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Abstract: Molecular dynamics simulations of solids are often performed using anisotropic barostats
that allow the shape and volume of the periodic cell to change during the simulation. Most existing
schemes are based on a second-order differential equation that might lead to undesired oscillatory
behaviors and should not be used in the equilibration phase. We recently introduced stochastic cell
rescaling, a first-order stochastic barostat that can be used for both the equilibration and production
phases. Only the isotropic and semi-isotropic variants have been formulated and implemented so far.
In this paper, we develop and implement the equations of motion of the fully anisotropic variant and
test them on Lennard-Jones solids, ice, gypsum, and gold. The algorithm has a single parameter that
controls the relaxation time of the volume, results in the exponential decay of correlation functions,
and can be effectively applied to a wide range of systems.

Keywords: molecular dynamics simulations; anisotropic barostats; stochastic algorithms; stress tensor

1. Introduction

Molecular dynamics (MD) simulations are commonly used to generate trajectories at
atomistic resolution for molecular systems or materials. Typically, they take advantage of
thermostats and barostats so as to control the temperature and pressure and to generate
conformations representative of well-defined statistical ensembles [1]. Pressure is often
controlled in an isotropic manner [2], so that the shape of the simulation cell is fixed and its
volume is modified by means of a uniform scaling of the lattice vectors. This is necessary,
for instance, when simulating liquid systems or solvated molecules, which do not offer
any resistance to shear. However, when simulating solids, it is convenient to let the cell
shape change so as to allow the simulated system to relax to its optimal geometry, to
explicitly simulate phase transitions, and to enable the calculation of stress–strain curves.
The idea of performing MD simulations with flexible cells was pioneered by Parrinello and
Rahman [3,4], who introduced an extended Lagrangian formalism to propagate the nine
variables associated with the generating vectors of the periodic lattice. The cell is, thus,
provided with an inertia, and its acceleration is controlled by the difference between the
internal pressure and the external stress, resulting in a second-order differential equation
for the components of the lattice vectors. Monte Carlo algorithms can also be used to
sample cell deformations [5,6], although their application has been limited. A number
of variants of the original Parrinello–Rahman method has been published [7–12], all of
them based on a second-order differential equation. The possibility to add friction and
noise terms [13–15] or to combine MD with Monte Carlo [16] has been discussed. These
formulations, however, retained the second-order behavior of the algorithms discussed
above. An important drawback of second-order equations is that, if parameters are not
tuned properly, the volume and shape of the simulation cell might be subject to fluctuations
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that are difficult to dampen. A notable exception is the first-order Berendsen barostat [17]
in its anisotropic form, which is usually considered effective in the equilibration phase, but
does not sample any known ensemble. A common approach is, thus, to first equilibrate a
system with the Berendsen barostat and then simulate it with a second-order barostat.

In a recent paper, we introduced a first-order algorithm named stochastic cell rescaling
(SCR), which resembles the isotropic Berendsen barostat but additionally includes a stochas-
tic contribution, resulting in the correct isobaric distribution [18]. A semi-isotropic variant,
suitable for simulating constant tension systems such as membranes and interfaces, was
also developed and tested in Ref. [18]. Here, we develop the formalism for the completely
anisotropic version, where all the cell components are allowed to change and external stress
can be controlled. The isotropic and semi-isotropic variants can be seen as constrained
cases of the anisotropic scheme introduced here. The algorithm is implemented in several
MD codes (the educational MD software SimpleMD, GROMACS [19], and LAMMPS [20])
and tested on a number of systems (Lennard-Jones solids, ice, gypsum, and gold), where it
is also compared with commonly employed alternatives, namely, the Parrinello–Rahman
(PR) [3] and the Martyna–Tuckerman–Tobias–Klein (MTTK) [8,9] algorithms.

2. Materials and Methods
2.1. Anisotropic Stochastic Cell Rescaling

We considered a system composed of Nat atoms with positions {qi} and momenta
{pi}, placed in a periodic cell h. The cell matrix was defined so that its columns are the
vectors that generate the periodic lattice. Thus, the hαi element represents the α component,
with α = x, y, z, of the i-th lattice vector. The goal of the introduced algorithm is to sample
conformations from the NST ensemble:

PNST({qi, pi}, h) ∝ (det h)−2 exp
[
− 1

kBT

(
K + U + P0 det h + Uel(h)

)]
. (1)

Here, kB is the Boltzmann constant, T the temperature, K the kinetic energy of the
system that depends on {pi}, U the potential energy of the system that depends on {qi} and
h, P0 the external hydrostatic pressure, det h the volume of the unitary cell, and Uel(h) an
optional term allowing for an anisotropic external stress to be applied. The term (det h)−2

can be generalized to (det h)1−D, where D is the dimensionality of the system, which also
holds when D 6= 3 [1]. An anisotropic external stress could be included by means of the
energetic contribution Uel =

1
2 Tr(ΣG), where Tr denotes the trace, G = hTh is called the

metric tensor, and Σ = V0h−1
0 (S− P0I)(hT

0 )
−1 [4]. Here, h0 is a reference cell, V0 = det h0

its volume, I the identity matrix, and S the external stress. P0 is related to S as P0 = TrS
3 ,

and the matrix S− P0I is also referred to as deviatoric stress. A surface tension term could be
alternatively added in the form Utension = −γ0 A, where γ0 is the tension and A is the area
of the cell in the plane parallel to the interface [21]. In this case, P0 should be interpreted as
the normal pressure to the surface A.

The most general first-order stochastic differential equation for the lattice vectors
could be written in the following form:

dhαi = Aαi(h)dt + ∑
βj

Bαiβj(h)dWβj . (2)

The term Aαi(h) represents the systematic drift, whereas the term Bαiβj(h) is the
prefactor associated with each noise contribution. Note that, for a three-dimensional
system, the tensors A and B contain 9 and 81 elements, respectively. The noise term
appearing in Equation (2) should be interpreted using Itô stochastic calculus [22]. In order
to enforce Equation (1) as the equilibrium distribution for Equation (2), one should enforce
detailed balance or, equivalently, set the resulting density current to zero. This could be
performed with an arbitrary choice of the noise prefactor Bαiβj(h), provided that Aαi(h) is
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chosen accordingly. Namely, by conventionally defining a position-dependent diffusion
matrix as:

Dαiβj(h) =
1
2 ∑

γk
Bαiγk(h)Bβjγk(h) , (3)

one should have:
Aαi = ∑

βj
Dαiβj

∂

∂hβj

(
ln
(

Dαiβj PNST
))

, (4)

where the explicit dependencies of D on lattice vectors and of A and PNST on both phase-
space coordinates and lattice vectors were omitted for clarity. Aiming to reproduce a
Berendsen-like deterministic term in Equation (2), we used the following ansatz for B:

Bαiβj =

√
2βTkBT

3Vτp
δαjhβi . (5)

Here, V = det h is the volume of the cell, βT is an a priori estimate for the isothermal
compressibility of the system, and τp is the desired relaxation time for the volume. By
substituting Equation (5) in Equation (3), we could obtain D:

Dαiβj =
βTkBT
3Vτp

δαβ ∑
γ

hγihγj . (6)

By direct substitution, and assuming Uel = 0, one could obtain the following equation
of motion for the lattice vectors:

dhαi = −
βT
3τp

[
∑
β

(
P0 δαβ − Pint,αβ

)
hβi −

kBT
V

hαi

]
dt +

√
2βTkBT

3Vτp
∑
β

hβi dWαβ , (7)

or, in matrix notation:

dh = − βT
3τp

[(
P0 I− Pint

)
− kBT

V
I
]
h dt +

√
2βTkBT

3Vτp
dW h . (8)

Here, Pint is the internal pressure tensor defined as:

Pint,αβ = − kBT
V ∑

i
hβi

∂(K + U)

∂hαi
. (9)

As discussed in the next Subsection, the exact interpretation of these partial derivatives
depends on how positions and momenta are affected by the changes in the lattice vectors. In
presence of external anisotropic stress, Equation (8) had to be amended with the additional
contribution associated with the Uel term, leading to:

dh = − βT
3τp

[(
P0I− Pint

)
− kBT

V
I +

hΣhT

V

]
h dt +

√
2βTkBT

3Vτp
dW h . (10)

Equation (8) (or (10)) had to then be coupled to the propagation of the Hamilton
equations for positions and velocities, at constant cell matrix, and to a thermostat so as
to control temperature in addition to pressure. Any thermostat could be used, but one
should take into account that, if the potential energy U is invariant with respect to a rigid
translation of the coordinates and a global thermostat is used, the velocity of the center
of mass would be constrained. To make the results from a global thermostat equivalent
to those obtained with a local thermostat, one might need to add the center of mass
contribution to the internal pressure defined in Equation (9) [12,18,23]. In the current work,
we only tested our barostat in combination with a global thermostat [24] and decided
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not to include this correction so as to obtain results equivalent to those obtained with the
commonly used MTTK algorithm [8,9].

Equation (8) can be shown to be invariant with respect to linear combinations of the
lattice vectors, so that the resulting dynamics do not depend on the arbitrary choice of
lattice vectors associated with a given Bravais lattice. In addition, it can be proved that,
if the scaling is constrained to be isotropic or semi-isotropic, the scheme reduces to the
isotropic or semi-isotropic versions of the SCR scheme [18], respectively. The proofs of these
statements are sketched in Appendix A, while the full derivations were reported in Ref. [25].
Furthermore, it is possible to show that Equation (10) could be obtained from a Parrinello–
Rahman barostat augmented with friction and noise by taking the limit of infinite friction
tensor γ and null inertia W at fixed γW. As discussed in detail in Ref. [25], this derivation
brings to Equation (10) all but a correction term that is negligible in the thermodynamic
limit, originating from the absence of the factor (det h)−2 in the definition of the NST
ensemble used in the Parrinello–Rahman method. Even though the Parrinello–Rahman
method is not invariant with respect to linear combinations of the lattice vectors [7], the
resulting SCR scheme is invariant thanks to the form adopted for the tensor γW [25].

2.2. Scaled Coordinates and Internal Pressure

Whenever the lattice vectors were modified, it was convenient to act on positions and,
optionally, momenta, so as to keep them consistent with the modified cell. The internal
pressure Pint defined in Equation (9) depends on the change in the target distribution
PNST({q, p}, h) when the lattice vectors h are modified, and its calculation depended on
how positions and momenta were affected by the scaling.

Concerning positions, the standard recipe was to modify them using the same trans-
formation matrix that was used to modify the lattice vectors, that is q′i = h′h−1qi, where
h′ denotes the cell matrix after the barostat had been propagated. This is equivalent to
consider the change of the cell to be performed at constant scaled positions, si = h−1qi,
and ensured that interparticle distances were modified in a way that did not depend on the
periodic images in which the particles were located. Concerning momenta, in Ref. [18], we
considered two possible strategies: (a) scaling momenta with an inverse factor than that
used for positions and (b) leaving momenta unchanged.

The first formulation should have been properly generalized to handle the anisotropic
scaling used in this paper, where lattice vectors were multiplied by a deformation matrix
rather than by a scalar. Here, we proposed to scale the momenta as p′i =

(
h(h′)−1)Tpi,

which corresponds to performing the cell deformation at constant scaled momenta defined
as πi = hTpi. Notably, momenta were scaled using the transpose of the inverse matrix
employed for scaling the positions. If the matrix acting on the positions, h′h−1, was a
rotational matrix, it could be easily shown that positions and momenta would be identically
rotated; thus, preserving the consistency between interatomic distances and interatomic
velocities. More generally, it could be easily seen that scalar products between positions
(or distances) and velocities (or relative velocities) were preserved with these scaling
operations. Thus, for any transformation, if the relative velocity of two atoms connected by
a constrained bond was orthogonal to the constrain before the transformation, it would
also be so after the transformation. This might lead to better stability in presence of bond
constraints. The definition of the internal pressure in this formulation is Pint =

2
V (K− Ξ),

where K and Ξ are called kinetic energy tensor and virial tensor, respectively, and are defined

as Kαβ = ∑N
i=1

pα
i pβ

i
2mi

and Ξαβ = V
2 ∑i hβi

∂U
∂hαi

. The last derivative should be taken at constant
scaled coordinates and might include contributions from long-range corrections [1].

In the second formulation, where momenta were not affected by the scaling, the
internal pressure was defined as Pint = 2

V

(
NatkBT

2 I− Ξ
)

. The idea of computing the
internal pressure from the average kinetic energy rather than from the instantaneous one
was proposed first in Ref. [26]. This formulation might have advantages related to the
fact that it is less dependent on how the kinetic energy is computed [26,27]. However, it
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is expected to be less effective when coupled with constraints or rigid bodies, since the
consistency between positions and momenta would not be maintained. In addition, the
evaluation of the internal pressure in presence of constraints is more difficult [18].

Remarkably, the Berendsen barostat [17] acts on positions only but, at the same time,
estimates the internal pressure using the instantaneous kinetic energy; thus, resulting in an
artificial noise term acting on the lattice vectors that might be relevant in limiting cases [18].

2.3. Integrating the Equations of Motion

We tested two possible algorithms to integrate Equation (10) for a finite time step
∆t, namely, the simple Euler algorithm and a time-reversible one. Both the Euler and
the time-reversible algorithms could be straightforwardly applied in a multiple-time-step
fashion [28]; thus, postponing the calculation of the internal pressure by ns steps. This could
be convenient if the accumulation of the internal pressure had a relevant computational cost.

2.3.1. Euler Integrator

In the Euler algorithm, a deformation matrix was computed as:

µ = I− βT
3τp

[(
P0I− Pint

)
− kBT

V
I +

hΣhT

V

]
∆t +

√
2βTkBT∆t

3Vτp
R . (11)

Here, R is a 3× 3 matrix of standard Gaussian numbers. The cell matrix and atomic
positions were then updated as:

h′ = µh , (12)

q′i = µqi . (13)

Optionally (see Section 2.2), momenta were updated as:

p′i =
(

µ−1
)T

pi . (14)

This integrator resembles the one proposed in the original formulation of the Berend-
sen barostat [17], with the exception of the scaling of momenta (Equation (14)) and of the
noise term in Equation (11), which are not present in the Berendsen barostat. Its implemen-
tation was, thus, straightforward for any code already implementing the Berendsen scheme.
However, as discussed in Ref. [18], such an algorithm leads to unnecessary violations of
time-reversibility that are particularly relevant in the limit of large τP or small ∆t.

2.3.2. Time-Reversible Integrator

The time-reversible algorithm was implemented as follows:

1. Propagate volume for ∆t/2.
2. Propagate cell shape at constant volume.
3. Propagate volume for ∆t/2.

The first step was performed by propagating
√

V with the Euler algorithm [18] for a
time ∆t/2:

V′ =

(
√

V − βT
√

V
2τP

(
P0 −

TrPint

3
+

Tr(hΣhT)

3V
− kBT

2V

)
∆t
2

+

√
kBTβT

2τP

√
∆t
2
R
)2

, (15)

whereR is a standard Gaussian number.
The second step was performed by applying a deformation matrix computed as:

µ̃ = exp

(
Ã∆t +

√
2βTkBT∆t

3V′τp
R̃
)

, (16)
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where Ã = − βT
3τp

[(
Pint − TrPint

3

)
+ hΣhT

V − Tr(hΣhT)
3V

]
and R̃ = R− TrR

3 . The matrix ex-
ponential was computed using the Padé approximation [29]. Since the argument of the
exponential was constructed as a traceless matrix, µ̃ has exactly unit determinant, even
when computed within this approximation. Note that Equation (16) uses the internal
pressure and volumes evaluated before the volume update of Equation (15), except for the
prefactor of the noise term. Choosing a noise prefactor proportional to 1

V′ made sure that in
the limit of small ∆t or large τP, that is when the stochastic term dominates Equation (16),
the probability to generate a given deformation matrix µ̃ or its inverse would be equal;
thus, minimizing detailed balance violations.

Finally, the square root of the volume was evolved again for a time ∆t/2:

V′′ =

(
√

V′ − βT
√

V
2τP

(
P0 −

TrPint

3
+

Tr(hΣhT)

3V
− kBT

2V

)
∆t
2

+

√
kBTβT

2τP

√
∆t
2
R′
)2

, (17)

where R′ is a standard Gaussian number independently drawn from R. Note that the
combination of Equations (15) and (17) is identical to applying one of the two equations
using a twice-as-large ∆t. Since the volume is unaffected by Equation (16), its dynamics is
identical to that resulting from the reversible integrator proposed in Ref. [18]. Overall, the
lattice vectors were, thus, multiplied by a scaling matrix µ = µ̃ 3

√
V′′/V.

Both the Euler and the time-reversible algorithms were formulated here and imple-
mented in the codes by directly propagating the deformation matrix instead of the cell
matrix, since the two formulations were equivalent but the first one minimized the number
of matrix operations. Importantly, the equations of motion (Equation (10)) only depend
on the instantaneous cell matrix and not on the deformation with respect to the initial cell
matrix. Hence, different choices of the initial cell matrix are expected to lead to the same
distributions once the system is equilibrated.

Following Ref. [18], positions and momenta were evolved, concurrently, with lattice
vectors and updated at half step. In particular, if momenta were scaled with the cell,
positions and momenta were updated as:

q′i = µqi +

[(
µ−1

)T
+ µ

](
pi

2mi
∆t +

fi
4mi

∆t2
)

, (18)

p′i =
(
µ−1)Tpi +

(
µ−1)Tfi + f′i

2
∆t , (19)

where fi and f′i are the force acting on the i-th atom computed with positions {q} and {q′},
respectively. If, instead, momenta were not scaled with the cell, positions and momenta
were updated as:

q′i = µqi + (I + µ)

(
pi

2mi
∆t +

fi
4mi

∆t2
)

, (20)

p′i = pi +
fi + f′i

2
∆t . (21)

2.4. Effective Energy Drift

When using the time-reversible algorithm introduced in the previous Subsection, it
was possible to quantify violations to detailed balance by monitoring the effective energy
drift [24,30]. This drift measures the work performed by the integrator on the system [31]
and can be used to compute the acceptance in so-called Metropolized integrators [16,32]. We
recall that a larger drift does not necessarily correlate with the accuracy of the generated
ensembles, both because detailed balance is not strictly required for stationarity [33] and
because sampling of configurations might be more accurate than sampling in the full phase
space [34]. However, monitoring the effective energy drift is a convenient manner to assess
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the error introduced by a too-short relaxation time τP. Details on the effective energy drift
calculations are reported in Appendix B.

2.5. Elimination of Rotations

Both the integration schemes proposed in the previous Subsections propagate nine
variables, although only six degrees of freedom account for shape changes of the sys-
tem cell. In order to eliminate the three redundant degrees of freedom, associated with
global rotations, two possible strategies adapted from what was proposed in Ref. [8] could
be applied. The first possibility was to symmetrize the deformation matrix defined in
Equation (11) or (16), without fixing the cell matrix h to any particular shape. The second
strategy was to constrain h to be a triangular matrix. This could be achieved either by
propagating only six components of h, and fixing the other elements to zero, or by first
evolving all the nine variables and then applying a rotation to the columns of the deforma-
tion matrix, in order to impose a triangular shape. Note that this last method is equivalent
to maintaining the global rotations and co-rotating the reference frame with the system,
without affecting the target NST distribution. The last method was the one implemented
and tested within this work (see Ref. [25] for further details). Preliminary tests employing
the other strategies did not show any significant differences in the results.

2.6. Simulation Details

The anisotropic cell rescaling barostat developed in this work was tested on 4 different
systems: Lennard-Jones crystals, ice, gypsum, and gold. In this section, we reported the
details of the simulations performed for each system.

2.6.1. Lennard-Jones Crystals

We simulated two different Lennard-Jones systems. The first one, simulated with
SimpleMD, was constructed arranging Nat = 256 particles in a face-centered cubic (fcc)
lattice. Additional simulations with Nat = 500 and Nat = 1372 were performed to quantify
finite size effects. Temperature T = 1 was controlled with a stochastic velocity rescaling
thermostat [24]. The thermostat was applied at each step, whereas the barostat was tested
with different choices for the multiple-time-stepping stride ns. The estimated isothermal
compressibility, that should be provided as an input parameter, was taken from the liquid
phase at T = 1.5 and set to βT = 0.3 [18]. Interparticle interactions were cut and shifted
at a distance of 2.5. The external hydrostatic pressure was set to 1. Simulations were
run with a timestep of ∆t = 0.005 for a total of 106 steps each. Lennard-Jones units were
used everywhere.

A second Lennard-Jones system was simulated with GROMACS [19] using the param-
eters for Ar included in the GROMOS 54A7 force field [35]. Nat = 1000 atoms were placed
at random and simulated at decreasing temperatures, ranging from 100 K to 5 K, in an
annealing procedure, until a hexagonal close-packed structure with defects was obtained.
Interactions were cut at 1 nm. Production runs were then performed using the velocity
Verlet integrator and setting T = 5 K with a stochastic velocity rescaling thermostat [24].
Both the thermostat and barostat were applied every 10 steps. The isothermal compress-
ibility was set to βT = 3.53× 10−5 bar−1, as estimated on a preliminary run. A timestep
of ∆t = 2 fs was used, and the length of each simulation was 10 ns. The first 250 ps was
discarded in the analysis. The external pressure was set to 1 bar.

2.6.2. Ice

An ice Ih crystal with Nat = 3072 atoms was simulated with GROMACS [19] using
the TIP4P/Ice model [36], and LINCS was applied on the OH bonds [37]. A time step
∆t = 1 fs was employed, the length of each simulation was 4 ns, and the first 40 ps was
discarded in the analysis. The simulations were carried out using a modified velocity Verlet
integrator that was expected to be more accurate for the GROMACS implementation of the
Parrinello–Rahman barostat, where the kinetic energy was computed as the average of the
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two half-step kinetic energies. Temperature was set to 270 K and controlled with a stochastic
velocity rescaling thermostat [24]. Barostats and thermostats were applied at each step.
External pressure was set to P0 = 1 bar. The input isothermal compressibility was estimated
over a preliminary 1 ns run and set to βT = 9.49× 10−6 bar−1. Long-range electrostatics
were computed using the particle mesh Ewald method [38]. Equivalent settings were
used in LAMMPS simulations [20]. We used both GROMACS and LAMMPS to test our
anisotropic SCR implementation in both codes and to compare our algorithm with reference
pressure coupling methods, namely, the PR barostat, implemented in GROMACS, and the
MTTK barostat, implemented in LAMMPS.

2.6.3. Gypsum

A gypsum crystal with Nat = 3456 atoms was simulated with LAMMPS [20] using the
rigid ion force field developed and tested in Refs. [39,40]. A time step ∆t = 1 fs was employed
and the length of each simulation was 8 ns. Temperature was set to 270 K and controlled with
a stochastic velocity rescaling thermostat [24]. Barostats and thermostats were applied at each
step. External pressure was set to P0 = 1 bar. The input isothermal compressibility, estimated
over a preliminary 1.3 ns run, was set to βT = 2.3× 10−6 bar−1. Long-range electrostatics
were computed using the particle mesh Ewald method [38]. Both isotropic and anisotropic
versions of SCR and of MTTK were tested.

2.6.4. Gold

A gold crystal with Nat = 4000 atoms was simulated with LAMMPS [20] using an
embedded-atom model [41]. A time step ∆t = 1 fs was employed. Temperature was set to
298.15 K and controlled with a stochastic velocity rescaling thermostat [24]. Barostats and
thermostats were applied at each step. External hydrostatic pressure was set to P0 = 1 bar,
and a time-dependent deviatoric stress was added. Simulations were continued until a
crystal rupture was observed. The input isothermal compressibility was estimated over
a preliminary 0.5 ns run and was set to βT = 0.588× 10−6 bar−1. The Shinoda variant
of the MTTK algorithm, which includes a term associated with the deviatoric stress, and
anisotropic SCR were tested. Relaxation time of the barostat was set to τP = 1 ps for the
MTTK algorithm and to τP = 0.1 ps for the SCR algorithm.

3. Results
3.1. Lennard-Jones Crystal

We first tested our algorithm on an fcc Lennard-Jones crystal. Results obtained using
either the isotropic or the anisotropic implementations of the SCR and using both the
simpler Euler integrator or the time-reversible one are reported in Figure 1, as functions of
the barostat parameters τP and ns. We underline that the SimpleMD implementation tested
here is the only one supporting the time-reversible scheme discussed in Section 2.3.2. Figure 1a
shows that systematic errors in the volume were negligible for τP ' 0.5, whereas statistical
errors, that were computed using block bootstrap and depended on the relaxation time of
the volume, grew with τP. The relative error in the average volume was extremely small
in all cases. The small discrepancies between the volume distributions of the isotropic
and anisotropic systems were a consequence of the finite size of the simulated system, as
they appeared to shrink in the thermodynamic limit (see Table 1). A different scenario was
seen in Figure 1b, where the systematic error on the volume variance was significantly
dependent on the parameter τP. We noted that a τP ' 10 should have been used to make
sure fluctuations were not significantly affected. Figure 1c,d reports the dependence of
the volume average and variance on the multiple-time-stepping stride ns. It can be seen
that a too-aggressive choice of ns might significantly affect the estimated variance, and
that, for this specific system, any choice ns / 10 produced correct results. All the results
discussed here were obtained using the formulation where momenta were scaled and,
in the anisotropic case, rotations were eliminated. However, the same simulations were
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also carried out without scaling momenta and without eliminating rotations, producing
equivalent results.
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Figure 1. Volume average and fluctuations for an fcc Lennard-Jones crystal simulated with SimpleMD.
Average (a) and variance (b) of the cell volume as functions of the barostat relaxation time τP, setting
ns = 1. Average (c) and variance (d) of the cell volume as functions of the multiple-time-stepping
stride ns, setting τP = 10. Insets in panels (b,d) are used to show the large τP and low ns regimes,
respectively. TR denotes the time-reversible integrator (see Section 2.3.2).

Table 1. Differences between isotropic and anisotropic volume averages observed by simulat-
ing Lennard-Jones crystals of different sizes with SimpleMD. Nat is the number of atoms, 〈V〉a
and 〈V〉i are the averages computed in the anisotropic and isotropic ensemble, respectively, and
∆〈V〉 = 〈V〉a − 〈V〉i. Volumes were measured in Lennard-Jones units. Simulations were carried out
with τp = 1, ns = 1 and with the same parameters described in Section 2.6.1.

Nat 〈V〉i 〈V〉a ∆〈V〉 ∆〈V〉/〈V〉a

256 238.057 238.077 0.020 0.0084%
500 464.962 464.979 0.017 0.0037%

1372 1275.873 1275.881 0.008 0.0006%

Figure 2 reports the effective energy drift that could be used as a measure of detailed
balance violations. We noted that the drift became negligible at τP ' 2. Beyond this value,
its estimation was difficult due to the limited simulation length and the fact that the overall
drift could not be distinguished from the effective energy fluctuations; thus, resulting in
highly fluctuating or even negative estimates. The drift of the isotropic version followed the
same trend as in Ref. [18]; in the anisotropic case, the drift was similar but slightly larger.

We then tested a Lennard-Jones system using the community code GROMACS. Here,
we used physical units corresponding to the parametrization of Ar. Results were compa-
rable to those obtained with SimpleMD, but allowed to directly compare SCR with the
PR algorithm [3,4] and with the MTTK algorithm [8,9], as implemented in GROMACS
(Figure 3). We noted that the MTTK algorithm was only implemented in its isotropic
variant. Here, it can be seen that the averages and fluctuations for all methods were in
agreement with each other when the τP parameter was properly chosen. It is important to
remark here that there is not a direct equivalence in the choice of τP when using different
methods. On the tested range of τP, we observed that the anisotropic PR algorithm had
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problems in reproducing the correct volume fluctuations when τP / 0.2 ps. This problem
might be related to details of the GROMACS implementation of this algorithm. For large
values of τP, instead, both the MTTK and the PR algorithms displayed significant problems
in the estimated average or variance. These problems were due to the incorrect equilibration
of the system (Figure 3e,f) and the persistent oscillations of the second-order algorithms.
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Figure 2. Effective energy drift for an fcc Lennard-Jones crystal simulated with SimpleMD. Results
for both the isotropic and anisotropic versions are reported as a function of the barostat relaxation
time τP in panel (a) and as a function of the barostat stride in panel (b). TR denotes the time-reversible
integrator (see Section 2.3.2). Absolute value is reported in the figure. The drift was positive for all
the points, except for those marked with a cross, for which the drift was negative.
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Figure 3. Cont.
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Figure 3. Volume average and fluctuations for a cubic Lennard-Jones crystal simulated with GRO-
MACS. Panels (a,b) show the average volume using SCR, PR, and MTTK algorithms, in their
anisotropic and isotropic variants, as indicated. Variance of the volume is reported in panels (c,d).
Examples of non-converging volume trajectories for the PR barostat are shown in panels (e,f), for
simulations carried out with τP = 5 ps.

We reported in Figure 4 the auto-correlation functions of the volume using both SCR
and PR algorithms for four different choices of τP. This figure clearly shows the drawback
of using a second-order algorithm, which led to fluctuations in the autocorrelation function
that might be difficult to dampen. In particular, the envelope of the oscillations caused
the damping time to increase when the relaxation time was lowered from 1 ps to 0.1 ps,
suggesting the presence of an optimal value for the PR barostat that should be obtained by
trial and error. The SCR algorithm, instead, resulted in an auto-correlation function that
decayed with the time constant τp, except for corrections depending on the error associated
with the input isothermal compressibility (in this case, smaller than 6%).
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Figure 4. Autocorrelation functions of the volume for the hexagonal close-packed Lennard-Jones
crystal simulated using GROMACS. Results were obtained using both stochastic cell rescaling and
PR algorithms, in their anisotropic variants, with four different choices of the barostat parameter τP.
The dashed lines report exponentially decaying functions with time constants βT,exp

βT
τP, where βT,exp

is the isothermal compressibility computed from the simulations and βT is the input one.

The a priori knowledge on the volume autocorrelation time could be exploited to
predict the statistical error of the volume average, SE[〈V〉], by employing the well-known
relation SE[〈V〉]2 ' 2τP

T σ2
V , where T is the length of the simulation and the approximation

holds for T � τp (see Figure 5a). The input parameter τp also carried information on
the statistical errors associated with the estimate of the volume variance. Indeed, it was
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possible to show that the time series of the squared volume displacements from the average
volume has a correlation time equal to 2τp (a detailed discussion of this statement was
reported in Ref. [25]). As a consequence, the statistical error associated with the volume
variance could also be predicted accurately before performing any extensive analysis (see
Figure 5b).
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Figure 5. Relative errors on the estimates of volume average—panel (a)—and volume variance—
panel (b)—from the simulations of the Lennard-Jones crystal using GROMACS. Different values of
τP were scanned between 0.1 ps and 5 ps.

3.2. Crystal Ice Ih

Next, we tested our algorithm on a crystalline ice Ih system. We simulated this system
using both GROMACS and LAMMPS in order to test both implementations of the SCR
scheme. In addition, we tested the PR implementation included in the GROMACS code and
the MTTK implementation included in the LAMMPS code. The average and fluctuations of
the volume are reported in Figure 6a,b. The two implementations of SCR reported similar
results that also agreed with MTTK. The most striking difference was in the fluctuations
reported by the PR implementation in GROMACS, that were systematically depending on
τP in the tested range. We also reported the volume autocorrelation functions for different
values of τP in Figure 7. Similarly to Figure 4, the difference between the second-order
algorithms, where the volume oscillated, and the first-order SCR algorithm, where the
volume relaxed to its average with an exponential decay, could be appreciated.

We also computed the average values and variances of the pairwise scalar products
of the three lattice vectors. Results with all the tested schemes are reported in Figure 8.
Results were consistent when τP was large enough. A notable exception was the PR
implementation in GROMACS, that systematically underestimated fluctuations. We note
again that the problem associated with the PR algorithm might be related to the details of
its implementation in GROMACS, and not necessarily to the original PR algorithm.
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Figure 6. Results for crystal ice Ih simulated with GROMACS and LAMMPS. Average (a) and variance
(b) of the volume as functions of τP, for different barostats and codes as indicated.
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Figure 8. Results for crystal ice Ih simulated with GROMACS and LAMMPS. Averages—panels
(a)—and variances—panels (b)—of pairwise scalar products among the lattice vectors, reported as a
function of τP, for different barostats and codes as indicated.
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3.3. Gypsum

An additional test was performed on a gypsum crystal that was simulated with
LAMMPS using both the anisotropic SCR and the MTTK barostat. Results obtained with the
two barostats were consistent with each other and displayed comparable statistical errors
(see Table 2). The autocorrelation functions of the volume are reported in Figure 9, and were
consistent with those reported for the Lennard-Jones (Figure 4) and ice (Figure 7) systems.
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Figure 9. Results from the simulations of the gypsum with LAMMPS, obtained using both stochastic
cell rescaling and MTTK algorithms, in their anisotropic variants. Panel (a): Autocorrelation functions
of the volume. The dashed line reports an exponentially decaying function with time constant βT,exp

βT
τP.

Panel (b): Autocorrelation function for the series of squared volume displacements from the volume
average. The dashed line corresponds to an exponential decay with time constant βT,exp

βT
(2τP).

Table 2. Average and standard deviations of volume and potential energy for the simulated gypsum
system, obtained both with anisotropic SCR and anisotropic MTTK barostats. Results were obtained
setting τP = 0.1 ps.

Anisotropic SCR Anisotropic MTTK

〈V〉 (nm3) 36.8682 ± 0.0008 36.8691 ± 0.0010
σV (nm6) 0.0624 ± 0.0003 0.0622 ± 0.0002

〈U〉 (kJ/mol) −789,541.4 ± 1.4 −789,542.3 ± 1.4
σU ((kJ/mol)2) 171.0 ± 0.7 170.5 ± 0.7

3.4. Gold Crystal

Finally, we tested the application of both SCR and the MTTK algorithm on the sim-
ulation of a gold crystal under a time-dependent xz shear stress that was simulated with
LAMMPS. The modulo of one of the lattice vectors was used to monitor the rupture of
the structure. Its time series is reported in Figure 10, where it can be seen that the rupture
happened at a shear stress of Sxz ≈ 15.1–15.3 kbar. This result was in agreement with the
estimate obtained performing static calculations with the GULP software [42], a program
more suited to lattice dynamics and geometry optimization calculations than to molecular
dynamics. A visualization of the crystal breaking, which occurred through the slipping of
the crystallographic planes (111), is also reported in Figure 10.
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Figure 10. Results from the simulations of the gold crystal systems in LAMMPS, employing the
MTTK and SCR anisotropic barostats in presence of a linearly increasing shear stress. The plot
shows the trajectory for the modulus of the cell vector b, which is a good variable to describe the
crystal breaking. Selected structures are shown with the corresponding sampling times along the
horizontal axis.

4. Discussion

In this work, we developed the fully anisotropic version of the stochastic cell rescaling
(SCR) barostat that was introduced in Ref. [18]. The algorithm was then implemented in
three different MD software packages and tested on a number of crystalline systems. When
possible, results were compared with alternative algorithms already available in the tested
codes. The isotropic and semi-isotropic versions introduced in Ref. [18] could be obtained
as constrained cases of the equations of motion developed in this work. Additionally, this
method could be shown to be equivalent to a Parrinello–Rahman barostat augmented with
friction and noise terms, provided that the high-friction and zero-mass limit is taken.

The anisotropic SCR barostat is based on a first-order stochastic differential equation
that describes the relaxation of the lattice vectors to their equilibrium values. The deter-
ministic part of the equation resembles the anisotropic Berendsen barostat [17]. A crucial
advantage of the anisotropic SCR barostat with respect to the Berendsen barostat is that,
thanks to the noise term, the correct cell fluctuations are sampled. A single input parameter
should be provided, τP, that allows to enforce an approximate value for the relaxation
time of the volume. For this approximation to hold, one should also provide an a priori
estimation of the isothermal compressibility of the system βT . In practice, only the value
of βT

τP
is used in the resulting equations of motion. Hence, an incorrect estimate of the

isothermal compressibility would result in an observed relaxation time different from τP.
This issue is common with the Berendsen barostat [17]. Nevertheless, the analyses carried
out in this work showed that the method is robust against variations of τp within 2–3 orders
of magnitude, suggesting no significant effects on the sampled NST distribution if the
input βT is estimated with the correct order of magnitude.

Two integrators were developed and tested. One of them is simpler and could be
straightforwardly integrated in existing MD codes. The other one is more complicated as it
requires propagating position and velocities simultaneously to lattice vectors, and was only
implemented in the SimpleMD code. The second integrator has the advantage of being
time-reversible and, thus, allowing detailed balance violations to be quantified.
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In our algorithm, velocities could be optionally scaled when the lattice vectors were
modified. We propose to use a scaling matrix for velocities that is the inverse transpose
of the matrix used to scale positions. This is different from the standard procedure used
in Ref. [8,9,16], where it can be shown that both positions and velocities were rescaled
with exponential matrices in the limit of small ∆t, and these matrices were the inverse
of each other. To the best of our knowledge, this idea is new, and allows rotations to be
handled consistently on position and velocities, which is expected to be more effective
when simulating systems with holonomic constraints. This advantage was present when
global rotations were removed by keeping the cell matrix triangular, since, in this case, the
transformation matrix was not symmetric. It is, instead, irrelevant when implementing
the MTTK algorithm constraining the cell momentum matrix to be symmetric [8], since, in
this case, the transformation matrix was also symmetric. Indeed, this approach has been
argued to be more effective in simulating systems with constraints [1]. It is also irrelevant
in the isotropic or semi-isotropic cases implemented in Ref. [18], since, in those cases, the
transformation matrix was diagonal.

Similarly to the isotropic version, it was possible to avoid the scaling of velocities
resulting in a different definition of the internal pressure and a slightly simplified integrator.
This possibility was tested here for the Lennard-Jones system and did not offer any specific
advantage. It was, instead, expected to be less effective in more general settings, such
as using constraints; thus, we did not test it further. An alternative option would be to
use the molecular virial and scale only the molecular positions and, optionally, velocities.
In this case, intramolecular distances and velocities would not be affected by the scaling
procedure and one could, thus, use the formulation where velocities are not scaled also in
the presence of intramolecular constraints.

The choice of τP should be determined with care. A too low of a value could result in
systematic errors due to difficulties in the integration of the equation of motions. This type
of error could be detected by comparing results for different values of τP or, when using
the time-reversible integrator, by monitoring the effective energy drift, which reports on
the detailed balance violation. Although there is no unique prescription about which drift
magnitude could be acceptable, one might, for instance, make sure that the drift is similar
to the one obtained from a constant volume simulation of the same system. This result
would suggest that the integration errors associated with the barostat are not exceeding
those associated with the solution of the Hamilton equations of motion for the simulated
particles. A too large value of τP, instead, would result in a slow volume relaxation. If an
approximate estimate of the isothermal compressibility of the system βT was allowed, it
would be easy to choose a τP small enough to allow fluctuations of the cell volume to be
properly sampled on the desired time scale.

An important advantage of the anisotropic SCR, when compared with standard
barostats relying on second-order differential equations, is that the relaxation of the volume
was more easily predictable and would not exhibit oscillations. This caused the introduced
algorithm to be more robust in equilibration procedures. The relaxation of the individual
components of the cell matrix seemed more difficult to predict. A possible extension would
be to use a tensor compressibility so as to allow individual relaxation times to be controlled.
The corresponding equations were developed in Ref. [25], but have not yet been tested.

Additional material, including the implementations of the anisotropic SCR barostat
in SimpleMD, GROMACS, and LAMMPS, and a Python notebook that can be used to
reproduce all the figures of this article, can be found in the GitHub repository https:
//github.com/bussilab/crescale (accessed on 5 December 2021) and in linked repositories.
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Appendix A. Properties of the Anisotropic SCR Equations

As stated in the main text, Equation (7) is invariant under a redefinition of the cell
vectors defining the same Bravais lattice. This property could be easily proved by applying
the multidimensional generalization of Itô’s lemma [22] to the transformed variables:

h′αi =
3

∑
j=1

n(i)
j hαj , (A1)

where n(i)
j are integer numbers.

Similarly, the isotropic and semi-isotropic equations discussed in Ref. [18] could be
obtained by applying Itô’s lemma to the variables V = det h, in the isotropic case, and
A = hx1 hy2 − hx2 hy1, L = hz3, in the semi-isotropic one. For the latter, the cell matrix
could be defined such that hx3 = hy3 = hz1 = hz2 = 0 with no loss of generality. Moreover,
the fully anisotropic equations corresponding to the semi-isotropic case, namely, to the
constant normal pressure and surface-tension ensemble NP0γ0T [21], should be extended with
the surface-tension term:

dhγ0
αi =

βTγ0

3Lτp
hαi(1− δαz)dt , (A2)

originating from the additional energy term Utension = −γ0 A included in the distribution
of this ensemble. The full derivations are reported in Ref. [25].

Appendix B. Effective Energy Drift Calculation

The effective energy drift [24,30] for the time-reversible integrator developed in
Section 2.3.2 could be computed by introducing an auxiliary momentum-like variable
α independent of the state of the system and with a Gaussian equilibrium distribution
P(α) ∝ e−α2/2, and then using the high-friction limit of the integrator introduced in Ref. [30].
This allowed to write the shape update hi+1 = µ̃ hi, with µ̃ defined in Equation (16), as:

αi = R̃i, (A3a)

αi+1/2 = αi + Ãi

√
∆t
b

, (A3b)

hi+1 = exp
(
b
√

∆t αi+1/2
)

hi , (A3c)

αi+1 = R̃i+1 , (A3d)

https://github.com/bussilab/crescale
https://github.com/bussilab/crescale
https://doi.org/10.5281/zenodo.5753467
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where b =

√
2βTkBT
3V′τp

and i + 1/2 is an intermediate time between i and i + 1. V′ is the

volume obtained from Equation (15) after the first half-step isotropic propagation. Note
that Ãi instead was computed using the non-propagated volume V. The contribution to
the effective energy drift given by Equation (A3) was defined as:

∆H̃i→i+1 = −kBT log
P
(
− αi+1, hi+1)Π

(
(−αi+1, hi+1)→ (−αi, hi)

)
P
(
αi, hi

)
Π
(
(αi, hi)→ (αi+1, hi+1)

) , (A4)

where the factors Π are the transition probabilities of the forward and backward moves.
Note that the backward move was obtained by changing the sign of the momentum-like
variables α, in a generalized detailed-balance fashion. The contributions to Equation (A4)
could be computed by writing the joint probability distributions of the elements of the
matrix R̃ as functions of α and h, keeping in account that b was untouched in the change of
the shape. It was also convenient to define ∆ε = Ãi ∆t + b

√
∆t R̃i as the argument of the

matrix exponential of Equation (16). As a final result, the effective energy drift produced
by the change of shape was computed as:

∆H̃ = ∆K + ∆U + ∆Uel + kBT ∑
αβ

[
∆t
2b2 ∆(Ãαβ)

2 +
1
b2 ∆εαβ

(
Ãαβ(t) + Ãαβ(t + ∆t)

)]
. (A5)

By substituting b in Equation (A5), one obtains:

∆H̃ = ∆K + ∆U + ∆Uel +
3V′τp

2βT
∑
αβ

[
∆(Ãαβ)

2 ∆t
2

+ ∆εαβ

(
Ãαβ(t) + Ãαβ(t + ∆t)

)]
. (A6)

Note that the term proportional to ∆εαβ tends to cancel the increment in the kinetic and
potential energies in the limit of small ∆t. The term proportional to ∆(Ãαβ)

2 has a prefactor
V′ that changes at each step, and, thus, leads to an accumulation along the simulated
trajectory. This is different from the corresponding term in Equation (A4) of Ref. [30],
which only depended on the initial and final state. The drift in Equation (A6) should be
complemented with the isotropic contribution originating from the volume updates in
Equations (15) and (17), which is computed as described in Ref. [18]. For a full derivation
of Equation (A5), see Ref. [25].
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