
Master in High Performance
Computing

Calibration of the GEOtop
model using evolutionary

algorithms on supercomputers

Supervisor(s):
Giacomo Bertoldi,
Alberto Sartori

Candidate:
Stefano Campanella

6th edition
2019–2020

1 Summary and Outline 2

2 Acknowledgements 3

3 GEOtop calibration 4

3.1 Brief Introduction to GEOtop . 4

3.2 Model Calibration . 5

4 The need for HPC 7

4.1 The Curse of Dimensionality . 7

4.2 Scalability of Evolutionary Algorithms . 8

4.3 Scaling in Theory and in Practice . 8

5 Derivative-free Optimization 10

5.1 Random Search . 10

5.2 Evolutionary Algorithms . 11

6 Tools 12

6.1 The Python Programming Language . 12

6.2 The Jupyter Ecosystem . 13

6.3 GEOtoPy . 15

6.4 Nevergrad . 17

6.5 High-Performance Computing in Python using Dask 18

7 Implementation 21

7.1 Model and Objective Function . 21

7.2 A Closer Look at the Optimization Loop . 22

8 Example GEOtop Calibration Report 26

9 Scaling Analysis and Modeling 33

9.1 Scaling and E ciency . 34

9.2 Linear Scaling Model . 39

9.3 Models for Large Numbers of CPUs . 43

10 Conclusions 49

11 Final Thoughts Beyond the Scope of the Thesis 50

11.1 Apology of the Thoughtful Dabbler . 50

11.2 Rage Against Machine Learning . 51

Master in High-Performance Computing, 2019/20 edition

Author: Stefano Campanella

Supervisors: Giacomo Bertoldi, Alberto Sartori

SISSA and ICTP

When a program grows in power by an evolution of partially‑understood patches

and fixes, the programmer begins to lose track of internal details and can no

longer predict what will happen—and begins to hope instead of know, watching

the program as though it were an individual of unpredictable behavior.

—Marvin Minsky, Why programming is a good medium for expressing poorly

understood and sloppily formulated ideas

GEOtop is a model of the mass and energy balance of the hydrological cycle aimed for sim-

ulations of small catchments. It is a distributed model and can simulate the evolution of

snow cover, soil temperature, and water content. GEOtop takes into account vegetation pro-

cesses, such as evapotranspiration, to correctly describe the water and energy exchange with

atmosphere.

A GEOtop simulation requires some input data, parameters and settings. The meteorological

data strictly necessary to run the model consist of: air temperature, relative humidity (air

water content, air vapor pressure, or dew point), wind speed, shortwave radiation, pressure,

and precipitation. The meteorological time series must come from at least one station with a

resolution of at least six hours.

Parameters can be divided into surface parameters, which values are single numbers for

each point of the catchment, and soil parameters, that may vary with depth. The first ones

are related to energy fluxes, as the albedo, and vegetation properties, as vegetation height

and leaf area index, which may vary with time. The seconds can be either thermodynamical

properties of the soil, as its thermal conductivity and capacity, or hydraulic properties. The

latter are crucial for determination of the soil moisture content, and some of them appear

in phenomenological relations which are highly non-linear, as the Van Genuchten equation

[VG80]. Small changes in these parameters correspond to very di erent behaviours of soil

retention. Putting all together, there are around thirty parameters that describe a single point

of the simulated catchment. However, soil parameters are arrays since di erent layers of soil

can have di erent properties. This means that the total number of values that can be used to

characterize a point of a basin, including default values, can exceed one hundred.

The core of a simulation is the solution of the system of coupled partial di erential equations

that describes the flow and di usion of water, and thermodynamical properties of soil. GEOtop

solves a finite di erence approximation of this system of equations. It uses a fixed time-step

https://geotop.org
https://github.com/geotopmodel/geotop/tree/v3.0/

The task of model calibration is more an art than a science. Still, it would be useful to have

hints and heuristics. The analyses in this work answer only a few of the previous questions.

However, the developed code enable making further experiments and empirical studies on

the subject. Let’s consider the challenges that calibration entail.

The multitude of parameters translates into dimensionality curse, that is the exponential

growth of the volume of the search space with respect to the number of parameters. However,

the dimensionality curse is not an obstacle per se, take for example neural networks. Yet,

neural networks have two peculiar properties. On the one hand, the derivatives of the objec-

tive function with respect to the model parameters can be easily calculated. On the other,

it turns out that wherever you start from in the search space, there is always a good set of

parameters nearby1

Leaving out categorical parameters, in the case of GEOtop, the first point is not a real impedi-

ment. In principle, we could use a numerical di erentiation scheme (supposing that there

are no threats of numerical instability and that the objective function is smooth enough).

However, the second point has no similar in GEOtop.

In pictorial form, if one could put himself in the parameters space of GEOtop, and look at

the cost function, he would see hills and canyons, craters where the model crashes, swamps

where`it doesn’t converge, mirages of oasis with unphysical parameters, and deadly desert

plateaus where one moves from meaningless outputs to equally meaningless outputs. In this

lumpy and bumpy landscape, moving towards the direction of the steepest descent would

lead, in the best scenario, to a useless local optimum2.

Hence, if we want to find the holy grail of global optimum, we need to roam and wander,

jumping here and there, with increasing confidence on our next guess as we grasp some

(statistical) knowledge of the shape of the objective function. However, this process is very

time-consuming: for the kind of simulations with which we are involved, each sampling takes

about one minute, hence serial computations are not feasible.

The results of calibration strongly suggest that a global optimum does not exist. Instead, the

objective has a plethora of equivalent local minima. This is an interesting feature of the model,

and a strong indication that it is over-parametrized. Indeed, this open the possibility for fur-

ther analysis of the data collected during calibration. It could allow getting useful information

for a better understanding of the model behaviour and future models improvements.

1 It is implausible that local optima exist in such high dimensional spaces. Given the gargantuan dimensionality

of models like GTP3, the concept of direction, or distance assume a statistical meaning: just by chance, there will

always be a direction along which you could move to smaller values of the cost function.
2 However, at the end of a good calibration, we might have a good prior. In this case, it would make sense to

perform a local optimization search. In principle, this would boost the performance of the calibration strategy.

Unfortunately, there was no time to develop this idea.

In the general case of black-box optimization, the specific bottlenecks that an implementation

might find depends on the characteristics of the objective function. Placing the objective

function in one of the four quadrants of a plane where the axes are the boundedness (CPU,

IO) and cost (cheap, expensive) is a good indication of what to expect.

For example, the execution of cheap CPU-bounded functions may need a very responsive

scheduler, as you may receive too many requests on a distributed system or even waste too

much time on forking and joining threads. An expensive IO-bound function will require almost

certainly a distributed file system.

This kind of optmization problems are common and already cited examples are earth-system

model calibration and hyperparameters optimization in machine learning models. The ap-

plication of HPC to these problems is an active reseach topic and a vast, rapidly evolving

field.

My children, the only true technology is nature. All the other forms of manmade

technology are perversions.

—Ralph Bakshi, Wizards

In this chapter, I would like to pinpoint in mathematical terms the ideas behind the numerical

experiments with which this thesis is concerned. The following is far from a rigorous treatment,

may seem pretentious or naive, and probably it is. Nonetheless, I think it’s helpful to have a

mental model of the computations that are going to be performed.

As more thoroughly explained in the previous chapters, we are concerned with the calibration

of the GEOtop hydrological model. Calibration means to find the values of the input param-

eters that one has to set to obtain the best possible overlapping between the outputs of a

simulation and the experimental data.

“Overlapping” is not a precise term, but for the moment let’s suppose that we have a pure

function, the cost function, which takes the value of the parameters as arguments, runs a

simulation, and returns a real number representing the discrepancy with observations: higher

values mean worst overlap, and 0 means perfection. We will consider only continuous parame-

ters, and suppose that you can get arbitrarily small di erences by evaluating the cost function

with ” close enough” arguments, which we can image as points of the parameter/search space.

Therefore, we can model our cost function as lower bounded, continuous function
𝑛 , where the search space is compact such that we know that there exist one

or more global minima. We should consider an extension of that includes failing

computations, when the model crashes or fails to converge, something like bottom in Haskell.

Let’s forget about it though, and consider this information encoded in the domain , within

which our computation acts like a real mathematical function.

A black box optimizer is an iterator that at each step returns the approximate location of

the minimum (referred to as recommendation or candidate), with increasing precision as

the iterations go by. In this innocent statement lingers the assumption that it exists only

one global minimum, assumption which for the moment we will ignore. In particular, we will

consider only randomized algorithms which return a di erent sequence of points at each

execution.

Therefore, we can define an optimizer as a random process 𝑖 that gives better and

better recommendations, that is 𝑖 𝑖−1 .

from geotopy import GEOtop

class Model(GEOtop):

def preprocess(self, working_dir, *args, **kwargs):

self.clone_into(working_dir)

def postprocess(self, working_dir):

return None

which populates the working directory with the input files, and always returns None.

Indeed, the GEOtoPy.GEOtop class also provides some helper methods to implement the

preprocess and postprocess ones, like clone_into.

The panorama of existing Python libraries for derivative-free optimization is varied, as dif-

ferent libraries account for di erent needs. However, the vast majority of these libraries are

designed for hyperparameters optimization of machine learning models. Hyperparameters

optimization in machine learning is a vast topic, which is di cult to summarize in a few words.

Still, the main idea is to find the optimal values of the parameters that control the learning

process. For di erent reasons, derivative-based algorithms, such as gradient descent or

BFGS, are usually not suited for searching the optimal values of model hyperparameters (for

example, because there is a mixture of continuous and discrete parameters). An interesting

class of algorithms is the early stopping one, especially when model training is computa-

tionally expensive. Indeed, the application of early stopping algorithms to the calibration of

earth-system and environmental models might be a good research topic.

In general, derivative-free optimization libraries consist of two pieces:

1. one to model the search space, and

2. one to select the algorithm and perform the optimization.

Also, these libraries typically assume that the interface with the objective function is a callable

object.

Nevergrad is a Python library for derivative-free optimization not explicitly targeted at hy-

perparameter optimization and focusing on evolutionary algorithms [RT18]. It can handle

continuous and discrete parameters, and Python containers, such as tuples, lists (arrays) and

dictionaries. It has a wide range of preconfigured optimization algorithms, and it o ers both

a high level minimize function, and a lower level ask-tell interface. Notice, that the minimize

function is able to evaluate the objective function in parallel using the concurrent.futures.

Executor interface. The ask-tell interface [CHP+13] is an algorithm-agnostic, object oriented

programming interface for implementing the optimization loop, and will be discussed in the

next chapter.

The Nevergrad library implements several evolutionary algorithms, such as Particle Swarm Op-

timization (PSO), Covariance Matrix Adaptation - Evolutionary Strategy (CMAES) [HMullerK03].

It also contains one-shot algorithms, i.e. algorithms where the points of the search space

which will be sampled are known from the beginning. Finally, it has two meta-algorithms,

Shiva and NGO, which select an algorithm among the available ones based on the available

information using empirical rules.

The algorithms implemented in Nevergrad follow the same philosophy as CMA-ES: the choice

of the hyperparameters of the optimizer should be part of the algorithm’s design (although it

is possible to tweak and configure the optimizers if needed). The only parameters that the

user must specify are the budget and num_workers. The first is, simplifying a bit, the number

of allowed calls to optimizer.ask().

The first (the budget), is significant for some one-shot algorithms, where the optimizer must

generate a low-discrepancy sequence of a given length apriori. The second, num_workers, is

the number of objective function calls that can be evaluated in parallel, i.e. the number of

CPUs. In evolutionary algorithms, the latter maps naturally to the number of individuals in a

generation, the population size. In the next chapter, we will see how and why these two are

involved in failing objective function evaluations.

The previous sections leave open the question of whether it is possible to do High-Performance

Computing using Python. The answer to this question is related to performing parallel com-

putations on distributed systems using this language. It turns out that Python is indeed a

useful tool for this purpose, and it is capable of scaling on large supercomputers: it was able

to scale up to 921 nodes on Summit [Col20], still leaving room for improvement (M. Coletti,

personal communication, 28 January, 2021).

As you’ve no doubt observed, there hasn’t been activity of late, but it does refer-

ence at least one other group that has modified the heartbeat implementation

that could be used to overcome scaling problems we encountered on Summit. That

is, I was able to successfully run dask on Summit up to 921 nodes, with six dask

workers per node, but couldn’t scale beyond that; but there was a comment in

that github thread about tweaking the heartbeats to possibly overcome that. In

any case, since 921 nodes is almost a quarter of the machine, that may actually

be enough for most scientific tasks on that platform. However, I’m confident that,

again, with some configuration tweaking that dask could be pushed to support

more nodes.

Still, before moving to distributed systems, it is interesting to examine the topic of parallel

computing in Python on a single shared-memory system.

The reference implementation of Python, the CPython interpreter, compiles the Python code

into an intermediate representation called bytecode, which runs on a virtual machine. Also,

CPython uses reference counting for garbage collection. This means that there is a counter

for each object created during the execution of a Python program: when a variable is bound

to the object, the counter of the latter is increased, when a reference is deleted, the counter

is decreased. Once the counter reaches zero, the object is deallocated, or, in C++ parlance,

the destructor is called. In multi-threaded code, this form of garbage collection requires

some mechanism to avoid data races. CPython opted for a global lock on the interpreter,

hence called the Global Interpreter Lock or the GIL. External dependencies might or might

def objective(model, candidate, observations):

try:

with TemporaryDirectory() as tmpdir:

predictions = model.run_in(tmpdir, *candidate.args, **candidate.kwargs)

except (CalledProcessError, TimeoutExpired):

predictions = None

return compare(predictions, observations)

The compare function should return the loss value. A good choice is to use the Kling-Gupta

or Nash-Sutcli e e ciencies [GKYM09][NS70], which are well-suited for hydrological models,

notice however that higher number of these correspond to better overlap of simulation and

observations.

Using TemporaryDirectory from the tempfile module allows running the model in tmpfs (i.e. in

RAM) and automatic deletion of files on exit (also in case of exceptions and canceled Dask task).

The CalledProcessError and TimeoutExpired exceptions from the subprocess module must

be caught since they represent routine GEOtop failures. Other exceptions will be propagated

since they signal abnormal behaviours.

A wide class of algorithms can be implemented using the unique interface described in

[CHP+13], and the ones sketched in the chapter Derivative-free Optimization belong to them.

Let’s say we want to minimize the objective function f, the optimization loop will look like the

following

while not optimizer.stop():

x = optimizer.ask()

y = f(x)

optimizer.tell(x, y)

The pseudocode is rather self explicative: the optimizer.stop method must implement some

stopping criterion, the optimizer.ask method suggests a new point where to evaluate the

objective function, and optimizer.tell communicates the result to the optimizer. This design

allows decoupling the optimizer from the objective function.

Since the state of the optimizer object contains the information about the history of evalua-

tions, di erent criteria are possible, such as asking a decrease of the objective above some

threshold. The simplest is to use an internal counter to allow a maximum number of objective

evaluations, the budget in the Nevergrad parlance. It is crucial to notice that the number of

optimizer.ask calls can di er from the one of optimizer.tell calls.

As it is, the loop is fully serial. We need an optimization algorithm capable of suggesting

several points at ones to make it parallel. The requirement is non-trivial, for example Bayesian

optimization does not fulfill it. Evolutionary algorithms generally satisfy the requirement,

since individuals of the same generation are independent one another.

A parallelizable loop using generation count as stopping criterion will look like the following.

for _ in range(num_generations):

for i in range(popsize):

x[i] = optimizer.ask()

(continues on next page)

(continued from previous page)

for i in range(popsize):

y[i] = f(x[i])

for i in range(popsize):

optimizer.tell(x[i], y[i])

In theory, optimizer.ask could be read-only, and the first loop could be executed in paral-

lel. In practice, it must change the state of the internal pseudo-random generator. Since

optimizer.tell changes the state of the object (with exception of random search), concurrent

execution of the third loop is guaranteed to cause race conditions unless optimizer.tell

uses some mutex. However, both optimizer.ask and optimizer.tell are not supposed to be

expensive to call1, hence their loops can be executed in serial fashion without performance

degradation.

When the objective function evaluation is time-consuming, as it is the case for GEOtop, most

of the time is spent in the second loop. The objective loop is embarrassingly parallel and

can be executed concurrently for example using futures. Let’s suppose to have a Dask Client

client, the loop becomes.

for _ in range(num_generations):

for i in range(popsize):

x[i] = optimizer.ask()

for i in range(popsize):

futures[i] = client.submit(f, x[i])

for i in range(popsize):

y[i] = futures[i].result()

for i in range(popsize):

optimizer.tell(x[i], y[i])

The first two loops can be fused, as well as the second two. Notice that Dask assumes that f

is a pure function (otherwise, the whole computation would not make sense anyway).

The previous design however has a serious flaw: the third loop is executed synchronously

(there is no event loop) and future.result() is blocking. Therefore, the interpreter will wait

the first future, then the second, and so go on. However, since the execution time of f is

random (and varies in a large interval of values), some results may be ready much before

their turn. Fortunately Dask Distributed as the as_completed class, which iterates the futures

as soon as they are done.

However, since we lost the information about the order of the results, we need to use a small

wrapper that keeps track of the argument and the loss.

for _ in range(num_generations):

for i in range(popsize):

x[i] = optimizer.ask()

for i in range(popsize):

(continues on next page)

1 This is true within a generation. From one generation and the next, in case of large population size, the

optimizer can perform expensive computations.

(continued from previous page)

futures[i] = client.submit(lambda x: (x, f(x)), x[i])

to_tell = []

for future in as_completed(futures):

to_tell.append(future.result())

for x, y in to_tell:

optimizer.tell(x, y)

Such optimization loop still does not take into account objective function failures. In our

implementation failing computations return nan. We can check that the result is valid using

the isfinite function from Numpy. It is possible to elegantly solve the problem by submit-

ting other computations to as_completed. Indeed, it has two methods as_completed.add and

as_completed.update which allow adding one or more futures to the queue respectively, and

a as_completed.count() method which counts how many futures are still in the queue.

completed_queue = as_completed(futures)

to_tell = []

for future in completed_queue:

x, y = future.result()

if isfinite(y):

to_tell.append(future.result())

if len(to_tell) + completed_queue.count() < popsize:

new_x = optimizer.ask()

new_future = client.submit(lambda x: (x, f(x)), new_x)

completed_queue.add(new_future)

The previous code works since to exit the loop completed_queue must be empty. If com-

pleted_queue is empty, then bottom of the loop has been reached without a insertion of a new

future, that is len(to_tell) + completed_queue.count() < popsize must have been false.

But completed_queue.count() is equal to zero, hence len(to_tell) >= popsize. However, the

number of failures equals the number of insertions, hence len(to_tell) == popsize.

Let’s consider what happen when we reach the end of a generation. There are popsize - 1

elements in to_tell, and if the objective fails a single new future is added to completed_queue:

all CPUs except one will wait in idle. A better idea is to speculatively execute more objective

functions, so to increase the chances that at least one of them does not fail.

completed_queue = as_completed(futures)

to_tell = []

for future in completed_queue:

x, y = future.result()

if isfinite(y):

to_tell.append(future.result())

if len(to_tell) + completed_queue.count() < popsize:

for _ in range(num_new_futures):

new_x = optimizer.ask()

new_future = client.submit(lambda x: (x, f(x)), new_x)

completed_queue.add(new_future)

In this way, there will be a bu er of approximately num_new_futures extra futures. Indeed, the

upper bound for the size of the queue is popsize - len(to_tell) + num_new_futures - 1.

However, with this modification there is no guarantee that at the end of a calculation we have

popsize elements in to_tell. Usually this is not a problem, since the optimizer will throw away

the worst individuals (or include them in computations, in a non-elitist fashion). However, we

can enforce the old behaviour using a break statement and completed_queue.clear(). When

the latter is called, the futures still in the queue are garbage collected, and Dask cancels the

corresponding computations.

completed_queue = as_completed(futures)

to_tell = []

for future in completed_queue:

x, y = future.result()

if isfinite(y):

to_tell.append(future.result())

if len(to_tell) >= popsize:

break

else:

if len(to_tell) + completed_queue.count() < popsize:

for _ in range(num_new_futures):

new_x = optimizer.ask()

new_future = client.submit(lambda x: (x, f(x)), new_x)

completed_queue.add(new_future)

completed_queue.clear()

However, this introduces a bias: futures that terminates earlier have more chance to be

reported to the optimizer, whatever their loss is. This new behaviour is located near the end

of a generation, when the computation start to consume the bu er, and it is more evident the

larger num_new_futures.

Let’s suppose that we are able to guess how many computations will be successful. In this

case, we could add to the queue only the futures that will be consumed. If the fraction of

valid futures in the queue is r then we will need to add new futures to the queue only if

len(to_tell) + r * completed_queue.count() < popsize. Not only, we can now get rid of

the free parameter num_new_futures. Indeed, if r can be expected to stay constant within

a generation, a reasonable heuristic is to add each time (popsize - len(to_tell) - r *

completed_queue.count()) / r new futures.

The actual optimization loop used implements this strategy, estimating r as the weighted

average success rate using the following function.

log is a list of triples [(individual, loss, execution time)]

def average_success_rate(log, alpha):

if log:

successes = [1 if np.isfinite(l) else 0 for (_, l, _) in reversed(log)]

weights = [exp(-alpha * n) for n in range(len(log))]

return sum(w * x for w, x in zip(weights, successes)) / sum(weights)

else:

return 1.0

In this way, the success rate looses memory of older evaluations. The timescale parameter

alpha is chosen as 1 / popsize.

However, it turns out that this strategy fails when the number of missing futures is small. For

this reason the actual optimization loop implements also an overshoot parameter that allows

to submit more new futures than estimated (but introducing again a bias related to execution

times). Also, the actual implementation prefetches futures in batches, and pre-scatters the

data across the Dask cluster.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import scrapbook as sb

import dask.config

from dask.distributed import Client, performance_report

from mhpc_project.utils import date_parser, kge_cmp, calibrate, delta_mim

from mhpc_project.parameters import UniformSoilParameters as Parameters

from mhpc_project.models import UniformSoilModel as Model

import mhpc_project.plots as plots

Store dask config

sb.glue('dask_config', dask.config.config)

parameters = Parameters(parameters_path, default_parameters)

model = Model(model_path, store=False, timeout=timeout)

observations = pd.read_csv(observations_path,

parse_dates=[0],

date_parser=date_parser,

index_col=0)

if scheduler_file:

client = Client(scheduler_file=scheduler_file)

else:

client = Client()

client.wait_for_workers(n_workers=num_workers, timeout=240)

with performance_report(filename=performance_report_filename):

recommendation, predictions, log = calibrate(model,

parameters,

observations,

algorithm,

popsize,

num_generations,

client,

num_cpus)

sb.glue('loss', kge_cmp(predictions, observations))

sb.glue('log', [((x.generation, x.args[0]), l, t) for (x, l, t) in log])

(64_w,128)-aCMA-ES (mu_w=34.2,w_1=6%) in dimension 29 (seed=nan, Thu Feb 18 09:36:33 2021)

plot = plots.convergence([(x.generation, l) for x, l, _ in log if np.isfinite(l)])

plt.close(plot)

sb.glue('convergence_plot', plot, 'display')

for name, plot in plots.comparisons(predictions, observations).items():

plt.close(plot)

sb.glue(name + '_plot', plot, 'display')

The speedup is usually defined as

However, since we don’t have a serial execution as a reference, the following definition will

be used

0

where in our case 0 . In case of perfect (linear) strong scaling, is inversely proportional

to , and we have

0

It is possible to improve this simple model of the computation by including the e ect of the

population size. If the objective never fails, each PU exceeding the population size will idle.

Hence, we can have perfect scaling only up to

min

0
(9.1)

ax = sns.lineplot(data=strong_scaling_data, x='num_cpus', y='speedup',

err_style='bars', marker='o', label='data')

sns.lineplot(x=strong_scaling_data['num_cpus'], y=strong_scaling_data[['num_cpus',

'popsize']].min(axis=1) / strong_scaling_data['num_cpus'].min(),

label='reference', ax=ax)

ax.set_title('Strong Scaling (popsize = 512)')

plt.show()

As can be evinced from the plot above, the simple model described by the equation

{eq}`eq:max_speedup} seems to be very e ective. It is interesting to note that the execution

appears to reach values near the theoretical maximum speedup, but with sensibly larger

than . One possible interpretation is that, as we know, the e ective population size is larger

than due to objective function failures. However, in that case the speedup should be also

larger than 0. In principle, knowing the statistics of the objective execution times and

failures, it should be possible to model more accurately the calibration speedup. However, I

will use a simpler approach based on data.

Another interesting quantity is the e ciency, defined as the fraction of time spent by a PU

computing the values of the objective actually told to the optimizer

𝑋 told
𝑖

By definition, the remaining part of time is spent idle, computing NaNs or unused values.

sns.lineplot(data=strong_scaling_data, x='num_cpus', y='efficiency', err_style='bars')

plt.show()

It is worth noting that while we can get a speedup by using more PUs, the e ciency will drop.

In weak scaling analysis, the calibration notebook has been executed several times with

increasing and , while keeping the ration fixed. Note that from strong scaling analysis

we know that larger values correspond to smaller errors.

In case of weak scaling, the speedup is not a meaningful metric, since the size of the problem

changes. Instead, we are interested in the execution time , and perfect scaling happens

when is constant.

weak_scaling_book = sb.read_notebooks('../runs/weak_scaling')

weak_scaling_data = get_scaling_data(weak_scaling_book)

ax = sns.barplot(data=weak_scaling_data, x='num_cpus', y='duration',

label='data', capsize=0.2, color="#1f77b4")

ax.yaxis.set_major_formatter(lambda value, position: timedelta(seconds=value))

ax.set_title('Weak Scaling (num_cpus = popsize)')

plt.show()

Visual inspection suggests that the hypothesis of perfect weak scaling is compatible with the

data within the errors. The same thing can be shown by means of linear regression in the plot

and summary below.

grid = sns.JointGrid(data=weak_scaling_data, x='num_cpus', y='duration')

grid.fig.set_figwidth(16)

grid.fig.set_figheight(9)

grid.plot_joint(sns.regplot, x_estimator=np.mean, truncate=False)

grid.ax_marg_x.set_axis_off()

sns.histplot(data=weak_scaling_data, y='duration', kde=True, ax=grid.ax_marg_y)

grid.ax_joint.yaxis.set_major_formatter(lambda value, position: timedelta(seconds=value))

plt.show()

smf.ols(formula='duration ~ 1 + num_cpus', data=weak_scaling_data).fit().summary()

<class 'statsmodels.iolib.summary.Summary'>

"""

OLS Regression Results

==

Dep. Variable: duration R-squared: 0.998

Model: OLS Adj. R-squared: 0.998

Method: Least Squares F-statistic: 9.484e+04

Date: Wed, 17 Feb 2021 Prob (F-statistic): 4.06e-219

Time: 10:57:36 Log-Likelihood: -1116.9

No. Observations: 158 AIC: 2238.

Df Residuals: 156 BIC: 2244.

Df Model: 1

Covariance Type: nonrobust

==

coef std err t P>|t| [0.025 0.975]

--

Intercept 692.1514 28.355 24.410 0.000 636.142 748.161

ratio 1478.7292 4.802 307.957 0.000 1469.244 1488.214

==

Omnibus: 56.222 Durbin-Watson: 1.968

Prob(Omnibus): 0.000 Jarque-Bera (JB): 132.789

Skew: 1.533 Prob(JB): 1.46e-29

Kurtosis: 6.281 Cond. No. 7.43

==

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

"""

Linear regression of the optimization time gives a strong indication that equation (9.2) might

be the right candidate. The same functional relation can be represented also in the scaling

plot.

ys=(fit.params[0] + fit.params[1] * 512 / 32) / fit.predict(data['ratio'])

sns.lineplot(data=data, x='num_cpus', y='speedup', alpha=0.7, marker='o', err_style='bars',

label='data')

sns.lineplot(x=data['num_cpus'], y=ys, label='linear model')

plt.show()

We can also explicitly calculate the speedup

0 1
𝑝
𝑛

0 1
𝑝
𝑛 𝑇

𝑇 +𝑇

𝑇

𝑇 +𝑇
𝑛
𝑛

and compare this expression with the Amdahl’s law (corrected to use 0 as a reference)

𝑛
𝑛

where is the fraction of the program that can benefit from the speedup.

Therefore, we have that

1
𝑝
𝑛

0 1
𝑝
𝑛

or, equivalently, that the fraction of time that the program spend in serial code (that is not

split among PUs, i.e. the internals of the optimizer) is approximately the 3%. Note that this

has nothing to do with the data dependency that exists between a generation of individuals

and the next, which actually limits the possibility to scale the execution on larger numbers of

PUs.

We can also calculate the maximum speedup

max
1

0 0

(0.5826281218414213, 0.5756400950552586)

The story holds up: on the one hand, 1 is the amount of work that can be split among

workers, i.e. the average computation time times the budget. On the other, if we consider a

serial execution with a large population (that is and), then the e ciency is the

ratio between the average time spent on a successful computation and the average computa-

tion time per unit budget . In both cases 1 . Therefore, the maximum e ciency is

max
⟨𝑡s⟩
⟨𝑡⟩
, and is characteristic of the objective function, the optimizer and the timeout.

Also, notice that there is an implicit dependency on in 1, and hence in . Indeed, as the

generations pass, the optimizer explores regions the search space associated to smaller and

smaller losses, and it is plausible that the objective function fails less and less. Hence, the

value of calculated within a generation is expected to decrease from one generation to the

next. In principle, there could be a also a dependency on , but the data for large values of

seems to exclude that (more on this topic in the next section).

Therefore, we can estimate 1 from the data in this other way.

t1_estimate = (data['num_generations'] * data['samples_duration'] / data['num_good_samples

']).mean()

fit.params[1], t1_estimate

(1478.7292162544938, 1222.7824143247535)

Notice that can be larger than the timeout of the objective function. The reason is that

there could be multiple failing computations per successful one.

The previous model fails to describe the situation for large . The reason is that when is

larger than the e ective population size, adding more PUs should decrease sublinearly the

execution time. Indeed, if we neglect the e ects due to the statistics of successful computa-

tions, should be constant. For this reason, I considered other two models which introduce a

scale 0 for separating the two regimes.

The first one is a piecewise linear function

piecewise
0 1

𝑝
𝑛 0 if

𝑝
𝑛 0

0 otherwise

the other one is the lowest order rational function with vanishing slope at the origin and

same asymptotic behaviour

rational 0 1
0

1
𝑥

𝑝
𝑛

2

1
𝑥

𝑝
𝑛

We can fit the speedup using these models for the execution time. Since the speedup is

defined as a ratio, it does not depend on the unit of measure of . This also means that it

is not a function of both 0 and 1 but depends only on their ratio. Since the behaviour we

are trying to capture is at , the three models are asymptotically equivalent, and the

error on 1 in the fit of the linear model is small, it is convenient to consider 1 fixed to the

previously calculated value.

We can now fit the piecewise model,

def speedup_from_t(t, n, params, p=512, n0=32):

return t(np.asarray([p / n0]), *params) / t(p / n, *params)

def t_pwise(xs, t0, t1, x0):

return np.apply_along_axis(lambda col: np.piecewise(col, [col >= x0, col < x0],␣

[lambda x: t0 + t1 * (x - x0), t0]), 0, xs)

(t0_pwise, x0_pwise), cov = curve_fit(lambda x, t0, x0: speedup_from_t(t_pwise, x, [t0,␣

fit.params[1], x0]),

data['num_cpus'], data['speedup'],

bounds=[(0.5 * fit.params[1], 0.4),(2 * fit.

params[1], 0.8)])

(t0_pwise, x0_pwise), np.sqrt(np.diag(cov))

((1641.178379546566, 0.6792061302521527), array([17.60840277, 0.02223963]))

and plot the results

ax = sns.lineplot(x=data['num_cpus'], y=speedup_from_t(t_pwise, data['num_cpus'], [t0_

pwise, fit.params[1], x0_pwise]), label='piecewise linear model')

sns.lineplot(data=data, x='num_cpus', y='speedup', alpha=0.7, marker='o', err_style='bars',

label='data', ax=ax)

plt.show()

Visual inspection confirms that there is a good overlap between the data and this model.

Indeed, there might even be overfitting. We can also interpret 0 and 0 and use their values

to calculate the maximum speedup, which is

max, piecewise
1

0 0
0

(continued from previous page)

sns.lineplot(x=xs, y=fit.params[0] + fit.params[1] * xs, label='linear model', ax=ax)

sns.lineplot(x=xs, y=t_pwise(xs, t0_pwise, fit.params[1], x0_pwise), label='piecewise␣

linear model', ax=ax)

sns.lineplot(x=xs, y=t_rat(xs, t0_rat, fit.params[1], x0_rat), label='rational function␣

model', ax=ax)

ax.yaxis.set_major_formatter(lambda value, position: timedelta(seconds=value))

plt.show()

xs = np.linspace(1,2048)

ax = sns.scatterplot(data=data, x='num_cpus', y='speedup', estimator=np.mean, label='data

')

sns.lineplot(x=xs, y=speedup_from_t(lambda x, t0, t1: t0 + t1 * x, xs, fit.params), label=

'linear model', ax=ax)

sns.lineplot(x=xs, y=speedup_from_t(t_pwise, xs, [t0_pwise, fit.params[1], x0_pwise]),␣

label='piecewise linear model', ax=ax)

sns.lineplot(x=xs, y=speedup_from_t(t_rat, xs, [t0_rat, fit.params[1], x0_rat]), label=

'rational function model', ax=ax)

plt.show()

It just happened to be an unusual experience. By training I was a scientist: by

vocation I was a writer.

—C. P. Snow, The Two Cultures

[… Man] has no time to be anything but a machine. How can he remember well his

ignorance–which his growth requires–who has so o ten to use his knowledge?

—Henry David Thoreau, Walden; or, life in the woods

The work presented in this thesis is faceted, and placed at the intersection of hydrology,

black-box optimization and HPC. For reasons of space and time, I focused just on the last.

Given the diversity of topics involved, the extent of the material, the time assigned to this

project, its focus on HPC, and finally my background, I had to use some tools (algorithms,

concepts, etc.) without fully mastering them. This unavoidable fact is reflected in the frugality

of the bibliography and in their presentation, which occasionally could be sloppy or contain

plain errors. The responsibility for those is mine and mine only. However, I hope that the

material presented here, if not the subject for more in-depth and broader research by the

author, will be at least a prompt for more expert readers.

The growth of complexity in science, to which specialism was the universal response, is not

going to decline; but maybe the compartmentalization of specialism will. When we will seek

for systematic answers to the problems posed by this Cambrian explosion, one place to look

will be computer science, which under many regards is the art of managing complexity by the

human mind through abstractions. The simplest and most ubiquitous abstraction is the black

box, and hence there is no shame in using black boxes when dealing with problems outside

our competence. However, in order to make scientific statements about them, neglecting their

inner workings, one needs to use the strictest rigour on the assumptions on their inputs and

outputs.

It is unlikely that scientists will be replaced by scientific programmers in the future. However,

good scientists surely will also be good programmers, i.e. they will be able to express elegantly

both declarative knowledge by means of equations and of procedural knowledge, with the

help of a computer.

The main problem of present scientific research is the adoption of the ideas and methods

from capitalist market economy. Research institutes must profit from the work of researchers

and profit is measured by publications, funding, and patents. The phenomenon is not new,

but the degree to which it permeates academia is unedited. Also, it is tightly linked to the

sociopolitical and economic system in which we live, and it is probably irreversible. This

problem not only intoxicates the academic environment and the life of people which work in

academia, but also a ects negatively the quality of research. It creates positive feedback loops

and inflates some research topics while stagnating others. We live in a time of a profound,

yet silent, crisis in science.

Of course, technology and applied science, which have an immediate return, are more likely

to be funded and hence get more attention from researchers. In some cases, the situation is

exacerbated by lack of scientific contents and rigour. Private investments in the loop worse

the situation.

Prominent examples of speculative bubbles are HPC and topics in machine learning as artificial

neural networks. The latter deserves a word of caution. The ubiquitous application of artificial

neural networks for modeling and inference, as surrogate human understanding, is the utmost

failure of reductionism. We should invest more resources in their understanding, even if

it is less rewarding than simply using them. Otherwise, the use of mathematical language,

scientific method, and reductionism that fueled the most spectacular achievements in our

understanding of nature is in danger.

Some problems in modern science requires HPC, although fewer than promised by exa-scale

evangelists. Nonetheless, is it HPC an interesting scientific topic per se? I think that it is. Un-

derstanding the performance of large distributed systems, running thousands of coordinated

processes simultaneously, is an interesting subject indeed. However, it needs a paradigm

shi t: it should be investigated for the sake of it, out of pure curiosity. The accent should be

on comprehension, not on making things and doing stu . Paradoxically, it is from gratuitous

knowledge that the greatest technological advances come out, in the long run.

A related situation exists in computer science as a whole. Its cultural relevance and brief

history rich of beautiful ideas are not recognized. As a consequence, programming is o ten

taught and learned abysmally. The resources for these practices have no shortage of terms:

tutorials, cookbooks, howtos. In the words of Kevlin Henney, from a GOTO talk of 2018.

There’s something else in so tware that we are particularly bad at: we have a

very weak sense of history. So it is not simply that we keep rediscovering and

reinventing the wheel, and eventually we might actually make it round; it’s that we

have a very poor cultural sense of history, and so we live in a constant state of

astonishment and rediscovery.

At best, computer science is misunderstood, as wonderfully explained by Abelson and Sussman

in their classic on the subject [ASPS96].

Underlying our approach to this subject is our conviction that “computer science”

is not a science and that its significance has little to do with computers. The

computer revolution is a revolution in the way we think and in the way we express

what we think. The essence of this change is the emergence of what might best be

called procedural epistemology–the study of the structure of knowledge from an

imperative point of view, as opposed to the more declarative point of view taken

by classical mathematical subjects. Mathematics provides a framework for dealing

https://www.youtube.com/watch?v=AbgsfeGvg3E

This transformation is concerned with physical objects only to a lesser degree. The biggest

shi t was cultural. A generation of highly trained engineers has become obsolete. The knowl-

edge and mental models they used were outdated. It has not happened during a century, but

in few decades. It is highly unlikely that it will not happen again. Instead, if we extrapolate

the trend, it is conceivable that the timescale of transformations will become shorter and

shorter, due to technological acceleration.

In short, there are excellent chances that the knowledge about a particular technology that

one acquires today will be worthless within the time span of his professional career2. It is

probable that our high-level code will look to future programmers like assembly looks to us

today, i.e. something that should be generated and manipulated by machines and not humans.

All the more reason for believing that our carefully hand-unrolled loops will be considered as

primitive as the monkeys screaming around the monolith in 2001: A Space Odissey by Stanley

Kubrick3. The GPT-3 model o ers a hint of how this might happen.

Are we doomed to learn useless stu ? I think that the answer is no. Nonetheless, I think that

learning a particular technology, which does not teach us something more general, is a waste

of time. Details of implementation will come and go4, general questions will stay: the deeper

the longer. Bartosz Milewski ends with the following words an article on his blog [Mil20] titled

“Math is your insurance policy”.

I’m o ten asked by programmers: How is learning category theory going to help me

in my everyday programming? The implication being that it’s not worth learning

math if it can’t be immediately applied to your current job. This makes sense if

you are trying to locally optimize your life. You are close to the local minimum of

your utility function and you want to get even closer to it. But the utility function

is not constant–it evolves in time. Local minima disappear. Category theory is the

insurance policy against the drying out of your current watering hole.

We will need new tools however. From the preface of in Category Theory for Programmers

[Mil18]

There is an unfinished gothic cathedral in Beauvais, France, that stands witness to

this deeply human struggle with limitations. It was intended to beat all previous

records of height and lightness, but it su ered a series of collapses. Ad hoc mea-

sures like iron rods and wooden supports keep it from disintegrating, but obviously

a lot of things went wrong. From a modern perspective, it’s a miracle that so many

gothic structures had been successfully completed without the help of modern

material science, computer modelling, finite element analysis, and general math

and physics. I hope future generations will be as admiring of the programming

skills we’ve been displaying in building complex operating systems, web servers,

and the internet infrastructure. And, frankly, they should, because we’ve done all

this based on very flimsy theoretical foundations. We have to fix those foundations

if we want to move forward.

2 Frontend developers experience this inconvenience on a daily basis. However, here I am not really talking

about javascript frameworks.
3 Actually, this is true as of today.
4 As well as languages, libraries, compilers, and beloved compiler flags.

https://gmd.copernicus.org/articles/7/2831/2014/
https://gmd.copernicus.org/articles/7/2831/2014/
https://doi.org/10.5194/gmd-7-2831-2014
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://journals.ametsoc.org/view/journals/hydr/7/3/jhm497_1.xml
https://journals.ametsoc.org/view/journals/hydr/7/3/jhm497_1.xml
https://doi.org/10.1175/JHM497.1
https://dask.org
https://github.com/ecor/geotopOptim
https://github.com/ecor/geotopOptim
http://cran.r-project.org/package=geotopbricks
http://cran.r-project.org/package=geotopbricks
https://gmd.copernicus.org/articles/7/2831/2014/
https://gmd.copernicus.org/articles/7/2831/2014/
https://doi.org/10.5194/gmd-7-2831-2014
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python.html

https://github.com/dask/distributed/issues/3691
https://github.com/dask/distributed/issues/3691
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007
https://doi.org/10.1371/journal.pcbi.1007007
https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6
https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6
https://www.sciencedirect.com/science/article/pii/0022169470902556
https://doi.org/https://doi.org/10.1016/0022-1694(70)90255-6
https://gmd.copernicus.org/articles/7/2831/2014/
https://gmd.copernicus.org/articles/7/2831/2014/
https://doi.org/10.5194/gmd-7-2831-2014
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://journals.ametsoc.org/view/journals/hydr/7/3/jhm497_1.xml
https://journals.ametsoc.org/view/journals/hydr/7/3/jhm497_1.xml
https://doi.org/10.1175/JHM497.1
https://dask.org

[ASPS96] H. Abelson, G.J. Sussman, A.J. Perlis, and J. Sussman. Structure and Interpreta-

tion of Computer Programs. Electrical engineering and computer science series.

Addison-Wesley, 1996. ISBN 9780262510875.

[Mil18] B. Milewski. Category theory for programmers. Blurb, 2018. URL: https://github.

com/hmemcpy/milewski-ctfp-pdf.

[Mil20] B. Milewski. Math is your insurance policy. 2020. Last accessed on 2021-2-17. URL:

https://bartoszmilewski.com/2020/02/24/math-is-your-insurance-policy.

[Nau85] Peter Naur. Programming as theory building. Microprocessing and microprogram-

ming, 15(5):253–261, 1985.

https://github.com/hmemcpy/milewski-ctfp-pdf
https://github.com/hmemcpy/milewski-ctfp-pdf
https://bartoszmilewski.com/2020/02/24/math-is-your-insurance-policy

	Summary and Outline
	Acknowledgements
	GEOtop calibration
	Brief Introduction to GEOtop
	Model Calibration

	The need for HPC
	The Curse of Dimensionality
	Scalability of Evolutionary Algorithms
	Scaling in Theory and in Practice

	Derivative-free Optimization
	Random Search
	Evolutionary Algorithms

	Tools
	The Python Programming Language
	The Jupyter Ecosystem
	GEOtoPy
	Nevergrad
	High-Performance Computing in Python using Dask

	Implementation
	Model and Objective Function
	A Closer Look at the Optimization Loop

	Example GEOtop Calibration Report
	Scaling Analysis and Modeling
	Scaling and Efficiency
	Linear Scaling Model
	Models for Large Numbers of CPUs

	Conclusions
	Final Thoughts Beyond the Scope of the Thesis
	Apology of the Thoughtful Dabbler
	Rage Against Machine Learning
	Math is the Ultimate Javascript Framework

	Bibliography

