly higher than GC content of the random deletions DRS. Base composition at 

the breakpoint regions is an important hallmark of MMEJ since GC rich motifs increase 

the stability of the pairs during the annealing process, facilitating it (Verdin et al., 2013, 

Kent et al., 2015). Fourth, DRS were validated after Sanger re-sequencing at the borders 

of all validated deletions, even the ones lacking PacBio coverage. This result extends the 

above result to the hundreds of deletions only supported by Illumina reads that we 

temporarily set aside. 

 

The existence of a control mechanism which regulates Olfr2 expression remains an open 

question which would need to be followed up in further experiments. Nevertheless, we 

have discovered a number of strong associations between deletions, repetititive elements 

and MMEJ DSB resolving mechanism that led to an improved picture of Olfr2 locus. 
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4.3 Chip Seq analysis of endogenous γ-H2AX in mouse olfactory epithelium and 

liver 

 

 

Reading this dissertation, becomes evident how the genome is an unstable place, prone 

to DNA breakage and rearrangements where SVs continuously arise as a result of 

recombination events and repair process of existing DNA lesions. Endogenous agents 

producing DSBs such as active transposable elements (McConnell et al., 2013, Cai et al., 

2014), transcription (Kim and Jinks-Robertson, 2012), replication stress (Zeman and 

Cimprich, 2014), and oxidative stress (Woodbine et al., 2011) continuously attack DNA 

integrity. This occurs ubiquitously in all the cells of an organism but there moments when 

the damage becomes more severe (Jung and Pfeifer, 2015), there are tissues which are 

more exposed, and there are genomic regions which are more fragile than others 

(Linardopoulou et al., 2005). In particular, the high activity and direct exposure to 

external environment of OE, result in the progressive accumulation of DNA damage and 

the loss of genomic integrity consequent to inefficient repair mechanisms. Constantly 

regenerating mature OSNs, OE is an ideal substrate for LINE-1 mobilization. This, 

potentially, increases even more the risk of DSBs in the tissue. To further investigate this 

concept, we performed a genome-wide profile of endogenous mouse DNA DSBs. DNA 

DSBs represent a major threat to genomic stability leading to dangerous mutagenic 

rearrangements or apoptosis (Lieber, 2010). In spite of this, our knowledge of endogenous 

DSBs is still limited. For this reason, understanding the sensitivity of the genome to the 

various DNA insults is as much as important as understanding how, potentially harmful 

events such as DSBs become, instead, instrumental to genome regulation. 

To this purpose, we performed a chromatin immunoprecipitation and sequencing (ChIP-

Seq) analysis of γ-H2AX. The phosphorylation of the histone occurs in response to DSB 

as an early signal to increase DNA accessibility and recruit the different repair proteins 

necessary to initiate the repair of DSBs (Turinetto and Giachino, 2015). It should be noted 

that this marker, is not an exclusive indicator of DSB. DSB-independent background foci 

may be caused by ATR-mediated H2AX phosphorylation in growing cells with dis-

regulated DNA metabolism and in response to heat (Wang et al., 2014). Although, it is 

still the best marker based on its cell phase-independent formation, tight correlation with 

repair kinetics and repair pathway independence. Importantly, as γ-H2AX is formed de 



 

 157 

novo, it is the a more reliable DSB marker than other DNA repair proteins that are present 

in the cell even when there is no DNA damage. For this reason, this marker became the 

choice of most researchers aiming to profile the effects of DSB inducing agents. Little is 

known about the differential distribution of γ-H2AX marker for DSB throughout the 

genome at physiological conditions. To address this question, we used the ChIP-seq 

technique to profile the chromosomal distribution of γ-H2AX in C57BL/6J mice OE (at 

p6 and 1m) and L (at p6). Liver tissue was chosen as a control since it is characterized by 

different cell types with different expression pattern. Moreover, a wide range of public 

datasets is available for this extensively studied tissue.  

 

Regarding the distribution of the peaks, the three samples presented overall a similar 

behaviour. In agreement with other works, our results show that the peaks in mouse 

genome are mostly found in correspondence of gene bodies, peaking from 0 to 10kb 

downstream active transcription start sites (TSS) and enriched in GC-rich regions. This 

distribution pattern, suggests the presence of transcription associated DSBs in proximity 

of actively transcribed genes. DSBs at gene promoters have been proposed to reduce 

supercoiling and induce chromatin relaxation to facilitate transcription initiation and full 

expression of long genes (Madabhushi et al., 2015b). This finding is further bolstered by 

the fact that most of the peaks co-localize with the principal transcription regulatory 

regions involved in chromatin remodelling: RNA polymerase II (Pol II), CTCF and 

DNAse I, and are enriched in proximity of histone modifications found on active 

promoters (H3K4me3, H3K9ac) and gene bodies (H3K36me3, H3K79me2). 

Transcription is, reportedly, one of the most important endogenous agents producing 

DSBs (Kim and Jinks-Robertson, 2012, Schwer et al., 2016). The fact that H2AX signal 

is enriched in proximity of active chromatin markers supports our hypothesis.  

Moreover, characterizing peak distribution with respect to different classes of repeats, we 

could appreciated a peak enrichment towards SINE elements. This is coherent with the 

SINE gene-centered distribution (Elbarbary et al., 2016). Therefore, given the well-

known involvement of the B1 and B2 SINE lineages in segmental duplications within the 

mouse genome (Jurka et al., 2005) we decided to investigate also γ-H2AX distribution 

around gene clusters, especially OR clusters. OR reside in repeat rich regions, resulting 

from extensive genomic rearrangements on a common precursor, where the patchwork of 

repeats still retains the potential to induce DSB and recombination. One characteristic 

shared by many gene clusters is the presence of conserved CTCF sites at 5′ and 3′ of the 



 

 158 

loci (Kim at al., 2006, Tchurikov et. al 2013). CTCF peaks are known to be enriched in 

the surrounding of the TSS of genes that incur DSBs where they co-localize with DNAse 

I hypersensitivity sites and TOP2B (Uusküla-Reimand et al., 2016, Madabhushi et al., 

2015). Comparing the distribution of CTCF peaks (public dataset) and CTCF-overlapping 

γ-H2AX peaks with respect to gene clusters considering different intervals, within and 

outside the clusters, we noticed that CTCF peaks were not enriched inside the clusters but 

distributed outside of them together with CTCF. As expected, the peaks were 

preferentially distributed also outside Olfr2 cluster, extensively described in the previous 

Results section, and depleted on the inside. This is in agreement with previous findings 

suggesting a possible role of DSB in transcription regulation. In particular, CTCF proteins 

facilitate transcription mediating the formation of loops aimed to promote interactions 

between various regulatory regions, such as promoters and enhancers (Ong and Corces, 

2014). A link to tissue specific expression emerged from the GO functional annotation. 

The biological processes associated with g-H2AX peaks were very different for OE and 

L. Intriguingly, the only GO term enriched in OE 1m sample was clearly linked to 

olfaction while among the most significantly enriched terms in L were related to biliary 

epithelium differentiation and development. Overall, the GO results appeared also always 

consistent with the age of the mice: suggesting a possible association of γ-H2AX peaks 

with development. 

 

In conclusion, alogether our results provide strong evidence that the observed DSBs are 

mostly related to gene expression under physiological conditions. On the other hand, we 

did not observe the expected abundance of DSBs in OE compared to liver. We suppose 

that LINE-1 mediated DSBs are obscured by other sources of DNA damage, like 

transcription, that have to be at work as well in the examined tissues. 
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5 Conclusion 

 
 
We have presented the effects on genome stability of the most abundant retrotransposon 

family in mammals: LINE-1 elements. Our goal was to determine how LINE-1 mediated 

SV may impact health and disease.  

Concerning Alzheimer’s disease, at the LINE-1 insertion level, we identified a FL-L1 

polymorphism which may act as a gene expression modulator with potential implications 

in AD susceptibility. While, concerning the regulation of OR genes, the high density of 

LINE-1 elements in OR-loci let us speculate about a possible regulatory function of 

retrotransposable elements for the expression of OR genes.  

Expanding our scope from LINE-1 direct insertion to retrotransposition-independent 

LINE-1 mediated SV, we observed a significant decrease of FL-L1s in the tissues of AD 

affected patients, probably consequent to deletions involving sequences containing 

LINE-1 fragments. LINE-1 related heterozygous deletions appeared to be also the 

predominant SV observed in Olfr2 locus. 

Overall, thousands of somatic LINE-1 insertions have been recovered in human FC and 

K and hundreds of LINE-1 mediated deletions have been recovered in mouse OE, 

confirming LINE-1 activity in metabolically active tissues where extensive DNA damage 

results from active transcription. This may suggest a scenario where LINE-1 elements 

may be at the same time involved in break formation and break resolution. On one side 

promoting the formation of DSBs and on the other side restoring DSB through 

recombination.  

Taken together, our results suggest that both active and non-active LINE-1s play an 

important role in shaping the chromatin landscape and regulating gene expression under 

physiological and pathological conditions. 
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