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Abstract. In this work, we present an extension of genetic algorithm (GA) which exploits
the supervised learning technique called active subspaces (AS) to evolve the individuals on a lower-
dimensional space. In many cases, GA requires in fact more function evaluations than other opti-
mization methods to converge to the global optimum. Thus, complex and high-dimensional functions
can end up extremely demanding (from the computational point of view) to be optimized with the
standard algorithm. To address this issue, we propose to linearly map the input parameter space of
the original function onto its AS before the evolution, performing the mutation and mate processes in
a lower-dimensional space. In this contribution, we describe the novel method called ASGA, present-
ing differences and similarities with the standard GA method. We test the proposed method over
n-dimensional benchmark functions---Rosenbrock, Ackley, Bohachevsky, Rastrigin, Schaffer N. 7,
and Zakharov---and finally we apply it to an aeronautical shape optimization problem.
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1. Introduction. Genetic algorithm (GA) is a well-known and widespread meth-
odology, mainly adopted in optimization problems [30, 32]. It emulates the evolutive
process of natural selection by following an iterative process where the individuals
are selected by a given objective function and subsequently they mutate and repro-
duce [24, 3, 11, 33]. This gradient-free technique is particularly effective when the
objective function contains many local minima: thanks to the stochastic component,
GA explores the domain without being blocked into local minima. The main disad-
vantage of such an algorithm is the (relatively) high number of required evaluations
of the objective function during the evolution to explore the input space [37], which
makes this method unfeasible in several industrial and engineering contexts for the
global computational cost.

In this work, we propose a novel extension of standard GA, exploiting the emerg-
ing active subspaces (AS) property [13, 14] for the dimensionality reduction. AS
is a supervised learning technique which allows the approximation of a scalar func-
tion with a lower-dimensional one, whose parameters are a linear combination of
the original inputs. AS has been successfully employed in naval engineering appli-
cations [52, 49, 48, 50], coupled with reduced order methods such as POD-Galerkin
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in biomedical applications [47, 42], POD with interpolation [19] in structural and
CFD analysis, and dynamic mode decomposition [51] in CFD contexts. Other ap-
plications include aerodynamic shape optimization [35], artificial neural networks to
reduce the number of neurons [16], nonlinear structural analysis [26], and AS for mul-
tivariate vector-valued model functions [54]. Several nonlinear AS extensions have
been proposed recently. We mention active manifold [8] and kernel-based active sub-
spaces (KAS) [40], which exploits the random Fourier features to map the inputs
in a higher-dimensional space. We also mention the application of artificial neural
networks for nonlinear reduction in parameter spaces by learning isosurfaces [55]. De-
spite these new nonlinear extensions of AS, in this work we exploit the classical linear
version because of the possibility to map points in the reduced space onto the original
parameter space.

The main idea of the proposed algorithm is to force the individuals of the pop-
ulation to evolve along the AS, which has a lower dimension, avoiding evolution
along the meaningless directions. Further, the high number of function evaluations
that characterize the GA is exploited within this new approach for the construction
(and refinement) of the AS, making these techniques---GA produces a large dataset
of input-output pairs, whereas AS needs large datasets for an accurate subspace
identification---particularly suited together. This new method has the potential to
improve the existing optimization pipeline involving both input and model order re-
duction.

A similar approach has been proposed in [12], where an active subspace is con-
structed in order to obtain an efficient and adaptive sampling strategy in an evolution
strategy framework. This approach shares with the one we are proposing the idea of
efficiently exploring the input space by constructing a subspace based on the collected
data. In contrast with our approach in [12], the subspace construction is done with a
singular value decomposition based method, and the optimization technique is com-
pletely different, even if evolution strategy methods and GA present some analogies.
To the best of the authors' knowledge, the current contribution presents a novel ap-
proach, not yet explored in the literature. For a similar approach, we cite also random
subspace embeddings for unconstrained global optimization of functions with low ef-
fective dimensionality that can be found in [53, 10], while for evolutionary methods
and derivative-free optimization we mention [43, 39], respectively. For a survey on
linear dimensionality reduction in the context of optimization programs over matrix
manifolds, we mention [17].

The outline of this work is the following: the proposed method is described in
section 4, while sections 2 and 3 are devoted to recalling the general family of genetic
algorithms and the AS technique, respectively. Section 5 presents the numerical re-
sults obtained applying the proposed extension to some popular benchmark functions
for optimization problems and then to a typical engineering problem where the shape
of a NACA airfoil is morphed to maximize the lift-to-drag coefficient. Finally, sec-
tion 6 summarizes the benefits of the method and proposes some extensions for future
developments.

2. Genetic algorithms. In this work, we propose an extension of the standard
genetic algorithm (GA). We start by recalling the general method in order to easily let
the reader understand the differences. We define GA as the family of computational
methods that are inspired by Darwin's theory of evolution. The basic idea is to gen-
erate a population of individuals with random genes, and make them evolve through
mutations and crossovers, mimicking the evolution of living beings. Iterating this
process by selecting at each step the best-fit individuals results in the optimization---
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according to a specific objective function---of the original population. As such, this
method can be easily adopted as a global optimization algorithm.

Initially proposed by Holland in [29], GA has had several modifications during
the years (see, for example, [32, 22, 45, 23, 21]), but it keeps its fundamental steps:
selection, mutation, and mate.

Let us define formally the individuals: a population composed by N individuals
xi \in \BbbR P with P genes is defined as X = \{ x1, . . . ,xN\} . We express the fitnesses of
such individuals with the scalar function f : \BbbR P \rightarrow \BbbR . The first generation X1 is
randomly created---with possible constraints---and the fitness is evaluated for all the
individuals: yi = f(xi) for i = 1, . . . , N . Then the following iterative process starts:
Selection: The best individuals of the previous generation Xi are chosen accordingly

to their fitnesses to breed the new generation. For the selection, several
strategies can be adopted depending on the problem and on the cardinality
of the population N .

Mate: Finally, the selected individuals are grouped into pairs and, according to a
mate probability, they combine their genes to create new individuals. The
process, also called crossover, emulates the species reproduction. These indi-
viduals form the new generation Xi+1. An example of a crossover method is
sketched in Figure 1a.

Mutation: The individuals evolve by changing some of their genes. The mutation of
an individual is usually controlled by a mutation probability. In Figure 1b,
we show an illustrative example where two genes have randomly mutated.

(a) Mate

(b) Mutation

Fig. 1. Graphical example of mate and mutation where xi and yi indicate two generic individ-
uals of the ith generation.

After the mutation step, the fitness of the new individuals is computed and the
algorithm restarts with the selection of the best-fit individuals. In this way, the pop-
ulation evolves, generation after generation, towards the optimal individual, avoiding
getting blocked in a local minimum thanks to the stochastic component introduced
by mutation and crossover. Thus, this method is very effective for global optimization
where the objective function is potentially nonlinear, while standard gradient-based
methods can converge to local minima. However, GA usually requires a high number
of evaluations to perform the optimization, making this procedure very expensive in
the case of computational costly objective functions.
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3. Active subspaces for minimization on a lower-dimensional param-
eter space. The active subspaces (AS) [13] method is a dimensionality reduction
approach for parameter space studies, which falls under the category of supervised
learning techniques. AS tries to reduce the input dimension of a scalar function
f(\bfitmu ) : \Omega \subset \BbbR k \rightarrow \BbbR by defining a linear transformation \bfitmu M = A\bfitmu . This method
requires the evaluation of the gradients of f since A depends on the second moment
matrix C of the target function's gradient, also called the uncentered covariance ma-
trix of the gradients of f . This matrix is defined as follows:

(3.1) C = \BbbE [\nabla \bfitmu f \nabla \bfitmu f
T ] =

\int 
(\nabla \bfitmu f)(\nabla \bfitmu f)

T \rho d\bfitmu ,

where with the symbol \BbbE [\cdot ] we denote the expected value, \nabla \bfitmu f \equiv \nabla f(\bfitmu ) \in \BbbR k,
and \rho : \BbbR k \rightarrow \BbbR + is a probability density function which represents the uncertainty
in the input parameters. In practice, the matrix C is constructed with a Monte
Carlo procedure, and the gradients if not provided can be approximated with different
techniques, such as local linear models, global models, finite difference, or a Gaussian
process---for a comparison of the methods and corresponding errors, the reader can
refer to [13, 14, 15]. The uncentered covariance matrix can be decomposed as

(3.2) C = W\Lambda WT ,

where W stands for the orthogonal matrix containing the eigenvectors, and \Lambda stands
for the eigenvalues matrix arranged in descending order. The spectral gap [13] is
used to bound the error on the numerical approximation with Monte Carlo. We can
decompose these two matrices as

(3.3) \Lambda =

\biggl[ 
\Lambda 1

\Lambda 2

\biggr] 
, W = [W1 W2] , W1 \in \BbbR k\times M ,

where M < k is the dimension of the active subspace. M should be chosen looking
at the energy decay (the tail in the ordered eigenvalue sum) as in POD, or it can be
prescribed a priori for the specific task. We can exploit this decomposition to map
the input parameters onto a reduced space.

We define the active subspace of dimension M as the principal eigenspace corre-
sponding to the eigenvalues prior to the major spectral gap. We also call the active
variable \bfitmu M and the inactive variable \bfiteta . They are defined as \bfitmu M = WT

1 \bfitmu \in \BbbR M and
\bfiteta = WT

2 \bfitmu \in \BbbR k - M .
In this work, we address the constrained global optimization problem of a real-

valued continuous function, in the context of genetic algorithms, defined as

(3.4) min
\bfitmu \in \Omega \subset \BbbR k

f(\bfitmu ).

To fight the curse of dimensionality and speed up the convergence, we exploit the AS
property of the target function to select the best individuals in the reduced parameter
space, to mutate and mate them, and successively to map them in the full parameter
space. This translates in the following optimization problem for each generation of
individuals:

(3.5) min
\bfitmu M\in \scrP \subset \BbbR 

M

\bfitmu \in \Omega 

g(\bfitmu M = WT
1 \bfitmu ),
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ACTIVE SUBSPACES FOR EFFICIENT GENETIC ALGORITHMS B835

where \scrP is the polytope in \BbbR M---we assume the ranges of the parameters to be
intervals---defined by AS as \scrP := \{ \bfitmu M = WT

1 \bfitmu | \bfitmu \in \Omega \} . We remark that there
are many choices for the profile g. In this work, we consider the following profile:

g(y) := f(x\bfy ) \forall y \in \scrY ,(3.6)

\scrY := \{ y \in \scrP | \exists x\bfy \in \Omega s.t. y = WT
1 x\bfy \} .(3.7)

We emphasize that the projection map onto the active subspace is a surjective
map because WT

1 is defined as a linear projection onto a subspace, and hence it is
surjective by definition. So the back-mapping from the active subspace onto \Omega is not
trivial. Given a point \bfitmu \ast M in the active subspace, we can find B points in the original
parameter space which are mapped onto \bfitmu \ast M by WT

1 . Recalling the decomposition
above, we have that

(3.8) \bfitmu = W1W
T
1 \bfitmu +W2W

T
2 \bfitmu = W1\bfitmu M +W2\bfiteta \forall \bfitmu \in \Omega ,

with the additional constraint coming from the rescaling of the input parameters
needed to apply AS:  - 1 \leq \bfitmu \leq 1, where 1 denotes the vector in \BbbR k with all elements
equal to 1. We exploit this to sample the inactive variable \bfiteta so that

(3.9)  - 1 \leq W1\bfitmu 
\ast 
M +W2\bfiteta \leq 1,

or equivalently

(3.10) W2\bfiteta \leq 1 - W1\bfitmu 
\ast 
M ,  - W2\bfiteta \leq 1+W1\bfitmu 

\ast 
M .

These inequalities define a polytope in \BbbR k - M from which we want to uniformly sam-
ple B points. The inactive variables are sampled from the conditional distribution
p(\bfiteta | \bfitmu \ast M ), and we show how to perform it for the uniform distribution. For a more
general distribution, one should use Hamiltonian Monte Carlo. In particular, we start
with a simple rejection sampling scheme, which finds a bounding hyperbox for the
polytope, draws points uniformly from it, and rejects points outside the polytope. If
this method does not return enough samples, we try a hit-and-run method [46, 6, 34]
for sampling from the polytope. This method, starting from the center of the largest
hypersphere within the polytope, selects a random direction and identifies the longest
segment lying inside the polytope. A new sample is randomly drawn along this seg-
ment. The procedure continues starting from the last sample until enough samples
are found. If also that does not work, we use B copies of a feasible point computed
as the Chebyshev center [7] of the polytope. In Figure 2, we depicted these strategies
at different stages of the sampling.

4. The proposed ASGA optimization algorithm. In this section, we are
going to describe the proposed AS extension of the standard GA, named ASGA. Before
starting, we emphasize that in what follows, we will maintain the selection, mutation,
and mate procedures---presented in section 2---as general as possible, without going
into technical details, given the large variety of different options for these steps. In
fact, the proposed extension is independent of the chosen evolution strategies, and
we only perform them in a lower dimension exploiting AS. In Algorithm 4.1, we
summarize the standard approach, while in Algorithm 4.2 we highlight the differences
introduced by ASGA. We also present an illustration for both of the methods in
Figure 3, where the yellow boxes indicate the main steps peculiar to ASGA. In both
cases, the first step is the generation of the random individuals composing the initial
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Chebyshev center

New samples

Polytope

Fig. 2. Graphical representation of the inactive variable sampling strategy. We emphasize the
Chebyshev center, the selection of the next sample using the hit-and-run method, and the polytope
defined by (3.10).

Selection

Reproduction

Mutation

3 individuals
with N genesFirst generation

Crossover

Random
mutation

New  generation

Accordingly to
best fitness

Offsprings +
best individuals

AS Projection
From N genes

to M genes

AS back mapping
From M genes

to N genes

Fig. 3. Active subspaces-based genetic algorithm scheme. The main steps of the classical GA
are depicted from top to bottom. The yellow boxes (color available online only) represent projections
onto and from lower dimension active subspace, which are specific to ASGA.

population and the sequential evaluation of all of them. For ASGA, these individuals
and their fitnesses are stored in two additional sets, XAS for the individuals and yAS

for the fitness. We will exploit them as the input-output pair for the construction of
AS. After the selection of the best-fit individuals, the active subspace of dimension M
is built and the selected offspring is projected onto it. The low-dimensional individuals
mate and mutate in the active subspace. Thanks to the reduced dimension and
to the fact that we retain only the most important dimensions, these operations
are much more efficient. Thus, even if AS of dimension M does not provide an
accurate approximation of the original full-dimensional space, the active dimensions
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will provide preferential directions for the evolution, making the iterative process
smarter and faster.

After the evolution, the low-dimensional offspring is mapped back to the original
space. In section 3, we describe how for any point in the active subspace we can find
several points in the original space which are mapped onto it. So we select, for any
individual in the offspring, B full-dimensional points which correspond to the individ-
ual in the active subspace. We emphasize that to preserve the same dimensionality
of the offspring between the original GA and the AS extension, in the proposed al-
gorithm we select the N/B best individuals, instead of selecting N . In this way, after
the back-mapping, the offspring has dimension N in both versions. The number of
back-mapped points B and the active subspace dimension M---that can be a fixed
parameter or dynamically selected from the spectral gap of the covariance matrix
C---represent the new (hyper-)parameters of the proposed method.

Finally, the fitnesses of the new individuals, now in the full-dimensional space, are
evaluated. To make AS more precise during the iterations, the evaluated individuals
and their fitnesses are added to XAS and yAS. The process restarts from the selection
of the offspring from the new generation, continuing as described above until the
stopping criteria are met.

We stress that the structure of the algorithm is similar to the original GA ap-
proach, with the difference that the gradients at the sample points are approximated in
order to identify the dimensions with the highest variance. Even if such information
about the function gradient is used, the ASGA method is different from gradient-
based methods: numerically computing the gradient with a good accuracy at a spe-
cific point---which is the fundamental step of gradient-based methods to move on the
solution manifold---is a very expensive procedure, especially in a high-dimensional
space. In ASGA, we avoid such computation, exploiting instead the already collected
function evaluations. Further, gradient-based techniques converge (relatively) fast to
optimum, but they get blocked into local minima, contrarily to the ASGA approach.
It is important to remark that, for each generation, AS is rebuilt from scratch, losing
efficiency but gaining more precision due to the growing number of elements in the
two sets XAS and yAS. We also remark that the samples are generated with a uniform
distribution only at the first generation. After that, due to the ASGA steps the distri-
bution changes in a way which cannot be known a priori. For the computation of the
expectation operator in (3.1), in this work we assume a uniform distribution. Even if
this may introduce an unknown error, the numerical results achieved by ASGA seem
to support such a choice. Of course the numerical estimates present in the literature
for the uniform distribution do not apply in such a case. This method can be viewed
as an active learning procedure in a Bayesian integration context, where the maxi-
mized acquisition function is heuristic and given by the application of AS and GA
steps. Another interpretation is that we are enriching the local information near the
current minimum to feed the AS algorithm, so it can be viewed as a weighted AS.
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Algorithm 4.1. Standard GA.

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : initial population size N0

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : population size N

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : selection routine select
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : mutation routine mutate
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : mate routine mate
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : objective function fobj
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : stop criteria
\bfE \bfn \bfs \bfu \bfr \bfe : final population \bfX end

1: g \leftarrow 0
2: \bfX g \leftarrow random pop of size N0

3: \bfy g \leftarrow fobj(\bfX g)

4: \bfr \bfe \bfp \bfe \bfa \bft 
5: g \leftarrow g + 1
6: \bfX \ast \leftarrow select(\bfX g - 1,\bfy g - 1, N)

7: \bfX \ast \leftarrow mate(\bfX \ast )
8: \bfX g \leftarrow mutate(\bfX \ast )

9: \bfy g \leftarrow fobj(\bfX g)

10: \bfu \bfn \bft \bfi \bfl stop criteria reached
11: \bfX end \leftarrow \bfX g

12: \bfr \bfe \bft \bfu \bfr \bfn \bfX end

Algorithm 4.2. Proposed ASGA.

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : initial population size N0

\bfR \bfe \bfq \bfu \bfi \bfr \bfe : population size N
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : active dimension M
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : number backward B
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : selection routine select
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : mutation routine mutate
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : mate routine mate
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : objective function fobj
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : stop criteria
\bfE \bfn \bfs \bfu \bfr \bfe : final population \bfX end

1: g \leftarrow 0
2: \bfX g \leftarrow random pop of size N0

3: \bfy g \leftarrow fobj(\bfX g)

4: \bfX AS \leftarrow \bfX g

5: \bfy AS \leftarrow \bfy g

6: \bfr \bfe \bfp \bfe \bfa \bft 
7: g \leftarrow g + 1
8: \bfX \ast \leftarrow select(\bfX g - 1,\bfy g - 1, N

B )

9: build AS(\bfX AS,\bfy AS,M)
10: \bfX \ast 

M \leftarrow forward(\bfX \ast )
11: \bfX \ast 

M \leftarrow mate(\bfX \ast 
M )

12: \bfX \ast 
M \leftarrow mutate(\bfX \ast 

M )
13: \bff \bfo \bfr \bfx in \bfX \ast 

M \bfd \bfo 
14: \bff \bfo \bfr i\leftarrow 1 to B \bfd \bfo 
15: \bfX g \leftarrow backward(\bfx )
16: \bfe \bfn \bfd \bff \bfo \bfr 
17: \bfe \bfn \bfd \bff \bfo \bfr 
18: \bfy g \leftarrow fobj(\bfX g)

19: \bfX AS \leftarrow \bfX AS \cup \bfX g

20: \bfy AS \leftarrow \bfy AS \cup \bfy g

21: \bfu \bfn \bft \bfi \bfl stop criteria reached
22: \bfX end \leftarrow \bfX g

23: \bfr \bfe \bft \bfu \bfr \bfn \bfX end

5. Numerical results. In this section, we are going to present the results ob-
tained by applying the proposed algorithm, first to some test functions that are usu-
ally used as benchmarks for optimization problems. Since this method is particularly
suited for high-dimensional functions, we analyze the optimization convergence for
three different input dimensions (2, 15, and 40), i.e., the number of genes of each
individual. The second test case we propose is instead a typical engineering problem,
where we optimize the lift-to-drag coefficient of a NACA airfoil which is deformed us-
ing a map \scrM : \BbbR 10 \rightarrow \BbbR defined in subsection 5.2. In this example, we opted for the
use of a surrogate model only to evaluate the individuals' fitnesses for computational
considerations since we just want to compare ASGA with GA. We do not rely on the
surrogate for the gradient approximation. In [18], instead, we apply ASGA on a naval
engineering hydrodynamics problem, where we do not rely on a surrogate model of the
target function, but instead we exploit data-driven model order reduction methods to
reconstruct the fields of interest and then compute the function to optimize.

In both of the test cases, in order to collect a fair comparison, we adopt the same
routines for the selection, the mutation and the crossover steps. In particular, we do
the following:

\bullet For the mate, we use the blend BLX-alpha crossover [25] with \alpha = 1.0, with
a mate probability of 50\%. With this method, the offspring results:

(5.1)

\Biggl\{ 
xi
a = (1 - \gamma )xi - 1

a + \gamma xi - 1
b

xi
b = \gamma xi - 1

a + (1 - \gamma )xi - 1
b

for a, b = 1, . . . , N,

where xi - 1
a and xi - 1

b refer to the parent individuals (at the i - 1th generation),
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xi
a and xi

b are the mated individuals, N is the cardinality of population, and
\gamma is a random variable chosen in the interval [ - \alpha , 1 + \alpha ). We mention that
(5.1) can recover the graphical description of mating in Figure 1a if \gamma is taken
to be discrete, either 0 or 1, and applied componentwise.

\bullet For the mutation, a Gaussian operator [28] has been used with a mutation
probability of 50\%. This strategy changes genes by adding a normal noise.
Since we do not have any knowledge about the low-dimensional space, tun-
ing the variance of such a mutation may result in a nontrivial procedure.
This quantity in fact has to be set in order to explore the input space but,
at the same time, producing minimal differences between parents and off-
spring. A fixed variance for both the spaces may cause a too big distance---in
the l2 sense---between parents and offspring, inhibiting the convergence. To
overcome this potential problem, we correlate the Gaussian variance with
the genes themselves, ensuring a reasonable mutation in both spaces. The
adopted mutation method is

(5.2) xi
a = xi - 1

a + \varepsilon xi - 1
a for a = 1, . . . , N,

where \varepsilon is a random variable with probability distribution \scrN (\mu , \sigma 2), that is,
\varepsilon \sim \scrN (\mu , \sigma 2), with \mu = 0 and \sigma 2 = 0.1.

Regarding the selection, because of the limited number of individuals per population,
we adopt one of the simplest criteria, by selecting the N best individuals in terms of
fitness.

We also keep fixed the additional parameters for the AS extension: the number
of active dimensions M is set to 1, while the number of back-mapped points is 2.
All the gradient computations are done using local linear models. For the actual
computation regarding AS, we used the ATHENA1 Python package [41]. The only
varying parameters are the size of the initial population N0, the size of the population
during the evolution N , and the number of generations in the evolutive loop, which
are chosen empirically based on the objective function. We emphasize that, due to
the stochastic nature of these methods, we repeated the tests 15 times, with different
initial configurations, presenting the mean value, the minimum, and the maximum
over the 15 runs.

5.1. Benchmark test functions. We applied the optimization algorithm to
six different n-dimensional test functions, which have been chosen to cover a large
variety of possible shapes. For all the functions, the results of the proposed method
are compared to the results obtained using the standard genetic approach. In detail,
the functions we tested are the so-called Rosenbrock, Ackley, Bohachevsky, Rastrigin,
Schaffer, N. 7, and Zakharov test functions. In Figure 4, we depict the test functions
in their two-dimensional form. In the following paragraphs, we briefly introduce them
before presenting the obtained results. For a complete literature survey on benchmark
functions for global optimization problems, we suggest [31].

(a) Rosenbrock function. The Rosenbrock function is a widespread test function
in the context of global optimization [20, 5, 38]. We choose it as representative of the
valley-shaped test functions. The general d-dimensional formulation is the following:

(5.3) f(x) =

d - 1\sum 
i=1

[100(xi+1  - x2
i )

2 + (xi  - 1)2].

1This is freely available online from https://github.com/mathLab/ATHENA.
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(c) Bohachevsky function
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(e) Schaffer N. 7 function
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(f) Zakharov function

Fig. 4. Benchmark test functions representation in 2D. White dots indicate the global minima.

Its global minimum is f(x\ast ) = 0 at x\ast = (1, 1, . . . , 1). As we can see from Figure 4a,
the minimum lies on an easy to find parabolic valley, but the convergence to the
actual minimum is notoriously difficult. We evaluated the function in the hypercube
[ - 5, 10]d.

(b) Ackley function. The Ackley function is characterized by many local minima,
making it difficult to find the global minimum, especially for hillclimbing algorithms
[4, 2]. The general d-dimensional formulation is the following:

(5.4) f(x) =  - a exp

\left(   - b

\sqrt{}    1

d

d\sum 
i=1

x2
i

\right)   - exp

\left(  
\sqrt{}    1

d

d\sum 
i=1

cos(cxi)

\right)  + a+ exp(1),

where a, b, and c are set to 20, 0.2, and 2\pi , respectively. Its global minimum is
f(x\ast ) = 0 at x\ast = (0, 0, . . . , 0). As we can see from Figure 4b, the function is nearly
flat in the outer region, with many local minima, and the global minimum lies on a
hole around the origin. The function has been evaluated in the domain [ - 15, 30]d.

(c) Bohachevsky function. The Bohachevsky function is a representative of the
bowl-shaped functions. There are many variants, and we chose the general d-dimensional
formulation as the following:

(5.5) f(x) =

d - 1\sum 
i=1

(x2
i + 2x2

i+1  - 0.3 cos(3\pi xi) - 0.4 cos(4\pi xi+1) + 0.7).

Its global minimum is f(x\ast ) = 0 at x\ast = (0, 0, . . . , 0). As we can see from Figure 4c,
the function has a clear bowl shape. This function has been evaluated in the domain
[ - 100, 100]d.

(d) Rastrigin function. The Rastrigin function is another difficult function to deal
with for global optimization with GA due to the large search space and its many local
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minima [36]. The general d-dimensional formulation is the following:

(5.6) f(x) = 10d+

d\sum 
i=1

[x2
i  - 10 cos(2\pi xi)].

Its global minimum is f(x\ast ) = 0 at x\ast = (0, 0, . . . , 0). As we can see from Fig-
ure 4d, the function is highly multimodal with local minima regularly distributed.
We evaluated this function in the input domain [ - 5.12, 5.12]d.

(e) Schaffer N. 7 function. The Schaffer N. 7 function [44] is a stretched V sine
wave. The general d-dimensional formulation is the following:

(5.7) f(x) =

d - 1\sum 
i=1

(x2
i + x2

i+1)
0.25

\bigl[ 
sin2(50(x2

i + x2
i+1)

0.10) + 1
\bigr] 
.

Its global minimum is f(x\ast ) = 0 at x\ast = (0, 0, . . . , 0). As we can see from Figure 4e,
the function presents many local minima. The optimization has been performed in
the hypercube [ - 100, 100]d.

(f) Zakharov function. The Zakharov function is a representative of the plate-
shaped functions. It has one global minimum and no additional local minima. The
general d-dimensional formulation is the following (after a shift):

(5.8) f(x) =

d\sum 
i=1

(xi + 10)2 +

\Biggl( 
d\sum 

i=1

i

2
(xi + 10)

\Biggr) 2

+

\Biggl( 
d\sum 

i=1

i

2
(xi + 10)

\Biggr) 4

.

We emphasize that we used a shifted version with global minimum f(x\ast ) = 0 at
x\ast = ( - 10, - 10, . . . , - 10). This choice is made to prove that the proposed method is
not biased towards minima around the origin. We can see from Figure 4f the function
for d = 2. We evaluated the Zakharov function in the domain [ - 15, 0]d.

All the test cases presented share the same hyperparameters described at the
beginning of this section, except for the population size. For the two-dimensional
benchmark functions, the two algorithms are tested creating N0 = 200 random indi-
viduals for the initial population and then keeping an offspring of dimension N = 100.
Figure 5 shows the behavior for all the test functions. For this space dimension, the
two trends are very similar: the usage of the proposed algorithm does not make the
optimization faster, and it adds the computational overhead for the AS construction.
Despite that, the results after 10 generations are very similar, and we can consider
this as a worst case scenario, where a clear reduction in the parameter space is not
possible.

The ASGA performance gain changes drastically, increasing the number of di-
mension to d = 15, as demonstrated in Figure 6. For such a dimension, the two
parameters N0 and N are set to 2000 and 200, respectively. Starting from this dimen-
sion, it is possible to note a remarkable difference between the standard method and
the proposed one. The greater the input dimension, the greater the gain produced
by ASGA, due to the exploitation of the AS reduction. All the benchmarks show a
faster decay, but we can isolate two different patterns in the evolution: Rosenbrock
and Ackley show a very steep trend in the first generation gain, while for the next
generations the population is not able to decrease its fitness as much as before, show-
ing a quasi-constant behavior. The difference with the standard GA is maximized in
the first generation, but even if the evolution using ASGA is not so effective after the
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Fig. 5. Results of the optimization of the benchmark functions in a space of dimension d = 2.
We compare the standard GA (in blue square dots) with the proposed algorithm ASGA (in red circle
dots) using an initial population of size 30, while the dimension for each generation is fixed to 10.
The solid lines represent the mean, over 15 runs, of the objective function corresponding to the best
individual at each generation. The shaded areas show the interval between minimum and maximum
(blue with lines for GA and red for ASGA). Color is available online only.
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Fig. 6. Results of the optimization of the benchmark functions in a space of dimension d = 15.
We compare the standard GA (in blue square dots) with the proposed algorithm ASGA (in red circle
dots) using an initial population of size 2000, while the dimension for each generation is fixed to
200. The solid lines represent the mean, over 15 runs, of the objective function corresponding to
the best individual at each generation. The shaded areas show the interval between minimum and
maximum (blue with lines for GA and red for ASGA). Color is available online only.
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first generation in these two cases, the proposed method is anyway able to achieve a
better result (on average) after 30 generations. The other benchmarks instead show
a much smoother decay, gradually converging to the optimum. Despite the lack of
the initial step, for these benchmarks the gain with respect to the standard approach
becomes bigger, even if after several generations the convergence rate decreases. In
order to better understand these differences, we investigate the spectra of the AS
covariance matrices for all the benchmarks, which are reported in Figure 7. The
patterns individuated in the optimizations are partially reflected in the eigenvalues:
Rosenbrock, Ackley, and Zakharov have an evident gap between the first and the sec-
ond eigenvalues, which results in a better approximation (of the original function) in
the one-dimensional subspace. However, the order of magnitude of the first eigenvalue
is different between the three functions: for Rosenbrock and Ackley, the magnitude is
greater than 1\times 10 - 1, whereas for Zakharov it is around 5\times 10 - 2.

10−2

10−1

(a) Rosenbrock

10−2

10−1

(b) Ackley

10−2

10−1.5

(c) Bohachevsky

0 5 10 15
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(d) Rastrigin

0 5 10 15
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(e) Schaffer

0 5 10 15

10−3

10−2

10−1

(f) Zakharov

Index

Ei
ge

nv
al

ue
s

Fig. 7. Eigenvalues estimates of the matrix C in (3.1) for all the benchmarks, at the first
generation, for d = 15. The black dots in the plot indicate the eigenvalues, while the grey area is
defined by the bootstrap intervals.

Since for all the tests the ASGA approach performs better than its classical coun-
terpart despite the absence, in some cases, of an evident spectral gap in the AS
covariance matrix, we perform further investigations. In particular, we use the same
tests as before (15-dimensional functions) but with a different number of active di-
mensions, i.e., M = \{ 2, 5\} , instead of M = 1. In Figure 8, we show the comparison
between the classical GA and the ASGA outcomes. It is possible to note that by
increasing the active dimension, the differences between the performances of the two
methods become smaller. Only for the Rosenbrock and for the Ackley functions can
we see that ASGA with M = 5 is not able to reach the same order of magnitude
reached by GA (we remark that the original space has dimension d = 15).

Increasing the input dimension to d = 40 shows a much clearer benefit in using the
proposed method, as we can see in Figure 9. Here we set N0 = 5000 and N = 1000.
We specify that we set the active dimension M = 1. Also with this dimensionality, we
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Fig. 8. Results of the optimization of the benchmark functions in a space of dimension d = 15,
with active dimensions M = 2 (top) and M = 5 (bottom). We compare the standard GA (in blue
square dots) with the proposed algorithm ASGA (in red circle dots) using an initial population of size
2000, while the dimension for each generation is fixed to 200. The solid lines represent the mean,
over 15 runs, of the objective function corresponding to the best individual at each generation. The
shaded areas show the interval between minimum and maximum (blue with lines for GA and red for
ASGA). Color is available online only.

are able to isolate two main behaviors in the convergence of the six benchmarks: a very
steep trend in the first generation, and a more smooth one, but still equally effective.
The interesting thing is that some benchmarks do not reflect the behavior collected
with d = 15. While Rosenbrock, Rastrigin, and Zakharov show a similar convergence
rate for ASGA, the other benchmarks present a change in the slope. The different
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Fig. 9. Results of the optimization of the benchmark functions in a space of dimension d = 40.
We compare the standard GA (in blue square dots) with the proposed algorithm ASGA (in red circle
dots) using an initial population of size 5000, while the dimension for each generation is fixed to
1000. The solid lines represent the mean, over 15 runs, of the objective function corresponding to
the best individual at each generation. The shaded areas show the interval between minimum and
maximum (blue with lines for GA and red for ASGA). Color is available online only.

behaviors observed for the same benchmarks evaluated at different input dimensional
spaces is due to the fact that the method is sensitive to the approximation accuracy
of the gradients of the model function with respect to the input data. This is an issue
inherited by the application of AS. Moreover, since we are keeping just one active
variable, we are discarding several pieces of information, and thus the representation
of the function along the active subspace could present some noise. So the genetic
procedure enhanced by AS is able to converge fast to the optimum, but this optimum
may be---for the space simplification---distant to the true optimum. From the tests
with higher active dimensions, we note that the improvement in the first iterations is
not as rapid as by using a one-dimensional AS. Also, keeping more active dimensions,
the performance of ASGA becomes similar to the standard GA. We can conclude that
with one (or a few) active dimension, ASGA reaches the global minimum with fewer
function evaluations, but we get stuck with the projection error introduced by AS,
whereas by increasing the active dimension we reduce the projection error but we lose
the effectiveness of the evolution steps in a reduced space. A possible solution for this
problem can be a smarter (and dynamical) strategy to select the number of active
dimensions.

Over all of the three test cases, where we vary the input space dimension, the
performance of ASGA is better than or equal to the standard GA. In Table 1, we
summarize the relative gain on average achieved after the entire evolution and after
only one generation, divided by the test function, both with the GA and ASGA
methods. The relative gain is computed as the mean over 15 runs of the ratio between
the objective function evaluated at the best-fit individual at the beginning of the
evolution (f(x0

opt)) and the objective function evaluated at the best-fit individual
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after k generations, with k = 1 and k = Ngen, where Ngen is the maximum number
of generations depending on the input dimension. This relative gain G(k) reads as

(5.9) G(k) =
1

15

15\sum 
i=1

f(x0
opti

)/f(xk
opti

),

where xk
opti

is the best-fit individual of the population at the ith run and at the
kth generation. The highest values correspond to a more effective optimization, and
for dimensions 15 and 40 we can see from Table 1 that ASGA performs better than
standard GA for all the benchmarks. Even the gain after just one evolutive iteration
is bigger in all the collected tests, reaching in some cases some order of magnitude of
difference with respect to GA. These results suggest that despite the computational
overhead for the construction of AS and the back-mapping, an application of ASGA
over the standard GA produces usually better or at least comparable results for a
fixed generation.

Table 1
Summary comparison between GA and ASGA with respect to the gain G(k) defined in (5.9).

We compare the gain for the first and last generations.

Function Method
dim = 2 dim = 15 dim = 40

G(9) G(1) G(29) G(1) G(49) G(1)
GA 9.17 1.13 4.71 1.03 2.53 1.10

Ackley
ASGA 2.93 1.29 5.81 3.89 20.91 3.00
GA 39.58 1.78 223.86 1.22 729.05 1.81

Bohachevsky
ASGA 31.66 2.04 8608.41 130.72 75104.33 3548.70
GA 7.34 1.41 3.80 1.05 6.97 1.17

Rastrigin
ASGA 3.24 1.39 1343.41 4.00 14738.40 71.77
GA 30.04 1.74 335.33 1.34 1723.89 2.42

Rosenbrock
ASGA 39.68 2.66 2343.57 167.48 29747.56 1600.24
GA 3.64 1.21 4.83 1.11 5.66 1.18

Schaffer
ASGA 2.16 1.17 16.41 3.61 32.57 10.38
GA 38.59 2.65 3.11 1.07 2148.39 26.50

Zakharov
ASGA 51.14 3.88 417.86 24.46 37739.61 237.48

5.2. Shape design optimization of a NACA airfoil. Here we present the
shape design optimization of a NACA 4412 airfoil [1]. Since the purpose of this work
is limited to the extension of GA, we briefly present the details of the complete model,
with a quick overview of the application. To reproduce the full order simulations, refer
to [51].

Let there be given the unsteady incompressible Navier--Stokes equations described
in an Eulerian framework on a parametrized space-time domain Q(\bfitmu ) = \Omega \times [0, T ] \subset 
\BbbR d\times \BbbR +, d = 2, 3, with the velocity field denoted by u : Q(\bfitmu ) \rightarrow \BbbR d, and the pressure
field by p : Q(\bfitmu ) \rightarrow \BbbR , such that

(5.10)

\left\{                   

u\bft +\nabla \cdot (u\otimes u) - \nabla \cdot 2\nu \nabla \bfs u =  - \nabla p in Q(\bfitmu ),

\nabla \cdot u = 0 in Q(\bfitmu ),

u(t, x) = f(x) on \Gamma in \times [0, T ],

u(t, x) = 0 on \Gamma 0(\bfitmu )\times [0, T ],

(\nu \nabla u - pI)n = 0 on \Gamma out \times [0, T ],

u(0,x) = k(x) in Q(\bfitmu )0
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holds. Here we have that \Gamma = \Gamma in \cup \Gamma 0 \cup \Gamma out is the boundary of \Omega and it is com-
posed by the inlet boundary \Gamma in, the outlet boundary \Gamma out, and the physical walls
\Gamma 0(\bfitmu ). The term f(x) stands for the stationary nonhomogeneous boundary condi-
tion, whereas k(x) indicates the initial condition for the velocity at t = 0. Shape
changes are applied to the boundary \Gamma 0(\bfitmu ) corresponding to the airfoil wall, which
in the undeformed configuration corresponds to the 4-digit, NACA 4412 wing profile.
Such shape modifications are associated to numerical parameters contained in the
vector \bfitmu \in \BbbR k with k = 10.

For a geometrical deformation map \scrM , we adopt the shape morphing proposed
in [27], where five shape functions ri are added to the upper and lower parts of the
airfoil profile, denoted by y+ and y - , respectively. Each shape function is multiplied
by a possible different coefficient as in the following:

(5.11) y+ = y+ +

5\sum 
i=1

airi, y - = y -  - 
5\sum 

i=1

biri,

where the bar denotes the reference undeformed profile. These 10 coefficients (ai and
bi) represent the input parameters \bfitmu \in \BbbD := [0, 0.03]10. In Figure 10, we depict the
NACA 4412 together with the five rescaled shape functions ri. The output function
we want to maximize is the lift-to-drag coefficient, one of the typical quantities of
interest in aeronautical problems. To recast the problem in a minimization setting,
we just minimize the opposite of the coefficient. To compute it, we model a turbulent
flow passing around the two-dimensional airfoil using the incompressible Reynolds
averaged Navier--Stokes equations. Regarding the main numerical settings, we adopt
a finite volume approach with the Spalart--Allmaras model, with a computational grid
of 46500 degrees of freedom. The flow velocity, at the inlet boundary, is set to 1 m/s,
while the Reynolds number is fixed to 50000. For the detailed problem formulation,
we refer the reader to the experiments conducted in [51].

Instead of running the high-fidelity solver for any new untested parameter, we
optimize a radial basis function (RBF) response surface built using the initial dataset.
Due to the stochastic nature of the method, also in this test case we test the methods
for several initial settings---25 different runs---making the total computational load
very high. Thus, we decided to build a response surface using a dataset of 333 samples,
computed with the numerical scheme described above, mimicking at the same time a
typical industrial workflow.

The objective function fobj(\bfitmu ) : \BbbD \subset \BbbR 10 \rightarrow \BbbR we are going to minimize is the
following:

(5.12) fobj(\bfitmu ) =

\Biggl\{ 
g(\bfitmu ) if \bfitmu \in \BbbD ,
\alpha if \bfitmu /\in \BbbD ,

where g(\bfitmu ) is the response surface built using the RBF interpolation technique [9]
over the samples, while \alpha \in \BbbR is a penalty constant. To prevent the evolution from
creating new individuals that do not belong to \BbbD , we impose a penalty factor \alpha = 10.
We recall that we minimize the opposite of the lift-to-drag coefficient.

Figure 11 reports the evolution of the best-fit individual over 10 generations. Also
in this case, we apply the proposed algorithm and the standard GA to 25 different ini-
tial settings, using an initial population size N0 = 20 and selecting at each generation
the N = 10 best-fit individuals for the offspring. The plot depicts the mean best-fit
individual with solid lines, whereas the shaded areas show the interval between the
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Fig. 10. NACA 4412 profile with the five shape functions ri rescaled by a factor equal to 0.2.

Fig. 11. Results of the optimization of the NACA airfoil design in a 10-dimensional space. We
compare the standard GA (in blue square dots) with the proposed algorithm ASGA (in red circle
dots) using an initial population of size 20, while the dimension for each generation is fixed to 10.
The solid lines represent the mean, over 25 runs, of the objective function corresponding to the best
individual at each generation. The shaded areas show the interval between minimum and maximum
(blue with lines for GA and red for ASGA). Color is available only only.

minimum and maximum (of the 25 runs) for each generation. Even if the dimension
of the parameter space is not very high (10), we can see that on average the proposed
algorithm is able to converge faster. The difference between the two methods is not
as remarkable as in a higher-dimensional test case, but we can see that the best run
using standard GA is slightly worse than the mean optimum achieved by ASGA. This
again demonstrates the value in the proposed method. Moreover, we emphasize that
also in this case the decay of the objective function in the first generations with ASGA
is faster.

6. Conclusions. In this work, we have presented a novel approach for optimiza-
tion problems coupling the supervised learning technique called active subspaces (AS)
with the standard genetic algorithm (GA). We have demonstrated the benefits of such
a method by applying it to some benchmark functions and to a realistic engineering
problem. The proposed method achieves faster convergence to the optimum since the
individuals evolve only along few principal directions (discovered exploiting the AS
property). Further, from the results it emerges that the gain induced from the ASGA
method is greater for high-dimensionality functions, making it particularly suited for
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models with many input parameters.
This new method can also be integrated in numerical pipelines involving model

order reduction and reduction in parameter space. Reducing the number of input
parameters is a key ingredient to improve the computational performance and to
allow the study of very complex systems.

Since the number of active dimensions is important for the accuracy of AS, future
developments will focus on an efficient criterion to select dynamically the number
of AS dimensions, which in the presented results are kept fixed. Future studies will
also address the problem of incorporating nonlinear extensions of active subspaces
into ASGA, focusing on the construction of a proper back-mapping from the reduced
space to the original full parameter space.

Appendix A. On ASGA convergence. The aim of this section is to provide
further insights about the convergence of the ASGA method. We perform a single
run on all the benchmark functions presented above in a space of dimension d = 2.
We kept unaltered all the ASGA numerical settings described in section 5, so for all
the details we refer the reader to that section. We emphasize that we used the same
hyperparameters of the two-dimensional optimization test, except for the number of
generations, which we increased to 100.

We summarize in Figures 12 and 13 the spatial coordinates of the best individ-
ual after each generation using the standard GA and ASGA. The proposed method
reaches the global minimum for all the test cases, performing better than the standard
counterpart for the Rosenbrock and Rastrigin functions.
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Fig. 12. Results of the single optimization run using GA for the two-dimensional benchmark
functions. The colored crosses indicate the spatial coordinates of the best individual at each genera-
tion. Black lines indicate the isolines of the functions. Color is available online only.

We also measure the convergence as the Euclidean distance between the best indi-
vidual fitness and the global optimum, and the spatial convergence as the Euclidean
distance between the coordinates of the best individual and the coordinates of the
optimal point. We kept the same numerical settings, only raising the number of gen-
eration to 1000. Figure 14 presents the plots where we compare the trend using GA
and ASGA: the proposed method shows a better performance, not only thanks to the
faster convergence but also because in all the cases ASGA is able to get closer than
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Fig. 13. Results of the single optimization run using ASGA for the 2-dimensional benchmark
functions. The colored crosses indicate the spatial coordinates of the best individual at each genera-
tion. Black lines indicate the isolines of the functions. Color is available online only.
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Fig. 14. Convergence of GA and ASGA for the two-dimensional benchmark functions.
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