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Abstract

Glasses at ultra-low temperatures present several puzzling phenomena. A notable example
is the anomalous (i.e., non-Debye) behavior of thermodynamic quantities at temperatures
lower than 1 K. A comprehensive quantum theory able to explain these phenomena has not
been developed so far. In this thesis, we tackle this long-standing problem with different
and innovative perspectives, employing various physical models, and several analytical and
numerical techniques. We mainly explore two different but complementary approaches. In
the first approach, we investigate the thermodynamics of models for ultra-low temperature
glasses, with particular attention to mean-field models. Specifically, exploiting hard-sphere
systems and constraint satisfaction problems as a minimal model for structural glasses, we
explore their jamming transition both in the classical and the quantum regime. In the second
approach, we focus on finite-dimensional models. We analyze the quantum dynamics of the
two-level system model for glasses and generic many-body localized systems, providing clues
for the presence of a deep connection between glasses and quantum many-body localized
systems.

This thesis aims at estimating both qualitatively and quantitatively the effects of quantum
mechanics on glasses at ultra-low temperatures. In the literature, only a few studies have con-
sidered glasses deep in their quantum regime, partly due to the analytical and computational
challenges this posits. Nevertheless, this perspective promises to have wide-ranging appli-
cations. One of our ambitious goals is to take a first, substantial step to unveil the possible
origin of long-standing discrepancies observed between theory and experiments in ultra-low
temperature glasses. Moreover, we would like to predict the presence of new experimental
regimes that might be interesting to investigate.
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1. Introduction

In this Chapter, we briefly introduce the vast topic of glasses and present an overview of

the low-temperature anomalies of structural glasses, i.e. glasses obtained by cooling a liquid.

The first theoretical model aimed at explaining such anomalies, namely the two-level system

model, is then discussed. We illustrate why it cannot be considered satisfactory, focusing

in particular on the description of the discrepancies between its predictions and some ex-

perimental measurements. Finally, we discuss some recent, puzzling observations on vapor-

deposited and hyperaged glasses.

Glasses are amorphous, disordered materials which, despite the lack of periodicity, are me-
chanically rigid like solids [1, 2, 4–14]. Specifically, in a glassy material the typical relaxation
time scale becomes much larger than the typical duration of experimental measurements or
numerical simulations. Adopting this definition, various systems can be considered glassy
materials. Examples are: natural glasses, as obsidian, and structural glasses, as fused quartz
(in the physics of liquids); type-II superconductors in the presence of disorder (in hard con-
densed matter); colloidal suspensions, emulsions, foams, and granular materials (in soft con-
densed matter); spin glasses (among abstract models). Glassy systems are therefore present
at diverse time and length scales, as illustrated in Fig. 1.1a. One important common denom-
inator of glassy systems is the presence of disorder, being it quenched, as in spin glasses, or
self-induced, as in structural glasses. As a consequence, they all present a highly non-trivial
energy landscape in the high dimensional space of configurations, composed of many min-
ima and saddles. A pictorial illustration of it is shown in Fig. 1.1b. In some systems, e.g.
spin glasses and hard spheres, the landscape has been found to be even more complex than
expected, showing a fractal and hierarchical topology [15–17].

Systems approaching the glass transition do not show any appreciable change in their
structure, despite a massive change in their dynamical properties. A clear signature of the
incipience of the glass transition is the formation of two steps in the relaxation of dynamic
correlation functions and the appearance of dynamical heterogeneities. In structural glasses,
which are formed by cooling a liquid “fast enough” [11], both features appear approximately
at T ⇡ 1.2 Tglass, where Tglass is the glass transition temperature. As depicted in Fig. 1.2,
dynamical heterogeneities are spatio-temporal fluctuations in the local dynamical behavior.
They have been observed also in living cells [18], and it is expected that we will encounter
them even farther afield [19]. Recent research [1, 11, 20–24] has highlighted the importance
of dynamical heterogeneities, indicating that they might be helpful in understanding the
nature of the glass transition.

D. L. Anderson described the nature of the glass transition as “the deepest and most inter-
esting unsolved problem in solid-state theory” [25]. Indeed, despite the presence of many
theoretical frameworks [26–30], a comprehensive and generally accepted theory on the na-
ture of the glass transition and the physics of glasses has not been developed so far. One of the
most important, long-standing open questions is the behavior of structural glasses at ultra-
low temperatures (1 K and below). The presence of anomalous behaviors of several thermo-

1



Introduction Ph.D. thesis by C. Artiaco

(a) (b)

Figure 1.1.: (a) Glassy phases occur at low temperature or large density in various systems,
spanning a broad range of length scales: (top left) atomic force spectroscopy
image of an alloy; (top right) colloidal system; (bottom left) beer foam; (bottom
right) granular material. Picture extracted from [1]. (b) Schematic illustration
of the energy landscape in a glass. The x-axis represents all configurational
coordinates. Picture extracted from [2] (adapted from [3]).

dynamic quantities at T < 1 K was first noticed by C. Zeller and R. O. Pohl in 1971 [31].
They found that different noncrystalline solids do not follow the behavior predicted by the
Debye theory, in contrast to insulating crystals. Such observation was unexpected because
long-wavelength acoustic vibrations dominating low-temperature thermal properties were
supposed to be insensitive to atomic positional disorder. C. Zeller and R. O. Pohl observed
that vitreous silica (SiO2), selenium (Se), and silica- and germania- based glasses present the
same thermal conductivity  within a factor of 5 in the range 0.05 < T < 100 K, with the
characteristic behavior  ⇠ T � with � ⇠ 1.8 for T < 1 K (see Fig. 1.3), in contrast to the
Debye cubic behavior. Furthermore, the specific heat was found to vary as CV ⇠ AT + BT 3

in the temperature range 0.1 < T < 1 K, instead of the purely cubic dependence observed
in crystals. Thus, the specific heat of amorphous silica is several orders of magnitude larger
than that of its crystalline counterpart, as illustrated in Fig. 1.4. In Ref. [31], it has been also
observed that between 3 and 10 K the thermal conductivity displays a plateau followed by a
rise (see Fig. 1.3b), while the specific heat plotted as C/T 3 vs. T displays a bump if plotted
in log-log scale (see Fig. 1.4). The latter features are associated with the so-called boson

peak [32]. In this thesis, however, we will be interested only in the ultra-low temperature
properties, i.e. T < 1 K. The experimental findings of Ref. [31] in the ultra-low temperature
regime do not have a simple explanation, as the authors themselves conclude; they indeed
opened up a long and fruitful scientific research line.

The first plausible model able to explain the enigmatic observations of Ref. [31] was pub-
lished independently by W. A. Phillips [35] and P. W. Anderson, B. I. Halperin, and C. M.
Varma [34] in 1972. They introduced the two-level system (TLS) model, which is based on
the idea that the physics of glasses at ultra-low temperatures is dominated by tunneling two-

level systems. The model assumes that, due to their amorphous structure, glassy materials
present some entities, such as single atoms, groups of atoms, or even single electrons, that

2



Figure 1.2.: Single particle displacements in the numerical simulation of a diatomic Lennard-
Jones liquid in two dimensions. The displacement of each particle over a time
window comparable to the structural relaxation time is indicated by the length
of the arrow: different particles have different mobilities and form dynamically
correlated clusters. Reprinted from [1].

can tunnel between two nearby degenerate configurations, and constitute the only effective
degrees of freedom of glasses at ultra-low temperatures. As illustrated in Fig. 1.5, each tun-
neling entity can be modeled as a double-well potential, where the wells correspond to the
two nearby equilibrium configurations. The model is completely specified by the energy dif-
ference between the two wells, ", and the tunneling amplitude, � / exp(�

q
2mV

~2 L), where
m is the mass of the tunneling entity, V is the barrier height, and L is the distance (mea-
sured in the generalized coordinate x) between the two equilibrium positions. The TLSs are
considered independent, i.e. they do not interact with each other. With a plausible choice
of the disorder distributions of the model parameters " and �, one can reproduce quantita-
tively the values of several equilibrium quantities, including a linear specific heat CV ⇠ T ,
and a quadratic thermal conductivity  ⇠ T 2. The original TLS model has undergone con-
siderable elaboration in the last 50 years. An interesting viewpoint has been suggested by
the mosaic picture of the random first-order transition theory (RFOT) for structural glasses,
when P. Wolynes and collaborators tried to postulate the existence of TLSs as a consequence
of processes occurring at the glass transition [36].

Both the strength and the weakness of the TLS model resides in its generality: the mi-
croscopic nature of the tunneling entities is not specified, and one can tune the disorder
distributions of the model parameters, i.e. p"(") and p�(�), to reproduce the expected ex-
perimental behaviors, such as a linear relation CV ⇠ T , and a quadratic relation  ⇠ T 2.
Despite a large number of experimental [37] and numerical [38, 39] studies aimed at iden-
tifying and quantifying the TLS disorder distributions, they have not been fully characterized
yet. Their shape and support in the literature are usually inferred from heuristic arguments
[33], not without generating some controversies [40, 41].

A series of classical experiments [42–48] have confirmed and expanded the seminal obser-
vations of Ref. [31]. New measurements have also brought to light the presence of numerous
discrepancies between the experiments and the TLS model [49]. Hence, many authors have
tried to extend the model beyond the original works to account for such experimental facts
[50–52], while others started to not trust in the TLS model predictive qualities, and criticized

3



Introduction Ph.D. thesis by C. Artiaco

(a) (b)

Figure 1.3.: Thermal conductivity as a function of temperature. (a) Thermal conductivity of
crystalline and vitreous SiO2, and of crystalline KCl:CN. (b) Thermal conductivity
of vitreous SiO2, Pyrex 7740, Se, and of aluminiumgermenate glass at 0.06 <
T < 100 K. Plots extracted from [31].

it as a glorified curve-fitting procedure [36, 53–55]. For example, in Ref. [55], A. J. Leggett
and D. C. Vural have extensively examined the problems of the TLS model both at a philo-
sophical and a practical level. One of the central points of their criticisms is whether the
TLS model is as unique as it is usually assumed to be. They suggest that this is not the case,
and any modeling of the system energy levels and stress matrix elements, if properly tuned,
would reproduce the experimental behavior of glasses at ultra-low temperatures.

Among the main experimental and theoretical problems of the TLS model, the first is
linked to the presence of few direct observations of the tunneling entities. The existence of
TLSs in amorphous solids has been established by direct experimental observations only in
few systems [56], while in others, such as in amorphous solid toluene [57], evidence for the
absence of TLSs has been found. Unfortunately, no definite measurements have been made to
test whether the thermal and acoustic properties of the latter systems are analogous to typical
glasses. Therefore, clear insights on the TLS microscopic nature are still lacking. While TLSs
are generally electrically neutral, in some materials, such as disordered oxide barriers used
in Josephson junctions, TLSs have been observed to carry electric dipole moments [58].
Second, as already highlighted, the TLS model predictions depend uniquely on the particular
choice of the disorder distributions, which work as fitting parameters. Consequently, the
model does not necessarily represent a correct physical description of ultra-low temperature
glasses, although it is certainly a good-fitting procedure. Third, most recent experiments
have shown that the specific heat and the thermal conductivity vary in temperature as CV ⇠
AT↵+BT 3 with ↵ 2 [1.2, 1.4], and  ⇠ T � with � 2 [1.8, 1.9] [59, 60]. The TLS model instead
predicts a purely linear and quadratic behavior, respectively. Fourth, recent experiments have
indicated that TLSs are strongly coupled to magnetic fields, which is inexplicable within
the TLS model [61, 62]. The lack of direct observations of TLSs at the microscopic length
scale has brought some authors to attribute the anomalous magnetic-field dependence of the

4



Figure 1.4.: Specific heat as a function of temperature for vitreous silica and crystalline
quartz, plotted as CV /T 3 versus T . Plots extracted from [33].

heat capacity to the presence of multi-minima local potentials, rather than to strictly two-
level systems as in the original model [63, 64]. Another puzzling question on the validity
of the TLS model comes from the surprising quantitative universality of some properties of
glasses. In particular, ultrasonic and dielectric measurements have shown that acoustic and
dielectric absorptions in glasses are strongly enhanced with respect to crystalline solids and
that the dimensionless quality factor Q is notably large, Q ⇠ 104, and independent of the
chemical composition of the glass in the temperature range 0.1 . T . 10 K. Within the
TLS model, Q is given by the product of 4 independent factors; thus, the universality of Q
could be only explained via a striking fine-tuning of the model parameters [65, 66]. The
final important shortcoming is that the TLS model considers TLSs as independent entities,
while consolidated experimental evidence indicates that TLSs interact one with another via
the strain field [56, 67–71]. This feature is evident, for instance, from the measurements
of the sound velocity, the dielectric constant and the internal friction at T < 100 mK [72].
TLS–TLS interactions have been the subject of extensive studies [68, 73–76]. They can be
ascribed to the interaction of TLSs with the phonon (or photon) bath.

The interaction between TLSs and phonons was already considered in the original TLS
model [34, 35]. However, the generated interactions among TLSs were assumed to be neg-
ligible. The TLS-phonon interaction is also responsible for the equilibration of the TLSs at
the bath temperature. In the literature, TLSs have always been assumed to be thermal on
all experimentally accessible time scales, and standard thermodynamic ensembles have been
applied. The issue of how, and on which time scales thermalization takes place has been
overlooked so far.

The picture on ultra-low temperature glasses has become even more cluttered when experi-
mental, numerical, and theoretical studies have started to explore vapor-deposited glasses [77–
82]. These are highly stable glasses prepared by vapor deposition: they are constructed de-
positing one layer at a time on a substrate. Vapor-deposited glasses can show higher density
and kinetic stability with respect to structural glasses. Fig. 1.6a depicts the specific-heat be-
havior in vapor-deposited glasses of indomethacin, denoted as ultra-stable glasses (USG-1–

5
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Figure 1.5.: Pictorial representation of a two-level system. The plot shows the energy of the
system E as a function of the generalized coordinate x, measuring the position
along a line connecting the two nearby local minima of E. The two minima are
at distance L; V denotes the energy barrier that separates them, and ✏ denotes
their energy difference. Illustration extracted from [34].

USG-2), compared with a crystalline solid, a conventional glass, and a degraded USG, that is
a vapor-deposited sample exposed to longer aging in different vacuum conditions1. The spe-
cific heat of vapor-deposited glasses varies as predicted by the Debye theory: Cp/T 3 / const.,
i.e. the linear term ascribed to TLSs is completely suppressed. At first, this has been consid-
ered proof for the depletion of TLSs in all kinds of ultra-stable glasses. However, when a
series of experiments on hyperaged (20–110 million-year-old) glasses of geological amber
have been performed [83, 84], the idea that vapor-deposited glasses are prototypical exam-
ples of ultra-stable glasses has been called into question. Indeed, Refs. [83, 84] show that
the features of conventional glasses persist unchanged in hyperaged samples. In particular,
it has been found that the specific heat at the lowest temperatures vanishes as CV ⇠ T 1.27,
and remains unaltered when considering the pristine hyperaged amber, or the partially and
fully rejuvenated amber samples2. These results, depicted in Fig. 1.6b, suggest that vapor-
deposited glasses do not represent highly stable conventional glasses, maybe because of their
layered structure, observed in Ref. [80]. However, no conclusive results are available to solve
this issue.

For decades, the striking universality of the ultra-low temperature properties of glasses
has been deeply studied both qualitatively and quantitatively; nevertheless, neither a closed
theory nor a clear explanation for its origin has been found. In the 1980s and 1990s, many
experiments have been focused on crystalline solids with some kind of disorder (different
from the translational one of structural glasses). For instance, orientational glasses have been

1While USG samples were stored in vacuum-sealed bags with desiccant to minimize aging before the specific-
heat measurements, the degraded sample was stored in a poor-vacuum bag for two months (see Materials

and Methods in Ref. [80].
2Rejuvenation is a process to erase the thermal history of a glassy sample. In Ref. [84], it is used to transform

the hyperaged amber in a less stabilized, conventional glass: the rejuvenation is conducted stepwise, by
performing several isothermal treatments to the pristine sample near the glass transition.
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(a) (b)

Figure 1.6.: (a) Specific heat data on ultrastable glasses (USG-1–USG-2) of indomethacin
made by vapor deposition. The thin films employed have thickness: 50 µm
for USG-1, 80 µm for USG-2. The results are compared with the crystalline
phase, the conventional glass, and the degraded USG. Dashed lines follow the
fits Cp = AT + BT 3. Figure extracted from [80]. (b) Specific heat of hyperaged
(100 million-year-old) amber at 0.05 < T < 2 K. Three different glassy samples
are compared: pristine, partially rejuvenated, and fully rejuvenated hyperaged
amber. The upper dashed line shows the best quasi-linear fit to the experimental
data at T < 0.4 K, given by Cp / T 1.27. Figure extracted from [84].

investigated. These are alkali cyanide and other mixed crystals grown with a fixed amount of
orientational disorder controlled by the concentration. Orientational glasses exhibit ultra-low
temperature specific heat and thermal conductivity with analogous behaviors to amorphous
glasses [85]. Over the years, it has been found that a large number of diverse disordered crys-
tals show low-energy lattice vibrations which are quantitatively the same as those measured
in amorphous solids [65]. Such observations have suggested that the absence of long-range
order is not a sufficient nor a necessary feature for the existence of the low-energy excitations
typical of glasses [86]. Consequently, some authors have started to investigate to what extent
the anomalous behavior of glasses at ultra-low temperatures is really universal [60]. Review-
ing all the available experimental data on the specific heat Cp, it has been realized that the
glassy Cp excess, namely the almost linear contribution, is far from being universal among
all glassy materials. While in some molecular crystals the linear coefficient is larger than in
standard amorphous materials, it assumes a negligible value in few amorphous solids.

To shed new light on the possible origin of the anomalous behavior of glasses at ultra-low
temperatures, this thesis explores two main approaches. The first one relies on mean-field
models for glasses; we will investigate their thermodynamic properties, both in the classical
and the quantum regime. The second one is a finite-dimensional approach, based on the
well-known two-level system model for glasses and standard many-body localized systems;
we will analyze their quantum dynamics.

A detailed outline of the thesis can be found in the next Chapter.
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Summary of the thesis

In this Chapter, we present the outline of the thesis. We introduce the main ideas, physical

results, and analytical and numerical techniques discussed in the following Chapters. We list

the publications and pre-prints containing the original achievements presented in the thesis.

As discussed in the Introduction, structural glasses at ultra-low temperatures present sev-
eral puzzling phenomena, such as an anomalous (i.e., non-Debye) behavior of thermody-
namic quantities at temperatures lower than 1 K. The goal of this thesis is to explore the
effects of quantum mechanics on the properties of glasses at ultra-low temperatures. This
aim is pursued by employing two different approaches. On the one hand, we introduce new
suitable quantum models for glasses at ultra-low temperatures, and we study their thermo-
dynamic properties. This approach relies mainly on mean-field models for hard spheres and
constraint satisfaction problems. On the other hand, we investigate the quantum dynamics
of the standard model for ultra-low temperature glasses, namely the two-level system model,
showing that it presents the signatures of quantum many-body localization. Moreover, we
show that quantum observables in many-body localized systems exhibit a dynamical behav-
ior similar to classical glasses.

Hence, the thesis is divided into two Parts, where my original achievements are reported:
Part I focuses on the first approach, and is entitled Thermodynamics; Part II is dedicated
to the second approach, and entitled Quantum Dynamics. The structure of the thesis is as
follows.

– Chapter 2 opens Part I of this thesis; it introduces the jamming phase diagram as a uni-
fying picture for different kinds of glassy systems. Specifically, we focus on hard-sphere
systems as the minimal model for structural glasses. We describe their jamming tran-
sition, which is a mechanical transition that brings the system to form a mechanically
rigid packing. Importantly, the jamming critical point seems to be independent both of
the preparation protocol and the dimension of the system. We sketch the dynamical
phase diagram of mean-field hard spheres and discuss their connection with constraint
satisfaction problems.

– Chapter 3 is devoted to the exploration of the jamming transition in hard spheres, and
to testing its independence of the system dimensionality. We present a novel itera-
tive linear programming algorithm for studying jamming in hard spheres in arbitrary
dimensions, highlighting its strengths and applicability range. By means of that algo-
rithm, we are able to explore the structure of the jamming landscape as a function of
the packing fraction in three-dimensional hard spheres. We find that the jamming land-
scape is rough and hierarchically organized. Remarkably, this topology corresponds to
the one analytically predicted for infinite-dimensional hard spheres, thus supporting
the universality of the jamming transition.

– Chapter 4 is devoted to the investigation of the quantum jamming transition in the
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quantum mechanical perceptron model. First, the classical version of the model is
presented, and its relation with hard-sphere systems is underlined. Then, we generalize
the perceptron to the quantum realm. Employing this model, we are able to explore
for the first time the jamming transition of mean-field quantum hard spheres deep
in the quantum regime. We expect these results to have implications both for the
theory of glasses at ultra-low temperatures and for the study of quantum machine-
learning algorithms. In the perceptron model, we observe that quantum effects affect
sensibly the transition, changing the critical exponents with respect to the classical
ones. Moreover, we find that the quantum critical point is not confined to the zero-
temperature axis, and the classical results are recovered only at T = 1. This suggests
that quantum effects have a crucial role also in the case of low-temperature structural
glasses.

– Chapter 5 opens the second Part of this thesis, which is dedicated to the quantum
dynamics of glasses at ultra-low temperatures. In this Chapter, we outline the main fea-
tures of many-body localization, which is a non-ergodic state of matter existing only in
the quantum realm. As glasses, however, many-body localized systems fail to thermal-
ize even at infinite times. We discuss the common aspects and the differences between
many-body localized and glassy systems.

– Chapter 6 contains the investigation of the quantum dynamics of an ensemble of two-
level systems (TLSs) coupled with a phonon bath in the weak-coupling limit. In the
literature, TLSs have always been considered thermal on all experimentally accessible
time scales, and standard thermodynamic ensembles have been applied. However, the
presence of the strong, long-tailed disorder characterizing the distributions of the model
parameters, suggests that quantum effects might be consistent. By integrating out the
phonons within the framework of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equation, we find that the dynamics of the system at short and intermediate
time scales presents clear signatures of many-body localization physics (in particular,
a power-law decay of the concurrence), even in the presence of dissipation, if the lat-
ter is not too large. Remarkably, we show that such signatures of localization should
be experimentally accessible in real glassy samples at ultra-low temperatures, using
for instance ultra-fast laser probes. Hence, our findings show that glasses might be a
privileged platform for probing many-body localization in real materials.

– Due to the uncertainty in the characterization of the disorder parameters entering the
two-level system model, in Chapter 7 we re-analyze the quantum dynamics of TLSs
coupled with phonons within the strong-coupling approximation. In this regime, by
applying a simple unitary transformation to the full Hamiltonian of the system, we find
that the bare tunneling amplitudes of the TLSs become exponentially suppressed by the
polaron effect. Interestingly, the polaron effect can thus justify the small values and the
wide distributions usually attributed in the literature to the tunneling amplitudes. By
means of a perturbation theory in the tunneling amplitudes, we are able to compute an-
alytically the dissipation rates of the TLSs: their typical value results the smallest energy
scale of the problem. Finally, we derive a new phenomenological master equation for
the TLSs in the GKSL form, showing the presence of a localized transient regime for the
TLS dynamics, in agreement with the result within the weak-coupling approximation.

– In Chapter 8, we address an original aspect of many-body localized systems, namely
the spatio-temporal behavior of quantum entanglement. We investigate the relaxation
times of the onsite concurrence, as a measure of the time scale of local entanglement.
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As disorder increases or energy decreases, the distribution of the relaxation times be-
comes wider, and longer-range spatial correlations are observed. The spatial correlation
of the onsite entanglement allows us to introduce a new dynamical correlation length
for many-body localized systems. The spatio-temporal behavior of entanglement ex-
hibits a striking resemblance with dynamical heterogeneities in classical glasses. Since
entanglement is a genuine quantum object, which is with no classical analog, the ob-
served similarity to the classical case is even more remarkable.

– Chapter 9 contains the concluding remarks of the thesis. We summarize the original
achievements reported, and we highlight the possible future research directions that
the present studies have opened.

List of publications

The original achievements reported in Chapters 3–8 are based on the following publications
and pre-prints:

1) Artiaco, C., Baldan, P., & Parisi, G. (2020). “Exploratory study of the glassy landscape
near jamming”, Phys. Rev. E, 101 (5), discussed in Chapter 3.

2) Artiaco, C., Rojas, R. D. H., Parisi, G., & Ricci-Tersenghi, F., (2021). “An iterative Lin-
ear Programming algorithm for jamming hard spheres”, in preparation, discussed in
Chapter 3.

3) Artiaco, C., Balducci, F., Parisi, G., & Scardicchio, A. (2021). “Quantum jamming: Critical
properties of a quantum mechanical perceptron”, Phys. Rev. A 103 (4), L040203,
discussed in Chapter 4.

4) Artiaco, C., Balducci, F., & Scardicchio, A. (2021). “Signatures of many-body localization
in the dynamics of two-level systems in glasses”, Phys. Rev. B 103 (21), 214205,
discussed in Chapter 6.

5) Artiaco, C., Balducci, F., Fabrizio, M., & Scardicchio, A. (2021). “Signatures of many-
body localization in the dynamics of two-level systems in glasses in the strong-coupling
limit”, in preparation, discussed in Chapter 7.

6) Artiaco, C., Balducci, F., Heyl, M., Russomanno, A., & Scardicchio, A. (2021). “Spatio-
temporal heterogeneities of entanglement in the many-body localized phase”,
arXiv:2108.05594, discussed in Chapter 8.

Not discussed in the thesis, there is an oncoming work on the dynamics of the wetting
layer in the presence of phase coexistence in an open quantum system:

7) Artiaco, C., Nava, A., & Fabrizio, M. (2021). “Lindblad dissipative dynamics of the wetting
layer in the presence of phase coexistence”, in preparation.

11





Part I.

Thermodynamics

13





2. Introduction to Part I

In this Chapter, we present the jamming phase diagram which provides a framework for

unifying the physics of different kinds of glasses. The jamming transition in hard-sphere

systems is then described. We sketch the dynamical phase diagram of mean-field hard spheres

and highlight their link with finite-dimensional systems. Finally, we discuss the connection

between hard spheres and continuous constraint satisfaction problems.

As discussed in Chapter 1, glasses are ubiquitous: diverse and various systems fall into
the category of glasses, such as structural glasses, granular materials, emulsions, foams, and
colloidal suspensions. The important ingredient that pools these systems together is the pres-
ence of an amorphous structure and of the dynamical arrest. Indeed, in glassy systems, the
typical relaxation time is much larger than the typical duration of experiments or numerical
simulations. Therefore, their dynamics ceases, and they remain static for all the observation
time. It is clear, however, that all these systems present completely different microscopic
natures and, historically, different control parameters. So, a question of paramount interest
would be whether such glassy phases and transitions share general features in common, both
at a qualitative and quantitative level. In other words, one can ask, for instance, whether the
dynamical arrest of colloidal suspensions as pressure or packing fraction are raised is prof-
itably comparable with the freezing of a liquid into a structural glass. In Ref. [87], it has been
proposed the first unifying framework of glassy systems, namely the jamming phase diagram,
illustrated in Fig. 2.1. In such a diagram, the phase boundary marks the point where the sys-
tem becomes so sluggish that it appears stuck for any experimental time scale. The so-called
jamming phase is enclosed in the boundaries. It might be entered as different parameters are
varied: temperature, density, or load. Hence, the jamming phase diagram opens interesting
scenarios. First, the diagram implies that the three control parameters are important for all
systems, or conversely that each system is controlled by all the three variables. It suggests,
for example, that the glass transition temperature of structural glasses should diminish if the
density of the system increases or the shear stress applied to it decreases. Second, it put
in contact the thermal glass transition with the athermal jamming transition. Specifically,
it suggests that one can have insights into the physics of structural glasses and their low-
temperature properties, exploring simpler systems, such as hard spheres, mainly controlled
by density. Finally, the diagram indicates that the jamming region might control the behav-
ior nearby, thus suggesting an explanation for the similarities observed in different kinds of
systems as the glass transition is approached.

The jamming phase diagram has been successfully exploited in experiments on solidifica-
tion of attractive colloidal suspensions [88]. Nevertheless, its extent of validity is still under
debate among the glass physics community. Several hints have been found suggesting that
the physics of structural glasses, in particular their free-energy landscape, share many fea-
tures in common with other systems. In particular, in Ref. [17] it has been argued that struc-
tural glasses might present a fractal structure of the free-energy landscape similarly to hard
spheres. However, more recent studies [89–91] have pointed out that the situation might be
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Figure 2.1.: Jamming phase diagram proposed in Ref. [87]. The jamming phase is enclosed
in the shaded region around the origin. The picture proposes a unifying interpre-
tation for the glassy phase in structural glasses, colloids, and granular materials.
The extent of validity of the jamming phase diagram is still an open question.
Picture adapted from [87].

more complicated [92]. Performing comprehensive numerical studies of three-dimensional
molecular glasses, it has been observed that behaviors analogous to hard spheres near jam-
ming, e.g. rejuvenation and memory effects expected in the Gardner phase [93–96] (see
also Chapter 3), are present only in some regions of the parameter space. In other cases, a
hard-sphere phenomenology has been reported [97–99]. In addition, renormalization group
studies have yielded controversial results [100–102].

Hard-sphere systems are formed by (typically spherical) particles that cannot overlap:
spheres interact via a hard-wall potential which is infinite if two of them overlap, and it is
zero otherwise. The jamming transition of hard spheres can be easily visualized; its pictorial
representation is shown in Fig. 2.2. We see that the jamming critical point is encountered at
increasing the system density. When the density is low (left panel), there are many configu-
rations in which particles do not overlap. At increasing density, however, the free volume left
by the particles diminishes, and at a certain density value the particles cannot move further
without overlapping one with another: this is the jamming transition point (central panel).
Hard spheres at jamming become stuck under the exertion of external stress due to the cre-
ation of a force network, depicted in Fig. 2.3 for a two-dimensional system. The picture
shows the presence of some particles (in orange) which are not part of the force network.
They are known as rattlers; they disappear as the dimension of the system increases and
are completely absent in the mean-field case. If the density increases further (right panel of
Fig. 2.2), there would be overlapping particles. This situation is not allowed for hard spheres.
However, this regime might be reached by defining a soft potential and transforming hard
spheres into an optimization problem.

The jamming transition of infinite-dimensional hard spheres has been analytically solved.
The exact theory for the critical behavior of mean-field hard spheres at jamming, along with
the scaling laws among different critical exponents, is reviewed in Ref. [95]. Mean-field
models have always been fundamental platforms to study the intricate physics of glassy sys-
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Figure 2.2.: Pictorial representation of the jamming transition in sphere systems. When the
density is low, the particles can freely move without overlapping with each other.
At increasing the system density, the free space available diminishes. At the
jamming threshold, the system becomes completely stuck: the particles cannot
move further, otherwise, they would overlap. If the density increases further,
there are overlaps among particles. This situation is not allowed in hard-sphere
systems.

tems [15]. In recent years, infinite-dimensional hard-sphere systems have gained plenty of
attention among the glass physics community [16]. Their dynamics and thermodynamics
have been investigated around the dynamical, Gardner, and jamming transitions. The phase
diagram of infinite-dimensional hard spheres presents three dynamical phases, which are
illustrated in Fig. 2.4.

The control parameters of hard-sphere systems are the pressure and the packing frac-
tion1, �. Different regions of the phase diagram can be identified by the behavior of the
mean-square displacement (MSD), defined as �(t) := 1

L

P
L

i=1
|ri(0) � ri(t)|2, where L is the

system size, and ri(t) is the position of the particle i at time t. When the pressure is small, the
system is ergodic, and lim

t!1
�(t) = 1 (Fig. 2.4, left column). An equilibrium compression of

the liquid can be carried out only up to �d, the dynamical transition point. At �d, the phase
space becomes clustered into exponentially many glassy states. These clusters are mutually
inaccessible and trap the dynamics at infinite times: lim

t!1
�(t) = �1 < 1. For �g > �d, it

is possible to define a restricted equilibrium state [104]. This is known as the stable glass
phase: the system can completely relax inside the metastable state but long-time diffusion
is forbidden. The particles of a stable glass are caged by their neighbors and vibrate around
their “amorphous equilibrium positions” in cages whose typical size is �1 (Fig. 2.4, central
column). Compressing further the stable glass up to �G(�g), one encounters the Gardner
transition, where even the restricted equilibrium is lost: the stable glass state breaks into a
hierarchical structure of marginal states (landscape marginal stability) (Fig. 2.4, right col-
umn). This implies the existence of delocalized soft modes, diverging susceptibilities [105],
and anomalous rheological properties [106]. Beyond the Gardner transition, the number of
minima of each cage is expected to diverge exponentially in the number of components of the
system [107]. Finally, compressing the system up to the point where the pressure diverges,
the system jams. At jamming, the packings are mechanically rigid and isostatic, meaning that
the number of mechanical constraints is equal to the number of degrees of freedom [108].
Isostaticity implies that the system is mechanically marginally stable. Hence, at the jamming

1The packing fraction � is defined as the fraction of the volume occupied by the particles. In a monodisperse
system, � = 4

3⇡r
3⇢, where ⇢ = N

V
is the density and r is the radius of the spheres.
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Figure 2.3.: Jammed packing of bidisperse hard spheres in two dimensions. The full net-
work of contacts is shown in red; the thickness of the lines is proportional to the
force magnitude. Orange particles are not part of the force network; they are
called rattlers. They disappear as the dimension of the system increases. Figure
extracted from [103].

point, the number of soft modes is enhanced.

It has been found that the mean-field theory provides reliable predictions for many prop-
erties of finite-dimensional systems. Remarkably, recent numerical simulations have pointed
out that the critical properties of the jamming transition might be universal, i.e. indepen-
dent both of the preparation protocol and of the dimension2 of the system for d � 2. The
results discussed in Chapter 3 follow exactly this research line, trying to assess whether the
jamming landscape of three-dimensional hard spheres shows the same properties of infinite-
dimensional ones. The universality of jamming of hard spheres is a very promising quality:
it implies that one can use the exact results on the mean-field model to predict the proper-
ties of finite-dimensional systems. In addition, considering the unifying picture given by the
jamming phase diagram, the mean-field model of hard spheres should be also connected to
structural glasses. Therefore, one can try to shed light on the physics of structural glasses
employing infinite-dimensional sphere systems.

This picture still misses another important ingredient, which is revealed by the diagram
sketched in Fig. 2.2: the jamming transition of hard spheres can be thought of as the satis-
fiability/unsatisfiability threshold of continuous constraint satisfaction problems (CSPs). The
constraints are induced by the requirement that spheres cannot overlap. In the framework
of CSPs, it has been found in Ref. [110] that the perceptron, introduced in 1958 in neural
networks [111], is the simplest model in which jamming is in the same universality class
of hard spheres in infinite dimensions. The perceptron model is a privileged point of view:
thanks to its analytical tractability, it gives the possibility to explore special instances of the
sphere problem [112], and even to analyze their quantum regime [113]. We will exploit the
perceptron model in Chapter 4 to investigate the quantum jamming transition.

2However, when considering finite-dimensional systems, some minor effects come into play due, for instance,
to rattlers and bucklers [109].
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Figure 2.4.: The three dynamical phases of hard spheres. The left column shows the features
of hard spheres in the liquid phase. The particles are free to move and the mean-
square displacement (MSD) presents a ballistic regime at short times, followed
by a diffusive regime. The central column depicts the normal glass, where the
phase space is divided into disconnected basins. The MSD shows a plateau due
to the presence of cages. In the right column, we observe the phenomenology
of the marginally stable glass. Each cluster of configurations belongs to a basin
which is subdivided into smaller sub-basins, hierarchically organized. Since the
system presents the full replica symmetry breaking, the MSD presents infinitely
many steps. Reprinted from [95].
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3. Jamming landscape in three-dimensional
hard spheres

This Chapter is devoted to the investigation of the properties of the jamming landscape of

three-dimensional hard spheres as a function of the packing fraction. We show that, by

employing a novel iterative linear programming algorithm, presented in Section 3.1, we are

able to explore the landscape structure. In Section 3.2, we present an exploratory study on

such landscape structure, starting from independent configurations in the same cage. We

show that the landscape is rough and complex, and presents a large number of different

minima which seem to be organized hierarchically. That points towards the universality of

the jamming transition of hard spheres. The reference articles are Refs. [114, 115].

Validating the mean-field picture of hard spheres in finite-dimensional systems would
greatly increase the global understanding of the glass transition, as already emphasized in
Chapter 2. In particular, the presence of the Gardner transition in finite-dimensional glasses is
still a matter of debate, due to the presence of controversial numerical and renormalization-
group results. In this Chapter, we present a direct inspection of the presence of the Gardner
phase in three-dimensional hard spheres at jamming, looking at the properties of the land-
scape local minima. This exploration is performed thanks to an innovative linear program-
ming algorithm, able to access the jamming transition directly from the hard-sphere regime,
i.e. without introducing any fictitious potential among particles, as standard algorithms do.
We study the distribution of the packing fraction of the local minima, and their relative dis-
tance in the configuration space. We observe the presence of a large number of minima. The
deepest minima are close both in terms of packing fraction and distance, and present large
basins of attraction. Our analysis shows that the system undergoes a roughness transition,
which brings about isostaticity on approaching jamming. Moreover, the signatures of an ul-
trametric structure of the landscape are found. These results agree with the exact solution of
infinite-dimensional hard spheres.

3.1. An iterative linear programming algorithm for jamming in
hard spheres

Linear programming algorithms are methods to solve linear optimization problems [116,
117]. As sphere systems can be formulated as constraint satisfaction problems (see Chap-
ter 2), also jamming in hard spheres can be seen as an optimization problem: the objective
is to maximize the particles’ radii (equivalently, inflate the particles) without overlaps among
particles. Notice that, in order to leave unchanged the degree of polydispersity of the sys-
tems, the inflation rate has to be equal for all the spheres. Similar algorithms have been
implemented in Refs. [118, 119]. The variables of the optimization problem are the inflation
rate ↵, and the particles’ displacements �. Since we fix the position of a sphere to avoid
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the rigid translation of the system as a whole, the latter are 3(L � 1) scalar variables. The
constraints of the problem are

(xi � xj)
2 + 2(xi � xj)(�i � �j) + (�i � �j)

2 � ↵�2ij � 0 (3.1)

where xi indicates the position of the sphere i, �ij = �i+�j

2
is the sum of the radii, | �x,y,z

i
| c

and 0  ↵  c0 for c and c0 reasonable numbers with respect to the linear dimensions of
the system. To employ linear programming algorithms we need to linearize the problem
in Eq. (3.1): supposing that the particles’ displacements are small, we can neglect the terms
(�i��j)2. This assumption is asymptotically justified since, after few iterations of the linear
programming algorithm, the increase of the particles’ radii will reduce the magnitude of the
possible displacements. Moreover, in Ref. [115] we analytically show that a solution of the
linearized problem is also a solution of the exact optimization problem.

The final linear problem is a maximization problem with objective function ↵:
(

(xi � xj)2 + 2(xi � xj)(�i � �j) � ↵�2
ij

� 0

max ↵
(3.2)

For each couple of particles, the constraints in Eq. (3.2) are satisfied and the inflation
↵ is maximized, when the spheres go as far as possible along the direction orthogonal to
the constraint and are inflated until the constraint is saturated. Since each sphere has many
neighbors and all the constraints have to be satisfied simultaneously, the displacements would
not be only along this orthogonal direction and the physical constraints will not be saturated
after only one iteration. This is why some iterations (⇠ O(10)) are needed to reach the
jamming point. Thus, the iterative solution of the linear problem in Eq. (3.2) defines the
iterative linear programming (iLP) algorithm for jamming in hard spheres.

The main strength of the iLP algorithm is that it is able to reach the jamming point of
hard spheres without introducing any fictitious potential, as standard algorithms do. The
large employment in the literature of fictitious potentials is mainly due to the existence of
numerous, powerful energy minimization techniques, such as FIRE [120]. However, their
usage has two main drawbacks. First, the spurious interactions might affect the physical
properties of the system close to the jamming point. Second, these algorithms identify the
jammed packings as equilibrium states at zero temperature, while in hard spheres they should
correspond to entropy minima. Both problems are overcome by the iLP algorithm. Therefore,
an efficient iLP algorithm can be used not only to explore confidently the jamming transition
of hard spheres but also to check that the results already obtained within the soft-sphere
approach are fully consistent with the ones for hard spheres, as recently done in Ref. [121].

Importantly, it can be shown analytically that the configurations obtained with iLP are
well-defined jammed states. Indeed: (i) iLP solutions satisfy the mechanical equilibrium
conditions; (ii) they are isostatic (or at least they are never hypostatic); (iii) they reproduce
the force balance equations that determine the force magnitudes in soft spheres; (iv) point
(iii) implies that the Hessian obtained for hard spheres matches that of soft spheres, which
has been found to reproduce the marginal stability condition expected from the mean-field
solution.

The iLP algorithm has been employed in Ref. [114, 121, 122]. An extensive discussion
on it and on its improved versions can be found in Ref. [115]. In particular, we show that
it can be combined with another compression protocol, namely the Lubachevsky-Stillinger
protocol, to perform efficiently detailed explorations of the jamming landscape.
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3.2. An exploratory study of the glassy landscape near jamming

In this Section, we present the results obtained for the structure of the jamming landscape in
three-dimensional hard spheres by means of the iLP algorithm of Section 3.1. We start from
equilibrated independent configurations in the same cage (see Chapter 2) and we bring them
to the jamming point via the iLP algorithm to look at the landscape local minima.

Since the number of minima of each cage is expected to be exponentially large in the
system size, we restrict our study to 100, three-dimensional hard spheres. In order to enhance
the equilibration process, the spheres diameters are drawn from the continuous probability
distribution P (�) / ��3, with �min/�max = 0.45 (see Ref. [123]). The equilibration has been
achieved via the constant-pressure swap Monte Carlo algorithm1 [124] to produce four glassy
configurations in different cages at �g = 0.647 (�d = 0.594), whose position in the phase
diagram of Fig. 3.1 is represented by the green square. Notice that in finite dimensions, since
the energy barriers between metastable states are finite, the dynamical transition �d of the
mean-field scenario (see Chapter 2) reduces to a crossover. For this reason, it is possible to
numerically generate equilibrated glassy configurations even at �g > �d via improved Monte
Carlo algorithms, such as the swap Monte Carlo. Nevertheless, in conventional dynamics, the
time spent by the system in a metastable state can be considered, to a good extent, infinite.

The absence of spatial order and long-time diffusion are key features of glasses. Hence,
we first study the spatial structure of the initial glassy configurations, computing the radial
distribution function [125], and we investigate their dynamical properties, measuring the
mean-square displacement (MSD) as a function of time. Our analysis does not show any sign
of crystalline order, phase separation, and long-time diffusion.

3.2.1. Sample generation and compression protocol

By means of an NV T Monte Carlo dynamics2, we evolve in time each of the starting con-
figurations. At t = ⌧cage, the system enters the caging regime, signaled by a plateau in the
MSD (Fig. 2.4, central column). Saving the time-evolved configurations every 3 ⌧cage sweeps,
we create a set of independent configurations belonging to the same cage, called clones. The
set of clones generated from the same initial configuration is called a sample. To prevent
long-time diffusion and the breaking of the cage, we periodically restart the dynamics from
the initial configuration. Indeed, due to the stochasticity of the Monte Carlo dynamics, we
are guaranteed to sample different trajectories at each restart. We end up with a set of 2⇥105

independent glassy configurations in the same cage. Furthermore, via a fast compression3

of the initial configuration, we generate a new glassy configuration at a higher packing frac-
tion, � = 0.68. The fast compression does not distort the jamming landscape, but pushes the
system into one of the subcages, if, at that packing fraction value, the cage is already broken

1The equilibration beyond the dynamical transition point via the Swap Monte Carlo algorithm has been carried
out by L. Berthier and the Montpellier research group, that we warmly thank.

2In a sweep of the NV T Monte Carlo dynamics, we propose the displacement of each particle of the system.
If the displaced particle overlaps another particle, the movement is refused. We measure the time in units of
Monte Carlo sweeps.

3We move the particles via the NV T Monte Carlo dynamics and, after a fixed number of steps, we increase all
the diameters of a factor � = 10�3. If in the new packing some spheres do overlap, we refuse the inflation and
we further move the particles. The procedure stops when the packing fraction of the configuration reaches
� = 0.68. We call this as fast compression because it carries the system out-of-equilibrium.
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Figure 3.1.: Phase diagram of polydisperse hard spheres in three dimensions. The initial
glassy configurations are equilibrated in correspondence of the green square.
The green and the white squares lie on the equation of state of the liquid at
various 'g; the red line represents the Gardner transition line, 'G('g), and the
line with blue triangles represents the jamming line, 'J('g) (see Chapter 2 for
more details). Extracted from [114], adapted from [97].

into subcages4. From the new configuration, we produce another set of 2 ⇥ 105 packings in
the same subcage. Thus, we follow two compression protocols: (i) taking each sample at
� = 0.647, we bring each clone to the jamming point, via the instantaneous iterative linear
programming (iLP) compression (see Section 3.1); (ii) we repeat the same procedure for
each sample at � = 0.68.

In the hard-sphere regime, i.e. in the uncompressed region, the probability of having a
hard-sphere packing at � is proportional to e�Lp/�, where p is a proxy for the pressure, and
L is the system size. Hence, the jamming transition is reached at p = 1 and the jammed
packings maximize �.

3.2.2. Numerical results

We now present the results obtained for the landscape local minima at jamming. Notice that
larger values of the jamming packing fraction �J correspond to minima which are deeper

in the landscape, while smaller values of �J coincide with minima higher in the landscape.
Importantly, we verified that most of the jammed packings obtained using the iLP algorithm
are isostatic, i.e. they verify Lc = Liso

c := (L � 1)d + 15, consistently with the mean-field
solution. Several works [109, 126–129] have highlighted the importance of having Lc =

4We verified this important feature a posteriori, checking that the jamming packings reached from configurations
at � = 0.68 are a subset of the ones reached from � = 0.647.

5Lc = (L � 1)d + 1 is the isostaticity condition for a finite system under periodic boundary conditions
(PBC) [109]. Here, Lc is the number of contacts of the jammed packing, L is the number of particles
(excluding the rattlers, i.e. particles that are not part of the force network, and d is the dimension of the
system.
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Liso
c to observe key aspects of jamming criticality. Therefore, we restrict our analysis to the

packings with Lc = Liso
c .

Local Minima

Compressing the clones of a sample up to jamming, we find many jammed packings with the
same �J . This is especially true for high values of �J . Furthermore, the packings with the
same �J present also the same arrangement of the particles but for a rigid translation 6, i.e.
they represent the same local minimum at jamming. In each different cage, we find that the
jamming local minima coming from � = 0.68 are a subset of those coming from � = 0.647,
meaning that at � = 0.68 the starting cage is already broken into subcages. This result can be
considered an indirect proof of the goodness of the iLP algorithm, since it shows that, starting
from different heights of the same basin, the landscape local minima are not altered.

For each sample, we compute the local minima distribution at jamming, shown in Fig. 3.2.
They have different supports, depending on the depth of the basin of that cage. The �J ’s
distributions are not self-averaging quantities. The average �J values, merging the data
from different cages, are �J, 0.647 = 0.6955 and �J, 0.68 = 0.6957. Two important features
of the landscape are summarized by Fig. 3.2: many deep local minima are found with high
probability and are characterized by similar �J values. We argue that the first feature means
that their basins of attraction are large. We find that the �J distributions may be wider or
narrower. The average differences between the highest and the lowest jamming packing
fractions are ��

max-min
J, 0.647 = 0.0035 and ��

max-min
J, 0.68 = 0.0016. The average ratios between the

number of distinct local minima found and the total number of clones in the same sample
are, respectively, f0.647 = 0.32 and f0.68 = 0.20.

Ordering in a progressive way the jamming packing fractions, we can define

�n = �n+1 � �n � 0 (3.3)

0  rn =
min{�n, �n�1}
max{�n, �n�1}

 1 (3.4)

If the �J ’s are uniformly distributed, one expects the level statistics to be Poissonian [130]
and, thus, PPoisson(r) = 2/(1 + r)2 with hri Poisson ' 0.386. Computing hri in each sample, the
Poissonian statistics turns out to be almost valid. Indeed, the average on all the samples is
hri0.647 = 0.384 ± 0.001 and hri0.68 = 0.382 ± 0.002.

Local minima in the Configuration Space

Since at jamming, in each sample, we find a huge number of distinct local minima (' 104 �
105), here we study in detail the arrangement in the landscape only of a subset of them, the
1000 deepest minima. First of all, we want to understand how the deepest minimum (i.e.
the one with the highest �J) of each sample is located in the configuration space. To do so,
we compute its square distance

� := �2

↵�
=

1

M

MX

i=1

(x↵

i � x�

i
� �)2 (3.5)

6The rigid translation is due to the translational invariance of the system. This effect has been taken into account
in all the results shown in the present study. In particular, in computing the distance � (Eq. (3.5)) and the
overlap Q (Eq. (3.6)), we subtracted the displacement of the center of mass among the two configurations.
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(a) (b)

Figure 3.2.: Probability distribution of the packing fraction of the local minima at jamming,
obtained by compressing about 2 ⇥ 105 clones. On the x axis, ��J = �J � h�Ji,
where h�Ji is the mean jamming packing fraction of the cage considered. On the
y axis, the probability of finding �J . (a) Results of all the cages generating the
clones at � = 0.647. (b) Results of all the cages generating the clones at � = 0.68.

from the other 200 deepest and the 200 highest minima of the same sample. Here, ↵ and �
are the minima index and i is the particle index; M is the total number of particles excluding
the rattlers of both ↵ and � and � is the distance of the centers of mass of the two minima.
The � values have to be compared with the average values of the MSD in the caging regime,
which are �liq := MSD0.647

plateau = 7.3 ⇥ 10�3 and �0.68

liq := MSD0.68

plateau = 2.6 ⇥ 10�3. In Fig. 3.3a,
is shown the result for cage 1 generating the clones at � = 0.647. The deepest minimum
of this sample appears to be located in a deep well where there are many other very deep
minima of the cage (blue line). Moreover, the deepest minimum is far away from the highest
minima (green line). We find almost the same behavior in all the samples. In Fig. 3.3b
are shown the � distributions among the 200 and 1000 deepest minima, having joined the
results of all the cages. It is clear that the deepest minima of the landscape in each sample
are usually close one to the other.

In a sample, the configuration corresponding to the deepest minimum is usually found
many times; however, it is not the one with the greatest number of occurrences. We denote
the latter as the most probable minimum. Performing the same analyses of Fig. 3.3 on the most
probable minimum, we find that it is close to many other highly probable minima; hence, in
the landscape at jamming, there is a large basin of attraction made up by large sub-basins of
attraction. Furthermore, studying in the same way the properties of the highest minima, we
find that they are far apart from all the other minima and do not form a well. They have small
basins of attraction. We can imagine them as narrow ponds on the walls of the landscape
basins.

Another observable useful to understand the relative position of two local minima at jam-
ming is the overlap [123]. It is defined as

Q := Q↵� =
1

M

1,MX

i,j

⇥

✓
a� | x↵

i � x�

j
� � |

◆
(3.6)

As in Eq. (3.5), the sum is restricted to the M particles which are non-rattlers in none of the
two configurations ↵ and �; � is the distance of the centers of mass of ↵ and �. ⇥ is the
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(a) (b)

Figure 3.3.: (a) Data of cage 1 generating the clones at � = 0.647. On the y-axis, the distances
� among the deepest minimum and the 200 deepest and 200 highest minima of
the same sample, normalized to the MSD of cage 1 (�liq = 0.0066). On the
x-axis, the index increases as �J decreases. (b) � distributions joining the data
of all the cages. On the x axis, � is normalized to �liq = 7.3 ⇥ 10�3. In blue
and azure, the distance distributions among the 200 deepest minima starting the
compressions up to jamming from, respectively, � = 0.647 and � = 0.68. In
yellow and green, the same plots considering the 1000 deepest minima of each
sample.

Heaviside step function. We choose a = 0.03. Q ! 1 when the number of displaced particles
decreases. Q gives complementary information to �. For instance, a high value of � can be
due to the presence of only one particle which has very different positions in the two packings
↵ and �; if it is so, Q has a large value. Otherwise, if many particles are displaced by a small
amount, the same � can correspond to a small value of Q. In Fig. 3.4 is shown the behavior
of the overlap Q for the same minima used in Fig. 3.3b. In our results, given a couple of
minima ↵ and � there is not a direct correspondence between a high value of Q and a small
value of �. However, Fig. 3.3b and Fig. 3.4 show that the deepest minima of each sample
on average are close in terms of both Q (few particles are displaced) and � (small distance).
This confirms our description of the landscape structure in terms of deep wells in which the
deepest minima are contained.

Hierarchical Structure

According to the mean-field picture, we expect to find a hierarchical, specifically an ultramet-
ric, structure of the basins. To verify this hypothesis, we construct the heatmaps of the 1000
deepest minima of each sample, using the distance � as a dissimilarity measure. In Fig. 3.5
are shown the heatmaps of cage 1 and cage 3 for the samples at � = 0.647 and � = 0.68,
respectively. To provide a quantitative characterization of the clustering properties of the
selected minima, we compute the agglomerative coefficient (AC) for each heatmap 7. The
average on all the samples are AC0.647 = 0.994 and AC0.68 = 0.995. These high values of AC
tell us that the minima have a good clustering structure and, so, present a nearly ultrametric

7hAC = 1 �m(i)i. For each observation i, m(i) is the dissimilarity to the first cluster it is merged with divided
by the dissimilarity of the merger in the final step of the algorithm.
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Figure 3.4.: Probability distributions of Q joining the data of all the cages. In blue and azure,
the Q distributions among the 200 deepest minima starting the compressions up
to jamming from, respectively, � = 0.647 and � = 0.68. In yellow and green, the
same plots considering the 1000 deepest minima of each sample.

structure.

3.3. Conclusions and outlook

The results shown in the last Section are compatible with the picture expected for mean-field
hard spheres. Therefore, their value is twofold. First, they suggest that the iLP algorithm
implemented provides the correct picture of the landscape at jamming. Second, they point
towards the universality of the jamming transition in hard-sphere systems and suggest the
presence of a Gardner transition in finite-dimensional systems that determines the rough and
fractal nature of the landscape.

Summarizing, the main features of the jamming landscape in three-dimensional hard
spheres that we observed in this study are: (i) all the samples present a huge number of
distinct local minima at jamming, showing that the landscape is very complex; (ii) the deep-
est minima of the landscape are found more often than the highest, and so we argue that
their basins of attraction are larger; (iii) the dendrograms constructed with the 1000 deep-
est minima of each sample have good clustering properties, suggesting that the landscape is
organized in an ultrametric structure; (iv) the arrangement of the local minima is compat-
ible with several studies on disordered systems [132]: the deepest minima are close in the
configuration space and form a large deep well, while the highest minima do not form a well
and have small probabilities of being found; (v) the level statistics at jamming seems to be
determined by Poisson statistics, meaning that there is no level-repulsion.

This exploratory study has pointed out that the iLP algorithm can be fruitfully exploited
for investigating the properties of finite-dimensional hard spheres at jamming. We hope that
it will be extensively employed in the future to unveil further properties of the jamming tran-
sition in finite dimensions and confirm results previously obtained by means of soft-sphere
approaches. Starting from our qualitative results, one can perform comprehensive studies
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(a) (b)

Figure 3.5.: Heatmaps constructed with the 1000 deepest minima of a sample. (a) Heatmap
for cage 1 coming from � = 0.647. AC = 0.996. (b) Heatmap for cage 3 coming
from � = 0.68. AC = 0.997. The clusters are made with R using the average
method [131].

on the jamming transition within the hard regime. For example, it would be important to
increase the number of starting meta-basins, in order to perform good disorder averages and
have deep control over sample-to-sample fluctuations. Moreover, repeating the same analysis
with systems of different sizes and dimensions would allow one to determine the entity of
finite-size effects and to properly extrapolate the thermodynamic limit of the observables.
Finally, since it is known [97, 133] that the starting point of the compression plays an impor-
tant role in determining the strength of the Gardner transition, it would also be important
to repeat the analysis by starting from different points on the liquid equation of state and
identify, in a clear way, the universal features of the behavior at jamming.
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4. Quantum jamming transition: Critical
properties of a quantum mechanical
perceptron

In this Chapter, we investigate the critical properties of the jamming transition in the quan-

tum mechanical perceptron model. After a brief introduction to the topic, in Section 4.1 we

define the quantum perceptron model. Section 4.2 is devoted to the derivation of the self-

consistency equations to determine the perceptron free energy within the replica-symmetric

ansatz. In Section 4.3, we describe the iterative path integral Monte Carlo algorithm imple-

mented to solve such equations. In Section 4.4, we present in detail the numerical results on

the quantum jamming transition of the perceptron model, showing that its critical exponents

are different from the classical case, and the quantum critical point is not confined to the

zero-temperature axis. The reference article for this Chapter is Ref. [134].

The perceptron is an exceptionally powerful model because of its applications in several
research fields, ranging from learning protocols to the effective description of the dynamics
of an ensemble of infinite-dimensional hard spheres in Euclidean space. It was introduced in
1958 by F. Rosenblatt [111, 135] who, inspired by human neurons, designed this machine for
image recognition. Although it was suddenly realized that the perceptron cannot be trained
to recognize many classes of patterns, and it is only a linear classifier [136], nowadays the
perceptron is extensively used in learning protocols [137, 138] and constitutes the building
block of feed-forward neural networks with two or more layers [139].

The perceptron model belongs to the broad category of constraint satisfaction problems
(CSPs) [140], which are nowadays extensively studied at the crossroad of computer science
and statistical mechanics. CSPs often exhibit high computational complexity, requiring a
combination of heuristics and combinatorial search methods to be solved in a reasonable
time. Methods and ideas from the theory of disordered systems have been proposed to shed
light on the possible origin of their computational difficulty [141–145] and have inspired
efficient algorithms and valuable heuristics [146] to solve them.

A notable example of CSP with continuous variables is the sphere packing problem [110,
147]. As discussed in Chapter 2, sphere systems have gained plenty of attention among
the glass physics community, and their jamming transition has been incorporated into the
framework of glassy theory [17, 87, 95, 148, 149]. In this context, the perceptron, which is
a continuous CSP as well, has been recognized as the simplest mean-field model presenting
a jamming transition in the same universality class of high-dimensional sphere systems [110,
147, 150, 151]. Exactly solvable models have always played an important role in increasing
our understanding of the physics of glasses, both qualitatively and quantitatively. Therefore,
the perceptron promises to be an important viewpoint on these intriguing materials.

Recently, partly motivated by the technological progress in quantum computation [152],
many authors have been looking at ways to use quantum dynamics to speed up the solution
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of the classical problems. In the realm of discrete variable CSPs, a growing body of liter-
ature has investigated the impact of quantum dynamics on the spin-glass transition [153–
158], and it has been found that disordered quantum systems display a plethora of new
phenomena, such as many-body localization [159–169] (see also Chapter 5). On the other
hand, despite the similar importance for computer science, the study of CSPs with continu-
ous variables endowed with quantum dynamics is in its infancy. This is certainly due to the
analytical and computational challenges they posit, but their investigation promises to have
far-reaching implications. For instance, given the connection of the perceptron model with
infinite-dimensional hard spheres, and thus with structural glasses, it might provide clues for
the anomalous (i.e. non-Debye) behavior of thermodynamic quantities in glasses at ultra-low
temperatures (see Chapter 2). These phenomena, such as CV (T ⇠ 0) ⇠ T [31, 80, 84],
discussed in Chapter 1, are indeed naturally explained in terms of quantum mechanics [34,
35], but no firm results or solvable toy models exist (see [55] for a critical view). Indeed,
no exhaustive mean-field model for quantum glasses, nor quantum hard spheres, has been
developed so far.

The purpose of this Chapter is to address, for the first time, the jamming transition of
sphere systems deep in the quantum regime [170] by means of the quantum perceptron
model1. Employing an iterative path integral Monte Carlo algorithm, we show that quantum
mechanical effects change the nature of the critical point radically. We find that, for any
~ 6= 0, the critical exponents are different from the classical ones and independent of the
temperature. We also find that CV (T ⇠ 0) ⇠ e��/T at small T , while at higher tempera-
tures the specific heat has a power-law behavior. Remarkably, the latter result, valid in the
deep quantum regime, resembles the semiclassical results of Refs. [113, 172], connecting
the physics on the two sides of the jamming transition. This work initiates the exploration
of the effects of quantum mechanics on hard spheres and their jamming transition, employ-
ing a unique viewpoint as the quantum perceptron model. These results have implications
for the ultra-low temperature properties of structural glasses and quantum machine-learning
protocols.

4.1. Definition of the quantum perceptron model

The perceptron model can be thought as the model of a particle living on a N -dimensional
sphere, subjected to a set of randomly placed obstacles. The vector X represents the po-
sition of the particle on the sphere (X2 = N), and the obstacles are represented by the
N -dimensional vectors ⇠µ = (⇠µ

1
, . . . , ⇠µ

N
), where µ = 1, . . . , M = ↵N and ⇠µ

i
are independent

identically distributed Gaussian random variables with zero mean and unit variance. For each
obstacle, the constraint hµ is defined as

hµ(X) =
1p
N

⇠µ · X � � > 0. (4.1)

Introducing the cost function

V =
MX

µ=1

v(hµ(X)), (4.2)

the perceptron can be transformed into an optimization problem.
1Notice that the name quantum perceptron has been already used in the past for quantum algorithms for learning

quantum states [171]. Our problem is different since we implement a quantum dynamics on a classical
constraint satisfaction problem.
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Figure 4.1.: Finite-dimensional representation of the perceptron model at � = 0, N = 3,
M = 4. Each constraint is represented by a plane passing through the origin and
cuts the sphere in half. The particle can move in the allowed, light orange region
on the sphere. The jamming transition is reached when the number of obstacles
is such that (with probability 1 in the N, M ! 1 limit) there is no light orange
volume left anymore.

However, we are interested in the hard-wall potential case in which

v(h) =

(
0 if h > 0

1 if h < 0;
(4.3)

hence, we require all the constraints to be satisfied. Fig. 4.1 shows a sketch of the perceptron
model with hard-wall potentials for a particular choice of the parameters �, N, M . However,
the model is physically relvant only when the limits N, M ! 1 are taken, keeping ↵ := M/N
finite.

The classical system (recovered for ~ = 0) is independent of the temperature and presents
two phases, determined by whether there is or there is not any volume left by the intersection
of the M constraints. Specifically, one has to consider the limit of the set

W :=
M\

µ=1

{X 2 RN : X2 = N ^ hµ(X) > 0} (4.4)

as N, M ! 1: in the satisfiable (SAT) phase, a position X for the particle satisfying all the
constraints can be found with probability one. In the unsatisfiable (UNSAT) phase, instead,
W becomes empty and the CSP problem has no solution. The sharp SAT-UNSAT transition
corresponds to the jamming transition of sphere systems, and it is induced by increasing the
constraint density ↵ up to ↵c(�).

The properties of the SAT-UNSAT transition depend on �. In the classical case, the full
phase diagram of the model has been solved in Ref. [147]; we report it in Fig. 4.2. Its main
features are the following. For � > 0, the constraints {hµ > 0} force the particle X to be
closer than some distance to each obstacle; thus, the allowed region is convex. The free
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Figure 4.2.: Phase diagram of the classical perceptron model. ↵J(�) indicates the jam-
ming transition, or equivalently the SAT-UNSAT threshold, analytically computed
within the replica-symmetric (RS) ansatz. The RS ansatz is stable for � � 0. For
� < 0, instead, the whole jamming line is contained in a phase in which the
landscape is rugged, due to the full breaking of replica symmetry [15]. In par-
ticular, dAT stands for de Almeida-Thouless line, dyn for dynamical transition,
K for Kauzmann transition, and G for Gardner transition. A complete discus-
sion on the phase diagram of the classical perceptron model and on the diverse
transition lines it presents can be found in Refs. [147]. We study the perceptron
endowed with quantum dynamics moving along the orange arrow up to the star,
i.e. � = 0, ↵ ! 2. It corresponds to the border of the RS stable region. Picture
adapted from [147].
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energy has a single minimum and the replica-symmetric (RS) solution is everywhere stable.
On the contrary, when � < 0, the constraints are satisfied if the particle is away from each
obstacle. The allowed region is non-convex and can be composed of disconnected islands.
The SAT-UNSAT transition falls within a phase where the landscape is rugged and marginally
stable. For our purposes, we will concentrate only on the value � = 0, at the border of the
RS stable region, for which the jamming point corresponds to ↵c(0) = 2. In this way, we can
reach the jamming point within the RS ansatz, but capturing the physics of the glassy phase
(� < 0).

We quantize the model by imposing the canonical commutation relations [X̂i, P̂j ] = i~�ij .
The Hamiltonian reads

Ĥ =
P̂

2

2m
+

MX

µ=1

v(hµ(X̂)). (4.5)

4.2. Derivation of the self-consistency equations

We wish to compute the quenched free energy of the quantum perceptron model in the RS
ansatz [113]. The free energy depends on some variational parameters that can be found
self-consistently from the free energy extremization.

The quenched disorder average of the free energy is given by

F = ���1ln Z, (4.6)

where Z = Tr(e��H) and H is given in Eq. (4.5). Introducing the imaginary times t and
s, p replicas whose indices are labelled by a, b = 1, ..., p, and the Lagrange multipliers �a(t)
associated to the spherical constraint X2

a(t) = N , one can find F as a function of the overlap
matrix

Qab(t, s) = N�1hXa(t) · Xb(s)i, (4.7)

where Qab(t, s) is periodic in t and s with period �~. The quenched free energy f , per
dimension N and per replica p is given by

� �pf =
1

2
ln det Q̂(t, s) +

m

2~
X

a

Z
�~

0

dt @2sQaa(t, s)|s=t

� m

2~
X

a

Z
�~

0

dt�a(t)(Qaa(t, t) � 1) + ↵ ln ⇣, (4.8)

where

⇣ = exp

✓
1

2

X

a,b

ZZ
�~

0

dt

�~
ds

�~Qab(t, s)
�2

�ra(t)�rb(s)

◆

· exp

✓
� 1

~
X

c

Z
�~

0

dt v(rc(t))

◆����
rc(t)=0

. (4.9)

The RS ansatz for the saddle point consists in the assumption:

Qab(t, s)
RS
= [qd(t � s) � q]�ab + q (4.10)
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where the off-diagonal order parameter q = N�1hXa(t) · Xb(s)i (for a 6= b and any t, s) is the
overlap of two different replicas and is the analog of the Edwards-Anderson order parameter,
while qd(t) � q = N�1hXa(t) · Xa(s)i � q is the autocorrelation function of a replica. As
usual, one shall send p ! 0 after computing the quantities involving Q. We need to find the
saddle point with respect to variations of Q, namely of qd(t) and q, and µ := m�. To do this,
it is convenient to define

G(t � s) := qd(t � s) � q. (4.11)

From the �~-periodicity in imaginary time, we can consider as variables the countable set of
Fourier components of G(t), i.e. {Gn}n2Z; we define the Fourier transform as

• (!) :=

Z
�~

0

dt

�~e�i!t • (t), •n := •(!n), (4.12)

!n := 2⇡n/�~ being the Matsubara frequencies.

Then, the quenched free energy in the RS approximation, per dimension N and replica p,
is

��f =
1

2

X

n2Z

ln Gn +
q

2G0

� �m

2

X

n2Z

!2

nGn � �µ

2

hX

n2Z

Gn � (1 � q)
i

+↵�q ? ln he��
R
�~
0

dt

�~v(r(t)+h)ir, (4.13)

where
�q ? •(h) :=

Z 1

�1

dhp
2⇡q

e�h
2
/2q • (h), (4.14)

and we introduced a one-dimensional, �~-periodic auxiliary process r(t) with the same auto-
correlation function:

h•ir :=
1

Z0

I
Dr e�

1
2

RR
�~
0

dt

�~
ds

�~ r(t)G
�1

(t�s)r(s)• (4.15)

with Z0 a suitable normalization. Notice that the free energy in Eq. (4.13) is divergent.
In Ref. [113] it is shown how to properly regularize and renormalize it. In particular, one
finds that thermodynamic observables, like the specific heat and the order parameter, are
divergence-free.

The saddle-point equations for the parameters Gn, µ and q are

G�1

n = �m!2

n + �µ + �⌃n (4.16)
X

n

Gn = 1 � q (4.17)

q = ↵�q ? hr0i2v (4.18)

where we defined the self-energy as

⌃n := ↵
�
G�1

n � G�2

n �q ? (hr⇤nrniv � �n0hr0i2v)
�
/�, (4.19)

with

h•iv :=
he��

R
�~
0

dt

�~v(r(t)+h) •ir
he��

R
�~
0

dt

�~v(r(t)+h)ir
. (4.20)

For later convenience, we fix ⌃0 = 0.

The equations (4.14)-(4.20) define self-consistently the dynamics of the auxiliary random
process r(t). To solve them, we have implemented an iterative method, together with a
Monte Carlo sampling able to calculate h•ir. This is illustrated in the next Section 4.3. An
analog calculation has been performed for the SK model in Refs. [173–176].
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4.3. Iterative solution of the self-consistency equations

We wish to solve the self-consistency equations (4.14)-(4.20) for the parameters Gn, µ and
q. This can be done numerically, by means of a path integral Monte Carlo (PIMC) on the
auxiliary random process r(t).

The parameters Gn, µ, and q can be initialized with arbitrary values. However, to accelerate
the numerical convergence, it is convenient to proceed in a stepwise manner, from smaller to
higher ↵’s. The algorithm is composed of three steps.

The first step is to compute the self-energy ⌃n, defined in Eq. (4.19) and use it to update
the autocorrelation function Gn, iteratively. However, the computation of the self-energy
involves the averages h•iv. To evaluate them, we use the PIMC simulating the dynamics of
the �~-periodic process r(t), in the potential generated by G�1(t � s) and v(r(t) + h), as
sketched in Fig. 4.3. The former, when ⌃n ⌘ 0, contains a kinetic term (m!2

n/2) plus a
harmonic potential (µ/2); the latter is the hard-wall potential which forces r(t) > �h. When
⌃n 6= 0 both contributions (kinetic and potential) change, and the dynamics of r(t) becomes
non-trivial.

Figure 4.3.: Sketch of the path integral Monte Carlo (PIMC) used to simulate the dynamics of
the �~-periodic process r(t) (r(0) = r(�~)) in the potential generated by G�1(t�
s) and v(r(t) + h). The PIMC consists in proposing a move r(ts) ! r(ts) + �(ts)
for every time step ts, which is accepted or rejected according to the Metropolis
algorithm. We improved this simple scheme using both the method of images
and the rigid movement of the time chain r(ts), as discussed in the text.

Numerically, it is convenient to consider the period of the process as �, reabsorbing ~ in
the mass m ! m/~. Moreover, the period has to be discretized: the number of Trotter slices
is S = �/a, where a is the time-slice amplitude, and, setting � = 2L and a = 2�K , it holds
S = 2L+K . In this way, we can define a discrete Fourier transform fn = 1

S

P
S�1

s=0
f(ts)ei!nts

where !n = 2⇡n/� with n 2 [0, S �1]. Thus, increasing � the set {!n} becomes denser, while
decreasing a one can access higher frequencies.

The PIMC algorithm consists in proposing a move r(ts) ! r(ts) + �(ts) for every time step
ts, which is accepted or rejected according to the Metropolis algorithm with weight given
by G�1 and v. However, the presence of the hard-wall potential makes the convergence of
the Monte Carlo very demanding, and it is not sufficient to reject the attempted moves with
r < �h to have a good numerical protocol. Thus, we implemented an improved Monte Carlo
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Figure 4.4.: Edwards-Anderson order parameter as a function of the constraint density ↵ for
various temperatures. From bottom to top: infinite temperature classical dy-
namics (red, dotted line) to finite temperature quantum dynamics (� = 2, 4, 8).
The O(↵), � = 1 results are shown as dashed black lines (while the horizontal
black line is a reference for the value q = 1). Notice how, as soon as ↵ & 1, the
temperature dependence of q is effectively lost (it is ⇠ e�c�/(2�↵)

2).

sampling which exploits the method of images. We modified the free particle kinetic term
of the Hamiltonian (m!2

n/2), and, instead of sampling the probability P (r0, 0 | r0,�) of the
free particle, we used P (r0, 0 | r0,�) � P (Im(r0), 0 | r0,�) where Im(r0) = �r0 � 2h is the
image of r0 when the wall is in �h. Another expedient we adopted is to add a move which
translates rigidly the time chain r(ts), i.e. r(ts) ! r(ts) + � with � independent of ts.

The presence of the convolution �q ? •(h) in the definition of ⌃n (Eq. (4.19)) implies the
evaluation of h•iv for many positions �h of the wall. We approximate this Gaussian integral
with the Gauss-Hermite quadrature, always with, at least, 10 sample points. This first step
of the iterative method stops when Gn is converged for every n within a fixed tolerance (we
fixed the relative difference between Gold

n and Gnew
n to be < 0.1%).

The second step is to check if the converged Gn verifies the identity in Eq. (4.17). If it does
so, we can go to the third step; otherwise, µ is changed via the bisection method and the first
step is performed again.

The third step consists in computing the right-hand side of Eq. (4.18) with the converged
Gn and µ and check if the identity in Eq. (4.18) is verified. If it is so, we have found the
parameters which solve the self-consistency equations; if not, q is changed and one has to
repeat the procedure from the first step.

4.4. Numerical results

As a first result, we present the behavior of the order parameter q as a function of ↵ for
various �; it is plotted in Fig. 4.4 against the classical counterpart qcl(↵), obtained at ~ =
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Figure 4.5.: Edwards-Anderson order parameter close to the critical point ↵ = 2. From top
to bottom, increasing the number of Trotter slices S = 4, 8, 16, 32 for sufficiently
large �, the slope increases. For reference, the classical value of the slope (from
(1 � q) ⇠ (2 � ↵)) is shown as the diagonal dotted black line. In the inset are
shown the values of the slope with their errors, and its extrapolation to S ! 1
to the value  = 2.0 ± 0.1, quoted in the text.

0 [147]. Unlike the quantum case, qcl(↵) is independent of the temperature and goes to 1,
for ↵ ! ↵c = 2, with the critical exponent cl = 1 (valid for � � 0, while for � < 0 one has
cl = 1.41574... [147]). It is known [147] that (1 � qcl(↵)) ' 1

4
(2 � ↵).

We find that the value of q for ~ > 0 is always larger than the classical one. This can
be easily understood from the following argument: the ground state of a quantum particle
in a billiard is more concentrated than a flat distribution on the billiard table, because of
the Dirichlet boundary conditions on the walls. Moreover, it becomes more concentrated
the larger the aspect ratio of the billiard, namely if one of the sides is larger than the oth-
ers. Quantitatively, one finds q > qcl already at lowest order in ↵. Indeed, from the self-
consistency equations (4.14)-(4.20), q = ↵hr0i2v(h=0)

+ O(↵2) where the average h•iv(h=0),
when � ! 1, indicates the expectation value over the ground state of a harmonic oscillator
with a wall in the origin. This problem is easily solved and one finds q = 8

⇡
↵ + O(↵2), to be

compared with qcl = 2

⇡
↵+ O(↵2).

Fig. 4.4 shows that the quantum order parameter q depends on the temperature T = 1/�
for ↵ . 1, and then, increasing ↵, becomes independent of T through a crossover. This can be
easily understood considering that, from the classical calculation, we expect the typical linear
size of the allowed region for the particle on the sphere to vanish as ` ⇠

p
1 � qcl ⇠

p
2 � ↵

for ↵ ! 2. Thus, as soon as the energy gap to the first excited state becomes larger than the
temperature, i.e. roughly when ~2

m(1�qcl)
⇠ ~2

m(2�↵)
& T , the quantum dynamics is effectively

at zero temperature and the order parameter q becomes independent of T . Moreover, in the
following we will show that the gap, deep in the quantum regime, grows even faster than
(2 � ↵)�1 when ↵ ! 2. Since the quantum dynamics recovers the classical dynamics only
when the de Broglie wavelength �T ⇠ ~/

p
mT ⌧ `, on approaching jamming quantum

mechanics dominates. Hence, for any T, ~, m, as ↵ ! 2 one eventually enters a quantum
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critical regime, where quantum mechanics controls the dynamics and defines, among other
things, novel critical exponents. The classical result is recovered only by taking the limit
T ! 1 before ↵ ! 2.

The value of the critical exponent  regulating the relation (1 � q) ⇠ (2 � ↵) in the
quantum regime can be extracted by looking at the low-temperature, large-↵ data. As usual,
a sufficiently large number of Trotter slices S must be taken, and it increases as ↵ ! 2, making
the numerical simulations more demanding. However, fortunately, the asymptotic region is
reached already at ↵ & 1. The data in Fig. 4.5 clearly show that the critical exponent of the
quantum theory is not the classical one, cl = 1, and it departs more and more from it as the
number of Trotter slices is increased. We have performed a log-log fit to extract such critical
exponent, in a region of ↵ 2 [1, 1.7]. Extrapolating S ! 1, we find  = 2.0 ± 0.1 (Fig. 4.5).

That  > 1 in the quantum case can be understood also from a simple variational calcula-
tion, discussed in Appendix A.1. Here we just mention that, using in the scaling region ↵ ! 2
the (uncontrolled) approximation G�1

n = �m(!2
n + ~2/4m2)/(1 � q), we are able to solve

explicitly the self-consistency equations for � ! 1, finding  = 3/2. The value  ' 2 from
the Monte Carlo simulations presumably comes once the true behavior of ⌃(!) is considered.

One can also study the (regularized) internal energy per degree of freedom, which is

u =
1

2�

X

n2Z

µ + ⌃n

m!2
n + µ + ⌃n

, (4.21)

as derived in Ref. [113]. We find that u is independent of �, like q, already at ↵ & 1, but it
strongly depends on the number of Trotter slices S. Extrapolating the data for S ! 1 we
obtain the result in Fig. 4.6, which shows a divergence of the energy as ↵ ! 2. This can
be again interpreted in terms of reduced volume and uncertainty principle. In particular, we
observe that u ⇠ ~2

m(2�↵)2
with good accuracy for ↵ ! 2, in a region where the dependence

on � is lost. This confirms the result  ' 2, obtained from the behavior of q in Fig. 4.5.

Summarizing, we have just shown that, at fixed temperature, in the quantum regime the
critical properties of the system are determined by the ground state, and the gap to the first
excited state grows as � ⇠ ~2

m(1�q)
for ↵ ! 2. This implies that, if we focus on frequencies

! ⌧ �/~, or times t � ~/�, there is no dynamics. In order to see some dynamical behavior,
one should consider G(! & �/~). As shown in Fig. 4.7, at these large frequencies the form of
the self-energy ⌃(!) changes significantly. Indeed, at any ↵ < 2, the self-energy is an analytic
function of !2 in a neighborhood of the origin ! = 0 (inset of Fig. 4.7). As ↵ ! 2, this
behavior becomes extended to increasing values of !. At larger frequencies, however, ⌃(!)
develops a linear behavior. Moreover, for any ↵ < 2, lim!!1 ⌃(!) = 0, as can be seen from
its definition in Eq. (4.19). Performing a log-log fit, we find that the constant contribution to
the autocorrelation function scales as �µ ⇠ (1 � q)� where � ' �0.9. From a quadratic fit of
⌃(!) at small !, the coefficient of the quadratic term results instead almost independent of
(1 � q).

The behavior of ⌃(!) defines the effective dynamics of the theory, and its analytical prop-
erties around the origin determine the low-temperature behavior of thermodynamical ob-
servables. Both the analyticity of ⌃(!) around ! = 0 and the independence of � of all the
observables, including the internal energy u, show that the specific heat is non-analytic in T
when ↵ ! 2. More precisely, our findings show that CV (T ⇠ 0) ⇠ e��/T , due to the presence
of the gap. However, since at not-so-small ! it holds ⌃(!) ⇠ |!|, the specific heat presents a
power-law behavior at high enough temperatures, i.e. CV (T > Tcutoff) ⇠ T � . Since � ! 1
as ↵ ! 2, Tcutoff ! 1 too.
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Figure 4.6.: Internal energy u as a function of the density of constraints ↵. The dashed line is
a fit of the form u = A(2�↵)�(1+B(2�↵)+C(2�↵)2) with  = 2.0 obtained
from the behavior of order parameter q. This confirms u ⇠ (1� q)�1 ⇠ (2�↵)�2

as discussed in the text. In the inset one can see, from bottom to top for ↵ =
0.35, 0.5, 0.7, 1, 1.3, 1.5, 1.7, the extrapolation of the values of uS = u+a/S+b/S2

as a function of the number of Trotter slices S (in log-log scale).

The linear dispersion ⌃(!) ⇠ |!|, observed in the critical regime, reminds us of the result
of Ref. [113], where the authors perform a semiclassical analysis to investigate the UNSAT
phase with soft potentials. In Ref. [113], they sent ~ ! 0 with ~/T kept fixed, while in
our study ~ is kept finite. They found the linear dispersion ⌃(!) ⇠ |!| in a neighborhood
of the origin ! = 0, implying a power-law behavior of CV (T ) at small T near the jamming
point. The similarities between the two results are surprising since the regimes considered
are different, and suggest that the linear dispersion ⌃(!) ⇠ |!| might be a universal feature
of quantum models near jamming.

4.5. Conclusions and outlook

This Chapter contained the investigation of the jamming transition of the quantum per-
ceptron model with hard-wall potentials, which can be considered a mean-field model for
quantum hard spheres. Starting from the replicated, quenched free energy in the replica-
symmetric approximation, one finds a quantum critical point corresponding to the classical
jamming point at ↵c = 2 for � = 0. While usually quantum critical points are confined and
influence the physics around T = 0 [177], the quantum jamming critical point exists for

any temperature: the classical results are recovered only by taking T ! 1 before ↵ ! ↵c;
therefore, it is the classical critical point to be confined at T = 1. The robustness with
temperature of the quantum critical point can be grasped through the following argument.
Since the energy gap between the ground and the first excited state increases as the jamming
point is approached (↵ ! ↵c), for any fixed temperature T ⇤, there is a threshold value ↵⇤,
such that for ↵ > ↵⇤ the system cannot by excited anymore, and it remains effectively at zero
temperature.
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Figure 4.7.: Self-energy ⌃(!) at ↵ = 1.7, � = 1/23 as a function of the Matsubara frequency
!, for increasing number of Trotter slices (accessing higher and higher frequen-
cies). We see that ⌃(!) develops a linear ! behavior (black, dotted line) for
intermediate !’s, while retaining its analyticity in terms of !2 around the origin
for any q < 1 (inset). In the inset, it is shown ⌃(!) at small !’s for ↵ = 1.5,
� = 8.

We find quantum critical exponents different from the classical ones, and an exponentially
small CV (T ) at small T . The dispersion relation G(!)�1 ⇠ |!| for frequencies higher than
the gap, but not asymptotically large, implies a power-law specific-heat for T > Tcutoff, where
Tcutoff diverges at the critical point. This shows a surprising connection with the findings of
the semiclassical analysis in Ref. [113], where a different region of parameters was consid-
ered, that deserves to be further investigated.

An appealing extension of this research would be to consider soft potentials, having a
finite2 v0 ⌘ @v/@r|r=0, as in the case of structural glasses. Employing soft potentials, it is
possible to access the UNSAT phase deep in the quantum regime. We do expect that the
quantum jamming transition will turn into a crossover (like the classical one does) but the
same phenomenology outlined in Section 4.4 should be observed as far as the change in the
potential on length scales O((1 � q)1/2) is large with respect to the gap � ⇠ (1 � q)�1. This
means that for (1 � q) & (v0)�2/3, or ↵ . 2 � c(v0)�1/3, the physics is dominated by the
hard-wall quantum jamming critical point. The robustness with temperature of the quantum
critical point, shown in our results, implies that the quantum character of the system even
with soft potentials cannot be neglected. Therefore, it suggests that the standard approaches
used to study glassy systems at ultra-low temperatures, which add quantum effects on top of
the classical landscape [38, 178, 179], might be inadequate.

Another interesting development of this study would be to move to the regions with � 6= 0.
The case � > 0 is studied in learning protocols. Here, the same methods adopted in our study
can be implemented, and one can directly investigate the effects of quantum dynamics. In
the region � < 0, instead, it is also necessary to solve the self-consistency equations in the
replica symmetry breaking framework. As the allowed volume becomes clustered, quantum
effects may play a double role: for low disorder, tunneling may help the particle to explore

2To be more precise, a similar reasoning applies also for the case v0 = 0 but @kv/@rk|r=0 6= 0 with k > 1.
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many disconnected flat regions, and speed up the search of solutions (as it happens in the
quantum random energy model [164, 168, 169]); for high disorder, Anderson localization
may take place, breaking ergodicity and changing significantly the classical phase diagram.
The interplay of these behaviors, hard to be guessed, deserves a complete investigation.
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5. Introduction to Part II

Many-body localization is a novel, non-ergodic state of matter that exists only in the quantum

realm. Many-body localized (MBL) systems can elude going to thermal equilibrium even at

infinite time. In this sense, they clearly resemble classical glasses, which remain trapped

in metastable states for all experimentally accessible time scales. This Chapter is meant as a

brief, utterly inexhaustive introduction to the main theoretical notions and phenomenological

properties of MBL systems. Such background will be exploited in Part II to show the presence

of previously unknown points of contact between the physics of glasses and MBL systems.

In 1958, P. W. Anderson began the study of localization in quantum systems, investigat-
ing the problem of a single quantum particle moving in a disordered crystal in d dimen-
sions [180]. The behavior of such particle can be modeled by a tight-binding Hamiltonian,
of the form:

HAnderson = J
X

hiji

c†
i
cj +

X

i

µic
†
i
ci, (5.1)

where c†
i
, ci are the creation/annihilation operators of site i, J is the hopping amplitude be-

tween nearest-neighbor sites, and µi is a random chemical potential with zero mean and
variance W 2. After Anderson’s paper, many authors have focused on the single-particle local-
ization problem. It has been found that, in d = 1, 2 and for random uncorrelated disorder, all
states are localized for arbitrarily weak disorder (W > 0) , while in d � 3 the system is local-
ized only if disorder is sufficiently large (W > Wc > 0) [181]. P. W. Anderson in his seminal
work proposed also that localization might survive in a weakly interacting many-particle sys-
tem. However, exploring the effects of introducing a finite density of particles and a generic
two-body interaction in the Hamiltonian (5.1), when the single-particle states are all local-
ized, is a hard task, and this fundamental question remained unanswered for many years.
The existence of many-body localization has been established only recently when Refs. [182,
183] have analytically shown that localization is stable to short-range and sufficiently weak
interactions.

Recent years have witnessed several advances in our understanding of the dynamics of
quantum many-body systems. On the one hand, the mechanism by which thermal equilib-
rium appears in isolated quantum systems has been explained via the eigenstate thermaliza-
tion hypothesis (ETH) [184–187], and its connection to the classic von Neumann ergodic
theorem has been made clear [188]. The ETH states that, in ergodic systems, the individual
excited eigenstates, |Eni, locally reproduce the thermodynamic ensembles. In other words,
it states that the expectation value of a local observable O on an eigenstate, hEn|O|Eni,
coincides with the microcanonical expectation value at energy E ⇡ En; thus, it depends
smoothly on the energy of the eigenstate. Assuming in addition that the off-diagonal matrix
elements, hEn|O|Emi, decay exponentially with the system size, the ETH guarantees that
out-of-equilibrium initial states relax to states that are locally thermal. On the other hand,
many-body localization has been recognized as a generic mechanism by which quantum sys-
tems can avoid going to thermal equilibrium [162, 165, 189–195]. Many-body localized
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(MBL) eigenstates do not follow the ETH requirements: the expectation value of a local
observable does equilibrate in time, although to a highly non-thermal value that carries in-
formation about the initial state and strongly fluctuates between eigenstates that have similar
energies.

(a) (b) (c)

Figure 5.1.: Probing many-body localization in a two-dimensional system of interacting ultra-
cold bosons. The probing consists in tracking the quantum evolution of an initial
state which has a high-energy density and is far from equilibrium. (a) A two-
dimensional, almost random disorder potential is imaged onto a single atomic
plane in an optical lattice. (b) Raw fluorescence image showing the evolution
of an initial domain wall of a bosonic Mott insulator (first row). The left col-
umn shows single images, while the right column shows the density distribution
averaged over 50 disorder realizations. We see that the density step is smeared
out after few tens of tunneling time, ⌧ . (c) In the presence of sufficiently strong
disorder, even for long evolution times, t ' 250 ⌧ , the signatures of the initial
state are visible: the system does not relax. Figure adapted from [196].

The existence of the non-ergodic, many-body localized phase of matter has been confirmed
numerically in a vast set of microscopic models [130, 189, 191, 198–202], and observed in
ultracold atoms experiments [196, 203–206]. Fig. 5.1 depicts one of the first experimental
observations of a localized phase in a disordered two-dimensional1 optical lattice of bosons.
However, except for a few exploratory experiments [216–218], the observation of the MBL
phase in real materials is still in its infancy, mainly due to the difficulty in finding real material
whose degrees of freedom are weakly coupled to thermal baths, e.g. phonons.

1While the existence of an MBL stable phase is well established for one-dimensional systems at large disorder,
in higher dimensions the situation is still not completely clear, partly due to the lack of efficient numerical
methods to investigate large system sizes. Even if recent experiments on two-dimensional optical glasses
claimed to have observed a transition to an MBL phase [196, 207, 208], the question on whether this phase
can be stable in d � 2 is currently under debate [209–215]. The proposed mechanism for thermalization is
based on the presence of rare resonating regions whose effect, however, manifests on long time scales (of the
order of the system size) [209]. Therefore, the localized picture can be considered accurate at least at short
and intermediate time scales.
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Figure 5.2.: In the MBL phase, there exists an extensive number of quasi-local integrals of
motion (LIOMs), namely ⌧ z

i
. Each ⌧ z

i
is a Pauli operator, obtained through a

quasi-local unitary transformation U from the physical spins: ⌧ z
i

= USz

i
U † (left

panel). The support of ⌧ z
i

decays exponentially with distance from site i (right
panel). The ⌧ z

i
’s commute with the system Hamiltonian and among each other.

Thus, the eigenstates are completely specified by the full set of quantum numbers
associated with the ⌧ z

i
. Picture extracted from [197].

The lack of ergodicity in the deep MBL phase has been linked to the existence of an ex-
tensive number of local integrals of motion (LIOMs) [166, 167, 190, 219–224]. A physical
interpretation of the LIOMs can be easily kept considering the XXZ model:

HXXZ =
L�1X

i=1


J

2
(S+

i
S�
i+1

+ h.c.) + V Sz

i S
z

i+1

�
+

LX

i=1

�iS
z

i . (5.2)

When J = 0, the system is “classical” and trivially localized, i.e. the spin operators Sz

i
are

conserved quantities, [Sz

i
, H] = 0, and the eigenstates are simply product states of the form:

|E0
↵i = | ""# . . . i. Therefore, the onsite operators Sz

i
constitute a complete set of mutually

commuting, strictly local integrals of motion. Turning on a small hopping amplitude J > 0,
we expect the “classical” eigenstates to be weakly perturbed. In particular, the new eigenstate
|E↵i should be related to |E0

↵i by a quasi-local unitary transformation U which creates spin
flips only between nearby spins. This quasi-local unitary transformation has been explicitly
constructed [193, 220]. It has been found that it defines a new set of integrals of motion:

⌧ zi = USz

i U
†, (5.3)

verifying [⌧ z
i
, H] = [⌧ z

i
, ⌧ z

j
] = 0. Notice that, in principle, the operators ⌧ z

i
can be constructed

for any quantum system. However, in MBL systems, ⌧ z
i

are quasi-local operators, as their
support decays exponentially with distance from site i. A pictorial representation of them
is illustrated in Fig. 5.2. The decay length of the ⌧ z

i
is typically indicated as ⇠. Interest-

ingly, in recent years it has become clear that MBL systems are characterized by many and
diverse length scales, besides ⇠ (see Refs. [223, 224]). By the LIOMs, one can construct a
phenomenological model for MBL systems known as the l-bit model, given by:

H full
l-bit =

LX

i=1

hi⌧
z

i +
LX

i,j=1

Jij⌧
z

i ⌧
z

j +
1X

n=1

K(n)

i{k}j⌧
z

i ⌧
z

k1
. . . ⌧ z

kn
⌧ zj (5.4)

The interactions Jij , K(n)

i{k}j can be equivalently positive or negative; their absolute value fall
off exponentially with distance, as do their probabilities of being large.

One of the fingerprints of the MBL phase is the absence of DC spin transport and energy
transport in the system, similarly to single-particle localization. The absence of diffusive
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transport is however not an exclusive feature of the MBL phase: sub-diffusive transport prop-
erties have been observed in the delocalized phase as well [225–229]. Other fingerprints of
the MBL phase are the slow spreading of the entanglement after a quantum quench, the slow
decay of correlation functions, and the area-law entanglement for eigenstates [190, 198,
230–235]. All these features are captured by the l-bit model. For instance, the slow, and log-
arithmic growth in time of the entanglement can be easily understood in terms of dephasing
processes among the LIOMs, which are pictorially illustrated in Fig. 5.3.

The presence of interactions in MBL systems causes the spreading of entanglement, which
is indeed absent in single-particle localized systems. From Eq. (5.4), we see that two l-bits
i, j get entangled only by their direct interaction and not through a mutual interaction with
a third l-bit k. The interaction of i with j depends only on the value of ⌧ z

j
, which is a constant

of motion and is not affected by any other l-bit. The effective interaction between i, j is
given by Jeff

ij
= Jij +

P1
n=1

K(n)

i{k}j⌧
z

k1
⌧ z
kn

, which is expected to fall off exponentially with the
distance L between i and j: Jeff ⇠ J0 e�L/. Therefore, assuming that i, j are non-interacting
at initial time t = 0, they will be entangled for times such that Jefft � 1. Thus, after a time t,
all l-bits within a distance L ⇠  ln(J0t) will be entangled. Since the entanglement entropy
is proportional to the number of entangled degrees of freedom, this explains the observed
logarithmic growth. Similar reasoning implies that the expectation value of local operators
with finite support decays as a power-law in time [233], and that through standard spin-echo
protocols one can recover the state of a given l-bit ⌧ z

i
[236]. This phenomenology is in stark

contrast with thermalizing systems, where the presence of the spin flips in the Hamiltonian
determines the possibility for two spins to interact indirectly through a third spin, making the
entanglement spreading ballistic in time [237].

In the following Chapters, we will also focus on the time and space behavior of the con-
currence [238–241], which has been used to characterize entanglement in MBL systems be-
fore [242], and which can be measured experimentally [243, 244]. The concurrence quan-
tifies the distance of the two-site reduced density matrix ⇢ij from the manifold of mixed,
separable states whose reduced density matrix can be written as ⇢ =

P
a
pa⇢

sep
a , where ⇢sepa

are separable, pa � 0, and
P

a
pa = 1 . This implies that, if Cij > 0, there is no mixture of

separable states that can account for the correlations between sites i and j. For two spins
1/2, it can be shown [241] that

Cij = max {0, �1 � �2 � �3 � �4}, (5.5)

where �2a are the eigenvalues of the matrix Rij = ⇢ij(�y⌦�y)⇢⇤ij(�y⌦�y) sorted in descending
order, and the complex conjugation is done in the standard computational basis. Its partic-
ular definition allows the concurrence to discriminate between quantum entanglement and
thermal entropy. Thus, it spots quantum entanglement between two spins even if they are
thermal, i.e. also entangled with a heat bath. For this reason, we will employ the concurrence
as a well-defined entanglement measure in Chapter 6, where we study the quantum dynam-
ics of two-level systems in the presence of dissipation. It is known that the mean value of
the concurrence decays in time as a power law in MBL systems, while in Anderson localized
systems it tends to a plateau, and in ergodic systems it vanishes exponentially [242]. Thus,
the concurrence appears to be a promising quantity to perform a first direct experimental
observation of many-body dephasing processes in the MBL phase. In Chapter 8, we will also
show that the concurrence can be employed to explore the spatio-temporal heterogeneities
of entanglement deep in the MBL phase.

MBL systems are the prototypical example of quantum systems that avoid going to thermal
equilibrium. Nevertheless, analogous phenomena have been observed in driven periodic sys-
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Figure 5.3.: During the time evolution, the z component of the l-bits is conserved. However,
the l-bits precess about the z-axis with a rate determined by all the other spins.
Picture extracted from [162].

tems (time crystals) [245–248], and in systems without disorder [202, 249–256]. It is now
clear that disorder and frustration are not necessary for the presence of localization and the
breakdown of ergodicity in quantum systems. Indeed, many-body localization is a fully quan-
tum phenomenon, and it relies on the discreteness of the energy spectrum and interference
effects [197]. The key ingredient for the existence of the MBL phase is that the transition
rate between two many-body configurations close in energy is much smaller than their en-
ergy gap; this results in the absence of resonances between the two. This situation might be
favored by disorder, whose presence is however not needed. Recently, a growing body of lit-
erature has investigated the impact of dissipation and dephasing on MBL systems [257–265].
The research question underlying these works concerns how the imperfect isolation from the
environment enters the experimental measurements on MBL systems. The presence of an
arbitrarily weak coupling to a thermal bath unavoidably leads to thermalization. Indeed, it
spoils interference effects and leads to delocalization. However, it has been found that at
intermediate and long time scales the relaxation dynamics of MBL systems coupled to heat
baths shows clear signatures of the localized phase and differs from that of ergodic systems.

The impossibility of having an infinitely long-lived many-body localized phase in the pres-
ence of a heat bath is in stark contrast with the nature of the glassy phase. As already empha-
sized in Chapter 1, the common denominator of glassy systems is the presence of a rugged
energy landscape, which is due to the presence of disorder and frustration. Such landscape
is present in both classical and quantum glasses. As far as the temperature of the heat bath
is not sufficient to cross the energy barriers of the landscape, the glassy phase cannot be
spoiled. Moreover, it is the very coupling to the thermal bath and the thermal fluctuations
that allow classical glasses to exhibit their peculiar dynamical features, such as the two-step
relaxation and aging effects. Therefore, the glass and the many-body localization transitions
in quantum systems are two separate phenomena [201]. Nonetheless, this second Part of the
thesis will show the presence of a deep connection between glasses and MBL systems.
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6. Two-level systems in glasses: The
Gorini-Kossakowski-Sudarshan-Lindblad
master equation

In this Chapter, we discuss the quantum dynamics of an ensemble of two-level systems (TLSs)

weakly coupled to phonons. We define the TLS model in Section 6.1. In Section 6.2, we intro-

duce the Gorini-Kossakowski-Sudarshan-Lindblad master equation for the TLS density matrix

and present the explicit form of the TLS–TLS interactions and dissipation terms, sketching

the dynamical phase diagram of the model. Section 6.3 contains the numerical results on

the real-time evolution of the TLSs. In particular, in Section 6.3.3 we consider the system as

artificially isolated, and we analyze the signatures of localization on the entanglement quan-

tifiers. In Section 6.3.4, we reintroduce the dissipative terms and show how they affect the

results. The reference article for this Chapter is Ref. [266].

As discussed in Chapter 1, a series of classic experiments [31, 43] has made manifest
that the properties of glasses at temperatures of 1 K and below show a surprising degree of
universality and deviate significantly from Debye theory. Several theoretical ideas aimed at
explaining these results, mostly on the lines of two seminal works [34, 35]. There, the au-
thors introduced the idea of bi-stable tunneling systems (or two-level systems, TLSs), whose
parameters (energy difference and tunneling amplitude) are very broadly distributed. With
an appropriate choice of such distributions, one can reproduce quantitatively the values of
several equilibrium quantities, including specific heat, thermal conductivity, and sound at-
tenuation. The range of TLS models has been expanded considerably beyond the original
works to account for various experimental facts [33, 48], and even criticized as a glorified
curve-fitting procedure [36, 53–55].

In a glass, TLSs interact with phonons and, if they have an electric dipole moment, also
with photons. The consequence of the interaction between TLSs and the phonon (or photon)
bath is twofold: it generates TLS–TLS interactions, which have been observed in several ex-
periments [37, 56, 67, 69, 71, 72], and it is responsible for the equilibration of the TLSs at the
bath temperature. The purpose of this Chapter is to present the first direct investigation of the
quantum dynamics of TLSs coupled to phonons and to discuss in particular how, and on which
time scales they reach thermal equilibrium. We idealize the system TLSs + phonons as an iso-
lated system, and we analytically derive the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equation for the reduced density matrix of the TLSs, tracing out the phonons. We
find that the TLS unitary evolution (the so-called Liouvillian) is governed by a Hamiltonian
with an extensive number of local conserved quantities, resembling the effective Hamilto-
nian of many-body localized (MBL) systems; the dissipative term (the so-called Lindbladian)
destroys localization and drives the system to a thermal state. We show that, considering
the typical values of the TLS disorder parameters, dissipation is much slower than any other
time scale of the problem, and the TLS relaxation dynamics shows the fingerprint of localiza-
tion for a long time window, even in the presence of dissipation. This is in line with recent
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findings on the effects of dissipative baths on many-body localized systems: in the presence
of a bath, the system dynamics can keep showing the signatures of localization at short and
intermediate time scales, before reaching a thermal state [257–265] (see also Chapter 5).

We focus in particular on the creation and spreading of entanglement as measured by
the concurrence (see Chapter 5), and the entanglement entropy. The former measures the
amount of entanglement between two TLSs; starting the time evolution from a product state,
it grows to a maximum, and then decays and vanishes. The latter instead increases monoton-
ically with time to reach a thermodynamic value. We simulate both the artificially isolated
TLS system, i.e. we set the dissipation strength to zero, and the open system. For the ar-
tificially isolated system, we can confidently investigate the thermodynamic limit, since our
numerics goes up to N = 60 TLSs. We observe that, for long time scales, the concurrence
decays as a power law C ⇠ t��i , down to a plateau value which is exponentially small in
the number of TLSs. This slow power-law decay is the signature of localization and contrasts
with the exponentially fast decay one would observe for an ergodic system. In the open sys-
tem, we find that the concurrence always vanishes, never reaching the plateau observed in
the unitary case. This is not surprising, since the phonon (or photon) bath to which TLSs
are coupled is effectively infinite, and entanglement can spread indefinitely. For not too large
dissipation, we find that the concurrence decays as a power law C ⇠ t��o , as in the artifi-
cially isolated system, indicating that the signatures of TLS localization are observable even
in this case for long time windows. The exponents �i,o in the two scenarios are of the same
order of magnitude. Their comparison shows that, within the statistical errors and finite-size
corrections, � increases in the presence of dissipation.

The results presented in this Chapter point out that assuming ergodicity when discussing
the TLS physics might not be justified for all kinds of experiments on ultra-low temperature
glasses. The signatures of many-body localization might be experimentally accessible in real
glassy samples at ultra-low temperatures, for instance using ultra-fast laser probes, or tech-
niques similar to the ones employed in Ref. [267]. The observed quantum dynamics should
be robust from material to material, and against the uncertainty in the characterization of
the disorder distributions. Therefore, glasses might be a privileged platform to investigate
many-body localization in real materials.

6.1. Definition of the TLS model

We define the total Hamiltonian of the TLSs system and the thermal bath as [41, 48, 73, 74]

H = HTLS + Hph + Hint. (6.1)

The TLS Hamiltonian, discussed in Chapter 1, is given by

HTLS =
X

i

("i�
z

i + �i�
x

i ). (6.2)

We employ Pauli spins to represent the two states of a TLS; "i is the asymmetry energy and
�i the tunnelling amplitude in the i-th double well. According to the original works [34, 35],
we consider " as drawn from a uniform distribution of width W ⇡ 0.1 eV:

p"(") =
1

W
⇥(W � ")⇥(") (6.3)
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(⇥ is the Heaviside step function). In [34, 35] it is also argued that the tunnelling ampli-
tudes �i are broadly distributed, and that the most reasonable distribution, from a simplicity
standpoint, is log-uniform:

p�(�) =
⇥(� � �min)⇥(�max � �)

log(�max/�min)�
(6.4)

where
�min = � · 10�n�/2, �max = � · 10n�/2. (6.5)

The parameter n� defines the span of the distribution: �max/�min = 10n� . Since hlog �i =
log �, we note that � is the typical value. Usually in the literature, n� ' 8 and �/W ⇡ 10�5,
making p�(�) very wide. That � should have such a wide distribution can be grasped at a
semiclassical level: by the WKB approximation � ⇠ exp(�

p
2mV �x/~) [33], where m,V

and �x are respectively the mass, potential barrier and displacement in some generalized
coordinate, parametrizing the potential well that defines a TLS. Thus, even small fluctuations
of m, V0 or �x are strongly amplified at the level of �.

The phonon bath is described by

Hph =
X

k

~!kb
†
k
b
k

(6.6)

b
k

(resp. b†
k
) being the annihilation (resp. creation) operator of a phonon with wavevector

and polarization k = (q, s). The dispersion relation in amorphous solids is, to a good ap-
proximation at low temperatures [268], !qs ' vsq. Typically vL ' 1.6 vT (see Table 6.1).
However, since their difference is not crucial for the quantities of interest (see Appendix B.1),
it is convenient to define the average velocity v as 1

v3
:= 1

3

P
s

1

v3s
.

The interaction Hamiltonian of the localized degrees of freedom with the strain field is, to
lowest order [41, 73, 74],

Hint =
X

ik

�zi (⇠ikbk + h.c.) , (6.7)

with

⇠ik = �i

s
~

2V ⇢!k

�iD
ab

i eab
k

eiq·ri . (6.8)

Above, ⇢ is the material density, V the volume, �iDab

i
the elastic dipole tensor of the i-th

TLS (the strength �i has the dimension of an energy and Dab

i
is dimensionless), and eab

k
:=

1

2

�
qaêbqs + qbêaqs

�
(q is the wavevector and êqs the unit (q, s)-polarization vector). �i and Dab

i

are random variables; their probability distributions are induced by the distributions of the
shapes and directions of the TLSs in space. In the literature [33, 48], it is argued that �i
should be of the same order of magnitude of W , since the former is related to the energy
shift induced in a TLS by a phonon, and it must be comparable with the energy imbalance of
the two minima in the double well. Therefore, for simplicity, we set �i ⌘ W and absorb in
the dipole entries Dab

i
all the disorder fluctuations: we consider Dab

i
to be random variables

of order 1. We will not specify the full distribution of their entries, since in Sec. 6.2.3 we will
show that only some combinations are needed. We refer to those Sections for more details.

In Table 6.1, we report the experimental values of the TLS model parameters for three
well-known structural glasses.

55



TLSs in glasses: The GKSL master equation Ph.D. thesis by C. Artiaco

SiO2 BK7 PMMA
W [meV] 130 70 30

�max [meV] 13 7 3
� [meV] 10�3 10�3 10�4

�min [meV] 10�7 10�7 10�8

� [eV] 0.8 0.7 0.3
vL [km/s] 5.8 6.2 3.2
vT [km/s] 3.8 3.8 1.6
⇢ [g/cm3] 2.2 2.5 1.2

kBTD [meV] 30 30 10
⇢TLS [nm�3] 0.3 0.2 0.05
~⌧�1 [meV] 1.8 1.7 0.45

Table 6.1.: Summary of the TLS model parameters for fused quartz (SiO2), borosilicate glass
(BK7), and plexiglass (PMMA). The parameters vL, vT , ⇢ and the Debye temper-
ature TD are independent; their values are derived from experimental measure-
ments [41, 269]. The (average) TLS-phonon coupling � is experimentally ac-
cessible too [269]. One can reasonably assume W ⇡ kBTglass : indeed the TLSs
are formed at the glass transition [33]. As a consequence, one should also set
�max ⇡ 10�1 W in order to have a density of states that goes to zero above
W [34], and �min ⇡ 10�9 W to reproduce instead a flat DOS at low temper-
atures [270]. The precise value of �max and �min is not crucial, since they
enter only logarithmically in the quantities of interest. One can obtain the nu-
merical density of the TLSs, ⇢TLS , from the experimentally measurable parameter
P̄ = ⇢TLS/W log(�max/�min) [33, 269].

6.2. The GKSL master equation

To study the dynamics of the TLSs, we need to integrate out the phonons. In this Chapter, we
will work in the GKSL framework [271, 272]. The GKSL master equation aims at describing
the dynamics of open quantum systems which cannot, in general, be represented in terms
of unitary time evolution. The GKSL master equation is often indicated in the literature as
the Lindblad master equation. However, this is fairly not accurate, since this equation has
been introduced, independently, by V. Gorini, A. Kossakowski, and G. Sudarshan in an article
published in May 1976 [273], and by G. Lindblad in an article published in June 1976 [274].
Both papers can be considered among the most influential in theoretical physics. Indeed, the
attention to open quantum systems has seen a great rise in recent years with the advent of the
quantum era, since fields as quantum information and quantum technologies have become
crucial for the applications of quantum mechanics. An interesting discussion on the history
of the GKSL master can be found in Ref. [275].

6.2.1. The GKSL master equation for TLSs

The GKSL master equation relies on some approximations [271, 272]. First, one assumes
weak coupling between TLSs and phonons. This assumption is usually taken in the liter-
ature [33]; its validity has to be checked a posteriori, verifying that the energy scales of
decoherence and dissipation induced by phonons are smaller than the TLS energy set by W .
The GKSL framework consists of three further approximations: the Born, the Markov, and the
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rotating-wave approximation. In the Born approximation, one assumes that at all times the
influence of the TLSs on the phonon thermal population is negligible. This is a consequence
of weak coupling, and of the TLSs being a dilute system in the (amorphous) lattice. There-
fore, we expect the Born approximation to be valid to a good extent for TLS systems. The
Markov approximation instead entails that all the bath excitations decay on very fast time
scales with respect to those of the TLSs. This is not guaranteed when working at ultra-low
temperatures, but it is still a good starting point. Finally, the rotating-wave approximation
assumes that, when considering two TLSs, the resonant processes are dominant, or equiva-
lently that the relaxation time of TLSs in the open-system, ⌧R, is long with respect to the time
scale of the intrinsic evolution of the system [271]; in formulas: ⌧R � |⌫i � ⌫j |�1. We will
validate a posteriori this assumption in Sec. 6.2.4.

The GKSL master equation for the (reduced) density matrix of the TLSs ⇢ reads:

@t⇢(t) = � i

~ [HTLS + HLS , ⇢(t)] +
X



L⇢(t). (6.9)

The first term on the right-hand side (r.h.s.) describes the unitary evolution of the system, and
it is called the Liouvillian. It is governed by HTLS , which is the TLS Hamiltonian of Eq. (6.2),
and HLS , which is the Lamb-Stark shift Hamiltonian (it will be specified below in Eq. (6.16)).
We will see that, within the GKSL assumptions, the TLS–TLS interactions in HLS commute
with the isolated TLS Hamiltonian: [HTLS , HLS ] = 0, ultimately leading to the MBL character
of the unitary dynamics. The second term on the r.h.s., the so-called Lindbladian, describes
instead dissipation and decoherence. L are the Lindblad super-operators; in general, the
label  can assume O(N2) values but, as we will show in the following, in our system the
dominant terms are on-site, reducing  ⌘ i = 1, 2, . . . , N .

In Chapter 7, we will go beyond the GKSL master equation; in particular, we will assume
that TLSs and phonons are strongly coupled. We will see, however, that this second route
finally leads to the same physical results as the present one, strengthening further the present
findings.

6.2.2. The free TLS eigenoperators

To compute the Lamb-Stark shift Hamiltonian HLS and the Lindblad super-operators L ap-
pearing in Eq. 6.9, it is convenient to diagonalize the free TLS Hamiltonian HTLS [271, 272].
We look for single-site operators Si such that

[HTLS , Si] = �~⌫Si. (6.10)

This linear problem can be easily solved, finding the eigenvalues

~⌫i,0 = 0, ~⌫i,± = ±~⌫i = ±2
q
"2
i
+ �2

i
, (6.11)

with corresponding eigenoperators

Sz

i = ~vi,0 · ~�i, S±
i

= ~vi,± · ~�i, (6.12)

where
~vi,0 = � 2

~⌫i
(�i, 0, "i), ~vi,± =

2

~⌫i
(�"i, ±i~⌫i/2, �i). (6.13)
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Notice that, since typically �i ⌧ "i ⇠ W , ~⌫i will be of order W . Also, defining Sx

i
=

(S+

i
+ S�

i
)/2 and Sy

i
= (S+

i
� S�

i
)/2i, the operators Sx

i
, Sy

i
, Sz

i
form a Pauli basis.

At this point, it is easy to verify that the TLS Hamiltonian reads

HTLS = �1

2

X

i

~⌫iSz

i . (6.14)

6.2.3. Coupling to phonons

The coupling with phonons induces both dissipation and TLS–TLS interactions. Under the
assumptions discussed in Sec. 6.2.1, they can be modeled via the GKSL master equation,
whose final form is

@t⇢(t) = � i

~


� 1

2

X

i

~⌫iSz

i +
X

ij

JijS
z

i S
z

j , ⇢(t)

�

+
X

i

YifT (~⌫i)
✓

S+

i
⇢(t)S�

i
+ S�

i
⇢(t)S+

i
� 4⇢(t)

◆

+
X

i

Yi

✓
S+

i
⇢(t)S�

i
+ {⇢(t), Sz

i } � 2⇢(t)

◆
. (6.15)

In the previous equation, the first term on the r.h.s. corresponds to the commutator � i

~ [HTLS+
HLS , ⇢(t)] in Eq. (6.9), where

HLS =
X

ij

JijS
z

i S
z

j (6.16)

is the Lamb-Stark shift Hamiltonian. The second term on the r.h.s. contains the dissipative
terms; it is written separating explicitly the temperature dependent and independent contri-
butions: fT (✏) := (e✏/kBT � 1)�1 is the Bose-Einstein distribution function at temperature T .
Considering that ~⌫i ⇠ W ⇡ 0.1 eV, at ultra-low temperature (T ⇠ 1 K and below) fT ' 0,
and our system is effectively at zero temperature. Thus, in the following we will keep only the
temperature-independent contributions.

Before introducing the analytical expressions for Yi and Jij , a few comments are in order.
As depicted in Fig. 6.1, in general interactions can take place either in the Sz–Sz channel
(panel (a)), or by flipping two spins with the emission and absorption of a virtual phonon
(panel (b)). This latter case, for our system, can be neglected: since ⌫i and ⌫j are random
variables, the matching condition ! = ⌫i = ⌫j (! is the phonon frequency), entailed by the
rotating-wave approximation, is a rare event. Even accounting for those rare interactions, e.g.
in the Sx–Sx channel, the picture is not modified. Indeed, terms of the form KijSx

i
Sx

j
will still

decay with the distance rij: the probability of having a resonant ij couple that is also close in

real space is vanishingly small. Therefore, the MBL-breaking effect of Sx

i
Sx

j
terms [276–278]

is negligible in comparison to the Lindblad dissipator, and the Lamb-Stark shifts can be safely
considered diagonal in Sz. Moreover, the Lindblad superoperators of Eq. (6.9) correspond
only to the decay processes in Fig. 6.1d, since purely dephasing processes (panel (c)) are
absent. This is simply because there is no density of states of the phonons at zero frequency.

Having understood what are the physical processes behind the GKSL evolution, we can
compute explicitly the dissipation rates Yi and the interaction strengths Jij . As stated above,
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� � 0 �i � � � �j

� = 0 � = �i

i i

i i

j j

(a) (b)

(c) (d)

Figure 6.1.: Virtual (a,b) and real (c,d) phonon processes that lead to TLS–TLS interactions
and dissipation, respectively. (a) Interactions in the Sz–Sz channel are mediated
by phonons of vanishing frequency !, and take place among each couple ij,
yielding HLS of Eq. (6.16). (b) Flip-flop interactions can take place only if the
two TLSs resonate: this is a very rare event because the ⌫i’s are widely distributed
random variables. We disregard this possibility altogether throughout this study.
(c) Dephasing of a single TLS under the action of the phonon bath. This process
is negligible because there are no real phonons at ! = 0. (d) Decay of a TLS
into a phonon. Considering that resonating TLSs are very rare and the phonon
density of states vanishes at ! = 0, as noted above, it is easy to see that non-
unitary processes involving two TLSs can be neglected.

they both come from phonon processes; therefore, one can treat them in a unified way. We
start by rewriting the interaction Hamiltonian, Eq. (6.7), as

Hint =
X

ik

�zi (⇠ik k + h.c.) =:
X

i

�zi Ei : (6.17)

Ei are the environment operators that need to be traced out. Then, following [271, 272], we
define

�!

ij :=
1

~2

Z 1

0

ds ei!s TrB
h
⇢TB Ê†

i
(t) Êj(t � s)

i
(6.18)

with the hat on Êi(t) indicating the interaction picture. It then holds

Yi =

✓
�i

~⌫i

◆2 ⇥
�⌫i
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+
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�⌫i
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, (6.19)

Jij =
2"i
~⌫i

2"j
~⌫j

~
2i

⇥
�0

ij �
�
�0

ji

�⇤⇤
. (6.20)

The prefactors �i/~⌫i and 2"i/~⌫i come from the basis rotation in Eq. (6.12).

We leave to Appendix B.1 all the details of the computation of �!

ij
, which is rather straight-
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forward, while we present here the results obtained:

Yi =
�2

i
�2
i
⌫iTr(D2

i
)

12⇡⇢~3v5
, (6.21)

Jij =
�i"i
~⌫i

�j"j
~⌫j

Dij

4⇡⇢v2r3
ij

. (6.22)

Above, Tr(D2
i
) =

P
ab

Dab

i
Dba

i
, and Dij is a specific contraction of the dipoles Dab

i
and Dcd

j
,

defined in Eq. (B.27).

At this point, we can check a posteriori whether the weak coupling and the rotating-wave
approximations are valid. Plugging in Eqs. (6.21) and (6.22) the typical values of the param-
eters, we find ~Yi/W ⇡ 10�8 and Jij/W ⇡ 10�3. Therefore, even if the coupling constant is
comparable or even larger than the on-site energies � ⇠ W , we see that assuming weak cou-
pling is perfectly justified a posteriori. Moreover, as anticipated at the beginning of this Sec-
tion, the rotating-wave approximation is amply valid too. Indeed, the relaxation time in the
open system is much longer than the intrinsic time scale of TLSs: Y �1

i
� |⌫i�⌫j |�1 ⇠ ~W�1.

6.2.4. Dynamical phase diagram within the GKSL master equation

Figure 6.2.: Sketch of the expected phase diagram for TLSs in glasses. From Eq. (6.24) we see
that an MBL transient regime can be observed before thermalization takes place
if the typical time scales of interaction are short with respect to the dissipation
time scales (blue-shaded area). The three glassy materials reported in Table 6.1
lie well within the MBL region, even accounting for the large uncertainties in the
parameter � (the standard deviation of log(�i) is plotted as an errorbar). Thus,
the localized regime should be experimentally observable.

The GKSL equation (6.9) constitutes the starting point for exploring the quantum dynamics
of the TLSs. As a first thing, we notice that in the absence of dissipation the evolution would
be unitary, governed by the Hamiltonian

HTLS + HLS = �1

2

X

i

~⌫iSz

i +
X

ij

JijS
z

i S
z

j . (6.23)
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HTLS+HLS is completely expressed in terms of the extensive set of local conserved quantities
Sz

i
. This is the same property of the effective Hamiltonian of MBL systems, known as the l-bit

Hamiltonian, discussed in Chapter 5. Borrowing the terminology from MBL systems, we can
refer to the Sz

i
’s as the l-bits, or local integrals of motion (LIOMs); indeed, they are on-site

operators whose values are conserved during the time evolution. Notice that HTLS + HLS

presents two main differences with respect to the l-bit Hamiltonian of standard MBL systems
(see Chapter 5). First, in the TLS Hamiltonian, the l-bits are formed by single spins, not
exponentially localized groups of them. Second, the interaction between the TLS decays with
distance as a power law, Jij / r�3

ij
, rather than exponentially. The effects of this particular

form of the interactions on the TLS unitary dynamics are examined in Section 6.3.3.

The diagonal interactions in HLS are responsible for the dephasing of the spins. That is to
say, if one artificially turns off the jump operators, i.e. if one sets the dissipation rates Yi ⌘ 0,
diffusive transport is suppressed but the entanglement spreading persists. The numerical
results on this artificially isolated system are presented in Section 6.3.3, and show that the
entanglement entropy grows slowly, but indefinitely in time, while the concurrence decays as
a power law.

The picture described above is broken by the introduction of the jump operators: dissipa-
tive terms in the GKSL equation kill long-time coherence and drive the system to a thermal
state. Nevertheless, one can observe an MBL transient regime in the relaxation dynamics, if
the time scales of dissipation are appreciably longer than those of interactions. Such compe-
tition is quantified by the dimensionless ratio

~Yi

Jij

⇠
✓

�

W

◆2✓
W

~⌧�1

◆3

, (6.24)

where ⌧ = r/v, r being the typical distance between TLSs and v the speed of sound in the
glass. If this ratio is sensibly smaller than 1, the signatures of the localized phase should be
observed in the dynamics of the system, and in particular in the spreading of entanglement.
In Fig. 6.2, we show a tentative dynamical phase diagram for the TLS system. Recalling
that in experiments � ⇡ 10�5 W while W ⇡ 0.1 eV and, considering v ⇡ 5 km/s and
r ⇡ 10 nm, we have ~⌧�1 ⇡ 1 meV. Thus, the ratio is approximately ~Y/J ⇡ 10�5 ÷ 10�4,
making dissipation much slower than the interaction part of the unitary dynamics. Even
if one allows � — the most difficult parameter to infer from experiments — to vary few
orders of magnitude, the system will still present an observable MBL transient regime. The
dynamical phase diagram of Fig. 6.2 anticipates the features we will observe in the numerical
simulations of the real-time dynamics of TLSs, presented in the next Sections: TLS dynamics
present a long, albeit transient, localized regime. This result is of primary importance from
the experimental viewpoint: glasses at ultra-low temperatures should present the signatures
of a localized regime at short and intermediate time scales.

6.3. Numerical results

This Section is devoted to the results of the numerical simulations on the real-time evolution
of the TLSs. The analysis will be divided into two parts. In Section 6.3.3, the artificially iso-
lated system (i.e. the one evolving only under the unitary dynamics given by the Liouvillian
of the GKSL) governed by the Hamiltonian in Eq. (6.23) is considered. In Section 6.3.4, the
dissipative terms in the Lindbladian are re-introduced and the full TLS evolution governed
by the GKSL master equation Eq. (6.15) is taken into account.
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L
Jij

LL

Figure 6.3.: The TLSs are uniformly distributed in a cube of size L, at constant density. The
pairwise interactions Jij in Eq. (6.22) are mediated by phonons. These are also
responsible for the dissipation in Eq. (6.21). We employ periodic boundary con-
ditions to minimize finite-size effects.

Before going through that, in the next Sections 6.3.1–6.3.2 we briefly discuss the assump-
tions involved in the numerical simulations and define the dynamical observables we are
interested in.

6.3.1. Disorder distributions of the parameters

As we have seen in Chapter 1 and Section 6.1, in the literature the parameters defining the
TLS model are drawn from wide probability distributions (see p" and p� in Eq. (6.3) and
(6.4), respectively). It follows that the competing time scales in the GKSL master equation
(namely ⌫�1

i
, ~/Jij , and Y �1

i
) are distributed across several orders of magnitude and, even

though their typical values are very different, they overlap one with another. In our numerical
simulations, we employ simplified and less broad distributions, arguing that this choice, if
properly taken, does not qualitatively alter the physical content and predictions of the model.

We fix W ⌘ 1, thus setting the (dimensionless) energy scale; �/W = 10�1, unless oth-
erwise specified, and n� = 2. We also set �i ⌘ W , the material density ⇢ = 2 g/cm3, and
the speed of sound vL,T = 5 km/s, irrespective of polarization. We consider Tr(D2

i
) to be

the square of a Gaussian random variable of zero average and variance 1, since it must be
positive, and Dij to be a Gaussian random variable of zero average and standard deviation
1, since it can take both signs (see also Appendix B.1). Finally, we consider the TLSs as
uniformly distributed in a cube with side L, and compute their distances rij using periodic
boundary conditions. The cube side depends on the number of TLSs as L = L0N1/3, with
L0 ' ⇢�1/3

TLS , so that we keep fixed the TLS number density ⇢TLS . For numerical purposes, we
fix L0 = 1 nm. See Table 6.1 for a comparison with the experimental values, and Fig. 6.3 for
a sketch of the system.

In order to explore the phase diagram obtained in the GKSL framework, and shown in
Fig. 6.2, we introduce two further artificial parameters to tune interaction and dissipation

62



Ph.D. thesis by C. Artiaco 6.3 Numerical results

strengths:
Jij ! ⌘Jij , Yi ! ✏Yi. (6.25)

In Sec. 6.3.3 we study the artificially isolated system, setting ⌘ = 105 and ✏ = 0. In Sec. 6.3.4
we re-introduce the dissipator in the GKSL master equation, and we set ⌘ = 105 and ✏ =
10�6, 10�4, 1.

With these choices of the parameters, the on-site frequencies ⌫i, the TLS–TLS interactions
⌘Jij/~ (with ⌘ = 105), and the dissipation rates ✏Yi (for ✏ = 1) are of comparable orders
of magnitude and are much less widely distributed than originally. The latter feature is
particularly useful for numerical purposes, since one can access only small system sizes and,
hence, cannot sample well broad distributions. Our results will be discussed in view of these
choices.

6.3.2. Initial state and dynamical observables

The initial state of the dynamics is taken as a product state, in which each TLS is represented
by a random vector on the Bloch sphere:

| (0)i =
NO

i=1

�
cos(✓i/2)| "ii + ei�i sin(✓i/2)| #ii

�
, (6.26)

where ✓i 2 [0,⇡] and �i 2 [0, 2⇡). Thus, the system is initially at infinite temperature, and we
can track precisely the entanglement growth and spreading.

The choice of the appropriate entanglement measure is not obvious: since we are dealing
with an open quantum system, we wish to discriminate between quantum entanglement and
thermal entropy. A reliable measure of (pairwise) quantum entanglement in open systems is
the concurrence Cij , which quantifies the pairwise entanglement between TLSs i and j (see
Chapter 5, Eq. (5.5) for the definition of Cij). Here, we consider the average concurrence,
defined as

C(t) :=
1

N

X

1i<jN

Cij(t). (6.27)

The normalization factor 1/N (instead of the seemingly natural 1/N2) is due to the monogamy

of entanglement: each TLS can be highly entangled only with another TLS, so among the
N(N � 1)/2 terms in the sum, only O(N) will be non-negligible. The concurrence spots en-
tanglement between two spins irrespective of their interplay with other degrees of freedom.
For this reason, we employ the concurrence as a well-defined entanglement measure both in
the absence (Sec. 6.3.3) and in the presence (Sec. 6.3.4) of dissipation.

It is interesting to compare the time behavior of the concurrence with the half-system
entanglement entropy (HSEE)

SE(t) = �Tr(⇢A log ⇢A), (6.28)

where ⇢A is the reduced density matrix of the half system A in the bipartition A|B. Since the
system is three-dimensional, and the TLSs do not fall on a regular lattice, we bipartite the
system in the following way. For each TLS, a bubble is constructed around it so that N/2 TLSs
fall inside and N/2 outside the bubble. The entanglement entropy relative to the bipartition
is computed as in Eq. (6.28), and then averaged over all such bipartitions. We measure SE(t)
both with and without the dissipator (see Sec. 6.3.3 and 6.3.4, respectively).
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6.3.3. Unitary evolution of the TLSs

This Section is entirely devoted to the study of the unitary time evolution of a system of N
TLSs governed by the Hamiltonian HTLS + HLS of Eq. (6.23), that we reproduce here for
clarity:

HTLS + HLS = �1

2

X

i

~⌫iSz

i +
X

ij

JijS
z

i S
z

j .

As discussed in Section 6.2.4, this Hamiltonian is diagonal in the operators Sz

i
, i.e. the values

assumed by Sz

i
are conserved quantities; therefore, adopting the terminology of MBL systems,

we say that HTLS + HLS is in the l-bit form, and Sz

i
are LIOMs.

Figure 6.4.: Average concurrence within the unitary dynamics, ✏ = 0 (solid lines). After
a linear raise C ⇠ t (black dashed-dotted line), the average concurrence decays
with a power law C ⇠ t��i (dashed lines), down to a value which is exponentially
small in N . We set � = 0.1, ⌘ = 105; the results are averaged over 5000 disorder
realizations. Inset: The exponent �i depends on N and reaches a finite value
in the thermodynamic limit. The errors are computed by using the statistical
uncertainties of the concurrence values. Not all datasets were shown in the main
figure to improve readability.

Studying the dynamics induced only by the Hamiltonian term of the GKSL equation (6.15)
is equivalent to set ✏ = 0 (see Eq. (6.25)), i.e. to assume that the time scales of dissipation are
much longer than those of interactions: 1/Yi � ~/Jij . In this limit, it is clear that a coherent
many-body dynamics can take place before thermal equilibrium is reached. This situation
corresponds to the bulk of the MBL phase depicted in the phase diagram of Fig. 6.2. Thanks
to the diagonal nature of the Hamiltonian (6.23) and the choice of initial product states, few-
sites observables are efficient to compute, as was recognized in previous studies [233, 235,
242]. We refer the interested reader to Appendix B.2 for more details on the computation.
Here, we just mention that to compute the concurrence, which is a two-site observable,
within the diagonal Hamiltonian (6.23) it is not necessary to perform the time evolution of
the whole 2N ⇥ 2N density matrix, but only to carry out O(N) operations. Therefore, we
could easily simulate systems of N = 60 TLSs.

The results of the simulations for the unitary evolution are shown in Figs. 6.4, 6.5, and
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Figure 6.5.: Dependence of the average concurrence decay exponent �i on � in the case of
unitary evolution (✏ = 0). We set N = 50, ⌘ = 105 and averaged over 5000
disorder realization. We see that the smaller �, the faster the decay, which
remains however compatible with a power law C(t) ⇠ t��i (dashed lines).

6.6. One can see that the concurrence C(t), defined in Eq. (6.27), raises linearly from the
initial value 0 (the initial state is factorized) to a value independent of N (Fig. 6.4), but
slightly dependent on � (Fig. 6.5). It then falls off to a plateau via a power-law decay, whose
exponent �i remains finite in the thermodynamic limit (inset of Fig. 6.4), and depends on �
(inset of Fig. 6.5). Fig. 6.6a shows that the concurrence plateau decays exponentially with
the system size: C(1) / e�↵N . Finally, from Fig. 6.6b we see that the concurrence reaches
its maximum on time scales of order ~/Jij . In conclusion, the concurrence time behavior can
be schematized as

C(t) ⇠

8
><

>:

t if t < t1

t��i if t1 < t < t2

e�↵N if t > t2,

(6.29)

where t1 does not depend significantly on N, � but depends parametrically on ~/Jij , while
t2 grows with N and diverges in the thermodynamic limit.

The decay of the concurrence from its maximum is due to the fact that the interactions Jij

make the entanglement spread among many TLSs, as illustrated in Fig. 6.7, while each TLS
cannot be highly entangled with more than one other TLS because of the monogamy of the
entanglement. The power-law decay of the concurrence from its maximum is in contrast to
the behavior of ergodic systems, in which the concurrence vanishes exponentially fast [242].
The slowness of such decay is the fingerprint of the lack of thermalization and of the presence
of many-body localization in the artificially isolated TLS system. Slow decays of correlation
functions are known [233] to be a feature of MBL dynamics, and the concurrence (albeit not
an operator nor a correlation function) follows the same behavior.

We stress again that HTLS+HLS , although completely expressed in terms of local integrals
of motion, is different from the effective l-bit Hamiltonian of MBL systems, as already pointed
out in Section 6.2.4. In particular, the TLS interactions in HLS scale as a power law with
distance. Following general arguments [233, 279], one would expect that for long-range
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interactions the correlation functions decay in time as stretched exponentials. We cannot
exclude that a stretched-exponential behavior would be observed in TLSs if one pushes the
dynamics at larger times. In the present study, however, we are only interested in the TLS
relaxation dynamics at intermediate time scales since, at long times, dissipation would always
bring the system to a thermal state.

(a)

(b)

Figure 6.6.: Results for the unitary dynamics, ✏ = 0. (a) Plateau value of the average concur-
rence at long times (dots), with errors coming from statistical fluctuations. From
a fit (solid line) we find that C(1) / e�↵N with ↵ ⇡ 0.8. This is considerably
larger than the value given by the ETH prediction, i.e. a random state, which
obeys C / e�a2

N with a ⇡ 0.127 (see Appendix B.3). Here ⌘ = 105, � = 0.1, and
an average over 10000 disorder realizations was performed. (b) Average concur-
rence for different interaction strengths ⌘. Rescaling the time as t ! t⌘/105 (we
normalize to ⌘ = 105 to compare to the other plots) the curves collapse, show-
ing that the value of ⌘ only shifts the timescale but does not modify the shape
of the curve C(t). Here N = 50, � = 0.1, and an average over 1000 disorder
realizations was performed.

The results on the half-system entanglement entropy (HSEE) are shown in Fig. 6.7, com-
pared with the behavior of C(t). This comparison confirms, as anticipated, that the concur-
rence starts to decrease when the entanglement spreads and, thus, SE(t) starts to increase.
In addition, Fig. 6.7 shows that SE(t) grows slowly for a large time window. This slowness
is known [230] to be the signature of localization, and shows that TLSs remain coherent
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Figure 6.7.: Unitary evolution: half-system entanglement entropy per unit volume SE(t)/N ,
as defined in Eq. (6.28), for various system sizes (solid lines). We set � = 0.1,
⌘ = 105, and averaged over 1000 disorder realization. The average concurrences
C(t) (Eq. (6.27)) are shown as dashed lines for comparison. We see that the
concurrence reaches a maximum at short times, as nearby TLSs start to evolve
coherently. Then, it starts to decay because the entanglement becomes many-
body, as shown by the increase in the HSEE. In this regime, the growth of the
HSEE is compatible both with a small power law SE(t) ⇠ t↵ with ↵ ⇠ 1, as well
as log(t); the dotted line shows log(t) as a guide for the eye. Inset: The HSEE
saturates to a volume law, as expected for an MBL system: the phase of each
spin depends on all the others. The error bars are computed from the statistical
fluctuations of the plateau values.

and non-ergodic during the time-evolution. According to the arguments in [190, 231, 279],
we expect that for a long-range, 3d system as the TLS one entanglement would grow al-
gebraically in time, SE(t) ⇠ t↵ with ↵ ⇠ 1. From our data, the entanglement growth is
compatible with both a power law with small exponent (⇠ 1), and a logarithmic growth. In
the inset of Fig. 6.7, we see that the asymptotic value of HSEE, SE(1), is proportional to N ,
indicating a volume law.

6.3.4. Full evolution of the TLSs

This Section is entirely devoted to the study of the time evolution of the TLSs governed by
the GKSL master equation (6.15), that we reproduce here for clarity:

@t⇢(t) = � i
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We set T = 0, but ✏ 6= 0 (see Eq. (6.25)), i.e. the system is in the presence of dissipation and
decoherence. Increasing ✏, we increase the typical dissipation rate. For our particular choice
of parameters (Sec. 6.3.1), when ✏ = 1, dissipation ultimately becomes comparable with the
timescale of the interactions Jij .

Figure 6.8.: C(t), as defined in Eq. (6.27), for ✏ = 0, 10�6, 1, and different values of N . We see
that the presence of dissipation in the GKSL master equation (6.15) decreases the
concurrence maximum and moves it at earlier times. We set � = 0.1, ⌘ = 105,
and averaged over at least 1000 disorder realizations.

To investigate the time evolution of the system, one has to integrate numerically the GKSL
master equation for the TLS density matrix (see Appendix B.4 for more details). Because
of the doubling of the Hilbert space dimension, we are forced to small system sizes, up to
N = 9. In the following analysis, we varied both N (to perform a finite-size scaling) and ✏. As
can be seen from Fig. 6.8, when ✏ is small enough the concurrence C(t) reaches its maximum
at the same time as with unitary dynamics (✏ = 0). Then, it decays from such peak and
stabilizes around a finite value dependent on N (cf. Sec. 6.3.3), following the same behavior
as in the case ✏ = 0. Ultimately, the dissipation forces C(t) to vanish; C(t) departs from the
✏ = 0 plateau, C(1; ✏ = 0), with a stretched-exponential functional form (Fig. 6.9). We can
ascribe this feature to the interaction between TLSs and phonons: when ✏ 6= 0, thanks to
the dissipative terms in the GKSL equation (6.15), entanglement can spread among infinitely
many phonons, preventing the concurrence from stabilizing around the plateau value.

Furthermore, Fig. 6.8 shows that, increasing the dissipation strength (✏ = 1), the concur-
rence maximum becomes smaller and is reached at earlier times. However, the decay from
the maximum follows a power-law behavior as in the unitary case, albeit with a different
exponent �o, as reported in Fig. 6.10a. This feature is very important since it shows that the
signatures of localization are visible also in the presence of dissipation, if the latter is not too
large. The reason at its origin might be linked to the specific (in particular, on-site) form of
the dissipation operators in the GKSL equation [258]. The power-law exponent �o depends
on ✏ and N , as shown in Fig. 6.10b, and remains finite in the thermodynamic limit. Due to
the small sizes accessible when integrating the full GKSL equation, we expect the extrapo-
lated thermodynamic value of �o to be underestimated (see Fig. 6.10b, and the results on the
unitary case ✏ = 0). Notice that the behavior of the concurrence is determined only by the
ratio ~Yi/Jij . Remember that, in the unitary case, where the dissipation is absent, changing
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Figure 6.9.: Stretched-exponential fit of the concurrence for ✏ = 10�6, 10�4, normalized to
the plateau reached at ✏ = 0: C(t; ✏)/C(1; ✏ = 0). Using as fitting function
↵ exp {�( t+t0

⌧
)�}, we obtained � ' 0.2 and ⌧ = O(1). The plot shows the results

for � = 0.1, ⌘ = 105, averaged over at least 1000 disorder realizations.

the typical strength of Jij through the parameter ⌘ only shifts the timescale of C(t), with-
out modifying the shape of the curve (see Sec. 6.3.3, Fig. 6.6b). Hence, in this Section, we
employ the artificial parameter ✏ to investigate the behavior of pairwise entanglement in the
different regions of the phase diagram (Fig. 6.2) by (effectively) changing the ratio ~Yi/Jij .

Complementary to the concurrence is the half-system entanglement entropy (HSEE), SE(t),
as defined in Section 6.3.2. Its behavior for various N and ✏ is shown in Fig. 6.11. As in the
unitary case, HSEE starts to increase roughly when C(t) reaches its maximum, i.e. when
the TLSs start to evolve coherently. It keeps increasing at larger times when entanglement
spreads inside the system. From the data at ✏ = 10�6, it can be seen that the entanglement
spreading takes place in two steps: first, the TLSs become entangled one with another, and
SE(t) reaches the plateau found with unitary dynamics (✏ = 0); then, the HSEE increases
further due to the dissipative terms in the Lindbladian (6.15). Indeed, for ✏ 6= 0 the TLSs
entangle also with the thermal bath.

6.4. Conclusions and outlook

In this Chapter, we investigated the well-known two-level system (TLS) model for glasses
at ultra-low temperatures. We studied the quantum dynamics of tunneling TLSs coupled to
phonons. Within the framework of the Gorini-Kossakowski-Sudarshan-Lindblad master equa-
tion, and by means of a weak-coupling approximation, we computed explicitly the phonon-
mediated interactions among TLSs and the dissipation rates.

We found that, as a consequence of disorder, the Hamiltonian responsible for the unitary
part of the TLS dynamics, and accounting for TLS–TLS interactions, is completely expressed
in terms of local integrals of motion and is thus many-body localized (MBL). Even though
it differs from the effective l-bit Hamiltonian of standard MBL systems (see Chapter 5), in
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(a)

(b)

Figure 6.10.: (a) Power-law fit of C(t) at large times for ✏ = 1. (b) Power-law exponents �i
(✏ = 0; data from Fig. 6.4) and �o (✏ = 1) as a function of 1/N . We see that the
concurrence decays faster as ✏ increases (dashed lines). However, our data can
capture the behavior of C(t) in the presence of dissipation only at small N , i.e.
in the pre-asymptotic region. We expect the large N behavior to give a larger
exponent �o, as it happens for �i (dashed-dotted line). We set � = 0.1, ⌘ = 105,
and averaged over at least 5000 disorder realizations. The errors are computed
by using the statistical uncertainties of the concurrence values.

particular, the TLS–TLS interactions decay as a power law with distance, the TLS relaxation
dynamics presents clear signatures of quantum many-body localization. Indeed, simulating
the artificially isolated system with unitary dynamics governed by the Liouvillian, we found
that the concurrence decays slowly in time as a power law, rather than exponentially fast as it
would for an ergodic system. We also observed that the entanglement entropy grows slowly,
as in standard MBL systems.

This picture is broken by the presence of dissipation, induced by real processes between
TLSs and phonons, which destroy localization and ultimately drive the system to a thermal
state. In the open system, for not too large dissipation strength, we find that the concurrence
decays as a power law, as in the artificially isolated system, indicating that the signatures of
TLS localization are observable even in this case at short and intermediate time scales.

The competition between TLS–TLS interactions and dissipation terms determines the pres-
ence of two distinct regions in the dynamical phase diagram of the model: when interactions

70



Ph.D. thesis by C. Artiaco 6.4 Conclusions and outlook

Figure 6.11.: Half-system entanglement entropy SE(t), as defined in Section 6.3.2, per num-
ber of TLSs for various N and ✏. The plot shows the results for � = 0.1 and
⌘ = 105, averaged over at least 1000 disorder realizations. For ✏ = 10�6, we
see that the entanglement spreading takes place in two steps: first, the TLSs be-
come entangled with other TLSs and SE(t)/N reaches the plateau found in the
case of unitary dynamics (✏ = 0); then, HSEE grows further due to the spread
of the entanglement among TLSs and phonons. For ✏ = 1, SE(t)/N is almost
independent of N , indicating a volume law.

are comparable or stronger than dissipation, the system dynamics presents the transient MBL
regime; in the opposite case, the system quickly thermalizes. Considering the typical values
of the disorder distribution parameters encompassed in the literature, real glassy materials
sit in the bulk of the transient MBL region of the phase diagram. These results suggest that
the signatures of many-body localization might be experimentally accessible in real glassy
samples at ultra-low temperatures, for instance using ultra-fast laser probes. Therefore, our
work opens up promising research directions. On the one hand, glasses promise to be a
unique platform for probing many-body localization on real materials. On the other hand,
the presence of a localized regime in glass dynamics might be at the origin of interesting
ultra-low temperature behaviors, which deserve a deep investigation.
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7. Two-level systems in glasses: The strong
coupling limit

In this Chapter, we explore the quantum dynamics of two-level systems (TLSs) strongly cou-

pled with phonons. Section 7.1 is devoted to a brief discussion on the strong-coupling ap-

proximation. In Sections 7.2–7.2.1, we apply a unitary transformation to the full Hamiltonian

(TLSs + phonons), and we show how the tunneling amplitudes of the TLSs become expo-

nentially suppressed by the polaron effect. In Section 7.3, by means of perturbation theory,

we compute analytically the dissipation rates of the TLSs. We find that their typical value

corresponds to the smallest time scale in the problem. Finally, in Section 7.4, we show the

presence of a long, localized transient in the TLS dynamics, resembling the weak-coupling

result. The reference article for this Chapter is Ref. [280].

This Chapter can be regarded as an extension of Chapter 6, where we discussed the quan-
tum dynamics of two-level systems (TLSs) weakly coupled to a phonon bath. Here, instead,
we assume that TLSs are strongly coupled to phonons. While the weak-coupling approxi-
mation is usually performed in the literature, and it is known to be a posteriori valid, the
strong-coupling approximation has been carried out only in a few previous studies [41, 74].
However, from the experimentally measured values of the TLS disorder parameters, one
might be led to consider the strong-coupling approximation more accurate. Indeed, the typ-
ical value of the TLS–phonon coupling measured in experiments is of the order of � ' 1 eV,
while the asymmetry energy between the wells is W ' 0.1 eV, and the tunnelling amplitude
is � ' 10�6 eV (see Table 6.1).

In this Chapter, we start by considering the microscopic parameters of the TLS model
as bare quantities. Performing a simple unitary transformation on the full Hamiltonian of
the system TLSs + phonons, we find that the strong coupling between TLSs and phonons
induces a polaron effect, i.e. a TLS “brings along” a cloud of phonons which renormalizes
its tunneling amplitude. This constitutes a microscopic explanation for the wideness and
smallness of the tunneling amplitude distribution encompassed in the literature. Moreover,
such suppression of the tunneling amplitudes permits to work out a perturbation theory to
compute the relaxation rates of the TLSs, employing for instance the Fermi’s golden rule,
which shows that the dissipation rates are the smallest time scale in the problem. Thus,
one is able to derive the effective dynamics of the TLSs at low temperatures and finds that
their quantum dynamics presents a transient localized regime that should be experimentally
accessible.
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7.1. Observations on the TLS model

As seen in Chapter 6, the full Hamiltonian encompassing the TLSs and the phonon bath is
given by

H = HTLS + Hph + Hint. (7.1)

HTLS is the Hamiltonian of free TLSs, which are parametrized with Pauli matrices:

HTLS =
X

i

�
"i�

z

i + �i�
x

i

�
, (7.2)

where "i is the asymmetry energy between the two states, and �i is the tunnelling ampli-
tude. Both "i and �i are random variables. We have already discussed in Chapter 6 the
probability distributions of "i (Eq. (6.3)) and �i (Eq. (6.4)) usually encompassed in the liter-
ature. Those distributions are inferred from simple physical reasoning [33], while they have
never been fully justified by experiments. It is worth having in mind that the distributions
in Eqs. (6.3)–(6.4) refer to the renormalized parameters "i and �i. Instead, the Hamiltonian
(7.1) encompasses the bare quantities, which are in principle not experimentally accessible.
Therefore, in this Chapter we proceed without assuming any distribution for the bare "i and
�i in Eq. (7.1). We will carry out the renormalization procedure in Secs. 7.2–7.2.1, and then
we will comment on the renormalized parameter’s distributions.

Analogously to Eq. (6.6), we define the phonon bath Hamiltonian as

Hph =
X

qs

~!qsb
†
qsbqs, (7.3)

!qs being the phonon frequency, and b†qs, bqs the creation/annihilation operators for a phonon
with wavevector q and polarization s. As usual, their commutator reads [bqs, b

†
q0s0 ] = �s,s0�q,q0 .

As in Chapter 6, we consider a linear dispersion relation: !qs = vs|q|. Notice that the trans-
verse (T ) and longitudinal (L) velocities verify vL/vT ⇡ 1.6 (see Table 6.1); however, since
their difference is not crucial for the quantities of interest, it is convenient to define thr aver-
age velocity 1

v3
:= 1

3

P
s

1

v3s
, as in the weak-coupling limit (see also Appendix B.1). We refer

to Table 6.1 for the experimental values of the TLS model parameters.

For later convenience, we also introduce the position and momentum operators of the
phonon field:

xqs =

s
~

2!qs

�
bqs + b†�qs

�
, pqs = i

r
~!qs

2

�
b†qs � b�qs

�
, (7.4)

with commutator [xqs, pq0s0 ] = i~�s,s0�q,�q0 . In these operators, the phonon Hamiltonian
reads

Hph =
1

2

X

qs

(pqsp�qs + !2

qsxqsx�qs), (7.5)

having dropped a zero-point constant.

Finally, the interaction Hamiltonian that couples phonons to TLSs corresponds to the one
defined in Eqs. (6.7)–(6.8). Here, we rewrite it as

Hint =
X

iqs

�i �
z

i ⌅iqs xqs, (7.6)
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where �i is the coupling strength of site i, with the dimension of an energy, and ⌅iqs parametrizes
the spatial and angular form of the interaction:

⌅iqs =
�ip
⇢V

Dab

i eabqse
iq·ri . (7.7)

In the above expressions, V is the volume of the sample, ⇢ the material density, ri is the
position of the i-th TLS, Dab

i
is the dimensionless, random elastic dipole tensor, and eabqs :=

1

2

�
qaêbqs + qbêaqs

�
is a projector, with êqs being the polarization versors. Notice that in our

convention ê⇤qs = ê�qs; thus, ⌅⇤
iqs = ⌅i�qs, and the interaction Hamiltonian is Hermitian, as

it should be.

We set �i ⌘ � for each site, and absorb in Dab

i
all the randomness. The “experimentally

correct” form of Dab

i
is inaccessible. However, as we will see in Section 7.2.1, in the strong-

coupling approximation the dipole tensor enters the Debye-Waller factor, which suppresses
exponentially the tunneling amplitude of the TLS. Therefore, in the strong-coupling limit
having an accurate estimate of its numerical value is of primary importance. For this reason,
in this Chapter, we will follow Ref. [41] in which this issue has been already discussed. We
consider Dab

i
as the difference of two random tensors, one for each well of the TLS, and we

fix the magnitude of its entries from self-consistent criteria for the stability of the amorphous
lattice. With these choices, we find Dab

i
⇠ O(10) (for more details, see Appendix C.1).

7.2. The polaron transformation

According to Table 6.1, W . �: TLSs and phonons are strongly coupled. Therefore, in
this Section we perform a polaron transformation that takes into account the strong-coupling
effects, generating new renormalized parameters which, in turn, can be treated perturba-
tively [41, 74]. An easy way to derive the correct form of the transformation is the following.
Noting that the interaction Hamiltonian in Eq. (7.6) is linear in the phonon position operator
xqs, we can “complete the square” in Eq. (7.5) by shifting the origin of the xqs fields. By
inspection, this is accomplished by the unitary transformation

U = exp


� i

~
X

iqs

�

!2
qs
�zi ⌅iqs pqs

�
. (7.8)

Thus,

U(Hph + Hint)U
† = Hph �

X

ij

X

qs

�2

2!2
qs
�zi �

z

j⌅iqs⌅
⇤
jqs; (7.9)

We see that the interactions generated are in the �z-�z channel, with couplings

Jij :=
X

qs

�2

2!2
qs

⌅iqs⌅
⇤
jqs. (7.10)

It is easy to verify that Jij = 2~ ⇧ij , for ⇧ij defined in Eqs. (B.14). Therefore, following
the same computation performed in Appendix B.1.2 for the weak-coupling limit, one arrives
at

Jij =
�2Dij

4⇡⇢v2r3
ij

, (7.11)
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where Dij is the contraction of the dipole moments Dab

i
already found in the weak-coupling

approximation (cf. Eqs. (B.27) and (C.6)). Considering the experimental values reported in
Table 6.1, one finds that the typical value1 of the interactions is

SiO2 : Jij ⇡ 3 ⇥ 10�5 eV ⇡ 5 ⇥ 1010 Hz;

BK7 : Jij ⇡ 3 ⇥ 10�5 eV ⇡ 4 ⇥ 1010 Hz; (7.12)

PMMA : Jij ⇡ 7 ⇥ 10�6 eV ⇡ 1 ⇥ 1010 Hz.

Now, we apply the polaron transformation to the TLS Hamiltonian, which involves only
Pauli matrices. Defining the phonon operators Pi as

U = exp

"
�i
X

i

Pi

�z
i

2

#
=) Pi =

X

qs

2�

~!2
qs

⌅iqs pqs, (7.13)

we find
UHTLSU † =

X

i

⇥
"i�

z

i + �i�
x

i cos(Pi) + �i�
y

i
sin(Pi)

⇤
. (7.14)

Hence, we obtain an equivalent Hamiltonian for the TLSs in an elastic medium, that reads

H 0 = UHU † = Hph +
X

i

⇥
"i�

z

i + �i�
x

i cos(Pi) + �i�
y

i
sin(Pi)

⇤
+
X

ij

Jij�
z

i �
z

j (7.15)

= Hph +
X

i

⇥
"i�

z

i + �i�
+

i
e�iPi + �i�

�
i

eiPi

⇤
+
X

ij

Jij�
z

i �
z

j (7.16)

with �± := 1

2
(�x ± i�y). Notice that H 0 is exactly equivalent to H, since we have just per-

formed a unitary transformation.

Summarizing, from Eqs. (7.15)–(7.16), we see that the polaron transformation has gen-
erated a direct coupling between TLSs, and a new TLS–phonon coupling via �x

i
cos(Pi) and

�y
i
sin(Pi) or, equivalently, �+

i
e�iPi and ��

i
eiPi . The latter phonon operators are clearly com-

plicated. In the next Section 7.2.1, we will show how to rewrite them in a easier form to
deal with. Eq. (7.16) gives a clear physical interpretation of the whole transformation: the
operators e±iPi shift the “position” x of the phonon field as a TLS jumps between up and
down states.

7.2.1. Normal ordering

To begin with, let us consider the following average on a thermal state:

heiPiiT = exp

(
�
X

qs

�2

~!3
qs

⌅iqs⌅
⇤
iqs coth

✓
�~!qs

2

◆)
=: e��

2
i
(T )/2. (7.17)

�2
i
(T ) is known as the Debye-Waller factor. We will denote �2

i,0
:= �2

i
(0). We compute it

explicitly in Appendix C.2, finding that, at T � TD/2,

�2

i

2
=
�2k2

B
T 2

D
Tr(D2

i
)

12⇡2⇢~3v5
+ O

�
e�TD/2T

�
; (7.18)

1We define the typical value of a random variable X with probability distribution P (X) as Xtyp :=
exp

�R
dX P (X) log(X)

�
.
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hence, the Debye-Waller factor increases exponentially slowly in temperature. We can rewrite
it as

�2
i

2
=

E2

D

4E2
i

+ O
�
e�TD/2T

�
, (7.19)

where ED := kBTD is the Debye energy, and Ei is defined as:

Ei :=

s
3⇡2~3⇢v5

�2Tr(D2
i
)
. (7.20)

For the materials in Table 6.1, the minimum value Ei is:

SiO2 : Ei,min ' 2.8 meV; BK7 : Ei,min ' 2.6 meV; PMMA : Ei,min ' 0.79 meV . (7.21)

Therefore, from Eq. (7.19) we find at zero temperature

SiO2 : 0 
�2
i,0

2
 28; BK7 : 0 

�2
i,0

2
 33; PMMA : 0 

�2
i,0

2
 32 . (7.22)

These ranges of values are very close to the ones found in Ref. [41] (parameter ↵, pag. 3).
We stress again that �2

i,0
, while being at zero temperature, does fluctuate since the TLSs are

coupled via a random dipole tensor Di to the phonons. Reintroducing the temperature, one
finds that �2

i
(TD) ' 4�2

i,0
(see Appendix C.2).

We wish to find a more manageable expression for the operators e±iPi in Eq. (7.16).
First, without making any approximation, e±iPi can be normal ordered. We use the Baker-
Campbell-Hausdorff formula which, applied to creation and annihilation operators, gives

ecibi+c
⇤
j
b
†
j = ec

⇤
j
b
†
jecibie

1
2 cic

⇤
j
�ij . (7.23)

We find
eiPi = ei�i,0b̃

†
i e�i�i,0b̃ie��

2
i,0/2, (7.24)

having defined

b̃i :=
�

�i,0

X

qs

s
2

~!3
qs

⌅⇤
iqsbqs, b̃†

i
:=

�

�i,0

X

qs

s
2

~!3
qs

⌅iqsb
†
qs. (7.25)

Eq. (7.23) shows that the normal ordering procedure generates the Debye-Waller factor on
the vacuum state, i.e. at zero temperature. Notice that, thanks to the pre-factor (�i,0)�1, the
operators b̃ and b̃† can be considered of order 1.

At this point, the Hamiltonian in (7.16) can be rewritten exactly as

H 0 = Hph +
X

i

h
"i�

z

i + �i�
+

i
e�i�i,0 b̃

†
i ei�i,0b̃i + �i�

�
i

ei�i,0b̃
†
i e�i�i,0b̃i

i
+
X

ij

Jij�
z

i �
z

j (7.26)

with the renormalized tunneling amplitudes

�i := e��
2
i,0/2�i. (7.27)

The physical interpretation is the following: the tunneling amplitude of a TLS is exponentially
suppressed by the Debye-Waller factor since the TLS has to “bring along” a cloud of phonons,
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namely the polaron [74]. In other words, when a TLS tunnels in one well, the neighboring
atoms rearrange to accommodate it. Hence, they make it harder for the TLS to tunnel back.

It is clear that the presence of the Debye-Waller factor, which is a random variable depen-
dent on the TLS–phonon interaction, produces a wide distribution of tunneling amplitudes
�i; in particular, large values of the Debye-Waller factor favor small �i. As highlighted in
Refs. [41, 86], the distributions of the TLS parameters p"(") and p�(�), employed in the
standard TLS model (see Eqs. (6.3)–(6.4)), derive just from simplicity standpoints, while
they have not been confirmed by experimental or numerical observations. Hence, following
C. C. Yu and H. M. Carruzzo in Ref. [41], following the strong-coupling derivation, one can
legitimate define

�i := �max e��
2
i,0/2, (7.28)

where �max ⇡ 10 meV as reported in Table 6.1. The definition (7.28) enhances the presence
of very small tunneling amplitudes, which however are likely not observable in standard
measurements, e.g. in internal friction experiments. Indeed, only the TLSs that can tunnel
fast enough to respond within the experimental time can be observed in experimental mea-
surements. Because of the strong-coupling effects, in this Chapter we will apply Eq. (7.28).

7.3. Perturbation theory for the relaxation of the TLSs

To get a grasp of the physics of the Hamiltonian in Eq. (7.26), we can proceed perturbatively.
Indeed, by means of the polaron transformation, we have already taken into account the
strong-coupling effects, generating new “small” renormalized parameters. Since our ultimate
goal is to focus on the reduced system composed of TLSs only, we can proceed considering
the phonons as a thermal bath.

The Hamiltonian in Eq. (7.26) presents three competing energy scales. For SiO2, their
typical values are2:

"i ⇡ 1015 Hz; �i ⇡ 105 Hz; Jij ⇡ 1011 Hz . (7.29)

Since "i � �i, Jij , we can proceed further assuming that the TLSs are non-interacting. In-
deed, since the level spacing is of the order of "i, as a first step one can neglect the interactions
Jij . We will come back to the effects of the interactions at the end of this Section.

At infinite temperature, the “up” and “down” states of the TLSs would be equally popu-
lated. We wish to consider the decay of an “up” TLS into phonons. However, before pro-
ceeding some considerations are in order. The physical “up” and “down” states for the TLSs
are the ones of the Hamiltonian (7.26), or in other words the TLS states after having applied
the polaron transformation. Since the interactions Jij are smaller than the onsite energy "i,
we can safely consider the TLSs one by one when they decay. Moreover, since the phonons
are a thermodynamically large system, we can assume that they are not influenced by the
flipping of one TLS. For these reasons, we can safely assume that the phonon ground state is
left unchanged in the asymptotically far regions, even if the operators �i�

⌥
i

e±i�i,0b̃
†
i e⌥i�i,0b̃i

not only flip the TLS, but also shift locally the phonon ground state.

Within the above assumptions, we can use the Fermi’s golden rule applied to only one TLS:

Yi =
X

f

2⇡

~

���hf, #| �i�
�
i

ei�i,0b̃
†
i e�i�i,0b̃i |0, "i

���
2

⇢f (2"i) (7.30)

2For the other materials in Table 6.1 the ratio between the energy scales is similar.
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where ⇢f (E) is the density of states of the final state of the phonons at energy E. In particular,
the final state can be thought as made of phonons of the unperturbed Hamiltonian Hph . The
explicit computation of the decay rates is performed in Appendix C.3; the result is

Yi =
⇡�

2

i "i
~E2

i

e�2"i/ED
pFq

✓
;
3

2
, 2;

"2
i

4E2

i

◆
, (7.31)

where pFq is a generalized hypergeometric function (see Eq. (C.27) for its definition and
Eq. (C.28) for its asymptotics), ED is the Debye energy and Ei is defined in Eq. (7.20).

The decay rate in Eq. (7.31) is correct to order O(�
2

i ), and to all orders in b̃†
i
, b̃i. Therefore,

we expect it to give a pretty accurate result. Considering the materials in Table 6.1, the typical
values of the TLS dissipation rates are

SiO2 : Yi ⇡ 5 ⇥ 10�16 eV ⇡ 8 ⇥ 10�1 Hz;

BK7 : Yi ⇡ 4 ⇥ 10�19 eV ⇡ 5 ⇥ 10�4 Hz; (7.32)

PMMA : Yi ⇡ 8 ⇥ 10�19 eV ⇡ 1 ⇥ 10�3 Hz.

Due to the wideness of the distribution of Yi, which covers many orders of magnitude, such
typical values are considerably small.

Since Jij � ~Yi, at least at the level of typical values, we expect the coherent dynamics
of the TLSs to be observable for a large time window before thermalization ultimately takes
place. However, the thermalization rates Yi in Eq. (7.32) should be taken with a grain of salt.
As in the weak-coupling limit of Chapter 6, the probability distribution of Yi is very wide,
spanning many orders of magnitude. In Eq. (7.32), instead, we are considering only the
typical values of the dissipation rates, which are defined as Ytyp := exp

�R
dY P (Y ) log(Y )

�
.

The surprisingly small typical values that we find are due to the polaron effect considered
in Eq. (7.28) according to Ref. [41]. It is worth noticing, however, that the dissipation rates
dominating an experiment are not a priori obvious. One should evaluate them case by case.
This issue should be further investigated in collaboration also with experimental physicists.

Let us now consider the effects of the interactions. We argue that the rates in Eq. (7.31)
are almost unchanged if perturbation theory is performed with respect to the interacting
Hamiltonian

P
i
"i�zi +

P
ij

Jij�zi �
z

j
. Indeed, even though a phonon-mediated process might

speed up the decay of a configuration of “up” TLSs, favoring the energy matching condition
for the decay, more TLSs in the configuration need to be flipped, and this happens at higher
orders in �i. Therefore, the perturbation theory that we have developed should capture the
essential features of the relaxation dynamics of the TLSs and should be numerically accurate
to a fair degree.

7.4. E↵ective dynamics of the TLSs at low temperatures

Given the normal ordered Hamiltonian in Eq. (7.26), we can set up a Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation for the dynamics of the TLSs in the presence of a
phononic thermal bath. We recall that the GKSL equation (Eq. (6.9)) for the reduced density
matrix of the TLSs, ⇢, reads

@t⇢(t) = � i

~ [HTLS + HLS , ⇢(t)] +
X



L⇢(t). (7.33)
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where HTLS =
P

i
"i�zi +

P
ij

Jij�zi �
z

j
is the unperturbed TLS Hamiltonian, HLS encompasses

the Lamb and Stark shifts, and L are Lindblad superoperators acting on the TLS density
matrix ⇢. In principle, the index  can take O(N2) values, however, following the arguments
in the previous Section 7.3, in the case of TLSs we can reasonably assume that  reduces to
the site index i, in agreement with the weak-coupling approximation in Chapter 6.

We consider the phonons at zero temperature. This approximation is exponentially good in
TD/2T , as seen for the Debye-Waller factor in Section 7.2.1. Hence, we find at leading order
in �i

@t⇢(t) = � i

~

X

i

"i�
z

i +
X

ij

Jij�
z

i �
z

j , ⇢(t)

�
+
X

i

Yi

⇣
�+
i
⇢(t)��

i
+
�
�zi , ⇢(t)

 
� 2⇢(t)

⌘
(7.34)

with Jij given in Eq. (7.11), and Yi in Eq. (7.31). In the above equation, we neglected the
Lamb-Stark shift terms which are of the second order in �i, while the interactions Jij are of
zeroth order.

7.5. Conclusions and outlook

In this Chapter, we investigated the quantum dynamics of the two-level system (TLS) model
for glasses at ultra-low temperatures. We considered an ensemble of TLSs strongly coupled
to phonons. While the weak-coupling approximation is often taken in the standard literature
on the TLS model and it turns out to be completely justified a posteriori, as shown in Sec-
tion 6.2.3, the experimental values of the TLS model parameters suggest that, in principle,
the strong-coupling approximation might be more accurate.

Starting from this observation and employing a simple unitary transformation, we wrote
the Hamiltonian of the full system (TLSs + phonons) in a more suitable form. In this way,
we found that the tunneling amplitudes of the TLSs become renormalized by the Debye-
Waller factor: they are exponentially suppressed because of the polaron effect on the TLSs.
Such renormalization provides an explanation for the wide distribution and the small typical
value attributed to the TLS tunneling amplitude in the literature. By means of a perturbation
theory in the tunneling amplitude, we computed analytically the dissipation rates of the
TLSs. Such rates are smaller than those found within the weak-coupling approximation.
Moreover, within the strong-coupling approximation, we derived a phenomenological master
equation in the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form, finding the presence
of a localized transient regime in the TLS dynamics. This result is in agreement with the one
obtained within the weak-coupling approximation in Chapter 6. Therefore, it supports the
possibility that a many-body localized regime might be observed in experiments on ultra-low
temperature glasses.
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8. Spatio-temporal heterogeneities of
entanglement in the many-body localized
phase

In this Chapter, we propose a spatio-temporal characterization of the entanglement dynamics

in many-body localized systems. Specifically, we find that the relaxation times of local entan-

glement, as measured by the concurrence, are spatially correlated, giving rise to a dynamical

correlation length for quantum entanglement. Remarkably, our findings resemble dynamical

heterogeneities of classical glasses. After characterizing the model and the methods in Sec-

tions 8.1–8.2, we present the numerical results in Section 8.3. In Section 8.4, we discuss the

future research directions that these findings open up. The reference article for this Chapter

is Ref. [281].

The assumption of local equilibrium is at the core of statistical mechanics: even if isolated
from the rest of the universe, a generic many-body system is expected to act as a thermal bath
for itself, quickly driving the statistics of local observables to the Gibbs ensemble, by means
of classical [282–284] or quantum [187, 285] chaos. The situations in which ergodization
fails and the system persists in non-thermal states for all relevant time scales, are therefore
of paramount interest, both at the classical and the quantum level [184, 185, 187]. Glasses
are a prototypical example of classical systems that remain trapped in metastable states for
all experimentally accessible time scales (see Chapter 1). In the quantum realm, after the
seminal works [182, 183], it has become clear that isolated, disordered many-body systems
can elude thermal equilibrium even at infinite time. This non-ergodic phase of matter has
been coined many-body localization. We discussed it in Chapter 5, highlighting its common
aspects and dissimilarities with respect to both classical and quantum glasses. We illustrated
that the lack of ergodicity in the many-body localized (MBL) phase can be linked to the
existence of an extensive number of local integrals of motion (LIOMs), by which one can
construct a phenomenological model known as the l-bit model.

While in the case of two qubits entanglement can be completely characterized [238, 239,
286], in the case of many-body systems it has been proved difficult to quantify it in a definitive
way, and only a handful of general properties are known. Several different measures of the
entanglement have been proposed [241, 287, 288], which capture only specific properties of
the quantity. The numerous studies on the entanglement growth in the MBL phase [198, 230,
231, 289, 290] are mainly focused on global properties, employing measures such as entan-
glement entropy, purity, quantum Fisher information [205, 212], or total correlations [286,
291].

In this Chapter, we wish to go beyond those approaches, focusing on a quantity that can
measure local properties of entanglement, thus characterizing its spreading in a more detailed
way. We focus on the time and space behavior of the concurrence, which has been defined
in Chapter 5 and already employed in Chapter 6. We quantitatively study the distribution of
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relaxation times of the onsite concurrence in the l-bit model and describe its properties in a
wide range of parameters and initial-state energies. We show that the relaxation times of the
onsite concurrence are spatially correlated and that they present a long-tailed, power-law-
like distribution. Both the spatial correlation and the width of the distribution grow as the
disorder increases or the energy of the initial state decreases.

These properties provide a clear connection with dynamical heterogeneities, i.e. spatio-
temporal fluctuations, observed in classical amorphous materials and spin glasses (see Chap-
ter 1). Hence, our findings add one more point of contact between the physics of glasses and
MBL systems [197, 249] (see also Chapters 4,6, and 7). It has already been argued that such
heterogeneities have a quantum counterpart and, at ultra-low temperatures, can be induced
by quantum fluctuations [170, 264, 292, 293]. Previous studies, however, were focused on
quantum glass systems modeled on a classical counterpart. For the first time, we focus on
the MBL phase, which is a novel, non-ergodic state of matter, that only exists in the quantum
realm. Moreover, we study the entanglement, which is a genuine quantum object with no
classical analog: the observed similarity to the classical case is even more remarkable.

8.1. Definition of the model

We aim at studying general principles of the spatio-temporal entanglement dynamics of MBL
systems. For that purpose, we focus on an effective description in terms of LIOMs, which
allows us to access the nonequilibrium real-time dynamics of MBL systems for long times and
large system sizes. Deep in the MBL phase, Hamiltonians of short-range interacting quantum
spin-1/2 degrees of freedom can be diagonalized through a quasi-local unitary transforma-
tion U , yielding a representation of the model in so-called l-bit form (Chapter 5, Eq (5.4)).
In this Chapter, we neglect the terms in the l-bit Hamiltonian comprising n-body interactions
with n � 3, which is a controlled approximation for weakly interacting spins in the original
microscopic model. Thus, we employ the Hamiltonian

Hl-bit =
LX

i=1

hi⌧
z

i +
LX

i,j=1

Jij⌧
z

i ⌧
z

j , (8.1)

where {⌧x
i
, ⌧y

i
, ⌧ z

i
} are the localized spin-1/2 operators associated with the LIOMs. The inter-

actions Jij are known to be exponentially suppressed with the distance rij between localiza-
tion centers. In order to achieve a model-independent effective description, here we will take
one step further by parametrizing the l-bit model as follows. First, we assume that the hi are
independent identically distributed random fields, with a uniform distribution over [�h, h],
and that the Jij are uncorrelated Gaussian variables of zero average and standard deviation
J0e�rij/. For numerical purposes we set both h = J0 = 1.

The particular advantage of the l-bit model in Eq. (8.1) is that it not only allows us to
perform analytical estimates of few-body observables but also to efficiently compute them
numerically reaching system sizes up to L = 140 spins for long times [231, 233, 235, 266].
It is worth stressing that the l-bits become more and more similar to the physical spins as the
disorder strength is increased, ultimately coinciding asymptotically at infinite disorder [223,
224]. Thus, at small values of  (i.e., large disorder strength), one can safely consider the
l-bits as uniformly spaced on a chain, and compute the distances between them as rij =
|i � j|, i, j = 1, 2, . . . , L. Our numerical results are obtained exactly in this strongly localized
regime, deep in the MBL phase. It is important to note that the effective model also provides
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us handles to tune: i) the interaction decay length  (equivalent to varying the disorder
strength); and ii) the initial condition and therefore the energy density at which we probe
the system’s properties. Concerning the latter case, we choose as initial state of the dynamics
a product state in the effective spin basis:

| 0i =
LO

i=1

�
Ai|*ii + Bi|+ii

�
, (8.2)

where |*ii,|+ii are the eigenstates of �z
i
, and |Ai|2 + |Bi|2 = 1. In employing Eq. (8.2), the

system is initially prepared in a superposition of eigenstates, as it would be the case when de-
riving the l-bit model from a microscopic Hamiltonian. Moreover, the above parametrization
of the initial condition provides us with the flexibility to tune the coefficients Ai and Bi such
that we can vary its energy E: h 0|Hl-bit| 0i = E. This can be easily achieved employing a
classical simulated annealing algorithm (see Appendix D.1 for more details), and allows us
to effectively explore different regions of the energy spectrum. We will measure E in units of
the standard deviations of hi and

P
j
Jij (see Eq. (8.1)), defining the dimensionless energy

density " := (E/N)/
q

h2/3 + 2J2
0
/(e2/ � 1). Notice that " = 0 corresponds to the center of

the spectrum, while " ⇡ �1 to the ground state [294] (see also Appendix D.1). We also recall
that the localization properties of MBL systems depend on the energy of the state considered,
and are stronger near the edges of the spectrum [295].

8.2. Definition of the spatio-temporal quantifiers of the
entanglement

For the purpose of exploring dynamic entanglement heterogeneities in MBL systems, in the
following, we will concentrate on the two-site concurrence, which quantifies the pairwise
entanglement. In MBL systems the mean value of the concurrence decays in time as a power
law, as opposed to the exponential decay observed in ergodic systems [242] (see also Chap-
ter 5). It will be the key goal of our work to establish a more detailed spatio-temporal analysis
of the concurrence beyond its mean value. For that purpose, we define a local concurrence
via

Ci(t) :=
X

j

Cij(t) , (8.3)

quantifying the total amount of entanglement of i with all the other lattice sites. We find
that (for large systems and for a single disorder realization) this local concurrence typically
decays on a certain time scale, which motivates us to define a local relaxation time as

⌧i := t0 ehln(t/t0)iC = t0 exp

R
tfin
0

ln(t/t0) Ci(t)dt
R
tfin
0

Ci(t)dt
, (8.4)

where t0 = J�1

0
. Notice that Ci � 0, i.e. the averages above are well-defined and independent

of t0 (in the thermodynamic limit). The definition (8.4) employs the logarithm ln(t/t0) to en-
sure that ⌧i is a good estimator of the typical time scale of the decay time of the concurrence,
even if Ci(t) decays very slowly 1. For finite systems, typically Ci(1) ' O(2�L) (cf. Chapter 6
and Appendix B.3). Thus, the function Ci(t) might be interpreted as a probability distribution

1We verified that, upon changing the definition of ⌧i, e.g. with ⌧i := htiC =
R

tfin
0

t Ci(t)dt/
R

tfin
0

Ci(t)dt or
⌧i := max{t|Ci(t) > 0}, our findings do not qualitatively change.
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in R only in the thermodynamic limit. Therefore, when considering below the distribution
functions of ⌧i, the thermodynamic limit can be approached by fixing the maximum simula-
tion time of the dynamics tfin upon increasing L until convergence is reached. We find from
our numerics that this typically happens for L & 30 (see Appendix D.3), which is achievable
in the l-bit but not for microscopic Hamiltonians by means of exact diagonalization. This
represents a key argument for the use of the effective l-bit model.

While the ⌧i’s provide us with temporal information of the entanglement dynamics, we
are further interested in the spatial component. For that purpose we quantify the spatial
correlations of the local relaxation time via [20]

G⌧ (r) :=


h⌧i⌧jiis � h⌧iiish⌧jiis

h⌧2
i
iis � h⌧ii2is

�

|i�j|=r

, (8.5)

where h•iis denotes the average over different initial states, [•]|i�j|=r the average over all sites
i, j separated by a distance r, and [•] the average over different disorder realizations2. In
Appendix D.3, we show that G⌧ (r) as defined in Eq. (8.5) is very robust to finite-size effects
and disorder fluctuations: it is a self-averaging quantity. From our numerical simulations,
we find that G⌧ (r) experiences, in general, a stretched exponential decay as a function of
r. This allows us to define a length scale ⌘⌧ by performing a fit of the form log G⌧ (r) ⇠
a + (r/⌘⌧ )b for some suitable a and b. The length ⌘⌧ quantifies the distance over which the
local entanglement relaxation is spatially correlated, i.e. it gives the size of the typical clusters
of fast or slow entangling spins.

For small system sizes, we will also compare the results of the effective model with a full
microscopic calculation for the spin-1/2 XXZ chain with random fields, defined in Eq. (5.2)
and that we report here for completeness:

HXXZ =
L�1X

i=1


J

2
(S+

i
S�
i+1

+ h.c.) + V Sz

i S
z

i+1

�
+

LX

i=1

�iS
z

i , (8.6)

where J = V = 1 and �i are random variables uniformly distributed over [�W

2
, W

2
]. For

Wc ' 7 ± 2 this model exhibits a many-body localization transition [199]. More details on
the relation between W and the effective model parameters h,  and J0 can be found in
Refs. [223, 224]. In order to probe the centre of the spectrum we initialize the system in a
Néel state | 0i = | "#"# . . . i and we average the results over different disorder realizations.
We find that Cij = 0 for |i � j| > 1 so that we restrict ourselves for the local concurrence
according to Ci(t) =

P
j
Cij(t) ! Cii+1(t).

8.3. Numerical results

We start by showing in Fig. 8.1 the probability distribution function (pdf) of log10 ⌧i, obtained
within both the XXZ and the l-bit model. We see that within the XXZ model (Fig. 8.1a), the
pdf’s show a peak at the largest relaxation time, corresponding to the final simulation time
of the dynamics tfin. In Appendix D.3, we argue that this feature is due to the (typical)
asymptotic value Ci(1) ' O(2�L); see also the discussion below Eq. (8.4). If the time spent
in such asymptotic region is too large, the decay time is heavily influenced by the final time
of the dynamics. This is a finite-size effect, and it does disappear upon considering larger

2Notice that the averages have to be taken in the proper order: first h•iis, second [•]|i�j|=r, finally [•].
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system sizes, as we show for the l-bit model in Appendix D.3 (larger system sizes for the XXZ
model cannot be presently considered).

The pdf’s obtained considering the l-bit model for L = 80, and for different values of  and
", are shown in Figs. 8.1b–8.1c. Thanks to the large system size, these plots do not present
any peak at large times, and clearly show that the pdf of log10 ⌧i has a power-law tail: thus, in
turn, also ⌧i is power-law distributed. We see that the pdf’s become wider as the disorder is
increased (both in the XXZ and the l-bit model), or the energy is lowered (in the l-bit model).

We define the typical value of ⌧i as typ[⌧i] := t0 exphln(⌧i/t0)i⌧i , where h•i⌧i is the average
over the pdf of ⌧i. In Fig. 8.2a, we show the behavior of typ[⌧i] as a function of the parameters
 and ". Following usual arguments for the l-bit model [231, 233], in Appendix D.2 we derive
the rough estimate: ln(typ[⌧i]/t0) ⇡ (2 ln 2 � 1)�1. Fig. 8.2a depicts the fits of typ[⌧i] with
this functional relation with respect to , showing that our numerical results are in good
agreement with this prediction. In Fig. 8.2b we plot the power-law exponents � obtained
from the fit of P (log10 ⌧i) ⇠ (log10 ⌧i)

��, that are shown in Fig 8.1b. We see that � has a
roughly linear dependence on .

The spatial correlations between the ⌧i’s are plotted in Fig. 8.3. Considered the presence
of too strong finite-size effects for the XXZ model, we restrict ourselves to the l-bit model. In
Fig. 8.3a we show the spatial distribution of the ⌧i’s for a disorder realization. As  decreases,
i.e. the disorder increases, the relaxation times of the local entanglement become spatially
correlated on longer distances. The correlation function G⌧ (r), defined in Eq. (8.5), is shown
in Fig. 8.3b–8.3c: G⌧ (r) decays more slowly upon decreasing  and ", confirming the pattern
observed in Fig. 8.3a. The same result is also supported by the (qualitative) behavior of the
dynamical correlation length ⌘⌧ as a function of . We see in the inset of Fig. 8.3c that ⌘⌧
decreases when  increases, i.e. when disorder increases.

The implications are twofold. The local entanglement spreading slows down when  de-
creases, i.e. the disorder increases, or the energy decreases (Fig. 8.1), and increasingly larger
clusters of spins emerge, in which the entanglement relaxation is correlated (Fig. 8.3). As
disorder increases, the distribution of relaxation times becomes wider, implying that more
clusters are likely to assume an extreme value of the relaxation time in the slow, as well as in
the fast tail. These findings might seem surprising in the quantum case, as a more localized
structure might be expected when disorder increases. However, they are in agreement with
the behavior of classical amorphous materials and spin glasses. In particular, they resemble
the results in Ref. [20] in the case of the classical Ising spin glass in d = 2, 3, where the
authors found that heterogeneities amplify when the temperature of the bath is lowered, and
the glass transition is approached.

8.4. Conclusions and outlook

We studied the spreading of entanglement in many-body localized (MBL) systems by moni-
toring the onsite concurrence. We showed that in the MBL phase the relaxation times of the
onsite concurrence increase upon increasing the disorder, or upon lowering the energy of the
initial states. Specifically, the local relaxation times become more spatially correlated, and
their distribution broadens. Thus, as disorder increases or energy decreases, entanglement
heterogeneities arise: we observe the formation of increasingly larger dynamically correlated
clusters, in which the entanglement relaxation times are likely to assume an extremely small
or large value. Remarkably, the presence of such heterogeneities spotlights the connection
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between the local behavior of quantum entanglement in MBL systems and the dynamical
properties of classical glasses.

Our analysis applies to the deep, many-body localized phase, where the l-bits are close
to the physical spins. Entanglement heterogeneities are expected in all systems that present
a long, localized transient before they reach a thermal state. Such systems include MBL
systems coupled to a bath, MBL systems in d � 2, and two-level systems in structural glasses
(see Chapters 6–7).

Our findings open up future research directions towards the characterization of spatio-
temporal entanglement properties. A crucial step in the future would be to explore the spatial
correlation of local relaxation times by means of observables less affected by finite-size effects
and disorder fluctuations. It would be desirable to define suitable macroscopic observables, in
the way the four-point susceptibility �4(t) is for classical glasses [1, 11, 23, 24]. In the MBL
case, such observables need to detect only local entanglement fluctuations and be, possibly,
experimentally measurable. A further interesting extension of our contribution could be to
consider entanglement heterogeneities for two subsystems consisting of more than one spin,
which could provide additional information on the multipartite spatio-temporal structure of
quantum entanglement.
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(a)

(b) (c)

Figure 8.1.: Probability distribution functions of log10(⌧i). (a) Results for the XXZ model in
Eq. (8.6), for L = 16, tfin = 103, and various W . We performed the XXZ unitary
dynamics using the Krylov technique [296], with dimension of the M = 40, and
collected data from at least 8000 disorder realizations. For comparison, the l-bit
model at L = 10,  = 1, " = 0 is shown as well, with empty squares (300 disorder
realizations). J0 has been fixed to make the pdf’s maximum coincide with the
XXZ ones. More about the XXZ-l-bit correspondence in Appendix D.3. (b)-(c) Re-
sults for the l-bit model in Eq. (8.1) at L = 80, for various  and ". We collected
data from at least 4000 disorder realizations, and 20 initial states for each of
them. As W increases or, equivalently,  decreases, the distributions broaden;
the same happens when " decreases. This resembles the phenomenology of dy-
namical heterogeneities in classical amorphous materials upon approaching the
glass transition. We performed power-law fits on the tails of the pdf’s for the l-bit
model, obtaining the exponents �, whose behavior is shown in Fig. 8.2b.
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(a) (b)

Figure 8.2.: (a) The typical value of ⌧i, defined in the main text, is shown as a function of  for
different " (dots). The dashed lines are fits with the function exp[a + (b+ c)�1].
From a, we performed the linear fits depicted in the inset: ln(typ[⌧i] � a)�1 as a
function of  is found to be linear, as expected (see Appendix D.2). (b) Slope �
as a function of , obtained from the linear fits of the tails of log10(P (log10 ⌧i)) in
Fig. 8.1b. �() is consistent with a linear behavior; with a linear fit we obtain:
� = 2.8(5)� 1.(2).
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(a)

(b) (c)

Figure 8.3.: Spatial correlation of the ⌧i’s in the l-bit model. (a) Snapshot of the spatial dis-
tribution of the ⌧i’s at three different values of  (in one realization of disorder),
showing the emergence of dynamically correlated clusters as the disorder in-
creases. (b)–(c) The correlation function G⌧ (r), defined in Eq. (8.5), for L = 140,
and various  and ". We see that the spatial correlation among ⌧i’s increases for
decreasing  and ". G⌧ (r) has been averaged over at least 1000 disorder real-
izations, and 20 initial states. (Inset of (c)) The dynamical correlation length ⌘⌧ ,
from stretched exponential fits of G⌧ (r), as a function of . ⌘⌧ decreases as 
increases, indicating that, when disorder augments, increasingly larger clusters
of dynamically correlated spins emerge.
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9. Concluding remarks

In this thesis, we tackled the long-standing problem of ultra-low temperature anomalies in
glasses focusing in particular on the effects of quantum mechanics.

In the first Part of the thesis, we followed a research line that takes its root in mean-field
models for glasses. We exploited hard spheres, constraint satisfaction problems, and their
jamming transition. We showed that the landscape structure of three-dimensional classical
hard spheres at jamming is compatible with the one predicted by the exact solution in the
mean-field case, indicating that the jamming critical properties might be universal and in-
dependent of the dimension of the system. We also found that the jamming transition in
the quantum perceptron model, a simple mean-field model for quantum hard spheres and
learning protocols, is sensibly affected by quantum mechanics: the quantum jamming point
has critical exponents different from the classical ones. Moreover, it is not confined to the
zero-temperature axis: it “dominates” the classical regime, which is recovered only at T = 1.
These findings suggest that quantum mechanics might strongly influence also the physics of
structural glasses at ultra-low temperatures. This perspective has never been fully consid-
ered in the literature before, partly due to the analytical and numerical challenges it posits.
However, we expect it to have far-reaching implications.

In the second Part of the thesis, we showed the presence of deep connections between
glasses and many-body localized systems. We investigated the quantum dynamics of the two-
level system model in glasses. Considering an ensemble of two-level systems coupled with
phonons both in the weak- and strong-coupling approximations, we found that their dynam-
ics presents clear signatures of many-body localization physics at short and intermediate time
scales. The effects of localization should be experimentally accessible in glassy materials at
ultra-low temperatures, using for instance ultra-fast laser probes. The implication of these
results is twofold. On the one hand, localization might provide important clues to understand
the ultra-low temperature behavior of glasses, and to design new experiments to probe their
properties. On the other hand, these findings open up future research directions towards
probing many-body localization in real materials. Indeed, the experimental characterization
of the many-body localized phase in real materials is still in its infancy, mainly due to the
difficulty in finding systems whose microscopic constituents are weakly coupled to thermal
baths. In Part II, we also characterized the spatio-temporal properties of entanglement in
quantum many-body localized systems. We found that the temporal behavior of local entan-
glement shows a striking resemblance with dynamical heterogeneities in structural glasses,
providing a yet unrecognized connection between the behavior of classical glasses and the
genuine quantum dynamics of many-body localized systems. This study suggests that meth-
ods and ideas from the theory of glasses might be a useful tool to deepen our knowledge of
quantum localization phenomena.

We hope that in the future the results presented here will constitute a useful piece to
unveil the complex, intriguing, and fascinating phenomena involving glasses at ultra-low
temperatures.
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A. Appendix to Chapter 4

A.1. A simple variational calculation

In this Section, we sketch a simple variational calculation showing that the presence of quan-
tum mechanics inevitably changes the critical exponents of the jamming transition, in partic-
ular the exponent  regulating the relation (1 � q) ⇠ (2 � ↵).

Setting G�1
n = �m(!2

n +~2/4m2)/(1� q), the spherical constraint (Eq. (4.17)) is automati-
cally satisfied up to exponentially small corrections, and the values of m and q can be fixed by
Eqs. (4.16) and (4.18). Notice that there is an equation of the form (4.16) for every n 2 Z,
yielding a deeply overcomplete set of constraints for our ansatz; however, we restrict only to
the case n = 0 case.

Setting x ⌘ r/
p

1 � q and H ⌘ h/
p

1 � q, Eq. (4.18) becomes

q

(1 � q)3/2
= ↵

Z
dHp
2⇡q

e�
(1�q)H2

2q h (H)

0
|x| (H)

0
i2 , (A.1)

and the reduced Schrödinger problem to solve is

� 1

2

d (H)

k

dx2
+

1

8
x2 (H)

k
= E(H)

k
 (H)

k
,  (H)

k
(H) = 0. (A.2)

Self-consistently, we will show that only the ground-state contribution matters (i.e. k = 0).
With this in mind, we have employ the one-parameter variational wavefunction

 (H)(x; L) =
1p
Z

(x � H)✓(x � H)e�x
2
/4L

2
, (A.3)

with an appropriate normalization Z, for which the energy reads

E(H)(L) =
1 + L4

8L2

�(H/
p

2L)(H2 + 3L2) � 2HL

�(H/
p

2L)(H2 + L2) � 2HL
(A.4)

where �(y) ⌘
p

2⇡ey
2Erfc(y), Erfc being the complementary error function. The equation

dE(H)/dL = 0 can be solved separately in the regions H � L, |H/L| ⌧ 1 and H ⌧ L
by using suitable expansions. Remembering that q ! 1 (and therefore that the range of
H ⇠

p
q/(1 � q) ! 1), we see that the important region is H � L, and self-consistently we

obtain H/L � 1. We find h (H)

0
|x| (H)

0
i ' H + 32/3H�1/3 + O(H�5/3) and by inserting it in

Eq. (A.1) we arrive at

q = ↵


(1 � q)⇠

✓
q

1 � q

◆
+

q

2

�
(A.5)

with

⇠(�) =

Z 1

0

dHp
2⇡�

e�H
2
/2�

"
(6H)2/3

21/3
+ · · ·

#
=

32/3�(5/6)p
⇡21/3

�1/3 + · · · . (A.6)
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Eq. (A.5) can now be solved for q, yielding  = 3/2:

q = 1 �
p

2⇡3/4(2 � ↵)3/2

24 �(5/6)3/2
. (A.7)

The same scaling has been observed by solving the Schrödinger equation (A.2) numerically,
discretizing the x-axis and employing imaginary-time evolution to find the ground state.

Knowing q as a function of ↵, we can now solve the n = 0 case of Eq. (4.16) with the same
technique. It reads

m = ��q/(1�q) ? h (H)

0
|x2| (H)

0
iconn . (A.8)

By means of the same variational ansatz we find that the connected average in the equation
above is 31/3H�2/3✓(H) + · · · , and finally

m = �
31/3�(1/6)

25/6

✓
1 � q

q

◆1/3

. (A.9)

Thus we see that, as q ! 1, �/m ! 1 and our approximation to take only the ground state
becomes more and more reliable.
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B. Appendix to Chapter 6

B.1. Explicit form of interactions and dissipator

We wish to compute explicitly Yi and Jij defined in Eqs. (6.19) and (6.20), respectively. To
do so, we need �!

ij
defined in Eq. (6.18), that we reproduce here:

�!

ij :=
1

~2

Z 1

0

ds ei!s TrB
h
⇢TB Ê†

i
(t) Êj(t � s)

i
. (B.1)

Therefore, as a first thing we need to evolve the operators Ei in the interaction picture.
Recalling that (Eqs. (6.8) and (6.17))

Ej := ⇠jk k + h.c. = �i

s
~

2V ⇢!k

�jD
ab

j eab
k

eiq·rj k + h.c., (B.2)

it holds

Êi(t) = eiHph t/~Eie
�iHph t/~

=
X

k

�
⇠ike

�i!kt k + ⇠⇤
ik

ei!kt †
k

�
. (B.3)

Thus, it follows

~2�!

ij =

Z 1

0

ds ei!s TrB
⇢
⇢TB
X
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�
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��
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=

Z 1
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X

k
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⇥
⇢TB k
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k

⇤
+ ⇠⇤

ik
⇠jk ei!ks TrB

⇥
⇢TB 

†
k
 
k

⇤o

=

Z 1

0

ds ei!s
X

k

⇥
⇠ik⇠

⇤
jk

e�i!ks (fT (~!k) + 1) + ⇠⇤
ik
⇠jk ei!ks fT (~!k)

⇤
, (B.4)

where we recall fT is the Bose-Einstein distribution function at temperature T . We perform
the time integral using the identity

Z 1

0

ds ei⇣s = i PV
1

⇣
+ ⇡�(⇣). (B.5)

Plugging in the explicit expression of ⇠ik from Eqs. (6.8), we arrive at

�!

ij =
�i�j
2⇢

X

abcd

Dab

i Dcd

j

X

s

Z
d3q

(2⇡)3
1

~!qs
eabqse

cd

qs

⇥

(fT (~!qs) + 1)

✓
iPV

1

! � !qs
+ ⇡�(! � !qs)

◆
eiq·(ri�rj)

+ fT (~!qs)

✓
iPV

1

! + !qs
+ ⇡�(! + !qs)

◆
e�iq·(ri�rj)

�
. (B.6)
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B.1.1. The dissipation rates

The dissipation rates Yi can be computed from Eq. (B.6) by taking the real part of �!

ii
(see

Eq. (6.19)):

Yi =

✓
�i

~⌫i

◆2

2 Re�⌫i

ii

��
T=0

. (B.7)

Hence, we need to compute (see Eq. (B.6))

Re �!

ii =
⇡�2

i

2⇢

X

abcd

Dab

i Dcd

i

X

s

Z
d3q

(2⇡)3
1

~!qs
eabqse

cd

qs [(fT (~!qs) + 1)�(! � !qs)

+ fT (~!qs)�(! + !qs)] . (B.8)

One could in principle consider the longitudinal and transverse polarizations separately, how-
ever it is convenient to employ an isotropic Debye model with sound velocity

1

v3
:=

1

3

X

s

1

v3s
. (B.9)

Within this assumption, it is convenient to compute the angular averages summing over all
polarizations as

1

4⇡

X

abcd

X

s

Z
d⌦ eabqse

cd

qsD
ab

i Dcd

i =
1

3
Tr(D2

i ) q2, (B.10)

where Tr(D2

i
) :=

P
ab

Dab

i
Dba

i
. Thus,

Re �!

ii =
�2
i
Tr(D2

i
)

12⇡⇢~v

Z 1

0

dq q3
⇥
(fT (~vq) + 1)�(! � vq) + fT (~vq)�(! + vq)

⇤
. (B.11)

We know from the theory of the GKSL equation [271, 272] that dissipation and dephasing
rates are obtained by setting respectively ! = ±⌫i, 0 in Eq. (B.11). However, as argued in the
main text we are effectively at zero temperature: fT=0 = 0, and we are left with only

Re �⌫i

ii

��
T=0

=
�2
i
⌫3
i
Tr(D2

i
)

12⇡⇢~v5
. (B.12)

Notice in particular that �0

ii
= 0 since the phonons have zero density of states at ! = 0. Using

Eq. (B.7), we finally arrive at

Yi =
�2

i
�2
i
⌫iTr(D2

i
)

12⇡⇢~3v5
, (B.13)

that is exactly Eq. (6.21).

B.1.2. The interaction strengths

From the general considerations reported in the main text (see Sec. 6.2.3 and Fig. 6.1), we
know that interactions take place mostly in the Sz–Sz channel. What we need to compute is
the coefficient Jij giving the strength of the interaction, and coming from the imaginary part
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of �0

ij
of Eq. (B.6). With hindsight, we note that the temperature-dependent terms will not

contribute; therefore, we just need to compute the following quantity:

⇧ij := �i
⇥
�0

ij �
�
�0

ji

�⇤⇤

=
�i�j
4⇢

X

abcd

Dab

i Dcd

j

X

s

PV

Z
d3q

(2⇡)3
1

~!qs
(qaêbqs + qbêaqs)(q

cêdqs + qdêcqs)
eiq·(ri�rj)

�!qs
. (B.14)

The interactions Jij are then given by (see Eq. (6.20))

Jij =
2"i
~⌫i

2"j
~⌫j

~
2

⇧ij . (B.15)

We can proceed as follows: we split the different polarization contributions, then evaluate the
angular integrals, and, finally, the |q| integral. Treating separately the different polarization
here is crucial: as will be clear from Eq. (B.27), there is a contribution that vanishes if
vL = vT .

Let us define some quantities that will soon appear in the computation:

Iabcd(⇣) :=
1

4⇡

Z
d⌦ q̂aq̂bq̂cq̂dei⇣ cos ✓, (B.16)

Iab(⇣) :=
1

4⇡

Z
d⌦ q̂aq̂bei⇣ cos ✓. (B.17)

Explicitly, they read:

Ixxyy(⇣) =
1

3
Ixxxx(⇣) = �3⇣ cos ⇣ + (⇣2 � 3) sin ⇣

⇣5
,

Ixxzz(⇣) = �⇣(⇣
2 � 12) cos ⇣ � (5⇣2 � 12) sin ⇣

⇣5
,

Izzzz(⇣) =
4⇣(⇣2 � 6) cos ⇣ + (⇣4 � 12⇣2 + 24) sin ⇣

⇣5
,

Ixx(⇣) =
�⇣ cos ⇣ + sin ⇣

⇣3
,

Izz(⇣) =
2⇣ cos ⇣ + (⇣2 � 2) sin ⇣

⇣3
.

(B.18)

Similar ones are obtained exchanging x and y and permuting the indices; all the others are
zero. We can parametrize them as

Iabcd(⇣) =
1

⇣5

4X

l=0

Cabcd

l
⇣ l sl(⇣),

Iab(⇣) =
1

⇣3

2X

l=0

Cab

l
⇣ l sl(⇣)

(B.19)

where

sl(⇣) :=

(
sin ⇣ l even
cos ⇣ l odd.

(B.20)

Let us start considering the longitudinally polarized modes. Since êqL = q̂, we find

⇥
⇧ij

⇤
L

= ��i�j
⇢

X

abcd

Dab

i Dcd

j PV

Z
d3q

(2⇡)3
1

~v2
L
q2

q2q̂aq̂bq̂cq̂deiq·(ri�rj). (B.21)
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Setting the ẑ axis along (ri � rj), defining the modulus distance |ri � rj | = rij and ⇣ = qrij ,
and using the definition of Iabcd in Eq. (B.16) above, we find

⇥
⇧ij

⇤
L

= � �i�j
2⇡2⇢~v2

L

X

abcd

Dab

i Dcd

j PV

Z
dq q2Iabcd(qrij)

= � �i�j
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L
r3
ij
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l=0

"
X

abcd

Cabcd

l
Dab

i Dcd

j

#
PV

Z
d⇣ ⇣ l�3sl(⇣). (B.22)

One can check that all the IR divergences cancel out (since Cabcd

0
= �Cabcd

1
), while the UV

divergences are harmless thanks to the oscillating functions sl(⇣). We find

⇥
⇧ij

⇤
L

= � �i�j
2⇡2⇢~v2

L
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abcd
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4
Cabcd

0 +
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2
Cabcd

2

⌘
Dab

i Dcd

j

= � �i�j
8⇡⇢~v2

L
r3
ij

X

abcd

(Cabcd

0 + 2Cabcd

2 )Dab

i Dcd

j . (B.23)

Now we perform a similar computation for the transversely polarized modes. Using the
relation, X

s trans.
êaqsê

b

qs = �ab � q̂aq̂b, (B.24)

we see that there are terms involving Iab (coming from �ab) and terms involving Iabcd (coming
form q̂aq̂b). It is easy to check that the result is

⇥
⇧ij

⇤
T

= � �i�j
8⇡⇢~v2

T
r3
ij

X

abcd

(2Cac

0 �
bd � Cabcd

0 � 2Cabcd

2 )Dab

i Dcd

j . (B.25)

Summing the longitudinal and transverse contributions in Eqs. (B.23) and (B.25), we fi-
nally obtain

⇧ij =
�i�jDij

8⇡⇢~v2r3
ij

(B.26)

having defined

Dij := v2
X

abcd


�2Cac

0
�bd

v2
T

+ (Cabcd

0 + 2Cabcd

2 )

✓
1

v2
T

� 1

v2
L

◆�
Dab

i Dcd

j , (B.27)

where v is the average velocity defined in Eq. (B.9). Despite the cumbersome appearance,
Dij are dimensionless random variables with zero average and standard deviation of order 1.
Finally, by means of Eq. (B.15):

Jij =
�i"i
~⌫i

�j"j
~⌫j

Dij

4⇡⇢v2r3
ij

, (B.28)

that is Eq. (6.22) of the main text.

B.2. Two-site observables within the diagonal unitary evolution

In this Section, we show how to compute with O(N) steps the two-site density matrix ⇢ij ,
and therefore any two-site observable, for the Hamiltonian (6.23). Call the initial density

100



Ph.D. thesis by C. Artiaco B.3 Concurrence in a random state

matrix

⇢0 =
NO

i=1

⇢0,i =
NO

i=1

X

si,s
0
i

⇢
sis

0
i

0,i
|sii

⌦
s0i
�� , (B.29)

and recall that the Hamiltonian (6.23) reads explicitly

HTLS + HLS = �1

2

X

i

~⌫iSz

i +
X

ij

JijS
z

i S
z

j .

Time evolving the density matrix according to the von Neumann equation and rearranging
the sum, one finds

⇢(t) =
X

s,s0

Y

i

⇢
sis

0
i

0,i
|si
⌦
s0
�� e�i(H[s]�H[s

0
])t/~ (B.30)

with H[s] = �1

2

P
i
~⌫isi +

P
ij

Jijsisj , where si = ±1 is the projection of the spin-1/2 on the
z axis. Without loss of generality, we can trace out all the spins but the first two. The matrix
elements of the two-site reduced density matrix read

hs1s2| ⇢12(t)
��s01s02

↵
= hs1s2| Tr3···N ⇢(t)

��s01s02
↵
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X
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0
1

0,1
⇢
s2,s

0
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0,2
⇢s3,s3
0,3

· · · ⇢sN ,sN

0,N
e�i(H[s1s2s3···sN ]�H[s

0
1s

0
2s3···sN ])t/~

= ⇢
s1,s

0
1

0,1
⇢
s2,s

0
2

0,2
e�i�H12[s]t/~

NY

j=3

h
⇢","
0,j

e�i�H12j [s]t/~ + ⇢#,#
0,j

ei�H12j [s]t/~
i
,

(B.31)
having defined

�H12[s] := 2J12(s1s2 � s01s
0
2) � ~⌫1

2
(s1 � s01) � ~⌫2

2
(s2 � s02),

�H12j [s] := 2J1j(s1 � s01) + 2J2j(s2 � s02).
(B.32)

From the knowledge of ⇢ij , the concurrence follows by using Eq. (5.5).

Notice that an analogue procedure gives the k-site reduced density matrix with O(k2N)
steps. Thus, this computation allows to access few-sites observables for large system sizes.

B.3. Concurrence in a random state

Let us consider a system of N spin-1/2. A random, uniformly distributed state is | i = U | 0i,
U being a Haar-random unitary, and | 0i a reference state. Equivalently, a random state is
| i =

P
{s} A{s} |{s}i, with the coefficients A{s} being uniformly distributed over CPM�1,

with M = 2N .

The concurrence of two spins, say sites 1 and 2 wlog., follows from the knowledge of the
square roots of the eigenvalues of the matrix R12 = ⇢12(�y ⌦ �y)⇢⇤12(�y ⌦ �y). The exact
determination of such eigenvalues has evaded our analytical attempts, but we can give an
heuristic argument that captures the scaling with N . Consider, instead of the square roots of
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the eigenvalues of R12, directly the eigenvalues �a of ⇢12. Classical works [297, 298] give us
their probability density function:

p(�1,�2,�3,�4) / �
⇣
1 �

4X

a=1

�a
⌘ 4Y

a=1

�M�4

a

Y

a<b

(�a � �b)
2 (B.33)

with the constraint �a > 0, a = 1, . . . , 4. With hindsight, we perform the change of variables

⇢12 ⌘ 1

4
Id +

1

4
p

M � 4
⌧12, �a ⌘ 1

4
+

µa

4
p

M � 4
, (B.34)

so that

p(µ1, µ2, µ3, µ4) / �
⇣ 4X
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✓
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µap
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(µa � µb)
2

/ �
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µa

⌘
exp

"
�1

2

X

a

µ2

a + O

✓
1p

M � 4

◆#Y

a<b

(µa � µb)
2. (B.35)

We see that, at this order, we can let µa range from �1 to +1 if N is big enough.

At this point we note that not only the eigenvalues of ⌧12, but every entry of the matrix is
at most of order 1 because of our rescaling. This enables us to expand

p
R12 =


1

16
Id +

1

16
p

M � 4

⇥
⌧12 + (�y ⌦ �y)⌧

⇤
12(�y ⌦ �y)

⇤
+ O

✓
1

M

◆�1/2

=
1

4
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1

8
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M � 4

⇥
⌧12 + (�y ⌦ �y)⌧

⇤
12(�y ⌦ �y)

⇤
+ O

✓
1

M

◆
(B.36)

The matrix 1

2
[⌧12 + (�y ⌦ �y)⌧⇤12(�y ⌦ �y)] is traceless and very roughly its eigenvalues will

have a joint probability density function very similar to that of ⌧12. For this reason, we can
approximate the average concurrence with

hCi ⇡
Z

d~µ p(~µ) max

⇢
0,

2µ1 � 1

4
p

M � 4
� 1

2

�
, (B.37)

where we have used the �-function constraint and called µ1 the largest eigenvalue. Integrat-
ing only on µ1, and forgetting the presence of µ2, µ3, µ4 (otherwise the integration becomes
rather cumbersome), we find

hCi ⇡ e�(M+
p
M�4)/2

2
p

2⇡(M � 4)3/2
, (B.38)

from which
log2

�
� loghCi

�
⇡ log(a) + bN + · · · (B.39)

with a = 1/2 and b = 1. As can be seen from Figure B.1, this scaling is correct, but the
numerical factor a is different.

B.4. Integration of the GKSL master equation

The density matrix of the system can be parametrized as

⇢(t) =
X

µ1···µN

Cµ1···µN
(t)Sµ1

1
⌦ · · · ⌦ SµN

N
, (B.40)
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Figure B.1.: The average concurrence in a random state follows the scaling hCi ⇠ e�a2
bN .

The dots show the concurrence averaged over 107 randomly generated states,
and over every couple of spins for each state. A linear fit is shown for compar-
ison: b = 1.009(6), but a = 0.127(3), differing from a = 1/2 found analytically
(Eq. (B.39)).

where Sµi

i
2 {Idi, S

+

i
, S�

i
, Sz

i
}. Writing explicitly the GKSL equation (see Eqs. (6.15) and

(6.23) in the main text), we get

@t⇢(t) = � i
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i +
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+ S�
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� 4⇢(t)

⇤
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i
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⇥
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⇢(t)S�
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i } � 2⇢(t)
⇤
. (B.41)

In the absence of the interactions (i.e. ignoring the term
P

ij
JijSz

i
Sz

j
), the evolution can

be easily computed, and the density matrix evolves as

@tCµ1···µN
=
hX

i

�µi

i

i
Cµ1···µN

+
X

i

4Yi �
µizCµ1···0i···µN

, (B.42)

where the �µiz are Kronecker deltas, the �µi

i
’s are given by

�zi = �4Yi(1 + 2fT ), �±
i

=
1

2
�zi ± i⌫i, (B.43)

and �0
i

= 0. When interactions are suppressed, the TLSs evolve independently one from the
other and any factorized initial state will remain such at all times. One has

⇢(t) =
NO

i=1

X

µi

Pµi

i
(t)Sµi

i
=) Cµ1···µN

(t) = Pµ1
1

(t) · · · PµN

N
(t) 8t. (B.44)
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The interactions among TLSs make the evolution more complicated. Computing the com-
mutator
h
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i S
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i
S
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i S
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, (B.45)

and defining

⇣µµ
0
:= �µ0�µ

0
3 + �µ3�µ

0
0, µµ

0
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+ � 2�µ��µ

0�, (B.46)

one arrives at
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The full evolution of the density matrix is given by

@tCµ1···µN
=
X

i

�µi

i
Cµ1···µN

+
X

i

4Yi �
µizCµ1···0i···µN

� 2i
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0
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0
i⇣µjµ

0
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⌘
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i
···µ0

j
···µN

. (B.48)

This is a systems of 4N partial differential equations. We solved it by matrix exponentiation,
using the library for linear algebra with sparse matrices contained in SciPy(Python).
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C.1. Estimate of the dipole tensor

As discussed in Section 7.1, we consider the dipole tensor Dab

i
as the difference between two

random dipoles, one for each well of the TLS, according to Ref. [41]:

Di =
1

2

�
D(l)

i
� D(r)

i

�
. (C.1)

Both D(l)

i
and D(r)

i
are assumed to be vector dipoles oriented in two random directions:

D(l,r)

i
= � [O(l,r)]T

0

@
0 0 0
0 0 0
0 0 1

1

AO(l,r) (C.2)

where O(l),O(r) are two Haar-random orthogonal matrices, and � is a dimensionless number
that needs to be fixed to match experiments and simulations. In Ref. [41], it has been argued
that

[�Di]max ⇡ 8

✓
2⇡2

9

◆2/3
⇢v2

q3
D

(C.3)

where qD = kBTD

~v , and v is the average over polarizations of the sound velocity (see Eq. (B.9)).
For Di given in Eqs. (C.1)–(C.2), we find that

[Di]max = max

✓
Tr(D2

i
)

3

◆1/2

=
�p
6
. (C.4)

Therefore, fixing � from Table 6.1, we obtain: �SiO2 ⇡ 8.46, �BK7 ⇡ 9.34, and �PMMA ⇡ 6.42.
Fig. C.1 shows the resulting distributions of the dipole contractions Tr(D2

i
)/�2, given by

Tr(D2

i ) :=
X

ab

Dab

i Dba

i , (C.5)

and Dij/�2, given by (same definition given in Eq. (B.27))

Dij := v2
X

abcd


�2Cac

0
�bd

v2
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+ (Cabcd

0 + 2Cabcd

2 )

✓
1

v2
T

� 1

v2
L

◆�
Dab

i Dcd

j . (C.6)

with Cab

0
, Cabcd

0
, Cabcd

2
defined in Eqs. (B.18)–(B.20).
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Figure C.1.: (a) The distribution of x := Tr(D2

i
)/�2 is given by p(x) = (1 � 2x)�1/2 (see also

Ref. [41]). (b) Distribution of Dij/�2, where Dij is defined in Eq. (C.6). The
distribution is sampled using Dab

i
of the form specified in Eqs. (C.1)-(C.2).

C.2. Computation of the Debye-Waller factor

In this Appendix, we compute explicitly the Debye-Waller factor of Eq. (7.17):

�2
i

2
= �2

X
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1
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=
�2

⇢~
X

abcd

X

s

Z
d3q

(2⇡)3
1

!3
qs

Dab

i Dcd

i eabqse
cd

qs coth

✓
�~!qs

2

◆
. (C.8)

We can compute the angular average as in Eq. (B.10):

1

4⇡

X

abcd

X

s

Z
d⌦ eabqse

cd

qsD
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i Dcd

i =
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i ) q2, (C.9)

and we find
�2
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�2Tr(D2

i
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6⇡2⇢~v3

Z
qD
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dq q coth

✓
�~vq

2

◆
, (C.10)

where qD is the Debye wavevector which can be expressed in terms of a real-space UV cutoff
a: qD =

3
p

6⇡2/a. The previous is a well-known, condensed-matter-textbook integral, that is
usually considered in the two regimes of low and high temperature [299]. In the end, one
finds

�2

i

2
=
�2q2

D
Tr(D2

i
)

6⇡2⇢~v3
F
✓
�~vqD

2

◆
(C.11)

with

F(w) :=

Z
1

0

d⇣ ⇣ coth(⇣w) = � 1

2w2
Li2(e

�2w) +
1

w
log(1 � e�2w) +

⇡2

12w2
+

1

2
. (C.12)

A more manageable expression can be found by using

F(w) =

(
1/w + O(w) w ⌧ 1

1/2 + O(e�w) w � 1
(C.13)

106



Ph.D. thesis by C. Artiaco C.3 Fermi’s golden rule computation

Considering that w = �~vqD/2 = TD/2T , we note that high and low temperature regimes
are defined with respect to TD/2. Thus, in the limit of small temperature T � TD/2, we can
approximate F ⇡ 1/2, and find

�2
i

2
=
�2q2

D
Tr(D2

i
)

12⇡2⇢~v3
+ O

�
e�TD/2T

�
. (C.14)

We can rewrite the previous expression as

�2

i

2
=

E2

D

4E2
i

+ O
�
e�TD/2T

�
. (C.15)

where ED := kBTD is the Debye energy and Ei is given in Eq. (7.20), that we reproduce here
for readability:

Ei :=

s
3⇡2~3⇢v5

�2Tr(D2

i
)
. (C.16)

The value of �2
i

depends on the random variable Tr(D2
i
), whose distribution is shown in

Fig. C.1a.

C.3. Fermi’s golden rule computation

In this Section, by means of the Fermi’s golden rule we estimate the decay rate of a TLS into
phonons, namely Yi of Eq. (7.30), reproduced here for readability:

Yi =
X

f
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���hf, #| �i�
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i
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†
i e�i�i,0b̃i |0, "i

���
2

⇢f (2✏i)

Let us separate the contributions Y (n)

i
coming from final states with a fixed number n of

phonons. Thus, we sum over all the n-phonon configurations allowed by energy conserva-
tion:
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where n! comes from the fact that the n bosons in the final state are indistinguishable. The
matrix element is instead formed by two contributions:
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for the TLSs, and
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for the phonons. Notice that we are not considering the case in which qk = qk0 for some
k 6= k0, since it is subleading. Hence, we find
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We now exponentiate the �-function via Laplace transform:

eY (n)

i
(�) =

Z 1

0

d✏ e�2�✏ Y (n)

i
(2✏). (C.21)

In this way, all the q integrals are factorized, and similar to ones already computed for the
Debye-Waller factor in Appendix C.2. We find
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having employed an exponential cutoff ⌘ ⇡ 1/qD. Thus, we find that the Laplace-transformed
rate is1
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The inverse Laplace transform is
Z
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Hence,
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Summing all the n-phonon contributions, one has the series
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where pFq is a generalized hypergeometric function, with asymptotics
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Therefore, the final result is
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with Ei given in Eq. (C.16).

1Notice that V n is cancelled by the 1/V n coming from the product of |⌅iqksk |
2 in Eq. (C.20).

108



D. Appendix to Chapter 8

D.1. Energy of the initial states

In the l-bit model in Eq. (8.1), given a disorder realization {Jij}, we sample the local mag-
netization configurations {mi} = {h�z

i
i} with probability / e�E/T , T being a fictitious tem-

perature to be gradually lowered. Since mi 2 [�1, 1] are continuous variables, the annealing
procedure has easy access to states down to the edge of the spectrum. From {mi}, we fix
the coefficients in Eq. (8.2) as Ai =

p
(1 + mi)/2, and Bi = ei�i

p
(1 � mi)/2. This choice

guarantees that h 0|Hl-bit| 0i = E, i.e., the quantum initial state has an energy expectation
value equal to the desired one.

For what concerns our choice of the energy scale, namely

" :=
E

N
q

h2/3 + 2J2
0
/(e2/ � 1)

(D.1)

(see also the the main text), the reasoning goes as follows. The Hamiltonian in Eq. (8.1)
can be interpreted as a classical spin glass, if one substitutes �z

i
�! si = ±1. Then, one

can compute the (annealed) density of states of the model, finding that with high probability
the ground state is at E = �N

q
h2/4 + 4J2

0
/(e2/ � 1) (see also Ref. [294]). Changing the

spins to continuous variables �z
i

�! mi 2 [�1, 1] will just modify the prefactors of h2 and
J2
0
/(e2/ � 1), without changing much the scale. For this reason, we have chosen to put in

Eq. (D.1) simply the sum of the variances of hi and
P

j
Jij . The ground state will not be

exactly at " = �1, but close to it.

D.2. Analytical estimates of local time scales

Let us consider the l-bit model. Throughout this study, we were concerned in computing
the “one-site concurrence” Ci(t) =

P
j
Cij(t), Eq. (8.3), to see how it decayed in time.

The concurrence is a complicated non-linear function of the two-site reduced density ma-
trix ⇢i,j , therefore it is really hard to make analytical predictions for it. However, one can
hope to get a rough estimate of its behavior by considering instead the correlation function
h�x

i
(t)�x

j
(t)i. This type of correlation functions were already considered in previous works

(see e.g. Ref. [233]), and are easy to access. Choosing i = 0 and j = 1 without loss of
generality, it explicitly reads

⌦
�x0 (t)�x1 (t)

↵
=

X

s0,s1=±1

(⇢0,0)s0,�s0(⇢0,1)s1,�s1e
�2ih1s0t�2ih2s1t+8iJ01s0s1t

⇥
Y

j 6=0,1


e�4iJ0js0t�4iJ1js1t cos2
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2

+ e4iJ0js0t+4iJ1js1t sin2
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2

�
, (D.2)
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where ⇢0,0 and ⇢0,1 are the initial density matrices of sites 0 and 1, and ✓j is the azimuthal
angle on the Bloch sphere for the initial state of site j. We take a further step, and also
simplify ✓j ⌘ ⇡/2, i.e. we choose a particular initial condition at infinite temperature. As
a result, we find that h�x

0
(t)�x

1
(t)i is an oscillating function, modulated by envelopes of the

form
A±(t) :=

Y

j 6=0,1

��cos
�
4J0jt ± 4J1jt

��� . (D.3)

It is clear that, if we want to understand the leading-order behaviour in time, we can reduce
to study the simpler function

A(t) :=
Y

j 6=0

��cos
�
J0jt

��� (D.4)

where, we recall, J0j are Gaussian variables of zero average and standard deviation wj :=
J0e�|j|/.

A first consequence of Eq. (D.4) is that A(1) ' 2�L/2 at infinite time, for finite chains.
This is related also to the final value of the concurrence, exponentially small in the system
size, as discussed in the main text.

Then, one can estimate the typical value of A(t) by means of typ[A(t)] = exp ln A(t) (one
needs to average the logarithm of A because, with hindsight, there will be a power-law tail).
Since

ln A(t) =
X

j

Z
dJ0j

e�J
2
0j/2w

2
j

q
2⇡w2

j

ln
�� cos(J0jt)

��, (D.5)

we just need to compute the integral
Z
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Now, we can proceed by approximating
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which implies
X

j

⇢X
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�
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with N(t) given by

N(t) = #{j | w2

j t2 > 1} =

(
2 ln

�
J0t
�

t > 1/J0

0 t < 1/J0.
(D.12)
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Finally, we find

typ[A(t)] =

(�
J0t
�� ln 4

t > 1/J0

1 t < 1/J0.
(D.13)

Substituting this typical value in the definition of ⌧ , Eq. (8.4), we get

typ[⌧ ] = J�1

0
exp

0

BB@

Z 1

0

dt typ[A(t)] ln(J0t)
Z 1

0

dt typ[A(t)]

1

CCA (D.14)

= (eJ0)
�1 exp

⇢
1

 ln 4 � 1

�
. (D.15)

D.3. Finite size and finite disorder e↵ects

In view of the strong finite-size effects (see Fig. 8.1a in the main text), let us first consider
the probability distribution function (pdf) of ⌧i. In Fig. D.1 we show the distribution of
the local relaxation times of the concurrence, computed within the XXZ model. The tail of
the distribution is cut away according to the following procedure. We observe that in some
instances the nearest-neighbor concurrence Cii+1(t) becomes numerically indistinguishable
from 0 at a time t⇤, and then stays equal to 0 definitively. We perform an evolution lasting
only a finite time tfin, so for the finite size we consider there will be many sites and realizations
with t⇤ > tfin. This is the reason why the full distributions in Figs. D.1 and 8.1a show such
a huge peak at large times: it is formed by the contributions of Cii+1(t) which have not
yet vanished on the finite-time window tfin of our evolution, for the finite system size we
consider. In order to get rid of this peak, we choose a certain truncation time ttr  tfin, and
select only the sites and the realizations for which t⇤ < ttr. As we can see in Fig. D.1 the huge
peak disappears and there is a large-time tail which depends on the chosen value of ttr. The
small-time structure is, on the opposite, quite independent of the truncation, so we expect
that it has a physical meaning. There is a peak around log10 ⌧ ' �1, which resembles the
one appearing in the l-bit distributions; however, another peak is present around log10 ⌧ ' 1.
The two-peak structure has no equal in the l-bit model results; we argue that this might be
due to the n-body interactions with n � 3 missing in the l-bit model.

Fig. D.2a shows the pdf’s of log10 (⌧i), obtained within the l-bit model for different values
of L, at  = 1, " = 0. We see that, when L  20, the probability distribution presents a
peak at ⌧i = O(tfin), where tfin is the final time used in the numerical simulations for the time
evolution. This is the same effect observed in Fig. 8.1a. In particular, we see that the shape
of the pdf’s at L = 10, 15, 20 strongly resembles the behavior observed in the XXZ model,
confirming that those results are strongly affected by finite-size effects. In Fig. D.2b–D.2c we
reproduce the pdf’s at L = 16, " = 0, and different values of  an tfin. In the presence of
finite-size effects we do not observe the decay of the pdf that is found in larger system sizes.
We observe instead a peak in the distribution at ⌧i = tfin.

As anticipated in the main text, the correlation function G⌧ (r) defined in Eq. (8.5) is a self-
averaging quantity, as depicted in Fig. D.3. It is indeed only slightly sensitive to finite-size
effects (see Fig. D.3a), and to disorder fluctuations (see Fig. D.3b).
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(a)

(b)

(c)

Figure D.1.: Results for the XXZ model. We show the pdf’s of log10 ⌧i, truncated as described
in the text. The simulations were performed with a chain of length L = 16,
final time tfin = 1000, and disorder strength W = 9 (panel (a)), W = 15 (panel
(b)), W = 25 (panel (c)). We compare the truncated distributions with the
corresponding full distribution. Data from at least 8000 disorder realizations.
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(a)

(b)

(c)

Figure D.2.: Pdf’s of log10 (⌧i), obtained within the l-bit model. (a) Results for  = 1, " = 0,
and different values of L. We see that, when the system size is too small, the
pdf’s present a spurious peak at large values of ⌧i. Indeed, entanglement cannot
spread over many sites, and the concurrence of some strongly interacting couples
remains finite even at infinite times (Ci(1) = O(2�L)). We collected data from
20 initial states for, at least, 300 disorder realizations. (b) Results for L = 16,
" = 0, and different values of . Data collected from 21000 disorder realizations.
(c) Results for L = 16,  = 1, " = 0, and different values of the final time of the
time evolution, tfin. Data collected from 21000 disorder realizations.
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(a) (b)

Figure D.3.: G⌧ (r) defined in the main text, Eq. (8.5). Results for the l-bit model (8.1) for:
(a)  = 1, " = 0, and various system sizes L, averaged over D = 300 disorder
realizations and 20 initial states; (b)  = 1, " = 0, L = 140, averaged over a
different number of disorder realizations D, and 20 initial states. We see that
G⌧ (r) converges quickly to its thermodynamic value (panel (a)), and is almost
independent on the number of disorder realizations (panel (b)).
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[42] J. Jäckle, “On the ultrasonic attenuation in glasses at low temperatures,” Z. Phys.,
vol. 257, no. 3, p. 212, 1972. DOI: 10.1007/BF01401204.

[43] R. B. Stephens, “Low-temperature specific heat and thermal conductivity of noncrys-
talline dielectric solids,” Phys. Rev. B, vol. 8, no. 6, p. 2896, 1973. DOI: 10.1103/
PhysRevB.8.2896.
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[275] D. Chruściński and S. Pascazio, “A brief history of the GKLS equation,” arXiv:1710.05993,
2017. DOI: 10.1142/S1230161217400017.

[276] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E. A. Demler, and
M. D. Lukin, “Many-body localization in dipolar systems,” Phys. Rev. Lett., vol. 113,
no. 24, p. 243 002, 2014. DOI: 10.1103/PhysRevLett.113.243002.

131

https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1002/andp.201600181
https://doi.org/10.1002/andp.201600181
https://doi.org/10.1103/PhysRevB.98.020202
https://doi.org/10.1016/j.physrep.2020.03.003
https://doi.org/10.1016/j.physrep.2020.03.003
https://doi.org/10.1103/PhysRevB.102.064304
https://doi.org/10.1103/PhysRevB.103.214205
https://doi.org/10.1038/s41567-020-01149-0
https://doi.org/10.1103/PhysRevB.69.100201
https://doi.org/10.1007/BF01320540
https://doi.org/10.1016/S0079-6417(08)60015-3
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1063/1.5115323
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1142/S1230161217400017
https://doi.org/10.1103/PhysRevLett.113.243002


Bibliography Ph.D. thesis by C. Artiaco

[277] A. L. Burin, “Many-body delocalization in a strongly disordered system with long-
range interactions: Finite-size scaling,” Phys. Rev. B, vol. 91, no. 9, p. 094 202, 2015.
DOI: 10.1103/PhysRevB.91.094202.

[278] X. Deng, A. L. Burin, and I. M. Khaymovich, “Anisotropy-mediated reentrant localiza-
tion,” arXiv:2002.00013, 2020.

[279] M. Pino, “Entanglement growth in many-body localized systems with long-range in-
teractions,” Phys. Rev. B, vol. 90, no. 17, p. 174 204, 2014. DOI: 10.1103/PhysRevB.
90.174204.

[280] C. Artiaco, F. Balducci, M. Fabrizio, and A. Scardicchio, “Signatures of many-body
localization in the dynamics of two-level systems in glasses in the strong-coupling
limit,” In preparation, 2021.

[281] C. Artiaco, F. Balducci, M. Heyl, A. Russomanno, and A. Scardicchio, “Spatio-temporal
heterogeneities of entanglement in the many-body localized phase,” arXiv:2108.05594,
2021.

[282] A. Vulpiani, M. Falcioni, and P. Castiglione, Chaos and Coarse Graining in Statistical

Mechanics. Cambridge University Press, 2008.

[283] A. J. Lichtenberg and M. A. Lieberman, Regular and chaotic dynamics. Springer, 2013,
vol. 38.

[284] M. V. Berry, “Regular and irregular motion,” AIP Conf. Proc., vol. 46, no. 1, p. 16,
1978. DOI: 10.1063/1.31417.

[285] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, “Colloquium: Nonequi-
librium dynamics of closed interacting quantum systems,” Rev. Mod. Phys., vol. 83,
no. 3, p. 863, 2011. DOI: 10.1103/RevModPhys.83.863.

[286] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2010. DOI: 10.1017/CBO9780511976667.

[287] P. Facchi, G. Florio, G. Parisi, and S. Pascazio, “Maximally multipartite entangled
states,” Phys. Rev. A, vol. 77, no. 6, p. 060 304, 2008. DOI: 10.1103/PhysRevA.77.
060304.

[288] P. Facchi, G. Florio, U. Marzolino, G. Parisi, and S. Pascazio, “Multipartite entangle-
ment and frustration,” New J. Phys., vol. 12, no. 2, p. 025 015, 2010. DOI: 10.1088/
1367-2630/12/2/025015.

[289] G. De Chiara, S. Montangero, P. Calabrese, and R. Fazio, “Entanglement entropy
dynamics of Heisenberg chains,” J. Stat. Mech., vol. 2006, no. 03, P03001, 2006.
DOI: 10.1088/1742-5468/2006/03/p03001.

[290] F. Pietracaprina, G. Parisi, A. Mariano, S. Pascazio, and A. Scardicchio, “Entanglement
critical length at the many-body localization transition,” J. Stat. Mech., vol. 2017,
no. 11, p. 113 102, 2017. DOI: 10.1088/1742-5468/aa9338.

[291] J. Goold, C. Gogolin, S. R. Clark, J. Eisert, A. Scardicchio, and A. Silva, “Total corre-
lations of the diagonal ensemble herald the many-body localization transition,” Phys.

Rev. B, vol. 92, no. 18, p. 180 202, 2015. DOI: 10.1103/PhysRevB.92.180202.

[292] B. Olmos, I. Lesanovsky, and J. P. Garrahan, “Facilitated spin models of dissipative
quantum glasses,” Phys. Rev. Lett., vol. 109, no. 2, p. 020 403, 2012. DOI: 10.1103/
PhysRevLett.109.020403.

[293] Z. Lan, M. van Horssen, S. Powell, and J. P. Garrahan, “Quantum slow relaxation
and metastability due to dynamical constraints,” Phys. Rev. Lett., vol. 121, no. 4,
p. 040 603, 2018. DOI: 10.1103/PhysRevLett.121.040603.

132

https://doi.org/10.1103/PhysRevB.91.094202
https://doi.org/10.1103/PhysRevB.90.174204
https://doi.org/10.1103/PhysRevB.90.174204
https://doi.org/10.1063/1.31417
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevA.77.060304
https://doi.org/10.1103/PhysRevA.77.060304
https://doi.org/10.1088/1367-2630/12/2/025015
https://doi.org/10.1088/1367-2630/12/2/025015
https://doi.org/10.1088/1742-5468/2006/03/p03001
https://doi.org/10.1088/1742-5468/aa9338
https://doi.org/10.1103/PhysRevB.92.180202
https://doi.org/10.1103/PhysRevLett.109.020403
https://doi.org/10.1103/PhysRevLett.109.020403
https://doi.org/10.1103/PhysRevLett.121.040603


[294] B. Derrida, “Random-energy model: An exactly solvable model of disordered sys-
tems,” Phys. Rev. B, vol. 24, no. 5, p. 2613, 1981. DOI: 10.1103/PhysRevB.24.2613.

[295] F. Alet and N. Laflorencie, “Many-body localization: An introduction and selected
topics,” Compt. Rend. Phys., vol. 19, no. 6, p. 498, 2018. DOI: 10.1016/j.crhy.
2018.03.003.

[296] R. B. Sidje, “Expokit: A software package for computing matrix exponentials,” ACM

Trans. Math. Softw., vol. 24, no. 1, p. 130, 1998. DOI: 10.1145/285861.285868.

[297] S. Lloyd and H. Pagels, “Complexity as thermodynamic depth,” Ann. Phys., vol. 188,
no. 1, p. 186, 1988. DOI: 10.1016/0003-4916(88)90094-2.

[298] D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett., vol. 71, no. 9, p. 1291,
1993. DOI: 10.1103/PhysRevLett.71.1291.

[299] G. Grosso and G. Pastori Parravicini, Solid State Physics, Second Edition. Academic
Press, 2014. DOI: 10.1016/B978-0-12-385030-0.00020-7.

133

https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1145/285861.285868
https://doi.org/10.1016/0003-4916(88)90094-2
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1016/B978-0-12-385030-0.00020-7

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Summary of the thesis
	List of publications

	Thermodynamics
	Introduction to Part I
	Jamming landscape in three-dimensional hard spheres
	An iterative linear programming algorithm for jamming in hard spheres
	An exploratory study of the glassy landscape near jamming
	Sample generation and compression protocol
	Numerical results

	Conclusions and outlook

	Quantum jamming transition: Critical properties of a quantum mechanical perceptron
	Definition of the quantum perceptron model
	Derivation of the self-consistency equations
	Iterative solution of the self-consistency equations
	Numerical results
	Conclusions and outlook


	Quantum dynamics
	Introduction to Part II
	Two-level systems in glasses: The Gorini-Kossakowski-Sudarshan-Lindblad master equation
	Definition of the TLS model
	The GKSL master equation
	The GKSL master equation for TLSs
	The free TLS eigenoperators
	Coupling to phonons
	Dynamical phase diagram within the GKSL master equation

	Numerical results
	Disorder distributions of the parameters
	Initial state and dynamical observables
	Unitary evolution of the TLSs
	Full evolution of the TLSs

	Conclusions and outlook

	Two-level systems in glasses: The strong coupling limit
	Observations on the TLS model
	The polaron transformation
	Normal ordering

	Perturbation theory for the relaxation of the TLSs
	Effective dynamics of the TLSs at low temperatures
	Conclusions and outlook

	Spatio-temporal heterogeneities of entanglement in the many-body localized phase
	Definition of the model
	Definition of the spatio-temporal quantifiers of the entanglement
	Numerical results
	Conclusions and outlook

	Concluding remarks

	Appendices
	Appendix to Chapter 4
	A simple variational calculation

	Appendix to Chapter 6
	Explicit form of interactions and dissipator
	The dissipation rates
	The interaction strengths

	Two-site observables within the diagonal unitary evolution
	Concurrence in a random state
	Integration of the GKSL master equation

	Appendix to Chapter 7
	Estimate of the dipole tensor
	Computation of the Debye-Waller factor
	Fermi's golden rule computation

	Appendix to Chapter 8
	Energy of the initial states
	Analytical estimates of local time scales
	Finite size and finite disorder effects

	Bibliography


