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Abstract
In this paper, we analyze the relevance of the generalized Kronheimer construction for
the gauge/gravity correspondence. We begin with the general structure of D3-brane
solutions of type IIB supergravity on smooth manifolds Y� that are supposed to be the
crepant resolution of quotient singularities C3/� with � a finite subgroup of SU (3).
We emphasize that nontrivial 3-formfluxes require the existence of imaginary self-dual
harmonic forms ω2,1. Although excluded in the classical Kronheimer construction,
they may be reintroduced by means of mass deformations. Next we concentrate on the
other essential item for the D3-brane construction, namely, the existence of a Ricci-
flat metric on Y� . We study the issue of Ricci-flat Kähler metrics on such resolutions
Y� , with particular attention to the case � = Z4. We advance the conjecture that
on the exceptional divisor of Y� the Kronheimer Kähler metric and the Ricci-flat
one, that is locally flat at infinity, coincide. The conjecture is shown to be true in the
case of the Ricci-flat metric on totKWP[112] that we construct, i.e., the total space of
the canonical bundle of the weighted projective space WP[112], which is a partial
resolution of C3/Z4. For the full resolution, we have YZ4 = tot KF2 , where F2 is the
second Hirzebruch surface. We try to extend the proof of the conjecture to this case
using the one-parameterKählermetric onF2 produced by theKronheimer construction
as initial datum in a Monge–Ampère (MA) equation. We exhibit three formulations of
this MA equation, one in terms of the Kähler potential, the other two in terms of the
symplectic potential but with two different choices of the variables. In both cases, one
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can establish a series solution in powers of the variable along the fibers of the canonical
bundle. The main property of theMA equation is that it does not impose any condition
on the initial geometry of the exceptional divisor, rather it uniquely determines all
the subsequent terms as local functionals of this initial datum. Although a formal
proof is still missing, numerical and analytical results support the conjecture. As a
by-product of our investigation, we have identified some new properties of this type
of MA equations that we believe to be so far unknown.
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1 Introduction

Wereport on the advances obtained on the following special aspect of the gauge/gravity
correspondence,within the context of quiver gauge–theories [1–5]: the relevance of the
generalized Kronheimer construction [6,7] for the resolution ofC3/� singularities. In
particular, after an introduction about D3-brane supergravity solutions, we consider,
within this framework, the issues of the construction of a Ricci-flat metric on the
smooth resolution Y� of C3/�. We begin with the general problem of establishing
holographic dual pairs whose members are

A) a gauge theory living on a D3-brane world volume,
B) a classical D3-brane solution of type IIB supergravity in D=10 supergravity.

Gauge theories based on quiver diagrams have been extensively studied in the liter-
ature [1–5] in connection with the problem of establishing holographic dual pairs as
described above. Indeed, the quiver diagram is a powerful tool which encodes the data
of a Kähler quotient describing the geometry of the six directions transverse to the
brane. The linear data of such a Kähler (or HyperKähler) quotient are the menu of the
dual supersymmetric gauge theory, as they specify:

1. the gauge group factors,
2. the matter multiplets,
3. the representation assignments of the latter with respect to the gauge group factors.

The possibility of testing the holographic principle [8–12] and resorting to the super-
gravity side of the correspondence in order to perform, classically and in the bulk,
quantum calculations that pertain to the boundary gauge theory is tightly connected
with the quiver approach whenever the classical brane solution has a conformal point
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corresponding to a limiting geometry of the following type:

MD = AdSp+2 × SED−p−2 (1.1)

In the above equation by AdSp+2, we have denoted anti de Sitter space in p + 2-
dimensions while SED−p−2 stands for a Sasaki–Einstein manifold in D − p − 2-
dimensions [13].

Within the general scope of quivers, a special subclass is that of McKay quivers
that are group theoretically defined by the embedding of a finite discrete group � in
an n-dimensional complex unitary group

� ↪→ SU(n) (1.2)

and are associated with the resolution of Cn/� quotient singularities by means of a
Kronheimer-like construction [15–17].

The case n = 2 corresponds to the HyperKähler quotient construction of ALE-
manifolds as the resolution of the C

2/� singularities, the discrete group � being a
finite Kleinian subgroup of SU(2), as given by the ADE classification.1

The case n = 3 was the target of many interesting and robust mathematical devel-
opments starting from the middle of the nineties up to the present day [19–27]. The
main and most intriguing result in this context, which corresponds to a generaliza-
tion of the Kronheimer construction and of the McKay correspondence, is the group

theoretical prediction of the cohomology groups H(p,q)
(

Y�[3]
)
of the crepant smooth

resolution Y�[3] of the quotient singularity C
3/�. Specifically, the main output of the

generalized Kronheimer construction for the crepant resolution of a singularityC3/�

is a blowdown morphism:

BD : Y�[3] −→ C
3

�
(1.3)

where Y�[3] is a noncompact smooth threefold with trivial canonical bundle. On such a
complex threefold, a Ricci-flat Kähler metric

ds2RFK(Y
�[3]) = gRFKαβ
 dyα ⊗ dyβ




(1.4)

with asymptotically conical boundary conditions (Quasi-ALE) is guaranteed to exist
(see, e.g., [28], Thm. 3.3), although it is not necessarily the one obtained by means
of the Kähler quotient. According to the theorem proved by Ito-Reid [19,22,23] and
based on the concept of age grading,2 the homology cycles of Y�[3] are all algebraic

and its nonvanishing cohomology groups are all even and of type H(q,q). We actually

1 For a recent review of these matters see chapter 8 of [18].
2 For a recent review of these matters within a general framework of applications to brane gauge theories„
see [6,7].
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have a correspondence between the cohomology classes of type (q, q) and the discrete
group conjugacy classes with age-grading q, encoded in the statement:

dimH1,1 (Y�[3]
) = # of junior conjugacy classes in �;

dimH2,2 (Y�[3]
) = # of senior conjugacy classes in �;

all other cohomology groups are trivial (1.5)

The absence of harmonic forms of type (2, 1) implies that the threefold Y�[3] admit no
infinitesimal deformations of their complex structure and is also a serious obstacle, as
we discuss in Sect. 2 to the construction of supergravity D3-brane solutions based on
Y�[3] that have transverse three-form fluxes.

There is, however, a possible way out that is provided by the existence of mass
deformations. This is the main point of another line of investigation which we hope to
report on soon. If the McKay quiver diagram has certain properties, the superpotential
W(�) on the gauge-theory side of the correspondence can be deformed bywell defined
mass-terms and, after (gaussian) integration of the massive fields, theMcKay quiver is
remodeled into a new non-McKay quiver associated with the Kähler or HyperKähler
quotient description of smooth Kähler manifolds, like the resolved conifold, that admit
harmonic (2, 1)-forms and sustain adequate D3-brane solutions.

On the basis of the above remarks, we can spell out the scope of the present paper in
the following way. The embedding (1.2) determines in a unique way a McKay quiver
diagram which determines:

1. the gauge group F� ,
2. the matter field content �I of the gauge theory,
3. the representation assignments of all the matter fields �I ,
4. the possible (mass) deformations of the superpotential W(φ),
5. the Ricci-flat metric on Y can be inferred, by means of the Monge–Ampère equa-

tion, from the Kähler metric on the exceptional compact divisor (in those cases
where it exists) in the resolution of C3/�, which, on its turn, is determined by the
McKay quiver through the Kronheimer construction.

In relation with point (4) of the above list, to be discussed in a future paper, for the case
C
3/Z4 we anticipate the following. By means of gaussian integration we get a new

quiver diagram that is not directly associated with a discrete group, yet it follows from
the McKay quiver of � in a unique way. The group theoretical approach allows us to
identify deformations of the superpotential and introduce new directions in the moduli
space of the crepant resolution. In this sense, we go beyond the Ito-Reid theorem. Both
physically and mathematically, this is quite interesting and provides a new viewpoint
on several results, some of them well known in the literature. Most of the latter are
based on cyclic groups � and rely on the powerful weapons of toric geometry. Yet the
generalized Kronheimer construction applies also to nonabelian groups � ⊂ SU(3)
and so do the cohomological theorems proved by Ito-Reid, Ishii and Craw. Hence,
the available mass deformations are encoded also in the McKay quivers of nonabelian
groups �, and one might explore the geometry of the transverse manifolds emerging
in these cases.
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In relation with point (5) of the above list, fully treated in this paper for the same
case C3/Z4, we stress that, although the Kronheimer metric on Y�[3] is not Ricci-flat,
yet its restriction to the exceptional divisor provides the appropriate starting point for
an iterative solution of the Monge Ampère equation which determines the Ricci-flat
metric.

In viewof the above considerations,we can conclude that theMcKayquiver diagram
does indeed provide a determination of both sides of a D3-brane dual pair: the gauge
theory side and the supergravity side.

In this paper, we focus on two paradigmatic examples, namely C
3/Z3 (with Z3

diagonally embedded in SU(3)) and C3/Z4. The latter case was studied in depth in a
recent publication [7]. Relying on those results here, we concentrate on the issue of
the Ricci-flat Kähler metric.

While in the case of HyperKähler quotients (yielding N = 2 gauge theories and
corresponding to the original Kronheimer construction ofC2/� resolutions) the Kro-
nheimer metric is automatically Ricci-flat, in the case of Kähler quotients and of the
generalized Kronheimer construction of C3/� resolutions, the Kronheimer metric is
not Ricci-flat and one needs to resort to different techniques in order to find a Ricci-flat
metric on the same threefold Y�[3] that is algebraically determined by the construction.

The fascinating scenario that emerges from our combined analytical and numerical
results is summarized in the following discussion.

From the point of view of complex algebraic geometry, the resolved variety Y�[3] is
in many cases and, in particular in those here analyzed, the total space of a line-bundle
over a compact complex tw-fold, which coincides with the exceptional divisor ED of
the resolution of singularities:

Y�[3]
π−→ ED[2]; ∀ p ∈ ED[2] : π−1(p) ∼ C (1.6)

In the paradigmatic example, recently studied in [7], of the resolution à la Kronheimer
of the C

3/Z4 singularity, ED is indeed the compact component of the exceptional
divisor emerging from the blow-up of the singular point in the origin of C3, and it
happens to be the second Hirzebruch surface F2. Other cases are possible.

Hirzebruch surfaces are P1 bundles over P1, so that

ED[2]
π̃−→ P

1; ∀ p ∈ P
1 : π̃−1(p) ∼ P

1 (1.7)

This double fibration is illustrated in a pictorial fashion in Fig. 1.
Given this hierarchical structure, the sought for Ricci-flat metric is constrained to

possess the following continuous isometry group:

Giso = SU(2) × U(1)v × U(1)w (1.8)

whose holomorphic algebraic action on the three coordinates u, v, w is described later
in Eq. (7.1). The chosen isometry group implies that the sought for Ricci-flat metric
is toric, as each of the three complex coordinates is acted on by an independent U(1)-
isometry. Furthermore, the enhancement of one of the U(1)’s to SU(2) guarantees that
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Fig. 1 A conceptual picture of the resolved threefold Y�[3] displaying its double fribration structure. The
orange sphere in themiddle symbolizes the basemanifold of the bundle ED[2]. A dense complex coordinate
patch for this P1 is named u in the main body of the article. The blueish spheres around the orange one
symbolize the P1 fibers of ED[2]. A dense complex coordinate patch for these fibers is named v in the main
body of the article. Finally, the greenish rays enveloping the divisor ED[2] symbolize the noncompact fibers
of the bundle Y�[3]. A dense coordinate patch for these fibers is named w in the main body of the article

either the Kähler potentialK in the standard complex formulation of Kähler geometry,
or the symplectic potential G, the Legendre transform of the former appearing in the
available symplectic formalism [60], are functions only of two invariant real variables
(see Sects. 6 and 9.1 ). Assuming that we possess either one of these two real functions
for the Ricci-flat metric:3

KRicci-flat(�, f) or GRicci-flat(v,w) (1.9)

we can reduce the corresponding geometry to that of the exceptional divisor by setting
a section of the Y�[3] bundle to zero as:

w = 0 ⇔ f = 0 , w = 3
2 (1.10)

The fascinating scenario we have alluded to some lines above is encoded in the fol-
lowing:

3 For conventions see once again Sects. 9.1 and 6.
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Conjecture 1.1 The Kronheimer Kähler metric ds2Kro[Y�[3]] on the line bundle (1.6) and

the Ricci-flat one ds2Ric f lat [Y�[3]] on the same manifold, that has the same isometries

and is asymptotically locally flat4 are different, yet they coincide on the exceptional
divisor ED.

The basic argument in favor of this conjecture is provided by an in depth analysis
of a particular orthotoric metric that we construct in this paper and that is shown
to describe the Ricci-flat metric on a degenerate limit of threefold Y�[3], as described
in [7]. This is a partial resolution of the C

3/Z4 singularity, and it occurs when the
stability parameters (Fayet-Iliopolous parameters in the physics jargon) are restricted
to be on the unique type III wall5 appearing in the chamber structure associated with
the generalized Kronheimer construction for this McKay quiver. From the algebraic
geometry viewpoint, this variety Y[3] is the total space of the canonical bundle over
the weighted projective space WP[112]:

Y[3] = totKWP[112] (1.11)

and its exceptional divisor is WP[112]. We show that the Kähler metric induced
on WP[112] by our new Ricci-flat orthotoric metric is precisely identical with that
obtained from the Kronheimer construction once reduced to the divisor.

The various inspections of this known case within the framework of different for-
malisms and using different coordinate patches provided us with the means to make
Conjecture 1.1 more robust. The main tool at our disposal is provided by the Monge–
Ampère (MA) equation for Ricci-flatness of which we develop two versions, one in
terms of the Kähler potential K(�, f) (see Sect. 9.1) and one in terms of the sym-
plectic potential6 G(v,w) (see Sect. 9.2). In both cases, we showed that the potential
can be developed in power series of the invariant associated with the non compact
fibers (either f or w− 3

2 ) and that the MA equation imposes no restriction on the 0-th
order potentials K0(�) or G0(v), namely on the geometry chosen for the exceptional
divisor. Rather, dealing carefully with the boundary conditions, we discovered that in
both cases the MA equation completely determines all the other terms onceK0(�) or
G0(v) are given. Hence, we can start withKKro

0 (�) or GKro
0 (v) as they are determined

by the Kronheimer construction and going through the power series treatment of the
MA equation we can construct a corresponding Ricci-flat metric.

The only question which remains open is whether this Ricci-flat metric is asymp-
totically locally flat. In the case of totKWP[112] it is. This supports the conjecture. In
order to transform the conjecture into a theorem, one should first resum the series and
study the metric at large distances.

In this respect, our study of the symplectic potential produced encouraging results.
First of all we were able to construct an explicit form GWP[112](v,w) of such potential

4 More precisely, this metric is quasi-ALE in the sense of [28].
5 According to the terminology in [23], a wall in the space of stability parameters is of type III when it
corresponds to a degeneration which contracts divisors to curves. In this case, the noncompact component
P
1 × C of the exceptional divisor shrinks to C.

6 See Sect. 6 for the definition of the real variables v,w.
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for the orthotoric case. The functionGWP[112](v,w), which is relatively simplywritten
in terms of elementary transcendental functions, satisfies the MA equation and can be
expanded in series of (w− 3

2 ). The remarkably similar behavior of the series truncations
of the exact solution corresponding to totKWP[112] with the same truncations of the
series determined by the MA equation for the smooth case totKF2 suggests that also
in the latter case there exists a summation of the series to some simple deformation of
the function GWP[112](v,w).

We postpone to future publications further attempts to sum the series solution and
prove, if possible, our conjecture.

2 D3-brane supergravity solutions on resolvedC
3/0 singularities

An apparently general property of the Y�[3] manifolds that emerge from the crepant
resolution construction, at least when � is abelian and cyclic is the following. The
noncompact Y�[3] corresponds to the total space of some line-bundle over a complex
two-dimensional compact base manifold M2:

Y�[3]
π−→ M2 (2.1)

According to this structure, we name u, v, w the three complex coordinates of Y�[3],
u, v being the coordinates of the base manifold M2 and w being the coordinate
spanning the fibers. We will use the same names also in more general cases even if
the interpretation of w as fiber coordinate will be lost. Hence we have:

yyy ≡ yα = {u, v, w} ; ȳyy ≡ yᾱ = {ū, v̄, w̄} (2.2)

An important observation which ought to be done right at the beginning is that other
Kähler metrics ĝαβ
 do exist on the threefold Y[3] that are not Ricci-flat, although the
cohomology class of the associated Kähler form K̂ can be the same as the cohomology
class of KRFK. Within the framework of the generalized Kronheimer construction,
among such Kähler (non-Ricci flat) metrics, we have the one determined by the Kähler
quotient according to the formula of Hithchin, Karlhede, Lindström and Roček [30].
Indeed, as we show later in explicit examples, the Kähler metric:

ds2HKLR(Y[3]) = gHKLRαβ
 dyα ⊗ dyβ



(2.3)

which emerges from themathematical Kähler quotient construction and which is natu-
rally associated with Y[3] when this latter is interpreted as the space of classical vacua
of the D3-brane gauge theory (set of extrema of the scalar potential), is generically
non-Ricci-flat.

On the other hand, on the supergravity side of the dual D3-brane pair„ we need
the Ricci-flat metric in order to construct a bona-fide D3-brane solution of type IIB
supergravity. In particular, calling Y�[3] the crepant resolution of the C3/� singularity,
admitting a Ricci-flat metric, we can construct a bonafide D3 brane solution which
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is solely defined by a single real function H on Y�[3], that should be harmonic with
respect to the Ricci-flat metric, namely:

�gRFK H = 0 (2.4)

Indeed the function H(y) is necessary and sufficient to introduce a flux of the Ramond
5-form so as to produce the splitting of the 10-dimensional space into a 4-dimensional
world volume plus a transverse 6-dimensional space that is identifiedwith the threefold
Y�[3]. This is the very essence of the D3-picture.

Yet there is another essential item that was pioneered in [31–33] namely the con-
sistent addition of fluxes for the complex 3-forms H± that appear in the field content
of type IIB supergravity. These provide relevant new charges on both sides of the
gauge/gravity correspondence. In [34,35], such fluxes were constructed explicitely
relying on a special kind of threefold:

Y[3] = Y[1+2] = C × ALE� (2.5)

where ALE� denotes one of the ALE-manifolds constructed by Kronheimer [15,16]
as HyperKähler quotients resolving the singularity C

2/� with � ⊂ SU(2) a finite
Kleinian subgroup.

As we explain in detail below, the essential geometrical feature of Y[3], required
to construct consistent fluxes of the complex 3-forms H±, is that Y[3] should admit
imaginary (anti)-self-dual, harmonic 3-forms �(2,1), which means:


gRFK�
(2,1) = ± i�(2,1) (2.6)

and simultaneously:

d�(2,1) = 0 ⇒ d
gRFK�
(2,1) = 0 (2.7)

Since the Hodge-duality operator involves the use of a metric, we have been careful
in specifying that (anti)-self-duality should occur with respect to the Ricci-flat metric
that is the one used in the rest of the supergravity solution construction.

The reason why the choice (2.5) of the threefold allows the existence of harmonic
anti-self dual 3-forms is easily understood recalling that the ALE�-manifold obtained
from the resolution of C2/� has a compact support cohomology group of type (1, 1)
of the following dimension:

dimH(1,1)
comp (ALE�) = r where r = # of nontrivial conjugacy classes of �(2.8)

Naming z ∈ C the coordinate on the factor C of the product (2.5) and ω(1,1)
I a basis of

harmonic anti-self dual one-forms on ALE� , the ansatz utilized in [34,35] to construct
the required �(2,1) was the following:

�(2,1) ≡ ∂z f
I (z) dz ∧ ω

(1,1)
I (2.9)
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where fI (z) is a set of holomorphic functions of that variable. As it is well known
r is also the rank of the corresponding Lie Algebra in the ADE-classification of the
corresponding Kleinian groups and the 2-forms ω(1,1)

I can be chosen dual to a basis
homology cycles CI spanning H2 (ALE�), namely we can set:

∫

CI

ω
(1,1)
J = δI J (2.10)

The form �(2,1) is closed by construction:

d�(2,1) = 0 (2.11)

and it is also anti-selfdual with respect to the Ricci-flat metric:

ds2Y[1+2] = dz ⊗ dz̄ + ds2ALE� (2.12)

Hence, the question whether we can construct sufficiently flexible D3-solutions of
supergravity with both 5-form and 3-form fluxes depends on the nontriviality of the
relevant cohomology group:

dimH(2,1) (Y[3]
)
> 0 (2.13)

and on our ability to find harmonic (anti)-self dual representatives of its classes (typi-
cally not with compact support and hence non normalizable).

At this level, we find a serious difficulty. It seems therefore that we are not able
to find the required �(2,1) forms on Y�[3] and that no D3-brane supergravity solution
with 3-form fluxes can be constructed dual to the gauge theory obtained from the
Kronheimer construction dictated by � ⊂ SU(3). Fortunately, the sharp conclusion
encoded in Eq. (1.5) follows from a hidden mathematical assumption that, in physical
jargon, amounts to a rigid universal choice of the holomorphic superpotentialW(�).
Under appropriate conditions that we plan to explain and which are detectable at
the level of the McKay quiver diagram, the superpotential can be deformed (mass
deformation) yielding a family of threefold Y�,μ

[3] which flow, for limiting values of the

parameter (μ → μ0) to a threefold Y�,μ0
[3] admitting imaginary anti self-dual harmonic

(2,1)-forms. Since the content and the interactions of the gauge theory are dictated by
the McKay quiver of � and by its associated Kronheimer construction, we are entitled
to see its mass deformed version and the exact D3-brane supergravity solution built
on Y�,μ0

[3] as dual to each other.
This will be the object of a future work. Here we begin with an accurate mathe-

matical summary of the construction of D3-brane solutions of type IIB supergravity
using the geometric formulation of the latter within the rheonomy framework [36].

123



   79 Page 12 of 79 M. Bianchi et al.

2.1 Geometric formulation of Type IIB supergravity

In order to discuss conveniently the D3 brane solutions of type IIB that have as
transverse space the crepant resolution of a C

3/� singularity, we have to recall the
geometric Free Differential Algebra formulation of the chiral ten-dimensional theory
fixing with care all our conventions, which is not only a matter of notations but also
of principles and geometrical insight. Indeed the formulation of type IIB supergravity
as it appears in string theory textbooks [37,38] is tailored for the comparison with
superstring amplitudes and is quite appropriate to this goal. Yet, from the viewpoint
of the general geometrical set up of supergravity theories this formulation is some-
what unwieldy. Specifically, it neither makes the SU(1, 1)/U(1) coset structure of
the theory manifest, nor does it relate the supersymmetry transformation rules to the
underlying algebraic structure which, as in all other instances of supergravities, is a
simple and well defined Free Differential algebra. The Free Differential Algebra of
type IIB supergravitywas singled outmany years ago byCastellani in [39] and the geo-
metric, manifestly SU(1, 1)–covariant formulation of the theory was constructed by
Castellani and Pesando in [40]. Their formulae and their transcription from a complex
SU(1, 1) basis to a real SL(2,R) basis were summarized and thoroughly explained in
a dedicated chapter of a book authored by one of us [41] which we refer the reader to.

2.2 The D3-brane solution with a Y[3] transverse manifold

In this section, we discuss a D3-brane solution of type IIB supergravity in which,
transverse to the brane world-manifold, we place a smooth noncompact threefold Y[3]
endowed with a Ricci-flat Kähler metric.

The ansatz for the D3-brane solution is characterized by two kinds of flux; in
addition to the usual RR 5-form flux, there is a nontrivial flux of the supergravity
complex 3-form field strengths H±.

We separate the ten coordinates of space-time into the following subsets:

x M =
{

xμ : μ = 0, 1, 2, 3 coordinates of the 3-brane world volume
yτ : τ = 4, 5, 6, 7, 8, 9 real coordinates of the Y variety

(2.14)

2.2.1 The D3 brane ansatz

We make the following ansatz for the metric:7

ds2[10] = H(yyy, ȳyy)−
1
2
(−ημν dxμ ⊗ dxν

)+ H(yyy, ȳyy)
1
2

(
gRFKαβ
 dyα ⊗ dyβ



)

ds2Y = gRFKαβ
 dyα ⊗ dyβ



det(g[10]) = H(yyy, ȳyy)det(gRFK)

ημν = diag(+,−,−,−) (2.15)

7 As explained in appendix A, the conventions for the gammamatrices and the spinors are set with a mostly
minus metric dτ2. In the discussion of the solution, however, we use ds2 = −dτ2 for convenience. We
hope this does not cause any confusion.
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where gRFK is the Kähler metric of the Y[3] manifold

gRFK
αβ̄

= ∂α ∂β̄ KRFK (yyy, ȳyy) (2.16)

the real function KRFK (yyy, ȳyy) being a suitable Kähler potential.

2.2.2 Elaboration of the ansatz

In terms of vielbein the ansatz (2.15) corresponds to

V A =
{

V a = H(yyy, ȳyy)−1/4 dxa a = 0, 1, 2, 3
V � = H(yyy, ȳyy)1/4 e� � = 4, 5, 6, 7, 8, 9

(2.17)

where e� are the vielbein 1-forms of the manifold Y[3]. The structure equations of the
latter are:8

0 = d ei − ω̂i j ∧ ek η jk

R̂i j = dω̂i j − ω̂ik ∧ ω̂� j ηk� = R̂i j
�m e� ∧ em (2.18)

The relevant property of the Y metric that we use in solving Einstein equations is that
it is Ricci-flat:

R̂im
�m = 0 (2.19)

What we need in order to derive our solution and discuss its supersymmetry properties
is the explicit form of the spin connection for the full 10-dimensional metric (2.15) and
the corresponding Ricci tensor. From the torsion equation, one can uniquely determine
the solution:

ωab = 0

ωa� = 1
4 H−3/2 dxaη�k ∂k H

ω�m = ω̂�m + �ω�m; �ω�m = − 1
2 H−1 e[� ηm]k ∂k H (2.20)

Inserting this result into the definition of the curvature 2-form we obtain:9

Ra
b = −1

8

[
H−3/2�g H − H−5/2 ∂k H∂k H

]
δa

b

8 The hats over the spin connection and the Riemann tensor denote quantities computed without the warp
factor.
9 The reader should be careful with the indices. Latin indices are always frame indices referring to the
vielbein formalism. Furthermore„ we distinguish the four directions of the brane volume by using Latin
letters from the beginning of the alphabet while the 6 transversal directions are denoted by Latin letters
from the middle and the end of the alphabet. For the coordinate indices, we utilize Greek letters and we
do exactly the reverse. Early Greek letters α, β, γ, δ, . . . refer to the 6 transverse directions while Greek
letters from the second half of the alphabet μ, ν, ρ, σ, . . . refer to the D3 brane world volume directions as
it is customary in D = 4 field theories.
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Ra
� = 0

Rm
� = 1

8
H−3/2�gHδm

� − 1

8
H−5/2∂s H∂s Hδm

� + 1

4
H−5/2∂�H∂m H (2.21)

where for any function f (yyy, ȳyy) with support on Y[3]:

�g f (yyy, ȳyy) = 1√
detg

(
∂α

(√
detg gαβ




∂β
 f
))

(2.22)

denotes the action on it of the Laplace–Beltrami operator with respect to the met-
ric (2.16) which is the Ricci-flat one: we have omitted the superscript RFK just for
simplicity. Indeed„ on the supergravity side of the correspondence„ we use only the
Ricci-flat metric, and there is no ambiguity.

2.2.3 Analysis of the field equations in geometrical terms

The equations ofmotion for the scalar fieldsϕ andC[0] and for the 3-formfield strength
F N S[3] and F R R[3] can be better analyzed using the complex notation. Defining, as we did
above:

H± = ±2 e−ϕ/2F N S[3] + i2 eϕ/2 F R R[3] (2.23)

P = 1
2 dϕ − i 12 eϕ F R R[1] (2.24)

Equations (2.25)–(2.26) can be respectively written as:

d(
P) − ieϕdC[0] ∧ 
P + 1
16H+ ∧ 
H+ = 0 (2.25)

d
H+ − i

2
eϕdC[0] ∧ 
H+ = i F R R[5] ∧ H+ − P ∧ 
H− (2.26)

while the equation for the 5-form becomes:

d
F R R[5] = i 18 H+ ∧ H− (2.27)

Besides assuming the structure (2.15) we also assume that the two scalar fields,
namely the dilaton ϕ and the Ramond–Ramond 0-form C[0] are constant and vanish-
ing:

ϕ = 0; C[0] = 0 (2.28)

As we shall see, this assumption simplifies considerably the equations of motion,
although these two scalar fields can be easily restored [33].

123



Resolution à la Kronheimer... Page 15 of 79    79 

2.2.4 The three-forms

The basic ansatz characterizing the solution and providing its interpretation as a D3-
brane with three-form fluxes is described below.

The ansatz for the complex three-forms of type IIB supergravity is given below and
is inspired by what was done in [34,35] in the case where Y[3] = C × ALE�:

H+ = �(2,1) (2.29)

where �(2,1) is localized on Y[3] and satisfies Eqs. (2.6–2.7)
If we insert the ansätze (2.28,2.29) into the scalar field equation (2.25), we obtain:

H+ ∧ 
10H+ = 0 (2.30)

This equation is automatically satisfied by our ansatz for a very simple reason that we
explain next. The form H+ is by choice a three-form on Y[3] of type (2, 1). Let �[3]
be any three-form that is localized on the transverse six-dimensional10 manifold Y[3]:

�[3] = �I J K dt I ∧ dt J ∧ dt K (2.31)

When we calculate the Hodge dual of �[3] with respect to the 10-dimensional metric
(2.15) we obtain a 7-form with the following structure:


10�
[3] = H−1 VolR(1,3) ∧ �̃[3] (2.32)

where:

VolR(1,3) = 1
4! dxμ ∧ dxν ∧ dxρ ∧ dxσ εμνρσ (2.33)

is the volume-form of the flat D3-brane and

�̃[3] ≡ 
g�
[3] (2.34)

is the dual of the three-form �[3] with respect to the metric g defined on Y[3]. Let us
now specialize the three-form �[3] to be of type (2, 1):

�[3] = Q(2,1) (2.35)

As shown in [31,32], preservation of supersymmetry requires the complex three-form
H+ to obey the condition11


g Q
(2,1) = −i Q(2,1) (2.36)

10 For the sake of the present calculation and the following ones where we have to calculate a Hodge dual,
it is more convenient to utilize a set of 6 real coordinates t I (I = 1, . . . , 6) for the manifold Y[3]. Let
∂I ≡ ∂

∂t I denote the standard partial derivatives with respect to such coordinates.
11 It also requires H+ to be primitive.
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Hence:

H+ ∧ 
10 H+ = −i Q(2,1) ∧ Q(2,1) ∧ H−1VolR(1,3) = 0 (2.37)

2.2.5 The self-dual 5-form

Next we consider the self-dual 5-form F R R[5] which by definition must satisfy the
following Bianchi identity:

d F R R[5] = i 18 H+ ∧ H− (2.38)

Our ansatz for F R R[5] is the following:

F R R[5] = α (U + 
10 U ) (2.39)

U = d
(

H−1 VolR(1,3)

)
(2.40)

where α is a constant to be determined later. By construction F R R[5] is self-dual and
its equation of motion is trivially satisfied. What is not guaranteed is that also the
Bianchi identity (2.38) is fulfilled. Imposing it results into a differential equation for
the function H (yyy, ȳyy). Let us see how this works.

Starting from the ansatz (2.40) we obtain:

U = − 1

4! εμνρσ dxμ ∧ dxν ∧ dxρ ∧ dxσ ∧ d H

H2 (2.41)

Uμνρσ I = − 1

4!εμνρσ
∂I H

H2 ; all other components vanish (2.42)

Calculating the components of the dual form 
10 U , we find that they are nonvanishing
uniquely in the six transverse directions:


10U = ŨI1...I5 dt I1 ∧ · · · ∧ dt I5

ŨI1...I5 = −
√
det g(10)
5! εI1...I5 J εμνρσ g J K

(10) gμμ
′

10 gνν
′

(10) gρρ
′

(10) gσσ
′

(10) Uμ′ν′ρ′σ ′ J

=
√
detg
5! εI1...I5 J gJ K ∂K H (2.43)

The essential point in the above calculation is that all powers of the function H exactly
cancel so that 
10U is linear in the H -derivatives.12 Next using the same coordinate
basis, we obtain:

d F R R[5] = α d
U = α
1√
det g

∂I

(√
det g gI J ∂J H

)

︸ ︷︷ ︸
�g H

×VolY[3]

12 Note that we use gI J to denote the components of the Kähler metric (2.16) in the real coordinate basis
t I .
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= α�g H(yyy, ȳyy) × VolY[3] (2.44)

where:

VolY[3] ≡ √det g 1

6!εI1...I6dt I1 ∧ · · · ∧ dt I6

= √det g 1

(3!)2 εαβγ dyα ∧ dyβ ∧ dyγ ∧ εᾱβ̄γ̄ d ȳᾱ ∧ d ȳβ̄ ∧ d ȳγ̄ (2.45)

is the volume form of the transverse six-dimensional space. Once derived with the
use of real coordinates, the relation (2.44) can be transcribed in terms of complex
coordinates and the Laplace–Beltrami operator �g can be written as in Eq. (2.22). Let
us now analyze the source terms provided by the three-forms. With our ansatz, we
obtain:

1
8 H+ ∧ H− = J (yyy, ȳyy) × VolY[3]

J (yyy, ȳyy) = − 1

72
√
det g

�αβη̄ �̄δ̄θ̄γ εαβγ εη̄δ̄θ̄ (2.46)

we conclude that the Bianchi identity (2.38) is satisfied by our ansatz if:

�g H = − 1

α
J (yyy, ȳyy) (2.47)

This is the main differential equation to which the entire construction of the D3-brane
solution can be reduced to. We are going to show that the parameter α is determined
by Einstein’s equations and fixed to α = 1.

2.2.6 The equations for the three-forms

Let us consider next the field equation for the complex three-form, namely Eq. (2.26).
Since the two scalar fields are constant, the SU(1, 1)/O(2) connection vanishes and
we have:

d
H+ = i F R R[5] ∧ H+ (2.48)

Using our ansatz„ we immediately obtain:

d
H+ = −2 iH−2d H ∧ �̃(2,1),∧�R1,3 + 2i H−1 d�̃(2,1) ∧ �R1,3

i F R R[5] ∧ H+ = −2 αiH−2d H ∧ �(2,1) ∧ �R1,3 (2.49)

Hence if α = 1, the field equations for the three-form reduces to:

�̃(2,1) ≡ 
g�
(2,1) = − i�(2,1); d
g�

(2,1) = 0; d�(2,1) = 0 (2.50)
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which are nothing else but Eqs. (2.6–2.7). In other words„ the solution of type IIB
supergravity with three-form fluxes exists if and only if the transverse space admits
closed and imaginary anti-self-dual forms �(2,1) as we already stated.13

In order to show that also the Einstein’s equation is satisfied by our ansatz, we have
to calculate the (trace subtracted) stress energy tensor of the five and three index field
strengths. For this purpose we need the components of F R R[5] . These are easily dealt
with. Relying on the ansatz (2.40) and on eq. (2.17) for the vielbein, we immediately
get:

FA1...A5 =
⎧
⎨
⎩

Fiabcd = 1
5! fi εabcd

Fj1...i5 = 1
5!εi j1... j5 f i

otherwise = 0
(2.51)

where:

fi = −α H−5/4 ∂i H (2.52)

Then by straightforward algebra, we obtain:

T a
b

[
F R R[5]

]
≡ −75 Fa · · · · Fb · · · · = −1

8
δa

b f p f p

= −α2
1

8
δa

b H−5/2∂p H ∂ p H

T i
j

[
F R R[5]

]
≡ −75 Fi · · · · Fj · · · · = 1

4
f i f j − 1

8
δi

j f p f p

= α2
[
1

4
H−5/4∂ i H ∂ j H − 1

8
δi

j H−5/4∂ p H ∂p H

]
(2.53)

Inserting Eqs. (2.53) and (2.21) into Einstein’s equations:

Ra
b = T a

b

[
F R R[5]

]

Ri
j = T i

j

[
F R R[5]

]
(2.54)

we see that they are satisfied, provided

α = 1 (2.55)

and the master equation (2.47) is satisfied. This concludes our proof that an exact
D3-brane solution with a Y transverse space does indeed exist.

13 By construction a closed anti-self-dual form is also coclosed, namely it is harmonic.
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3 An example without mass deformations and no harmonicÄ(2,1):
Y[3] = OP2(−3)

In [6] as a master example of the generalized Kronheimer construction of crepant
resolutions the following case was considered:

Y[3] = OP2(−3) −→ C
3

Z3
(3.1)

the action of the group Z3 ⊂ SU(3) on the three-complex coordinates {x, y, z} being
generated by the matrix:

g =
⎛
⎜⎝

e
2iπ
3 0 0

0 e
2iπ
3 0

0 0 e
2iπ
3

⎞
⎟⎠ (3.2)

Following the steps of the construction, one arrives at the following nine-dimensional
flat Kähler manifold

SZ3 ≡ Hom (Q ⊗ R, R)Z3 (3.3)

whereQ is the three-dimensional representation ofZ3 generated by g, while R denotes
the regular representation. The points of SZ3 are identified with the following triplet
of matrices of 3 × 3 matrices:

A =
⎛
⎝

0 0 �A
1,3

�A
2,1 0 0
0 �A

3,2 0

⎞
⎠ ; B =

⎛
⎝

0 0 �B
1,3

�B
2,1 0 0
0 �B

3,2 0

⎞
⎠ ; C =

⎛
⎝

0 0 �C
1,3

�C
2,1 0 0
0 �C

3,2 0

⎞
⎠

(3.4)

The nine complex coordinates of SZ3 are the matrix entries�A,B,C
1,3 ,�A,B,C

2,1 ,�A,B,C
3,2 .

With reference to the quiver diagram of Fig. 2 which is dictated by the McKay matrix
Ai j appearing in the decomposition:14

Q ⊗ Di =
3⊕

j=1

Ai j D j (3.5)

the entries �A,B,C
1,3 , . . . are interpreted as the complex scalar fields of as many Wess–

Zumino multiplets in the bifundamental of the Ui(N) groups mentioned in the lower
suffix.

14 Di denote the irreducible representations of the group � = Z3 and each node of the quiver diagram
corresponds to one of them. The number of lines going from node i to node j is equal to integer value of
Ai j . In each node i„ we have a component Ui (ni × N ) of the gauge group F� where ni is the dimension
of the irrep Di and N is the number of D3-branes.
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Fig. 2 The quiver diagram of the
diagonal embedding of the
group Z3 → SU(3)

U2(N) U3(N)

U1(N)U1(N)

In the case of a single brane (N=1), the quiver groupGZ3 has the following structure:

GZ3 = C

 ⊗ C


 � C

 ⊗ C


 ⊗ C



C


central

(3.6)

and its maximal compact subgroup FZ3 ⊂ GZ3 is the following:

FZ3 = U(1) ⊗ U(1) � U(1) ⊗ U(1) ⊗ U(1)

U(1)central
(3.7)

The gauge group FZ3 and its complexification FZ3 are embedded into SL(3,C) by
defining the following two generators:

t1 =
⎛
⎝

i 0 0
0 −i 0
0 0 0

⎞
⎠ ; t2 =

⎛
⎝
0 0 0
0 i 0
0 0 −i

⎞
⎠ (3.8)

and setting:

FZ3 = exp [θ1 t1 + θ2 t2] θ1,2 ∈ [0, 2π]; GZ3 = exp [w1 t1 + w2 t2] w1,2 ∈ C (3.9)

3.1 The HKLR Kähler potential

The Kähler potential of the linear space SZ3 , which in the D3-brane gauge theory
provides the kinetic terms of the nine scalar fields �A,B,C

1,2,3 is given by:

K0 (�) = Tr
(

A† A + B† B + C†C
)

(3.10)

where the three matrices A, B,C are those of equation (3.4). According with the
principles of the Kronheimer construction, the superpotential is given by W (�) =
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const× Tr ([A, B] C). The final HKLR Kähler metric, whose determination requires
two steps of physical significance:

1. Reduction to the critical surface of the superpotential i.e. ∂�W = 0
2. Reduction to the level surfaces of the gauge group moment maps by solving the

algebraic moment map equations,

was calculated in [6] according with the general theory there summarized, which is
originally due to the authors of [30]. The final form of HKLR Kähler potential is
provided by:

KH K L R(z, z̄, ζζζ ) = K0 + ζI C
I J log

[
ϒ
αJ ,ζζζ
J

]

= α
{
(2ζ1 − ζ2) log [ϒ1] − (ζ1 − 2ζ2) log [ϒ2]

}

+�
(
ϒ3
1 + ϒ3

2 + 1
)

ϒ1ϒ2
(3.11)

where, as it was extensively discussed in [7], the coefficient α might be adjusted,
chamber by chamber, in chamber space, so as to make the periods of the tautological
line bundles integer on the homology basis.

Setting:

� ≡ |z1|2 + |z2|2 + |z3|2; ϒ1,2 = ϒ1,2 = �1,2 (�,ζζζ ) (3.12)

where z1,2,3 are the three complex coordinates and ζζζ = {ζ1, ζ2} the two Fayet-
Iliopoulos parameters. Let us describe the explicit form of these functions. To this
effect let us name ζ1 = p, ζ2 = q, and let us introduce the following blocks:

A =
√

p6
((
2p3q3 + 9p2q�3 + 9pq2�3 + 27�6

)2 − 4
(

p2q2 + 3p�3 + 3q�3
)3)

B = 2p6q3 + 9p5q�3 + 9p4q2�3 + 27p3�6 + A (3.13)

then we have:

�1 (�, p, q) = 3

√
3√2p4q2

3 3√
B�3

+
3√2p3

3√
B

+
3√2p2q
3√
B

+
3√
B

3 3√2�3
+ p2q

3�3 + 1 (3.14)

�2 (�, p, q) = 1

18 62/3B2/3 p�5

⎡
⎣22/3B2/3 + 2 3√

B
(

p2q + 3�3
)

+ 2 3√2p2
(

p2q2 + 3p�3 + 3q�3
)

3√
B�3

⎤
⎦
2/3

×
[
6B2/3 p2�3(p − q) − 3√2B4/3 + 22/3B

(
p2q + 3�3

)

+ 2
3√
2Bp2

(
p4q3 + 3p3q�3 + 6p2q2�3 + 9p�6 + 9q�6

)

−2 22/3 p4
(

p2q2 + 3p�3 + 3q�3
)2]

(3.15)
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3.2 The issue of the Ricci-flat metric

One main question is whether the metric arising from the Kähler quotient, which is
encoded in Eq. (3.11) is Ricci-flat. A Ricci-flat metric on the crepant resolution of
the singularity C3/Z3, namely on OP2(−3), is known in explicit form from the work
of Calabi15 [42], yet it is not a priori obvious that the metric defined by the Kähler
potential (3.11) is that one. The true answer is that it is not, as we show later on. Indeed
we are able to construct directly the Kähler potential for the resolution of Cn/Zn , for
any n ≥ 2, in particular determining the unique Ricci-flat metric on OP2(−3) with
the same isometries as the metric (3.11) and comparing the two we see that they are
different. Here we stress that the metric defined by (3.11) obviously depends on the
level parameters ζ1, ζ2 while the Ricci-flat one is unique up to an overall scale factor.
This is an additional reason to understand a priori that (3.11) cannot be the Ricci flat
metric.

Actually Calabi in [42] found an easy form of the Kähler potential of a Ricci-flat
metric on the canonical bundle of a Kähler–Einstein manifold, and that result applies
to the cases of the canonical bundle of P2. However, in view of applications to cases
where we shall consider the canonical bundles of manifolds which are not Kähler–
Einstein, in the section we stick with our strategy of using the metric coming from the
Kähler quotient as a starting point.

3.2.1 The Ricci-flat metric on Y[3] = OP2(−3)

As we have noticed above the HKLR Kähler metric defined by the Kähler potential
(3.11) depends only on the variable� defined in Eq. (3.12). It follows that the HKLR
Kähler metric admits U(3) as an isometry group, which is the hidden invariance of
�. The already addressed question is whether the HKLR metric can be Ricci-flat. An
almost immediate result is that a Ricci-flat Kähler metric depending only on the sum
of the squared moduli of the complex coordinates is unique (up to a scale factor) and
we can give a general formula for it.

We can present the result in the form of a theorem.

Theorem 3.1 Let Mn be a noncompact n-dimensional Kähler manifold admitting a
dense open coordinate patch zi , i = 1, . . . , n which we can identify with the total space
of the line bundle OPn−1(−n), the bundle structure being exposed by the coordinate
transformation:

zi = ui w
1
n , (i = 1, . . . , n − 1) ; zn = w

1
n (3.16)

where ui is a set of inhomogenous coordinates for P
n−1. The Kähler potential Kn

of a U(n) isometric Kähler metric on Mn must necessarily be a real function of the

15 Such metrics were also re-discovered in the physics literature in [52].
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unique real variable � = ∑n
i=1 |zi |2. If we require that metric should be Ricci-flat,

the Kähler potential is uniquely defined and it is the following one:

Kn(�) = k +
(�n + �n)−

n−1
n

(
(n − 1) (�n + �n) − �n

(
�−n�n + 1

) n−1
n

2F1
( n−1

n , n−1
n ; 2n−1

n ;−�n�−n
))

n − 1

(3.17)

where k is an irrelevant additive constant and � > 0 is a constant that can be reab-
sorbed by rescaling all the complex coordinates by a factor �, namely zi → �z̃i .

Proof 3.1.1. The proof of the above statement is rather elementary. It suffices to recall
that theRicci tensor of anyKählermetricgi j
 = ∂i∂ j
K(z, z̄) can always be calculated
as follows:

Rici j
[g] = ∂i ∂ j
 log
[
Det
[
g
]]

(3.18)

In order for the Ricci tensor to be zero it is necessary that Det
[
g
]
be the square

modulus of a holomorphic function |F(z)|2, on the other hand under the hypotheses
of the theorem it is a real function of the real variable �. Hence it must be a constant.
It follows that we have to impose the equation:

Det
[
g
] = �2 = const (3.19)

Let K(�) be the sought for Kähler potential, calculating the Kähler metric and its
determinant we find:

Det
[
g
] = �n−1K(�)′

(
�2K(�)′′ + �K(�)′

)
(3.20)

Inserting Eq. (3.20) into Eq. (3.19) we obtain a nonlinear differential equation for
K(�) of which Eq. (3.17) is the general integral. This proves the theorem. ��

3.2.2 Particular cases

It is interesting to analyze particular cases of the general formula (3.17).
The case n = 2: Eguchi- Hanson. The case n = 2 yielding a Ricci flat metric on
OP1(−2) is the Eguchi-Hanson case namely the crepant resolution of the Kleinian
singularity C2/Z2. This is known to be a HyperKähler manifold and all HyperKähler
metrics are Ricci-flat. Hence also the HKLR metric must be Ricci-flat and identical
with the one defined by Eq. (3.17). Actually we find:

K2(�) =
(
�2 + �2

)− 1
2

((
�2 + �2

)
− �2

(
�−2�2 + 1

) 1
2

2F1

(
1

2
,
1

2
; 3
2
; −�2�−2

))

=
√
�2 + �2 − � log

(√
�2 + �2 + �

)
+ � log(�) + const (3.21)

which follows from the identification of the hypergeometric function with combina-
tions of elementary transcendental functions occurring for special values of its indices.
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The second transcription of the function is precisely theKähler potential of theEguchi–
Hanson metric in its HKLR-form as it arises from the Kronheimer construction (see
for instance [6]).
The case n = 3:OP2(−3). The next case is that of interest for the D3-brane solution.
For n = 3, setting � = 1, which we can always do by a rescaling of the coordinates,
we find:

KR f lat (�) =
2
(
�3 + 1

)−
(

1
�3 + 1

)2/3
2F1

(
2
3 ,

2
3 ; 5

3 ;− 1
�3

)

2
(
�3 + 1

)2/3

=
2(�3 + 1) − 2F1

(
2
3 , 1; 5

3 ; 1
�3+1

)

2
(
�3 + 1

)2/3 (3.22)

The second way of writing the Kähler potential follows from one of the standard
Kummer relations among hypergeometric functions. There is a third transcription
that also in this case allows to write it in terms of elementary transcendental functions.
Before considering it, we use Eq. (3.22) to study the asymptotic behavior of the Kähler
potential for large values of �. We obtain:

KR f lat (�)
�→∞≈ � − 1

6�2 + 1

45�5
+ O

(
1

�7

)
(3.23)

Equation (3.23) shows that the Ricci-flat metric is asymptotically flat since the Kähler
potential approaches that of C3.

As anticipated, there is an alternative way of writing the Kähler potential (3.22)
which is the following:

KR f lat (�) = π

2
√
3

+ 1

6

(
6

3
√
�3 + 1 + 2 log

(
3
√
�3 + 1 − 1

)

− log

((
�3 + 1

)2/3 + 3
√
�3 + 1 + 1

)
− 2

√
3 tan−1

(
2 3
√
�3 + 1 + 1√

3

))

(3.24)

The identity of Eq. (3.24) with Eq. (3.22) can be worked with analytic manipulations
that we omit. The representation (3.24) is particularly useful to explore the behavior
of the Kähler potential at small values of �. We immediately find that:

KR f lat (�)
�→0≈ log[�] + π

2
√
3

+ O
(
�6
)

(3.25)

The behavior of KR f lat (�) is displayed in Fig. 3.
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Fig. 3 The plot of the Kähler potential KR f lat (�) for the Ricci-flat metric on O
P2 (−3). The asymptotic

flatness of the metric is evident from the plot. For large values of�, it becomes a straight line with angular
coefficient 1

3.3 The harmonic function in the case Y[3] = OP2(−3)

Let us now consider the equation for a harmonic function H(z, z̄) on the background
of the Ricci-flat metric of Y[3] that we have derived in the previous sections. Once
again we suppose that H = H(�) is a function only of the real variable �, viz.
R = √

�. For the Ricci-flat metric the Laplacian equation takes the simplified form:

∂i

(
gi j
 ∂ j
 H(�)

)
= 0, since the determinant of the metric is constant. Using the

Kählermetric that follows from theKähler potential K R f lat (�) defined by Eqs. (3.22),
(3.24), we obtain a differential equation that upon the change of variable � = 3

√
r

takes the following form:

3r(r + 1)C ′′(r) + (5r + 3)C ′(r) = 0 (3.26)

The general integral Eq. (3.26) is displayed below:

C(r) = κ + λ

(
log
(
1 − 3

√
r + 1

)
− 1

2
log
(
(r + 1)2/3 + 3

√
r + 1 + 1

)

−√
3 tan−1

(
2 3
√

r + 1 + 1√
3

))
(3.27)
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Fig. 4 The plot of the harmonic function Hres (R) for the Ricci-flat metric onO
P2 (−3)

κ, λ being the two integration constants. We fix these latter with boundary conditions.
We argue in the following way: If the transverse space to the brane were the original
C
3/Z3 instead of the resolved varietyOP2(−3), then the harmonic function describing

the D3-brane solution would be the following:

Horb(R) = 1 + 1

R4 ; R ≡ √
� =

√√√√ 2∑
i

|zi |2 = 6
√

r (3.28)

The asymptotic identification for R → ∞ of the Minkowski metric in ten dimension
would be guaranteed, while at small values of R we would find (via dimensional
transmutation) the standardAdS5-metric times that ofS5 (see the following Eqs. (3.33)
and (3.34)). In view of this, naming R the square root of the variable �, we fix the
coefficients κ, λ in the harmonic function Hres(R) in such a way that for large values
of R it approaches the harmonic function pertaining to the orbifold case (3.28). The
asymptotic expansion of the function: Hres(R) ≡ C(r6) is the following one:

Hres(R)
R→∞≈

(
λ − πκ

2
√
3

)
− 1

2
κ

(
1

R

)4
+ O

((
1

R

)5)
(3.29)

Hence the function Hres(R) approximates the function Horb(R) if we set κ = 2 , λ =
π√
3
. In this way, we conclude that:

Hres(R) = 1

3

(
2 log

(
3
√

R6 + 1 − 1
)

− log

((
R6 + 1

)2/3 + 3
√

R6 + 1 + 1

)

−2
√
3 tan−1

(
2 3
√

R6 + 1 + 1√
3

))
+ π√

3
(3.30)

The overall behavior of the function Hres(R) is displayed in Fig. 4.
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3.4 The asymptotic limits of the Ricci-flat metric for the D3-brane solution on
OP2(−3)

In the case of a standard D3-brane on Y[3] = C
3 � R

6, one writes the same ansatz as
in Eqs. (2.15) and (2.39–2.40) where now the Kähler metric is gαβ
 = δαβ
 Rewrit-
ing the complex coordinates in terms of polar coordinates z1 = eiϕ1 R cosφ, z2 =
eiϕ2 R cosχ sin φ, z3 = eiϕ3 R sin χ sin φ we obtain that:

ds2
C3 ≡

3∑
i=1

|dzi |2 = d R2 + R2 ds2
S5

(3.31)

where:

ds2
S5

= dϕ1
2 cos2 φ + sin2 φ

(
dϕ2

2 cos2 χ + dϕ3
2 sin2 χ + dχ2

)
+ dφ2 (3.32)

is the SO(6)-invariant metric of a 5-sphere in polar coordinates. In other words, the
Ricci-flat Kähler metric ds2

C3 (which is also Riemann-flat) is that of the metric cone

on the Sasaki–Einstein metric of S5. At the same time, the SO(6)-invariant harmonic
function on C

3 is given by the already quoted Horb(R) in (3.28), and the complete
10-dimensional metric of the D3-brane solution takes the form:

ds210|orb = 1√
1 + 1

R4

ds2Mink1,3 +
√
1 + 1

R4

(
d R2 + R2 ds2

S5

)
(3.33)

For R → ∞, the metric (3.33) approaches the flat Minkowski metric in d = 10, while
for R → 0 it approaches the following metric:

ds210|orb
R→0≈ R2 ds2Mink1,3 + d R2

R2︸ ︷︷ ︸
AdS5

+ ds2
S5︸︷︷︸

S5

(3.34)

Let us now cosider the asymptotic behavior of the Ricci-flat metric on OP2(−3). In
order to obtain a precise comparison with the flat orbifold case, the main technical
point is provided by the transcription of the S

5-metric in terms of coordinates well
adapted to the Hopf fibration:

S
5 π−→ P

2; ∀ p ∈ P
2 π−1(p) ∼ S

1 (3.35)

To this effect let Y = {u, v} be a pair of complex coordinates for P2 such that the
standard Fubini-Study metric on this compact twofold is given by:

ds2
P2

= gP
2

i j
 dY i dȲ j
 ≡ dY · dȲ

1 + Y · Ȳ
−
(
Ȳ · dY

) (
Y · dȲ

)
(
1 + Y · Ȳ

)2 (3.36)
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the corresponding Kähler 2-form being KP2 = i
2π gP

2

i j
 dY i ∧ dȲ j
 . Introducing

the one form: � = i(Y ·dȲ−Ȳ ·dY)
2(1+Y ·Ȳ) whose exterior derivative is the Kähler 2-form,

d� = 2π KP2 , themetric of the five-sphere in terms of these variables is the following
one:

ds2
S5

= ds2
P2

+ (dϕ + �)2 (3.37)

where the range of the coordinate ϕ spanning the S1 fiber is ϕ ∈ [0, 2π ]. In this way,
the flat metric on the metric cone on S

5, namely (3.31) can be rewritten as follows:

ds2
C3 = d R2 + R2 ds2

P2
+ R2 (dϕ + �)2 (3.38)

3.4.1 Comparison of the Ricci-flat metric with the orbifold metric

In order to compare the exact Ricci-flat metric streaming from the Kähler potential
(3.22) with the metric (3.12), it suffices to turn to toric coordinates

z1 = u 3
√
w , z2 = v 3

√
w , z3 = 3

√
w; � = (1 + �) f1/3;

� = |u|2 + |v|2; f = |w|2 (3.39)

The toric coordinates {u, v} ≡ Y span the exceptional divisor P2 while w is the fiber
coordinate in the bundle. Setting:

w = eiψ |w| = eiψ
(

R2

1 + |u|2 + |v|2
) 3

2
(3.40)

we obtain:

ds2R f lat = h(R)d R2 + f (R) ds2
P2

+ g(R) (dψ + 3�)2

f (R) = 3
√

R6 + 1; h(R) = R4

(
R6 + 1

)2/3 ; g(R) = R6

9
(
R6 + 1

)2/3 (3.41)

From Eq. (3.41), we derive the asymptotic form of the metric for large values of R,
namely:

ds2R f lat
R→∞≈ d R2 + R2ds2

P2
+ R2

(
dψ

3
+ �

)2
(3.42)

The only difference between Eqs. (3.38) and (3.42) is the range of the angular value
ϕ = ψ

3 . Because of the original definition of the angle ψ , the new angle ϕ ∈ [0, 2π
3

]
takes one third of the values. This means that the asymptotic metric cone is quotiened
by Z3 as it is natural since we resolved the singularity C

3/Z3.
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3.4.2 Reduction to the exceptional divisor

The other important limit of the Ricci-flat metric is its reduction to the exceptional
divisor ED. In the present case the only fixed point for the action of � = Z3 on
C
3 is provided by the origin z1,2,3 = 0 which, comparing with Eq. (3.39), means

w = 0 ⇒ f = 0. This is the equation of the exceptional divisor which is created by
the blowup of the unique singular point. In the basis of the complex toric coordinates
Y i ≡ {u, v, w}, the Kähler metric derived from the Kähler potential (3.22) has the
following appearance:

gR f lat
i j
 =

⎛
⎜⎜⎜⎜⎜⎜⎝

vv̄+f(�+1)4+1

(�+1)2(f(�+1)3+1)
2/3 − vū

(�+1)2(f(�+1)3+1)
2/3

w(�+1)2ū

3(f(�+1)3+1)
2/3

− uv̄
(�+1)2(f(�+1)3+1)

2/3
uū+f(�+1)4+1

(�+1)2(f(�+1)3+1)
2/3

w(�+1)2v̄
3(f(�+1)3+1)

2/3

u(�+1)2w̄
3(f(�+1)3+1)

2/3
v(�+1)2w̄

3(f(�+1)3+1)
2/3

(�+1)3

9(f(�+1)3+1)
2/3

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.43)

where the invariants f,� are defined in equation (3.39). Hence the reduction in the
metric to the exceptional divisor is obtained by setting dw = dw̄ = 0 in the line
element ds2R f lat ≡ gR f lat

i j
 dY i dȲ j
 and performing the limit f → 0 on the result.
We obtain:

ds2R f lat
ED−→ ds2

P2
≡ dv (dv̄ + u ūdv̄ − uv̄ dū) + du (dū + v v̄dū − ū v dv̄)

(1 + uū + vv̄)2

(3.44)

which is the standard Fubini–Study metric on P2 obtained from the Kähler potential:

KF S
P2

(�) = log (1 + �) (3.45)

Aswe see, themetric on the exceptional divisor obtained from the Ricci-flat metric has
no memory of the Fayet Iliopoulos (or stability parameters) p, q which characterize
instead the HKLRmetric obtained from the Kronheimer construction. This is obvious
since theRicci-flatmetric does not dependon p, q.On the other hand theHKLRmetric,
that follows from the Kähler potential (3.11), strongly depends on the Fayet Iliopoulos
parameters ζ1 = p , ζ2 = q and one naturally expects that the reduction of ds2H K L R
to the exceptional divisor will inherit such a dependence. Actually this is not the case
since the entire dependence from p, q of the HKLR Kähler potential, once reduced
to ED, is localized in an overall multiplicative constant and in an irrelevant additive
constant. This matter of fact is conceptually very important in view of our conjecture
that the Ricci-flat metric is completely determined, by means of the Monge–Ampère
equation, from the Kähler metric on the exceptional divisor, as it is determined by the
Kronheimer construction. In the present case where, up to a multiplicative constant,
i.e., a homothety there is only one Ricci-flat metric on OP2(−3) with the prescribed
isometries, our conjecture might be true only if the reduction of the HKLR metric to
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the exceptional divisor is unique and p, q-independent, apart from overall rescalings.
It is very much reassuring that this is precisely what actually happens.

4 The case Y → C
3/Z4 and the general problem of determining a

Ricci-flat metric

The next case of interest to us at present is the resolution Y → C
3/Z4 whose asso-

ciated Kronheimer construction was studied in detail in [7]. (A study of C3/Z4 as
a noncomplete intersection affine variety in C

9 is presented in Appendix.) The cor-
responding MacKay quiver is displayed in Fig. 5. Differently from the case of the
resolution Y → C

3/Z3 studied in Sect. 3, here the HKLR Kähler metric cannot be
derived explicitly since the moment map equations form a system of algebraic equa-
tions of higher degree. Yet as it was explained in [7] one can work out the restriction of
such metric to the compact component of the exceptional divisor which is the second
Hirzebruch surface F2. Indeed, it was shown that the quotient singularity C

3/Z4 can
be completely resolved by totKF2 [7], that denotes the total space of the canonical
bundle over the second Hirzebruch surface.

Hence, themain goalwewould like to achieve is the construction of aRicci-flatKäh-
ler metric on totKF2 which restricted to the base F2 of the bundle hopefully coincides
with Kähler metric on the same surface provided by the Kronheimer construction.

Being a noncompact Calabi–Yau variety the existence of a Ricci-flat Kähler met-
ric on totKF2 is not implied by the classic Yau theorem, valid for smooth compact
manifolds. To ask whether Ricci-flat metrics do exist, one has to specify boundary
conditions. We will be interested in metrics that, just as in the previous example, are
asymptotically conical, namely of the form16

ds2(Y ) ≈ d R2 + R2ds2(X5) (4.1)

for a suitable radial coordinate approaching R → ∞. Essentially by definition,
ds2(X5) is a Sasaki–Einstein metric on a compact manifold (or orbifold) X5. Then
we fix the boundary conditions for our metric by requiring that asymptotically it
approaches the cone over S5/Z4. With this boundary condition17 the theorems in
[28] imply the existence of a unique Ricci-flat Kähler metric in every Kähler class of
the resolved variety Y . Analogous existence results for isolated quotient singularities
C

m/� were given in [44] and later extended in [45] and [46] for crepant resolu-
tions of general isolated conical singularities. See also [47] for of applications of the
general existence results in the toric context, including the resolution of the conical
singularities on the Y p,q Sasaki–Einstein five-manifolds [48].

The existence results are analogous to Yau’s theorem in the compact case. In fact,
recently there has been some renewed interest and activity in this area, with some new
results concerning for example the existence of Sasaki–Einsteinmanifolds, outside the

16 Note that without specifying the boundary conditions there can exist more than one Ricci-flat metric.
Explicit examples of nonasymptotically conical Ricci-flat metrics in six real dimensions can be found in
[43].
17 The results in [28] require some more precise estimate on the fall-off of the metric at infinity.
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U1(1) U2(1) D2D1

U0(1) U3(1) D3D0

Fig. 5 The quiver diagram describing the C3/Z4 singular quotient and codifying its resolution via Kähler
quotient à la Kronheimer. The same quiver diagram codifies the construction of the corresponding gauge
theory for a stack of D3-branes. Each node is associated with one of the 4 irreducible representations of Z4
and in each node we located one of the Ui(1) groups with respect to which we perform the Kähler quotient.
This is the case of one D3-brane. For N D3–branes, all gauge groups Ui(1) are promoted to Ui(N)

toric realm. These results are related to the idea of “stability”. For reference, recent
work on this subject include [49,50].

For many purposes, knowledge of the existence of a metric, together with some
of its key properties, can be sufficient for extracting interesting physical information.
This is true also in the case of the AdS/CFT correspondence. However, if one is
interested in constructing the metrics explicitly, namely write them down in some
coordinate systems, then the existence theorems are not helpful, because they are not
constructive (as far as we know).

The classic examples of explicit Ricci-flat Kähler metrics in real dimension
four include Eguchi-Hanson, Gibbons-Hawking, Taub-NUT, Atiyah-Hitchin. In real
dimension six, for a long time the resolved and deformed metrics on the conifold sin-
gularity constructed by Candelas and de la Ossa [51] were the only (nontrivial) known
examples of explicit Ricci-flat Kähler metrics. The so-called resolved conifold metric
is a metric on the total space of the vector bundleO(−1)⊕O(−1) → P

1, the isometry
group is SU(2) × SU(2) × U(1) and asymptotically it approaches the cone over the
Sasaki–Einstein manifold T1,1 (with the same isometry). In other cases, different kind
of resolutions exist, where instead of a P1 one replaces the singularity with a compact
four-dimensional manifold (or orbifold) M4. A general ansatz that yields explicit
Ricci-flat Kähler metrics was constructed by Page and Pope (in any dimension) [52],
but this is somewhat limited as it assumes that the metric induced on M4 is Kähler–
Einstein. Explicit Kähler–Einstein metrics on smooth four-dimensional manifolds are
known only for M4 = P

2 and M4 = P
1 × P

1. The former leads to the construc-
tion of an explicit Ricci-flat Kähler metric on the total space of OP2(−3) � totKP2 ,
which is the resolution of the quotient singularity C

3/Z3 and was fully described in
Sect. 3 (see also [42]). The latter leads to the construction of an explicit Ricci-flat
Kähler metric on the total space of totKP1×P1 , which is the resolution of the conical
singularity (conifold)/Z2. The corresponding Sasaki–Einstein manifolds at infinity
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are, respectively, S5/Z3 and T1,1/Z2. For the case of totKP1×P1 , a generalization
was constructed [53], namely an explicit Ricci-flat Kähler metric that depends on
the two independent Kähler classes parameters: This construction, however, uses the
SU(2) × SU(2) × U(1) symmetry and as a result the metric is co-homogeneity one,
although it does not fit in the ansatz of [42,52]. Recently, the ansatz of [42,52] was used
to produce explicit Ricci-flat Kähler metrics on the canonical bundle of generalized
flag manifolds [54]. Extensions that include the dependence on several Kähler class
parameters have appeared in [55,56].

4.1 The Ricci-flat Kähler metric on totKF1

The metric that we shall present in the sequel has some distinctive features that are
shared with an explicit Ricci-flat Kähler metric on totKF1 , where F1 is the first Hirze-
bruch surface, i.e., the first del Pezzo surface dP1, constructed in [57]. This metric is
many ways “more complicated” than all the other metrics mentioned above. Let us
summarize some of its salient properties:

1. Asymptotically it approaches the cone over the Sasaki–Einstein manifold18 Y 2,1.
2. The isometry group is SU(2) × U(1) × U(1).
3. It is cohomogeneity two. In particular, there is a homogeneous base, given by a

round P
1, and then the metric depends nontrivially on two coordinates.

4. It is toric, in that there is a U(1)3 ∈ SU(2) × U(1) × U(1) subgroup of isometries
that leaves invariant the Kähler form, and contains the torus of the toric threefold
totKF1 . This group allows one to introduce three moment map coordinates and
three angular coordinates (“action-angle” coordinates system).

5. It also possesses an additional “hidden symmetry” corresponding to the existence
of a so-called Hamiltonian two-form [14], that implies the existence of a coordinate
system (called “orthotoric”) in which the metric components are all given in terms
of functions of one variable.

6. Imposing this extra symmetry, however, comes at the price of loosing one of the
two Kähler class parameters. Indeed it was later demonstrated in [29] that the two-
parameter metric (that is known to exist thanks to the general theorems of [45,46])
does not posses such Hamiltonian two-form.

7. The metric induced on exceptional divisor M4 = F1 is obviously Kähler, but it is
not Einstein. Indeed, a Kähler–Einstein metric on F1 does not exist.

8. In [14] (further explored in detail in [59]), it was shown that this metric is part of
a family of (in general only partial19) resolutions of the conical Ricci-flat metrics
on the whole family of Y p,q Sasaki–Einstein manifolds.

9. In [29]„ it is given a relation between the orthotoric coordinates and a set of com-
plex coordinates that is well adapted to the complex structure of totKF1 , with one

18 Incidentally, Y 2,1 can also be viewed as circle bundle over F1. See Sect. 5 of [58].
19 This means that for general p and q the compact divisor M4 has orbifold singularities [14,59]. This
is because the metric ansatz is “too simple” to account for all the necessary Kähler class parameters; but
completely resolved metrics are known to exist [47]. For the special case p = 2 and q = 1 the metric
is completely smooth. We also note that in [14] were constructed different types of partial resolutions,
corresponding to various “chambers”. Moreover, the paper discusses the case of general dimension, while
for our purposes, we shall focus on the case of real dimension d = 6.
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complex coordinate on the noncompact fiber C, one coordinate on the fiber P1 in
F1 and one coordinate on the base P1 in F1.

10. A set of local complex coordinates explicitly related to the orthotoric coordinates
was given in Sect. 2.2 of [14]. It would be interesting to work out the relation
between these and the complex coordinates defined in [29].

Since, similarly to F1, also F2 does not admit a Kähler–Einstein metric, the Ricci-flat
metric on totKF2 cannot be found through the Calabi ansatz [42,52]. We expect the
Ricci-flat metric on totKF2 to share many features with that on totKF1 , summarized
above. One difference is that at infinity it must approach the cone over the Sasaki–
Einstein orbifold S

5/Z4, as opposed to the cone over the Sasaki–Einstein manifold
Y 2,1. The Ricci-flat metric on totKF2 will also be toric and moreover it should have
again isometry group SU(2) × U(1) × U(1). This immediately implies that the metric
should be co-homogeneity two and in practice it leads to PDE’s in two variables. For
example, one can write theMonge–Ampere equation for the Kähler potential as a PDE
in two variables, or similarly the corresponding equation for the symplectic potential.
Without further assumptions, these equations are unlikely to be solvable in closed
form.

A natural assumption to make is that the metric admits a Hamiltonian two-form,
namely that it can be put in the orthotoric form. This is natural because the partial
resolution of all the Y p,q singularities arise in this ansatz, with p = 2, q = 1 giving
the complete resolution above. Strictly speaking the p > q > 0 should hold, however,
it is known that by performing a scaling limit of the Y p,q Sasaki–Einstein metrics, one
can recover the limiting cases Y p,p = S

5/Z2p and Y p,0 = T1,1/Zp, suggesting that
the partial resolution metrics may also be extended to these regimes of parameters.20.

5 A general set up for a metric ansatz with separation of variables

In the sequel, we begin by considering a metric on a 6-dimensional manifold M6
which is Kähler and by construction admits SU(2)×U(1)×U(1) as an isometry group.
This metric depends on two functions ϒ(s) and P(t) of two real coordinates s, t
invariant with respect to the isometry group. The other coordinates are four angles,
with ranges and periodicities specified according with the following summary table:

s ≤ −3 , − 3
2 ≤ t ≤ 0, 0 ≤ θ ≤ π, φ ∈ [0, 2π ] , τ ∈ [0, 2π ] , χ ∈ [0, 3

2π ] (5.1)

The metric, which is defined by means of the following vielbein

E1 = 1

2

√
stdθ

E2 = 1

2

√
st sin θdφ

E3 = 1

2

√
s − t

3 + s
ϒ(s)ds

20 In fact, in Appendix A of [14] the metric ansatz of [52] is recovered in a limit.
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E4 = 1

2

√
t − s P(t) dt

E5 = − 1√
s−t
3+s ϒ(s)

[
−1

2
t

(
dτ + (1 − cos θ)dφ − 2dχ

3

)
+ dχ

]

E6 = − 1√
t − s P(t)

[
−1

2
s

(
dτ + (1 − cos θ)dφ − 2dχ

3

)
+ dχ

]
(5.2)

is derived, by generalization, from the orthotoric metrics discussed in21 [14,59] where
the relation of latter with the metrics on Sasakian 5-manifolds Y p,q is also presented.
Although in those references„ it was assumed that p > q and presently, we will
consider setting p = q = 2 and show that this yields an orthotoric metric that we
shall identify as a Ricci-flat Kähler metric on totKWP[112]. The asymptotic metric
corresponds to a cone over the limiting case Y 2,2 = S

5/Z4 of the Sasaki–Einstein
manifolds Y p,q [48].

The line-element:

ds2ort =
6∑

i=1

(
Ei
)
2 (5.3)

= 1

4
s t
(

dθ2 + sin2 θdφ2
)

+ (s − t)ϒ(s)2

4(3 + s)
ds2 + 1

4
(t − s)P(t)2 dt2

+ (3 + s)

(s − t)ϒ(s)2

[
−1

2
t

(
dτ + (1 − cos θ)dφ − 2dχ

3

)
+ dχ

]2

+ 1

(t − s)P(t)2

[
−1

2
s

(
dτ + (1 − cos θ)dφ − 2dχ

3

)
+ dχ

]2
(5.4)

is Kählerian by construction since it admits the following closed Kähler 2-form:

Kort = E1 ∧ E2 + E3 ∧ E5 + E4 ∧ E6

= 1

2

{
t

[
−1

2
cos θds ∧ dφ + 1

2

(
ds ∧ dτ − 2

3
ds ∧ dχ

)
+ 1

2
ds ∧ dφ

]
− ds ∧ dχ

}

+1

2

{
s

[
−1

2
cos θdt ∧ dφ + 1

2

(
dt ∧ dτ − 2

3
dt ∧ dχ

)
+ 1

2
dt ∧ dφ

]
− dt ∧ dχ

}

+1

4
st sin θdθ ∧ dφ (5.5)

Indeed Kort is closed by construction„ and it is a Kähler 2-form since we have:

Kort = 1

2

6∑
i=1

6∑
j=1

JijE
i ∧ E j (5.6)

21 In particular, see the line element (4.1) in [59], after correcting some typos in that expression. The relation
to our coordinates is given by t = y − 1, s = x − 1. Moreover, we have θhere = θthere, φhere = φthere, as
well as χhere = τthere, τhere = 2ψthere + 2

3 τthere.
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where:

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

; J
2 = −1 (5.7)

is an antisymmetric tensor which squares to minus the identity, namely it is a frame-
index complex structure tensor.

It should be noted that the Kähler form in Eq. (5.5) is independent from the two
functions ϒ(s) and P(t), namely it is universal for an entire class of metrics.

5.1 The orthotoric metric on tot KWP[112]

Within the general scope of the above described setup we have that the metric (5.4)
is Ricci-flat for the following choice of the two functions parameterizing the line-
element:

ϒ(s) =
√ −s

2
3 s2 − s + 3

; P(t) = 1√
− 2

3 t2 − t
(5.8)

With the choice (5.8), from Eq. (5.4), we obtain:

ds2totKWP[112] = 1

4

⎧⎨
⎩
4
(
2s2
3 + s + 9

s

) [( t
3 + 1

)
dχ − 1

2 t[(1 − cos θ)dφ + dτ ]]2

t − s

+4t(2t + 3)
([ s

3 + 1
)

dχ − 1
2 s[(1 − cos θ)dφ + dτ ]]2

3(s − t)

+st
(
sin2 θdφ2 + dθ2

)
+ ds2(t − s)

2s2
3 + s + 9

s

+ 3dt2(s − t)

t(2t + 3)

}
(5.9)

The reason for the subscript totKWP[112] is that the Ricci flat metric (5.9) turns out
to be defined over the total space of the canonical bundle of the (singular) projective
space WP[112] namely on totKWP[112].

It is a simple matter to verify that asymptotically, for s → −∞, the metric (5.9) is
indeed approximatively conical, and therefore Quasi-ALE [28]. To see this, one can
set s = − 2

3 R2, so that

ds2totKWP[112]
R→∞≈ d R2 + R2ds2X5

(5.10)
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at leading order in R. Since the metric is Ricci-flat Kähler, and it takes the form of a
cone over a five-dimensional space, it follows that locally the five-dimensional metric
ds2X5

is a Sasaki–Einstein metric. In appendix B we discuss the metric ds2X5
in more

detail, showing that X5 = S
5/Z4, with a specific Z4 action.

As we will show in sect. 8, the metric induced by (5.9) on the exceptional divisor
WP[112] is the same as the one obtained on that space while resolving a C

3/Z4
orbifold singularity by means of the Kronheimer construction localized on the unique
type III wall W2 displayed by its chamber structure (see sect. 6.4 of [7]).

5.2 Integration of the complex structure and the complex coordinates

In their algebraic geometry description, the varieties of the type here considered are
complex threefoldK3 that are canonical bundles of some compact Kähler twofoldD2
which, on its turn, is the total space of a line-bundle over P1:

M6 = K3
π−→ D2

π̃−→ P1 (5.11)

This hierarchical structure implies a hierarchy in the complex coordinates that can be
organized and named in the following way according with the nomenclature of [7]:

u = coordinate on the P1 base of D2 ; v = coordinate on the fibers of D2
w = coordinate on the fibers of K3

(5.12)

This structure is reflected in the integration of the complex structure that canbededuced
from the combination of the Kähler 2-form with the metric.

5.2.1 The path to the integration

Indeed, having the metric and the Kähler form we can construct the complex structure
tensor. Then we try to integrate the complex structure we have found. This is very
important in order to organize the fibred structure of the manifold. First from Eq. (5.2),
one reads off the vielbein Ei

μ defined as:

EEEi = Ei
μdxμ; xμ = {s, t, θ, φ, τ, χ} (5.13)

The 6× 6 matrix Ei
μ depends only on the s, t variables and on the angle θ (as we will

see θ can be traded for the coordinate ρ = tan θ
2 and in the symplectic formalism it

is a moment variable). The true angular variables are the phases of the three complex
coordinates namely φ, τ , χ . As a next step, one introduces the inverse vielbein which
is just the matrix inverse of Ei

μ according with the definition

Ei
μEμ

j = δi
j (5.14)

This enables us to write the differentials of the coordinates as linear combinations of
the vielbein dxμ = Eμ

j EEEi .
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The complex structure tensor in coordinate indices JW. Using the viel-
bein matrix and its inverse„ we can convert the frame indices of the complex structure
tensor to coordinate ones and we get:

JWμ
ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1
3ϒ(s)2 − sϒ(s)2

6+2s
0 0 0 0 − 1

3 (3 + t)P(t)2 − 1
2 t P(t)2

0 0 0 csc θ − tan θ
2 0

− 2(3+s)t sin2 θ
2

(s−t)ϒ(s)2
− 2s sin2 θ

2
(t−s)P(t)2

− sin θ 0 0 0

− (3+s)t
(s−t)ϒ(s)2

− s
(t−s)P(t)2

0 0 0 0
2(3+s)(3+t)
3(s−t)ϒ(s)2

2(3+s)
3(t−s)P(t)2

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.15)

5.2.2 Integration of the autodifferentials

The matrix JW has three eigenvectors corresponding to the eigenvalue i and three
corresponding to the eigenvalue−i (their complex conjugates). The three eigenvectors
corresponding to i are the rows of the following matrix

Y i
μ =

⎛
⎜⎝

isϒ(s)2

6+2s
1
2 it P(t)2 0 0 0 1

1
3 iϒ(s)2 1

3 i(3 + t)P(t)2 i tan θ
2 0 1 0

0 0 −i csc θ 1 0 0

⎞
⎟⎠ (5.16)

combining with the differentials dY i = Y i
μdxμ we obtain three closed one-forms

d
(
dY i
) = 0 that can be integrated to yield the three-complex variables u, v and w.

The coordinate u is obtained from the integration of dY 3:

u = exp i
∫
(−i csc θdθ + dφ) = tan

θ

2
eiφ (5.17)

The coordinate v is obtained from the integration of dY 2:

v = exp i
∫ (

dτ + 1

3
i(3 + t)P(t)2 dt + i tan

θ

2
dθ + 1

3
iϒ(s)2 ds

)

= cos2
θ

2
H(t)#(s)eiτ (5.18)

where we have introduced the following new functions of t and s:

H(t) = exp

(
−1

3

∫ t

const
(3 + x)P(x)2dx

)
; #(s) = exp

(
−1

3

∫ s

−∞
ϒ(x)2 dx

)

(5.19)
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The coordinatew is obtained from the integration of dY 1. Here we are not assisted
by SU(2) invariance to define the exact coefficient in front of the differential. We
choose a coefficient that appears reasonable from the result and what we obtain is
either the coordinate w of other approaches or a power wa . In the sequel comparing
with the construction from the iterative procedure, we will see what is the correct
identification of the power a. At the beginning, our educated guess suggests the use
of a coefficient 4/3. So we set

w = exp i
4

3

∫ (
dχ + 1

2
i t P(t)2dt + i s ϒ(s)2

6 + 2s
ds

)
= �(s)K (t)ei

4
3χ (5.20)

where we have introduced the new functions:

�(s) = exp

(
−2

3

∫ s

−∞
x

x + 3
ϒ(x)2dx

)
; K (t) = exp

(
−2

3

∫ t

const
x P(x)2 dx

)

(5.21)

One necessary property that must be possessed by the function �(s) is:

�(−3) = 0 (5.22)

which defines the exceptional divisor at w = 0
Notice that with the ranges of the coordinates that we specified in (5.1), we see that

u is a complex coordinate on a P
1, while ν and w are complex coordinates on two

copies of C.

6 AMSY symplectic formalism and transcription of themetric in this
formalism

According to the formalism introduced by Abreu [60] and developed by Martelli,
Sparks and Yau [61], in the case of toric Kähler varieties of complex dimension n, one
can find moment maps μi and angular variables�i such that the Kähler 2-form takes
the universal form:

K =
n∑

i=1

dμi ∧ d�i (6.1)

At the same time there exist a function G(μi ) of the n real moment variables, named
the symplectic potential, such that the metric takes the following universal form:

ds2symp = Gi j dμ
i dμ j +

(
G−1

)
i j d�i d� j (6.2)

where by definition: Gi j ≡ ∂i, j G is the Hessian of the symplectic potential and(
G−1

)
i j is the inverse of the Hessian matrix.
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In our case the three angular variables are ��� = {φ, τ, χ} and the Kähler form is
given by K as defined in Eq. (5.5). Transforming the pseudo angle θ to the variable ρ
by setting θ = 2 arctan ρ and implementing such change of variables in the Kähler
form we obtain:

K = 1

12

[
3tds ∧ dτ + 6tρ2ds ∧ dφ

1 + ρ2
− 2(3 + t)ds ∧ dχ

+3s

(
dt ∧ dτ + 2ρ2dt ∧ dφ

1 + ρ2

)

−2(3 + s)dt ∧ dχ + 12stρdρ ∧ dφ(
1 + ρ2

)2
]

(6.3)

which is compatible with Eq. (6.1) if the coefficient of each of the three angular
variables τ , χ , φ is a closed differential that can be integrated to a single new moment
coordinate function of the real coordinates ρ, s, t . Hence we introduce the vector of
moments:

μ = {u, v,w} (6.4)

and the Kähler 2-form (6.3) can be rewritten as:

K = du ∧ dφ + dv ∧ dτ + dw ∧ dχ (6.5)

provided we have defined the coordinate transformation:

u = s t ρ2

2 + 2ρ2
; v = s t

4
; w = 1

6
(−3t − s(3 + t)) (6.6)

The unique inverse transformation of the above coordinate change is the following
one:

ρ =
√
u√−u+2v

; t = 1
6

(
−4v − 6w +√−144v + (4v + 6w)2

)

s = 1
3

(
−2v − 3w −√4(−9 + v)v + 12vw + 9w2

) (6.7)

The new real coordinates are named u,v,w with gothic letters since they are the sym-
plectic counterparts of the complex coordinates u, v, w yet, differently from the latter,
we do not need the complex structure to find them and hence they are independent
from the metric.
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6.1 Transcription of themetric in the toric symplectic form

At this point, we try to rewrite the metric depending on the two functions:

M(s, t) ≡
√

s − t

3 + s
ϒ(s); �(s, t) ≡ √

t − s P(t) (6.8)

in the symplectic form (6.2). Setting:

M(s, t) = M(v,w) ≡ M ; �(s, t) = F(v,w) ≡ F;
� ≡ 4(−9 + v)v + 12vw + 9w2 (6.9)

we easily derive that ds2ort takes the form (6.2) with the following matrix Gi j :

G11 = − v

u2 − 2uv

G12 = 1

u − 2v
G13 = 0

G22 = 1

9

⎡
⎢⎣− 9u

uv − 2v2
+

F2
(
−2v − 3w + √

� + 9
)2

�
+

M2
(
2v + 3w + √

� − 9
)2

�

⎤
⎥⎦

G23 = 1

6�

{
F2
[
8v2 + v

(
24w − 4

√
� − 54

)
− 3(2w − 3)

(√
� − 3w

)]

+M2
[
8v2 + v

(
24w + 4

√
� − 54

)
+ 3(2w − 3)

(
3w + √

�
)]}

G33 = 1

16�

[
4F2

(
−2v − 3w + √

�
)2 + 4M2

(
2v + 3w + √

�
)2]

(6.10)

It remains to be seen if we are able to retrieve the symplectic potential from which the
above matrix is obtained through double derivatives.

With some integrations and some educated guesses, we find that the form (6.10) of
the matrix can be reproduced if we write the symplectic potential as follows:

G(u, v,w) = G0(u, v) + G(v,w) (6.11)

where

G0(u, v) = 1

2
(−u + u log u) − v log v +

(
−u

2
+ v
)
log(−u + 2v) (6.12)

and where G(v,w) is some function of the two fiber coordinates v,w only. With this
choice the matrix G ij becomes:

Gi j =
⎛
⎜⎝

− v
u2−2uv

1
u−2v 0

1
u−2v − u

uv−2v2
+ G(2,0)(v,w) G(1,1)(v,w)

0 G(1,1)(v,w) G(0,2)(v,w)

⎞
⎟⎠ (6.13)
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and the full-fledged expression of the line element can be obtained by substitu-
tion. Comparing the obtained result with Eq. (6.10), we easily see that the functions
M(v,w) = M(s, t) and F(v,w) = �(s, t) can be expressed in terms of the deriva-
tives G(2,0)(v,w), G(0,2)(v,w), but in order to avoid other functions we get a second
order differential constraint on the symplectic potential G(v,w) that relates its mixed
derivatives to G(2,0)(v,w), G(0,2)(v,w). This differential is expressed in a simpler way
by means of the original coordinates s, t . We shall presently derive it. We anticipate
that its solution very strongly limits the possibilities so that it has to be discarded. In
other words, we have to accept a generic function G(v,w) and try to match it with the
boundary conditions on the exceptional divisor.

6.2 Orthotoric separation of variables and the symplectic potential

In order to compare the generic metric in symplectic formalism provided by the
symplectic potential displayed in Eqs. (6.11), (6.12) with the following two-function
metric:22

ds22 f un = 1

4
st
(

dφ2 sin2 θ + dθ2
)

+ 1

M(s, t)2

[
dχ − 1

2
t

(
dφ(1 − cos(θ)) + dτ − 2dχ

3

)]2

+ 1

�(s, t)2

[
dχ − 1

2
s

(
dφ(1 − cos θ) + dτ − 2dχ

3

)]2

+1

4
dt2�(s, t)2 + 1

4
ds2M(s, t)2

(6.14)

we make the following steps. First we regard the function G(v,w) as a function
only of t and s, as it is evident from the transformation rule (6.7), and we write:
G(v,w) ≡ �(t, s). By means of the transformation (6.7), we can rewrite the generic
metric (6.2) produced by the symplectic potential (6.11–6.12) in terms of the variables
s, t , instead of v,w. The result coincides with ds22 f un as given in Eq. (6.14) if the
following conditions hold true:

∂2

∂s2
�(t, s) = 1

4
M(s, t)2; ∂2

∂t2
�(t, s) = 1

4
�(s, t)2

∂

∂s
�(t, s) − ∂

∂t
�(t, s) + (s − t)

∂2

∂s ∂t
�(t, s) = 0 (6.15)

The first two equations in (6.15) just provide the identification of the two functions
M(s, t) and �(s, t) in terms of second order derivatives of the symplectic potential.
On the other hand, the last equation of (6.15) is a very strong constraint on the function
�(t, s) which severely restricts the available choices of �(t, s).

22 At this level we do not require M(s, t) and �(s, t) to have the specific form of Eq. (6.8)
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6.3 The symplectic potential of the Ricci-flat orthotoric metric on totKWP[112]

In the case of the canonical bundle totKWP[112], whose Ricci–flat metric is given by
Eqs. (5.9), (5.8) imply

�(0,2)(t, s) = (s − t)ϒ(s)2

4(s + 3)
= − s(s − t)

4(s + 3)
(
2s2
3 − s + 3

)

⇒ ϒ(s)2 = s(
2s2
3 − s + 3

)

�(2,0)(t, s) = 1

4
P(t)2(t − s) = s − t

4
(
2t2
3 + t

)

⇒ P(t)2 = − 1
2
3 t (t + 3)

(6.16)

By means of two double integrations and modulo linear functions in s, t (they are
irrelevant for the metric), we determine the explicit form of the potential �(t, s):

�WP[112](t, s) = 1

224

{
−7
[
(3t − st + 3s) log(2s2 − 3s + 9)

+2(s + 3)(t + 3) log (s + 3) − 8st log t

+ 2(2s + 3)(2t + 3) log(2t + 3)
]

− 6
√
7(st + s + t − 6) arctan

3 − 4s

3
√
7

}
(6.17)

The function �WP[112](t, s) satisfies by construction the differential constraint
encoded in the third of Eq. (6.16). Using the transformation rule (6.7) we can rewrite
it as a function of the symplectic variables v,w. In this way„ we arrive at the following
symplectic potential where we have used the liberty of adding linear functions of v
or w to obtain the most convenient form of its reduction to the exceptional divisor,
located at w = 3

2 . The function

GWP[112] (v,w) = 1

224

{
7
[
6(2w − 3) log

(
−
√
(2v + 3w)2 − 36v − 2v − 3w + 9

)

+16v log
(√

(2v + 3w)2 − 36v − 2v − 3w
)2

−2(8v − 12w + 9) log

(√
(2v + 3w)2 − 36v − 2v − 3w + 9

2

)

+2(4v + 3w) log

(
1

567

[
4
√
(2v + 3w)2 − 36v + 8v + 12w + 9

]2 + 1

)]

−4
√
7(4v − 3(w + 3)) arctan

(
4
√
(2v + 3w)2 − 36v + 8v + 12w + 9

9
√
7

)

−(8v + 9) log
34359738368

823543
+ 2

√
7(8v − 27) arctan

5√
7

}
(6.18)
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is expressed in terms of elementary transcendental functions, yet it has the remarkable
property of satisfying the Monge–Ampère equation for Ricci-flatness, so that it may
be called “the miraculous function”. On the exceptional divisor it reduces to

DWP[112](v) ≡ GWP[112]
(
v, 3

2

) = 1

16

[
8v log

(
16v2

)
+ (9 − 8v) log

(
9

2
− 4v

)]
. (6.19)

7 Kähler metrics on Hirzebruch surfaces and their canonical bundles

For the case of the canonical bundle on F2, which is the complete resolution of the
C
3/Z4 singularity, we have additional information that is relevant and inspiring for

the general case.
Let us summarize the main points. According to the results of [7], there is a well

adapted system of complex coordinates that arise from the toric analysis of C3/Z4
and of its resolution. These coordinates are named as follows: zi = {u, v, w} and
are defined on a dense open chart reaching all components of the exceptional divisor.
Their interpretation was already anticipated in Eq. (5.12) and it is the following.
The coordinate w spans the fibers in the canonical bundle Y

π−→ F2 while u, v
span a dense open chart for the base manifold (i.e. the compact component F2 of
the exceptional divisor ED). In particular since F2 is a P

1 bundle over P1, namely
F2

π−→ P
1, the coordinate u is a standard Fubini-Study coordinate for the base P

1

while v spans a dense open chart of the fiber P1. This set of coordinates can be used
for any Fn Hirzebruch surface with n ≥ 1. The action of the isometry group (1.8) on
these coordinates was described in [7] and it is as follows:

∀ g =
(

a b
c d

)
∈ SU(2) : g (u, v, w) =

(
a u + b

c u + d
, v (c u + d)n , w

)

∀ g = exp[i θ1] ∈ U(1)v : g (u, v, w) = (u, exp[i θ1] v w)

∀ g = exp[i θ2] ∈ U(1)w : g (u, v, w) = (u, v, exp[i θ2]w) (7.1)

The above explicit action of the isometry group on the u, v, w coordinates suggests
the use of an invariant real combination

�n ≡
(
1+ | u |2

)n | v |2 (7.2)

and the assumption that the Kähler potential KFn of the Kähler metric gFn should be
a function (up to trivial terms Re f (z)) only of �n :

KFn = Gn(�n) (7.3)

The function Gn(�n) should also depend on two parameters (we name them �,α)
which are associated to the volumes of the two homology cycles of Fn , respectively,
named C1 and C2 that also form a basis for the homology group of the total space
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Y , namely the canonical bundle on Fn . Indeed the homology of Y coincides with the
homology of the base manifold Fn .

Introducing the Kähler two form:

KFn ≡ i

2π
∂∂̄KFn (7.4)

we need to find:
∫

C1

KFn = 9

16
α �;

∫

C2

KFn = 9

16
(2 + α) � (7.5)

where � is a dimensionful parameter providing the scale and α is some dimensionless
parameter parameterizing the ratio between the two volumes. The two toric cycles
C1,2 are respectively defined by the following two equations:

C1 ⇔ v = 0; C2 ⇔ u = 0 (7.6)

As pointed out in [7], in addition to the above two properties of the Kähler form, if
we consider the Ricci two-form of the Kähler metric on Fn

RicFn = i

2π
∂∂̄ log

[
det
(
gFn
)]

; gFn
i j
 = ∂i∂ j
 KFn i = 1, 2 j
 = 1
, 2
 (7.7)

we must find:
∫

C1

RicFn = 2 − n;
∫

C2

RicFn = 2 (7.8)

It appears that Eqs. (7.5–7.8) are strong constraints on the function Gn(�n). It is inter-
esting to see how they are realized in the metric on F2 obtained from the Kronheimer
construction. We will show this below.

7.1 Themetric on F2 induced by the Kronheimer construction

In [7], relying on the Kronheimer construction, we have constructed an analytically
defined Kähler metric on the total space of the canonical bundle of F2. The Kähler
potential has only an implicit definition as the largest real root of a sextic equation. Yet
its reduction to the compact exceptional divisor, which is indeed the secondHirzebruch
surface, is explicit and the Kähler potential of this metric can be exhibited in closed
analytic form. We think that this information is very important for the comparison
between the parameters of the Ricci-flat metric appearing in supergravity with those
emerging in the Kronheimer construction that are the Fayet Iliopoulos parameters of
the dual gauge theory.

Following the chamber structure discussed in [7],we choose the chamberVI defined
by the following inequalities on the three Fayet Iliopoulos parameters ζ1,2,3:

ζ1 − ζ2 − ζ3 < 0 ; −ζ1 + ζ2 − ζ3 > 0 ; −ζ1 − ζ2 + ζ3 < 0 (7.9)
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and chamber VIII, defined instead by the following ones:

ζ1 − ζ2 − ζ3 < 0 ; −ζ1 + ζ2 − ζ3 < 0 ; −ζ1 − ζ2 + ζ3 < 0 (7.10)

Inside those two chambers we make the choice:

ζ1 = ζ3 = r; ζ2 = (2 + α)r; r > 0 (7.11)

For α > 0 we are in chamber VI, while for α < 0, we are in chamber VIII. For α = 0,
we are instead on the wall where the nonsingular variety:

Y ≡ totKF2 (7.12)

degenerates in

Y3 ≡ totKWP[112] (7.13)

denoting by totKM the total space of the canonical bundle of a Kähler manifold (or
orbifold) M.

The solution of the moment map equations for the two independent moment maps
reduced to the exceptional divisor by performing the limit w → 0 is the following
one:

T1 = T3 =
√√

α2 + 6α� + �(� + 8) + α + �

2(α + 2)
√
�/vv̄

;

T2 =
√
α2 + 6α� + � 2 + 8� + 3α + � + 4

2α2 + 6α + 4
(7.14)

The complete Kähler potential of the quotient is made of two addends, the pull-back
on the constrained surface of the Kähler potential of the flat ambient metric plus the
logarithmic term:

Kquotient = K0 + ζIC
I J log TJ︸ ︷︷ ︸
Klog

; CI J =
⎛
⎝

2 −1 0
−1 2 −1
0 −1 2

⎞
⎠ (7.15)

In the present case, we explicitly find:

K0 = 2
α
(√

α2 + 6α� + �(� + 8) + 2� + 1
)

+√α2 + 6α� + �(� + 8) + α2 + 3�
√
α2 + 6α� + �(� + 8) + α + �

(7.16)
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and

Klog = 2(α + 1) log

√
α2 + 6α� + � 2 + 8� + 3α + � + 4

2α2 + 6α + 4

−2α log

√√
α2 + 6α� + �(� + 8) + α + �

2(α + 2)
√
�/vv̄

(7.17)

By explicit calculation, we were able to verify that the Kähler potential of the quotient
Kquotient yields a metric satisfying all the constraints (7.5–7.8). We show this in
Sect. 8.3.

8 Reduction to the exceptional divisor

In this section we consider the reduction to the exceptional divisor for a generic metric
of the class described in Sect. 5, emphasizing that the Kähler metric induced on the
divisor is completely determined by the real function P(t) of the real variable t . We
carefully consider what are the differential constraints on such a function required
by the topology and complex structure of the second Hirzebruch surface F2 showing
that they are all met by the P(t) function that one obtains by localizing the general-
ized Kronheimer construction of the C3/Z4 singularity resolution on the exceptional
divisor.

8.1 The reduction

The reduction to the exceptional divisor is obtained in the Kähler form and in the
metric by setting s = −3. The Kähler form on the divisor is the following one

KED = 1

12
(−9 t sin θdθ ∧ dφ − 9 dt ∧ dτ + 9 (cos θ − 1) dt ∧ dφ) (8.1)

while the metric is the following one:

ds2ED = −3 t

4
(dθ2 + sin2 θdφ2) + 1

4
(t + 3)P(t)2dt2 + 9[dτ + (1 − cos θ)dφ]2

4(t + 3)P(t)2
(8.2)

and it is completely determined by the function P(t). For the choice:

P(t) =
(

−2

3
t2 − t

)− 1
2

(8.3)

it is the metric on the orbifold WP[112] while for other choices of P(t), obtainable
from the Kronheimer construction, ds2ED can indeed be a good Kähler metric on the
second Hirzebruch surface F2.
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FromEq. (8.1) specifying the Kähler 2-form of the exceptional divisor and Eq. (8.2)
providing itsKählermetric,we immediatelywork out also the complex structure tensor
that has the following appearence:

JED =

⎛
⎜⎜⎜⎝

0 0 0 − 1
3 (t + 3)P(t)2

0 0 csc θ − tan θ
2

6 sin2 θ
2

(t+3)P(t)2
− sin θ 0 0

3
(t+3)P(t)2

0 0 0

⎞
⎟⎟⎟⎠ (8.4)

8.2 Topology and the functions of the t coordinate

Wehave two important informations on the topologyofF2,which provide an extremely
selective test in order to know whether a certain metric is indeed defined on F2 or on
some different twofold, may be degenerate. The tests are related with the integrals
of the Kähler 2-form K and of the Ricci 2-form Ric on the two toric curves C1,2
respectively defined by the vanishing of either coordinate (u, v)

C1 = {v = 0}; C2 = {u = 0} (8.5)

Indeed, as we illustrated in Sect. 7, we must find

∫

C1

K �= ∞;
∫

C2

K �= ∞;
∫

C1

K �= 0;
∫

C2

K �= 0;
∫

C1

Ric = 0;
∫

C2

Ric = 2 (8.6)

The explicit reduction of the Kähler form KF2 to the two cycles C1 and C2 is very
simple when KF2 is written in the basis of the real coordinates (t ,θ ,τ ,φ). Indeed in
order to set v = 0, we have just to look for the zeros of the above defined function
H(t) that depends by integration from P(t). Let us suppose that H(−|tmax|) = 0. We
obtain the reduction of the Kähler form to the cycle C1 by setting t = −|tmax| = const
< 0, while we get the reduction to the cycle C2 by setting θ = 0.

K |C1 = 3

4
|tmax| sin θ dθ ∧ dφ; K |C2 = −3

4
dt ∧ dτ (8.7)

Hence we see that in order to get F2 as exceptional divisor we need two conditions,
that are necessary, although not sufficient.

1. |tmax| �= 0
2. the range of the coordinate t must be finite [−|tmax|,−|tmin|] in order to get a finite

size for the cycle C2

If the zero of the function H(t) is at t=0„ we immediately know that there is a degen-
eration and this is indeed the case ofWP[112].
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Ifwe integrate the complex structure of the exceptional divisor displayed inEq. (8.4)
with the same method we used for the whole 6-dimensional space, we find that the
coordinate u is exactly the same as in Eq. (5.17), while for v we find:

v = H(t) cos2
θ

2
eiτ (8.8)

Comparison with the result for v in the entire space (Eqs. (5.18–5.19)) tells us that the
function#(s)must be finite and nonvanishing at s = −3 in order to have a consistent
reduction to the divisor:

#(−3) = 1; �(−3) = 0 (8.9)

The normalization#(−3) = 1 can always be obtained by an irrelevant rescaling in the
definition of v if −3 is not a zero of #(s) while it must be a zero of �(s).

8.2.1 Interpretation of the function H(t)

From the explicit integration of the complex structure, we obtain a very important
interpretation of the function H(t) in relation with the complex Kähler geometry
of the exceptional divisor. Since the Kähler metric on this twofold has isometry
SU(2) × U(1), SU(2) acting on the u variable by linear fractional transformation
and on v by multiplication with the u-compensator (cu + d)2, as described in Eq.
(7.1), the Kähler potential K can be a function only of the invariant combination
� ≡ �2 defined in Eq. (7.2). Relying on the representation of u and v derived from
the integration of the complex structure, we easily obtain:

� = cos4
θ

2

(
tan2

θ

2
+ 1

)2
H(t)2 = H(t)2 (8.10)

It follows that:

t = H−1(
√
�) (8.11)

where H−1 denotes the inverse function. Since the range of
√
� is [0,∞], it is

necessary that the inverse function H−1 maps the semi-infinite interval [0,∞] in a
finite one [−|tmax|,−|tmin|] defined by:

− |tmax| = lim
�→0

H−1(t); −|tmin| = lim
�→∞ H−1(t) (8.12)

8.2.2 Topological constraints on the function P(t)

Given the above topology results characterizing the second Hirzebruch surface and
considering the metric of the divisor as given in Eq. (8.2) and its Kähler form (8.1)
we immediately obtain the conditions on the function P(t). Indeed, while calculating
the Ricci form, we can specify integral differential conditions on P(t) from the values
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of its periods mentioned above. We know the explicit form of the complex structure
on the exceptional divisor that is obtained by reduction to s = −3 of the complex
structure pertaining the full 6-dimensional manifold M6. The complex structure of
the exceptional divisor was displayed in Eq. (8.4). The Ricci form can be calculated by
setting its antisymmetric components equal toRici j = J k

i Rkj where Rkj is the standard
Ricci tensor. In thiswayweobtain the following general result that exclusively depends
on the function P(t):

RicED = A(t) sin θ dθ ∧ dφ + B(t) sin2
θ

2
dt ∧ dφ + C(t)dt ∧ dτ (8.13)

where A(t),B(t),C(t) are functions of the t-variable expressed as rational functions
of P(t) and its first and second derivative with simple t-dependent coefficient. We do
not write them explicitly for shortness. Then the Ricci 2-form can be easily localized
on the two cycles C1 and C2, yielding:

Ric|C1 = A(−|tmax|) sin θ dθ ∧ dφ ; Ric|C2 = C(t) dt ∧ dτ (8.14)

Hence, in order to realize the second Hirzebruch surface, not only the range of t must
have finite extrema [−|tmax|,−|tmin|] but we should also have:

A(−|tmax|) = 0;
∫ −|tmax|

−|tmin|
C(t) dt = 2 (8.15)

8.2.3 The relation between the function P(t) and the Kähler potentialK($) of the
exceptional divisor

Our goal is that of determining aRicci-flatmetric on the canonical bundle totKF2 , start-
ing from a given bona fide Kähler metric on the second Hirzebruch surface, described
in terms of the real variables t , θ , τ , φ. In the complex description, any Kähler metric
is determined by a suitable Kähler potential; given the isometries and their realization
on the chosen complex coordinates u, v, the Kähler potential for the F2 surface is a
real function of the invariant combination� defined in Eq. (7.2) which we generically
denoteK(� ). Therefore it is important to determine the relation between the real vari-
ables and the standard complex ones at the same time with the relation between the
Kähler potential K(� ) and the function P(t) which determines the metric in the real
variables. In this respect„ the essential point to be stressed is that the relation between
the real variables and the complex ones is not universal and fixed once for all, rather
it depends on the choice of the Kähler potential or viceversa of the function P(t).
Hence, it is convenient to introduce a name for the inverse function:

H−1 (√�
) = GT (�) (8.16)

and find its differential relation with the Kähler potential which follows from a com-
parison between the metric as determined in complex Kähler geometry from K(� )
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and as written in real variables. For convenience„ we rewrite the general real form of
the metric on the exceptional divisor in the following more compact way

ds2ED = −3

4

⎛
⎜⎝t [dθ2 + dφ2 sin2 θ ]︸ ︷︷ ︸

metric on P1

+F(t) dt2 + 1

F(t)
[dτ + (1 − cos θ)dφ]︸ ︷︷ ︸
connection on the U(1) bundle

2

⎞
⎟⎠ ;

F(t) ≡ −1

3
(t + 3)P(t)2 (8.17)

which clearly displays the fibred structure of the exceptional divisor.
Next we convert the metric in Eq. (8.17) using the substitution rule

t = GT (�), θ = 2 arctan
√

uū, τ = −1

2
i log

(v
v̄

)
, φ = −1

2
i log

(u

ū

)
(8.18)

In this way„ we transform the metric (8.17) to the complex coordinates u, v and we
compare it with the generic metric obtained from a generic Kähler potentialK(� ).We
find that the two metrics coincide provided the following two conditions are satisfied:

t ≡ GT (�) = −2

3
�∂�K(�);

P(t) = ± 3

2
√

−�
(
3 − 2

3�∂�K(�)
) (
∂�K(�) + �∂�,�K(�)

) (8.19)

Given the Kähler potentialK(� ), which is supposed to depend also on a deformation
parameter, the above equation (8.19) allows to rewrite the same metric in real coordi-
nates, provided one is able to invert the first formula, namely, to find� as a function
of t and of the deformation parameter α.

8.3 The Kronheimer Kähler potential for the F2 surface and its associated P(t)
function

From the Kronheimer construction of theC3/Z4 resolution reduced to the exceptional
divisor we have the Kähler potential derived in Sect. 7.1. The result obtained in Eqs.
(7.15, 7.16, 7.17) can be summarized writing the following general form of the Kähler
potential:

KF2 (�, α) = − 9

16

{
−4(α + 1) log

(√
α2 + 6α� + � 2 + 8� + 3α + � + 4

)

−
4
[
α
(√

α2 + 6α� + �(� + 8) + 2� + 1
)

+
√
α2 + 6α� + �(� + 8) + α2 + 3�

]
√
α2 + 6α� + �(� + 8) + α + �

+4α log

√√
α2 + 6α� + �(� + 8) + α + �√

�
+ 8 + 16 log 2

⎫⎬
⎭ (8.20)
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where for additional convenience we have changed the overall normalization of the
metric multiplying by a 9/8 factor, have disregarded the irrelevant addends propor-
tional to log[v v̄] and have added a convenient constant addend. For α=0 the surface
described by the Kähler metric corresponding to the potential (8.20) degenerates into
the singular WP[112] while for other values of α such that 0 <| α |< 1 we have a
metric on a smooth F2 surface.

8.3.1 The degenerate caseWP[112]

It is interesting to see how we recover the degenerate caseWP[112] from the general
case. Setting α=0 we obtain:

KWP[112](�) = 9

4

[
3� + √

�(� + 8)

� + √
�(� + 8)

+ log
(
� +√�(� + 8)

)
− 2 − 4 log 2

]

t = − 3� 2
(
� + √

�(� + 8) + 8
)

√
�(� + 8)

(
� + √

�(� + 8)
)2 ⇒ � = 8t2

3(2t + 3)
(8.21)

This implies that the interval [0,∞] of � is mapped into the interval [0,-3/2] and
this suffices to guarantee that the cycle C1 is contracted to zero as we have already
explained. Finally, for the function P(t), using the above general formulae, we get:

P(t) =
√ −3

2t2 + 3t
(8.22)

8.3.2 The smooth F2 case

First we can verify that when α is either −1 or −2, the surface degenerates, as the
metric depends only on the variable u and no longer on v. Using the formula (8.19),
we can calculate t and P(t). We find the following relatively complicated answer:

t = GT (�) = NT

DT

NT = −3
{
α4 + α�

[
3�
(√

α2 + 6α� + �(� + 8) + 16
)

+8
√
α2 + 6α� + �(� + 8) + 3� 2

]

+4� 2
(√

α2 + 6α� + �(� + 8) + � + 8
)

+α2�
[
6
(√

α2 + 6α� + �(� + 8) + 2
)

+ 19�
]

+α3
(√

α2 + 6α� + �(� + 8) + 9�
)}

DT = 4
√
α2 + 6α� + �(� + 8)

(√
α2 + 6α� + �(� + 8) + α + �

)2
(8.23)
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The new function GT (�) maps the interval [0,∞] of � into the interval[− 3α
8 ,− 3

8 (4 + 3α)
]
so that the range of the negative variable t is

t ∈
[
−3

8
(4 + 3α),−3α

8

]
(8.24)

and, as expected, the cycle C1 does not shrink to zero unless α = 0. Quite surprisingly
the function GT (�) can be easily inverted and we find:

� ≡ H(t, α)2 = 64t2 − 9α2

54α + 48t + 72
(8.25)

while for P(t) we get:

P(t, α) = 2

√
27α2 + 432αt + 192t(t + 3)

(t + 3)(9α + 8t + 12)
(
9α2 − 64t2

) (8.26)

and we verify that

P(t, 0) =
√ −3

2t2 + 3t
(8.27)

which is the correct result for the singular case WP[112]. In terms of the function
F(t) parameterizing the metric (8.17) we have:

F(t, α) = 4
(
27α2 + 432αt + 192t(t + 3)

)

3(9α + 8t + 12)
(
64t2 − 9α2

)

= 1

2

(
1

3α
8 + t

− 1
3
8 (3α + 4) + t

+ 1

t − 3α
8

)
(8.28)

The above structure of the function F(t, α) is very much inspiring. As we see, it is just
the sum of three simple poles that are alternatively simple poles of the dt2-coefficient
and zeros of the coefficient of the (dτ + (1 − cos(θ)dφ)2-term. The range of the
variable t turns out to be the interval between two such poles where the sign of the
function F(t) is the correct one for in order for the metric (8.17) to have Euclidean
signature. The three poles are:

t1 = −3α

8
; t2 = −3

8
(3α + 4); t3 = 3α

8
(8.29)

We also see what is the mechanism of the degeneration producing the singular
WP[112] case: the two poles t1 and t3 come to coincide and the coincidence point is
zero. This produces the vanishing of the C1-cycle as we explained above.

Substituting the function F(t, α) as given in Eq. (8.28) into the metric we get a
final form of a specific Kähler metric on the second Hirzebruch surface which follows
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from the Kronheimer construction. This metric provides the boundary condition for
the Ricci-flat metric on the canonical bundle totKF2 which must reduce to it when
setting ds = 0, dχ = 0 and s = −3.
Verification of the topological conditions for the Kähler metric of

F2. As a matter of check we calculate the periods of the Kähler and Ricci 2-forms
also in the real formalism, obtaining the following expected result which holds true
for 0 <| α |< 1:

∫

C1

K = 9α

16
;
∫

C2

K = 9(2 + α)

16
;
∫

C1

Ric = 0 ;
∫

C2

Ric = 2 (8.30)

The above result for the Kähler form is immediate once the function P(t) = P(t, α)
is specified. It is instead interesting to see the subtle way in which the result for the
Ricci form is obtained independently from the value of α.

Calculating the Ricci tensor of the metric in Eq. (8.17) with the function F(t, α)
of Eq. (8.28) we find the symmetric matrixRic which, multiplied by the transpose of
the complex structure (8.4) with P(t) as in Eq. (8.26) produces the Ricci form RicED
with the structure displayed in Eq. (8.13) and the following explicit expressions for
the functions A(t) and C(t).

A(t) = (8t − 3α)(3α + 8t)
(
27α2(3α + 4) + 512t3 + 576(3α + 4)t2 + 216α2t

)

8t
(
9α2 + 144αt + 64t(t + 3)

)2
(8.31)

C(t) = d

dt
U (t); U (t) = 864(α + 1)(α + 2)

(
3α2 + 8(3α + 4)t

)
(
9α2 + 144αt + 64t(t + 3)

)2 − 3(3α + 4)

8t

(8.32)

We immediately see that −|tmax| = − 3α
8 is a zero of A(t) so that

∫
C1 RicED = 0,

while setting as we must −|tmin| = − 3
8 (3α + 4) we obtain:

U (−|tmax) − U (−|tmin) = 2 ⇒
∫

C2
RicED = 0 (8.33)

8.4 The exceptional divisor in symplectic coordinates.

Considering next the description of the 6-dimensional manifoldM6 in terms of sym-
plectic coordinates {u, v,w, φ, τ, χ} (see Sect. 6) we easily find that the localization
s = −3 of the exceptional divisor corresponds to w = 3

2 , dw = dχ = 0. Hence
defining

D(v) ≡ G
(
v,

3

2

)
, (8.34)
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where G (v,w) is the variable part of the overall symplectic prepotential, we obtain
that the Kähler metric on the exceptional divisor has also a description in terms of a
symplectic potential given by

D(u, v) = G0(u, v) + D(v) = D(v) +
(
v − u

2

)
log(2v − u)

+1

2
(u log u − u) − v log v (8.35)

with moment and angular variables μi = {u, v}, � j = {φ, τ } and line element as
follows:

ds2ED = Di j dμ
i dμ j + (D−1)i j d�i d� j (8.36)

where the two matrices are:

Di j =
(

− v
u2−2uv

1
u−2v

1
u−2v D′′(v) − u

uv−2v2

)
; (D−1)i j =

(
u(v(2v−u)D′′(v)+u)

v2D′′(v)
u

vD′′(v)
u

vD′′(v)
1

D′′(v)

)
(8.37)

Reduced to the exceptional divisor, the coordinate transformation (6.6) is very simple.
We have: u = 3

4 t(−1 + cos θ), v = − 3t
4 . So if we declare that the function D(v) =

$(t), is a function of t we obtainD′′(v) = 16
9 $

′′(t) and replacing these transformation
in (8.34–8.35) we obtain that the line element in symplectic coordinates coincides with
the line element of Eq. (8.2) provided that:

D(v) ≡ $(t); P(t)2 = −4$′′(t)
t + 3

⇒ $′′(t) = −3

4
F(t) (8.38)

So the function F(t) determining the Kähler geometry of the exceptional divisor,
linked to its Kähler potential by Eq. (8.19), is just 4/3× the second derivative of the
nonfixed part of the symplectic potential.
The case of the Kähler metric on F2 with generic α. Applying the above
scheme to the Kähler metric on F2 induced by the Kronheimer construction, namely
utilizing in Eq. (8.38) F(t) = F(t, α) as given in Eq. (8.28) we obtain the following
differential equation:

D′′(v;α) = 16

(
1

27α − 32v + 36
+ 1

32v − 9α
+ 1

9α + 32v

)
(8.39)

which, modulo linear functions implies D(v, α) = DF2(v, α) where

DF2(v, α) ≡ 1

2
v log

(
1024v2 − 81α2

)
+ 1

64
(27α − 32v + 36) log(27α − 32v + 36)

+ 9

32
α arctanh

(
32v

9α

)
− v

2
(8.40)
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We also find:

DF2 (v, 0) = − 1

16
(−9 + 8v) log

(
3 − 8

3
v

)
+ v log v modulo a linear function of v (8.41)

For α = 0 this is the correct result forWP[112].

9 TheMonge–Ampère equation and its series expansion

In this section, we arrive at the core of the issue, i.e. the construction of Ricci-flat
metrics on the spaces we are concerned with. The common general feature of these
is that they are the total space of the canonical bundle of a complex two-dimensional
compact Kähler manifold M4, the exceptional divisor when the total space is the
full or partial resolution of a quotient singularity. In this interpretation„ the base of
the canonical bundle is indeed the exceptional divisor produced by the blow up of an
isolated singular point.

The additional common structural feature of the Ricci-flat metrics we want to con-
sider is, as we already stressed several times, the group of continuous isometries that
they should possess, mentioned in Eq. (1.8). The action of Giso on the three com-
plex coordinates u, v, w that originate from the integration of the complex structure
was displayed in Eq. (7.1). The presence of these isometries imposes very stringent
constraints on the Kähler metric that are most efficiently handled at the level of the
potentialP from which the metric can be obtained by means of derivatives. The con-
dition of Ricci-flatness of the metric is translated into a nonlinear differential equation
to be satisfied by the potential P that we name the Monge–Ampère equation.

As we have seen in the previous pages, there are three equivalent formulations of
the Kähler geometry of the toric six-dimensional manifolds M6 we are concerned
with:

A) The complex setup where the geometry is encoded in the Kähler potential P =
K (u, v, w, ū, v̄, w̄)

B) The symplectic setup where the geometry is encoded in the symplectic potential
P = G (u, v,w)

C) The hybrid setup where the geometry is encoded in the symplectic potential, but
instead of the coordinates v,w we use the coordinates s,t related to them by the
coordinate transformation (6.6–6.7).

Correspondingly there are, to begin with, two formulations of the Monge–Ampère
equation, one for the Kähler potential, one for the symplectic potential. In both cases
the constraints imposed by the chosen isometries reduce the effective potential to be a
function of only two real variables so that the Monge–Ampère equation is a nonlinear
partial differential equation in two variables. At this point, the symplectic case still
splits into two versions depending onwhetherwe employ the pure symplectic variables
or the hybrid ones s, t .

In all formulations, as we show below, the equation has the property that we can fix
as boundary condition an arbitrarily chosen Kähler metric on the exceptional divisor.
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9.1 TheMonge–Ampère equation for the Kähler potential

We begin with the Monge–Ampère equation written in terms of the Kähler potential.
It follows from the chosen isometries that the Kähler potential K must be a function
only of the two invariants:

f ≡ | w |2; � ≡
(
1+ | u |2

)2 | v |2 or T ≡ 4 + � −√� (� + 8) (9.1)

so that we can set:

K = G(�, f) or K = G(T , f) (9.2)

The use of the alternative combination T simplifies the Kähler potential in certain
cases.

The Monge–Ampère equation in this setup is simply the statement that the deter-
minant of the Kähler metric is constant. Indeed in the complex coordinate setup the
hermitian Ricci tensor is obtained from the logarithm of the metric determinant in the
same way as the Kähler metric is obtained from the Kähler potential:

Rici j
 = ∂

∂zi

∂

∂ z̄ j

log
[
detg

] ; g = gi j
 = ∂

∂zi

∂

∂ z̄ j

G(T , f); zi ≡ {u, v, w}

(9.3)

Hence if

det g = κ (9.4)

where κ is a constant parameter, the Ricci tensor is necessarily zero and we have a
Ricci-flat metric. The Monge–Ampère equation is obtained by replacing in Eq. (9.4)
the expression of det g in terms of derivatives of the Kähler potential G(T , f). Relying
on the definition of the invariants provided in Eq. (9.1), we obtain:

4T 3G(1,0)(T , f)
{

G(0,1)(T , f)
[(

T 2 + 8T − 16
)

G(1,0)(T , f) + T
(
T 2 − 16

)
G(2,0)(T , f)

]

+f
[
G(0,2)(T , f)

{(
T 2 + 8T − 16

)
G(1,0)(T , f) + T

(
T 2 − 16

)
G(2,0)(T , f)

}

−T
(
T 2 − 16

)
G(1,1)(T , f)2

]}
= −κ(T + 4)4

(9.5)

One can solve the Monge–Ampère equation in the above form by developing the
Kähler potential in power series of f:

G(T , f) = G0(T ) +
∞∑

n=1

Gn(T ) fn (9.6)
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where G0(T ) is the Kähler potential of a convenient Kähler metric defined over the
exceptional divisor.

Indeed it is a property of the considered system that inserting (9.6) into theMonge–
Ampère equation (9.5), the function G0(T ) corresponding to the Kähler potential
of the Kähler metric on the exceptional divisor is undetermined, while all the other
Gn(T ) functions can be iteratively determined in terms of the previous Gk<n(T ).

Aswe discussed before, it is quite remarkable that on the exceptional divisor located
at s = −3 the Ricci-flat orthotoric metric (5.9) reduces precisely to the Kähler metric
on WP[112], which was obtained in [7] from the Kronheimer construction while
performing the partial resolution of the C3/Z4 singularity on a type III wall.

9.1.1 Recursive solution for the Kähler potential in the case totKWP[112]

In this section,we present the recursive solution of theMonge–Ampère equationwhich
was obtained by means of a dedicated MATHEMATICA code using as zeroth order
Kähler potential the following one

G0(T ) = 4 log T + T (9.7)

which yields the Kronheimer Kähler metric on WP[112].
The Kähler potential of the full metric on totKWP[112] can be expressed as follows

G(T , f) = 4 log T + T + 1

2

( ∞∑
k=1

1

(k!)
P2k−2(T )

(2T )2k(T + 4)2k−3 (κf)
k

)
(9.8)

where the symbol P2k−2(T ) denotes a polynomyal of degree 2k − 2 in the variable
T . The remarkable feature is that the coefficients of the polynomials P2k−2(T ) are all
integer numbers whose decomposition into prime factors involves prime numbers of
increasing values. We show the first 6 of these intriguing polynomials
k = 1 | P0(T ) = 2
k = 2 | P2(T ) = 112 + 16T + T 2

k = 3 | P4(T ) = 2
(
10112 + 4000T + 408T 2 + 30T 3 + T 4

)
k = 4 | P6(T ) = 6563840 + 4347392T + 925952T 2 + 82624T 3 + 7112T 4 +
350T 5 + 8T 6

k = 5 | P8(T ) = 3128950784+ 2919825408T + 987267072T 2 + 150301696T 3 +
13354240T 4 + 1313920T 5

+ 76064T 6 + 2812T 7 + 49T 8

k = 6 | P10(T ) = 1980772122624 + 2387983728640T + 1118459035648T 2 +
256754671616T 3

+ 32204621824T 4 + 3128804864T 5 + 331169920T 6 +
20666912T 7 + 975904T 8 + 28886T 9

+ 407T 10
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9.2 TheMonge–Ampère equation of Ricci-flatness for the symplectic potential

According to [60,61], the condition for Ricci-flatness can be written as a differential
condition on the symplectic potential which is the following

Det
[
Gi j
] = const × Exp

n∑
h=1

ch∂hG (9.9)

where ch are some constants. In the case of our general metric with isometry
SU(2) × U(1) × U(1), the symplectic formof theMonge–Ampère equation simplifies
since we have the particular form (6.13) of the matrix Gi j . Indeed we find:

detHes ≡ Det
[
Gi j
] = v

u(u − 2v)

[
G(1,1)(v,w)2 − G(0,2)(v,w)G(2,0)(v,w)

]
(9.10)

This facilitates the study of the Ricci-flatness condition because the coefficients cu

and cv are already fixed by the need to reproduce the u-dependence of detHes. We
easily find:

Exp [−2∂uG(u, v,w) − 2∂vG(u, v,w) + k ∂wG(u, v,w)] = − ekG(0,1)(v,w)−2G(1,0)(v,w)v2

u2 − 2uv
(9.11)

Hence in the symplectic formalism the Monge–Ampère equation for Ricci flatness
reduces to the following relation:

cekG(0,1)(v,w)−2G(1,0)(v,w)v + G(1,1)(v,w)2 − G(0,2)(v,w)G(2,0)(v,w) = 0(9.12)

imposed solely on the function of two variables G[v,w].
We have explicitly verified that the function GWP[112](v,w) defined in equation

(6.18), which corresponds to the orthotoric Ricci-flat metric on totKWP[112] satisfies
Eq. (9.12) with:

k = −8

3
; c = 72e3

7
(9.13)

9.2.1 Discussion of the boundary condition

As we show below, differently from the case of the Monge–Ampère equation for the
Kähler potential in the symplectic case, there is a subtle issue concerning the choice of
boundary condition to be imposed on the functionwhile restricting it to the exceptional
divisor. The important point is that at the level of the metric the limit w → 3

2 should
reproduce themetric on the divisor derived from the potentialD(v) = G

(
v, 3

2

)
. There

are only two ways to obtain this. If the symplectic potential G(v,w) is holomorphic at
w = 3

2 and admits a Taylor series expansion in w − 3
2 we are obliged to impose that
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∂wG(v,w) be a constant at w = 3
2 and this results in a recursive solution with coeffi-

cients that are rational functions of increasing order and can hardly define a convergent
series. Furthermore, the only known solution of theMongeAmpère equation, provided
by the function (6.18) corresponding to the orthotoric metric on totKWP[112] has not
this holomorphic behavior. Indeed GWP[112](v,w) provides a paradigmatic example
of the other possible boundary condition which foresees a logarithmic singularity of
the symplectic potential while approaching the exceptional divisor:

G(v,w)
w→ 3

2≈ (
w − 3

2

)
log
(
w − 3

2

) + G0(v) + O
(
w − 3

2

)
(9.14)

In the sequel we show that with the second type of boundary condition we can recon-
struct the known solution GWP[112](v,w) of equation (6.18) and also derive a series
solution pertaining to the smooth F2 case which displays the same general features as
GWP[112](v,w). Unfortunately, up to the present moment we can only give numerical
evidences of the last statement.

In view of what we explained above we skip the details concerning the first type
of boundary condition (holomorphicity at w = 3

2 and jump directly to the case of a
logarithmic singularity atw = 3

2 . Indeed, a logarithmic singularity is known to be the
correct behavior to ensures smoothness of the toric Kähler metrics near to divisors
[60,62,63].

9.3 The boundary condition with a logarithmic singularity atw = 3
2

We implement the second type of boundary condition requiring that following two
properties should be preserved:

a) The symplectic potential G(v,w) has a finite limit for w → 3
2

b) The limit forw → 3
2 of the bundle metric should be exactly the exceptional divisor

metric (8.36–8.37)

Namely we must have:

lim
w→ 3

2

G(v,w) = D(v); lim
w→ 3

2

ds2symp = ds2ED (9.15)

To discuss this alternative boundary condition, it is convenient to use rescaled variables
defined as follows

x = 2v; y = 3w; y = 9

2
+ ω ⇒ ω = 3

(
w − 3

2

)
(9.16)

In terms of such variables the Monge–Ampère equation (9.12) becomes

c x exp
[
−8G(0,1)(x, ω) − 4G(1,0)(x, ω)

]

G(1,1)(x, ω)2 + G(0,2)(x, ω)G(2,0)(x, ω) = 0 (9.17)
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Instead of assuming that G(x, ω) is holomorphic at ω = 0, we impose that it has a
logarithmic singularity of the form ω logω. Indeed this is the unique alternative way
in which the metric on the total space can reduce to the metric exceptional divisor in
the limit ω → 0. Furthermore, this behavior for w → 3

2 is precisely that displayed
by the symplectic potential GWP[112](v,w) explicitly written down in Eq. (6.18).
Hencewe assume the following different series expansionwhich isolates a logarithmic
singularity at ω = 0:

G(x, ω) = 1
8 ω log[ω] + G0(x) +

∞∑
k=1

ωkGk(x) (9.18)

The function G0(x) is free. All the functions Gk(x) (k ≥1) are determined in terms of
G0(x). For instance we have:

G0(x) = G0(x)

G1(x) = 1

8
log

(
− e−4G′

0(x)x

G′′
0 (x)

)

G2(x) = 32x2G′′
0 (x)

3 − 12xG′′
0 (x)

2 + 16x2G0
(3)(x)G′′

0 (x) + 2G′′
0 (x) − 2xG0

(3)(x) + x2G0
(4)(x)

256x2G′′
0 (x)

2

G3(x) = 1

36864x4G′′
0 (x)

4

(
−48x2

(
16G0

(3)(x)x2 + 7
)
G′′
0 (x)

4 − 48x
(
12x3G0

(4)(x) − 5
)
G′′
0 (x)

3

+4
(
144G0

(3)(x)2x4 − 18G0
(5)(x)x4 + 38G0

(4)(x)x3 + 12G0
(3)(x)x2 − 11

)
G′′
0 (x)

2

+2x
(
−152x2G0

(3)(x)2 +
(
72G0

(4)(x)x3 + 4
)
G0

(3)(x)

−x
(
G0

(6)(x)x2 − 6G0
(5)(x)x + 2G0

(4)(x)
))

G′′
0 (x) + 9x2

(
xG0

(4)(x) − 2G0
(3)(x)

)
2
)

(9.19)

9.3.1 Recursive solution of the symplectic Monge–Ampère equation in the case
where the smooth F2 surface is at the boundary

Relying on the results of the previous subsection we consider the case where the
symplectic potential at the boundary (i.e. on the exceptional divisor) is the one yielding
the Kronheimer Kähler metric on F2. In terms of the x variable and setting, � = 9

8α

the function in Eq. (8.40) can be rewritten as follows:

G0(x,�) ≡ 1

4
x log

(
4x2 − �2

)
+ 1

8
� log

(
� + 2x

� − 2x

)

+1

8

(
3� − 2x + 9

2

)
log

(
3� − 2x + 9

2

)
(9.20)
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from the formal solution discussed in the previous section we obtain:

G(x, ω) = G0(x,�) + 1

8
ω log

(
x(6� − 4x + 9)2

2e
[
�2 + 4x2 − 6(2� + 3)x

]
)

+1

8
ω logω +

∞∑
k=1

Nk+1(x,�)

Dk+1(x,�)
ωk+1 (9.21)

where Nk+1(x,�) and Dk+1(x,�) are polynomials whose degrees are as follows:

degree
[
Nk+1(x,�)

] = 6 k; degree
[
Dk+1(x,�)

] = 7 k (9.22)

Hence the degree of the coefficient ofωk+1 in the series expansion is a rational function
of x of degree −k, a feature that looks promising for convergence.

By means of a dedicated MATHEMATICA code we can calculate the polynomials
Nk+1(x,�), Dk+1(x,�) to any desired order. For reason of typographical space, we
display here only the first terms up to order k = 2.

N2(x) = −3888x4 − 864x5 + 128x6 − 5184x4� − 576x5� + 720x3�2 − 1536x4�2

+480x3�3 − 81�4 + 162x�4 − 120x2�4 − 108�5 + 108x�5 − 36�6

N3(x) = 49152x12 − 811008x11(3 + 2�) − 891�8(3 + 2�)4

+108x�6(3 + 2�)3(810 + 1080� + 421�2)

−36x2�6(3 + 2�)2(23652 + 31536� + 10961�2)

+384x6�4(31347 + 41796� + 12692�2)

+1024x10(42039 + 56052� + 18412�2)

−1536x7�2(−9963 − 19926� − 8238�2 + 412�3)

−1536x5�4(15795 + 31590� + 19092�2 + 3368�3)

−3072x9(28431 + 56862� + 41124�2 + 10568�3) + 576x4�4(35721 + 95256�

+83151�2 + 26196�3 + 1655�4)

+256x8(−137781 − 367416� − 270540�2 − 34128�3 + 23272�4)

+864x3�4(−6561 − 21870� − 17739�2 + 3402�3 + 8805�4 + 2558�5)

D2(x) = 128x2(−9 + 4x − 6�)(−18x + 4x2 − 12x� + �2)2

D3(x) = 9216x4(9 − 4x + 6�)2(4x2 + �2 − 6x(3 + 2�))4

9.3.2 Numerical study in the case1 = 3
4

Since so far we have not been able to guess the sum of the series in terms of elementary
or higher transcendental functions, to get some understanding of the solution„ we have
resorted to a numerical study of the approximants to the solution obtained by truncating
the series in Eq. (9.21) to various orders performing the plots.

The relevant thing is that for the special value � = 0 of the parameter we know
the exact sum of the series. It is provided by the symplectic potential (6.18) which
pertains to the case of totKWP[112]. This fortunate occurrence enables us to compare
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the plot of the exact function with those of its approximants. This comparison, as we
are going to see, turns out to be quite inspiring since it elucidates the meaning of
certain oscillatory behaviors of the approximants that are completely analogous in the
case � = 0, where we know the sum of the series and in the case � > 0 where the
sum is unknown.

In terms of the variables x and ω, the symplectic potential of the orthotoric metric
takes the following explicit expression:

G�=0(x, ω) = 1

224

⎧
⎨
⎩7
⎡
⎣(4ω + 16x) log

⎛
⎝9

2
−
√(

x + ω + 9

2

)2
− 18x − x − ω

⎞
⎠

−2(4x − 4ω − 9) log

⎛
⎝
√(

x + ω + 9

2

)2
− 18x − x − ω

⎞
⎠

+(4x + 2ω + 9) log

⎛
⎜⎝ 1

567

⎡
⎣4
√(

x + ω + 9

2

)2
− 18x + 4x + 4ω + 27

⎤
⎦
2

+ 1

⎞
⎟⎠

⎤
⎥⎦

−2
√
7(4x − 2ω − 27) arctan

4
√(

x + ω + 9
2

)2 − 18x + 4x + 4ω + 27

9
√
7

−(4x + 9) log
34359738368

823543
+ 2

√
7(4x − 27) arctan

5√
7

}
(9.23)

For comparison, we choose the series solution in the case � = 3
4 . This value, corre-

sponding to α = 2
3 , introduces various simplifications in the solution and, for no other

good reason, provides a good reference point.
In this case the symplectic potential takes the following appearance

G
�= 3

4
(x, ω) = 1

32

[
8x log

(
4x2 − 9

16

)
+ (27 − 8x) log

(
27

4
− 2x

)
+ 6 arctanh

8x

3

]

1

8
ω log(ω) + 1

8
ω log

(
2(27 − 8x)2x

e[16x(4x − 27) + 9]

)
+

∞∑
k=1

N̂k+1(x)

D̂k+1(x)
ωk+1

(9.24)

We omit the explicit presentation of the rational functions N̂k+1(x)
D̂k+1(x)

that we have calcu-

lated by means of a computer programme up to order k = 10 and higher. We rather
present the plots of such approximants. Let us first consider the plot of the function
G�=0(x, ω) displayed in Fig. 6.

As we distinctly see from the picture, the exact function, namely the sum of the infi-
nite series in ω defines parametrically a perfectly smooth surface in three dimensions
that, however, features a nontrivial structure provided by a sort of smooth bending along
a line that starts approximately at x = 9

4 , ω = 0 and goes up towards x = 9
2 , ω = ∞.

The geometrically meaning of this bending is not entirely clear, yet one can guess
that it corresponds to a transition region from a near divisor geometry to an asymptotic
geometry that is that of a metric cone over the Sasakian orbifold S

5/Z4.
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Fig. 6 Plots of the exact symplectic potential G�=0(x, ω) for small values of the distance ω from the
exceptional divisor (plot on the left) and extending to large values (plot on the right)

Fig. 7 Plots of the exact symplectic potential G�=0(x, ω) compared to its approximants of order 6 and 7
respectively: on the right for small values of ω, on the left extending to large values of ω

It is now interesting to compare the behavior of the exact function with its approx-
imants obtained truncating the series to various orders. Let us now consider the plots
displayed in Fig. 7.

In the plot on the right, the surface plotted in the middle is the sum of the series
(i.e. the exact function), while the other two surfaces, respectively bending, one up,
the other down, are two consecutive approximants (the first of even order, the second
of odd order). As we clearly see, the series converges to the exact function and does it
rapidly, in the region before the bending structure illustrated above. As we come close
to such a line of bending, the series no longer converges and its various truncations
oscillate violently creating a peculiar canyon.
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Let us now compare this behavior of the case� = 0 with that of the series solution
for � = 3

4 . To this effect let us consider the Fig. 8. The structure of the plots of
the truncated series are qualitatively the same in the case � = 3

4 , as they are in
the case � = 0. Furthermore, in a completely analogous way to the case � = 0,
for small values of ω and x also the series representation of G

�= 3
4
(x, ω) converges

rapidly to some well defined function while approaching the region of the bending
it starts oscillating. Hence we are led to conclude that we should be able to retrieve
an analytically defined solution of the Monge–Ampère equation for the symplectic
potential which reduces to the Kronheimer metric on F2 at ω = 0. It is a matter of
finding some alternative way of summing the series by a smart change of variables or
by means of some smart integral transform.

9.4 The Hybrid version of theMonge–Ampère equation

The most promising setup to study the MA equation for the symplectic potential is
the hybrid one. Working in the s, t coordinates defined in Eqs. (6.6–6.7) and setting
G(v,w) = �(t, s), the equation (9.12) is transformed into the following one:

1

4
ceCst = 64B

(s − t)2
− 64A

(s − t)4
(9.25)

where:

C ≡ 8(s + 1)�(0,1)(t, s) − 8(t + 1)�(1,0)(t, s)

s − t

B ≡ �(0,2)(t, s)�(2,0)(t, s)

A ≡
(
�(0,1)(t, s) − �(1,0)(t, s) + (s − t)�(1,1)(t, s)

)2
(9.26)

It is an important observation that the termA is the square of the constraint whose van-
ishing implies the orthotoric separation of the s, t variables (see the last of Eq. (6.15).
It is interesting to see how with this separation of variables, namely when A = 0, the
differential equation (9.25) does indeed split in two equations, one for the t variable,
the other for the s variable. On the other hand the equation for the t variable implies
theWP[112] symplectic potential.

The argument goes as follows. Generalizing the structure of the known solution for
the case WP[112] we introduce the following ansatz:

�(s, t) = −1

3
(2s + 3)$(t) + P(s) + (s + 3)

(
Q(t) − 1

16
(t + 3) log(s + 3)

)

+stY1(s) + (s + t)Y2(s) (9.27)

where $(t) is an unknown function of t that we would like to identify with the
symplectic potential of the exceptional divisormetric andY1,2(s) are also twounknown
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Fig. 8 Plots of approximants of even and odd order of the function G
�= 3

4
(x, ω) the sum of whose series

representation is unknown. As in the other cases the plot on the right is for small values of ω and displays
two consecutive approximants of order 7 and 8, respectively, while the plot on the left extends to large
values of ω and displays several approximants

functions of s.On the other hand, the other two functions entering the ansatz are integral
differential functionals of Y1,2(s) and $(t), respectively:

P(s) = 1

16

∫ (
−16κ1 − 16s2Y′

1(s) − 32sY′
2(s) + s + 3

)
ds (9.28)
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Q(t) = 1

3
(t + 3)

∫
(2t + 3)$′(t) − 2$(t)

(t + 3)2
dt + κ1 (9.29)

With these choices the term C in Eq. (9.26) splits into separate functions of different
variables:

C = U(s) + T (t)

T (t) =
8
(
3(t + 1)$′(t) + 2(t + 3)

∫
(2t+3)$′(t)−2$(t)

(t+3)2
dt − 4$(t)

)

3(t + 3)

U(s) = 1

2

(
−16s2Y′

1(s) − 16sY′
1(s) − 16Y1(s) − 16sY′

2(s)

−16Y′
2(s) + 16Y2(s) + s − 2 log(s + 3) + 1

)
(9.30)

On the other hand„ we find that A = 0 while the B-term factorizes as follows:

B = H(t)J (s) (9.31)

H(t) = 4$′′(t)
t + 3

(9.32)

J (s) = 16s(s + 3)Y′′
1(s) + 32(s + 3)Y′

1(s) + 16sY′′
2(s) + 48Y′′

2(s) − 1

s + 3
(9.33)

In this way the solution of the MA equation reduces to the solution of two separate
integral differential equations one in the s variable, one in the t-variable:

λ

2
t exp[T (t)] = H(t) ; μ

2
s exp[U(s)] = J (s) (9.34)

We focus on the first in the variable t . With rather simple manipulations it can be
reduced to an ordinary differential equation of higher order, namely:

8(t + 1)$′′(t)
t + 3

− $(3)(t)

$′′(t)
+ 2t + 3

t2 + 3t
= 0 (9.35)

which is a differential equation of the first order for the function F(t). Apart from
an integration constant which is fixed by the topological constraints on the periods of
Ricci form, the unique solution of Eq. (9.35) is F(t, 0) corresponding to the geometry
ofWP[112]. This shows that in order to impose a boundary function consistent with
α �= 0 we need to modify the ansatz (9.27) in such a way as to introduce a certain
s, t-mixing.

10 Conclusions

As we advocated in the introduction, the present paper is an illustration of the conjec-
ture 1.1 for which we have strong support from the fact that it is verified for the value
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� = 0 of the parameter in the paradigmatic case of the C
3/Z4 singularity resolu-

tion. Further numerical evidence emerges from the study of the power series solution
of the Monge–Ampère equation in the symplectic potential formulation. This latter
in its hybrid version seems to provide the most promising approach since different
series expansions might be glued together to prolong the solution beyond the valleys
of oscillations.

Assuming that in due time our conjecture can be transformed into a proof, wewould
like to stress its relevance. According to our view point, Conjecture 1.1 provides a
precise mathematical relationship to realize the gauge/gravity correspondence in a
proper way. The generalized Kronheimer construction fixes all the items of the gauge
theory on the brane world-volume: field content, gauge group, flavor symmetries and
interactions. As maintained by Conjecture 1.1, the same Kronheimer construction
determines, via the Monge–Ampère equation, also the Ricci-flat Kähler metric to be
used in the construction of the dual D3-brane solution of supergravity. If 1.1 is proved
we can say that, for the class of theories realized on D3 branes at C3/� Calabi–Yau
singularities, theMcKay quiver determines uniquely both sides of the correspondence.

Note added in proof In [68] a partial resolution of Cn/Zn orbifolds has been consid-
ered in connection with heterotic string compactifications.
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A The affine varietyC3/Z4

We study the quotient C3/Z4 as an affine variety, i.e., as a closed (in the Zariski
topology) subset of an affine space C

D cut by an ideal I of the polynomial ring
C[x1, . . . , xD]. In particular, we show thatC3/Z4 is not a (schematic) complete inter-
section.
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Reminder on complete intersections.We recall the notions of set-theoretic and
schematic intersection.

Definition A.1 Let X ⊂ C
D be an affine variety, and denote by d its codimension in

C
D .

1. X is a set-theoretic complete intersection if it is cut by d equations as a subset of
C

D .
2. X is a schematic complete intersection if it is cut by d equations as an affine variety.

In other terms, if A(X) is the coordinate ring of X (the ring of regular functions
on X ), then A(X) = C[x1, . . . , xD]/I , where the minimal number of generators
of the ideal I is d.

It turns out that all quotientsC3/�, where � is a finite abelian subgroup of SL3(C),
are set-theoretic complete intersections, and therefore so is the case for C3/Z4. How-
ever, we shall not prove this fact here, and rather concentrate on proving that C3/Z4
is not a schematic complete intersection.
Finding the equations. An affine toric variety X can be expressed as

Xσ = Specm C[Sσ ] (A.1)

where σ ⊂ N ⊗ R is a strongly convex polyhedral cone, N is a lattice, and Sσ is the
semigroup Sσ = σ∨ ∩ M , with σ∨ the dual cone to σ ; M is the dual of the lattice
N . Specm denotes the maximal spectrum, i.e., the set of maximal ideals of C[Sσ ]
with the Zariski topology. Basically following [64], we delineate a procedure to find
the equations for the affine toric variety X . We remind that a Hilbert basis Hσ for
the semigroup Sσ is a minimal set of generators for Sσ which contains the rational
generators of the rays of σ∨. Define D = #Hσ . Then the elements of Hσ are related
by D − n relations, which generate an ideal Iσ,0 of C[x1, . . . , xD]. Given two ideals
I , J in a ring R, the saturation of I with respect to J is defined as

I : J∞ = {a ∈ R | aN J ⊂ I for N � 0.}

Then one proves that the ideal Iσ of Xσ in CD is the saturation of Iσ,0 wih the respect
to the ideal

Kσ = (x1 · · · xD) ⊂ C[x1, . . . , xD].

Remark A.1 If I , J are ideals inC[x1, . . . , xD], the affine variety corresponding to the
ideal I : J∞ is

V (I : J∞) = V (I ) \ V (J )

where the closure is taken in C
D (in the Zariski topology), and for every ideal L in

C[x1, . . . , xD], V (L) denotes the closed set in CD corresponding to L .
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Equations for X = C
3/Z4. Now we check thatC3/Z4 is not a schematic complete

intersection, as noted in [65]. Realizing X as in equation (A.1) we can take for σ the
cone with generators (1, 0, 0), (−1, 2, 0), (0,−1, 2) in the latttice N = Z

3. The dual
cone σ∨ has rational generators (4, 2, 1), (0, 2, 1), (0, 0, 1) in M � Z

3. A Hilbert
basis of Sσ is obtained by adding the lattice points

(1, 1, 1), (0, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2, 1), (3, 2, 1).

Assigning variables x1, . . . , x9 to these lattice points we obtain that Iσ,0 is generated
by the 6 equations

x1x8 − x29 = 0, x2x29 − x38 = 0, x3x29 − x27 x8 = 0,

x4x9 − x7x8 = 0, x5x29 − x7x28 = 0, x6x9 − x28 = 0

Saturating this ideal with respect to K = (x1 · · · x9) one sees that Iσ is generated by
the 20 quadratic equations (the equation needed to cut X from C

9 with the correct
schematic structure):

x28 − x6x9; x7x8 − x4x9; x6x8 − x2x9; x4x8 − x4x5; x1x8 − x29 ;
x6x7 − x5x9; x5x7 − x3x8; x4x7 − x3x9; x2x7 − x5x8; x26 − x2x8;
x4x6 − x5x8; x1x6 − x8x9; x4x5 − x3x6; x1x5 − x4x9; x24 − x3x8;
x2x4 − x5x6; x1 − x7x9; x2x3 − x25 ; x1x3 − x27 ; x1x2 − x6x9.

(A.2)

These are a minimal set of generators. So X is the intersection of 20 quadrics in C
9.

All these quadrics are singular along their intersection with a plane of codimension
3 (when their equation contains a square) or 4 (when their equation does not contain
a square). The dimension of the singular locus is 6 and 5 respectively (not 5 and 4!)
It may be interesting to see what variety does the ideal Iσ,0 describe. To this end
one computes the primary decomposition of the ideal [66]. This yields 5 ideals; one
is radical, and coincides with Iσ , so that one component of the variety is C

3/Z4.
The other ideals are generated by monomials, and correspond to (intersections of)
coordinate planes of different dimensions, counted with multiplicities.

B The orbifold S
5/Z4

Setting s = − 2
3 R2 with r → ∞ in the metric (5.9), it is straightforward to verify that

this takes the approximate form

ds2totKWP[112]
R→∞≈ d R2 + R2ds2X5

(B.1)

at leading order in R. Since the metric is Ricci-flat Kähler, and it takes the form
of a cone over a five-dimensional space, it follows that locally the five-dimensional
metric ds2X5

is Sasaki–Einstein. Below we shall show that globally, this is precisely a

Sasaki–Einstein metric on the orbifold S
5/Z4.
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In the coordinates used in the paper, the five-dimensional metric reads

ds2X5
= − t

6

(
sin2 θdφ2 + dθ2

)

− dt2

2t(2t + 3)
−2t(2t + 3)

9

[
dχ

3
− 1

2
[(1 − cos θ)dφ + dτ ]

]2

+4

9

[(
t

3
+ 1

)
dχ − 1

2
t[(1 − cos θ)dφ + dτ ]

]2
(B.2)

After introducing the new coordinate σ ∈ [0, π2 ] as

t = −3

2
sin2 σ (B.3)

it becomes

ds2X5
= dσ 2 + sin2 σ

4

(
sin2 θdφ2 + dθ2

)

+ sin2 σ cos2 σ

4

[
2

3
dχ − dτ − dφ + cos θdφ

]2

+1

9

[
2dχ − 3

2
sin2 σ

(
2

3
dχ − dτ − dφ + cos θdφ

)]2
(B.4)

and one can check that this is indeed locally a Sasaki–Einstein metric, where the first
line is a Kähler-Einstein metric. In order to uncover the relation with the metric on the
five-sphere S5, it is convenient to redefine the angular coordinates as

φ̃ = φ , β = 2
3χ − φ − τ , ψ = 2χ , (B.5)

with inverse

φ = φ̃ , τ = 1
3ψ − φ − β , χ = 1

2ψ , (B.6)

where, after performing the change of coordinates, we can drop the tilde on φ̃ and
simply continue to denote this as φ. The metric then reads

ds2X5
= dσ 2 + sin2 σ

4

(
sin2 θdφ2 + dθ2

)
+ sin2 σ cos2 σ

4
(dβ + cos θdφ)2

+1

9

[
dψ − 3

2
sin2 σ (dβ + cos θdφ)

]2
(B.7)

It is well-known (and simple to verify) that taking φ ∼ φ + 2π and β ∼ β + 4π ,
with θ ∈ [0, π ] and σ ∈ [0, π2 ], the first line is the standard Einstein metric on P

2.
Moreover, with ψ ∼ ψ + 6π , the five-dimensional metric is the round metric on S

5,
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viewed as the total space of a circle bundle S
5 π−→ P

2, normalized so to obey the
equation

RX5
i j = 4gX5

i j (B.8)

On the other hand, we are not free to chose the ranges of the coordinates, but
these are inherited from the ranges of the original coordinates (φ, τ, χ), fixed in (5.1).
From the change of coordinates (B.5), it follows23 that we must enforce the following
periodicities:

φ ∼ φ + 2π , β ∼ β + 2π , ψ ∼ ψ + 3π , (B.9)

thus suggesting that globally the space is an orbifold S
5/Z4. However, the precise

form of the Z4 action is not transparent from these considerations.
Next, we will show that the Z4 action is precisely the correct action inherited from

the C
3/Z4 orbifold singularity. We start with three standard complex coordinates

(z1, z2, z3) on C3 and consider the following change of coordinates

z1 = R sin σ cos θ
2 e

i
(
− β+φ

2 +ψ
3

)
, z2 = R sin σ sin θ

2 e
i
(
φ−β
2 +ψ

3

)
, z3 = R cos σei

ψ
3 ,

(B.10)

where

|z1|2 + |z2|2 + |z3|2 = R2 (B.11)

It can be checked that the metric induced at R = 1,

ds25 = (|dz1|2 + |dz2|2 + |dz3|2)|R=1 (B.12)

coincides with (B.7), and more generally, the six-dimensional metric is the cone
ds2cone = d R2 + R2ds2X5

.

To see that these are good coordinates on C
3 we can also view it as C3 � R

6 =
R
2 ⊕ R

2 ⊕ R
2, by defining

z1 = ρ1eiϕ1 , z2 = ρ2eiϕ2 , z3 = ρ3eiϕ3 (B.13)

so that the induced metric reads

ds2cone = |dz1|2 + |dz2|2 + |dz3|2 = dρ21 + ρ21dϕ21 + dρ22 + ρ22dϕ22 + dρ23 + ρ23dϕ23
(B.14)

23 The periodicities of φ and ψ are obvious. The simplest way to determine the periodicity of β is by
demanding that the total volume of the three-torus with coordinates (φ, χ, τ) is preserved by the coordinate
transformation (B.5).
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where for C3 the ranges of the coordinates are now ρi ∈ [0,+∞) and ϕi ∼ ϕi + 2π ,
for i = 1, 2, 3. Defining yi = 1

2ρ
2
i , this gives the standard metric in symplectic-toric

coordinates, with Kähler form

KC3 = dy1 ∧ dϕ1 + dy2 ∧ dϕ2 + dy3 ∧ dϕ3 (B.15)

From this it is clear that the U (1)3 torus action on C3

(z1, z2, z3) → (λ1z1, λ2z2, λ3z3) (B.16)

with |λi | = 1, λi = eici descends on the ϕi coordinates to

(ϕ1, ϕ2, ϕ3) → (ϕ1 + c1, ϕ2 + c2, ϕ3 + c3) (B.17)

Notice that onC3 the periodicities of the two sets of angular coordinates are consistent
with the change of coordinates

ϕ1 = −β + φ

2
+ ψ

3
, ϕ2 = −β + φ

2
+ ψ

3
, ϕ3 = ψ

3
, (B.18)

with inverse

φ = −ϕ1 + ϕ2, β = −ϕ1 − ϕ2 + 2ϕ3 , ψ = 3ϕ3 , (B.19)

as we have

(2π)3 =
∫

dϕ1dϕ2dϕ3 = 1

6

∫
dφdβdψ = 1

6
(2π)(4π)(6π) (B.20)

Let us now reformulate the standard orbifold action of a discrete group � ∈ SU (3)
onC3 with the corresponding action on S5 in the above (φ, β,ψ) coordinates. We will
restrict to � = Zn for simplicity. In the (z1, z2, z3) coordinates on C

3, a Zn orbifold
action is defined by the identification

(z1, z2, z3) ∼ (ωa1
n z1, ω

a2
n z2, ω

a3
n z3) (B.21)

where ωn is a n-th root of unity. The requirement that Zn ∈ SU (3) implies that

a1 + a2 + a3 = 0 mod n (B.22)

Using (B.17), the above orbifold action implies the following identification in the ϕi

coordinates

(ϕ1, ϕ2, ϕ3) ∼ (ϕ1 + a1
2π
n , ϕ2 + a2

2π
n , ϕ3 + a3

2π
n ) (B.23)
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and, equivalently, the following identification in the (φ, β,ψ) coordinates

(φ, β,ψ) ∼ (φ + (−a1 + a2)
2π
n , β + (−a1 − a2 + 2a3)

2π
n , ψ + 3a3

2π
n ) (B.24)

The simplest example is the C3/Z3 orbifold, with Z3 action on C
3 given by

(z1, z2, z3) ∼ (ei
2π
3 z1, ei

2π
3 z2, ei

2π
3 z3),

which using (B.24) corresponds simply toψ ∼ ψ +2π . In this case, the metric (B.7),
taking φ ∈ [0, 2π ], β ∈ [0, 4π ], is the metric on S5/Z3. This space can also be viewed
as the unit circle bundle inside OP2(−3), namely the total space of the canonical line
bundle over P2.

Let us now discuss our main example, the orbifold C
3/Z4. In the table below

we summarize the action of the three nontrivial elements of g ∈ Z4, including the
identifications both in the (ϕ1, ϕ2, ϕ3) and the (φ, β,ψ) coordinates.

g : (z1, z2, z3) {a1, a2, a3} (ϕ1, ϕ2, ϕ3) ∼ (φ, β,ψ) ∼
(i, i,−1) {1, 1, 2} (ϕ1 + π

2 , ϕ2 + π
2 , ϕ3 + π) (φ, β + π,ψ + 3π)

(−1,−1, 1) {2, 2, 0} (ϕ1 + π, ϕ2 + π, ϕ3) (φ, β + 2π,ψ)
(−i,−i,−1) {3, 3, 2} (ϕ1 + 3π

4 , ϕ2 + 3π
4 , ϕ3 + π) (φ, β + 3π,ψ + 3π)

(B.25)

As we see, in either of these two sets of angular coordinates the identifications are
not diagonal. In the coordinates (φ, β,ψ) the clearest identification is the action of
(junior) element {2, 2, 0}, which implies that the base space, with metric in the first
line of (B.7), is P2/Z2. The action of the (junior) element {1, 1, 2} means that as β
goes half way around its circle, the coordinate ψ goes once around the ψ-circle, with
period 3π . The action of the (senior) element {3, 3, 2} is simply a consequence of the
previous two.

In order to clarify the orbifold action on S5, it is useful to adopt a set of angular
coordinates in which the Z4 action is diagonal. It is then simple to verify that this is
achieved precisely by the original coordinates (φ, τ, χ)defined in (5.1).We summarize
this diagonal action in the table below, where for convenience we defined γ ≡ 4

3χ .

g : (z1, z2, z3) {a1, a2, a3} (φ, τ, γ ) ∼
(i, i,−1) {1, 1, 2} (φ, τ, γ + 2π)

(−1,−1, 1) {2, 2, 0} (φ, τ + 2π, γ )
(−i,−i,−1) {3, 3, 2} (φ, τ + 2π, γ + 2π)

(B.26)

This shows that the indeed, the Z4 action on C
3 induces the correct Z4 action on the

asymptotic metric on S
5.

In order to further clarify the orbifold action on S
5, it is convenient to rewrite the

metric (B.7) in the form of a circle fibration over a base space, that turns out to be
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precisely WP[112]. In particular, rearranging the terms in (B.7) we find

ds2X5
= d̃s

2
WP[112] + 1

16
(1 + 3 cos2 σ)

[
dγ + 2 sin2 σ

1 + 3 cos2 σ
(dτ − cos θdφ)

]2

(B.27)

where24

d̃s
2
WP[112] = dσ 2 + 1

4
sin2 σ

(
dθ2 + sin2 θdφ2

)
+ sin2 σ cos2 σ

1 + 3 cos2 σ
(dτ − cos θdφ)2 ,

(B.28)

which clearly displays the fact that S5/Z4 arises as the total space of a circle fibration
overWP[112], equipped with the metric (B.28). We decorated this metric with a tilde
to distinguish it from the different metric on WP[112], that we discuss in the main
body of the paper, namely the metric (8.2) induced on the exceptional divisor by the
Ricci-flat metric (5.9).

Belowwewill rewrite the lattermetric in different coordinates, to facilitate the com-
parison with the metric in (B.28). Let us discuss briefly how to see that the underlying
(singular) variety to the metric defined in (B.28) is indeedWP[112]. With the ranges
of coordinates and periodicities σ ∈ [0, π2 ], θ ∈ [0, π ], φ ∈ [0, 2π ], τ ∈ [0, 2π ] we
see that near to σ ≈ 0 the metric develops an R

4/Z2 singularity (it is a cone over
the Lens space S3/Z2), while near to σ ≈ π

2 , the space shrinks smoothly to S2 × R
2.

Following a reasoning analogous to that in the main body of the paper, one can see
that there exists only one nontrivial two-cycle

C2 ⇔ {θ = constant, φ = constant} (B.29)

while the other two-cycle of F2, that would be defined by C1 ⇔ {t = tmax =
− 3

2 sin
2 σmax �= 0} is shrunk to zero size in the above metric.25

From the metric (B.27) we now read off the connection one-form

Ã ≡ 2 sin2 σ

1 + 3 cos2 σ
(dτ − cos θdφ) (B.30)

whose associated first Chern class can be integrated on C2 to give

1

2π

∫

C2

dÃ = 2 (B.31)

24 Interestingly, precisely this metric was found in [67] as a limiting case of a more general one-parameter
family of smooth metrics on F2, in the context of AdS5 solutions of eleven-dimensional supergravity. See
Eq. (5.7) of this reference.
25 Since we have not establishedwhether the abovemetric is Kähler, the simplest way to see this is probably
to consider the explicit one-parameter familiy of metrics on F2 desingularizing (B.28), presented in [67].
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showing that indeed this is a connection on the unit circle bundle inside the canonical
bundle ofWP[112].

We conclude this appendix by writing the metric on the exceptional divisor (8.2)
induced by the Ricci-flat metric (5.9) in a form that makes more transparent the com-
parison with the above discussion. Using (B.3) we have that

ds2ED = 9

4

[
(1 + cos2 σ)dσ 2 + 1

2
sin2 σ

(
dθ2 + sin2 θdφ2

)

+ sin2 σ cos2 σ

1 + cos2 σ
(dτ − cos θdφ)2

]
(B.32)

from which the similarity with the metric (B.28) is apparent. For completeness, let us
also display the behavior of the orthotoric metric (5.9) near to the exceptional divisor.
Setting s = −3 − ρ2 in (5.9), for ρ → 0 we have

ds2totKWP[112]
ρ→0≈ ds2ED + 3(1 + cos2 σ)

8

⎡
⎣dρ2 + ρ2

[
dγ + 2 sin2 σ

1 + cos2 σ
(dτ − cos θdφ)

]2⎤
⎦

(B.33)

where the angular variables (φ, τ, γ ≡ 4
3χ) are precisely those defined in (5.1), which

all have canonical 2π -periodicities. This shows that the metric (5.9) is smooth in the
neighborhood of the exceptional divisor ED = WP[112], in particular locally it has
the topology of WP[112] × C

2. The connection one-form

A ≡ 2 sin2 σ

1 + cos2 σ
(dτ − cos θdφ) (B.34)

read off from (B.33) has first Chern class again given by

1

2π

∫

C2

dA = 2 (B.35)

as it should be.
To summarize, in this appendix we have shown that the orbifold action ofZ4 on S5,

induced by theC3/Z4 quotient, is not diagonal in the canonical coordinates where the
Sasaki–Einsteinmetric onS5 can be viewed as aU (1)fibration overP2 with its Kähler-
Einstein metric. This action is diagonalised precisely by the coordinates (φ, τ, 4

3χ)

used in the main part of the paper, and adapting the metric to these coordinates, it takes
the form of a U (1) fibration overWP[112], with the non-Einstein metric (B.28). This
is precisely the unit circle bundle in the canonical line bundle over WP[112]. The
metric on the exceptional divisor of the partial resolution, induced from the orthotoric
Ricci-flat metric, is a similar, but manifestly different non-Einstein metric (B.32).
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