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S1 GROWING MORPHOELASTIC RODS
Building on the theory of morphoelasticity, we propose a 3D rod model to describe elongating, slender
plant organs. We do so under the key assumption that the time-scale for mechanical equilibrium is much
shorter than any biological time-scale of the plant.
S1.1 Kinematics: Initial, virtual and current configuration

Consider an Euclidean space E3 with a fixed right-handed orthonormal basis {e1, e2, e3} and define three
different configurations of the rod:

• An initial reference configuration B0 given by a rod having axis p0(S) and material cross sections
characterized by the orthonormal directors

{
d0

1(S),d0
2(S),d0

3(S) := d0
1(S)× d0

2(S)
}

where S ∈
[0, `0] is the arc length material parameter describing the distance from the base;

• A virtual reference configuration Bv(t) defined as the unstressed realization of the rod at time t, having
axis pv(sv, t) and orthonormal directors {dv1(sv, t),d

v
2(sv, t),d

v
3(sv, t) := dv1(sv, t)× dv2(sv, t)}

where sv ∈ [0, `v(t)] is the arc length coordinate;
• A current configuration B(t) which is the actual shape of the rod at time t, taking into account

deflection from mechanical loads and boundary conditions. Such a rod is defined by the space
curve p(s, t) equipped with the triple of right-handed orthonormal directors {d1(s, t),d2(s, t),
d3(s, t) := d1(s, t)× d2(s, t)} where s ∈ [0, `(t)] is the arc length parameter.

In particular, we choose the initial reference configuration as the virtual configuration at time t = 0, namely,
`0 := `v(0) and d0

j(S) := dj(S, 0) for all S ∈ [0, `0].

Since the parameter S is a material coordinate for both the virtual and the current configuration, we
define the respective motions, namely,

sv(·, t) : [0, `0]→ [0, `v(t)] and s(·, t) : [0, `0]→ [0, `(t)] , (S1.1)

and we denote their inverse functions by the same symbol S(·, t). Moreover, in order to simplify the
notation, we use the same symbol to denote material and spatial descriptions of any given field. Therefore
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any field defined on one of the three configurations can be evaluated at each of the other ones, by means of an
implicit composition of functions. For example, given a Lagrangian (or material) field f(S, t) : [0, `0]→ R,
the associated Eulerian (or spatial) field is simply denoted by f(s, t) := f(S(s, t), t) : [0, `(t)]→ R.

In the following we use a superimposed dot to denote the material time derivatives of any spatial vector
or scalar field.

In this framework we introduce the full axial stretch as

λ(S, t) :=
∂s(S, t)

∂S
, (S1.2)

which can be decomposed in the product λ(S, t) = σ(sv(S, t), t)γ(S, t) where

σ(sv, t) :=
∂s(sv, t)

∂sv
and γ(S, t) :=

∂sv(S, t)

∂S
, (S1.3)

are the elastic stretch and the growth stretch, respectively. Then, we define the true strains

ε(S, t) := lnλ(S, t) and εv(S, t) := ln γ(S, t), (S1.4)

which will turn out to be crucial growth quantifier.

From classical rod theory (Antman, 2005), we know that there exist vector-valued functions u(s, t),
called Darboux vector, and w(s, t), called spin, such that

∂svdj = u× dj and ∂tdj = w × dj . (S1.5)

As for the components uj := u ·dj , these are referred to as flexural strains for j = 1, 2 and torsional strain
for j = 3. In a similar manner, the directors of the virtual configuration define the spontaneous Darboux
vector, u?, and the spontaneous spin, w?, i.e.,

∂svd
v
j = u? × dvj and ∂td

v
j = w? × dvj , (S1.6)

and the components u?j := u? · dj are called spontaneous strains.
S1.2 Mechanics and constitutive assumptions

Under the quasi-static assumption we impose the static equilibrium in the virtual reference configuration
at all times, such that

n′(sv, t) + f(sv, t) = 0, (S1.7a)

m′(sv, t) + p′(sv, t)× n(sv, t) + l(sv, t) = 0, (S1.7b)

where a prime denotes differentiation with respect to sv, n and m are the resultant contact force and
contact couple, whereas f and l are the body force and couple per unit virtual reference length, respectively.
Determination of the current configuration B(t) can be achieved by solving equations (S1.7) combined
with a suitable constitutive model and appropriate boundary conditions.

For plant organs, a reasonable assumption is to treat them as unshearable (d3 = ∂sp) and elastically
inextensible rods, such that σ = 1 and s = sv, and characterized by a quadratic strain-energy function
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defined by a diagonal stiffness matrix K, such that the constitutive law reads

m =
∑
j

Kj

(
uj − u?j

)
dj , (S1.8)

where Kj denotes the j-th diagonal component of K. More specifically, in this study we assume rods
of circular cross section of radius r, such that K1 = K2 = EI , where E is the Young’s modulus and
I = πr4/4 is the second moment of inertia, and K3 = µJ where J = 2I and µ = 2E(1 + ν) is the shear
modulus determined by the Poisson’s ratio ν. In passing, we notice that such a modeling assumption might
be refined by considering elliptic cross sections, which provide more accurate descriptions of some plant
organs (Paul-Victor and Rowe, 2011).

In the absence of external loads and couples, i.e., for f = 0 and l = 0, equations (S1.7) lead to n = 0 and
m = 0, in which case the visible strains coincide with the spontaneous strains of the virtual configuration,
Bv(t). Therefore, in this special case we recover the kinematic model recently proposed by Porat et al.
(2020).
S1.3 Subapical growth

In order to describe the primary growth of plant organs, Erickson and Sax (1956) introduced the notion
of relative elemental growth rate (REGR) or relative elongation rate (RER), which in our notation is the
material gradient of the Lagrangian velocity field vv(S, t) := ∂tsv(S, t), namely,

REGR(sv, t) := grad vv(sv, t) =
∂vv(sv, t)

∂sv
=

∂

∂sv

(
∂sv
∂t

∣∣∣∣
S(sv,t)

)
. (S1.9)

Such a quantity is related to the deformation gradient, F = γ, by means of the relationship grad vv =
ḞF−1, which explicitly reads

∂

∂sv

(
∂sv
∂t

∣∣∣∣
S(sv,t)

)
=

∂

∂t

(
∂sv
∂S

) ∣∣∣∣
S(sv,t)

· ∂S
∂sv

=

(
1

γ

∂γ

∂t

) ∣∣∣∣
S(sv,t)

, (S1.10)

thus yielding

REGR(sv, t) =

(
1

γ

∂γ

∂t

) ∣∣∣∣
S(sv,t)

=: ε̇v(sv, t), (S1.11)

where dots denote material time derivatives.

Therefore, subapical growth is prescribed by the following coupled problems,

∂sv
∂S

(S, t) = γ(S, t) with sv(0, t) = 0, (S1.12a)

1

γ(S, t)

∂γ

∂t
(S, t) = REGR(S, t) with γ(S, 0) = 1, (S1.12b)

for S ∈ [0, `0] and t ≥ 0, which can be integrated to get

sv(S, t) =

∫ S

0
e
∫ t
0 REGR(ζ,τ) dτ dζ. (S1.13)
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Following previous studies (Bastien et al., 2014; Chelakkot and Mahadevan, 2017), among the possible
choices, we consider a piecewise constant growth function, namely, REGR(S, t) = kH(S − P (t)) where
k is a positive constant, H is the Heaviside function, and P (t) := S(`v(t) − `g, t) denotes the material
point that exits the growth zone at time t. By means of equation (S1.13),

`v(t) :=sv(`0, t) =

∫ `0

0
e
∫ t
0 kH(ζ−P (τ)) dτ dζ =

∫ P (t)

0
e
∫ t
0 kH(ζ−P (τ)) dτ dζ +

∫ `0

P (t)
ekt dζ

=sv(P (t), t) + [`0 − P (t)] ekt = `v(t)− `g + [`0 − P (t)] ekt, (S1.14)

whence
P (t) = `0 − `ge−kt, (S1.15)

whose inverse is

t?(S) =
1

k
ln

(
`g

`0 − S

)
for S ≥ `0 − `g, (S1.16)

that is the instant of time at which the cell initially located at S stops elongating. We notice that
lim
S→`0

t?(S) = ∞, namely, the subapical region is never going to stop growing. By combining

equations (S1.15)-(S1.16) with equation (S1.13), we arrive at

sv(S, t) = [1− H (S − (`0 − `g))]S

+ H (S − (`0 − `g))
{

H(t− t?(S)) [max {`0, `g}+ `gkmin {t?(S), t?(S)− t?(0)} − `g]

+ [1− H(t− t?(S))]
[
−(`0 − S)ekt + [1− H(t− t?(0))]`0e

kt

+ H(t− t?(0)) [max {`0, `g}+ `gkmin {t, t− t?(0)}]
]}

, (S1.17)

whence

`v(t) := sv(`0, t) =

{
`0e

kt if t ≤ t?(0),

max {`0, `g}+ `gk (t−max {0, t?(0)}) if t > t?(0).
(S1.18)

Finally, equation (S1.17) can be rewritten in the following compact form

sv(S, t) =


S if S ≤ `0 − `g,
`v(t

?(S))− `g if S > `0 − `g and t ≥ t?(S),

`v(t)− (`0 − S)ekt if S > `0 − `g and t < t?(S),

(S1.19)

which is shown in Fig. 2 of the main text.
S1.4 Differential growth and evolution laws

The shape of growing plant roots and shoots evolves and adapts by responding to a variety of stimuli.
The main morphing mechanism consists in a spatially nonhomogeneous growth rate of the cross section,
called differential growth. In this section we determine the relationship between differential growth and
strain rates.
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First of all, we use equation (S1.11) to extend the notion of relative elemental growth rate to any point
lying on the circular cross section sv of the virtual configuration at time t. We parameterize the rod by
means of the spatial coordinates (x, y) in the local basis {dv1(sv, t),d

v
2(sv, t)}, namely,

pv(sv, t;x, y) := pv(sv, t) + xdv1(sv, t) + y dv2(sv, t). (S1.20)

Then the length of the material fiber passing through point (x, y) of the cross section sv and extending
from the rod’s base to that point, can be written as

`v(sv, t;x, y) :=

∫ sv

0
(∂svpv(ζ, t;x, y) · ∂svpv(ζ, t;x, y))

1
2 dζ

=

∫ sv

0

{
[1 + u?1y − u?2x]2 + (x2 + y2)u?3

2
}1

2
dζ. (S1.21)

Equation (S1.21) follows by using the kinematic relationships ∂svpv = dv3 and ∂svdvi = u?×dvi ∀ i, where
u? =

∑
j u

?
jd

v
j is the spontaneous Darboux vector. Then the growth stretch at (x, y) is given by

γ(sv, t;x, y) :=
∂`v(sv, t;x, y)

∂S

∣∣∣∣
S=S(sv,t)

=
∂`v(sv, t;x, y)

∂sv

∂sv
∂S

∣∣∣∣
S=S(sv,t)

=γ(sv, t)
{

[1 + u?1y − u?2x]2 +
(
x2 + y2

)
u?3

2
}1

2
∣∣∣∣
(sv,t)

, (S1.22)

so that the true strain rate reads

ε̇v(sv, t;x, y) =
γ̇

γ
(sv, t;x, y) = ε̇v(sv, t) +

[
(1 + u?1y − u?2x) (u̇?1y − u̇?2x) + u?3u̇

?
3

(
x2 + y2

)]
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
. (S1.23)

By differentiating expression (S1.23) with respect to x and y, we get

∂xε̇v(sv, t;x, y) =
[−u̇?2 − (u?1u̇

?
2 + u?2u̇

?
1) y + 2 (u?2u̇

?
2 + u?3u̇

?
3)x]

[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2
)]

[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
]2

−

[
(1 + u?1y − u?2x) (u̇?1y − u̇?2x) + u?3u̇

?
3

(
x2 + y2

)] [
−2u?2 (1 + u?1y − u?2x) + 2u?3

2x
]

[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
]2 ,

(S1.24)

and

∂yε̇v(sv, t;x, y) =
[u̇?1 − (u?1u̇

?
2 + u?2u̇

?
1)x+ 2 (u?1u̇

?
1 + u?3u̇

?
3) y]

[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2
)]

[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
]2
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−

[
(1 + u?1y − u?2x) (u̇?1y − u̇?2x) + u?3u̇

?
3

(
x2 + y2

)] [
2u?1 (1 + u?1y − u?2x) + 2u?3

2y
]

[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
]2 ,

(S1.25)

respectively. Therefore, by Taylor expanding (S1.23) about the cross section center (0, 0), we arrive at

ε̇v(sv, t;x, y) = ε̇v(sv, t) + δv(sv, t) · (xdv1(sv, t) + y dv2(sv, t)) + o(
√
x2 + y2), (S1.26)

where x and y are the coordinates of the point in the local basis {dv1,dv2}, and

δv(sv, t) :=∇ε̇v(sv, t; 0, 0) = u̇?1(sv, t)d
v
2(sv, t)− u̇?2(sv, t)d

v
1(sv, t) (S1.27)

is the growth gradient on the virtual cross section sv at time t. Hence the corresponding growth gradient in
the current configuration is given by

δ(s, t) = u̇?1(s, t)d2(s, t)− u̇?2(s, t)d1(s, t), (S1.28)

which is orthogonal to the axis of bending, see Fig. S1A.

Remark S1.1. Prescribing the growth gradient δv := ∇ε̇v(sv, t; 0, 0) is equivalent to the approaches taken
in previous studies (Bastien et al., 2014; Bastien and Meroz, 2016; Porat et al., 2020), which involve
a notion of differential growth DG(sv, t;ϑ) introduced as a means to compare strains at diametrically
opposite sides of the circular cross section. Indeed, by passing to the polar coordinates (ρ, ϑ), such that
(x, y) = (ρ cosϑ, ρ sinϑ), equation (S1.23) reads

ε̇v(sv, t; ρ, ϑ) = ε̇v(sv, t) +

[
(1 + u?1ρ sinϑ− u?2ρ cosϑ) (u̇?1ρ sinϑ− u̇?2ρ cosϑ) + u?3u̇

?
3ρ

2
]

(1 + u?1ρ sinϑ− u?2ρ cosϑ)2 + u?3
2ρ2

, (S1.29)

and then, the differential growth can be defined as

DG(sv, t;ϑ) :=
ε̇v(sv, t; r, ϑ)− ε̇v(sv, t; r, ϑ+ π)

ε̇v(sv, t; r, ϑ) + ε̇v(sv, t; r, ϑ+ π)
(S1.30)

=
(ȧ− ḃ) (A+ (b− a)B)− cċB

ε̇v(sv, t) (A2 −B2) + (ȧ− ḃ) ((a− b)A−B) + cċ
, (S1.31)

or

DG(sv, t;ϑ) :=
ε̇v(sv, t; r, ϑ)− ε̇v(sv, t; r, ϑ+ π)

2ε̇v(sv, t)
=

(ȧ− ḃ) (A+ (b− a)B)− cċB
ε̇v(sv, t) (A2 −B2)

, (S1.32)

where a := u?1r sinϑ, b := u?2r cosϑ, c := u?3r, A := 1 + (a− b)2 + c2 and B := 2(a− b). In both cases,
by assuming that ru?j � 1, the differential growth DG can be approximated as

DG(sv, t;ϑ) ' r

ε̇v
(u̇?1 sinϑ− u̇?2 cosϑ) =

r

ε̇v
(u̇?1d

v
2 − u̇?2dv1) · a(sv, t;ϑ), (S1.33)
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where a(sv, t;ϑ) := cosϑdv1(sv, t) + sinϑdv2(sv, t). Therefore, by comparing expressions (S1.26)
and (S1.33), we deduce that prescribing the differential growth DG(sv, t;ϑ) for all ϑ ∈ [0, 2π) is equivalent
to prescribe the growth gradient δv := ∇ε̇v(sv, t; 0, 0), as introduced by means of equation (S1.27).

Equation (S1.28) reveals the connection between differential growth and spontaneous strain rates. Indeed
when the growth rate of the cross section is affine, or the organ radius is small enough to justify a
linearization, the prescription of the growth gradient δ results in the evolution laws for the spontaneous
flexural strains u?1 and u?2. We observe that the contribution of the torsional strain u?3 to the growth gradient
is negligible. Nevertheless, it could play a crucial role in other growth mechanisms, such as that observed
in twining plants.

Figure S1. (A) Level curves of an affine strain rate having gradient δ, on the cross section (s, t); the axis
perpendicular to δ is the one about which bending occurs as due to differential growth. (B) Time evolution
of the material cross section. R(s; τ, t) is the rotation mapping dj(s, τ) into dj(s, t), whereas k1(s, τ ; t)
denotes the contribution to the growth gradient at time t due to a stimulus sensed at time τ .

In the presence of n different stimuli, we assume a weighted average of their respective growth gradients
defined on the current cross section. In other terms, the overall growth gradient for a circular cross section
of radius r is determined by

δ =
n∑
j=1

δj with δj(s, t) :=
ε̇v(s, t)

r

∫ t

−∞
µj(s, τ ; t)kj1(s, τ ; t) dτ, (S1.34)

where µj(s, τ ; t)kj1(s, τ ; t) is the vector on the current cross section that defines the contribution to the
growth gradient from the j-th stimulus sensed at time τ . We project equation (S1.34) on the local basis
{d1,d2} to get

u̇?1(s, t) =
ε̇v(s, t)

r

n∑
j=1

∫ t

−∞
µj(s, τ ; t)kj1(s, τ ; τ) · d2(s, τ) dτ, (S1.35a)

u̇?2(s, t) =− ε̇v(s, t)

r

n∑
j=1

∫ t

−∞
µj(s, τ ; t)kj1(s, τ ; τ) · d1(s, τ) dτ, (S1.35b)
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where we have used the fact that the contribution to growth sensed at a certain time τ is fixed in the frame of
the directors, namely, k1(s, τ ; t) = R(s; τ, t)k1(s, τ ; τ) where R(s; τ, t) is the rotation that maps dj(s, τ)
into dj(s, t), as illustrated in Fig. S1B.

In this study we use equations (S1.35) to describe a response of a material cross section to a stimulus
sensed at the very same location. However, they might be adapted to the case of nonlocal responses, as it
occurs for gravitropic reactions in plant roots (Nakamura et al., 2019). Moreover, these expressions allow to
include memory and delay effects, as done in recent studies (Chauvet et al., 2019; Meroz et al., 2019), and
the instantaneous models are recovered as special cases by choosing the Dirac delta as response function.

In the following we discuss the plant response to different stimuli: Endogenous prescription (internal
oscillators), reorientation to align the organ axis with a given vector (gravitropism), and straightening
mechanism (proprioception).
S1.4.1 Endogenous cues

Inspired by the Darwinian concept of internal oscillator, we implement an endogenous driver for the
differential growth mechanism. The simplest approach is to assign a spatially uniform time-harmonic
oscillator, such that

δe(s, t) =
α

r
ε̇v(s, t) [cos (2πt/τe)d1(s, t) + sin (2πt/τe)d2(s, t)] , (S1.36)

where τe is the period of endogenous oscillations and α is a dimensionless sensitivity constant.
S1.4.2 Reorientation under directional cues (Gravitropism)

Any vector stimulus s sensed in the current configuration, towards (or away from) which the plant organ
aligns via differential growth (e.g., gravitropism and phototropism for a far light source), contributes to
growth gradient via its projection on the plane (d1,d2), such that

ks1 =
s− (d3 · s)d3

||s− (d3 · s)d3||
. (S1.37)

Notice that the direction of null differential growth, about which the organ bends, is given by ks2 := d3×ks1.
Then the growth gradient associated with the stimulus s can be written as

δs(s, t) :=
ε̇v(s, t)

r

∫ t

−∞
µs(s, τ ; t)ks1(s, τ ; t) dτ (S1.38)

for an appropriate choice of the response function µs.

When applying equation (S1.37) to gravitropism, we have two choices for the stimulus s, which are
illustrated in Fig. S2. One possibility is to approximate the stimulus with the vector of gravitational
acceleration g, thus neglecting the microscopic description of how gravity is sensed by plant organs.
On the contrary, a more accurate choice is to consider the stimulus as perceived by the gravity sensing
apparatus. In particular, it is widely accepted that plant organs sense gravity through the sedimentation of
starch-filled plastids, called statoliths, into specialized cells, called statocytes, which are found along the
shoot growing zone and in the root caps (Chauvet et al., 2019; Nakamura et al., 2019). In this case, we can
assume the stimulus s to be given by the average outer normal to the free surface of the pile of statoliths,
as shown in Fig. S2C. More specifically, by extending the approach taken by Chauvet et al. (2019) to the
three-dimensional case, we can model the statoliths free surface as a plane with normal h, whose dynamics
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is a viscous relaxation to −g. As shown in Section S2, the time evolution of h is governed by∑
j

ḣjdj =
1

τa
h× (h× g) , (S1.39)

where τa is the characteristic time for the statoliths avalanche dynamics and hj := h · dj . As elsewhere, a
superimposed dot denotes the material time derivative.

Figure S2. (A-B) Illustration of the orthonormal bases exploited to define the gravitropic responses. (A)
The basis

{
kg1,k

g
2,k

g
3

}
is constructed by defining kg1 as the unit vector lying on the stem cross section

and having the most negative e2-component, and setting kg3 := d3 and kg2 := kg3 × kg1. (B) The basis{
kh1 ,k

h
2 ,k

h
3

}
is constructed in a similar manner by defining the unit vector lying on the stem cross section

having the most negative h-component, kh1 , and considering kh3 := d3 and kh2 := kh3 × kh1 . (C) Sketch of a
single statocyte cell where h is the average outer normal to the free surface of the pile of statoliths.

S1.4.3 Proprioception
A number of experimental studies have pointed out the existence of an independent straightening

mechanism, often referred to as proprioception, autotropism or autostraightening, which is triggered by
bending of the organ (Okamoto et al., 2015). Following Bastien et al. (2014) and Bastien and Meroz
(2016), we assume that such a straightening response is driven by the geometric curvature of the organ, i.e.,
κ = σ−1(u2

1 + u2
2)1/2, thus producing a growth gradient parallel to the visible normal vector ν := κ−1∂st,

where t = ∂sp is the tangent to the rod axis. In other terms, we prescribe

δp(s, t) := ε̇v(s, t)

∫ t

−∞
µp(s, τ ; t)ν dτ (S1.40)

for an appropriate response function µp that is proportional to κ.
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S2 THE STATOLITHS AVALANCHE DYNAMICS
If compared to the purely phenomenological model of Sachs’ sine law (von Sachs, 1882), plant gravitropic
responses can be refined by including the dynamics of the statoliths avalanche in plant cells. This has been
demonstrated to be the microscopic mechanism through which plant shoots and roots perceive the direction
of gravity (Nakamura et al., 2019; Chauvet et al., 2019). We assume the free surface of the statoliths pile
in a statocyte cell to be planar and the normal given by the unit vector h(s, t), as depicted in Fig. S3. Since
our reasoning holds for any fixed cross section coordinate s, in the following we omit the dependence on
such a parameter.

Figure S3. Statoliths avalanche dynamics in a statocyte. The motion of the free surface of piled statoliths can
be decomposed into two rotations as in (S2.1): ĥ(t) = Ra(t)h(0) is the orientation as described by an observer
co-moving with the directors and h(t) = Rd(t)ĥ(t) is the orientation as seen by an external observer. Here the unit
vector h is parameterized by two angles defined with respect to the directors: θh is the angle between h and d1 and
αh is the angle between (I− d1 ⊗ d1)h and d2.

Fig. S3 shows the decomposition of the motion of h into two dynamics, namely,

h(t) = Rd(t)Ra(t)h(0), (S2.1)

where, for any t, Ra(t) and Rd(t) are rotations. Here, Ra(t) can be thought of as the viscous relaxation
of the statoliths pile relative to the statocyte so that ĥ(t) := Ra(t)h(0) is the dynamics as described by
an observer co-moving with the directors, while Rd(t) is the rotation of the material frame, that is, of the
statocyte itself. We prescribe the dynamics of ĥ as a viscous relaxation towards Rd(t)

Te2, i.e.,

˙̂
h(t) = − 1

τa

(
Rd(t)

Te2 × ĥ(t)
)
× ĥ(t), (S2.2)

where τa is the characteristic time scale for the statoliths avalanche dynamics. By taking the time derivative
of equation (S2.1) and making use of equation (S2.2), we arrive at

ḣ(t) =
(
Ṙd(t)Ra(t) + Rd(t)Ṙa(t)

)
h(0)

= Ṙd(t)Rd(t)
Th(t) + Rd(t)Ṙa(t)Ra(t)

T ĥ(t)

10
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= w(t)× h(t) + Rd(t)

[
− 1

τa

(
Rd(t)

Te2 × ĥ(t)
)
×Rd(t)

Th(t)

]
=

(
w(t) +

1

τa
h(t)× e2

)
× h(t), (S2.3)

where w(t) is the spin, namely, the axial vector associated with Rd(t). In other terms,

ḣ(t)−w(t)× h(t) =
1

τa
(h(t)× e2)× h(t), (S2.4)

and, by using the kinematic relationship ḋj = w × dj , we get∑
j

ḣj(t)dj(t) =
1

τa
(h(t)× e2)× h(t), (S2.5)

where hj := h · dj . In terms of components, equation (S2.5) reads

ḣj(t) =
1

τa
[dj2(t)− (h(t) · e2)(h(t) · dj(t))]

=
1

τa

[
dj2(t)− hj(t)

∑
i

hi(t)di2(t)

]
∀j, (S2.6)

where dij := di · ej for all i, j = 1, 2, 3. However, we notice that the components of h are not independent
one from the other, due to the constraint on the norm. i.e., ||h|| = 1. Then, from the practical point of view,
it is convenient to parameterize h with two angles defined with respect to a certain frame of reference. One
possibility is to consider the angles that h forms with d1 and d2, as shown in Fig. S3. In this case, θh is the
angle between h and d1, while αh is the angle between (I− d1 ⊗ d1)h and d2, so that

h = cos θhd1 + sin θh cosαhd2 + sin θh sinαhd3. (S2.7)

Then

ḣ1 = −θ̇h sin θh, (S2.8a)

ḣ2 = θ̇h cos θh cosαh − α̇h sin θh sinαh, (S2.8b)

ḣ3 = θ̇h cos θh sinαh + α̇h sin θh cosαh, (S2.8c)

whence

cos θh

(
cosαhḣ2 + sinαhḣ3

)
− sin θhḣ1 = θ̇h, (S2.9a)

cosαhḣ3 − sinαhḣ2 = α̇h sin θh. (S2.9b)

Therefore, for sin θh 6= 0, equations (S2.9) provide the evolution laws (S2.5) in terms of the angles θh and
αh.
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S3 STABILITY ANALYSES
In this section we report the stability analyses of the model discussed in Section 3 of the main text. We start
by summarizing the governing equations for the model of growing plant shoots. Then, upon introducing
their representation in terms of Euler angles, we proceed to study the reduced model described in Section 2.2
of the main text, by gradually exploring the effects of gravitropic and proprioceptive responses.
S3.1 Summary of the model for growing plant shoots

In Section 2.1 of the main text we introduced a rod model for the study of growing plant shoots, whose
governing equations read

∂s

∂S
(S, t) =λ(S, t), (S3.1a)

1

λ(S, t)

∂λ

∂t
(S, t) =

{
0 if s(S, t) ≤ `(t)− `g,
1
τg

if s(S, t) > `(t)− `g,
(S3.1b)

m′(s, t) =− q (`(t)− s) e2 × d3(s, t), (S3.1c)

m =
∑
j

Kj

(
uj − u?j

)
dj , (S3.1d)

E(s, t) =E1 − (E1 − E0) e
− 1
τ`

max{0,t−t?(S(s,t))}
, (S3.1e)∑

j

ḣj(s, t)dj(s, t) =
1

τa
(h(s, t)× e2)× h(s, t), (S3.1f)

u̇?1(s, t) =α
ε̇(s, t)

r
cos(2πt/τe)− β

ε̇(s, t)

rτm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)h2(s, τ) dτ

− η ε̇(s, t)
τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(s, τ) dτ, (S3.1g)

u̇?2(s, t) =α
ε̇(s, t)

r
sin(2πt/τe) + β

ε̇(s, t)

rτm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)h1(s, τ) dτ

− η ε̇(s, t)
τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(s, τ) dτ, (S3.1h)

where all variables and parameters are defined as in the main text, primes denote differentiation with respect
to the parameter s and dots denote material time derivatives. We recall that equations (S3.1a)-(S3.1b) define
the subapical growth law, equation (S3.1c) follows from the balance of linear and angular momentum
where m is the resultant contact couple given by the constitutive law of (S3.1d). Equation (S3.1e) is the
lignification law, equation (S3.1f) governs the statoliths avalanche dynamics, and equations (S3.1g)-(S3.1h)
are the evolution laws for the spontaneous strains.
S3.2 Representation in terms of Euler angles

The nine components of the directors {dj} are not independent, due to the orthonormality constraints.
Then it is possible to represent the directors in terms of three independent angles, the Euler angles, so that
the orthonormality constraints are automatically fulfilled. Although this representation introduces a polar
singularity leading to an ambiguity of the representation, this can be successfully adopted in our setting,
upon a careful choice of the notation for the Euler angles.
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d1

e1

e′′1

e2

e3 = e′3

e′1

d2

d3 = e′′3

e′2 = e′′2

ϕ

ψ

χ

ϕ

ψ

χ

Figure S4. The relationship of the directors {dj} to the fixed basis {ej} via the Euler angles χ, ψ and ϕ.

We describe the rotation mapping the fixed basis {ej} to the basis of directors {dj} by means of the
following three successive rotations:

1. A rotation by an angle ϕ about the e3-axis;
2. A rotation by an angle ψ about the rotated e2-axis, denoted by e′2;
3. A rotation by an angle χ about the rotated e3-axis, denoted by e′′3 .

Such a decomposition is illustrated in Fig. S4 and it is well defined if ψ 6= 0, otherwise the Euler angles are
not uniquely determined by the directors, since only the sum χ+ ϕ can be established. On the other hand,
the directors are always uniquely determined by the three angles as

d1 = (cosχ cosψ cosϕ− sinχ sinϕ) e1 + (cosχ cosψ sinϕ+ sinχ cosϕ) e2 − cosχ sinψ e3,
(S3.2a)

d2 =− (sinχ cosψ cosϕ+ cosχ sinϕ) e1 − (sinχ cosψ sinϕ− cosχ cosϕ) e2 + sinχ sinψ e3,
(S3.2b)

d3 = sinψ cosϕ e1 + sinψ sinϕ e2 + cosψ e3. (S3.2c)

Consequently, the strains can be written as

u1 =
∂ψ

∂s
sinχ−∂ϕ

∂s
cosχ sinψ, u2 =

∂ψ

∂s
cosχ+

∂ϕ

∂s
sinχ sinψ and u3 =

∂χ

∂s
+
∂ϕ

∂s
cosψ. (S3.3)

Moreover, denoting by mj the components of the resultant moment with respect to the fixed basis {ej},
the constitutive assumption (9) in the main text leads to

m1 =EI {cosψ cosϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

− sinϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ cosϕ, (S3.4a)
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m2 =EI {cosψ sinϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

+ cosϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ sinϕ, (S3.4b)

m3 =− EI sinψ [(u1 − u?1) cosχ− (u2 − u?2) sinχ] + µJ (u3 − u?3) cosψ. (S3.4c)

S3.3 Analysis of the reduced model for short times
Under additional hypotheses on the times scales stated in Section 2.2 of the main text, we reduce (S3.1)

to get a model suitable for a theoretical study on circumnutations. By focusing on short time periods
compared to τg and τ`, we assume a shoot of constant length ` with constant Young’s modulus E, whose
evolution is governed by

m′(s, t) =− q (`− s) e2 × d3(s, t), (S3.5a)

u̇?1(s, t) =
α

rτg
cos

(
2πt

τe

)
− β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)d22(s, τ) dτ

− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(s, τ) dτ, (S3.5b)

u̇?2(s, t) =
α

rτg
sin

(
2πt

τe

)
+

β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)d12(s, τ) dτ

− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(s, τ) dτ, (S3.5c)

where dij := di · ej . Then, in terms of the Euler angles introduced in Section S3.2, we get

m′1(s, t) =− q (`− s) cosψ(s, t), (S3.6a)

m′2(s, t) =0, (S3.6b)

m′3(s, t) =q (`− s) sinψ(s, t) cosϕ(s, t), (S3.6c)

u̇?1(s, t) =
α

rτg
cos

(
2πt

τe

)
+

β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) (sinχ cosψ sinϕ− cosχ cosϕ)
∣∣
(s,τ)

dτ

− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ) [ψ′ sinχ− ϕ′ cosχ sinψ
] ∣∣

(s,τ)
dτ, (S3.6d)

u̇?2(s, t) =
α

rτg
sin

(
2πt

τe

)
+

β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) (cosχ cosψ sinϕ+ sinχ cosϕ)
∣∣
(s,τ)

dτ

− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ) [ψ′ cosχ+ ϕ′ sinχ sinψ
] ∣∣

(s,τ)
dτ, (S3.6e)

to be solved for appropriate boundary conditions and initial data.

In the following we explore the contribution of gravitropic and proprioceptive responses.
S3.3.1 Graviceptive model: α = η = 0 and β > 0

Let us consider the rod model (S3.6) for α = η = 0. We notice that the planar case studied in (Agostinelli
et al., 2020) is recovered by confining the rod to the (e1, e2)-plane (i.e., ψ(s, t) = π/2 and χ(s, t) = 0 for
all s and t), and writing the governing equations in terms of the angle θ := π/2− ϕ. In this case the model
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suffers an instability and exhibits the onset of a limit cycle as the shoot’s length exceeds a critical value.
Guided by this result, we extend the analysis to the three-dimensional case.

The steady state solution to problem (S3.6) is given by

χ ≡ 0, ϕ ≡ π

2
, ψ ≡ π

2
, u?1 ≡ 0, u?2 ≡ 0, (S3.7)

which corresponds to the straight position along e2, the axis of gravity. By assuming sufficient regularity,
we take the time derivative of equations (S3.6d) and (S3.6e), and we linearize the problem about the
equilibrium solution (S3.7), arriving at

EI
(
ψ′(s, t)− u?2(s, t)

)′
=− q (`− s)

(
ψ(s, t)− π

2

)
, (S3.8a)

χ′′(s, t) = 0, (S3.8b)

EI
(
ϕ′(s, t) + u?1(s, t)

)′
=− q (`− s) ,

(
ϕ(s, t)− π

2

)
, (S3.8c)

ü?1(s, t) =− 1

τm
u̇?1(s, t) +

β

rτgτm

(
ϕ(s, t− τr)−

π

2

)
, (S3.8d)

ü?2(s, t) =− 1

τm
u̇?2(s, t)− β

rτgτm

(
ψ(s, t− τr)−

π

2

)
. (S3.8e)

This system of equations is supplemented by the following linearized boundary and initial conditions,

ψ(0, t) =
π

2
, ψ′(`, t)− u?2(`, t) = 0, (S3.9a)

χ(0, t) = 0, χ′(`, t) = 0, (S3.9b)

ϕ(0, t) =
π

2
, ϕ′(`, t) + u?1(`, t) = 0, (S3.9c)

holding ∀ t > 0 as the basal end is clamped and the apical end is torque free, and

ϕ(s, t) = ϕ0(s, t), ψ(s, t) = ψ0(s, t), (S3.10a)

u?1(s, 0) = u?1,0(s), u?2(s, 0) = u?2,0(s), (S3.10b)

prescribing respectively the past history of the angular coordinates and the initial datum for the evolution
of the spontaneous strains for all s ∈ [0, `].

As for the angle χ, equations (S3.8b) and (S3.9b) yield χ(s, t) = 0 for all s and t. Moreover, by assuming
sufficient regularity, we can combine the time-derivatives of (S3.8a) and (S3.8c) with the space-derivatives
of (S3.8e) and (S3.8d) respectively, so that we get

ψ̈′′(s, t) +
1

τm
ψ̇′′(s, t) +

q(`− s)
K1

(
ψ̈(s, t) +

1

τm
ψ̇(s, t)

)
+

β

rτmτg
ψ′(s, t− τr) = 0, (S3.11a)

ϕ̈′′(s, t) +
1

τm
ϕ̇′′(s, t) +

q(`− s)
K1

(
ϕ̈(s, t) +

1

τm
ϕ̇(s, t)

)
+

β

rτmτg
ϕ′(s, t− τr) = 0, (S3.11b)
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along with the boundary conditions (S3.9a)1, (S3.9c)1 and

ψ̈′(`, t) +
1

τm
ψ̇′(`, t) +

β

rτmτg

(
ψ(`, t− τr)−

π

2

)
= 0, (S3.12a)

ϕ̈′(`, t) +
1

τm
ϕ̇′(`, t) +

β

rτmτg

(
ϕ(`, t− τr)−

π

2

)
= 0, (S3.12b)

holding ∀ t > 0 and resulting from time differentiation of (S3.9a)2 and (S3.9c)2.

We notice that equations (S3.11) are decoupled and, up to a shift by π/2, they are equivalent to the
linearization of the planar model about the equilibrium of θ ≡ 0 (Agostinelli et al., 2020). Therefore we
can rely on the analysis carried out for the planar model to conclude that the trivial equilibrium becomes
unstable when the same critical length is attained.
S3.3.2 Microgravity: α = β = 0, η > 0, and q = 0

For β = 0 and q = 0, virtual and current configuration coincide (i.e., u?j = uj for all j), so that
equations (S3.5) reduce to

u̇j(s, t) = − η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)uj(s, τ) dτ, (S3.13)

for j = 1, 2. By assuming sufficient regularity, a time differentiation yields

üj(s, t) +
1

τ̄m
u̇j(s, t) +

η

rτg τ̄m
uj(s, t− τ̄r) = 0, (S3.14)

for j = 1, 2, which can be restated in dimensionless form as

¨̂uj(ŝ, t̂) +
τ̄r
τ̄m
u̇j(ŝ, t̂) +

η τ̄2
r

τ̄mτg
ûj(ŝ, t̂− 1) = 0, (S3.15)

where ûj(ŝ, t̂) := uj(ŝ`, t̂τr) for j = 1, 2, and dots and primes denote differentiation with respect to
t̂ := t/τ̄r and ŝ := s/`, respectively.

Since equation (S3.15) does not contain space derivatives, we can rely on the theory of retarded functional
differential equations (RFDEs) by considering the space variable as a parameter. Indeed, given the problem

ü(s, t) + au̇(s, t) + bu(s, t− 1) = 0, s ∈ [0, `0] , t > 1, (S3.16a)

u(s, t) = u0(s, t), s ∈ [0, `0] , t ∈ [0, 1] , (S3.16b)

with a > 0 and an initial datum u0 that is regular enough, say u0 ∈ C∞, we can consider the solution
u(s, t) := us(t) where us(t) is the unique solution to

v̈(t) + av̇(t) + bv(t− 1) = 0, t > 1, (S3.17a)

v(t) = u0(s, t), t ∈ [0, 1] , (S3.17b)

for any fixed s ∈ [0, `0]. Then the regularity of u(s, t) with respect to s follows from the results on the
continuous dependence of solutions to RFDEs on initial data (Hale and Lunel, 1993). Moreover, we can
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exploit the stability analysis of the trivial equilibrium of (S3.17) to learn something about the solution
u(s, t). To this aim, we restate the following lemma that holds for the characteristic equation associated
with (S3.17) (Agostinelli et al., 2020; Somolinos, 1978).

LEMMA S3.1. Consider the equation (
ω2 + aω

)
eω + b = 0, (S3.18)

for b > 0, and let ξb be the unique solution of ξ2 = b cos(ξ) in (0, π/2) and ab := sin(ξb)b/ξb. Then the
following holds for equation (S3.18):

1. All roots have negative real parts if and only if a > ab;

2. For a = ab, ±iξb is the only pair of simple imaginary roots. In particular, no other root is an integer
multiple of iξb;

3. There exists an ε > 0 and a root ω(a) that is continuously differentiable in (ab − ε, ab + ε) s.t.
ω(ab) = iξb and Re (ω′(ab)) < 0;

4. For each a < ab, there exist precisely two roots ω with Re (ω) > 0 and Im (ω) ∈ (−π, π).

In addition to this, we can show the following.

LEMMA S3.2. Consider equation (S3.18) for b > 0 and let ba := (a+ 2ω̃) eω̃ where ω̃ := (
√

4 + a2 −
a− 2)/2. Then for b < ba there exist precisely two real roots, which coincide for b = ba, whereas there
exist no real roots for b > ba.

PROOF. Let us define y(ω) := ω2 + aω and z(ω) := −be−ω. By means of the graphical method, one
can show that there are at most two real intersections between the graphs of y and z. If there is a single
distinct real root ω̃, then it is such that

y(ω̃) = z(ω̃) and
∂y

∂ω
(ω̃) =

∂z

∂ω
(ω̃), (S3.19)

namely, ω̃2 + aω̃ + be−ω̃ = 0 and 2ω̃ + a = be−ω̃. Therefore ω̃ needs to solve ω̃2 + (2 + a)ω̃ + a = 0,
whose solutions are

ω± =
−2− a±

√
4 + a2

2
. (S3.20)

Since 2ω̃ + a = be−ω̃ > 0, we conclude that the only admissible root is given by ω̃ = ω+ and that
b = (a+ 2ω̃)eω̃ =: ba.

Finally we can prove the following facts.

THEOREM S3.3. Consider problem (S3.16) and the solution u(s, t) := us(t) where us solves (S3.17)
for any s ∈ [0, `0]. Moreover, let ab be defined as in Lemma S3.1. Then,

1. if a > ab, the trivial equilibrium of (S3.16a) is stable and there exists δ > 0 such that ||u0||∞ < δ

implies that, for any fixed s ∈ [0, `0], |u(s, t)| → 0 as t→∞;

2. if a < ab, the trivial equilibrium of (S3.16a) is unstable.

Moreover, for a = ab, equation (S3.16a) admits nontrivial periodic solutions.
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PROOF. Assume that a > ab. Then, by means of Lemma S3.1, for any ε > 0, there exists δε > 0
such that sup |u0(s, t)| < δε implies |us(t)| < ε for all t ≥ 0. Moreover, there exists δ > 0 such that
sup |u0(s, t)| < δ implies that |us(t)| → 0 as t → ∞. It follows that if we take u0(s, t) such that
sup |u0(s, t)| < min {δε, δ}, then |us(t)| < ε for all (s, t) ∈ [0, `0]× [0,∞) and, for any fixed s ∈ [0, `0],
|u(s, t)| → 0 as t→∞.

On the contrary, if a < ab, there exists ε > 0 such that for any δ > 0, we find an initial datum ū(t) for
which sup |ū(t)| < δ and the corresponding solution of (S3.17a) verifies |u(t)| > ε for some t ≥ 0. Then
the statement follows by observing that u(s, t) := u(t) solves (S3.16) for the space-independent initial
datum u0(s, t) := ū(t).

Finally, by applying the results above to equation (S3.15), we conclude that it admits nontrivial periodic
solutions when

τg = τ?g := ητ̄r
sin(ξ?)

ξ?
, (S3.21)

where ξ? is the unique solution of ξ tan ξ = τ̄r/τ̄m in (0, π/2). Moreover, the characteristic equation
associated with (S3.15) has a pair of conjugate complex roots for

τg < τ̃g :=
ητ̄2
r e
−ω0

2ω0τ̄m + τ̄r
, (S3.22)

where ω0 :=
(
1 + τ̄2

r /(4τ̄
2
m)
)1/2 − (1 + τ̄r/(2τ̄m)), and their real part crosses zero at τ?g , as shown in

Fig. S5.

Figure S5. Real (solid lines) and imaginary (dashed lines) part of two roots of the characteristic equation ω̂2 +
(τ̄r/τ̄m) ω̂ + [η τ̄2r /(τ̄mτg)] e−ω̂ = 0, as functions of τg ∈ [0, 50] h and for η = 20, τ̄r = τ̄m = 12 min, r =
0.5 × 10−3 m. We distinguish three regions corresponding to different dynamical responses: (i) an exponential
decay for τg > τ̃g ≈ 24.83 h (light blue), (ii) a damped oscillation (orange), and (iii) an increasing oscillation for
τg < τ?g ≈ 3.52 h (green).

Then the trivial straight position is stable for τg > τ?g and unstable for τg < τ?g . Therefore, when the
growth velocity is sufficiently fast, our model exhibits oscillations about the equilibrium configuration
also under microgravity conditions, regardless of the shoot length. However, we notice that for the present
choice of model parameters, the critical value τ?g is one order of magnitude smaller than the observed
growth times, cf. Table 1 in the main text.
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S3.3.3 Proprio-graviceptive model: α = 0 and β, η > 0

As regards the proprio-graviceptive model corresponding to α = 0 and β, η > 0, we first obtain planar
steady-state solutions, which might be useful to estimate the ratio between gravitropic and proprioceptive
sensitivities from experimental observations, and then we carry out the stability analysis as done for the
graviceptive case.

We first explore the steady-state solutions of the nonlinear model. By confining the rod model (S3.6) to
the plane (e1, e2), and assuming sufficient regularity, we get

K1

[
θ′(s, t)− u?1(s, t)

]′
=− q(`− s) sin θ(s, t), (S3.23a)

r τgu̇
?
1(s, t) =− βwg(s, t)− r η wp(s, t), (S3.23b)

τmẇg(s, t) =− wg(s, t) + sin θ(s, t− τr), (S3.23c)

τ̄mẇp(s, t) =− wp(s, t) + θ′(s, t− τr), (S3.23d)

as the governing equations, where

wg :=
1

τm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θ(s, τ) dτ and wp :=
1

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)θ′(s, τ) dτ.

(S3.24)
Then a steady-state solution θ(s) of (S3.23) needs to solve

θ̂′(ŝ) = −β
η

`

r
sin θ̂(ŝ), (S3.25)

for ŝ ∈ [0, 1], combined with the boundary condition θ̂(0) = θ0. Here, θ̂(ŝ) := θ(ŝ`) and primes denote
differentiation with respect to ŝ := s/`. Then an equilibrium of (S3.23) is given by

θ̂(ŝ) = 2 acot
[
cot
(
θ0
2

)
e
β
η
`
r ŝ
]
, (S3.26)

for ŝ ∈ [0, 1]. Therefore, when converging to (S3.26), the final shape is completely determined by the ratio
between the two sensitivities, β/η, while the whole dynamics towards the steady state depends also on the
characteristic times, i.e., τg, τm, τr, τ̄m and τ̄r. Since gravitropic and proprioceptive responses generate
planar dynamics for initially straight plant shoots, the planar steady-state solution (S3.26) can be used to
determine the dimensionless parameter β`/(ηr) by fitting the experimental shapes attained in a time period
that is short with respect to growth, as already done for the instantaneous version of this model without
gravity loads (Bastien et al., 2014).

We proceed by carrying out a stability analysis similar to the graviceptive case. We linearize (S3.6) about
the equilibrium (S3.7), thus arriving at

ψ′′(s, t) =u?2
′(s, t)− q

EI
(`− s)

(
ψ(s, t)− π

2

)
, (S3.27a)

χ′′(s, t) =0, (S3.27b)

ϕ′′(s, t) =− u?1
′(s, t)− q

EI
(`− s)

(
ϕ(s, t)− π

2

)
, (S3.27c)
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u̇?1(s, t) =
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)
(
ϕ(s, τ)− π

2

)
dτ +

η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ϕ′(s, τ) dτ,

(S3.27d)

u̇?2(s, t) =− β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)
(
ψ(s, τ)− π

2

)
dτ − η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ψ′(s, τ) dτ.

(S3.27e)

By assuming sufficient regularity, we get

ψ̇′′(s, t) +
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)ψ′(s, τ) dτ

+
η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ψ′′(s, τ) dτ +
q

EI
(`− s) ψ̇(s, t) = 0, (S3.28a)

ϕ̇′′(s, t) +
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)ϕ′(s, τ) dτ

+
η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ϕ′′(s, τ) dτ +
q

EI
(`− s) ϕ̇(s, t) = 0, (S3.28b)

where equations (S3.27d) and (S3.27e) have been combined with the time derivatives of equations (S3.27a)
and (S3.27c), respectively, while solving equation (S3.27b) with boundary conditions (S3.9b). We notice
that equations (S3.28) along with the boundary conditions (S3.9a)1, (S3.9c)1 and (S3.12), form two
equivalent decoupled problems. Moreover, up to a shift of π/2, such a problem is precisely the linearization
of the planar model (S3.23) about the trivial solution θ ≡ 0, which can be restated in dimensionless form as

˙̂
θ′′(ŝ, t̂) + β

`

r

τ2
s

τmτg

∫ t̂− τrτs

−∞
e−

τs
τm (t̂− τrτs−τ)θ̂′(ŝ, τ) dτ

+ η
τ2
s

τ̄mτg

∫ t̂− τ̄rτs

−∞
e−

τs
τ̄m (t̂− τ̄rτs−τ)θ̂′′(ŝ, τ) dτ +

q`3

K1
(1− ŝ) ˙̂

θ(ŝ, t̂) = 0, (S3.29)

with boundary conditions

θ̂(0, t̂) = 0, (S3.30a)

τg
τ2
s

˙̂
θ′(1, t̂) = − β

τm

`

r

∫ t̂− τrτs

−∞
e−

τs
τm (t̂− τrτs−τ)θ̂(1, τ) dτ − η

τ̄m

∫ t̂− τ̄rτs

−∞
e−

τs
τ̄m (t̂− τ̄rτs−τ)θ̂′(1, τ) dτ, (S3.30b)

for t̂ > 0, where θ̂(ŝ, t̂) := θ(ŝ`, t̂τs) for any fixed time scale τs. By seeking time-harmonic solutions of
the form θ̂(ŝ, t̂) = Θ(ŝ)eω̂t̂ with Re(ω̂) > −min {τs/τm, τs/τ̄m}, we get

aΘ′′(ŝ) + bΘ′(ŝ) + c(1− ŝ)Θ(ŝ) = 0, (S3.31)

where

a := ω̂ + η
τ2
s e
−ω̂ τ̄rτs

τg (τ̄mω̂ + τs)
, b := β

`

r

τ2
s e
−ω̂ τrτs

τg (τmω̂ + τs)
, and c := ω̂

q`3

K1
. (S3.32)
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By imposing the boundary conditions (S3.30), and neglecting the trivial case, we derive the following
characteristic equation for the dimensionless frequency ω̂, namely,

Ai(x0)
[
bBi(x1) + 2

3
√
a2cBi′(x1)

]
− Bi(x0)

[
bAi(x1) + 2

3
√
a2cAi′(x1)

]
= 0, (S3.33)

where

x0 :=
b2 − 4ac

4a
3
√
ac2

, x1 :=
b2

4a
3
√
ac2

, (S3.34)

and Ai(x), Bi(x) are the Airy functions of the first and second kind, respectively, and a prime denotes
differentiation of such functions with respect to their argument.

A B

C D

Figure S6. Real (solid lines) and imaginary (dashed lines) part of two roots of the characteristic equation (S3.33)
as functions of `/`c ∈ [0, 1] and for the model parameters introduced in the section. We distinguish three regions
corresponding to different dynamical responses: (i) an exponential decay (light blue), (ii) a damped oscillation
(orange), and (iii) an increasing oscillation (green) for ` > `?. More specifically, we get (A) `? ≈ 0.827 `c for
τ̄r = τ̄m = 12 min, (B) `? ≈ 0.896 `c for τ̄r = 1 min and τ̄m = 12 min, (C) `? ≈ 0.838 `c for τ̄r = 12 min and
τ̄m = 6 min, and (D) `? ≈ 0.883 `c for τ̄r = 6 min and τ̄m = 6 min. For comparison, the same choice of model
parameters yield a critical value of `? ≈ 0.895 `c in the gravitropic case (Agostinelli et al., 2020).
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Then we can explore the stability of the model by performing a numerical study of the roots of
equation (S3.33) for shoots of increasing length `. To this aim, we exploited the FindRoot functionality
of Mathematica v12.0.0.0. In agreement with the literature, we calibrated the model by setting β = 0.8,
τg = 20 h, τm = τr = 12 min, r = 0.5 mm, E = 107 Pa for the Young’s modulus, and ρ = 103 Kg m−3 for
the mass density. As for η, τ̄r and τ̄m, we estimated their order of magnitude by qualitatively fitting the
steady-state solution (S3.26) and the dynamics reported by Okamoto et al. (2015), and we explored values
around η = 20 and τ̄m = τ̄r = 12 min. For such a choice of model parameters, we determined the values
of the frequency ω̂ letting ` range in [0, `c]. Here, `c denotes the critical length at which an elastic rod of
bending stiffness EI subject to a distributed vertical load of magnitude q loses stability, i.e.,

`c := 3
√
α0EI/q, (S3.35)

with α0 ≈ 7.837 (Greenhill, 1881).

Fig. S6 shows the real (solid lines) and the imaginary (dashed lines) part of two roots of (S3.33). As for
the case of the gravitropic rod model (Agostinelli et al., 2020), we distinguish in the figure three regions
corresponding to different dynamical responses: (i) an exponential decay (light blue region, where roots
are real and negative), (ii) a damped oscillation (orange region, where roots are complex conjugate with
negative real part), and (iii) an increasing oscillation (green region, where roots are complex conjugate with
positive real part) for ` > `?. We remark the fact that the memory time τ̄m and the delay τ̄r influence the
value of the critical length `?: Higher times τ̄r and τ̄m imply a lower critical length. This affects the overall
effect of the proprioceptive term, which can either destabilize (Fig. S6A,C,D) or stabilize (Fig. S6B) the
system with respect to the gravitropic case (η = 0).
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S4 COMPUTATIONAL MODEL
We explored the nonlinear response of (S3.1) and (S3.5) by means of computational models implemented
in Python3 codes available at https://github.com/mathLab/MorphoelasticRod, which are based on the
FEniCS Project Version 2019.1.0 (Logg et al., 2012). In this section we describe only the numerical scheme
for the full model (S3.1), since this can be easily adapted to its reduced version (S3.5).

An effective way to implement the model is to write all equations in the reference domain B0, i.e., in
terms of the parameter S ∈ [0, `0]. Any material field can be converted into a spatial field, and vice versa.
Indeed, as shown in Section S1.3, the motion s(S, t) can be analytically determined for the growth law
given by (S3.1b), namely,

s(S, t) =


S if S ≤ `0 − `g,
`(t?(S))− `g if S > `0 − `g and t ≥ t?(S),

`(t)− (`0 − S)et/τg if S > `0 − `g and t < t?(S),

(S4.1)

where

`(t) =

{
`0e

t/τg if t ≤ t?(0),

max {`0, `g}+
`g
τg

(t−max {0, t?(0)}) if t > t?(0),
and t?(S) = τg ln

(
`g

`0 − S

)
.

(S4.2)
Moreover, its inverse is given by

S(s, t) :=


s if s ≤ `0 − `g,
`0 + [s− ` (t̄?(s, t))] e−t̄

?(s,t)/τg if s ∈ (`0 − `g, `(t)− `g] ,
`0 + [s− ` (t)] e−t/τg if s ∈ (`(t)− `g, `(t)] ,

(S4.3)

where t̄?(s, t) := t+ τg (s+ `g − `(t)) /`g.

As a first step towards the numerical formulation, we introduce some auxiliary fields representing the
delay integrals, namely,

w1,g(S, t) :=− 1

τm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θh(S, τ) cosαh(S, τ) dτ, (S4.4a)

w1,p(S, t) :=− 1

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(S, τ) dτ, (S4.4b)

w2,g(S, t) :=
1

τm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) cos θh(S, τ) dτ, (S4.4c)

w2,p(S, t) :=− 1

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(S, τ) dτ, (S4.4d)

so that such integrals may be computed from the solution of the following differential equations

dw1,g

dt
=− 1

τm
w1,g −

1

τm
sin θh(S, t− τr) cosαh(S, t− τr), (S4.5a)

dw1,p

dt
=− 1

τ̄m
w1,p −

1

τ̄m
u1(S, t− τ̄r), (S4.5b)
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dw2,g

dt
=− 1

τm
w2,g +

1

τm
cos θh(S, t− τr), (S4.5c)

dw2,p

dt
=− 1

τ̄m
w2,p −

1

τ̄m
u2(S, t− τ̄r), (S4.5d)

respectively. Then we can write the governing equations in terms of the Euler angles introduced in S3.2
and the angles describing the statoliths pile configuration as defined in S2, i.e.,

∂m1

∂S
=− q [`(t)− s(S, t)]λ cosψ, (S4.6a)

∂m2

∂S
=0, (S4.6b)

∂m3

∂S
=q [`(t)− s(S, t)]λ sinψ cosϕ, (S4.6c)

τa
dθh
dt

= cos θh [cosχ cosαh cosϕ+ (− cosψ cosαh sinχ+ sinψ sinαh) sinϕ]

− (cosϕ sinχ+ cosχ cosψ sinϕ) sin θh, (S4.6d)

τa
dαh
dt

sin θh =− cosχ cosϕ sinαh + (cosαh sinψ + cosψ sinχ sinαh) sinϕ, (S4.6e)

du?1
dt

=
1

λ

dλ

dt

[
α

r
cos

(
2πt

τe

)
+
β

r
w1,g + ηw1,p

]
, (S4.6f)

du?2
dt

=
1

λ

dλ

dt

[
α

r
sin

(
2πt

τe

)
+
β

r
w2,g + ηw2,p

]
, (S4.6g)

where λ(S, t) = ∂s(S,t)
∂S and

m1 =EI {cosψ cosϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

− sinϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ cosϕ, (S4.7a)

m2 =EI {cosψ sinϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

+ cosϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ sinϕ, (S4.7b)

m3 =− EI sinψ [(u1 − u?1) cosχ− (u2 − u?2) sinχ] + µJ (u3 − u?3) cosψ, (S4.7c)

with

u1 =
1

λ

[
∂ψ

∂S
sinχ− ∂ϕ

∂S
cosχ sinψ

]
, (S4.8a)

u2 =
1

λ

[
∂ψ

∂S
cosχ+

∂ϕ

∂S
sinχ sinψ

]
, (S4.8b)

u3 =
1

λ

[
∂χ

∂S
+
∂ϕ

∂S
cosψ

]
. (S4.8c)

The weak formulation of (S4.5)-(S4.6) is obtained by multiplying such equations by the test functions
and integrating by parts in space along the interval [0, `0] while accounting for the appropriate boundary
conditions. Following standard finite element procedures, the unknowns are discretized in space using
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linear Langrange shape functions, while for the time discretization we used the backward Euler method.
Finally, the rod axis p can be reconstructed by integrating in space the tangent that, for unshearable rods,
coincides with the director d3, i.e.,

p(S, t) = p(0, t) +

∫ S

0
λ(ζ, t)d3(ζ, t) dζ. (S4.9)
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S5 EXPERIMENTAL MATERIALS AND METHODS
Observations of three specimens of Arabidopsis thaliana (ecotype Col-0, stock N1093 from NASC) were
conducted as a proof of principle, i.e., as a qualitative check of the plausibility of our theoretical findings.

The experiments were carried out in a growth and observation chamber of size 43× 43× 40 cm, which
does not allow to actively control temperature and humidity. However, the chamber was placed in a
controlled environment and we regularly monitored temperature (23-25◦C) and relative humidity (45-60%).

The specimens of Arabidopsis thaliana were grown (individually) from seeds in square pots with
perforated bottom of size 7×7×8 cm. As for the growing medium, we used the peat based soil amendment
Optimus Universal from Sementi Dotto SDD S.p.a., which was mixed with lightweight expanded clay
aggregate. Plants were watered regularly with a solution of tap water containing a commercial fertilizer
(Vanity NPK 6-5-9 from Bayer Garden, ∼ 0.1% v/v).

Plants were grown under continuous light provided by a LED light panel (from Esbaybulbs, model
bazw0173cn) of size 31× 31 cm installed at the top of the observation chamber. This resulted in a light
intensity of about 7 W/m2 as measured at the center of the observation chamber with a spectrometer (from
Ocean Insight, model flms05233).

Figure S7. Results of the stereo imaging system calibration, as produced by the MATLAB Stereo Camera
Calibrator App.

As for data collection and processing, images were acquired by using two digital cameras, namely, two
acA4024-29uc c mount cameras from Basler, both of which were equipped with an objective m0824-mpw2
from Computar. We calibrated the stereo imaging system by exploiting the Computer Vision Toolbox
in MATLAB R2019b. After setting the two cameras, we acquired 20 image pairs of a 6 × 7 calibration
checkerboard in different positions in the scene. By means of the MATLAB Stereo Camera Calibrator App,
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we performed the calibration with 10 pictures that were selected to minimize the overall mean reprojection
error (0.3086 pixels), see Fig. S7. In view of the qualitative scope of our experiments, we opted for a
manual tracking of the plant tip on the stereo pair of images, which were acquired at a rate of 1 frame per
minute. Finally, we exploited the triangulate function of MATLAB R2019b to compute the 3D locations
corresponding to the selected matching pairs of points.

Frontiers 27



Supplementary Material

REFERENCES

Agostinelli, D., Lucantonio, A., Noselli, G., and DeSimone, A. (2020). Nutations in growing plant shoots:
The role of elastic deformations due to gravity loading. Journal of the Mechanics and Physics of Solids
136, 103702. doi:10.1016/j.jmps.2019.103702. The Davide Bigoni 60th Anniversary Issue

Antman, S. (2005). Nonlinear Problems of Elasticity (Springer-Verlag New York). doi:10.1007/
0-387-27649-1

Bastien, R., Douady, S., and Moulia, B. (2014). A unifying modeling of plant shoot gravitropism with an
explicit account of the effects of growth. Frontiers in plant science 5, 136

Bastien, R. and Meroz, Y. (2016). The kinematics of plant nutation reveals a simple relation between
curvature and the orientation of differential growth. PLoS computational biology 12, e1005238. doi:10.
1371/journal.pcbi.1005238
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