
Mathematics Area - PhD course in
Geometry and Mathematical Physics

Discrete Group Actions
and Spectral Geometry

of Crossed Products

Candidate:
Alessandro Rubin

Advisor:
Prof. Ludwik Dąbrowski

Co-advisor:
Dr. Paolo Antonini

Academic Year 2020/21





A thesis submitted in partial fulfillment of the requirement for the degree of
Philosophiae Doctor in Geometry & Mathematical Physics,

equivalent to the title of Dottore di Ricerca.

iii





Abstract

The (twisted) crossed product construction is fundamental in the theory of C∗-algebras
and in noncommutative topology since it represents the operation of forming a quotient
when this is a singular, badly-behaved space. For instance, the study of noncommuta-
tive coverings, in the special case of finite abelian structure groups, shows that twisted
crossed products are the noncommutative analogue of topological regular coverings. Since
spectral triples are a central notion in noncommutative geometry, this makes the task of
constructing spectral triples on crossed products a natural subject of interest.

In this thesis, we construct and study spectral triples on reduced twisted crossed
products A ⋊σ

α,r G, where A is a unital C∗-algebra, G a discrete group and (α, σ) a
twisted action in the sense of Busby and Smith [19]. For this construction we follow, as in
[47], the guiding principle of the Kasparov external product, combining the given Dirac
operator on A with a matrix valued length-type function on the group. In particular,
we provide sufficient conditions so that this triple on A ⋊σ

α,r G satisfies some of the
axioms of noncommutative manifolds [23]: summability, regularity, compatibility with
real structures, first and second order conditions and orientation cycles.

Our guide example is the spectral triple on the noncommutative 2-torus [44, 95],
regarded as the crossed product C(S1) ⋊ Z. We show that our constructions generalize
the usual ones on its triple.
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Chapter 1
Introduction

1.1 Background and History

The notion of a “spectral triple” (or unbounded Fredholm module) was introduced by
Alain Connes in the course of studying a generalization of the Atiyah-Singer index the-
orem to noncommutative spaces. Its prototype is given by the commutative ∗-algebra
C∞(M) of smooth functions on a compact spin manifold M and the Dirac operator on
the Hilbert space of square-integrable spinors. Under precise additional assumptions, any
commutative spectral triple must be of this form and so it is possible to recover the orig-
inal manifold and its geometry from these data [23, 26, 94]. The range of applicability of
this paradigm is vast, going from the foundational example of spin manifolds to foliated
manifolds, group C∗-algebras, quantum groups, quantum deformations and fractals. This
list is not exhaustive and we direct the reader to [20, 24, 25, 28, 44] and the references
therein for more information.

So far, most research has focused on investigating the properties of particular known
spectral triples. However, despite their importance and extensive study, it is not yet fully
understood under what conditions it is possible to define a spectral triple on a given
C∗-algebra and examples have been constructed only for some specific classes of them, as
for instance in [35, 41, 42, 63, 70, 73, 76, 77, 80].

An example of a noncommutative space which does not yet have a fully satisfactory
description of its spectral geometry is the (twisted) crossed product of a C∗-algebra A with
a locally compact group G. This construction is of particular interest in noncommutative
topology since it is recognized as the right noncommutative generalization of a quotient
space by a group action, even when the quotient is a singular, badly-behaved space.
Indeed, it is known that given a group G acting on a locally compact and Hausdorff
topological space X, the quotient X/G can easily fail to be also locally compact and
Hausdorff. However, when the action is free and proper, the quotient X/G has these
properties and the algebra C0(X/G) of continuous functions vanishing at infinity is Morita
equivalent to the maximal crossed product C0(X)⋊G, meaning that they have the same
topological information (e.g. isomorphic K-theory). The advantage of the crossed product
is that it may distinguish two quotients even when these are not locally compact and
Hausdorff, a lack that prevents the use of the standard Gelfand machinery. Furthermore, it
naturally retains the information of the isotropy of the action. A more detailed discussion
can be found in [61, Chapter 2].
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2 Chapter 1. Introduction

Twisting the crossed product construction with a 2-cocycle σ : G ⋊ G → A is also a
rather natural geometric operation since studying noncommutative coverings with finite
abelian structure group one discovers that any twisted crossed product is a regular cov-
ering and any regular covering is a twisted crossed product, c.f. [5, 107]. This makes the
task of the construction of spectral triples on crossed products a natural subject of interest.

The first example of a spectral triple on a crossed product was introduced in [22]
using a length function ℓ on a discrete group G to define a multiplication operator by ℓ
on ℓ2(G). The reduced group algebra C∗

r (G), which is in fact a crossed product with the
trivial C∗-algebra C, is taken acting on ℓ2(G) via the left regular representation. There
Connes also develops a notion of metric on a compact noncommutative space and shows
that there are some necessary conditions for a C∗-algebra to admit a summable spectral
triple on itself.

The first generalization of this construction for any C∗-algebra A is in [13], where the
authors construct a canonical spectral triple on the crossed product A⋊Z to characterize
the metric properties of a dynamical system (A,Z, α). The great achievement therein is
the understanding that these properties are strictly related to the equicontinuity of the
action in a Lipschitz sense (namely, as a compact quantum metric space [22, 97]).

Their work has been subsequently generalized in [47] for any discrete group G en-
dowed with a length-type function, using as building blocks the spectral triples on the
reduced group C∗-algebra C∗

r (G) as defined by Connes. There the action is assumed to
act smoothly and equicontinuously on the spectral triple (A, H,D), in the sense that the
action α has to preserve the dense subalgebra A and

sup
g∈G

∥[D,π(αg(a))]∥ < ∞

for all a ∈ A. As pointed out by the authors, the key idea is to use (a representative
of the) external unbounded Kasparov product to produce a spectral triple on the tensor
product A⊗C∗

r (G) and then check under which conditions the same formula still defines
a triple (Cc(G,A), Ĥ, D̂) on the reduced crossed product. Despite the use of the Kasparov
product, the reason why this construction should bear any relation to the (external)
Kasparov product is so far not completely clear.

Besides the structure of a quantum metric space, in [47] the authors begin the study
of the spectral properties of their triple on A ⋊α G: it is proved, for instance, that the
summability of spectral triples is preserved (under some additional assumptions) under the
passage from (A, H,D) to (Cc(G,A), Ĥ, D̂), and that the dimension is additive. Further
properties of this triple were found in [83], where the author shows that the triple is
equivariant with respect to the coaction of a group and that this coaction satisfies a
condition known as contractivity.

A complete and satisfactory discussion when G is not discrete but just locally compact
and Hausdorff is far from being understood. A great step in this direction was given by
[52], where the authors are able to relax the hypothesis on the existence of a length-
type function on the group at the price of producing a twisted spectral triple. Despite the
extremely general range of applicability, it is not clear whether this construction preserves
all the spectral properties of the starting triple or bears any relation with Kasparov’s
bivariant K-theory (the same authors note that their resulting triple does not define in
general an equivariant Kasparov module [52, Remark 2.8]).
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1.2 Purpose of the Thesis and Main Results

Following the stream pursued by the aformentioned authors [13, 22, 47, 52, 83], in this
thesis we construct spectral triples on reduced twisted crossed products A⋊σ

α,r G, where
A is a unital C∗-algebra, G a discrete group and (α, σ) a twisted action in the sense
of Busby and Smith [19], and then we study under which conditions we have some of
the Connes axioms for a spectral manifold. Note that, rather than the more advanced
discussion developed in [52], we build upon the construction given in [47].

More precisely, in Chapter 6 we construct spectral triples on the reduced crossed prod-
uct of a twisted group algebra when the group G is endowed with a proper Dirac weight
with matrix values. We characterize the summability property in terms of a generalized
notion of growth of the group (Proposition 6.8) and provide sufficient conditions such
that the regularity condition holds true (Propositions 6.9 and 6.11). Eventually, when
the weight is scalar valued, we define an involutive antilinear map, characterize when this
map is a real structure and show under which conditions this map satisfies the first and
the second order conditions (Propositions 6.13, 6.14 and 6.16).

In Chapter 7 we generalize the constructive result of [47] when the length-type function
l on the group takes values in a matrix algebra and the equicontinuity condition is suitably
adapted to take into consideration the presence of the twisting cocycle σ (see Theorem
7.1 and condition (7.1)). Then, following the idea in [47, Remark 2.9], we assume that
the triple (A, H,D) is G-equivariant with respect to a map u : G → U(H) and we show
that there exists another construction of a triple on the twisted crossed product A⋊σ

α,r G
which turns out to be K-homologically equivalent to the previous construction when a
uniform bound condition of the form

sup
g∈G

∥[D,ug]∥ < ∞ (1.1)

holds true. We further show that the resulting triple of this construction:

• is equivariant with respect to the dual coaction of G (Proposition 7.6)

• naturally generalizes the spectral triple on the noncommutative 2-torus [44, 95],
regarded as the crossed product C(S1) ⋊ Z (Example 7.5).

• represents a Kasparov class which is the result of natural operation in KK-theory
applied to the starting data (see Section 7.2, in particular Theorem 7.13 and Propo-
sition 7.11).

• is regular when the spectral triple (A, H,D, u) is regular and the map u is smooth
in a natural sense (see Theorem 7.17).

To prove the existence of a real structure and an orientation cycle on this triple, we
assume that the cocycle is trivial, the length function takes scalar values and G acts by
isometries, i.e., the operators ug commute with the Dirac operator D. Then:

• We construct a real structure Ĵ on (Cc(G,A), Ĥ, D̂) provided (A, H,D) admits a
real structure J such that Jug = ugJ for any g ∈ G (see Theorem 7.21).

• If G is abelian, we construct a second inequivalent real structure J̃ provided Jug =
u∗

gJ for any g ∈ G (see Theorem 7.27).
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• In both cases the relationship between J and u can be interpreted as the equivariance
of J with respect to the action of CG endowed with a suitable ∗-structure, and find
that both Ĵ and J̃ are equivariant for the dual coaction of G.

• We compute the KO-dimension of Ĵ and J̃ in terms of the KO-dimension of J , and
show that, under suitable assumptions, the first and the second order conditions are
preserved.

Lastly, in Section 7.6, using a suitably twisted shuffle product between Hochschild
cycles, we induce an equivariant orientation cycle on (Cc(G,A), Ĥ, D̂) from an equivariant
orientation cycle on (A, H,D) (Theorem 7.41).

1.3 Structure of the Thesis
The thesis is divided in three parts: preliminary material, the body of the thesis and the
appendix. In the first part we review the main ingredients that we need to present the
research project and our novel contributions. In particular

• in Chapter 3 we fix the main definitions and properties about twisted crossed prod-
ucts and their covariant representations. Furthermore, we present the example of
the rotation algebra, which will guide our exposition, and the theory of noncommu-
tative coverings with finite abelian structure group.

• in Chapter 4 we give a brief introduction to Kasparov’s bivariant K-theory, with
particular emphasis to its unbounded version. We also present the equivariant
theory and how is related to the KK-theory of crossed products.

• in Chapter 5 we review the notion of spectral triple and its relations with spectral
geometry, from the Connes axioms for the reconstruction theorem to the definition
of a compact quantum metric space. We remind the well known construction of the
spectral triple on the rotation algebra as a guiding example.

In Part II we expose our main results, namely the construction of a spectral triple on
the reduced twisted crossed product A ⋊σ

α,r G and the study of the Connes axioms of a
spectral manifold, discussing at first the case in which A = C. We conclude this part with
some remarks and possible future research directions.

Part III is the appendix and we collect as a reference some basic facts and conventions
about Hilbert modules and operator ∗-modules that are needed in order to properly
discuss KK-theory and to compute the internal Kasparov product of unbounded modules.
We further review the basic facts about Hopf algebras and compact quantum groups aimed
at discussing their actions and coactions on spectral triples.



Chapter 2
Conventions and Notations

All Hilbert spaces and C∗-algebras in this thesis are assumed to be separable and alge-
bras are assumed to be unital unless specified otherwise. Furthermore, every group G
is assumed to be topological with a locally compact second-countable Hausdorff topol-
ogy. We denote its neutral element by e and its left Haar measure by µ. We adopt the
multiplicative notation.

2.1 List of Symbols

Symbol Meaning
A+ Minimal unitization of a C∗-algebra A
U(A) Group of unitaries of the C∗-algebra A (or its unitization A+)
Mm,n(A) Space of m× n matrices with values in the C∗-algebra A.
S1 The unit circle R/Z
T 2 The 2-dimensional torus S1 × S1

U(1) The unitary group in C
EA Right Hilbert C∗-module over A
LA(E) Adjointable operators over the Hilbert C∗-module EA

KA(E) Compact operators over the Hilbert C∗-module EA

L(H) Space of bounded linear operators on a Hilbert space H
U(H) Space of unitary operators on a Hilbert space H
(A,G, α, σ) Twisted C∗-dynamical system with action α and cocycle σ
A⋊σ

α G Twisted crossed product of the system (A,G, α, σ)
A⋊σ

α,r G Reduced twisted crossed product of the system (A,G, α, σ)
C∗

σ(G) Twisted group algebra of G
π ⋊ u Integrated form of a covariant representation (π, u)
A2

θ The 2-dimensional rotation algebra
τ The canonical trace on A2

θ

Hτ The GNS representation of A2
θ

Ĝ Pontryagin dual group of an abelian group G

5



6 Chapter 2. Conventions and Notations

λ Left regular representation of G on ℓ2(G)
ρ Right regular representation of G on ℓ2(G)
Cℓn n-th complex Clifford Algebra
Cc(X) Algebra of continuous functions on X with compact support
C0(X) Algebra of continuous functions on X which vanish at infinity
H, ε, S A Hopf algebra H with counit ε and antipode S
◁, ▷ Right, left action
KK•(A,B) KK-theory group
⊗ Either maximal tensor product or Kasparov product of modules
b(D) bounded transform of a Dirac operator D
∇ Connection over an operator ∗-module
CLip(A) Lipschitz subalgebra of A for a spectral triple (A, H,D)
V Complex and finite dimensional vector space
Sp The spectrum of an element in a C∗-algebra
dG Growth of the group G



Part I

Preliminaries
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Chapter 3
Twisted Crossed Products

Given a C∗-algebra A and a group G acting on it, a crossed product A⋊G is the smallest
C∗-algebra containing A in which G acts only by inner automorphisms. This is not unique,
depending on in which sense one means “the smallest”. The crossed product contains both
geometric and analytic information: indeed, on the one hand it can be regarded as the
noncommutative version of a classical quotient space (see e.g. [61, Chapter 2]); on the
other hand (when A = C and G is abelian) it is the natural environment to do Fourier
Analysis on G. In this chapter we briefly recall some basic facts, definitions and examples
about twisted crossed products following mainly [12, 78, 103].

Assumptions 3.1. In this chapter we denote by A a separable unital C∗-algebra and by
G a (countable) discrete group with neutral element e.

Note that most of the contents of this chapter can be adapted to be true also when A
is not unital (by passing to the multiplier algebra) and when G is just a locally compact
topological group (by using its Haar measure).

3.1 Basic Definitions, Examples and Properties

Definition 3.2 (cf. [19, 78]). Let A and G as in Assumptions 3.1. A twisted C∗-
dynamical system is a pair of maps α : G → Aut(A) and σ : G×G → U(A) satisfying

αx ◦ αy = Ad(σ(x, y)) ◦ αxy (3.1)
σ(x, y)σ(xy, z) = αx(σ(y, z))σ(x, yz) (3.2)

σ(x, e) = σ(e, x) = 1 (3.3)
αe = idA (3.4)

for all x, y, z ∈ G. The map σ is called a 2-cocycle with values in U(A).

Note that if σ takes values in the centre of A, then α is a homomorphism from G to
Aut(A), i.e. is an ordinary action. This happens for example when A is commutative or
when σ takes value in U(1). In particular, if σ ≡ 1 then the system is an ordinary C∗-
dynamical system (see e.g. [109]) and, for sake of clearness, we call this case as untwisted.

9



10 Chapter 3. Twisted Crossed Products

From the properties of the couple (α, σ) we can readily deduce also that for x = z = g
and y = g−1 in (3.2) we have

σ(g, g−1) = αg

(
σ(g−1, g))

)
. (3.5)

Further, using equation (3.5) one can easily check that the inverse map of α is

α−1
g = αg−1 ◦ Ad

(
σ(g, g−1)∗

)
= Ad

(
σ(g−1, g)∗

)
◦ αg−1 . (3.6)

Example 3.3. Let X be a locally compact Hausdorff topological space and G a discrete
group. For any continuous left action G × X → X, the map α : G → Aut C0(X) defined
by

αs(f)(x) := f(s−1 · x)

for s ∈ G and x ∈ X is a group homomorphism and the triple (C0(X), G, α) is an untwisted
C∗-dynamical system. Vice versa, a standard application of the Gelfand-Najmark duality
between topological spaces and C∗-algebras (see e.g. [75, 109]) shows that given an
untwisted C∗-dynamical system (C0(X), G, α), there exists a continuous left action G ×
X → X such that

αs(f)(x) = f(s−1 · x)

for s ∈ G and x ∈ X. This happens for instance when X = G and G acts on itself by left
or right multiplication. 2

Given a twisted dynamical system (A,G, α, σ), we define a twisted convolution ∗-
algebra structure on the space Cc(G,A) of the finitely supported function from G to A by

(f ⋆ g)(x) :=
∑
y∈G

f(y)αy(g(y−1x))σ(y, y−1x),

f∗(x) := σ(x, x−1)∗αx(f(x−1)∗),
(3.7)

for f, g ∈ Cc(G,A). Hereafter we denote by aδx the A-valued function on G which is 0
everywhere except at the point x ∈ G where it takes the value a ∈ A. As G is discrete,
every function f ∈ Cc(G,A) will be then identified with the (finite) sum ∑

x∈G f(x)δx

and operations (3.7) are translated into the following relations:

δx ⋆ δy = σ(x, y)δxy, δ∗
x = σ(x−1, x)∗δx−1 , δxaδ

∗
x = αx(a) (3.8)

for x ∈ G and a ∈ A. Such rules extend to L1(G,A) making it the Banach ∗-algebra
L1(A,G, α, σ). Obviously Cc(G,A) is unital since A is unital and the unit is 1Aδe. Using
the previous axioms it is easy to check that

(aδg)∗ = σ(g−1, g)∗αg−1(a∗)δg−1 .

3.1.1 Twisted Covariant Representations

Definition 3.4. A representation of a unital C∗-algebra A is a pair (H,π) given by
a Hilbert space H and a ∗-homomorphism π : A → L(H). We say that a representation
(H,π) is non degenerate if π(a)H = H.
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According to our convention, any representation of a unital C∗-algebra need not be a
unital homomorphism. Upon restricting to the subspace π(A)H, it is always possible to
assume that a representation is non degenerate. Note that any unital representation is
non degenerate.

Definition 3.5. A twisted covariant representation of (A,G, α, σ) is a couple (π, u)
where π : A → L(H) is a non degenerate representation and u : G → U(H) satisfies

uxuy = π(σ(x, y))uxy (3.9)
uxπ(a)u∗

x = π(αx(a)) (3.10)

for all x, y ∈ G and a ∈ A.

Note that from these relations we get that ue = π(1A) and that

u∗
x = ux−1π

(
σ(x, x−1)∗

)
= π

(
σ(x−1, x)∗

)
ux−1 . (3.11)

Example 3.6. Let G act on itself by left translation and let lt : G → Aut(C0(G)) be the
associated dynamical system as in Example 3.3. Let M : C0(G) → L(L2(G)) be given by
point-wise multiplication:

M(f)h(s) := f(s)h(s)
and let λ : G → U(L2(G)) be the left-regular representation λxf(y) = f(x−1y). Then
(M,λ) is a covariant representation of (C0(G), G, lt). 2

There exists a 1 − 1 correspondence between covariant representations and non de-
generate representations of L1(A,G, α, σ). On the one hand, to the twisted covariant
representation (π, u) one associates its integrated form, which is the ∗-homomorphism
π ⋊ u : L1(A,G, α, σ) → L(H) given on the dense subspace Cc(G,A) by

π ⋊ u
( ∑

x∈G

axδx

)
:=
∑
x∈G

π(ax)ux. (3.12)

Note that the integrated form π⋊u is non degenerate since π is non degenerate. Further,
it is unital when π is unital. On the other hand, given a ∗-representation ϕ of Cc(G,A)
it is possible to check that the couple of representations

π(a) := ϕ(aδe) ug := ϕ(1Aδg)

is covariant and ϕ = π ⋊ u.
Remark 3.7. When σ ≡ 1, covariant representations of the system (A, { e } , id) correspond
exactly to representations of A and covariant representations of the system (C, G, id),
where id is the trivial action that sends all the elements of G to the identity automorphism
of A, correspond to unitary representations of G.

3.1.2 Twisted Crossed Products

Given a twisted dynamical system (A,G, α, σ), the quantity

∥f∥ := sup { ∥π ⋊ u(f)∥ : (π, u) is a covariant repr. of (A,G, α, σ) } (3.13)

on Cc(G,A) is well defined and finite as it can be controlled by the L1 norm of f . In
particular, it is possible to prove that (3.13) is a norm which is called the universal norm.
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Definition 3.8. The twisted crossed product C∗-algebra A⋊σ
αG for (A,G, α, σ) is the

C∗-completion of Cc(G,A) with respect to the universal norm (3.13).

Since A is unital, the crossed product A ⋊σ
α G contains a copy of both A and G.

More precisely, there is a non degenerate homomorphism iA : A → A ⋊σ
α G and a map

iG : G → U(A⋊σ
α G) such that:

(1) the couple (iA, iG) is covariant in the sense that

iG(x)iG(y) = iA(σ(x, y))iG(xy) and iA ◦ αx = Ad(iG(x)) ◦ iA

for every x, y ∈ G.

(2) for every covariant representation (π, U) of (A,G, α, σ) on the Hilbert space H there
is a non degenerate representation π ⋊ U : A⋊σ

α G → L(H) making the diagram

G

U ++

iG // A⋊σ
α G

π⋊U
��

A

πss

iAoo

L(H)

commute.

These maps are given by iA(a) := aδe and iG(δg) := 1Aδg. Note that the image of the
map iA ⋊ iG defined on L1(G,A) is dense in A ⋊σ

α G as G is discrete. The existence of
these maps constitutes the universal property of the crossed product A ⋊σ

α G in the
sense that if there exists a (unital) C∗-algebra B endowed with maps (jA, jG) with the
two previous properties, then B is isomorphic to A ⋊σ

α G and, under this isomorphism,
jA = iA and jG = iG (see e.g. [78, Proposition 2.7]).

Definition 3.9. The twisted group algebra of G is the twisted crossed product C⋊σ
αG

with respect to the trivial action of G on C and is denoted by C∗
σ(G).

Example 3.10 (Clifford Algebras). As proved in [3], we can regard (complex) Clifford
algebras as twisted group algebras of a suitable finite group. Consider indeed Cℓn as the
complex algebra generated by the skew-adjoint anti-commuting elements e1, . . . , en such
that e2

i = −1 and graded in the standard way. Consider further the cyclic multiplicative
group Z2 and let g = −1 be its generator; any element in G = Zn

2 is of the form x =
(gx1 , . . . , gxn) where xi = 0, 1 ∈ Z for i = 1, . . . , n. Define

σn(x, y) := (−1)
∑

j<i
xiyj

for x, y ∈ G and consider the twisted group algebra C∗
σn

(G) for the trivial action of G on
C. Then the map C∗

σn
(G) → Cℓn, given on a basis by

(gx1 , . . . , gxn) 7−→ (ie1)x1 · · · (ien)xn ,

is an isomorphism of C∗-algebras. Note that the cocycle σn is trivial when n = 1 and so
Cℓ1 is an untwisted crossed product. 2

Remark 3.11. Note that the twist by a cocycle is a genuine noncommutative phenomenon
in the sense that the C∗-algebra C∗

σ(G) is commutative if and only if G is abelian and the
cocycle is trivial (see e.g. [39]).
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Remark 3.12. It can be shown that the vector spaces A⋊σ
αG and A⊗C∗

σ(G) are isomorphic
for any twisted action of G on A but they are in general not isomorphic as algebras. When
α : G → Aut(A) is (exterior equivalent to) the trivial action, they are isomorphic and this
motivates the assertion that a crossed product can be though of as a “twisted” maximal
tensor product of A and C∗

σ(G). For more details we refer to [109, Section 2.5].

3.1.3 Reduced Twisted Crossed Products

Let us now consider back the definition of the twisted crossed product. In general, it is
not obvious that there are any covariant representations of a given dynamical system.
However, starting from a suitable representation of the algebra A on a Hilbert space
H, one can induce a representation of A ⋊σ

α G on a larger space. Consider indeed a
twisted dynamical system (A,G, α, σ) and let π : A → L(H) be a faithful ∗-representation
(provided e.g. by standard GNS theory [75]). Define a couple of maps from A and G onto
L(H ⊗ ℓ2(G)) by π̃(a)(ξ ⊗ δx) := π (αx−1(a)) ξ ⊗ δx

λ̃y(ξ ⊗ δx) := π
(
σ(x−1y−1, y)

)
ξ ⊗ δyx.

(3.14)

It is easy to check that the couple (π̃, λ̃) is a twisted covariant representation and its
integrated form is a representation of A⋊σ

α G on H ⊗ ℓ2(G). Note in particular that

λ̃∗
y(ξ ⊗ δx) = π

(
σ(x−1, y)∗

)
ξ ⊗ δy−1x.

The homomorphism π̃ ⋊ λ̃ : Cc(G,A) → L(H ⊗ ℓ2(G)) is non degenerate whenever π is
non degenerate. Furthermore, if π is faithful then π̃ ⋊ λ̃ is also faithful. This allows to
define a norm on Cc(G,A) by setting

∥f∥ :=
∥∥∥π̃ ⋊ λ̃(f)

∥∥∥ f ∈ Cc(G,A) (3.15)

where the left hand side is the operatorial norm of L(H ⊗ ℓ2(G)).

Definition 3.13. The reduced twisted crossed product A⋊σ
α,r G (or just A⋊r G) is

the C∗-algebra completion of Cc(G,A) with respect to the norm (3.15).

It can be shown that the reduced crossed product is independent of the choice of the
faithful representation π (see e.g. [78, Remark 3.12]). The reduced twisted group algebra
C⋊σ

r G is denoted by C∗
r,σ(G).

Remark 3.14. We have defined the induced representation using a twisted left regular
representation λ of G on ℓ2(G). Analogous formulas can be defined for a suitable twisted
right regular representation but they are unitarily equivalent under the involution VG : H⊗
ℓ2(G) → H ⊗ ℓ2(G) given by ξ ⊗ δx 7→ ξ ⊗ δx−1 . More details can be found in [12, 19].

Obviously, there exists a map Λ: A ⋊σ
α G → A ⋊σ

α,r G induced by the identity map
which is always surjective but in general fails to be injective. It is known that this map is
an isomorphism when the group G is amenable, a topological property which is satisfied
by abelian groups and by compact groups (see e.g. [79, 110]). Other conditions which
imply the injectivity of that map are provided also in [4] and [12].
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3.1.4 A Fell Absorption Principle

It is a well known fact in representation theory that the left regular representation λ of a
group G on ℓ2(G) is able to absorb any other unitary representation u of G on a Hilbert
space H in the sense that the tensor product action u ⊗ λ on H ⊗ ℓ2(G) is unitarily
equivalent to the action 1 ⊗ λ (see e.g. [33]). This principle due to Fell can be easily
generalized to twisted actions as follows; for sake of convenience (and with a slight abuse
of notation) we denote the map λ̃ in (3.14) by σ ⊗ λ.

Lemma 3.15 (cf. [12]). Let (π, u) be a twisted covariant representation of (A,G, α, σ)
on H and W : H ⊗ ℓ2(G) → H ⊗ ℓ2(G) be given by

W (ξ ⊗ δg) := π(σ(g, g−1)∗)ugξ ⊗ δg.

Then W (σ ⊗ λ)W ∗ = u⊗ λ.

Proof. Given ξ ⊗ δg ∈ H ⊗ ℓ2(G) we have

W (σ ⊗ λ)hW
∗(ξ ⊗ δg) = π(σ(hg, g−1h−1)∗)uhgπ(σ(g−1h−1, h))u∗

gπ(σ(g, g−1))ξ ⊗ δhg.

for any h ∈ G. Using equation (3.11) this becomes

W (σ ⊗ λ)hW
∗(ξ ⊗ δg) = π(σ(hg, g−1h−1)∗αhg(σ(g−1h−1, h))σ(gh, g−1)︸ ︷︷ ︸

σ(e,h) by equation (3.2)

)uhξ ⊗ δhg

= uhξ ⊗ δhg

which is just (u⊗ λ)h applied to ξ ⊗ δg.

As noticed in [12], a Fell absorption principle holds true also for twisted representations
of dynamical systems in the following way. Let (π, u) a twisted covariant representation
of (A,G, α, σ) on a Hilbert space H and define the maps π̂ : A → L(H ⊗ ℓ2(G)) and
λ̂ : G → L(H ⊗ ℓ2(G)) by {

π̂(a)(ξ ⊗ δg) := π(a)ξ ⊗ δg

λ̂h(ξ ⊗ δg) := uhξ ⊗ δhg

(3.16)

for a ∈ A, ξ ∈ H and g, h ∈ G. These clearly forms a twisted covariant representation of
(A,G, α, σ) on H ⊗ ℓ2(G) as

λ̂hλ̂g(ξ ⊗ δx) = uhugξ ⊗ δhgx = π̂(σ(h, g))λ̂hg(ξ ⊗ δg)

and
λ̂hπ̂(a)λ̂∗

h(ξ ⊗ δx) = uhπ(a)u∗
hξ ⊗ δg = π̂ (αh(a)) (ξ ⊗ δg).

We then have the following result.

Proposition 3.16 (cf. [12]). The integrated form π̂ ⋊ λ̂ of the covariant system (3.16)
is unitarily equivalent to the integrated form π̃ ⋊ λ̃ of the covariant system (3.14).
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Proof. We have already seen in Lemma 3.15 that Wλ̃hW
∗ = λ̂h for any h ∈ G. An easy

calculation shows that

Wπ̃(a)W ∗(ξ ⊗ δg) = π(σ(g, g−1)∗)
[
ugπ(αg−1(a))u∗

g

]
π(σ(g, g−1))ξ ⊗ δg

= π(αgg−1(a))ξ ⊗ δg = π(a)ξ ⊗ δg

= π̂(a)(ξ ⊗ δg).

for any a ∈ A. In particular, Wπ̃⋊ λ̃(aδh)W ∗ = Wπ̃(a)W ∗Wλ̃hW
∗ = π̂⋊ λ̂(aδh) for any

aδh ∈ A⋊σ
α G.

3.2 An Example: The Rotation Algebra

In this section we collect some of the well known facts about the rotation algebra [95], the
simplest and richest example of a noncommutative topological space. We analyze its dif-
ferential structure, from the point of view of Connes spectral geometry [25], in Chapter 5.
For more references and details we refer to [32, 75, 84, 89] and in particular to [44, Ch. 12].

Consider the unit circle S1 as the additive group R/Z endowed with the quotient
structure. We identify functions in C(S1) to continuous periodic functions on R with
period 1 thanks to the isomorphism S1 → U(1), [t] 7→ e2πit.
Definition 3.17. Let θ be a real number and α : Z → Aut(C(S1)) be the action induced
by the rigid rotation of the circle by the angle 2πθ given by αn(f)(t) := f(t+nθ) for t ∈ R.
The rotation algebra A2

θ is defined as the (maximal) crossed product C(S1) ⋊α Z.

It is often useful to realize the rotation algebra as an algebra of bounded operators
acting on a Hilbert space: to this aim, consider the representation M of C(S1) on L2(S1)
given by point-wise multiplication and the unitary shift operator V nf(t) = f(t + nθ)
for t ∈ R and n ∈ Z. An easy computation shows that (M,V ) is a faithful covariant
representation of (C(S1),Z, α) on L2(S1). Further, if we expand elements g of C(S1) as
Fourier series

g(t) =
∑
n∈Z

cne
2πint, (3.17)

we notice that the multiplication operator by g is generated by the unitary multiplication
operator Uf(t) = e2πitf(t) and thus any element in A2

θ is of the form ∑
n,m∈Z an,mU

nV m.
A straightforward computation shows that

V U = e2πiθUV (3.18)

and it is possible to interpret A2
θ as the universal C∗-algebra generated by two unitaries

U, V satisfying (3.18). This picture immediately gives clear isomorphisms between the
various A2

θ: firstly, as (3.18) is unchanged for the transformation θ 7→ θ+n with n ∈ Z, we
deduce that there is an isomorphism A2

θ ≃ A2
θ+n. Therefore we can, whenever convenient,

restrict the range of parameter θ to the interval [0, 1). Furthermore, as UV = e−2πiθV U =
e2πi(1−θ)V U , the swap of U with V in (3.18) extends to an isomorphism A2

θ ≃ A2
1−θ for

any θ ∈ [0, 1). This means that we can further restrict the interval down to [0, 1
2 ]. It is

known, however, that it is not possible to further reduce this interval and, more precisely,
that for θ ∈ [0, 1

2 ] the algebras A2
θ are mutually not isomorphic (see [51]), even tough some

may be Morita equivalent.
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Remark 3.18. From (3.18) it is clear that A2
θ is abelian if and only if θ is an integer.

This means that the only commutative rotation algebra with θ in the range [0, 1
2 ] is A2

0
and this is isomorphic to the C∗-algebra C(T 2) of continuous functions on the 2-torus
T 2 = S1 × S1 with angular coordinates (φ1, φ2), by taking U = e2πiφ1 and V = e2πiφ2 .

It is known that the rotation algebra A2
θ comes equipped with a distinguished (unique

if θ is irrational) tracial state

τ : A2
θ −→ C, τ

 ∑
n,m∈Z

anmU
nV m

 := a00

which is clearly normalized in the sense that τ(1) = 1. Furthermore, one can check that

τ(a∗a) =
∑

n,m∈Z
|anm|2 ,

so τ is also faithful. The GNS representation theory for τ is defined as follows: the tracial
state τ defines a sesquilinear form ⟨a, b⟩ = τ(a∗b) on A2

θ. The completion of A2
θ with

respect to this scalar product yields a Hilbert space Hτ = L2(A2
θ, τ) which carries a ∗-

representation of A2
θ by left multiplication operators. This representation has 1 ∈ A2

θ ⊆ Hτ

as cyclic and separating vector.

Theorem 3.19. Consider the covariant representation (M,V ) of C(S1)⋊αZ on L2(S1)
where M is the multiplication operator and V the canonical unitary shift. There exists an
isomorphism of Hilbert spaces Hτ → L2(S1)⊗ℓ2(Z) which maps the GNS representation
of A2

θ into the integrated form of the covariant system (M⊗1, V ⊗λ) as defined in (3.16).

Proof. Let us first define the isomorphism. The mapHτ → L2(T 2) given on the generators
by U 7→ e2πiφ1 , V 7→ e2πiφ2 extends to an isomorphism of Hilbert spaces: in particular,
an element h = ∑

n,m∈Z hnmU
nV m goes to the function

∑
m∈Z

∑
n∈Z

hnme
2πinφ1


︸ ︷︷ ︸

fm(φ1)∈L2(S1)

e2πimφ2 .

Under Fourier transform on the second entry, we identify L2(S1 ×S1) with L2(S1)⊗ℓ2(Z)
and the function e2πimφ2 ∈ L2(S1) goes to the delta function δm in ℓ2(Z) (note that,
according to our convention, the character n ∈ Z ≃ Ŝ1 maps z 7→ z−n). The isomorphism
Φ: Hτ → L2(S1)⊗ ℓ2(Z) then just takes an element f ⊗ δm ∈ C(S1)⋊α Z ⊆ Hτ and maps
it to f ⊗ δm. In this way it is easy to understand how C(S1)⋊α Z acts on L2(S1) ⊗ ℓ2(Z):
a pure element g ∈ C(S1) just acts by multiplication on the first factor; on the other
hand, for δm ∈ C(S1) ⋊ Z we have

δm � (f(φn)δn) = δmf(φ1)δ∗
mδmδn = V m(f)(φ1)δn+m.

These are precisely the representations defining the system (3.16).

Another way to look at the rotation algebra which is often useful is as the twisted group
algebra of Z2 in the following way. Given a real number θ, we define σ : Z2 × Z2 → U(1)
as

σ(x, y) := e−πiθ(x1y2−x2y1). (3.19)
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An easy computation shows that σ is a 2-cocycle for the (additive) group Z2, such that
σ(x, y) = σ(y, x) and σ(x,−x) = 1 for any x, y ∈ Z2.

Proposition 3.20. There exists an isomorphism A2
θ ≃ C∗(Z2, σ) of C∗-algebras.

Proof. It is enough to show that in C∗(Z2, σ) there are two unitaries satisfying (3.18).
Consider the canonical basis e1 = (1, 0), e2 = (0, 1) of Z2 and set u = δe1 ,v = δe2 . Then
uv = e−πiθδ(1,1) and vu = eπiθδ(1,1). In particular, vu = e2πiθuv.

3.3 Noncommutative Finite Abelian Coverings
In this section we introduce regular noncommutative finite coverings with abelian finite
structure group and we show that they are isomorphic to twisted crossed products with
respect to the dual group, a result that apparently appeared in [107] for the first time.
We also discuss in detail the meaning of the notion that was called regularity in [2] by
comparing it with the familiar notion of free action. We refer to [86] and [99] for further
properties of group actions on C∗-algebras. This section is taken from [5].

Given a topological abelian group G, the Pontryagin dual Ĝ is the group of con-
tinuous homomorphisms χ : G → S1, where S1 is the circle group R/Z with quotient
structure. The group Ĝ is topological once endowed with the compact-open topology and
clearly abelian so that we can consider its dual: the theorem of Pontryagin (known as
Pontryagin duality) states that

G ≃ ̂̂
G (3.20)

where every point x ∈ G goes in the map that evaluates every character of G in x−1.
Note that if G is discrete then Ĝ is compact.

Convention 3.21. In the following we denote elements of G with Latin letters and those
of Ĝ with Greek letters.

Note that, according to this convention, the pairing between Ĝ and G is given by
⟨γ, x⟩ = γ(x) while the pairing between G ≃ ̂̂

G and Ĝ is given by ⟨x, γ⟩ = γ(x−1) = γ(x).
For a reference about this convention we direct the reader to [109, pp. 194–195]. Till the
end of this section we consider G finite and abelian.

Definition 3.22 (cf. [2]). A finite abelian (noncommutative) covering of a unital
C∗-algebra A is an inclusion of C∗-algebras A ⊆ B together with an action β of a finite
abelian group G on B such that A is the fixed point algebra BG of B. We say that G is
the deck transformation group and denote this structure by G↷ B ⊇ A.

Given a noncommutative covering, we have that action of G on B decomposes B in
its closed spectral subspaces

Bγ := {b ∈ B | βg(b) = γ(g)b ∀g ∈ G}

for γ ∈ Ĝ. Every Bγ is a Hilbert bimodule over A with scalar right product ⟨b1, b2⟩ := b∗
1b2.

and left product ⟨b1, b2⟩ := b1b
∗
2. Notice that the induced norm on every Bγ coincides with

the norm of B so that every spectral subspace is complete from the beginning.
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Proposition 3.23 (cf. [2]). With the above notation we have that:

(1) BγBµ ⊆ Bγµ.

(2) Given b ∈ Bγ, then b∗ ∈ Bγ.

(3) If b ∈ Bγ is invertible, then b−1 ∈ Bγ.

(4) Each b ∈ B may be written as
∑

γ∈Ĝ
bγ with bγ ∈ Bγ given by

bγ := 1
|G|

∑
g∈G

γ(g)βg(b).

Let us now consider the ordinary crossed product B⋊G. We can construct a canonical
B ⋊G−A - Hilbert bimodule B⋊G EA in the following way: consider B endowed with

• left action bδg � x := bβg(x) and left inner product

B⋊G⟨b1, b2⟩ :=
∑
g∈G

b1βg(b∗
2)δg,

• right action x� a := xa and right inner product

⟨b1, b2⟩A := 1
|G|

∑
g∈G

βg(b∗
1b2).

Then B⋊G EA is the bimodule obtained by completing B in the usual way. It turns out
that B⋊G EA is almost a Morita equivalence bimodule for it may lack the fullness of the
left product B⋊G ⟨·, ·⟩.

Definition 3.24. The group action is free when B⋊G EA is a Morita equivalence bimodule.

Note that a group action on a C∗-algebra which is free in the sense of Definition
3.24 is not free in the set theoretic sense: for example, a = 0 ∈ B is a fixed-point
with respect to the action β for any g ∈ G. To avoid possible confusion, in literature
a group action for which B⋊G EA is a Morita equivalence bimodule is often called sat-
urated. The two meanings are linked in the following way: when B = C(X) with X
Hausdorff and compact, Rieffel has proved that the action β : G → Aut(C(X)) is free
(saturated) if and only if the corresponding action X ↶ G is free in the familiar sense
(see e.g. Proposition 7.1.12 and Theorem 7.2.6 in [85]).

Definition 3.25. The canonical map can: B⊙B → B⊗C(G) defined on the algebraic
tensor product is the B −A-module map given by

can(x⊙ y) :=
∑
g∈G

xβg(y) ⊗ δg. (3.21)

We say that the G-action satisfies the Elwood condition if the map can has dense range
in B ⊗ C(G) with respect to the crossed product C∗-norm.
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Theorem 3.26 (cf. [86, 99]). Let G ↷ B ⊇ A be a finite abelian covering. The
following conditions are equivalent:

(1) The action β is free.

(2) The action β satisfies the Elwood condition.

(3) Every spectral subspace Bγ for γ ∈ Ĝ is a A−A Morita equivalence bimodule.

(4) The multiplication map induces an isomorphism of Hilbert A−A-modules between
the balanced tensor product Bγ ⊗A Bγ and A for every γ ∈ Ĝ.

Moreover, if the action is free any Bγ is finitely generated and projective as a right
A-module.

We say that an element x in a right A-module X is a generator if X = {xa, a ∈ A}.
Analogously, an element x in a left A-module X is a generator if X = {ax, a ∈ A}.

Proposition 3.27. For any γ ∈ Ĝ, the following facts are equivalent:

(1) Bγ contains an element which is unitary in B.

(2) Bγ contains an element which is invertible in B.

(3) Bγ is a free, rank-1, right A-module and the action is free.

(4) Bγ has a generator as a right A-module and the action is free.

(5) Bγ is a free, rank-1, left A-module and the action is free.

(6) Bγ has a generator as a left A-module and the action is free.

Proof. (1) ⇒ (2) is obvious. (2) ⇒ (1): if µγ ∈ Bγ is invertible in B, aγ =
√
µ∗

γµγ is
invertible in A, hence uγ = µγa

−1
γ ∈ Bγ is invertible in B. Since µγ = uγaγ is the polar

decomposition, uγ is unitary and is clearly a generator for Bγ both as a right and as a
left A-module.

(2) ⇒ (3): the map a ∈ A 7→ µγa ∈ Bγ is a right A-module isomorphism. As for the
freeness, we have to show that, for any γ ∈ Ĝ, the A-bimodule map

p : Bγ ⊗A Bγ → A
bγ ⊗ bγ 7→ bγbγ .

is a bijection. Since the µγ are invertible, for any element x ∈ Bγ ⊗A Bγ there is a
unique element a ∈ A such that µγ ⊗ µγa ∈ Bγ ⊗ Bγ is a representative of x, and
p(µγ ⊗ µγa) = µγµγa is clearly injective. Setting a = µ−1

γ µ−1
γ , we have a ∈ A and

p(µγ ⊗ µγa) = 1, which implies that p is surjective.
(3) ⇒ (4): if Φ: A → Bγ is a right A-module isomorphism, namely Φ(a1)a2 = Φ(a1a2),

µγ := Φ(1) is clearly a generator.
(4) ⇒ (2): reasoning as above, since the µγ are left-generators, any element in Bγ ⊗A

Bγ as a representative in Bγ ⊗Bγ of the form µγ ⊗ µγa with p(µγ ⊗ µγa) = µγµγa, even
though a is not unique in principle. Exploiting the surjectivity of p, ∃a : µγµγa = 1,
namely µγa ∈ Bγ is a right inverse of µγ . This shows that each µγ has a right-inverse
λγ ∈ Bγ .
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Now the injectivity of p implies that if µγµγa = 0 then µγa = 0. Setting a =
λγ(1 − λγµγ)µγ we get

µγµγa = µγµγλγ(1 − λγµγ)µγ = µγ(1 − λγµγ)µγ = 0,

therefore 0 = µγa = µγλγ(1 − λγµγ)µγ = (1 − λγµγ)µγ . Multiplying by λγ to the right
we get 1 − λγµγ = 0, namely µγ ∈ Bγ is invertible in B.

The equivalences (3) ⇔ (5) and (4) ⇔ (6) are proved using the adjoint map from Bγ

to Bγ .

Definition 3.28. We say that the finite abelian covering G↷ B ⊇ A is rank-1 regular
if one of the equivalent conditions of Proposition 3.27 is satisfied. In this case, the action
is said to be rank-1 free. Any map s : Ĝ 7−→ U(B) with sγ ∈ Bγ and se = I is called a
frame.

Condition (1) in Proposition 3.27 has been called regularity in [2] and it has been
proved to imply freeness by making use of the Elwood condition.
Remark 3.29. Rank-1 freeness implies that the action is faithful. Indeed, if there exists
a nontrivial g ∈ G acting trivially, we may find γ ∈ Ĝ such that γ(g) ̸= 1. Therefore,
the equation b = βg(b) = γ(g)b is satisfied only for b = 0 and Bγ does not contain any
invertible element.
Remark 3.30. As µγ ∈ Bγ , we have that µγAµ

∗
γ = A for any γ ∈ Ĝ.

Remark 3.31. A finite abelian noncommutative covering G↷ B ⊇ A is rank-1 regular if
and only if B is strongly Ĝ-graded (that is, the inclusion in Proposition 3.23 point (1) is
an equality for any γ, µ ∈ Ĝ). Indeed, assume that the covering is regular. Take a ∈ Bγµ

and let s : Ĝ → U(B) be a frame. A straightforward computation shows that as∗
µ is in Bγ

and so a = as∗
µsµ ∈ BγBµ. On the other hand, assume that B is strongly Ĝ-graded. For

any µ ∈ Ĝ we have that 1 ∈ Be = Bµµ = BµBµ. In particular, there are elements c ∈ Bµ

and d ∈ Bµ such that 1 = cd. We have found in any spectral subspace Bµ an element c
which is invertible in B and so the covering is rank-1 regular.

It is known that the condition that B is strongly graded with G finite and abelian is
equivalent to the Hopf-Galois condition.

In general, the rank-1 regularity assumption is not always satisfied as shown by [2,
Example 1.7]. Later we shall give a commutative example too. Let us now consider when
this is instead satisfied.

Example 3.32. Let G be a finite abelian group and A a unital C∗-algebra. Assume that
Ĝ has a twisted action (α, σ) on A. Consider the twisted crossed product B := A ⋊σ

α Ĝ
and the action β of G on it given by the dual action

βg(aδγ) = ⟨g, γ⟩aδγ = γ(g)aδγ .

The C∗-algebra B contains A in the obvious way and clearly the fixed point algebra of B
under β is precisely A. Moreover, the spectral subspaces are Bγ = Aδγ = δγA for every
γ ∈ Ĝ and of course every δγ is unitary. This means that G ↷ B ⊇ A is a rank-1 free
noncommutative covering with deck transformation group G. 2

In Example 3.32 we have shown that A ⊆ A⋊σ
α Ĝ is a rank-1 regular finite noncommu-

tative covering. The converse holds true: any finite rank-1 regular covering is a twisted
crossed product. This was proved by Wagner in [107] with a slightly different terminology.
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Theorem 3.33. Let G ↷ B ⊇ A be a finite rank-1 regular noncommutative covering
with G abelian. Any frame s : Ĝ 7−→ U(B) determines a twisting pair (α, σ) by

αγ(a) := sγas
∗
γ , and σ(γ, µ) := sγsµ s

∗
γµ, γ, µ ∈ Ĝ

together with an isomorphism Φ: A⋊σ
α Ĝ → B which on the generators is given by

Φ(aδγ) := asγ .

This isomorphism is equivariant with respect to the dual action of G on A⋊σ
α Ĝ.

Proof. It is straightforward to check that (α, σ) is a twisting pair. Moreover since the
group is finite we don’t have to worry about completions and the maximal reduced crossed
product coincides with the reduced one. Let’s check that Φ is a morphism of C∗-algebras.
Then it will be clearly invertible. We have

Φ(aδγ ⋆ bδµ) = Φ(aαγ(b)σ(γ, µ)δγµ) = a(sγbs
∗
γ)(sγsµs

∗
γµ)sγµ = Φ(aδγ)Φ(bδµ)

and
Φ((aδγ)∗) = Φ(σ∗

γ,γαγ(a∗)δγ) = ses
∗
γs

∗
γ(sγa

∗s∗
γ)sγ = s∗

γa
∗ = Φ(aδγ)∗.

The statement about the equivariance is trivial.

Remark 3.34. Following [19], let B(Ĝ, A) be the group of all the maps p : Ĝ → U(A)
satisfying p(e) = 1. There is a natural action of B(Ĝ, A) on the set of twisting pairs,
where p ∈ B(Ĝ, A) acts on (α, σ) by p · (α, σ) := (αp, σp), with

αp
γ = Adp(γ) ◦αγ , and σp(γ, µ) = p(γ)αx(p(µ))σ(γ, µ)p(γµ)∗,

for γ, µ ∈ G. The isomorphism class of A⋊α,σ Ĝ only depends on the orbit of the twisting
pair under the above B(Ĝ, A)-action. We see that any two frames give rise to twisting
pairs in the same cohomology class i.e. in the same orbit. Indeed, if s, s′ : Ĝ → B are
frames with corresponding twisting pairs (α, σ) and (α′, σ′), then putting p(γ) := s′∗

γ sγ

for γ ∈ Ĝ, we find (α′, σ′) = p · (α, σ).
Let us examine now the commutative case. Consider a compact space X with right

action X ↶ G and quotient Y = X/G. The induced action on the functions corresponds
to

(βgf)(x) = f(x · g),
for g ∈ G and f ∈ C(X), and the spectral subspaces read as

C(X)γ = {f ∈ C(X) : βg(f) = ⟨γ, g⟩f}, γ ∈ Ĝ.

As is well known, in the case when the projection π : X → X/G is a regular covering, we
can identify C(X)γ with the C(Y )-module of sections of a unitary complex line bundle
Vγ → Y associated to the character γ : G → U(1). The total space of Vγ is the quotient
space (X×C)/G with respect the the right diagonal action (x, z) · g := (x · g, ⟨γ, g⟩ z) and
the canonical identification

C(X)γ
∼= Γ(Y, Vγ),

associates to the equivariant function f : X → C the section F : Y → Vγ defined by
F ([x]) = [x, f(x)] for every [x] ∈ Y . The following facts are well known but it is interesting
to specialize them to the rank-1 case.
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Proposition 3.35. If the covering C(Y ) ⊆ C(X) ↶ G is rank-1 regular, the projection
X → Y is a regular covering in the topological sense. Moreover the spectral subspaces for
every γ ∈ Ĝ satisfy all the following equivalent properties:

(1) there is an invertible ωγ ∈ C(X)γ.

(2) The bundle Vγ is topologically trivial Vγ ≃ Y × C (the isomorphism is not required
to preserve the flat structure).

(3) The module C(X)γ has rank one over C(Y ).

Vice versa if X → Y is a regular covering and one of the equivalent properties (1), (2), (3)
is satisfied for every γ ∈ Ĝ then the covering is rank-1 free.

In this case, if all the spaces are reasonably good (say CW -complexes) then the above
properties are equivalent to the vanishing of the first Chern class [c1(Vγ)] ∈ H2(Y ;Z).

Proof. At this point the proof is immediate. We give some details and some remarks.
First of all, since the rank-1 property is quite strong, the implication: rank-1 regular =⇒
topologically regular can be proven directly since x · g = x implies

⟨γ, g⟩ωγ(x) = (βgωγ)(x) = ωγ(x · g) = ωγ(x)

for every γ. This is impossible unless g = e. Concerning the equivalence of the properties,
we comment on the (3) =⇒ (2). Assume that C(X)γ has an algebraic generator ωγ . This
corresponds to a section of Vγ that has to be different to zero on every point on Y , and so
ωγ(x) ̸= 0 for every x ∈ X. The vice versa is clear once we observe that the assumption of
topological regularity makes the construction of the vector bundles Vγ possible. In other
words the corresponding modules are finitely generated projective. For Chern classes we
refer to [8].

Notice that if X and Y are manifolds, by Chern-Weil theory since our bundles are
flat, the real Chern classes [c1(Vγ)] ∈ H2(Y ;R) vanish for every γ ∈ Ĝ. In particular
the integer classes [c1(Vγ)] ∈ H2(Y ;Z) are torsion classes. It follows that if H2(Y ;Z) is
torsion free then the regularity assumption (3.28) is satisfied. In general this is not the
case as shown by the following example.

Example 3.36 (cf. [57]). Let Z2 act on the 2-sphere as the universal covering of the
real projective space P2(R). Then the character γ : Z2 → SO(2) mapping the generator
to the antipode produces a flat SO(2)-bundle which is non trivial because its Euler class
generates H∗(P2(R);Z). Under the isomorphism SO(2) ∼= U(1), Vγ has a natural complex
structure and the first Chern class corresponds to the Euler class. 2



Chapter 4
Kasparov’s Bivariant K-Theory

The main object of Kasparov’s bivariant K-theory [59] consists of a bifunctor which asso-
ciates a Z2-graded group KK•(A,B) to any pair of (suitable) C∗-algebras A and B. This
bifunctor unifies both K-theory and K-homology in the sense that

KK•(C, B) ≃ K•(B) and KK•(A,C) ≃ K•(A).

The strength of this construction relies on the existence of a product which generalizes
the index pairing between K-theory and K-homology. In this chapter we recall some
definitions and facts about KK-theory and its unbounded version, the Kasparov product
and the relations of these with group actions. For more details we refer to [10, 16, 53].
For a brief introduction to Hilbert modules, we refer to Appendix A.

4.1 Kasparov Modules and KK-Theory
The main ingredient of Kasparov’s KK-theory is the Kasparov module, an object that is
modeled on a family of abstract elliptic operators on Hilbert modules.
Definition 4.1 (cf. [59]). Let A and B be graded C∗-algebras. A Kasparov A − B-
module is a triple (E, ϕ, F ) where E is a countably generated graded right Hilbert B-
module, ϕ : A → LB(E) is a graded ∗-homomorphism and F is an odd operator such
that

[F, ϕ(a)], (F 2 − 1)ϕ(a) and (F − F ∗)ϕ(a) ∈ KB(E) (4.1)
for all a ∈ A. In the following we let E(A,B) denote the set of Kasparov A−B-modules.

Note that the commutator in (4.1) is a graded commutator. Furthermore, there is a
binary operation on E(A,B) given by direct sum.
Example 4.2. Let A and B be graded C∗-algebras. Any graded ∗-homomorphism
φ : A → B defines a Kasparov A−B-module (B,ϕ, 0). 2

Two Kasparov modules (E0, ϕ0, F0), (E1, ϕ1, F1) ∈ E(A,B) are unitarily equivalent
if there is an even unitary u ∈ LB(E0, E1) such that uϕ0(a)u∗ = ϕ1(a) for any a ∈ A and
uF0u

∗ = F1. In this case we write (E0, ϕ0, F0) ≃ (E1, ϕ1, F1).
Two Kasparov A−B-modules E0, E1 ∈ E(A,B) are said to be operator homotopic

when there are a graded Hilbert module E, a graded homomorphism ϕ : A → LB(E) and
a norm continuous path (Ft)t∈[0,1] in LB(E) such that:

23
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(1) Ft := (E, ϕ, Ft) ∈ E(A,B) for all t ∈ [0, 1]

(2) F0 ≃ E0 and F1 ≃ E1.

A Kasparov module (E, ϕ, F ) ∈ E(A,B) is said to be degenerate if [F, ϕ(a)] = 0, (F 2 −
1)ϕ(a) = 0 and (F − F ∗)ϕ(a) = 0 for any a ∈ A. We write E0 ∼oh E1 if there are
degenerate Kasparov modules D0,D1 ∈ E(A,B) such that E0 ⊕ D0 is operator homotopic
to E1 ⊕ D1. This is an equivalence relation on E(A,B) [53, Lemma 2.1.17].

Definition 4.3. We define KK(A,B) as the set of equivalence classes of Kasparov A−B-
modules in E(A,B) under the relation ∼oh.

The operator homotopy equivalence relation respects direct sums and so KK(A,B)
becomes an abelian semigroup under the operation:

[(E1, ϕ1, F1)] ⊕ [(E1, ϕ1, F1)] := [(E0 ⊕ E1, ϕ0 ⊕ ϕ1, F0 ⊕ F1)]

If (E, ϕ, F ) ∈ E(A,B) is degenerate, then it is homotopic to the zero module (see [16,
Proposition 17.2.3]). A remarkable result of the theory is that this semigroup is actually
a group (see e.g. [53, Theorem 2.1.23] or [16, Proposition 17.3.3]).

Remark 4.4. The standard definition of the Kasparov group relies on a slightly different
notion of homotopy [16, Section 17.2 and 17.3]. However, since our algebras are assumed
separable, these definitions are all equivalent, cf. [53, Theorem 2.2.17].

Remark 4.5. A Kasparov module (E, ϕ, F ) ∈ E(A,B) is said to be a compact pertur-
bation of (E, ϕ, F ′) ∈ E(A,B) if (F − F ′)ϕ(a) ∈ KB(E) for all a ∈ A. In this case, the
straight line homotopy from F to F ′ provides an operator homotopy between the two
modules (see e.g. [16, Prop. 17.2.5]) and thus they represent the same KK-class.

The construction of the KK-group is functorial in both entries:

(1) If f : A1 → A2 is a graded homomorphism, then for any B there is an induced map
E(A2, B) → E(A1, B) given by (E, ϕ, F ) → (E, ϕ ◦ f, F ). This map respects direct
sum and homotopy and so defines a homomorphism f∗ : KK(A2, B) → KK(A1, B)
(see [53, Lemma 2.1.25]). Analogous for KKoh(A,B).

(2) If g : B1 → B2 is a graded homomorphism, then for any A there is an induced map
E(A,B1) → E(A,B2) given by (E, ϕ, F ) → (E⊗̂gB,ϕ⊗̂1, F ⊗̂1). This respects direct
sum and homotopy and so defines a homomorphism g∗ : KK(A,B1) → KK(A,B2)
(see [53, Lemma 2.1.26]). Analogous for KKoh(A,B).

Combining these constructions together, we deduce that KK is a bifunctor from pairs
of C∗-algebras to abelian groups which is contravariant in the first variable and covariant
in the second. Functoriality is particularly meaningful in view of the Example 4.2.

Example 4.6. Let f : A → D and g : D → B be graded homomorphism and denote by
[f ] and [g] the classes of the morphisms respectively in KK(A,D) and KK(D,B). Then
f∗([g]) and [g ◦ f ] ∈ KK(A,B) are both represented by (B, g ◦ f, 0) so f∗([g]) = [g ◦ f ].

On the other hand, the class g∗([f ]) is represented by (g(D)B, g ◦ f, 0) which is ho-
motopic to (B, g ◦ f, 0). We deduce in particular that g∗([f ]) = [g ◦ f ]. 2
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There is a functorial construction known as amplification which is worth to mention.
If A,B,D are C∗-algebras, there is a map from E(A,B) to E(A⊗̂D,B⊗̂D) given by
(E, ϕ, F ) 7→ (E⊗̂D,ϕ⊗̂1, F ⊗̂1). This map preserves direct sums and the equivalence
relation (see e.g. [53, Lemma 2.1.27]) and so induces homorphisms τD : KK(A,B) →
KK(A⊗̂D,B⊗̂D). Note that this homomorphism is natural in both variable.

Proposition 4.7. For any C∗-algebras A and B, the map

τK : KK(A,B) → KK(A⊗̂K, B⊗̂K)

is an isomorphism. In particular, KK is a stable bifunctor.

Complex Clifford Algebras are used to define the higher-order KK-groups. In our
convention, Cℓn is the complex algebra generated by the skew-adjoint anti-commuting
elements e1, . . . , en such that e2

i = −1 and graded in the standard way.

Definition 4.8. We define KKn(A,B) := KK(A,B⊗̂Cℓn).

Using the fact that Cℓn ≃ End(C2
n
2 ) for n even and that KK is a stable bifunctor, we

deduce that we have only two groups to consider and that we have the so called formal
Bott periodicity:

KK(A⊗̂Cℓ1, B) ≃ KK(A,B⊗̂Cℓ1). (4.2)

4.2 The Kasparov Product

The Kasparov product [59, §4, Theorem 4] is a pairing

⊗̂D : KKi(A1, B1⊗̂D) ×KKj(D⊗̂A2, B2) −→ KKi+j(A1⊗̂A2, B1⊗̂B2)

for suitable C∗-algebras which has many functorial properties and generalizes composition
and tensor product of ∗-homomorphism. It is the greatest achievement of the theory, both
for the great generality of the assumptions and the technicalities of the non-constructive
proof. A more constructive description of it was introduced and developed in [21, 102]
thanks to the notion of a connection which we now recall.

Let E1 be a graded Hilbert A-module, E2 a graded Hilbert B-module and ϕ : A →
LB(E2) be a graded homomorphism. We can form the internal tensor product E12 =
E1⊗̂ϕE2 as in Subsection A.1.1 which is a graded Hilbert B-module under the map S12
given by S12(e1 ⊗ e2) = SE1(e1) ⊗ SE2(e2). For each x ∈ E1 we can define the creation
operator Tx ∈ LB(E2, E12) by Tx(e2) = x ⊗ e2 for e2 ∈ E2. An easy computation shows
that T ∗

x is given by T ∗
x (e1 ⊗ e2) = ϕ(⟨x, e1⟩)e2 for e1 ∈ E1 and e2 ∈ E2. Note that Tx

depends linearly on x and that ∥Tx∥ = ∥T ∗
x ∥ ≤ ∥x∥ for any x ∈ E1.

Definition 4.9. Let F2 ∈ LB(E2). An element F ∈ LB(E12) is called an F2-connection
for E1 when

Tx ◦ F2 − (−1)deg(x) deg(F2)F ◦ Tx ∈ KB(E2, E12)
F2 ◦ T ∗

x − (−1)deg(x) deg(F2)T ∗
x ◦ F ∈ KB(E12, E2)

(4.3)

for any x ∈ E1. A Kasparov A−C-module (E12, ϕ, F ) is called a Kasparov product for
(E1, ϕ1, F1) in E(A,B) and (E2, ϕ2, F2) ∈ E(B,C) when F is an F2-connection for E1
and ϕ(a)[F1⊗̂1, F ]ϕ(a)∗ ≥ 0 mod KC(E12) for all a ∈ A.
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It is possible to prove that for any (E1, ϕ1, F1) ∈ E(A,B) and (E2, ϕ2, F2) ∈ E(B,C)
there exists a Kasparov product (E12, ϕ, F ) ∈ E(A,C) and that this is unique up to
operator homotopy [53, Theorem 2.2.8].

Theorem 4.10. There exists a bilinear map

⊗̂D : KK(A,D) ×KK(D,B) −→ KK(A,B)

which takes two classes [(E1, ϕ1, F1)] and [(E2, ϕ2, F2)] and gives back the class of the
Kasparov product of the representatives. Furthermore, this map is associative in the
sense that

x⊗̂D1(y⊗̂D2z) = (x⊗̂D1y)⊗̂D2z

for any x ∈ KK(A,D1), y ∈ KK(D1, D2) and z ∈ KK(D2, B).

Example 4.11. Let f : A → D be a morphism and (D, f, 0) its Kasparov module in
E(A,D) as in Example 4.2. Given any (E, ϕ, F ) ∈ E(D,B) with ϕ essential, we have that
D⊗̂ϕE ≃ E and, under this identification, (E, ϕ◦f, F ) is a Kasparov product for (D, f, 0)
and (E, ϕ, F ). In particular, the product represents the pullback (see Example 4.6):

f∗([(E, ϕ, F )]) = [f ]⊗̂D[(E, ϕ, F )] (4.4)

Analogously, given g : B → A, we have that g∗([(E, ϕ, F )]) = [(E, ϕ, F )]⊗̂B[g]. 2

Having Example 4.11 in mind, one may regard the elements in the KK groups as
morphisms over separable algebras where the composition rule is given by the Kasparov
product. This category has the remarkable property of being triangulated and is universal
in the sense that split exact stable functor from the category of C∗-algebras to abelian
groups factors through the category KK (see for instance [30, 48]). The next proposition
summarizes the important functoriality properties of the product.

Proposition 4.12. Let A,A′, B,B′D,D′ be graded C∗-algebras. Let f : A′ → A, g : B →
B′, h : D → D′ be graded ∗-homomorphisms. Let x ∈ KK(A,D), y ∈ KK(D,B) and
z ∈ KK(D′, B). Then:

(1) f∗(x⊗̂Dy) = f∗(x)⊗̂Dy

(2) h∗(x⊗̂D′z) = x⊗̂D′h∗(z)

(3) g∗(x⊗̂Dy) = x⊗̂Dg∗(y)

Proof. See [16, Proposition 18.7.1].

4.3 Unbounded KK-Theory
It is sometimes convenient to define Kasparov modules and classes using an unbounded
operator D instead of a bounded Hilbert module map. In doing so, the issues in the
theory of unbounded operators are even more delicate as, differently from Hilbert spaces,
closed submodule of a C∗-module need not be orthogonally complemented.

Definition 4.13 (cf. [10]). Let B be a C∗-algebra and E a (right) Hilbert B-module. A
densely defined closed operator D : DomD → E is called regular if
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(1) D∗ is densely defined in E

(2) 1 +D∗D has dense range

A regular operator D is symmetric if DomD ⊆ DomD∗ and D = D∗ on DomD. It is
selfadjoint if it is symmetric and DomD = DomD∗.

It is possible to show that if D : DomD → E is regular, then D is automatically B-
linear and DomD is a B-submodule of E. Furthermore, in this case, D∗D is self-adjoint
and regular (see [71, Proposition 1.3.2]).

Definition 4.14 (cf. [10]). Let A and B be Z2-graded C∗-algebras. An unbounded
Kasparov (A,B)-module is a triple (E, ϕ,D) where E is a graded right Hilbert B-
module, ϕ : A → LB(E) a graded C∗-algebra homomorphism and D : Dom(D) → E a
self-adjoint regular odd operator such that:

(1) there exists a dense subalgebra A ⊆ A such that ϕ(a)Dom(D) ⊆ Dom(D) and the
commutators [D,ϕ(a)] are bounded for every a ∈ A

(2) the operator (1 +D2)−1/2ϕ(a) extends to a compact operator on E for any a ∈ A

We denote the space of such modules by Ψ(A, B).

As in the bounded case we set Ψj(A,B) := Ψ(A,B⊗̂Cℓj) where Cℓj is the complex
Clifford algebra with j generators. Bounded and unbounded Kasparov modules are related
by the following result.

Theorem 4.15 (cf. [10]). Let A and B be Z2-graded C∗-algebras and (E, ϕ,D) an
unbounded Kasparov (A,B)-module. The bounded transform of D, defined by

b(D) := D(1 +D2)− 1
2 , (4.5)

is a bounded operator on EB. Furthermore, the triple (E, ϕ, b(D)) is a (bounded) Kas-
parov module.

The bounded transform induces a map b : Ψ(A,B) → KK(A,B) which send any
unbounded module to the KK-class of its bounded transform. As pointed out in [10],
if (E, ϕ,D) ∈ Ψ(A,B) and T ∈ LB(E) is odd self-adjoint, then the class induced by
(E, ϕ,D) and by (E, ϕ,D + T ) in KK(A,B) is the same. In this case we say that
(E, ϕ,D + T ) is a bounded perturbation of (E, ϕ,D).

Theorem 4.16 (cf. [10]). The bounded transform b : Ψ(A,B) → KK(A,B) is surjec-
tive.

The bounded transform map b : Ψ(A,B) → KK(A,B) is clearly not injective in gen-
eral as we need to suitably identify unbounded modules up to homotopy and “quotienting”
the kernel of the transform; this kernel is identified by a degeneracy condition known as
spectral decomposability.

Definition 4.17 (cf. [55]). An unbounded Kasparov module (E, ϕ,D) is spectrally de-
composable when there exists an orthogonal projection P : E → E such that:

(1) P preserves the domain of D and [D,P ] = 0 on DomD
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(2) DP and D(P − 1) are unbounded positive and regular operators

(3) ϕ(a)P = Pϕ(a) for all even elements a ∈ A and ϕ(a)P = (1 − P )ϕ(a) for all odd
elements a ∈ A

(4) χP = (1 − P )χ, where χ : E → E is the Z2-grading.

Proposition 4.18 (cf. [55]). Let A and B be Z2-graded C∗-algebras and (E, ϕ,D) an
unbounded Kasparov A − B-module. If (E, ϕ,D) is spectrally decomposable, then the
bounded Kasparov class [(E, ϕ, b(D))] ∈ KK(A,B) is the null class.

Similarly to the bounded case, it is possible to define an homotopy between unbounded
Kasparov modules up to spectrally decomposable modules (which in [55] is called “stable
homotopy” ) and it turns out that this is an equivalence relation. The quotient of Ψ1(A,B)
under this relation is denoted by UK(A,B) and the bounded transform b induces a map

b : UK(A,B) −→ KK(A,B) (4.6)

which is an isomorphism (see [55, Theorem 7.1]).

One of the greatest challenges of the bounded picture of Kasparov’s bivariant K-theory
is the fact there is not a closed formula to describe the interior product of its modules:
one has to make a guess and then show that it has the properties of a product. As shown
in [72] and its subsequent developments [18, 56], in the unbounded picture it is possible
to define directly (by an algebraic formula) the interior product of Kasparov modules by
introducing the notion of a (suitably) smooth connection on an operator space, notion
which we now briefly recall in a form which will be of interest for us. We take for granted
the definitions in Appendix B.

Let A1 be an operator ∗-algebra and assume that it is dense inside a C∗-algebra A.
The inclusion A1 → A is completely bounded. Let P : HA1 → HA1 be a completely
bounded self-adjoint idempotent and X1 = PHA1 an operator ∗-module; P extends to
an orthogonal projection P : HA → HA and X := PHA is a Hilbert A-module. The
inclusion X1 → X is completely bounded and compatible with both the inner products
and the module actions. Suppose now we are given a right Hilbert B-module Y together
with a ∗-representation π : A → LB(Y ) and a self-adjoint densely defined unbounded
operator D on Y such that each a ∈ A1 maps the domain of D into itself and the
commutator with D yields a completely bounded map [D, ·] : A1 → LB(Y ). We denote
by X ⊗A LB(Y ) the interior tensor product over A; this is a right Hilbert A-module via
the action (x⊗ T ) · a = x⊗ Tπ(a).

Definition 4.19. A connection for the triple (A, YB, D) is a completely bounded linear
map ∇ : X1 → X ⊗A LB(Y ) such that

∇(x · a) = ∇(x) · a+ x⊗ [D, a]

for all x ∈ X1 and a ∈ A1.

Given a connection ∇ : X1 → X ⊗A LB(Y ), we write c(∇) : X1 ⊗A Y → X ⊗A Y for
the composition of maps

c(∇) : X1 ⊗A Y
∇⊗1−−−−−−→ X ⊗A LB(Y ) ⊗ Y

c−−−−→ X ⊗A Y

x⊗ T ⊗ y −−−→ x⊗ Ty
(4.7)
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where c is the contraction map.
The inner product on X induces the pairing X ×X ⊗A LB(Y ) → LB(Y ) “on the first

entry” by (x, y ⊗ T ) = ⟨x, y⟩ · T .

Definition 4.20. A connection for the triple (A, YB, D) is said to be hermitian if

[D, ⟨x, y⟩] = (x,∇(y)) − (y,∇(x))∗

for all x, y ∈ X1.

As shown in the following example, under mild assumptions any operator ∗-module
X1 carries a hermitian connection and this is essentially the commutator [D, ·] under the
identification X1 = PHA1 .

Example 4.21 (Grassmann connection). We define Ω1
D to be the smallest C∗-subalgebra

of LB(Y ) generated by the elements of the form [D, a1] and π(a) for a1 ∈ A1 and a ∈ A.
We endow Ω1

D with its natural structure of an A − Ω1
D Hilbert C∗-module. We further

suppose that the action of A on Ω1
D is essential, namely such that A ·Ω1

D is dense in Ω1
D.

This condition provides an isomorphism HA ⊗A Ω1
D ≃ HΩ1

D
of Hilbert C∗-modules. The

composition of maps

X1 −→ HA1
[D,·]−→ HΩ1

D
≃ HA ⊗A Ω1

D
P ⊗1−→ X ⊗A Ω1

D −→ X ⊗A LB(Y )

is a hermitian connection (cf. [56]) on X1 called the Grassmann connection. 2

In general, the operator 1 ⊗ D on X ⊗A Y is not well defined as D is not A-linear.
This can be fixed as follows thanks to the existence of a connection. Suppose now that A1
is σ-unital, that the action of A on LB(Y ) is essential and that there exists a connection
∇ on X1. We define the densely operator 1 ⊗∇ D on X1 ⊗A Y by

1 ⊗∇ D := 1 ⊗D + c(∇), (4.8)

with c(∇) defined in (4.7). Regarding X1 as PHA1 , the operator (4.8) is nothing but the
diagonal action of D on every entry of the sequence [56, Lemma 5.1]. It is well known
that (4.8) is self-adjoint regular and well defined on the interior tensor product. We are
now ready to compute the internal Kasparov product of two modules.
Theorem 4.22 (cf. [56]). Let (X,D1) and (Y,D2) be two odd unbounded Kasparov
modules for (A,B) and (B,C) respectively and suppose that B ·Y is dense in Y and that
B · Ω1

D2
is dense in Ω1

D2
. Suppose that there is a correspondence (X1,∇0) from (X,D1)

to (Y,D2), namely an operator ∗-module X1 over a σ-unital operator ∗-algebra B1 and
a completely bounded hermitian D2-connection ∇0 : X1 → X ⊗B LC(Y ) such that

(1) the operator ∗-module X1 ⊆ X is a dense subspace of X and the operator ∗-algebra
B1 ⊆ B is a dense ∗-subalgebra of B. The inclusions are completely bounded and
compatible with the module structures and inner products.

(2) each b ∈ B1 maps the domain of D2 into itself and the derivation [D2, ·] : B1 →
LC(Y ) is completely bounded on B1.

(3) the commutator [1⊗∇0 D2, a] is well defined and extends to a bounded operator on
X ⊗B Y for all a ∈ A.
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(4) for any µ ∈ R \ { 0 }, the unbounded operator

[D1 ⊗ 1, 1 ⊗∇0 D2] (D1 ⊗ 1 − iµ)−1

is well-defined and extends to a bounded operator on X ⊗B Y .

Then, for any hermitian D2-connection ∇D2 : X1 → X ⊗B LC(Y ), the operator

D1 ×∇ D2 :=
(

0 D1 ⊗ 1 − i1 ⊗∇ D2
D1 ⊗ 1 + i1 ⊗∇ D2 0

)

on (X⊗B Y )⊕(X⊗B Y ) is an even unbounded Kasparov A−C-module which represents
the interior Kasparov product of (X,D1) and (Y,D2).

The proof of this theorem relies on the well known Kucerovsky criterion [64], which
provides sufficient conditions to establish when a candidate Kasparov module is the inte-
rior product of others two given. We mention that his work has been recently improved
and generalized in [36], with the advantage that the positivity condition in Kucerovsky’s
original result (which was a global condition) is there replaced by a “local” positivity
condition, in the full spirit of the Connes-Skandalis approach to the bounded Kasparov
product [21, 102]. Let us now show how the exterior Kasparov product looks in the
unbounded picture.
Theorem 4.23 (cf. [10]). Let (Ei, Di) be unbounded bimodules for (Ai, Bi), i = 1, 2.
The operator

D1⊗̂1 + 1⊗̂D2 : Dom(D1)⊗̂ Dom(D2) −→ E1⊗̂E2

extends to a self-adjoint regular operator with compact resolvent. Moreover, the diagram

Ψi(A1, B1) × Ψj(A2, B2) Ψi+j(A1⊗̂A2, B1⊗̂B2)

KKi(A1, B1) ×KKj(A2, B2) KKi+j(A1⊗̂A2, B1⊗̂B2)

b b

⊗̂

commutes.

4.4 Equivariant KK-Theory
In this section we describe the KK-theory of algebras which carry an action of a locally
compact topological group G and give a survey of the most important properties. The
original theory is contained in [58, 59]; we refer also to [16, §20] and [37] for more details.
Definition 4.24. A C∗-algebra B with a strongly continuous action β : G → Aut(B) of
a locally compact Hausdorff topological group G is called a G-algebra.

Definition 4.25. Let B be a G-algebra and E a (right) Hilbert B-module. A continuous
action of G on E is a homomorphism from G into the space of bounded linear transfor-
mations on E (not necessarily the space of module homomorphisms LB(E)) such that it
is continuous in the strong operator topology and

g · (xb) = (g · x)βg(b)
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for any g ∈ G, x ∈ E and b ∈ B. A Hilbert B-module with a continuous action of G is
called a G-equivariant Hilbert B-module.

If E1 and E2 are G-equivariant Hilbert B-modules, there is a natural induced action of
G on L(E1, E2) given by conjugation. In general, this action g 7→ g · T for T ∈ L(E1, E2)
is not norm-continuous: we say that T is G-continuous if it is. Obviously every G-
equivariant map is G-continuous. Furthermore, if G is compact, any continuous map can
be averaged over G to give a canonically associated G-equivariant map. In the case of a
graded C∗-algebras and graded Hilbert modules, we require that the action of the group
G preserves the subspaces of homogeneous elements.

Definition 4.26. Let A and B be graded G-algebras. A G-equivariant Kasparov A−B-
module is a triple (E, ϕ, F ) where E is a G-equivariant countably generated Hilbert B-
module, ϕ : A → LB(E) is an equivariant graded ∗-homomorphism and F is an even
G-continuous operator in L(E) such that

[F, ϕ(a)], (F 2 − 1)ϕ(a), (F − F ∗)ϕ(a) and (g · F − F )ϕ(a) (4.9)

are compact operators on E for all a ∈ A and g ∈ G. The set of G-equivariant Kasparov
A − B-modules is denoted by EG(A,B). The set DG(A,B) of degenerate equivariant
Kasparov modules is defined correspondingly.

The equivalence relation ∼oh is defined as in Section 4.1 and KKG(A,B) is the quo-
tient of EG(A,B) by ∼oh. As in the non-equivariant situation, we define

KKG
n (A,B) := KKG(A,B⊗̂Cℓn)

where Cℓn is the complex Clifford algebra and KKG
• (A,B) is an abelian group for the

direct sum. Furthermore, KKG(·, ·) is a bifunctor from pairs of G-algebras to abelian
groups, contravariant in the first variable and covariant in the second.
Remark 4.27. When G is compact, it is always possible to assume that the representative
(E, ϕ, F ) of any equivariant Kasparov class is such that g · F = F . Indeed, averaging F
over the group will yield a compact perturbation with the desired property.

Example 4.28. Let A and B be graded G-algebras and f : A → B a ∗-homomorphism
which is G-equivariant, namely such that

f(αg(a)) = βg(f(a)).

The triple (B, f, 0) defines canonically an element [f ] ∈ KKG(A,B). 2

Also in this case there exists an intersection product and the proofs are similar. More
precisely, given the G-algebras A1, A2, B1, B2 and D, there exists a bilinear pairing

⊗̂D : KKG
m(A1, B1⊗̂D) ×KKG

n (D⊗̂A2, B2) −→ KKG
n+m(A1⊗̂A2, B1⊗̂B2)

which is associative and functorial in all possible senses. As a consequence of this pairing,
one has Bott periodicity.

In the following subsections we present two fundamental relations between equivariant
KK-theory and KK-theory of crossed products.
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4.4.1 The Green-Julg Isomorphism

The Green-Julg isomorphisms [54] allow to describe the equivariant K-theory or K-
homology of a certain algebra in terms of the K-theory or K-homology respectively of
a crossed product. More precisely:

(1) If G is compact, then KKG
• (C, B) ≃ KK•(C, B ⋊G).

(2) If G is discrete, then KKG
• (A,C) ≃ KK•(A⋊G,C).

Note that the crossed products are maximal and that this isomorphisms can be easily gen-
eralized to the case where C is replaced by any C∗-algebra which carries a trivial action
of G. Furthermore, the two isomorphisms can be given explicitely on the representatives
of the equivalence classes. Let us begin by describing the case of G compact.

Let E be a G-equivariant Hilbert B-module for G compact and B a G-C∗-algebra.
Then E becomes a pre-Hilbert B⋊β G-module if we define the right action of B⋊β G on
E and the B ⋊β G-valued inner products by the formulas:

x · f :=
∫

G
us(x · f(s−1))ds ⟨x1, x2⟩B⋊βG(s) := ⟨x1, us(x2)⟩B

for x, x1, x2 ∈ E and f ∈ C(G,B) ⊆ B ⋊β G. We denote by EB⋊βG its completion. It is
easy to see that if (E, ϕ, T ) represents an element of KKG(C, B) with T being G-invariant
(and note that this can always been done for G compact according to Remark 4.27), then
T extends to an operator on EB⋊βG such that (EB⋊βG, ϕ, T ) represents an element of
KK(C, B ⋊β G) [38, Lemma 0.1]. We have the following result.

Theorem 4.29 (Green-Julg Isomorphism [10, 38]). Let G be a compact group and B
a G-C∗-algebra. The map Π: KKG(C, B) → KK(C, B ⋊β G) given by

Π([(EB, ϕ, T )]) := [(EB⋊βG, ϕ, T )] (4.10)

(for T the G-invariant representative) is an isomorphism.

Sketch of the proof. We define a map ν : KK(C, B ⋊β G) → KKG(C, B) and show that
it is inverse to Π. Let L2(G,B) denote the Hilbert B-module defined as the completion
of C(G,B) with respect to the B-valued inner product

⟨f, g⟩B :=
∫

G
βs

(
f(s−1)∗g(s−1)

)
ds

and the action of B on L2(G,B) given by (f · b)(t) := f(t)βt(b) for f ∈ C(G,B) and
b ∈ B. There is a well defined left action of B ⋊β G on L2(G,B) given by convolution
(when restricted to C(G,B) ⊆ B ⋊β G and to C(G,B) ⊆ L2(G,B)). Assume now that
(E, ϕ, T ) represents an element of KK(C, B ⋊β G). We can therefore consider the tensor
product E ⊗B⋊βG L2(G,B) which is a G-equivariant Hilbert B-module under the action
id ⊗ ρ for ρ : G → AutL2(G,B) defined by ρs(f)(t) = f(ts) for f ∈ C(G,B). Then
(E ⊗ L2(G,B), ϕ ⊗ 1, T ⊗ 1) represents an element of KKG(C, B); the map ν is then
defined by

ν[(E, ϕ, T )] := [(E ⊗ L2(G,B), ϕ⊗ 1, T ⊗ 1)] (4.11)
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Let us now discuss the isomorphism for G discrete (see [37, Example 4.9]). Given a
G-equivariant Kasparov A − C-module (E, ϕ, T, u), we have that the couple (ϕ, u) is a
covariant representation for the action α of G on A. The integrated form ϕ⋊u represents
the maximal crossed product A ⋊ G on H and so this defines a Kasparov A ⋊α G − C-
module (E, ϕ⋊u, T ). Note that the discreteness of G is needed to prove that the quantities
in (4.9) are compacts.
Theorem 4.30 (Green-Julg Isomorphism, Dual Version [10, 37, 38]). Let G be a dis-
crete group and (A,G, α) a dynamical system. The map IG : KKG(A,C) → KK(A⋊α

G,C) given by
IG([(E, ϕ, T, U)]) := [(E, ϕ⋊ u, T )] (4.12)

is an isomorphism.

The construction of the inverse map relies on the universal property of the maximal
crossed product for which any non degenerate homomorphism Φ: A⋊α G → L(H) must
be of the form Φ = ϕ⋊ u for a covariant couple (ϕ, u).

4.4.2 The Kasparov Descent

Let (B,G, β) a C∗-dynamical system and E a right Hilbert B-module. The algebra
Cc(G,B) acts on Cc(G,E) by

(x · f)(t) :=
∫

G
x(s)βs

(
f(s−1t)

)
ds (4.13)

for f ∈ Cc(G,B) and x ∈ Cc(G,E). We define the crossed product E ⋊β G as the right
Hilbert B⋊βG-module obtained by completing the right Cc(G,B)-module Cc(G,E) with
respect to the Cc(G,B)-valued scalar product

⟨x, y⟩(t) :=
∫

G
βs−1 (⟨x(s), y(st)⟩B) ds, x, y ∈ Cc(G,E). (4.14)

Remark 4.31. Note that the module E ⋊β G as just defined is different from the module
E⋊βG defined for the Green-Julg isomorphism and that, in this case, for its construction
a G-action on E is not needed.

Suppose now to have a covariant Kasparov module (E, ϕ, F ) ∈ EG(A,B). The action
ϕ : A → LB(E) induces a left action ψ : A⋊α G −→ L(E ⋊β G) by

(ψ(a)x)(t) :=
∫

G
ϕ(a(s)) · [s · x(s−1t)]ds (4.15)

for a ∈ Cc(G,A) and x ∈ Cc(G,E). Endowed with this action and the operator F̃ ∈
L(E ⋊β G) defined by

(F̃ x)(t) := F (x(t)) x ∈ Cc(G,E),

one can show that (E⋊β, ψ, F̃ ) becomes a A⋊α G−B ⋊β G Kasparov module.
Theorem 4.32 (Kasparov Descent [59]). Let (B,G, β) a C∗-dynamical system and
(E, ϕ, F ) ∈ EG(A,B). The map JG sending the equivariant Kasparov module (E, ϕ, F )
to (E ⋊β G,ψ, F̃ ) induces a homomorphism of groups

JG : KKG(A,B) −→ KK(A⋊α G,B ⋊β G)
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which is functorial in A and B and is compatible with the intersection product. Fur-
thermore, when A = B, the map JG is unital in the sense that JG(1A) = 1A⋊αG.

An analogous statement holds true also for reduced crossed products. Note that
this construction works also for unbounded modules as leaves the operator essentially
untouched: an easy computation shows indeed that the Kasparov descent construction
commutes with the bounded transform.
Remark 4.33. When G is discrete, it is known (cf. [6, Remark 1.15]) that there is a
commutative diagram

KKG(A,C)

KK(A⋊α G,C
∗(G)),

KK(A⋊α G,C)

JG

IG

ϵ

where the map ϵ is induced by the trivial representation of G.



Chapter 5
Spectral Triples and Geometry

Spectral triples on C∗-algebras are a central notion in noncommutative geometry, being
modeled on the geometric structure codified by the properties of the commutative ∗-
algebra C∞(M) of smooth functions on a compact spin manifoldM and the Dirac operator
on the Hilbert space of square-integrable spinors. In this chapter we recall how a spectral
triple can determine a geometric space and its interactions with (co)actions of a group.

5.1 Connes’ Spectral Manifolds

In this section we recall some basic well known definitions, facts and examples about
spectral triples, with particular emphasis on some of the Connes axioms for the spectral
reconstruction theorem. For more details we refer to [23–26, 28, 44, 68].

Definition 5.1. An odd spectral triple (A, H,D) on a unital C∗-algebra A consists of
a unital dense ∗-subalgebra A ⊆ A, a representation π : A → L(H) on a Hilbert space H
and a self-adjoint operator D (called a Dirac operator) densely defined on H such that
(1 +D2)− 1

2 is compact, π(a)(DomD) ⊆ DomD and the commutator [D,π(a)] extends to
a bounded operator on H for every a ∈ A.

If the representation π is not clear from the context, we will use the notation (A,H,D, π).
In general, the algebra A is not necessarily coincident with the Lipschitz algebra
CLip(A), i.e. the algebra of all those a ∈ A leaving invariant the domain of D and
for which the operator [D,π(a)] is bounded. In this sense, the operator a 7→ [D,π(a)]
can be seen as a closable derivation from A to L(H), where the domain of its closure
is precisely CLip(A). It is known that the Lipschitz algebra is a Banach ∗-algebra with
respect to the graph norm

∥a∥1 := ∥a∥ + ∥[D,π(a)]∥ .

For a proof, we direct the reader to [13, Lemma 1].

Example 5.2 (cf. [20, 44, 68]). Let M be a compact spin manifold [66]. Denote by
π : S → M the spin bundle and let H = L2(S) be the Hilbert space completion of the
space of smooth sections Γ(M,S), ∇S the lift of the Levi-Civita connection to S and
γ the Clifford action of the dual tangent space on S. Define the Dirac operator as
D = γ ◦ ∇S . Then (C∞(M), L2(S), D) is a spectral triple. 2

35
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Definition 5.3. A spectral triple (A, H,D) on a unital C∗-algebra A is called non de-
generate when it is the case that the representation π is faithful and [D,π(a)] = 0 for
a ∈ A, if and only if a ∈ C1A. It is called irreducible if there is no closed subspace of
H invariant under the action of A and D.

An even spectral triple on A is given by the same data with the addition of a
Z2-grading, namely a self-adjoint operator χ : H → H called a grading operator such
that χ2 = 1H , π(a)χ = χπ(a) for all a ∈ A, χ(DomD) ⊆ DomD and Dχ = −χD.

In the case of an even spectral triple, it is always possible to fix a basis of H in such
a way that H = H0 ⊕H1 and

χ =
(

1 0
0 −1

)
, π =

(
π0 0
0 π1

)
, D =

(
0 D0
D∗

0 0

)
.

Sometimes it is useful to think of odd spectral triples as even triples under the grading
χ = idH . In this way, it is possible to consider the two situations at the same time.

As already mentioned, in [26, 94] it is shown that any spectral triple over a commu-
tative C∗-algebra satisfying a suitable set of additional properties must be of the form of
Example 5.2. We will now introduce some of them, properly stated in a noncommutative
setup.

5.1.1 Summability

Definition 5.4. Given a spectral triple (A, H,D) on a unital C∗-algebra A, we consider
the function

ζD(z) := tr
(
(1 +D2)−z/2

)
for z ∈ C, with the convention that it may take infinite values. The numbers z ∈ C for
which ζD(z) is finite are called summability exponents and the triple is called finitely
summable if there exists at least one summability exponent. In this case, we define the
abscissa of convergence of ζD as

abs(ζD) := inf { t > 0 : ζD(t) < ∞ } .

We recall that abs(ζD) is the unique number d, if any, for which the Dixmier trace
trω((I +D2)−d/2) is finite non zero (cf. e.g. [45] Theorem 2.7).

There exists a direct way to compute the abscissa of convergence of the zeta function
associated to a Dirac operator D and goes as follows.

Definition 5.5. Let T be a positive compact operator on a Hilbert space H, denote by
{µn(T )}n≥0 the non-increasing sequence (with multiplicity) of its eigenvalues and set

λt(T ) := # { n ≥ 0 : µn(T ) > t }

for t > 0, cf. e.g. [40]. We call infinitesimal order of T the number

o(T ) := inf { s > 0 : trT s < ∞ } .
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Theorem 5.6. Let T be a positive compact operator on a Hilbert space H. Then

o(T ) =
(

lim inf
n→∞

log(µn(T ))
log(1/n)

)−1
= lim sup

t→0

log(λt(T ))
log(1/t) = lim sup

n→∞

log(λ1/n(T ))
logn .

As a consequence, note that if T is finite rank then o(T ) = 0. Furthermore, the
abscissa of convergence is just

abs(ζD) = o
(
(1 +D2)−1/2

)
. (5.1)

The first equality in the statement of Theorem 5.6 has been proved in [45, Theorem
1.4] and the second equality has been proved in [46, Proposition 1.13]. For the sake of
completeness, we prove them explicitely here. We first need a Lemma.

Lemma 5.7. Let f : (0,∞) → (0,∞) be a right-continuous, non-increasing, piecewise-
constant function.

(1) If limt→∞ f(t) = 0 and the set of discontinuity points consists of an unbounded
increasing sequence xn, then

lim sup
t→∞

log(1/f(t))
log t = lim sup

n

log(1/f(xn))
log xn

lim inf
t→∞

log(1/f(t))
log t = lim inf

n

log(1/f(xn))
log xn+1

.

(2) If limt→0 f(t) = +∞ and the set of discontinuity points consists of an infinitesimal
decreasing sequence xn, then

lim sup
t→0

log f(t)
log 1/t = lim sup

n

log f(xn)
log 1/xn−1

lim inf
t→0

log f(t)
log 1/t = lim inf

n

log f(xn)
log 1/xn

.

Proof. (1) Let tk be an increasing sequence such that limk
log(1/f(tk))

log tk
exists. Possibly

passing to a subsequence, we may assume that, for any n ∈ N, there is at most one k such
that xn ≤ tk < xn+1, denote by nk the indices for which xnk

≤ tk < xnk+1. Since f(t) is
constant in [xnk

, xnk+1) and 1/ log t is decreasing, we have, for any yn ∈ [xn, xn+1) such
that ynk

≥ tk, the inequalities

log(1/f(ynk
))

log ynk

≤ log(1/f(tk))
log tk

≤ log(1/f(xnk
))

log xnk

.

On the one hand we get

lim
k

log(1/f(tk))
log tk

≤ lim sup
n

log(1/f(xnk
))

log xnk

≤ lim sup
n

log(1/f(xn))
log xn

≤ lim sup
t→∞

log(1/f(t))
log t .

On the other hand,

lim inf
t→∞

log(1/f(t))
log t ≤ lim inf

n

log(1/f(yn))
log yn

≤ lim inf
k

log(1/f(ynk
))

log ynk

≤ lim
k

log(1/f(tk))
log tk

.
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Finally, by choosing yn close enough to xn+1 so that log xn+1
log yn

→ 1, we get

lim inf
n

log(1/f(yn))
log yn

= lim inf
n

log(1/f(xn))
log xn+1

.

Since tk may be chosen as to reach the lim inf or the lim sup, part (1) follows.
As for part (2), let tk be a decreasing sequence such that limk

log(f(tk))
log 1/tk

exists. As
above, we may assume that, for a suitable subsequence xnk

, xnk
≤ tk < xnk−1, and

consider a sequence yn ∈ [xn, xn−1) such that ynk
> tk. Again,

log f(xnk
)

log 1/xnk

≤ log f(tk)
log 1/tk

≤ log f(ynk
)

log 1/ynk

.

The rest of the proof follows as in part (1).

Proof of Theorem 5.6. During this proof, we suppress the dependence on T . We first
extend the sequence (µn)n∈N to a right-continuous non increasing function [0,∞) → R by
posing µ(t) = µn for n ≤ t < n+ 1. We also write λ(t) instead of λt.

Let us prove the first equality. We observe first that

trTα =
∑
n≥0

µn(T )α =
∫ ∞

0
µ(t)αdt,

then set
d =

(
lim inf
n→∞

log(µn(T ))
log(1/n)

)−1
=
(

lim inf
t→∞

log(µ(t))
log(1/t)

)−1

and Ω = {α > 0 :
∫∞

0 µ(t)αdt < ∞}. We prove that o(T ) ≤ d and that d ≤ o(T ).

• To prove that o(T ) ≤ d, set a(t) = log 1/µ(t)
log(t) . In particular µ(t) = t−a(t) and

lim inft→∞ a(t) = 1/d. If α > d, then lim inft→∞ αa(t) = α/d > 1, hence there
exists β > 1 such that αa(t) ≥ β for t sufficiently large. Therefore∫ ∞

0
µ(t)αdt =

∫ ∞

0
t−αa(t)dt ≤ const+

∫ ∞

0
t−βdt < ∞,

which implies α ∈ Ω, namely (d,∞) ⊆ Ω.

• On the other hand, to prove that d ≤ o(T ) we may assume d > 0, namely 1/d < ∞.
Now let tk → ∞ be such that

ℓk := log 1/µ(tk)
log tk

−−−→ 1/d.

We have µ(tk) = t−ℓk
k . Let now α < d, namely αℓk → α/d < 1, and choose ε > 0

such that αℓk ≤ 1 − ε eventually. Then∫ tk

0
µ(t)αdt ≥ tkµ(tk)α = tk · t−αℓk

k ≥ tεk → ∞, for k → ∞.

Therefore α ≤ o(T ), i.e. d ≤ o(T ).
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We now prove the second equality. Let us note that µ(t) satisfies the hypotheses of
part (1) of the Lemma above, where the set of discontinuity points consists of a sequence
{pn, n ∈ N} ⊆ N, while λ(t) satisfies the hypotheses of part (2), where the set of discon-
tinuity points consists of the sequence {µ(pn), n ∈ N}. We also note that λ ◦ µ(pn) = pn.
By Lemma above,

lim inf
t→∞

log(1/µ(t))
log t = lim inf

n

log(1/µ(pn))
log pn+1

,

lim sup
t→0

log(λ(t))
log 1/t = lim sup

n

log(λ(µpn))
log 1/µpn−1

.

Finally,

lim sup
n

log(λ(µpn))
log 1/µpn−1

= lim sup
n

log pn

log 1/µpn−1
=
(

lim inf
n

log 1/µpn−1
log pn

)−1
.

The third equality comes from Lemma 5.7.

5.1.2 Reality

The following notion generalizes the existence of the charge conjugation operator on Dirac
spinors on spinc manifolds [44, 90].

Definition 5.8 (cf. [23, 28]). A real structure for an (even or odd) spectral triple
(A, H,D, π, χ) on a unital C∗-algebra A is an anti-linear isometry J : H → H such that

(1)
[
π(a), Jπ(b)J−1] = 0 for all a, b ∈ A (zeroth order condition)

(2) there are signs ε, ε′, ε′′ = ±1 for which

J2 = ε DJ = ε′JD χJ = ε′′Jχ.

In this case (A, H,D, J) is called a real spectral triple.

There are eight possible triples of signs (ε, ε′, ε′′) and they determine the so-called
KO-dimension n ∈ Z8 of the real spectral triple according to the following table1:

n 0 1 2 3 4 5 6 7
ε +1 +1 −1 −1 −1 −1 +1 +1
ε′ +1 −1 +1 +1 +1 −1 +1 +1
ε′′ +1 −1 +1 −1

Accordingly, even triples have even KO-dimension and odd triples have odd KO-
dimension. We mention that a real structure on a spectral triple determines a KKR-cycle
in Real K-homology and the periodicity modulo 8 of the previous table is related to the
periodicity of real Clifford algebras [44, Section 9.5].
Remark 5.9. In the commutative case (see Example 5.2), the KO-dimension of the real
structure coincides (modulo 8) with the dimension of the underlying manifold.

1If n is even, J ′ = Jχ can be used as another real structure with the new signs (εε′′, −ε′, ε′′) [34].
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The zeroth order condition makes the Hilbert space H into a bimodule over A thanks
to the right action

ψ � b = Jπ(b∗)J−1ψ, ψ ∈ H, b ∈ A.

Equilavently, we can regard H as a A⊗Aop-module under the action

a⊗ bop � ψ = π(a)Jπ(b∗)J−1ψ

for a, b ∈ A and ψ ∈ H. The following property is the noncommutative analogue of
requiring D to be a first order differential operator.

Definition 5.10 (cf. [25]). A real spectral triple (A, H,D, J) on a unital C∗-algebra A
satisfies the first order condition if[

[D,π(a)] , Jπ(b)J−1
]

= 0. (5.2)

for every a, b ∈ A.

Remark 5.11. Using Jacobi identity, one can show that (5.2) is equivalent to[[
D,Jπ(b)J−1

]
, π(a)

]
= 0

for any a, b ∈ A. In particular, this means that the first order condition is “symmetric”
in A and Aop.

Motivated by the properties of the real structure operator on the spectral triple of
the noncommutative Standard Model of particle physics (see e.g. [28, Chapter 1] and the
references therein), we consider also the following property.

Definition 5.12 (cf. [17]). A real spectral triple (A, H,D, J) on a unital C∗-algebra A
satisfies the second order condition if[

[D,π(a)] , J [D,π(b)]J−1
]

= 0. (5.3)

for every a, b ∈ A.

5.1.3 Orientability

The orientability condition involves the generalization of a a differential top form in
terms of Hochschild homology, which we now briefly recall [67]. Let A be a complex
unital algebra and M an A-bimodule. For every positive n ∈ N define the A-module
of Hochschild n-chains (with coefficients in M) to be Cn(M,A) = M ⊗ A⊗n and
C0(M,A) = M . The Hochschild boundary is the family of maps bn : Cn(M,A) →
Cn−1(M,A) given on pure elements by

bn (m⊗ a1 ⊗ · · · ⊗ an) := ma1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1

(5.4)

if n ≥ 1 and b0(m) = 0, and extended by linearity. It turns out that (C•(M,A), b) is
a chain complex and its homology is the Hochschild homology with coefficients in M .
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Choosing M = A as an A-bimodule with the usual left and right multiplication, we get
the Hochschild chain complex of A.

Let now (A, H,D, χ) be an even or (with the convention that χ = 1) odd spectral
triple on A, and let J be a real structure of KO-dimension n ∈ Z8. For a Hochschild
n-chain c = ∑

a0 ⊗ a1 ⊗ · · · ⊗ an ∈ Cn(A,A) set

πD(c) :=
∑

π(a0)[D,π(a1)] · · · [D,π(an)].

Definition 5.13. A spectral triple (A, H,D, χ) on A is strongly orientable if there
exists a Hochschild n-cycle c ∈ Cn(A,A) such that πD(c) = χ.

It is useful to consider also a weaker notion of orientability. Consider the case in which
the A-module is M = A⊗Aop, where Aop denotes the opposite algebra, with the left and
right actions of A given on m⊗ n ∈ A⊗Aop by:

a(m⊗ n)b := amb⊗ n a, b ∈ A.

For a Hochschild n-chain c = ∑(a0 ⊗ b0) ⊗ a1 ⊗ · · · ⊗ an in Cn(A ⊗ Aop,A) we define the
map

πD(c) :=
∑

π(a0)Jπ(b∗
0)J−1[D,π(a1)] · · · [D,π(an)]. (5.5)

Definition 5.14. A real spectral triple (A, H,D, J, χ) on A is orientable if there exists
a Hochschild n-cycle c ∈ Cn(A ⊗ Aop,A) such that πD(c) = χ.

Note that if A is unital and π(1A) = idH , then every strong orientation cycle
c = ∑

a0 ⊗a1 ⊗· · ·⊗an in Cn(A,A) induces a (weak) orientation cycle c′ = ∑(a0 ⊗1A)⊗
a1 ⊗ · · · ⊗ an in Cn(A ⊗ Aop,A) as

πD(c′) =
∑

π(a0)Jπ(1A)J−1[D,π(a1)] · · · [D,π(an)]

=
∑

π(a0)[D,π(a1)] · · · [D,π(an)]
= πD(c) = χ.

5.1.4 Regularity

The regularity condition originates from the development a well-defined noncommutative
differential calculus on spectral triples and encodes the information of what elements can
be regarded as smooth inside the algebraA. For more details we refer to [44, Chapter 10.3].
Definition 5.15. Let (A, H,D) be a spectral triple over a unital C∗-algebra A and

δ(T ) := [|D| , T ] (5.6)

be the unbounded derivation on the domain Dom(δ) of elements T ∈ L(H) which preserve
Dom(|D|) and for which [|D| , T ] extends to a bounded operator on H. For k ≥ 2 we define
δk inductively on the domain Dom(δk) :=

{
T ∈ Dom(δ)

∣∣∣ δ(T ) ∈ Dom(δk−1)
}

and set

Dom∞(δ) :=
∞⋂

k=1
Dom(δk).

We say that (A, H,D) is regular if both π(A) and [D,π(A)] belong to Dom∞(δ).
In the case the operator |D| is not invertible, we can replace |D| with its invertible

bounded perturbation ∆ 1
2 := (1 +D2) 1

2 thanks to the following result.
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Theorem 5.16 (cf. [49, 105]). A spectral triple (A, H,D) over a unital C∗-algebra A

is regular if and only if π(A) and [D,π(A)]) belong to Dom∞([∆ 1
2 , · ]).

The regularity of a spectral triple is closely related to the existence of a so-called
algebra of generalized differential operators [29, 49, 50]. We recall some basic facts (mainly
following the exposition of [105]). In the next following we denote by ∆ a self-adjoint
positive and invertible operator on a Hilbert space H (and so strictly positive). When
dealing with a spectral triple, we take ∆ = 1 +D2 so that ∆ is thought of order two.

Definition 5.17. The ∆-Sobolev space of order s ∈ R, denoted W s = W s(∆), is the
Hilbert space completion of Dom(∆ s

2 ) with respect to the inner product

⟨ξ, η⟩W s := ⟨∆
s
2 ξ,∆

s
2 η⟩H (5.7)

for every ξ, η ∈ H.

For any t ≤ s there exists a constant C such that

∥ξ∥W t ≤ C ∥ξ∥W s (5.8)

for ξ ∈ W t(∆), and so there is a continuous inclusion W s ⊆ W t. Moreover, Dom(∆ s
2 ) is

complete in the norm induced by (5.7) for any s ≥ 0. (see [105] for a proof).

Definition 5.18. The space of ∆-smooth vectors is

W∞ :=
⋂
s∈R

W s =
∞⋂

n=0
W 2n =

∞⋂
n=0

Dom(∆n).

As the notation suggests, the space W∞ is dense in W s for any s ∈ R (in particular,
also in W 0 = H). We denote the space of linear maps P : W∞ → W∞ by End(W∞).

Definition 5.19. We say that a linear map P : W∞ → W∞ has analytic order at most
t ∈ R if it extends by continuity to a bounded linear operator P : W s+t → W s for any
s ∈ R. The space of such operators is denoted with Opt = Opt(∆). We further define

Op = Op(∆) :=
⋃
t∈R

Opt(∆).

Notice in particular that operators with analytic order at most 0 extend to bounded
linear operators on H = W 0, allowing us to identify Op0 with a subspace of L(H).

Lemma 5.20 (cf. [105]). Operators with finite analytic order form a filtered algebra:

(1) Ops ⊆ Opt for any s ≤ t

(2) Ops · Opt ⊆ Ops+t

In particular, Op0 is a subalgebra of L(H).

The algebra Op0 plays a central role in the regularity of a spectral triple.

Proposition 5.21 (cf. [44], Lemma 10.22). Let (A, H,D) be a regular spectral triple over
a unital C∗-algebra A and ∆ := 1 + D2. We have that both π(A) and [D,π(A)] are in
Op0(∆).
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Sketch of the proof. The idea is to show by induction that

∆
n
2 π(a)∆− n

2 =
n∑

j=0
(−1)j

(
n

j

)
δj(π(a))b(D)j

where δ is the derivation (5.6) and b(D) = D(1 +D2)− 1
2 is the bounded transform of D.

In particular ∆ n
2 π(a)∆− n

2 is bounded for any n ∈ N (0-included) and so

∥π(a)ξ∥W n =
∥∥∥∆ n

2 π(a)ξ
∥∥∥ =

∥∥∥∆ n
2 π(a)∆− n

2 ∆
n
2 ξ
∥∥∥ ≤

∥∥∥∆ n
2 π(a)∆− n

2

∥∥∥ ∥ξ∥W n .

By interpolation, one gets the thesis for general exponents.

A theorem of Higson relates the notion of regularity with the existence of an algebra
of generalized differential operators.

Definition 5.22 (cf. [49]). An N-filtered subalgebra D ⊆ Op(∆) is called an algebra of
generalized differential operators (GDO) if it is closed under the derivation [∆, ·]
and satisfies

[∆,Dk] ⊆ Dk+1 (5.9)
for any k ∈ N.

Theorem 5.23 (cf. [49]). A spectral triple (A, H,D) over a unital C∗-algebra A is
regular if and only if there exists an algebra of generalized differential operators (with
respect to ∆ = 1 +D2) containing π(A) and [D,π(A)] in degree zero.

We maintain the notation ∆ = 1 + D2; then observe that D ∈ Op1(∆). Indeed for
any ξ ∈ W∞ and s ∈ R we have

∥Dξ∥2
W s = ⟨D2(1 +D2)sξ, ξ⟩ = ⟨b(D)2(1 +D2)s+1ξ, ξ⟩

=
∥∥∥b(D)2∆

s+1
2 ξ
∥∥∥2

≤ ∥b(D)∥2 ∥ξ∥2
W s+1

where b(D) = D(1 + D2)− 1
2 is the bounded transform of D. Now define the N-filtered

algebra E ⊆ End(W∞) inductively by:

(1) E0 is the subalgebra generated by π(A) and [D,π(A)]

(2) E1 = E0 + [∆, E0] + E0[∆, E0].

(3) Ek = Ek−1 +∑k−1
j=1 EjEk−j + [∆, Ek−1] + E0[∆, Ek−1] for k ≥ 2

We have the following result.
Theorem 5.24 (cf. [29, 49, 105]). Let (A, H,D) be a spectral triple over A

(1) If (A, H,D) is regular then Ek ⊆ Opk for any k ≥ 0.

(2) If π(A)W∞ ⊆ W∞ and Ek ⊆ Opk for any k ≥ 0, then (A, H,D) is regular.

Proof. If the triple is regular there exists an algebra D of generalized differential operators
containing π(A) and [D,π(A)] in degree zero by Theorem 5.23. By induction, Ek ⊆ Dk

for any k ∈ N. In particular, Ek ⊆ Dk ⊆ Opk for any k ≥ 0.
On the other hand, if Ek ⊆ Opk for any k ≥ 0 then E is an algebra of generalized

differential operators containing π(A) and [D,π(A)] in degree zero; by Theorem 5.23 the
triple is regular.
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5.2 Equivariant Spectral Triples
In this section we recall the standard definitions and some basic facts about actions
and coactions of Hopf algebras and compact quantum groups on spectral triples, with
particular emphasis on the case where the Hopf algebra is CG and the CQG is C∗

r (G).
Definition 5.25. Let (A,G, α, σ) be a twisted dynamical system. A spectral triple (A, H,D)
on A is G-equivariant if there exists a map u : G → U(H) such that:

(1) (π, u) is a twisted covariant representation of (A,G, α, σ) on H.

(2) The operators ug leave the domain of D invariant for all g ∈ G and the commutator
[D,ug] extends to a bounded operator on H for every g ∈ G.

When [D,ug] = 0 for every g ∈ G, we just say that the triple (A, H,D) is G-invariant.

Remark 5.26. Differently from our references [82, 100, 101], we admit a non-trivial com-
mutator [D,ug]. What in their papers is called a “G-equivariant spectral triple”, it’s a
G-invariant spectral triple for us. Note that the invariance is not referred to the action
on the algebra A.

When the cocycle is trivial, it is known that the bounded transform of an equivariant
spectral triple defines an equivariant Kasparov module as introduced in Section 4.4 (see
[87]). The idea of the proof is to check that the commutator [b(D), ug] is compact for
any g ∈ G in the same way the commutator [b(D), π(a)] is proved to be compact in [10,
Proposition 2.2] using the boundedness of the commutators between D and a.
Example 5.27 (cf. [44, 95]). Consider the unit circle S1 as in Section 3.2. Fix now θ ∈ R
and consider the action of Z on C(S1) given by

αn(f)(t) := f(t+ nθ)

for n ∈ Z and t ∈ R. Then (C(S1),Z, α) is a C∗-dynamical system. The spectral triple
(C(S1), L2(S1), D), where D is the self-adjoint extension of the operator −i ∂

∂x on L2(S1),
is Z-equivariant with respect to the unitary representation u of Z on L2(S1) given by
un(f)(t) := f(t + nθ). More precisely, note that [D,u] = 0 and so the triple is actually
Z-invariant. 2

Remark 5.28. When the group G is compact and the 2-cocycle trivial, it is always possible
to find a G-invariant spectral triple in the same K-homology class just by averaging the
Dirac operator over the group.
Remark 5.29. If (A, H,D) is G-invariant, then [D,π(σ(g, h))] = 0 for any g, h ∈ G.

We recall now some constructions involved with equivariant spectral triples regarded
as unbounded Kasparov modules.
Example 5.30 (Green-Julg Isomorphism). Let σ ≡ 1. Any G-equivariant spectral triple
(A,H,D, π, u) defines a spectral triple (Cc(G,A), H,D, π ⋊ u) on the maximal crossed
product A⋊α G as the commutators

[D,π(a)ug] = [D,π(a)]ug + π(a)[D,ug] (5.10)

are bounded by hypothesis. Vice versa, using the universal property of the maximal
crossed product, any spectral triple on A⋊αG comes from a G-equivariant spectral triple.
We can think of this association as the unbounded version of the well known Green-Julg
isomorphism KKG(A,C) ≃ KK(A⋊α G,C) for discrete groups (see Section 4.4.1). 2
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Example 5.31 (Kasparov Descent). Let σ ≡ 1. Let us now discuss the Kasparov descent
map of a G-equivariant spectral triple. From formula (4.13), consider B = C and Cc(G)
acting on the right on Cc(G,H) by right multiplication:

(ξ ⊗ δg) ◁ δh := ξ ⊗ δgh

for ξ ∈ H and δg, δh ∈ Cc(G). The completion of Cc(G,H) with the C∗(G)-valued scalar
product

⟨ξ ⊗ δg, µ⊗ δh⟩ := ⟨ξ, µ⟩δg−1h,

as introduced in formula (4.14), defines the right Hilbert C∗(G)-Hilbert module H ⋊G ≃
H ⊗ C∗(G). Using formula (4.15), we see that the representation π : A → L(H) induces
a representation ψ of A⋊G on H ⊗ C∗(G) by

ψ(aδg)(ξ ⊗ δh) = π(a)ugξ ⊗ δgh.

The image of (A, H,D, u) under the descent is then (Cc(G,A), H ⊗ C∗(G), D ⊗ 1, ψ).
2

The notion of equivariance has been widely studied in literature in many contexts. In
particular, having in mind the case in which H = CG, it is possible to define the notion
of equivariance even for any Hopf algebra [82, 100, 101].

Definition 5.32. Let H be a Hopf algebra and (A, H,D) be a spectral triple over an
H-module algebra A. We say that the triple is H-equivariant if there exists a dense
subspace W ⊆ H for which:

(1) W is an H-equivariant A-module, that is:

h� (π(a)v) = π(h(1) � a)(h(2) � v)

for any h ∈ H, v ∈ W and a ∈ A.

(2) the commutator [D,h�] is bounded on its domain for any h ∈ H.

If the commutators [D,h�] vanish for every h ∈ H, we say that the triple is invariant.

Analogously, having in mind the case Q = C∗
r (G), we formulate a notion of equivari-

ance for compact quantum groups.

Definition 5.33 (cf. [15]). Let (A, H,D, χ) be an (even or odd) spectral triple on a Q-
comodule unital C∗-algebra B. We say that the triple is equivariant for coactions of
Q if there exists a dense subspace W ⊆ H and a unitary corepresentation Θ: H → H⊗Q
for which:

(1) W is a Q-equivariant B-module in the sense that for every b ∈ B and x ∈ W ,

Θ(b ▷ x) = b(−1) ▷ x(−1) ⊗ b(0)x(0),

(2) the operatorial form X of Θ as in (C.8) commutes with D ⊗ 1Q and with χ⊗ 1Q

(3) (id ⊗ φ)AdX(b) ∈ B′′ for every b ∈ B and every state φ on Q.
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5.3 An Example: The Noncommutative Torus

In Section 3.2 we have introduced the rotation algebra A2
θ as a deformation of the C∗-

algebra of continuous functions on the 2-torus T 2 = S1 × S1 and studied its properties
as a noncommutative topological space. In this section we focus our attention on its
differential and metric structure, namely in the existence of a spectral triple over A2

θ and
its properties. For more details, we refer to [44, Section 12.3] and the references therein.

Definition 5.34. The noncommutative torus A2
θ is the unital dense subalgebra in A2

θ

given by

A2
θ :=

 ∑
m,n∈Z

amnU
mV n

∣∣∣∣∣∣ (amn)mn ∈ S(Z2)

 ,
where S(Z2) is the space of Schwarz functions on Z2, i.e. those sequences that satisfy

sup
m,n∈Z

(1 +m2 + n2)k |amn|2 < ∞

for all k ∈ N.

The Lie group T 2 acts on A2
θ by (z, w) ▷ UmV n = zmwnUmV n for z, w ∈ U(1) and

it is easy to see that A2
θ is just the subalgebra of smooth elements for this action. In

particular, this proves that A2
θ is a unital pre-C∗-algebra (see [44, Proposition 3.45]).

Remember now from Section 3.2 that A2
θ comes equipped with a faithful normalized

tracial state τ which defines the GNS representation Hτ = L2(A2
θ, τ). Note that the trace

τ is invariant under the aformentioned action of the torus T 2.

Definition 5.35. We define on the dense subspace A2
θ ⊆ Hτ the basic derivations ∂i

for i = 1, 2 as the operators

∂1U = 2πiU ∂2U = 0
∂1V = 0 ∂2V = 2πiV.

(5.11)

We have the following facts:

(1) The operators ∂1 and ∂2 satisfy the Leibniz derivation rule:

∂i(ab) = (∂ia)b+ a(∂ib)

for any a, b ∈ A2
θ. This condition implies that ∂i(1A2

θ
) = 0 for any i = 1, 2.

(2) ∂i(a∗) = (∂ia)∗ for any a ∈ A2
θ and i = 1, 2. In particular, the map ∂∗

i defined by

∂∗
i a := (∂ia

∗)∗

is a derivation and ∂∗
i = ∂i. Thus, the basic derivations are symmetric operators.

(3) The basic derivations ∂1 and ∂2 commute. Moreover, they span the abelian Lie
algebra of infinitesimal generators of the action of T 2 on A2

θ. In this sense, the
pre-C∗-algebra A2

θ is precisely their common smooth domain.
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(4) Using the previous points, one can check that τ(∂ia) = 0 for any a ∈ A2
θ and any

i = 1, 2. As a consequence, we have that

τ((∂ia)∗b) = −τ(a∗∂ib)

for any a, b ∈ A2
θ and so any basic derivation extends to a closed (unbounded)

skew-adjoint operator on Hτ .

Using the basic derivations, we can define the Dirac operator

D = −i
(

0 ∂1 − i∂2
∂1 + i∂2

)
= −i(σ1∂1 + σ2∂2) (5.12)

on Hτ ⊕Hτ and this turns out to be self-adjoint, to have compact resolvent and to have
the commutator with a ∈ A2

θ (acting diagonally on Hτ ⊕Hτ ) bounded. We deduce that(
A2

θ, Hτ ⊕Hτ , D
)

(5.13)

is a spectral triple on A2
θ. We now discuss the Connes axioms for this triple.

Definition 5.36. The Tomita conjugation associated to the noncommutative torus
spectral triple

(
A2

θ, Hτ ⊕Hτ , D
)

is the anti-unitary map J0 : Hτ → Hτ given by

J0a := a∗.

for a ∈ A2
θ ⊆ Hτ .

Clearly J2
0 = 1 and the right multiplication map πop : A2

θ → L(Hτ ) given by

πop(b)a := J0π(b∗)J−1
0 a = ab

is a representation of the opposite algebra (A2
θ)op. Since left and right multiplication

commute, we have that [π(a), J0π(b)J−1
0 ] = 0 for any a, b ∈ A2

θ. In particular, the
operator

J =
(

0 −J0
J0 0

)
defines on Hτ ⊕Hτ a real structure of KO-dimension 2. A straightforward computation
shows that we also have the first order condition.

To show that the triple is orientable, consider the Hochschild 2-chain

c := − i

2(2π)2 (V ∗U∗ ⊗ U ⊗ V − U∗V ∗ ⊗ V ⊗ U) . (5.14)

A straightforward computation shows that bc = 0 so this is a Hochschild 2-cycle. Fur-
thermore, using equations (5.11), we deduce that

πD(c) = − i(2π)2

2(2π)2 (σ1σ2 − σ2σ1) = σ3 = χ

and so the orientation axiom is satisfied.
Remark 5.37. This example served then as a building block for large class of theta-
deformed spaces, with similar properties, see e.g. [27].
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5.4 Spectral Triples From Equicontinuous Actions

Given a spectral triple on a unital C∗-algebra A and an equicontinuous action of a discrete
group G on A, a spectral triple on the reduced crossed product C∗-algebra A ⋊r G was
constructed by Hawkins, Skalski, White and Zacharias in [47], extending the construction
by Belissard, Marcolli and Reihani in [13]. The main idea was to use the Kasparov product
to make an ansatz for the Dirac operator. In this section we recall the relevant results
from their work, as a preparation for our new contributions that are discussed in Part II.

5.4.1 Spectral Triples on Group Algebras

The main ingredient in their construction of a triple on A ⋊α,r G is a spectral triple on
the reduced group algebra C∗

r (G). It is known that unbounded Kasparov modules on
groups and groupoids exist when they are endowed with a weight type function, see e.g.
[9, 14, 22, 70]. We recall some basic facts and definitions specializing the discussion for
our purposes.

Definition 5.38. A weight on a non-necessarily topological group G is a function l : G →
R. A weight is proper if the level sets { g ∈ G | −n ≤ l(g) ≤ n } are finite for each n ∈ N.
We say that a weight is non degenerate when l(g) = 0 if and only if g = e.

Differently from [47], we consider weights on groups taking values in R and we admit
the possibility for them to be degenerate. We will discover that this flexibility will not
influence the nature of their results.

Example 5.39. Any group homomorphism l : G → R is clearly a weight on G. In this
case, being R abelian, l must be cyclic in the sense that

l(gh) = l(hg)

for any g, h ∈ G. Note that if the homomorphism l is non degenerate as a weight, then
G must be abelian as well. 2

Definition 5.40. A weight l : G → R is said to be a Dirac weight if for every g ∈ G
the (left) translation function lg : G → R given by

lg(x) := l(x) − l(g−1x) x ∈ G

is bounded. A Dirac weight l is said to be of first order type if for every g ∈ G the (left)
translation function lg is constant.

Example 5.41 (cf. [22, 97]). A pseudo-length function on a group G is a weight
ℓ : G → R such that:

(1) ℓ(e) = 0,

(2) ℓ(xy) ≤ ℓ(x) + ℓ(y) for every x, y ∈ G,

(3) ℓ(x) = ℓ(x−1) for every x ∈ G.
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A length function is a pseudo-length function which is non-degenerate as a weight. The
prototypical length function is the word metric on a finitely generated group G which
associates to any element g ∈ G the minimum number of generators needed to write g
(for an a priori fixed generating set). Note that any length function is a non-negative
Dirac weight as

0 = ℓ(e) = ℓ(xx−1) ≤ ℓ(x) + ℓ(x−1) = 2ℓ(x) ∀x ∈ G

and ℓg(x) = ℓ(x) − ℓ(g−1x) ≤ ℓ(g) for any x, g ∈ G. Given a pseudo-length function
ℓ : G → R, the quantity

dℓ(x, y) := ℓ(xy−1) (5.15)
clearly defines a right invariant pseudo-metric on the group G. If ℓ is a length function,
then dℓ is a metric.

2

Remark 5.42. Let G be a topological group. If there is a G-equivariant spectral triple
(A, H,D, u) on a certain unital C∗-algebraA, then ℓ(g) = ∥[D,ug]∥ is a length function on G.

The following lemma provides a complete characterization of first order Dirac weights
on groups.

Lemma 5.43. Let l : G → R be a weight on a group G. The following facts are equivalent:

(1) l is a first-order type Dirac weight

(2) l = α+ φ where α = l(e) is a constant and φ : G → R is a group homomorphism

(3) l(xzy−1) − l(zy−1) = l(xz) − l(z) for every x, y, z ∈ G.

Proof. See [14, Lemma 3.13]

Remark 5.44. Differently from Example 5.41, given a Dirac weight l : G → R there is no
reason for d(x, y) := l(xy−1) to be a metric or a pseudo-metric on the group. However, if
l is of first order then the quantity

ℓ(x) := |l(x) − l(e)|

is a pseudo-length function on G since the function l(x) − l(e) is a group homomorphism
by Lemma 5.43. In particular, dℓ(x, y) := ℓ(xy−1) is a right invariant pseudo-metric on
G. Note that if the first order Dirac weight l is non-degenerate, then ℓ is non-degenerate
and dℓ a metric on G. As an example, the Dirac weight id : R → R gives back precisely
the standard euclidean distance on G = R. Note that this condition is however rather
restrictive: if l is non-degenerate, then it is an injective homomorphism and G is a sub-
group of R. Standard results show then that G must be either dense in R or of the form
aZ for a ∈ R (namely, cyclic).
Remark 5.45. The properness condition for a Dirac weight on a group is also extremely
restrictive as it forces the weight to grow. For example, there is not any constant proper
weight on a group unless the group is finite. Furthermore, the space of proper weights
on a group may be a priori empty. To avoid this condition, one is somewhat forced to
fall into Kasparov’s KK-theory (e.g. [70, Section 3.7]). However, avoiding this condition
is not always convenient: for example, any positive weight (such as length functions) will
yield a spectral triple whose K-homology class is trivial.
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Till the end of this section we shall consider a discrete group G endowed with a
proper Dirac weight l : G → R. Let Ml be the multiplication operator by l on the
domain of finitely supported elements of ℓ2(G) and let us denote also by Ml its self
adjoint extension to ℓ2(G). The group algebra CG acts on ℓ2(G) via the left regular
representation λgδh := δgh for g, h ∈ G, and the data

(CG, ℓ2(G),Ml, λ) (5.16)

form an odd spectral triple on the reduced group C∗-algebra C∗
r (G). Indeed, Ml is self-

adjoint as l takes values in R, the properness of l implies that the resolvent of Ml is
compact and the fact that l is a Dirac weight guarantees that the commutators [Ml, λg] =
Mlgλg are bounded for every g ∈ G. Note further that if the weight l is non degenerate,
then the triple (5.16) is also non degenerate.

Example 5.46. Consider the discrete group G = Z endowed with the non degenerate
proper Dirac weight ı : Z → R given by the inclusion. It is well known (see e.g. [70, pag.
240]) that the spectral triple as defined in (5.16) agrees with the usual spectral triple on
C(S1) arising from the Dirac operator −i ∂

∂x under the Fourier transform C∗
r (Z) ≃ C(S1).

Note in particular that, at the level of K-homology, it is a generator of the cyclic group
K1(C∗

r (Z)) ≃ Z. 2

5.4.2 Spectral Triples on Crossed Products

Consider now an odd spectral triple (A, H,D, π) on a unital C∗-algebra A and assume that
there is a C∗-dynamical system (A,G, α). Let us assume further that G is equipped with a
proper Dirac weight l : G → R so that this determines a spectral triple (CG, ℓ2(G),Ml, λ)
over C∗

r (G). Following the notation in Chapter 3, the pair of mapsπ̂1(a)(ξ ⊗ δg) := π
(
αg−1(a)

)
ξ ⊗ δg

λ̂h(ξ ⊗ δg) := ξ ⊗ δhg,
(5.17)

where a ∈ A, ξ ∈ H and g, h ∈ G, provide representations of A and G on H⊗ℓ2(G) which
are covariant and the integrated form π̂1⋊λ̂ is a ∗-representation of Cc(G,A) on H⊗ℓ2(G).
Following the prescription for the external Kasparov product, e.g. [24, Chapter 4.A], we
define a Dirac operator D̂ on Ĥ = H ⊗ ℓ2(G) ⊗ C2 = (H ⊗ ℓ2(G)) ⊕ (H ⊗ ℓ2(G)) by

D̂ := D ⊗ 1 ⊗ σ1 + 1 ⊗Ml ⊗ σ2

=
(

0 D ⊗ 1 − i⊗Ml

D ⊗ 1 + i⊗Ml 0

)
,

(5.18)

where σ1 and σ2 are Pauli matrices and we consider A ⋊r,α G acting diagonally on Ĥ.
The operator (5.18) is clearly densely defined and self-adjoint with compact resolvent.
The only non-trivial fact is to check that the commutator of D̂ with the representation
of A⋊α,r G is bounded: on the one hand, we have that[

1 ⊗Ml, π̂1(a)λ̂h

]
= (1 ⊗Mlh)π̂1(a)λ̂h (5.19)

for any h ∈ G. As l is a Dirac weight, the operator Mlh of multiplication by the function
lh(x) = l(x) − l(h−1x) on ℓ2(G) is bounded. On the other hand, for a ∈ A and g, h ∈ G,
we have [

D ⊗ 1, π̂1(a)λ̂h

]
(ξ ⊗ δg) =

[
D,π(αg−1h−1(a))

]
ξ ⊗ δhg. (5.20)
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A priori this quantity is not well defined as π(αg(a)) might not belong to the domain of
D; and even in that case the right hand side is not necessarily bounded. These difficulties
are overcame by some ad hoc hypothesis.

Theorem 5.47 (cf. [47]). Let (A,G, α) be a C∗-dynamical system with G discrete and
(A, H,D) be an odd spectral triple on A. Assume G is equipped with a proper Dirac
weight l : G → R and that the action on A is also

(1) smooth, in the sense that αg(A) ⊆ A for all g ∈ G;

(2) equicontinuous, namely such that

sup
g∈G

∥[D,π(αg(a))]∥ < ∞ (5.21)

for all a ∈ A.

The triple (Cc(G,A), Ĥ, D̂, π̂1 ⋊ λ̂) is an even spectral triple on A⋊α,r G. Furthermore,
if the weight l is non degenerate and the triple (A, H,D) is non degenerate, then the
triple (Cc(G,A), Ĥ, D̂, π̂1 ⋊ λ̂) is also non degenerate.

Remark 5.48. Even though the operator D̂ resembles (a representative for) the external
Kasparov product of D and Ml, the triple (Cc(G,A), Ĥ, D̂) is not the external Kasparov
product of the triple (A,H,D) with the triple (C∗

r (G), ℓ2(G),Ml) as the isomorphic vector
spaces A⋊α,r G and A⊗ C∗

r (G) are in general not isomorphic as algebras.

Remark 5.49. Of course, not every action is equicontinuous. Various examples are given
for instance in [13, Section 4.1].

It is well known that the construction in Theorem 5.47 can be thought as a generaliza-
tion of the boundary map in the K-homology Pimsner-Voiculescu sequence (cf. [88]) in the
following sense. Applying the six-term exact sequence in K-homology to the generalized
Toeplitz extension

0 −→ A⊗ K(ℓ2(Z)) −→ C0(X,A) ⋊ Z −→ A⋊α Z −→ 0, (5.22)

where X = Z ∪ { +∞ } is the one point compactification of Z, and identifying the K-
theory of C0(X,A)⋊Z with the K-theory of A, one obtains the Pimsner-Voiculescu exact
sequence

K0(A) K0(A) K0(A⋊α Z)

K1(A).K1(A)K1(A⋊α Z)

ε1 − α∗

∂0

ε 1 − α∗

∂1

Here ε is the pull-back map. Note that the boundary maps ∂0 and ∂1 are just the left
Kasparov multiplication by the class in KK1(A⋊α Z, A⊗ K) ≃ KK1(A⋊α Z, A) defined
by the extension (5.22) (see [16, Sections 19.5-6]).
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Consider now the discrete group G = Z and the Dirac weight ı : Z → R given by the
inclusion. It is clear that the triple (A⋊α Z, Ĥ, D̂) is the Kasparov product of (A,H,D)
with the class of the generalized Toeplitz extension (5.22). This proves that

∂1 [(A,H,D)] =
[
(A⋊α Z, Ĥ, D̂)

]
. (5.23)

A more refined method to see this fact can be found for instance in [93].
Remark 5.50. By passing to higher order spectral triples and applying a logarithmic
dampening of the Dirac operator, it is possible to handle also non-equicontinuous actions
and get similar results. As an example of this strategy, consider a non-isometric diffeo-
morphism on the circle which give rise to a twisted spectral triple on S1 [43, Example
1.6] of which the logarithmic dampening is an ordinary spectral triple [43, Example 1.9].
The pullback action of the diffeomorphism generates an action of Z on the circle which is
not equicontinuous. Deforming the standard Dirac operator on the circle and following
a prescription similar to that of Theorem 5.47, one can define a higher order spectral
triple on C(S1) ⋊ Z whose K-homology class coincides with the class of its dampening
[43, Corollary 1.41] and represents the Pimsner-Voiculescu boundary map image of the
aformentioned dampened class on C(S1) [43, Prop. 1.30 and the preceeding discussion].

Proposition 5.51 (cf. [47]). Let (A, H,D) be an odd spectral triple on a unital C∗-
algebra A and G a discrete group equipped with a proper Dirac weight l acting smoothly and
equicontinuously on A. If the triple (A, H,D) is p-summable and the triple (CG, ℓ2(G),Ml)
is q-summable, then the triple (A⋊α,r G, Ĥ, D̂, π̂1 ⋊ λ̂) is (p+ q)-summable.

Sketch of the Proof. This follows as in the case of the external product of two spectral
triples: if λn and µm are respectively the sequences of the eigenvalues of D and Ml, by
assumption the sequences ((1 + λ2

n)−p/2) and ((1 + µ2
m)−q/2) are convergent. Then, using

the inequality
(x+ y − 1)α+β ≥ xαyβ, x, y > 1, α, β > 0,

the double sequence (1 + λ2
n + µ2

m)−(p+q)/2 also is proved convergent.

Proposition 5.52. Let (A, H,D) be an odd spectral triple on a unital C∗-algebra A and
G a discrete group equipped with a proper Dirac weight l acting smoothly and equicontin-
uously on A. If (A,H,D) is irreducible then (A⋊α,r G, Ĥ, D̂, π̂1 ⋊ λ̂) is also irreducible.

Proof. It is a straightforward check.

5.4.3 The Iteration Procedure

Similarly to what described so far, we can construct odd spectral triples on crossed prod-
ucts starting from even spectral triples and an equicontinuous action (in a suitable sense).
Let (

A, H = H0 ⊕H1, D =
(

0 D0
D∗

0 0

))

be an even spectral triple on a unital C∗-algebra A with the Z2-grading H0 ⊕ H1 and
π = π0 ⊕π1. Let α be an action of a discrete group G on A and let l : G → R be a proper
Dirac weight. We have a diagonal representation of the reduced crossed product A⋊α,rG
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on (H0 ⊗ ℓ2(G))⊕ (H1 ⊗ ℓ2(G)). Provided αg(A) ⊆ A for all g ∈ G and the equicontinuity
condition

sup
g∈G

∥π0(αg(x))D0 −D0π1(αg(x))∥ < +∞, ∀x ∈ A

then the Dirac operator

D̂ =
(

1 ⊗Ml D0 ⊗ 1
D∗

0 ⊗ 1 −1 ⊗Ml

)
(5.24)

can be used to define an odd spectral triple (Cc(G,A), Ĥ, D̂) on A ⋊α,r G for Ĥ =
H ⊗ ℓ2(G). In the same way as for odd spectral triples, we have that this triple:

(1) is non degenerate whenever the Dirac weight l and the triple (A,H,D) are non
degenerate

(2) represents the image of the even spectral triple (A,H,D, χ) under the Pimsner-
Voiculescu boundary map when one considers the group G = Z and the Dirac
weight given by the inclusion ı : Z → R.

As noticed in [47], the combination of the construction in Theorem 5.47 and its even
version discussed above leads to the construction of satisfactory spectral triples on crossed
products by (smooth and equicontinuous) actions of Zd for any d ∈ N under the standard
identification

A⋊α Zd ≃ ((A⋊α1 Z) ⋊α2 Z · · · ) ⋊αd
Z, (5.25)

where α1, . . . , αd denote the coordinate Z-actions of α. Note that this triple is odd if d is
even and even if d is odd. The only non trivial thing to check is that the equicontinuity of
α implies the equicontinuity of all its coordinate Z-actions: a precise formulation of this
fact is Proposition 2.8 in [47]. Note that the spectral triple on A⋊α Zd is not in general a
spectral triple constructed from a Dirac weight on Zd as introduced in Subsection 5.4.1.
However, they can be viewed as spectral triples from matrix valued Dirac weight as
suitably defined in the next chapter.
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Chapter 6
Spectral Triples on C∗

r,σ(G)

Following the method recalled in Section 5.4 to create a spectral triple on a crossed
product, we now study the preliminary case of a spectral triple on a group algebra.
However, differently from [47] and [98], we will consider a more general situation of twisted
group algebras and matrix valued Dirac weights on discrete groups, as in [5].

6.1 Matrix Valued Dirac Weights

Let V be a finite dimensional complex vector space and denote by L(V ) the space of
linear operators on V . We denote by Sp(T ) the spectrum of the operator T .

Definition 6.1. A (matrix valued) weight on a group G is a function l : G → L(V ) such
that l(g) is self-adjoint for any g ∈ G. We say that a weight is non degenerate when
l(g) = 0 if and only if g = e. A weight l : G → L(V ) is proper if

(1) the union of all the spectra S = ⋃
g∈G Sp(l(g)) is a discrete set in R

(2) for any t ∈ S there are only finite elements g1, . . . , gn ∈ G such that t ∈
⋂n

i=1 Sp(l(gi)).

A weight l : G → L(V ) is said to be a Dirac weight if for every g ∈ G the (left)
translation function lg : G → R given by

lg(x) := l(x) − l(g−1x) x ∈ G

is bounded.

Example 6.2 (Clifford Length Functions). Let Cℓn be the complex Clifford algebra
where vw + wv = −2⟨v, w⟩ for v, w ∈ Rn. A Clifford representation ε : Cℓn → EndC(V )
is unitary if ε(v) is unitary for any v ∈ Rn with ∥v∥ = 1, and in this case it follows that
ε(v)∗ = −ε(v). Given a norm preserving group embedding ı : Zn ↪→ Rn, we can define

l(m) := iε(ı(m))

for m ∈ Zn. In other words l(m) = ∑n
j=1mjfj for fj := iε(ı(ej)). The elements l(m) are

clearly self-adjoint and l is a Dirac weight since ε is a representation. Further, since

l(m)2 = ∥m∥2 · Idn,

57
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we have that l is a proper weight. We call these particular weights Clifford length
functions. Notice that such weights can be pulled back: indeed, let s : G1 → G2 be a
map of sets such that

(1) s(g) = 0 if and only if g = 0

(2) has finite fibers.

In particular, if s is a group morphism then it has to be injective. Then if l is a Clifford
length function also l◦s is a proper Dirac weight; however it is not Clifford, in general. 2

Example 6.3 (cf. [47]). We provide an example of a Clifford length function on Zd

for any d ∈ N. Let M sa
n denote the space of n × n hermitian matrices over C. Define

l(1) : Z → M sa
2 be given by

l(1)(n) :=
(

0 −in
in 0

)
.

For d > 1 define inductively l(d) : Zd → M sa
⌈(d+1)/2⌉ by

l(d)(n1, . . . , nd) := l(d−1)(n1, . . . , nd−1) +
(
nd12d/2−1 0

0 −nd12d/2−1

)

if d is even, and by

l(d)(n1, . . . , nd) :=
(

0 l(d−1)(n1, . . . , nd−1) − ind12(d−1)/2

l(d−1)(n1, . . . , nd−1)∗ + ind12(d−1)/2 0

)

if d is odd. A straightforward computation shows that they are proper Dirac weights
on Zd satisfying the smoothness condition, the equicontinuity condition and the Clifford
condition (l(d)(n))2 = ∥n∥2 · 1.

2

Remark 6.4 (cf. [47]). The Clifford length function introduced in Example 6.3 allow to
give a concise description of the iterated spectral triple on A⋊α Zd as introduced at the
end of Section 5.4. Fixed d ∈ N, set r = ⌈d/2⌉ and write

Ĥ = H ⊗ ℓ2(Zd) ⊗ C2r ≃
(
H ⊗ ℓ2(Zd) ⊗ C2r−1)⊕

(
H ⊗ ℓ2(Zd) ⊗ C2−1)

.

Then, the Dirac operator on H inducing a spectral triple on A⋊Zd can be written in the
form

D̂ =
(

0 D ⊗ 1ℓ2(Zd,V )
D ⊗ 1ℓ2(Zd,V ) 0

)
+ 1H ⊗Ml

with V = C2r−1 . 2

6.2 Construction and Basic Properties
Till the end of this section we shall consider the following setup.

Assumptions 6.5. Let G be a discrete group and σ : G×G → U(1) a 2-cocycle such that
(C, G, id, σ) is a twisted C∗-dynamical system as in Definition 3.2. Assume further that
G is endowed with a proper Dirac weight l : G → L(V ).



6.2. Construction and Basic Properties 59

LetMl be the multiplication operator by l on the domain of finitely supported elements
of ℓ2(G,V ) ≃ ℓ2(G) ⊗ V , explicitely

Ml(δg ⊗ v) := δg ⊗ l(g)v

for g ∈ G and v ∈ V , and let us denote also by Ml its self adjoint extension to ℓ2(G,V ).
The twisted group algebra CG acts on ℓ2(G,V ) via the amplification λ ⊗ 1 of the left
regular representation λ of G on ℓ2(G) given explicitely by

λgδh := σ(g, h)δgh ∀g, h ∈ G.

Sometimes, we write λ instead of λ⊗ 1 for sake of simplicity. The data

(CG, ℓ2(G,V ),Ml, λ) (6.1)

form then an odd spectral triple on the reduced twisted group C∗-algebra C∗
r,σ(G). Indeed,

Ml is self-adjoint as l takes values in self-adjoint matrices, the properness of l implies that
the resolvent of Ml is compact and the fact that l is a Dirac weight guarantees that the
commutators [Ml, λg] = Mlgλg are bounded for every g ∈ G. Note further that if the
weight is non degenerate, then the triple (CG, ℓ2(G) ⊗ V,Ml) is non degenerate.

Example 6.6 (cf. [81]). Consider G = Z2 and define a cocycle σ on it as in (3.19).
We have seen with Proposition 3.20 that C∗

σ(Z2) is isomorphic to the algebra of the
noncommutative 2-torus. We want to show that one can recover the standard spectral
triple on the torus using matrix valued Dirac weights. On the one hand, using Theorem
3.19 and the details contained in its proof, it is easy to see that the GNS representation
Hτ is isomorphic to the space L2(S1 × S1) ≃ ℓ2(Z2) via Fourier transform and that the
multiplication operator of C(S1)⋊Z goes to the twisted left regular representation of the
twisted group algebra. Fix now V = C2 and consider the matrix valued Dirac weight l(2)

as given in Example 6.3. Using the fact that the pointwise multiplication by the length
function i : Z → R is the Fourier transform of the standard Dirac operator D = −i ∂

∂x on
the circle S1 (see Example 5.46), a straightforward computation shows that the matrix
multiplication by l(2) is the Fourier transform of the Dirac operator (5.12). 2

Let us now discuss when the spectral triple (CG, ℓ2(G,V ),Ml) is finitely summable.
We will adapt a well known argument from [22, 74], generalizing their results for matrix
valued weights and twisted crossed products.

Definition 6.7. Let G and l : G → L(V ) be as in Assumptions 6.5. Define

Bn := { g ∈ G | min Sp(|l(g)|) ≤ n } .

Note that Dirac weight l being proper, the cardinality #Bn of Bn is finite. We shall
say that G has polynomial growth with respect to the weight l when #Bn grows at most
polynomially for n → ∞. In this case, we call growth of G the number

dG := lim sup
n

log(#Bn)
logn . (6.2)

Proposition 6.8. Let G and l : G → L(V ) be as in Assumptions 6.5. The spectral triple
(CG, ℓ2(G) ⊗ V,Ml) defined in (6.1) is finitely summable if and only if G has polynomial
growth with respect to the weight l. In this case, abs(ζMl

) coincides with the growth of G.
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Proof. Let’s first estimate the size of the sets Bn. The eigenvectors of the Dirac operator
for the spectral triple (CG, ℓ2(G) ⊗ V,Ml) are the vectors δg ⊗ vj(g) ∈ ℓ2(G) ⊗ V , where
the vj(g)’s are the eigenvectors of the matrix l(g). For any g ∈ G, we denote by sj(g),
j = 1, . . . ,dimV , the singular values (with multiplicity) of l(g) and set

Σn := {(g, k) ∈ G× {1, . . . ,dimV } : sk(g) < n}.

The family of singular values (with multiplicity) for Ml is then given by

{ sj(g) | (g, j) ∈ G× { 1, . . . ,dimV } } .

On the one hand Σn ⊆ Bn × {1, . . . ,dimV }, therefore #Σn ≤ #Bn · dimV . On the other
hand, for any g ∈ Bn there exists k ∈ {1, . . . ,dimV } such that (g, k) ∈ Σn+1, therefore
#Bn ≤ #Σn+1. This implies that

dG = lim sup
n

log(#Σn)
logn .

Let us now show that this quantity is equal to the abscissa of convergence. Using equation
(5.1) we get that

abs(ζMl
) = lim sup

n

log(λ1/n((1 +M2
l )−1/2))

logn .

We then observe that

λ1/n((1 +M2
l )−1/2) = #

{
k ∈ N : µk((1 +M2

l )−1/2) > 1/n
}

= #
{

(g, k) ∈ G× {1, . . . ,dimV } :
√

1 + sk(g)2 < n

}
and that

#Σn−1 ≤ #{(g, k) ∈ G× {1, . . . ,dimV } :
√

1 + sk(g)2 ≤ n} ≤ #Σn

since |Ml| ≤ (1 +M2
l )1/2 ≤ 1 + |Ml|. Finally,

dG = lim sup
n

log(#Σn)
logn = lim sup

n

log(λ1/n((1 +M2
l )−1/2))

logn = abs(ζMl
).

Let us now move to discuss the regularity of the triple. A first general result, inde-
pendent of the proper Dirac weight l : G → L(V ), is the following.

Proposition 6.9. Let G and l : G → L(V ) be as in Assumptions 6.5. The triple
(CG, ℓ2(G) ⊗ V,Ml) is Lipschitz regular, that is the derivation δ defined in (5.6) is
bounded.

Proof. It is clear that the operator |Ml| is the (self-adjoint extension of the) multiplication
operator by h 7→ |l(h)|. Given δh ⊗ v ∈ ℓ2(G) ⊗ V we have

[|Ml| , λg](δh ⊗ v) = |Ml| (δgh ⊗ v) − λgδh ⊗ |l(h)| v
= δgh ⊗ (|l(gh)| − |l(h)|) v.

(6.3)
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It is known that for any couple of square matrices S, T we have

∥|S| − |T |∥ ≤ C ∥S − T∥ (6.4)

for a suitable constant C which does not depend on S, T but depends on the dimension
of the vector space V (see [62, Corollary 14]) and this is C = 1 for dimV = 1 and
proportional to log(dimV ) for dimV ≥ 2. This proves that the commutator [|Ml| , λg] is
bounded for any g ∈ G.

Remark 6.10. Estimate (6.4) is true only for operators on finite dimensional vector spaces
(see [60]). This constitutes a serious obstruction to the generalization of the previous
result to weights with values in L(H) for H infinite-dimensional Hilbert space.

In general, the left regular representation λg does not lie in the domain of the iterated
derivation δk for k ≥ 2 as the elements |l(h)| do not commute each other. If this is the
case, then

δk(λg)(δh ⊗ v) = δgh ⊗ (|l(gh)| − |l(h)|)k v

and this is bounded by (6.4). Understanding when the commutator [Ml, λg] lies in the
domain of δk for any k ≥ 1 leads to a similar issue: for δh ⊗ v ∈ ℓ2(G) ⊗ V we have

δ([Ml, λg])(δh ⊗ v) = |Ml| δgh ⊗ (l(gh) − l(h)) v − [Ml, λg] |Ml| (δh ⊗ v)
= δgh ⊗ (|l(gh)| (l(gh) − l(h)) − (l(gh) − l(h)) |l(h)|) v

which is in general not bounded. However, as before, if we make the technical assumption
that

[l(g), |l(h)|] = 0, ∀g, h ∈ G (6.5)

then
δk([Ml, λg]) = δgh ⊗ (|l(gh)| − |l(h)|)k (l(gh) − l(h))v

which is bounded by (6.4). This discussion can be summarized in the following result.

Proposition 6.11. Let G and l : G → L(V ) be as in Assumptions 6.5. If the Dirac
weight l satisfies (6.5), the spectral triple (CG, ℓ2(G) ⊗ V,Ml) is regular.

Remark 6.12. Note that the condition expressed in Equation (6.5) is satisfied whenever l
is a Clifford length function on Zn. Indeed, in this situation |l(m)| = ∥m∥ · Idn.

Let us now discuss the existence of a real structure on (CG, ℓ2(G,V ),Mℓ). For sake
of simplicity, we just consider the case V = C. To this aim, we study the standard real
structure given by the flip map g 7→ g−1 as in [14, 96] and adapt the argument in [98] to
take in consideration the presence of the twisting cocycle.

Proposition 6.13. Let G be a discrete group and l : G → R a proper Dirac weight. The
anti-unitary involutive map JG : ℓ2(G) → ℓ2(G) given by the anti-linear extension of

JGδg := σ(g−1, g)∗δg−1 ∀g ∈ G (6.6)

is a real structure on the odd spectral triple (5.16) if and only if for every g ∈ G, l(g−1) =
ε′l(g), where ε′ = ±1. In this case the KO-dimension of the real structure is given by the
pair (+1, ε′) and can be either 1 or 7.
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Proof. Clearly J2
G = 1. The zeroth order condition is a consequence of the cocycle prop-

erties: to see this, let us first note that

JGλhJ
−1
G δx = σ(h, x−1)σ(x−1, x)σ(xh−1, hx−1)δxh−1 = σ(xh−1, h)δxh−1 , (6.7)

where to prove the second passage it is enough to substitute x 7→ xh−1, y 7→ h and
z 7→ x−1 into Equation (3.2). Then

[λg, JGλhJ
−1
G ]δx =

(
σ(g, xh−1)σ(xh−1, h) − σ(gxh−1, h)σ(g, x)

)
δgxh−1 .

To prove that this quantity is zero, just note that

σ(g, xh−1)σ(gxh−1, h) = σ(g, x)σ(xh−1, h) (6.8)

by substituting x 7→ g, y 7→ xh−1 and z 7→ h into Equation (3.2).
To conclude the proof, just note that the equation MlJG = ±JGMl is fulfilled if and

only if l(g−1) = ±l(g) for every g ∈ G.

Proposition 6.14. Let G be a discrete group and l : G → R a proper Dirac weight.
Suppose that the map JG given in (6.6) is a real structure for the spectral triple (5.16).
Then (CG, ℓ2(G),Ml, JG) satisfies the first order condition if and only if l is either a
constant or a homomorphism.

Proof. A straightforward computation, involving the use of (6.7) and (6.8), shows that
the first order condition holds true if and only if we have that

l(xzy−1) − l(zy−1) = l(xz) − l(z)

for every x, y, z ∈ G. By Lemma 5.43, this means that l must be the sum of a constant
and a homomorphism. But from Proposition 6.13 we know that l(g−1) = ε′l(g) for every
g ∈ G and it is easy to see that if ε′ = 1 then l must be constant and that if ε′ = −1 then
l must be a homomorphism.

Remark 6.15. Proposition 6.14 imposes a serious restriction to the possibility that the
involution (6.6) is a real structure on the aformentioned triple. Indeed, if we require that

(1) G is discrete and not finite

(2) JG is a real structure which satisfies the first order condition

(3) the triple (CG, ℓ2(G),Ml, JG) is non degenerate

then the group must be cyclic and of the form aZ with a ∈ R. This is a straightforward
consequence of Remark 5.44. We deduce that if G is not of this form, then the real
structure (6.6) is compatible only with some “degenerate” situations: either G is finite
and Ml bounded or G is infinite but Ml has a non-trivial kernel.

Proposition 6.16. Let G be a discrete group and l : G → R a proper Dirac weight.
Suppose that the map JG given in (6.6) is a real structure for the spectral triple (5.16).
If (CG, ℓ2(G),Ml, JG) satisfies the first order condition, then it satisfies the second order
condition.
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Proof. A straightforward computation shows that
[
[Ml, λg], JG[Ml, λh]J−1

G

]
applied to δx

is equal to

σ(g, xh−1)σ(xh−1, h)
(
l(hx−1) − l(x−1)

) (
l(gxh−1) − l(xh−1)

)
δgxh−1

− σ(g, x)σ(gxh−1, h) (l(gx) − l(x))
(
l(hx−1g−1) − l(x−1g−1)

)
δgxh−1 .

for any g, h, x ∈ G. The thesis comes from Proposition 6.14 and equation (6.8).





Chapter 7
Spectral Triples on A ⋊σ

α,r G

In this chapter we construct a spectral triple on a twisted crossed product A⋊σ
α,rG starting

from a spectral triple on A satisfying some assumptions. More precisely, we provide two
different constructions that under some additional properties of uniform boundedness of
the action of G is a Lipschitz sense are equivalent. Moreover, we provide a description in
the framework of KK-theory and then study the Connes axioms as spectral manifolds.

7.1 Constructions and Basic Properties

We first generalize the constructive result of [47] to the case of twisted actions and possibly
degenerate matrix valued Dirac weights.

Theorem 7.1 (First Construction, cf. [5]). Let (A,G, α, σ) be a twisted C∗-dynamical
system with G discrete and (A, H,D) be an odd spectral triple on a unital C∗-algebra
A with π faithful. Assume G is equipped with a proper matrix valued Dirac weight
l : G → L(V ) and that the twisted action on A is also

(1) smooth, in the sense that it restricts to a twisted action on A (namely, α : G →
Aut(A) and σ : G×G → U(A)).

(2) equicontinuous, in the sense that

sup
x∈G

∥[D,π(αx(a)σ(x, y))]∥ < ∞ (7.1)

for every a ∈ A and y ∈ G.

Then we have an induced even spectral triple (Cc(G,A), Ĥ, D̂) on A⋊σ
α,r G with

Ĥ = (H ⊗ ℓ2(G,V )) ⊕ (H ⊗ ℓ2(G,V )),

the representation is the direct sum Π⊕Π of the integrated form of the induced covariant
representation (3.14) which is explicitly given by

Π(aδx)(ξ ⊗ δy ⊗ v) = π
(
αy−1x−1(a)σ(y−1x−1, x)

)
ξ ⊗ δxy ⊗ v

65
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for the basic elements aδx ∈ Cc(G,A), v ∈ V and ξ ∈ H, and the Dirac operator has
the form

D̂ =
(

0 D ⊗ 1ℓ2(G,V ) − i1H ⊗Ml

D ⊗ 1ℓ2(G,V ) + i1H ⊗Ml 0

)
. (7.2)

Furthermore, if the weight l is non degenerate and the triple (A, H,D) is non degenerate,
then the triple (Cc(G,A), Ĥ, D̂) is also non degenerate.

Proof. As in [47], most of the properties will follow because we are following the pre-
scription for the exterior Kasparov product. In particular the Dirac operator is a sum
D̂ = D1 + iD2 with the two blocks

D1 :=
(

0 D ⊗ 1ℓ2(G,V )
D ⊗ 1ℓ2(G,V ) 0

)
, D2 :=

(
0 −1H ⊗Ml

1H ⊗Ml 0

)
.

The smooth algebra Cc(G,A) preserves the domain of D̂ and it allows us to estimate the
commutators [D1,Π ⊕ Π(a)] and [D2,Π ⊕ Π(a)], for a ∈ Cc(G,A) separately. Of course
we just have to compute these commutators for elements of the form aδx. It follows by a
straightforward computation that

[D1,Π ⊕ Π(aδx)]
(
ξ ⊗ δy ⊗ v
η ⊗ δz ⊗ w

)
=
([
D,π(αz−1x−1(a)σ(z−1x−1, x))

]
η ⊗ δxz ⊗ w[

D,π(αy−1x−1(a)σ(y−1x−1, x)
]
ξ ⊗ δxy ⊗ v

)

which is bounded by condition (7.1). Concerning the second commutator we have

[D2,Π ⊕ Π(aδx)] =
(

0 −
[
1H ⊗Ml,Π(aδx) ⊗ 1V

][
1H ⊗Ml,Π(aδx) ⊗ 1V

]
0

)
.

Now [
1H ⊗Ml,Π(aδx) ⊗ 1V

]
(ξ ⊗ δy ⊗ v) = Π(aδx)(ξ ⊗ δy) ⊗ (l(xy) − l(y))v

which is bounded by the property of the Dirac weight. Compactness of the resolvent
and non degeneracy follow from the corresponding statements for the Kasparov exterior
product [10].

Remark 7.2. If the spectral triple on A is even with H = H+ ⊕ H−, representation

π = π+ ⊕ π− and D =
(

0 D−

D+ 0

)
, then we can construct an odd spectral triple

(Cc(G,A) Ĥ, D̂) on A⋊σ
α,rG with Hilbert space Ĥ = (H+ ⊗ℓ2(G)⊗V )⊕(H− ⊗ℓ2(G)⊗V )

and the representation Π is induced by π. It is diagonal whose components are induced
by π±. The Dirac operator is:

D̂ =
(

1H+ ⊗Ml D− ⊗ 1ℓ2(G,V )
D+ ⊗ 1ℓ2(G,V ) −1H− ⊗Ml

)
. (7.3)

2

We want now to discuss another similar construction. The most important difference
is the fact that in this second case the spectral triple is assumed being equivariant.
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Theorem 7.3 (Second Construction, cf. [98]). Let (A,G, α, σ) be a twisted C∗-dynamical
system with G discrete and assume that it is equipped with a proper matrix valued Dirac
weight l : G → L(V ). Let (A, H,D, u) be an odd spectral triple with π faithful and sup-
pose that it G-equivariant, namely that there exists a map u : G → U(H) as in Definition
5.25. We have an induced spectral triple

(Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂) (7.4)

on A ⋊σ
α,r G with Ĥ = H ⊗ ℓ2(G,V ) ⊗ C2 = (H ⊗ ℓ2(G,V )) ⊕ (H ⊗ ℓ2(G,V )), the

representation is the direct sum of the integrated form of the covariant representation{
π̂(a)(ξ ⊗ δg ⊗ v) := π(a)ξ ⊗ δg ⊗ v

λ̂h(ξ ⊗ δg ⊗ v) := uhξ ⊗ δhg ⊗ v,
(7.5)

for a ∈ A, ξ ∈ H, v ∈ V and g, h ∈ G defined following the prescription as in Subsection
3.1.4, the Dirac operator D̂ on Ĥ by

D̂ := D ⊗ 1 ⊗ σ1 + 1 ⊗Ml ⊗ σ2

=
(

0 D ⊗ 1 − i1H ⊗Ml

D ⊗ 1 + i1H ⊗Ml 0

)
,

(7.6)

where σ1 and σ2 are Pauli matrices.

Proof. The only non trivial thing to check is that the operator (7.6) has bounded com-
mutators with Cc(G,A). First of all we note that

αg(CLip(A)) ⊆ CLip(A) (7.7)

for any g ∈ G. Indeed, as π(αg(a)) = ugπ(a)u∗
g, any element αg(a) for a ∈ CLip(A)

preserves the domain of D. Then, using the covariance condition, a straightforward
computation shows that

[D,π(αg(a))] = −
[
ug[D,u∗

g], π(αg(a))
]

+ ug[D,π(a)]u∗
g. (7.8)

and so the commutator [D,π(αg(a))] is bounded when a ∈ CLip(A). Since A ⊆ CLip(A)
by construction, using equation (5.10) it is easy to see that the operator (7.6) has bounded
commutators with Cc(G,A) and so (7.4) is a spectral triple.

Remark 7.4. Note that, differently from what was discussed in Theorem 7.1, in Theorem
7.3 action α need neither be smooth nor equicontinuous in order to ensure a well defined
and bounded commutation relation between D̂ and A⋊σ

α,r G.

Example 7.5. If we apply this procedure to the equivariant spectral triple of Example
5.27 where Z is endowed with the proper Dirac weight i : Z → R given by the inclusion,
we just get the canonical spectral triple on the noncommutative 2-torus C(S1) ⋊α Z.
Indeed, we have seen in Theorem 3.19 that the GNS representation Hτ is isomorphic to
L2(S1) ⊗ ℓ2(Z) and the corresponding multiplication representation of C(S1) ⋊ Z goes
precisely to integrated form of the covariant couple (π̂, λ̂), where π̂ is the multiplication
operator of C(S1) and λ̂ is defined as in (7.5) for u as in Example 5.27. We also known
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that the Fourier transform of the Dirac weight i : Z → R gives precisely the derivation
operator on the circle (see Example 5.46), then the Dirac operator D̂ as defined in (7.6)
goes precisely to the standard Dirac operator (5.12) on the noncommutative torus.

2

The spectral triple (Cc(G,A), Ĥ, D̂, π̂⋊λ̂) on A⋊σ
α,rG as defined in Theorem (7.3) has

been constructed starting from an equivariant spectral triple: as we are going to show,
this triple is also equivariant with respect to the dual coaction of G.

Proposition 7.6. Assume σ ≡ 1. The spectral triple (Cc(G,A), Ĥ, D̂, π̂⋊ λ̂) is equivari-
ant with respect to the dual coaction α̂ of Example C.9.

Remark 7.7. If the group G is abelian and σ ≡ 1, Proposition 7.6 means that the triple
on A⋊σ

α,rG is Ĝ-invariant under the unitary representation V := v⊕v : Ĝ → L(Ĥ) where
v : Ĝ → L(H ⊗ ℓ2(G)) is given by

vχ(ξ ⊗ δg) := χ(g)ξ ⊗ δg

for ξ ∈ H, g ∈ G and χ ∈ Ĝ.

Proof. Consider C∗
r (G) coacting on itself via the map ∆(δg) = δg ⊗ δg and the unitary

corepresentation map Θ: H ⊗ ℓ2(G) → H ⊗ ℓ2(G) ⊗ C∗
r (G) given by

Θ(ξ ⊗ δg) = ξ ⊗ δg ⊗ δg, ξ ∈ H, g ∈ G.

According to (C.8), Θ is equivalent to the unitary operator X ∈ L(H ⊗ ℓ2(G) ⊗ C∗
r (G))

given by
X(ξ ⊗ δx ⊗ δg) := ξ ⊗ δx ⊗ δxg, x, g ∈ G

In this way H ⊗ ℓ2(G) becomes a C∗
r (G)-equivariant C∗

r (G)-module. Consider in fact
b = aδg ∈ Cc(G,A) and x = ξ⊗δh ∈ H⊗C∗

r (G), then by definition b(−1) = aδg, b(0) = δg,
x(−1) = ξ ⊗ δh and x(0) = δh. Next,

Θ(b ▷ x) = Θ(π(a)ugξ ⊗ δgx) = π(a)ugξ ⊗ δgx ⊗ δgx

= b(−1) ▷ x(−1) ⊗ b(0)x(0).

Moreover, it is easy to check that [D ⊗ 1 ⊗ 1, X] = 0 and [1 ⊗ Ml ⊗ 1, X] = 0 so that
[D̂,X ⊕X] = 0. Finally, we have that Xπ̂(a)λ̂hX

∗(ξ⊗ δx ⊗ δg) = π(a)uhξ⊗ δhx ⊗ δhg for
any x, g, h ∈ G and so

(id ⊗ φ)AdX(aδh) = φ(δhg)aδhx ∈ Cc(G,A) ⊆ (A⋊α,r G)′′

for any state φ on C∗
r (G).

Remark 7.8. Note that what we have described so far extends to a construction of an
equivariant odd spectral triple on the crossed product starting from an equivariant even
spectral triple.

Let us now discuss the relationships between the two constructions. It turns out that,
under some natural assumptions, they are K-homologically equivalent. Consider the setup
given in Theorem 7.3. It’s easy to adapt the contents of Proposition 3.16 to the case in
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which V is not trivial and then prove that the unitary operator W : H ⊗ ℓ2(G,V ) →
H ⊗ ℓ2(G,V ) given by

W (ξ ⊗ δg ⊗ v) := π(σ(g, g−1)∗)ugξ ⊗ δg ⊗ v (7.9)

intertwines the representations of the algebra Cc(G,A) on Ĥ in the two constructions, in
the sense that

Wπ̃ ⋊ λ̃(aδh)W ∗ = π̂ ⋊ λ̂(aδh)

for any aδh ∈ A⋊σ
α,r G. At this point it is clear that the unitary W = W ⊕W conjugates

the operator D̂ to WD̂W∗ = D̂+W[D̂,W∗]. In general this is not a bounded perturbation
of D̂ because the commutators [D,ug] are just pointwise bounded. However, we have the
following result.

Lemma 7.9. Let (A,G, α, σ) be a twisted C∗-dynamical system and (A, H,D, u) a G-
equivariant spectral triple on A. We have the following facts:

(1) If the commutator [ug, D] is uniformly bounded in norm for all g ∈ G, then the
twisted action α of G on A is equicontinuous in the sense of (7.1).

(2) If (A, H,D, u) is G-invariant, then the action is Lip-isometric in the sense that

∥[D,π(αg(a))]∥ = ∥[D,π(a)]∥ .

Proof. The second point is a consequence of equation (7.8). To prove point (1), note that

[D,π (αx(a)σ(x, y))] = [D,π (αx(a))]π(σ(x, y)) + π(αx(a))[D,π (σ(x, y))]

and so it is enough to prove that [D,π (αx(a))] and [D,π (σ(x, y))] are uniformly bounded
in norm in the x variable. On the one hand, from equation (7.8) we have

∥[D,π(αx(a))]∥ ≤ 2 ∥[D,ux]∥ ∥π(a)∥ + ∥[D,π(a)]∥

for any a ∈ A and g ∈ G. On the other hand, since ∥[D,ug]∥ =
∥∥∥[D,u∗

g]
∥∥∥, we have that

∥[D,π(σ(x, y))]∥ =
∥∥∥[D,π (uxuyu

∗
xy

)
]
∥∥∥ ≤ 3 sup

x
∥[D,ux]∥

and this concludes.

The relation between (Cc(G,A), Ĥ, D̂, π̂⋊λ̂) and (Cc(G,A), Ĥ, D̂, π̂1⋊λ̂) as triples on
A⋊σ

α,r G is then easy to understand: if the twisted action is smooth and the commutator
[ug, D] is uniformly bounded in norm for all g ∈ G, then the triple (Cc(G,A), Ĥ, D̂, π̃ ⋊ λ̃)
is well defined by Lemma 7.9 and defines the same K-homology class of (Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂)
since it is just the bounded perturbation of a triple which is unitarily equivalent to it.
Note in particular that, when [D,ug] = 0 for any g ∈ G, then the two triples are well
defined and unitarily equivalent.

Example 7.10. We provide an example of a G-equivariant spectral triple (A, H,D, u)
for which the action is equicontinuous but the commutators [D,ug] are not uniformly
bounded, so that the vice versa of Lemma 7.9 is in general not true. Consider the spectral
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triple (C∞(S1), L2(S1), D = −i ∂
∂x), denote by α the trivial automorphism of C(S1) and

define a unitary operator X on L2(S1) by

(Xf)(x) := e2πixf(x).

Clearly, the representation M and the operator X commute so (M,X) is a covariant
representation of (C(S1),Z, α) and (C∞(S1), L2(S1), D = −i ∂

∂x , X) is an equivariant
spectral triple. The trivial action is clearly equicontinuous (even Lipschitz isometric).
However, a straightforward computation shows that

[D,Xn]f(x) = −i ∂
∂x

(
e2πinxf(x)

)
+ ie2πinxf ′(x) = 2πne2πinxf(x),

and so ∥[D,Xn]∥ = 2πn. This is clearly not uniformly bounded in n ∈ Z. 2

At the end of this section we show that in the equivariant case, even when neither
σ nor V are trivial, the spectral triple (7.4) can be understood as the restriction of an
external product of spectral triples. The key point of the construction is the existence of
a morphism

ϕr
A : A⋊σ

α,r G −→ A⋊σ
α G⊗ C∗

r (G)

such that ϕr
A(aδg) = aδg ⊗ δg. This map is the twisted version of the one used in [7,

31]. Integrating (π, u) defines a non degenerate representation π ⋊ u : A ⋊σ
α G → L(H).

Let B ⊆ L(H) be the (separable) C∗-algebra image of π ⋊ u. We get a non degenerate
morphism

ψA : A⋊σ
α,r G −→ B ⊗ C∗

r (G).

The analytical details will be included in the proof of the next proposition. The algebra
B carries a spectral triple (B, H,D) with the same D as the triple on A and smooth
algebra B given by finite sums ∑g∈G agUg with ag ∈ A; on the other hand, we consider on
C∗

r (G) the spectral triple (Cc(G), ℓ2(G) ⊗ V,Ml, λ) constructed with the length function
and regular representation.

Proposition 7.11. The equivariant spectral triple (Cc(G,A), Ĥ, D̂, π̂⋊ λ̂) is the restric-
tion via ψA of the product of the triples (B, H,D) and (Cc(G), ℓ2(G) ⊗ V,Ml, λ).

Proof. We begin by constructing a morphism ϕmax
A : A⋊σ

αG → A⋊σ
αG⊗C∗

r (G). This one
exists because is the integrated form of a covariant couple with values in A⋊σ

αG⊗C∗
r (G);

precisely the couple (jA, jG) with

jA : A −→ A⋊σ
α G⊗ C∗

r (G),
a 7−→ a⊗ 1

jG : G −→ U(A⋊σ
α G⊗ C∗

r (G)),
g 7−→ δg ⊗ δg.

Indeed we have presented the universal property of the twisted crossed product with
respect to covariant representations on Hilbert spaces but we may also use covariant
couples with values in the multipliers of any C∗-algebra using Hilbert modules. In practice
we can just represent faithfully A⋊σ

αG⊗C∗
r (G) on a Hilbert space to make the construction

rest on the Hilbert space based definition. To see that ϕmax
A descends to the reduced

crossed product, we adapt the argument in [7]. Fix a faithful representation µ : A ⋊σ
α

G → L(Hµ) and combine it with the left regular representation λ to obtain a faithful
representation µ ⊗ λ of A ⋊σ

α G ⊗ C∗
r (G) on Hµ ⊗ ℓ2(G). Then µ corresponds to a
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covariant representation (πµ, uµ) on Hµ and (µ⊗ λ) ◦ ϕmax
A corresponds to the covariant

representation (πµ ⊗Idℓ2(G) , u
µ ⊗λg). On the other hand, we consider the reduced crossed

product as being defined by the covariant representation induced by πµ and we call this
couple (πµ, Lµ), namely

πµ(a)(ξ ⊗ δx) := πµ(αx−1(a))ξ ⊗ δx, Lµ
x(ξ ⊗ δy) := πµ(σ(y−1x−1, x))ξ ⊗ δxy.

The unitary

Θ : Hµ ⊗ ℓ2(G) −→ Hµ ⊗ ℓ2(G)
ξ ⊗ δg 7−→ πµ(σ(g, g−1)∗)uµ

g ξ ⊗ δg

satisfies
Θπµ Θ∗ = πµ ⊗ Idℓ2(G) and ΘLµ

g Θ∗ = uµ
g ⊗ λg,

so that Θ (πµ⋊Lµ) Θ∗ = (µ⊗λ)◦ϕmax
A . This means that the representation (µ⊗λ)◦ϕmax

A

is unitarily equivalent to the left regular one. It follows that ϕmax
A descends to an injection

ϕr
A : A⋊σ

α,r G → A⋊σ
α G⊗ C∗

r (G) defined on the reduced crossed product.
Now it is clear that D on H is a Dirac operator for a spectral triple (B, H,D) because

the starting triple is equivariant. The rest of the proof is straightforward because the
operator D̂ in (7.2) is exactly the product of the amplification of D and the amplification
of Ml.

7.2 A KK-Theory Description
In this section we give a more precise description of the constructions presented in previous
section in terms of natural maps in equivariant KK-theory (namely, the Green-Julg map
and the Kasparov descent).

Assumptions 7.12. In this section we fix the assumptions as in Theorem 7.3 together
with σ ≡ 1 and V = C.

First of all we want to show that the spectral triple (7.4) can be factorized with
the Kasparov product under the Green-Julg isomorphism for discrete groups. Indeed,
the weight l defines a G equivariant odd spectral triple (C, ℓ2(G),Ml) where the group
action on ℓ2(G) is given by the left regular representation. The Kasparov product of
[D] ∈ KKG

1 (A,C) and [Ml] ∈ KKG
1 (C,C) is represented by the even G-equivariant triple

(A, Ĥ, D̂), (7.10)

on A where Ĥ = H ⊗ ℓ2(G) ⊗ C2, the Dirac operator D̂ is defined as in (5.18), the
representation of A on Ĥ is given by (two copies of)

π̂(a)(ξ ⊗ δg) := π(a)ξ ⊗ δg, a ∈ A, ξ ∈ H, g ∈ G

and the equivariance is implemented by (two copies of) the representation λ̂ : G → L(Ĥ)
given by

λ̂h(ξ ⊗ δg) := uhξ ⊗ δhg (7.11)
for g, h ∈ G. Under the Green-Julg isomorphism, the class of the triple (7.10) is repre-
sented in KK(A⋊α G,C) by the triple

(Cc(G,A), Ĥ, D̂) (7.12)
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where the action of the algebra is now given by (two copies of) the integrated form of
the covariant representation (π̂, λ̂). We have seen that the unitary map W conjugates
the representation of the triple (7.4) to the representation defining the reduced crossed
product and so the spectral triple (7.12), which is a priori just defined on the maximal
crossed product, descends to a triple on the reduced crossed product A⋊α,r G.

The spectral triple (7.12) can be seen also as a representative of an interior Kasparov
product as follows. It is known that in bounded KK-theory there is a commutative
diagram

KKG
1 (A,C) ×KKG

1 (C,C) KKG
0 (A,C)

KK0(A⋊α G,C).KK1(A⋊α G,C
∗(G)) ×KK1(C∗(G),C)

⊗ext

IGJG × IG

⊗C∗(G)

Here JG is the Kasparov descent map (see Subsection 4.4.2), IG is the Green-Julg
isomorphism, ⊗C∗(G) represents the interior Kasparov product and ⊗ext is the exterior
Kasparov product. This is a consequence of the fact that the Kasparov descent is com-
patible with the product and that it factorizes the Green-Julg isomorphism (see Remark
4.33). We will now show the following fact:

Theorem 7.13. Let [D] ∈ KKG
1 (A,C) and [Ml] ∈ KKG

1 (C,C) be classes defined by
two spectral triples as before and let [D̂] ∈ KK(A ⋊α G,C) be the class defined by the
spectral triple (7.12). Then

[D̂] = JG[D] ⊗C∗(G) IG[Ml].

Proof. First of all, let us describe explicitely the image of the equivariant spectral triple
(A, H,D, u) under the Kasparov descent (we take for granted the definitions and conven-
tions in Subsection 4.4.2). From formula (4.13), consider B = C and Cc(G) acting on the
right on Cc(G,H) by right multiplication:

(ξ ⊗ δg) ◁ δh := ξ ⊗ δgh

for ξ ∈ H and δg, δh ∈ Cc(G). The completion of Cc(G,H) with the C∗(G)-valued scalar
product

⟨ξ ⊗ δg, µ⊗ δh⟩ := ⟨ξ, µ⟩δg−1h,

as introduced in formula (4.14), defines the right Hilbert C∗(G)-Hilbert module H ⋊G ≃
H ⊗ C∗(G). Using formula (4.15), we see that the representation π : A → L(H) induces
a representation ψ of A⋊G on H ⊗ C∗(G) by

ψ(aδg)(ξ ⊗ δh) := π(a)ugξ ⊗ δgh.

The image of (A, H,D, u) under JG is then just (Cc(G,A), H ⊗ C∗(G), D ⊗ 1, ψ). To
compute the product of this element together with (Cc(G), ℓ2(G),Ml, λ), we now want to
show that the hypothesis of Theorem 4.22 hold true (as before, we take for granted the
definitions and notations from Subsection 4.4.2).
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Consider B1 = Cc(G) ⊆ B = C∗(G) and X1 = H ⊗ Cc(G) ⊆ H ⊗ C∗(G) = X. The
map ∇ : X1 → X ⊗C∗(G) L(ℓ2(G)) given by

∇(ξ ⊗ δg) := (ξ ⊗ δe) ⊗C∗(G) [Ml, λg].

is a connection on X1 as

∇(ξ ⊗ δg ◁ δh) = ∇(ξ ⊗ δgh) = (ξ ⊗ δe) ⊗C∗(G) [Ml, λgh]
= (ξ ⊗ δe) ⊗C∗(G) λg[Ml, λh] + (ξ ⊗ δe) ⊗C∗(G) [Ml, λg]λh

= (ξ ⊗ δg) ⊗C∗(G) [Ml, λh] + ∇(ξ ⊗ δg) ◁ δh.

Actually, an easy computation shows that ∇ is the Grassmann connection on X1 and so it
is also hermitian. Let us now show that (X1,∇) is a correspondence from (Cc(G,A), H ⊗
C∗(G), D ⊗ 1, ψ) to (Cc(G), ℓ2(G),Ml, λ):

(1) the operator ∗-module X1 ⊆ X is clearly a dense subspace of X and the operator
∗-algebra B1 ⊆ B is a dense ∗-subalgebra of B. The inclusions are completely
bounded and compatible with the module structures and inner products.

(2) each b ∈ B1 maps the domain of Ml into itself and [Ml, ·] : B1 → L(ℓ2(G)) is
completely bounded on B1.

(3) Let us prove that the commutator [1⊗∇Ml, aδg] is bounded on X⊗B Y for all a ∈ A
and g ∈ G. A straightforward computation shows that

[1 ⊗∇ Ml, ψ(aδg) ⊗ 1](e⊗B δh) = ψ(aδg)e⊗B Mlδh + c(∇)(ψ(aδg)e⊗B δh)
− ψ(aδg)e⊗B Mlδh − (ψ(aδg) ⊗ 1)c(∇)(e⊗B δh)

= [c(∇), ψ(aδg) ⊗ 1](e⊗B δh).

In particular, we have that

[c(∇), ψ(aδg) ⊗ 1](ξ ⊗ δx ⊗B δh) = π(a)ugξ ⊗ δe ⊗B [Ml, λgx]δh

− π(a)ugξ ⊗ δg ⊗B [Ml, λx]δh

= π(a)ugξ ⊗ δe ⊗B [Ml, λg]λxδh.

This is clearly bounded.

(4) Instead of proving in full generality that, for any µ ∈ R \ { 0 }, the unbounded
operator

[D ⊗ 1, 1 ⊗∇ Ml] (D ⊗ 1 − iµ)−1

is well-defined and extends to a bounded operator on X ⊗B Y , we will actually
prove that the commutator [D ⊗ 1, 1 ⊗∇ Ml] is zero. Indeed, [D ⊗ 1, 1 ⊗Ml] = 0
for obvious reasons and

[D ⊗ 1, c(∇)](ξ ⊗ δx ⊗B δh) = Dξ ⊗ δe ⊗B [Mlλx]δh = 0.
−Dξ ⊗ δe ⊗B [Mlλx]δh

Following the prescription of Theorem 4.22, we deduce that the operator

D ⊗ 1 ×∇ Ml :=
(

0 D ⊗ 1 ⊗ 1 − i1 ⊗∇ Ml

D ⊗ 1 ⊗ 1 + i1 ⊗∇ Ml 0

)
(7.13)
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on (H⊗C∗(G)⊗C∗(G) ℓ
2(G))⊕ (H⊗C∗(G)⊗C∗(G) ℓ

2(G)) is an even unbounded Kasparov
A−C-module which represents the interior Kasparov product of (Cc(G,A), H⊗C∗(G), D⊗
1, ψ) together with (Cc(G), ℓ2(G),Ml, λ). To relate this spectral triple with the spectral
triple (7.12), consider the unitary transformation

Φ: H ⊗ C∗(G) ⊗C∗(G) ℓ
2(G) −→ H ⊗ ℓ2(G), Φ(ξ ⊗ δg ⊗C∗(G) δh) = ξ ⊗ δgh

which is clearly well defined and its inverse is given by ξ⊗ δg 7→ ξ⊗ δe ⊗C∗(G) δg. We also
denote by Φ the map Φ ⊕ Φ and claim that

D̂ = Φ(D ⊗ 1 ×∇ Ml)Φ−1. (7.14)

Indeed,
Φ(D ⊗ 1 ± i⊗∇ Ml)Φ−1(ξ ⊗ δg) = Φ(D ⊗ 1 ± i⊗∇ Ml)(ξ ⊗ δe ⊗C∗(G) δg)

= Φ(Dξ ⊗ δe ⊗C∗(G) δg ± iξ ⊗ δe ⊗C∗(G) Mlδg

± i c(∇)(ξ ⊗ δe ⊗C∗(G) δg)︸ ︷︷ ︸
0

)

= Dξ ⊗ δg ± iξ ⊗Mlδg

= (D ⊗ 1 ± i⊗Ml)(ξ ⊗ δg).
Let us now show that also the representations are unitarily equivalent:

Φ(ψ(aδg) ⊗ 1)Φ−1(ξ ⊗ δh) = Φ(ψ(aδg) ⊗ 1)(ξ ⊗ δe ⊗C∗(G) δh

= Φ(π(a)ugξ ⊗ δg ⊗C∗(G) δh) = π(a)ugξ ⊗ δgh

= π̂ ⋊ λ̂h(ξ ⊗ δh).

We conclude then that the Kasparov product (7.13) is unitary equivalent to the spectral
triple (7.12).

7.3 Finite Summability

Consider the spectral triple (A, Ĥ, D̂) as constructed in Theorem 7.1 and recall Definition
6.7. We have the following fact.
Theorem 7.14. If the triple (A, H,D) is finitely summable and G has polynomial
growth w.r.t. the proper Dirac weight l : G → L(V ), then also the spectral triple A⋊σ

α,rG
is finitely summable and

abs(ζ
D̂

) ≤ abs(ζD) + dG, (7.15)

where dG is the growth of G. If limn
log(#Bn)

log n exists, then the equality in (7.15) holds
true.

We notice that if the group G is finitely generated and l(g) is given by the word length,
then dG does not depend on the choice of the generators and the limit limn

log(#Bn)
log n exists.

Proof. Let us note that, if T is a positive invertible operator with compact inverse and
we denote by Nt(T ) the number (with multiplicity) of the eigenvalues of T lower than t,
we have Nt(T ) = #{n ≥ 0 : µn(T−1) > t} and o(T−1) = lim supt→∞

log(Nt(T ))
log t . Therefore

abs(ζ
D̂

) = lim sup
t→∞

log(Nt((1 + D̂2)1/2))
log t .
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Since D̂2 =
(
1 ⊗M2

l +D2 ⊗ 1
)(1 0

0 1

)
and the eigenvalues of 1 ⊗M2

l +D2 ⊗ 1 are µ2 +ν2

where µ, resp. ν is a singular value of Ml, resp. D, we have

Nt

(
(1 + D̂2)1/2)

)
= 2Nt

(√
1 ⊗ (1 +M2

l ) +D2 ⊗ 1
)

and

Nt/
√

2

(√
1 +M2

l

)
Nt/

√
2

(√
1 +D2

)
≤ Nt

(√
1 ⊗ (1 +M2

l ) +D2 ⊗ 1
)

≤ Nt

(√
1 +M2

l

)
Nt

(√
1 +D2

)
,

hence

abs(ζ
D̂

) = lim sup
t→∞

log(Nt((1 + D̂2)1/2))
log t

= lim sup
t→∞

log
(
Nt(

√
1 +M2

l )
)

log t +
log

(
Nt(

√
1 +D2)

)
log t

≤ dG + abs(ζD),

where the equality holds if any of the limits exists.

Remark 7.15. The hypothesis about the polynomial growth of the Dirac weight guarantees
the finitely summability of the spectral triple on the twisted group algebra (remember
Proposition 6.8). Theorem 7.14 relies on the fact that the exterior product of finitely
summable spectral triples is finitely summable.
Remark 7.16. The proof of the previous result can be easily rephrased for the triple (7.4)
defined in Theorem 7.3 since the representation of the algebra A⋊σ

α,r G is not involved in
the proof, which just uses the peculiar form of the Dirac operator.

7.4 The Regularity Condition

In this section we discuss the regularity of the triple (7.4) on A⋊σ
α,rG. Recall in particular

the spectral triples

(B, H,D) and (Cc(G), ℓ2(G) ⊗ V,Ml, λ) (7.16)

where B is the algebra of finite sums ∑g∈G agug with ag ∈ A. The completion of B is the
algebra B ⊆ L(H) image of the full crossed product by the integrated form of the covariant
representation (π, u). By Proposition 7.11 the equivariant triple is the restriction of the
product of the triples (7.16). Since the notion of regularity is manifestly well behaved with
respect to the operation of restriction, identifying sufficient conditions for the regularity
of the two factor triples will give sufficient conditions for the regularity of our triple.

Theorem 7.17. Let (A, H,D, π, u) be a G-equivariant odd spectral triple over a unital
C∗-algebra A and l : G → L(V ) a proper Dirac weight.

(1) If the spectral triples (B, H,D) and (Cc(G), ℓ2(G) ⊗ V,Ml) are regular, then the
triple (Cc(G,A), Ĥ, D̂, π̂⋊λ̂) on A⋊σ

α,rG of the equivariant construction is regular.
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(2) If (A, H,D) is regular and the group action is by order zero i.e. ug ∈ Op0(∆) (the
Laplacian being relative to D on H) assume further that

• [D,ug] ∈ Op0(∆)
• for every integer k:

[∆, [∆, . . . [∆︸ ︷︷ ︸
k times

, ug] ] ] and [∆, [∆, . . . [∆︸ ︷︷ ︸
k times

, [D,ug] ] ] ] ∈ Opk(∆) (7.17)

Then the triple (B, H,D) is regular.

(3) the converse of point (2) holds. If (B, H,D) is regular then (A, H,D) is regular
and the group action satisfies: ug ∈ Op0(∆), [D,ug] ∈ Op0(∆) and (7.17) for
every integer k.

Proof. The first statement is clear. Concerning the second one, assume that the triple
on A is regular and denote with EA its canonical algebra of GDO. Assuming ug of order
zero implies that BW∞ ⊆ W∞ and we can construct the canonical algebra of operators
relative to B as explained right before Theorem 5.24. We call it EB. Now the remaining
assumptions imply that EB ⊃ EA is the canonical algebra of GDO that, according to
Higson’s theorem 5.24 witnesses that the triple over B is regular.
Let’s discuss point (3). For every covariant representation Ue = Id so that we have an
inclusion A ⊆ B and the triple on A is the restriction of the one on B. It follows that
(A, H,D) is regular. Moreover since A is unital we get all the stated conditions on the
ug’s just by direct examination of its canonical GDO algebra.

Of course the hypothesis (7.17) are satisfied when the commutator [D,ug] is zero
for any g ∈ G. We present an example in which these hypothesis are fulfilled and the
commutator is non trivial.

Example 7.18 (cf. [29], Section 1.2). Let M be a a smooth compact manifold M with an
integrable subbundle V ⊆ TM . LetN = TM/V be the transverse bundle and assume that
both N and V are oriented euclidean even dimensional bundles. Combining a longitudinal
signature operator of order 2 with the usual signature operator in the transverse direction,
Connes constructs a hypoelliptic differential operator Q corresponding to the signature
of M , which modulo lower order only depends upon the Euclidean structures of both
V and N but not upon a choice of Riemannian metric on M . He then defines a first-
order operator D by the equation Q = D |D| and shows in Theorem I.1 that D gives
rise to a spectral triple on the crossed product A = C(M) ⋊ Γ, where Γ is any group of
diffeomorphisms preserving the triangular structure of V and N . In particular, he also
proves that given a φ ∈ Γ which preserves the foliation V and is isometric on both V and
N , the corresponding unitary uφ and and the commutator [D,uφ] belong to Dom∞(δ).

2

Let us now briefly discuss the nature of the condition [D,ug] ∈ Op0(∆) of point (2)
in Theorem 7.17 in the manifold case. Intuitively, it says that the group is acting in an
isometric fashion. Indeed, if we consider the case of an odd Spin manifold, we can show
the following fact, which is certainly well known, but it is proved here for completeness.

Proposition 7.19. Let M be a spin (Riemannian) compact odd dimensional manifold
with spinor bundle S and let U : M → M be a diffeomorphism that is covered by a linear
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map Ũ : S → S which is unitary on the fibers. This means that we have a commutative
diagram

S
Ũ //

��

S

��
M

U //M.

Let U : Γ(M,S) −→ Γ(M,S) be the induced operator on sections:

(Us)(x) := (Ũx)∗s(U(x))

for s ∈ Γ(M,S) and x ∈ M . Denote with D the Dirac operator associated to M . We
have U ∈ Op0(∆) and it follows that [D,U ] ∈ Op0(∆) if and only if U is an isometry.

Proof. Since M is compact, U is order zero (it does not involve derivatives) and invertible.
It follows that [D,U ] is order zero if and only if the operator A := U∗[D,U ] = U∗DU −D
is order zero. Though U is not a differential operator (it is non local), the operator A
is a differential operator of order no more than one so it will be order zero if and only
if its principal symbol (of order one) vanishes. More precisely let’s check that U∗DU is
differential of order one. Following [11], we show that for every fixed section s ∈ Γ(M,S)
and φ ∈ Γ(M,S∗) the operator

C∞(M) ∋ f 7−→ φ(U∗DU(fs)) ∈ C∞(M)

is a differential operator. Since U(fs) = (f ◦ U)Us, we can compute

φ(U∗DU(fs)) = φ(U∗c(d(f ◦ U))Us) + φ(fU∗DUs). (7.18)

Here for a function f we denote with c(df) the corresponding Clifford multiplication;
indeed we have used the property of the Dirac operator: D(fs) = c(df)s+ fDs.

From Equation (7.18) we have that [A, f ] is C∞-linear and so A is a differential
operator. The same equation can be used to compute the principal symbol of A: let s be
a section of the spinor bundle and fix a point x = U(y) ∈ M . Then

σ1(A)(dxf)sx = i[A, f ]s
∣∣
x

= iU∗c(d(f ◦ U))Us− ic(df)s
∣∣
x

= iŨy c(dyU
t(dxf)) (Ũy)∗sx − ic(dxf)sx.

The thesis follows quickly because this is zero if and only if we have a commutative
diagram

Sy

cy(dyUt (dxf))
��

Ũy // SU(y)

c(dxf)
��

Sy
Ũy

// SU(y)

(7.19)

for dyU
t the transpose of dU . Let us now show that this means that dU t is unitary: given

a function f such that ∥df∥ = 1, we have that the linear map c(df) is unitary. Since Ũ
is an isometry, we deduce that cy(dyU

t (dxf)) is an isometry so that
∥∥dyU

t (dxf)
∥∥ = 1.

Then dU t preserves the norms.
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7.5 The Existence of a Real Structure

In this section we construct a real structure on the equivariant spectral triple (7.4),
and present sufficient conditions for the first and second order conditions. The idea
is to employ the tensor product J1 ⊗ J2 of two real structures on two spectral triples
(A1, H1, D1) and (A2, H2, D2) which defines a real structure on the tensor product spectral
triple such that the resultant KO-dimension is the sum of the two initial KO-dimensions
(with some minor modifications in the case of a grading), cf. [34]. We will check that this
construction remains valid also in the case of a crossed product extension. We discuss
two cases depending on how the real structure J on the triple (A, H,D, u) interacts with
the map u : G → L(H).

Assumptions 7.20. In this section we assume σ ≡ 1 and V = C.

7.5.1 First Case (J unitarily invariant)

Let G be a discrete group endowed with a proper Dirac weight l : G → R and (A, H,D, u)
a G-invariant (even or odd) spectral triple on a unital C∗-algebra A endowed with a real
structure J of KO-dimension n ∈ Z8 which is unitarily invariant, i.e.,

ugJu
∗
g = J (7.20)

for every g ∈ G. This is for example the case when the triple discussed in Example 5.27
is endowed with the antilinear operator J1 on L2(S1) given by the complex conjugation
(which gives a real structure on the triple of KO-dimension 1). We state now our first
main result:

Theorem 7.21. Suppose (A, H,D, J) has KO-dimension n ∈ Z8. If l : G → R satisfies
l(g−1) = −l(g) for all g ∈ G, then the equivariant spectral triple (Cc(G,A), Ĥ, D̂, π̂2⋊Γ̂)
on A⋊α,r G admits a real structure Ĵ of KO-dimension n+ 1.

In view of Proposition 6.13, a similar result which provides a real structure of KO-
dimension n− 1 holds for weights such that l(g−1) = l(g) for any g ∈ G. However, if we
want also the first order condition, Remark 5.45 and Proposition 6.14 force G to be finite.
As this situation is K-homologically trivial, we will not discuss this case.
Remark 7.22. Applying Theorem 7.21 to the triple in Example 5.27 with real structure
J1, one recovers precisely the real structure on the noncommutative 2-torus as described
for instance in [44, Chapter 12.3].

The proof of Theorem 7.21 is constructive and relies on the following auxiliary map.

Lemma 7.23. Let j : H ⊗ ℓ2(G) → H ⊗ ℓ2(G) be the antilinear map defined by

j(ξ ⊗ δg) := u∗
gJξ ⊗ JGδg = u∗

gJξ ⊗ δg−1 , (7.21)

where JG is given by (6.6). Then:

(1) j is isometric.

(2) If J2 = ε then j2 = ε.

(3) j maps A⋊α G into its commutant.
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(4) If DJ = ε′JD, then (D ⊗ 1)j = ε′j(D ⊗ 1).

(5) If l satisfies l(g−1) = −l(g) for any g ∈ G, then (1 ⊗Ml)j = −j(1 ⊗Ml).

Proof. Point (1) is clear as both u and J are isometric. To prove point (2) note that

j2(ξ ⊗ δg) = u∗
g−1Ju∗

gJξ ⊗ δg = ugu
∗
gJ

2ξ ⊗ δg = ε(ξ ⊗ δg).

Point (3) comes by a straightforward computation: for any a, b ∈ A and g, h ∈ G we have[
π̂(a)λ̂h, jπ̂(b)λ̂gj

−1
]

(ξ ⊗ δx) = π(a)uhu
∗
gx−1Jπ(b)ugJ

−1u∗
xξ ⊗ δhxg−1

− u∗
gx−1h−1Jπ(b)ugJ

−1u∗
hxπ(a)uhξ ⊗ δhxg−1

=
[
π(a), Jπ(αhxg−1(b))J−1

]
uhξ ⊗ δhxg−1

= 0

since J satisfies the zeroth order condition. To prove point (4) note that

(D ⊗ 1)j(ξ ⊗ δg) = Du∗
gJξ ⊗ δg−1 = ε′u∗

gJDξ ⊗ δg−1 = ε′j(D ⊗ 1)(ξ ⊗ δg)

by the invariance of D. Point (5) is clear.

We then claim that the equivariant real structure Ĵ for D̂ when n is odd is given by

• Ĵ = j ⊗ cc for n = 3, 7

• Ĵ = j ⊗ cc ◦ σ2 for n = 1, 5

on the Hilbert space Ĥ = H⊗ℓ2G⊗C2 (here cc denotes the complex conjugation operator).
When n is even, the equivariant real structure Ĵ for D̂ is instead given by

• Ĵ = χJ ⊗ JG for n = 0, 4

• Ĵ = J ⊗ JG for n = 2, 6

on the Hilbert space Ĥ = H ⊗ ℓ2(G), where JG is the flip morphism defined in (6.6).

Proof of Theorem 7.21. Suppose as a first case that the triple (A, H,D) is odd. The
zeroth-order condition directly comes from the zeroth order condition in Lemma 7.23
and the peculiar diagonal/anti-diagonal form of Ĵ . Let us now discuss the triple of signs
(ε, ε′, ε′): since l is a homomorphism, j anti-commutes with Ml on ℓ2(G) and so the real
structure Ĵ has the same ε sign as J when n = 3, 7 and the opposite when n = 1, 5.
Analogously, the ε′ sign remains the same for n = 3, 7 and changes for n = 1, 5 (that is,
is always +1). Further Ĵ is always even with respect to the grading χ = σ3 when n = 3, 7
and odd when n = 1, 5. We have therefore checked the theorem for all the possible cases
of (A, H,D) odd.

Suppose now that (A, H,D, J) is an even real triple with respect to the grading χ = σ3,
H = H0 ⊕H1 and

D =
(

0 D0
D∗

0 0

)
.

Recall that D̂ is given by (5.24). By the compatibility conditions of J with the grading
χ we deduce that J must be of the following form:
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• J =
(
j1 0
0 j2

)
for n = 0, 4,

• J =
(

0 j1
j2 0

)
for n = 2, 6.

So now we have just to check case by case: if n = 0, 4 then by assumption(
0 D0
D∗

0 0

)(
j1 0
0 j2

)
=
(
j1 0
0 j2

)(
0 D0
D∗

0 0

)
.

Using this equation it is easy to check that(
1 ⊗Ml D0 ⊗ 1
D∗

0 ⊗ 1 −1 ⊗Ml

)(
j1 ⊗ JG 0

0 −j2 ⊗ JG

)
= −

(
j1 ⊗ JG 0

0 −j2 ⊗ JG

)(
1 ⊗Ml D0 ⊗ 1
D∗

0 ⊗ 1 −1 ⊗Ml

)

so that the two triples have different ε′ signs. The ε sign remains the same and this proves
that we get dimensions 1 and 5 respectively. In an analogous way one shows that the
dimensions 2 and 6 go to the dimensions 3 and 7 respectively.

Remark 7.24. The assumption that [D,ug] = 0 for any g ∈ G is essentially necessary in
order to prove Theorem 7.21. Indeed, suppose there is a real structure J on (A, H,D), so
that DJ = ε′JD by definition. An essential step to prove Theorem 7.21 is Lemma 7.23
point (4), namely the fact that

DugJ = ε′ugJD, ∀g ∈ G. (7.22)

These two conditions together imply that D must be G-invariant: indeed, using (7.22)
we see that Dug = ε′ugJDJ

−1 and so

[D,ug] = ε′ugJDJ
−1 − ugDJJ

−1 = ug
(
ε′JD −DJ

)
J−1 = 0.

Note that this computation is independent of the fact that J is unitarily equivalent, which
is instead an assumption needed to show that Ĵ satisfies the zeroth order condition. 2

The following results show that the crossed product spectral triple construction is
compatible with the first and second order conditions.

Proposition 7.25. Let G be a discrete group endowed with a proper group homomorphism
l : G → R and let (A, H,D, u) be a G-invariant (even or odd) spectral triple on a unital
C∗-algebra A endowed with a unitarily invariant real structure J . If (A, H,D, J) satisfies
the first order condition, then the spectral triple (Cc(G,A), Ĥ, D̂, Ĵ) on A ⋊α,r G also
satisfies the first order condition.

Proof. We prove the first order condition for (A, H,D, u, J) odd; the even case is similar.
For any a, b ∈ A and g, h ∈ G, the desired commutator[[

D ⊗ 1 ± i⊗Ml, π̂ ⋊ λ̂(aδg)
]
, jπ̂ ⋊ λ̂(bδh)j−1

]
is equal to the sum of the following two pieces:

C1 =
[[
D ⊗ 1, π̂(a)λ̂g

]
, jπ̂(b)λ̂hj

−1
]
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C2 = ±i
[[

1 ⊗Ml, π̂(a)λ̂g

]
, jπ̂(b)λ̂hj

−1
]
.

We will separately prove that they are vanishing. On the one hand, using the invariance
of D with respect to the action of G, we have that

C1(ξ ⊗ δx) =
[
D ⊗ 1, π̂(a)λ̂g

] (
u∗

hx−1Jπ(b)uhJ
−1u∗

xξ ⊗ δxh−1

)
− jπ̂(b)λ̂hj

−1 (Dπ(a)ugξ ⊗ δgx − π(a)ugDξ ⊗ δgx)
= [D,π(a)]ugxh−1Jπ(b)uhJ

−1u∗
xu

∗
gugξ ⊗ δgxh−1

− ugxh−1Jπ(b)uhJ
−1u∗

gx[D,π(a)]ugξ ⊗ δgxh−1

=
[
[D,π(a)] , Jugxh−1π(b)u∗

gxh−1J−1
]
ugξ ⊗ δgxh−1

= 0

by the first order condition for J . On the other hand

±iC2(ξ ⊗ δx) =
[
1 ⊗Ml, π̂(a)λ̂g

] (
u∗

hx−1Jπ(b)uhJ
−1u∗

xξ ⊗ δxh−1

)
− jπ̂(b)λ̂hj

−1 (π(a)ugξ ⊗ l(gx)δgx − π(a)ugξ ⊗ l(x)δgx)

=
(
l(gxh−1) − l(xh−1)

)
π(a)ugxh−1Jπ(b)u∗

gxh−1J−1ugξ ⊗ δgxh−1

− (l(gx) − l(x))ugxh−1Jπ(b)u∗
gxh−1J−1π(a)ugξ ⊗ δgxh−1 .

As l : G → R is a homomorphism, we have that l(gxh−1) − l(xh−1) = l(gx) − l(x). Then

±iC2(ξ ⊗ δx) = (l(gx) − l(x))
[
π(a), Jπ(αgxh−1(b))J−1

]
ugξ ⊗ δgxh−1

and this is zeroth as J implements the zeroth order condition.

Proposition 7.26. Let G be a discrete group endowed with a proper group homomorphism
l : G → R and let (A, H,D, u) be a G-invariant (even or odd) spectral triple on a unital
C∗-algebra A endowed with a unitarily invariant real structure J which satisfies the first
order condition. If (A, H,D, J) satisfies the second order condition, then the spectral
triple (Cc(G,A), Ĥ, D̂, Ĵ) on A⋊α,r G also satisfies the second order condition.

Proof. Let us focus on (A, H,D, u, J) odd as the even case is similar. With a slight abuse
of notation, let us denote D̂ = D⊗1±i⊗Ml. To prove the required commutation relation

[D̂, π̂(a)λ̂h]j[D̂, π̂(b)λ̂g]j−1 = j[D̂, π̂(b)λ̂g]j−1[D̂, π̂(a)λ̂h]

we will show that the following four commutators are vanishing:

C1 =
[
[D ⊗ 1, π̂(a)λ̂h], j[D ⊗ 1, π̂(b)λ̂g]j−1

]
C2 =

[
[D ⊗ 1, π̂(a)λ̂h], j[±i⊗Ml, π̂(b)λ̂g]j−1

]
C3 =

[
[±i⊗Ml, π̂(a)λ̂h], j[D ⊗ 1, π̂(b)λ̂g]j−1

]
C4 =

[
[±i⊗Ml, π̂(a)λ̂h], j[±i⊗Ml, π̂(b)λ̂g]j−1

]
for any a, b ∈ A and g, h ∈ G. First, note that:

j[D ⊗ 1, π̂(b)λ̂g]j−1(ξ ⊗ δx) = u∗
gx−1J [D,π(b)]ugJ

−1u∗
xξ ⊗ δxg−1

= J [D,π(αxg−1(b))]J−1ξ ⊗ δxg−1
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and that

j[±i⊗Ml, π̂(b)λ̂g]j−1(ξ ⊗ δx) = ∓iu∗
gx−1Jπ(b)ugJ

−1u∗
xξ ⊗ l(g)δxg−1

= ∓iJπ(αxg−1(b))J−1ξ ⊗ l(g)δxg−1

as l is a homomorphism. It is then easy to see that

C1 =
[
[D,π(a)], J [D,π(αhxg−1(b))]J−1

]
uhξ ⊗ δhxg−1

which vanishes since J implements the second order condition. Next, since l(h)l(g) =
l(g)l(h) for any g, h ∈ G, we have that

C4 =
[
π(a), Jπ(αhxg−1(b))J−1

]
uhξ ⊗ l(g)l(h)δhxg−1

vanishes by the zeroth order condition for J . Furthermore, the two mixed terms

C2 = i
[
[D,π(a)], Jπ(αhxg−1(b))J−1

]
uhξ ⊗ l(g)δhxg−1

C3 = ±i
[
π(a), J [D,π(αhxg−1(b))]J−1

]
uhξ ⊗ l(h)δhxg−1

vanish for the first order condition for J . The peculiar diagonal/anti-diagonal form of Ĵ
then brings the thesis.

7.5.2 Second Case (J twisted invariant)

Let G be discrete group endowed with a proper Dirac weight l : G → R and (A, H,D, u)
a G-invariant (even or odd) spectral triple on a unital C∗-algebra A endowed with a real
structure J of KO-dimension n ∈ Z8 which is twisted invariant, namely such that

ugJug = J (7.23)

for every g ∈ G. This is for example the case when the triple discussed in Example 5.27
is endowed with the antilinear operator J2 on L2(S1) given by J2f(x) = f(−x) (which
gives a real structure on the triple of KO-dimension 7). We will prove the following fact.

Theorem 7.27. Suppose (A, H,D, J) has KO-dimension n ∈ Z8. If G is abelian, the
Ĝ-invariant spectral triple (Cc(G,A), Ĥ, D̂, π̂2 ⋊ Γ̂) on A⋊α,r G admits a real structure
J̃ of KO-dimension n− 1.

Remark 7.28. The assumption that G is abelian might seem unnecessarily restrictive (and
thus of low interest) compared to the discussion in Subsection 7.5.1, where G need not
be commutative. However, this flexibility is just apparent. Indeed, when we focus our
attention to spectral triples which are non degenerate (a condition that is necessary for
example to have a compact quantum metric space structure) we discover that the hy-
pothesis that l : G → R is a homomorphism as in Theorem 7.21 forces the commutativity
of G (cf. Example 5.39).

The proof of Theorem 7.27 is constructive and relies on the properties of the following
auxiliary map.
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Lemma 7.29. Let G be an abelian discrete group and j : H ⊗ ℓ2(G) → H ⊗ ℓ2(G) an
antilinear map defined by

j(ξ ⊗ δg) := ugJξ ⊗ cc δg. (7.24)

Then:

(1) j is isometric

(2) If J2 = ε then j2 = ε.

(3) j maps A⋊α G into its commutant.

(4) If DJ = ε′JD, then (D ⊗ 1)j = ε′j(D ⊗ 1)

(5) (±i⊗Ml)j = −j(±i⊗Ml)

Proof. Point (1) is clear as both u and J are isometric. To prove point (2) note that

j2(ξ ⊗ δg) = ugJugJξ ⊗ δg = ugu
∗
gJ

2ξ ⊗ δg = ε(ξ ⊗ δg).

Point (3) is a straightforward computation: for any a, b ∈ A and g, h ∈ G we have[
π̂(a)λ̂h, jπ̂(b)λ̂gj

−1
]

(ξ ⊗ δx) = π(a)uhuxgJπ(b)ugJ
−1u∗

xξ ⊗ δxgh

− uxhgJπ(b)ugJ
−1u∗

xhπ(a)uhξ ⊗ δxhg

=
[
π(a), Jπ(α−1

xgh(b))J−1
]
uhξ ⊗ δxgh

= 0

as J satisfies the zero order condition and G is abelian. To prove point (4) note that

(D ⊗ 1)j(ξ ⊗ δg) = DugJξ ⊗ δg = ε′ugJDξ ⊗ δg = ε′j(D ⊗ 1)(ξ ⊗ δg)

by the invariance of D. Point (5) is clear as J is anti-linear.

We then claim that the equivariant real structure J̃ for D̂ when n is odd is given by

• J̃ = j ⊗ cc ◦ σ1 for n = 3, 7

• J̃ = j ⊗ cc ◦ σ3 for n = 1, 5

on the Hilbert space Ĥ = H ⊗ ℓ2G⊗ C2. When n is even, the equivariant real structure
J̃ for D̂ is instead given by

• J̃ = J ⊗ cc for n = 0, 4

• J̃ = χJ ⊗ cc for n = 2, 6

on the Hilbert space Ĥ = H ⊗ ℓ2(G).

Proof of Theorem 5.24. Suppose as a first case that the triple (A, H,D) is odd. The
zeroth-order condition comes directly from the zeroth order condition in Lemma 7.29 and
the diagonal/anti-diagonal form of J̃ . Let us now discuss the triple of signs (ε, ε′, ε′′):
from the previous lemma we easily deduce that the real structure J̃ has the same ε sign
as J . An easy computation shows that the ε′ sign remains the same for n = 3, 7 and
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changes for n = 1, 5 (that is, it is always +1). Further J̃ is always odd with respect to
the grading χ = σ3 when n = 3, 7 and even when n = 1, 5. We have therefore checked
the theorem for all the possible cases of (A, H,D) odd.

Suppose now that the real triple (A, H,D, J) is even with respect to the grading χ

and suppose that χ = σ3, H = H0 ⊕H1 and

D =
(

0 D0
D∗

0 0

)
.

By the compatibility conditions of J with the grading χ we deduce that J must be of the
following form:

• J =
(
j1 0
0 j2

)
for n = 0, 4,

• J =
(

0 j1
j2 0

)
for n = 2, 6.

Now we check case by case. If n = 0, 4 then by assumption(
0 D0
D∗

0 0

)(
j1 0
0 j2

)
=
(
j1 0
0 j2

)(
0 D0
D∗

0 0

)

and, recalling that D̂ is given by (5.24), we get(
1 ⊗Ml D0 ⊗ 1
D∗

0 ⊗ 1 −1 ⊗Ml

)(
j1 ⊗ 1 0

0 j2 ⊗ 1

)
=
(
j1 ⊗ 1 0

0 j2 ⊗ 1

)(
1 ⊗Ml D0 ⊗ 1
D∗

0 ⊗ 1 −1 ⊗Ml

)
.

Thus the triples on A and on A ⋊α,r G have the same sign ε′. Also the sign ε remains
the same, but since the grading disappears, the dimension 0 (or 8 mod 8) goes to 7 and
the dimension 4 goes to 3. In an analogous way one shows that dimensions 2 and 6 go to
dimensions 1 and 5 respectively.

The following results show that the crossed product spectral triple construction is
compatible with the first and second order conditions.

Proposition 7.30. Let G be an abelian discrete group endowed with a proper first-order
Dirac weight l : G → R and let (A, H,D, u) be a G-invariant (even or odd) spectral triple
on a unital C∗-algebra A endowed with a twisted invariant real structure J . If (A, H,D, J)
satisfies the first order condition, then (Cc(G,A), Ĥ, D̂, J̃) also satisfies the first order
condition.

Proof. We prove the first order condition only for (A, H,D, u, J) odd; the even case is
similar. For any a, b ∈ A and g, h ∈ G, the desired commutator[[

D ⊗ 1 ± i⊗Ml, π̂ ⋊ λ̂(aδg)
]
, jπ̂ ⋊ λ̂(bδh)j−1

]
is equal to the sum of the following two pieces:

C1 =
[[
D ⊗ 1, π̂(a)λ̂g

]
, jπ̂(b)λ̂hj

−1
]
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C2 = ±i
[[

1 ⊗Ml, π̂(a)λ̂g

]
, jπ̂(b)λ̂hj

−1
]
.

We prove that they are separately vanishing. On the one hand, using the invariance of D
with respect to the action of G, we have that

C1(ξ ⊗ δx) =
[
D ⊗ 1, π̂(a)λ̂g

] (
uhxJπ(b)uhJ

−1u∗
xξ ⊗ δhx

)
− jπ̂(b)λ̂hj

−1 (Dπ(a)ugξ ⊗ δgx − π(a)ugDξ ⊗ δgx)
= [D,π(a)]uxghJπ(b)uhJ

−1u∗
xξ ⊗ δxgh

− uxghJπ(b)uhJ
−1u∗

xg[D,π(a)]ugξ ⊗ δxgh

=
[
[D,π(a)] , Ju∗

xghπ(b)uxghJ
−1
]
ugξ ⊗ δxgh

= 0

since J implements the first order condition. On the other hand

±iC2(ξ ⊗ δx) =
[
1 ⊗Ml, π̂(a)λ̂g

]
uxhJπ(b)uhJ

−1u∗
xξ ⊗ δxgh

− jπ̂(b)λ̂hj
−1 (π(a)ugξ ⊗ l(xg)δxg − π(a)ugξ ⊗ l(x)δxg)

= (l(xgh) − l(xh))π(a)uxghJπ(b)uhJ
−1u∗

xξ ⊗ δxgh

− (l(xg) − l(x))uxghJπ(b)uhJ
−1u∗

xgπ(a)ugξ ⊗ δxgh.

Since l : G → R is of first order, we have that l(xgh) − l(xh) = l(xg) − l(x). Then

±iC2(ξ ⊗ δx) = (l(xg) − l(x))
[
π(a), Jπ(α−1

xgh(b))J−1
]
ugξ ⊗ δxgh

which is zero since J implements the zeroth order condition.

Proposition 7.31. Let G be an abelian discrete group endowed with a proper first-order
Dirac weight l : G → R and let (A, H,D, u) be a G-invariant (even or odd) spectral triple
on a unital C∗-algebra A endowed with a twisted invariant real structure J which sat-
isfies the first order condition. If (A, H,D, J) satisfies the second order condition, then
(Cc(G,A), Ĥ, D̂, J̃) also satisfies the second order condition.

Proof. Let us focus on (A, H,D, u, J) odd cause the even case is similar. With a slight
abuse of notation, let us denote D̂ = D⊗ 1 ± i⊗Ml. To prove the required commutation
relation

[D̂, π̂(a)λ̂h]j[D̂, π̂(b)λ̂g]j−1 = j[D̂, π̂(b)λ̂g]j−1[D̂, π̂(a)λ̂h]
we will prove that the following four commutators are vanishing:

C1 =
[
[D ⊗ 1, π̂(a)λ̂h], j[D ⊗ 1, π̂(b)λ̂g]j−1

]
C2 =

[
[D ⊗ 1, π̂(a)λ̂h], j[±i⊗Ml, π̂(b)λ̂g]j−1

]
C3 =

[
[±i⊗Ml, π̂(a)λ̂h], j[D ⊗ 1, π̂(b)λ̂g]j−1

]
C4 =

[
[±i⊗Ml, π̂(a)λ̂h], j[±i⊗Ml, π̂(b)λ̂g]j−1

]
for any a, b ∈ A and g, h ∈ G. The diagonal/anti-diagonal form of J̃ then brings the
thesis. First of all note that:

j[D ⊗ 1, π̂(b)λ̂g]j−1(ξ ⊗ δx) = ugxJ [D,π(b)]ugJ
−1u∗

xξ ⊗ δgx

= J [D,π(α−1
gx (b))]J−1ξ ⊗ δgx
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and that

j[±i⊗Ml, π̂(b)λ̂g]j−1(ξ ⊗ δx) = ∓iugxJπ(b)ugJ
−1u∗

xξ ⊗ l(g)δgx

= ∓iJα−1
gx (b)J−1ξ ⊗ l(g)δgx

as l is of first order. It is relatively easy then to compute

C1 =
[
[D,π(a)], J [D,π(α−1

hgx(b))]J−1
]
uhξ ⊗ δhgx

that vanishes since J implements the second order condition. Furthermore, as l(h)l(g) =
l(g)l(h) for any g, h ∈ G, we have that

C4 =
[
π(a), Jπ(α−1

hgx(b))J−1
]
uhξ ⊗ l(g)l(h)δhgx

vanishes since J implements the zeroth order condition. Finally, the two mixed terms

C2 = ∓i
[
[D,π(a)], Jπ(α−1

hgx(b))J−1
]
uhξ ⊗ l(g)δhgx

C3 = ±i
[
π(a), J [D,π(α−1

hgx(b))]J−1
]
uhξ ⊗ l(h)δhgx

vanish by the first order condition for J .

7.5.3 Equivariant Real Structures

In the previous two subsections we constructed real structures Ĵ and (for abelian G) J̃
on (Cc(G,A), Ĥ, D̂) starting from a real structure J on (A, H,D, u) which is suitably G-
invariant. In this subsection we give a unifying picture interpreting the relations between
J with u in terms of the (unitary) action of the Hopf ∗-algebra CG endowed with a suitable
∗-structure. This will explain the reason why in the case of J̃ we must assume the group
is abelian. Furthermore, we will show that in both cases Ĵ and J̃ are equivariant under
the dual coaction of CG consistently with J .

Definition 7.32 (cf.[100]). Let H be a Hopf ∗-algebra and (A, H,D) an H-equivariant
spectral triple over the H-module C∗-algebra A. A real structure J is said to be equiv-
ariant if there exists a dense subspace V ⊆ H such that for any h ∈ H

Jh ▷ J−1 = (Sh)∗▷ (7.25)

as operators on V .

We can now explain the commutation relations (7.20) and (7.23) between J and ug

as the H-equivariance in the sense of Definition 5.32 corresponding to the two different
∗-structures (C.1) and (C.2) respectively on the Hopf algebra H = CG as in Example
C.2. In the first case we use the obvious actions of CG on H and A

h� ξ = uhξ, g � a = αg(a)

to make A a CG-module algebra and H a CG-equivariant A-module. Then equation
(7.25) for the ∗-structure (C.1) on CG becomes

JugJ
−1 = u(Sg)∗ = ug
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which means precisely that J is unitarily invariant (7.20). In the second case (when G is
abelian) we use the (less) obvious actions of CG on H and A

h� ξ = u∗
hξ, g � a = αg−1(a)

to make A a CG-module algebra and H a CG-equivariant A-module. Then equation
(7.25) for the ∗-structure (C.2) on CG becomes

JugJ
−1 = u(Sg)∗ = ug−1 = u∗

g

which means precisely that J is twisted invariant (7.23). Note that in both cases the
compatibility condition (C.3) holds true.

With this unifying picture, we summarize the two constructions of this section in the
following table:

Group G Discrete Discrete and abelian
∗-structure on CG ∗δg = δg−1 ⋆δg = δg

Equivariance of J ugJu
∗
g = J ugJug = J

weight l : G → R homomorphism constant + homom.
auxiliary map j j(ξ ⊗ δg) = u∗

gJξ ⊗ δg−1 j(ξ ⊗ δg) = ugJξ ⊗ δg

Ĵ =


j ⊗ cc

J̃ =


j ⊗ cc ◦ σ1

forn =


3, 7

real structure on j ⊗ cc ◦ σ2 j ⊗ cc ◦ σ3 1, 5
(Cc(G,A), Ĥ, D̂) χJ ⊗ JG J ⊗ cc 0, 4

J ⊗ JG χJ ⊗ cc 2, 6

KO-dim n+ 1 n− 1

Let us now prove that the real structures Ĵ and J̃ are equivariant for coactions of G.
First, we need a definition.

Definition 7.33 (cf. [15]). Let (B, H,D, χ) an (even or odd) spectral triple equivariant
for coaction of G as in Definition 5.33 and let X ∈ L(H ⊗ C∗

r (G)) be the unitary corep-
resentation of G on H. A real structure J on (B, H,D, χ) is said to be equivariant for
coactions of G if

(J ⊗ ∗)X = X(J ⊗ 1) (7.26)

on H ⊗ 1C∗
r (G).

Proposition 7.34. Let G be a discrete group endowed with a proper group homomorphism
l : G → R and (A, H,D, u) a G-invariant (even or odd) spectral triple on a unital C∗-
algebra A endowed with a unitarily invariant real structure J . The real structure Ĵ on the
equivariant spectral triple (Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂) on A ⋊α,r G defined in Theorem 7.21
is equivariant for the dual coaction of G.

Remark 7.35. If G is abelian and the dual coaction α̂ is Fourier-transformed into the dual
action of Ĝ, one can show that if J is unitarily invariant then Ĵ is also unitarily invariant
under the action V given in Remark 7.7.
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Proof. For any ξ ∈ H and g ∈ G we have

(j ⊗ ∗)X(ξ ⊗ δg ⊗ δe) = (j ⊗ ∗)(ξ ⊗ δg ⊗ δg) = u∗
gJξ ⊗ δg−1 ⊗ δg−1

= X(u∗
gJξ ⊗ δg−1 ⊗ δe)

= X(j(ξ ⊗ δg) ⊗ δe).

The diagonal/anti-diagonal form of Ĵ leads to the thesis.

Proposition 7.36. Let G be a discrete abelian group endowed with a proper Dirac weight
l : G → R and (A, H,D, u) a G-invariant (even or odd) spectral triple on a unital C∗-
algebra A endowed with a twisted invariant real structure J . The real structure J̃ on the
equivariant spectral triple (Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂) on A ⋊α,r G defined in Theorem 7.21
is twisted invariant.

Proof. Noting that jvχ = v∗
χj since characters χ ∈ Ĝ are complex-valued, the diagonal/anti-

diagonal form of J̃ leads to the thesis.

7.6 The Existence of an Orientation Cycle

In this section we induce an Hochschild orientation cycle on the triple (7.4) from an
Hochschild orientation cycle on the triple on A. The first step is to properly define a
group action on Hochschild chains.

Assumptions 7.37. In this section we assume σ ≡ 1 and V = C.

Definition 7.38. Let (A,G, α) be a C∗-dynamical system. For every Hochschild n-chain
c = ∑(a0 ⊗ b0) ⊗ a1 ⊗ · · · ⊗ an ∈ Cn(A⊗Aop, A), we define

αg(c) :=
∑

(αg(a0) ⊗ b0) ⊗ αg(a1) ⊗ · · · ⊗ αg(an) (7.27)

and say that c is G-invariant if αg(c) = c for every g ∈ G.

Remark 7.39. For any Hochschild n-chain c we have that bαg(c) = αg(bc) by the definition
of the Hochschild boundary. In particular, if c is a cycle then αg(c) is also a cycle.

In equation (7.27) the elements b0 play no essential role. When dealing with the
orientation property, this is reflected in the following fact.

Lemma 7.40. Let (A, H,D, χ, u) be a G-invariant real spectral triple on A with a uni-
tarily invariant real structure J and let c = ∑(a0 ⊗ b0) ⊗ a1 ⊗ · · · ⊗ an be a Hochschild
cycle in Cn(A ⊗ Aop,A). Define

cg :=
∑

(a0 ⊗ αg(b0)) ⊗ a1 ⊗ · · · ⊗ an (7.28)

for any g ∈ G. Then πD(cg) = Adug ◦ πD(αg(c)).

Proof. Using the fact that [D,ug] = 0 for any g ∈ G and that Jug = ugJ for any g ∈ G,
we have that

πD(cg) =
∑

π(a0)Jπ(αg(b0)∗)J−1[D,π(a1)] · · · [D,π(an)]

= ug

∑
π(αg(a0))Jπ(b∗

0)J−1[D,π(αg(a1))] · · · [D,π(αg(an))]u∗
g

= Adug ◦ πD(αg(c)).
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Theorem 7.41. Let G be a discrete group and l : G → R a proper homomorphism. Let
(A, H,D, u) be an (even or odd) G-invariant spectral triple on a unital C∗-algebra A
and J a unitarily invariant real structure. Then:

(1) If the triple (A, H,D) is orientable and the orientation cycle c is G-invariant, then
the real spectral triple (Cc(G,A), Ĥ, D̂, π̂⋊λ̂, Ĵ) on A⋊α,rG admits an orientation
cycle ĉ.

(2) If c is a strong orientation cycle, then ĉ is also a strong orientation cycle.

As suggested in [111, Chapter 6], the idea of the proof is to twist the prescription described
in [34], where the shuffle product is used to create a cycle on a tensor product spectral
triple.

Definition 7.42. For any Hochschild n-chain

c =
∑

(a0 ⊗ b0) ⊗ a1 ⊗ · · · ⊗ an ∈ Cn(A⊗Aop, A)

and any 1-chain δ = ∑(δg ⊗ δh) ⊗ δf ∈ C1(Q ⊗ Qop, Q) for Q = C∗
r (G), we define

their twisted shuffle product as the Hochschild (n+ 1)-chain in Cn+1(B ⊗Bop, B) for
B = A⊗ C∗

r (G):

c⋊α δ :=
∑

(a0δg ⊗ b0δh) ⊗ δf ⊗ a1 ⊗ · · · ⊗ an

+
n∑

j=2
(−1)j−1∑(a0δg ⊗ b0δh) ⊗ αf (a1) ⊗ · · · ⊗ αf (aj−1) ⊗ δf ⊗ aj ⊗ · · · ⊗ an

+ (−1)n
∑

(a0δg ⊗ b0δh) ⊗ αf (a1) ⊗ · · · ⊗ αf (an) ⊗ δf .

Note that for simplicity we denote by a the element aδe and by δf the element 1Aδf .
Under the assumption of covariance, namely that δga = αg(a)δg for any a ∈ A and g ∈ G,
the twisted shuffle product also defines a chain over the crossed product A⋊α,r G. Note
also that if α = id then the twisted shuffle product is really the shuffle product of the two
chains as defined in [67, Chapter 4.2] (up to a sign depending on the length of the chain).

Proposition 7.43. For any G-invariant c ∈ Cn(A⊗Aop, A) and any δ ∈ C1(Q⊗Qop, Q)
we have that

b(c⋊α δ) = bc⋊α δ + c⋊ bδ (7.29)

as chains over A⋊α,r G.

Proof. By bilinearity, we can suppose that c and δ are pure tensors:

c = (a0 ⊗ b0) ⊗ a1 ⊗ · · · ⊗ an, δ = (δg ⊗ δh) ⊗ δf .

Since bδ = δgf ⊗ δh − δfg ⊗ δh ∈ Q⊗Qop, the untwisted shuffle product with c is equal to

c⋊ bδ = (a0δgf ⊗ b0δh) ⊗ a1 ⊗ · · · ⊗ an

− (a0δfg ⊗ b0δh) ⊗ a1 ⊗ · · · ⊗ an.
(7.30)
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For the sake of simplicity, we set m = a0δg ⊗ b0δh and write c ⋊α δ in Definition 7.42 as
c⋊α δ = ∑n+1

j=1 cj . Let us compute bcj for every j = 1, . . . , n+ 1. First,

bc1 = (a0δgf ⊗ b0δh) ⊗ a1 ⊗ · · · ⊗ an

−m⊗ δfa1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)i+1m⊗ δf ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)n+1anm⊗ δf ⊗ a1 ⊗ · · · ⊗ an−1.

(7.31)

Next, for j = 2, . . . , n we have:

bcj = (−1)j−1m⊗ αf (a1) ⊗ · · · ⊗ δf ⊗ aj ⊗ · · · ⊗ an

+
j−2∑
i=1

(−1)i+j−1m⊗ αf (a1) ⊗ · · · ⊗ αf (aiai+1) ⊗ · · ·

· · · ⊗ αf (aj−1) ⊗ δf ⊗ aj ⊗ · · · ⊗ an

+ (−1)j−1(−1)j−1m⊗ αf (a1) ⊗ · · · ⊗ αf (aj−1)δf ⊗ aj ⊗ · · · ⊗ an

+ (−1)j−1(−1)jm⊗ αf (a1) ⊗ · · · ⊗ αf (aj−1) ⊗ δfaj ⊗ · · · ⊗ an

+
n−1∑
i=j

(−1)i+jm⊗ αf (a1) ⊗ · · · ⊗ αf (aj−1) ⊗ δf ⊗ aj ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)n+1(−1)j−1anm⊗ αf (a1) ⊗ · · · ⊗ αf (aj−1) ⊗ δf ⊗ aj ⊗ · · · ⊗ an−1

with the convention that for j = 2 the first summation is neglected. Finally:

bcn+1 = (−1)nm⊗ αf (a1) ⊗ αf (a2) ⊗ · · · ⊗ αf (an) ⊗ δf

+ (−1)n
n−1∑
i=1

(−1)im⊗ αf (a1) ⊗ · · · ⊗ αf (aiai+1) ⊗ · · · ⊗ αf (an) ⊗ δf

+ (−1)n(−1)nm⊗ αf (a1) ⊗ · · · ⊗ αf (an−1) ⊗ αf (an)δf

+ (−1)n(−1)n+1 (δfa0δg ⊗ b0δh) ⊗ αf (a1) ⊗ · · · ⊗ αf (an).

(7.32)

Since δfa0δg = αf (a0)δfg and the cycle c is G-invariant, the last line of (7.32) can be
rewritten as

−(aδfg ⊗ b0δh) ⊗ a1 ⊗ · · · ⊗ an

Together with the first line of (7.31), these summands are precisely c ⋊ bδ (see (7.30)).
The two central lines of every bcj for j = 2, . . . , n form a telescopic summation that,
together with the second line in (7.31) and the third line in (7.32), sum up to zero. What
remains is precisely bc⋊α δ.

We can now prove the main theorem of this section.

Proof of Theorem 7.41. Since the Dirac weight l is proper, there exists g ∈ G such that
l(g) ̸= 0. Consider then the Hochschild 1-cycle

∆g := (δg−1 ⊗ δe) ⊗ δg ∈ C1(Q⊗Qop, Q).
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If c is the G-invariant orientation cycle of the triple (A,H,D, J, u), then the twisted shuffle
product c ⋊α ∆g is also a cycle by Proposition 7.43. We will show that the normalized
shuffle product

ĉ = 1
M
c⋊α ∆g (7.33)

is an orientation cycle for the triple (Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂, Ĵ) on A ⋊α,r G, where the
normalization factor M is given by

M =
{

−il(g)(n+ 1) if (A,H,D) is odd
l(g)(n+ 1) if (A,H,D) is even.

Indeed, since

c⋊α ∆g =
∑

(a0δg−1 ⊗ b0) ⊗ δg ⊗ a1 ⊗ · · · ⊗ an

+
n∑

j=2
(−1)j−1∑(a0δg−1 ⊗ b0) ⊗ αg(a1) ⊗ · · · ⊗ αg(aj−1) ⊗ δg ⊗ aj ⊗ · · · ⊗ an

+ (−1)n
∑

(a0δg−1 ⊗ b0) ⊗ αg(a1) ⊗ · · · ⊗ αg(an) ⊗ δg

we have that

π
D̂

(c⋊α ∆g) =
∑

π̂(a0)λ̂∗
gĴ π̂(b∗

0)Ĵ−1[D̂, λ̂g][D̂, π̂(a1)] · · · [D̂, π̂(an)]

+
n∑

j=2
(−1)j−1∑ π̂(a0)λ̂∗

gĴ π̂(b∗
0)Ĵ−1[D̂, π̂(αg(a1))] · · ·

· · · [D̂, π̂(αg(aj−1))][D̂, λ̂g][D̂, π̂(aj)] · · · [D̂, π̂(an)]
+ (−1)n

∑
π̂(a0)λ̂∗

gĴ π̂(b∗
0)Ĵ−1[D̂, π̂(αg(a1))] · · · [D̂, π̂(αg(an))][D̂, λ̂g]

with a slight abuse of notation (π̂ denotes two copies of the representation π̂ and λ̂ two
copies of λ̂).

Consider the case when (A, H,D) is odd and thus (Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂, Ĵ) is even.
Then

[D̂, π̂(a)] = [D,π(a)] ⊗ 1 ⊗ σ1, λ̂∗
g[D̂, λ̂g] = l(g) ⊗ 1 ⊗ σ2,

for any a ∈ A and g ∈ G. In particular λ̂∗
g[D̂, π̂(αg(a))]λ̂g = [D,π(a)] ⊗ 1 ⊗ σ1 and so

π
D̂

(c⋊α ∆g)(ξ ⊗ δx ⊗ v) = l(g)
∑

π(a0)Jπ(α−1
x (b∗

0))J−1[D,π(a1)] · · · [D,π(an)]ξ ⊗ δx

⊗

σ2σ
n
1 +

n∑
j=2

(−1)j−1σj−1
1 σ2σ

n−j+1
1 + (−1)nσn

1σ2

 v
by the zeroth order condition of Ĵ . The summation in the brackets is just (n+ 1) times
σ2σ

n
1 which is −i(n+ 1)σ3 as n is odd, by the properties of the algebra of Pauli matrices.

The factor ∑
π(a0)Jπ(α−1

x (b∗
0))J−1[D,π(a1)] · · · [D,π(an)] (7.34)

is just πD(cx−1) (according to the notation of (7.28)). By Lemma 7.40 this is Adu∗
x ◦

πD(α−1
x (c)). Since c is G-invariant and πD(c) = idH we deduce that (7.34) is trivial.

Then since σ3 = χ, the normalization factor brings the thesis.
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Consider now the case when (A, H,D) is even and thus (Cc(G,A), Ĥ, D̂, π̂ ⋊ λ̂, Ĵ) is
odd. Then

[D̂, π̂(a)] = [D,π(a)] ⊗ 1, λ̂∗
g[D̂, λ̂g] = l(g)(χ⊗ 1),

for any a ∈ A and g ∈ G. In particular, λ̂∗
g[D̂, π̂(αg(a))]λ̂g = [D,π(a)] ⊗ 1. Since

χ[D,π(aj)] = −[D,π(aj)]χ

we get

π
D̂

(c⋊α ∆g) = l(g)
∑

π(a0)χJπ(b∗
0)J−1[D,π(a1)] · · · [D,π(an)]⊗

⊗

1 +
n∑

j=2
(−1)j−1(−1)j−1 + (−1)n(−1)n


= l(g)(n+ 1)χ

(∑
π(a0)Jπ(b∗

0)J−1[D,π(a1)] · · · [D,π(an)]
)

︸ ︷︷ ︸
χ

⊗1

by the zeroth order condition for Ĵ . Since χ2 = idH by assumption, the normalization
factor M completes the proof.

Remark 7.44. The method of the twisted shuffle product is not suitable for the case of
the ⋆-equivariance: indeed, the shuffle product sums the degree of the Hochschild chains
that are multiplied and it is not possible to pass from dimension n to dimension n − 1
(apart from multiplying a hypothetical 7-cycle whose existence is not guaranteed).

Example 7.45. Applying Theorem 7.41 and formula (7.33) to the triple in Example
5.27, one recovers (up to a multiplicative constant) the standard orientation cycle on the
noncommutative 2-torus as described in [44, Chapter 12.3]. Indeed, if we regard C(S1)
as the C∗-algebra generated by U = e2πiφ1 with φ1 ∈ S1, then c = U∗ ⊗U is a Hochschild
orientation 1-cycle for the spectral triple over C(S1) as defined in Example 5.27. Doing
the shuffle product with the 1-cocycle δ = V ∗ ⊗V (where V is the generator of the action
of Z) we have by definition

c⋊ δ = U∗V ∗ ⊗ V ⊗ U − U∗V ∗ ⊗ α(U) ⊗ V

= U∗V ∗ ⊗ V ⊗ U − e2πiθU∗V ∗ ⊗ U ⊗ V

= U∗V ∗ ⊗ V ⊗ U − V ∗U∗ ⊗ U ⊗ V

which is equation (5.14) up to a constant. 2

After having constructed an orientation cycle ĉ on the equivariant triple (Cc(G,A), Ĥ, D̂),
we now examine its equivariance for the coaction of G in a suitable sense.

Definition 7.46. Let δ : B → B ⊗ C∗
r (G) be a coaction of G on a unital C∗-algebra B.

For any Hochschild chain c = ∑(b0 ⊗ p) ⊗ b1 ⊗ · · · ⊗ bn ∈ Cn(B ⊗Bop, B), we define

δ(c) :=
∑

(b0(−1) ⊗ p) ⊗ b1(−1) ⊗ · · · ⊗ bn(−1) ⊗
(
b0(0) · · · bn(0)

)
∈ Cn(B ⊗Bop, B) ⊗C∗

r (G)
(7.35)

using the Sweedler notation (C.5). We say that c is δ-invariant if δ(c) = c⊗ 1.
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Proposition 7.47. Let G be a discrete group and l : G → R a proper homomorphism. Let
(A, H,D, u) be an (even or odd) G-invariant spectral triple on a unital C∗-algebra A, J a
unitarily invariant real structure and c a G-invariant orientation cycle. The orientation
cycle ĉ of (Cc(G,A), Ĥ, D̂) given in (7.33) is invariant for the dual coaction α̂.

Proof. Let us write c⋊α∆g = ∑n+1
j=1 cj as a shorthand notation and recall that by definition

α̂(aδg) = aδg⊗δg for any aδg ∈ Cc(G,A). Concerning c1 = ∑(a0δg−1⊗b0)⊗δg⊗a1⊗· · ·⊗an

we have by definition

α̂(c1) =
∑(

(a0δg−1 ⊗ b0) ⊗ δg ⊗ a1 ⊗ · · · ⊗ an

)
⊗ (δg−1δgδe · · · δe) = c1 ⊗ δe.

The other cases are similar; any factor aδe ∈ Cc(G,A) of cj brings a trivial contribution
to the piece in C∗

r (G). Since any cj contains precisely one term δg and one term δg−1 , the
total contribution is trivial.

Remark 7.48. If G is abelian, then the orientation cycle ĉ given in (7.33) is indeed invariant
under the dual action α̂ of the Pontryagin group Ĝ as in Definition 7.38.





Chapter 8
Conclusions

In this thesis we have proposed two constructions of a spectral triple on a twisted crossed
product A ⋊σ

α,r G and we have investigated some of the Connes axioms for a spectral
manifold. In both cases we have used as a building block a spectral triple on the twisted
group algebra C∗

σ,r(G), defined via a matrix-valued Dirac weight function l : G → L(V ),
for which we have given full results about the regularity condition, its summability and
the existence of a real structure. These results have been successfully reproduced when
dealing with the triple on A⋊σ

α,rG, even though some of them require some more restrictive
assumptions (e.g. on the cocycle or the dimension of the vector space V ).

Between the two aformentioned constructions, the one developed in Theorem 7.3 has
been proved to be more directly connected to KK-theory, giving in particular a preliminary
insight (Proposition 7.11) into the reason why the original ansatz made in [47] for the
exterior Kasparov product makes their construction work. Note that it is precisely thanks
to the external Kasparov product that we are able to extend to the triple on A ⋊σ

α,r G
some of the Connes axioms originally assumed on the triples on A and on C∗

r,σ(G), such
as the real structure and the regularity condition.

Although passing through the exterior Kasparov product is a rather direct strategy,
some of the results obtained depend heavily on the exact commutation of the operator D
with the representation u of the group G on H, a hypothesis which forces the action of
the group to be Lipschitz isometric (and in particular equicontinuous). This hypothesis
seems to be very difficult to work without: as noted in Remark 7.24, the triviality of the
commutator may be unavoidable. Furthermore, apart from the summability condition
(Section 7.3), which depends on the Dirac operator but not on the representation of the
algebra, the problem of obtaining these structures and properties when the starting triple
is not equivariant is still unsolved.

When constructing the building block spectral triple on C∗
σ,r(G), we have assumed the

existence of a length-type function on a discrete group, inspired by the (Fourier transform
of the) canonical spectral triple on the circle. As noted in Remarks 5.44 and 5.45, these
elements are not free from difficulties. The generalization of our results from a Dirac
weight with scalar values to a Dirac weight with matrix values has led to serious technical
problems, mostly related to the fulfillment of the zeroth order condition of the candidate
real structures. Furthermore, it is not completely clear how far the construction of the
triple on the twisted crossed product can be generalized when the building block spectral
triple is given by an arbitrary element in KKG(C,C) with G not necessarily discrete.
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It would be desirable to produce a construction encompassing the locally compact case
as well. However, our approach relies on the Green-Julg map in KK-theory for discrete
groups and it is not clear how to overcome this obstruction.

In summation, we have constructed spectral triples on a crossed product A ⋊σ
α,r G

starting from a spectral triple on A which is equivariant with respect to a (twisted)
action of G. We have found that, whenever this action is sufficiently regular, the spectral
geometry on A can be naturally promoted to the triple on A ⋊σ

α,r G. How to control
the situations when the interaction of the group with the spectral triple is badly-behaved
remains a challenging and interesting open question for future research.



Part III

Appendix
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Appendix A
Hilbert C∗-Modules

In this appendix (which is mainly based on [16, 53, 65, 92]) we shall give a brief account
of definitions and properties of Hilbert C∗-modules.

Definition A.1. Let A be a C∗-algebra and X a complex vector space which is also a
right A-module. We say that X is a right pre-Hilbert A-module if it is equipped with a
pairing ⟨·, ·⟩A : X ×X → A which is C-linear in the second variable and such that:

(1) ⟨x, y · a⟩A = ⟨x, y⟩A · a

(2) ⟨x, y⟩∗
A = ⟨y, x⟩A

(3) ⟨x, x⟩A ≥ 0 (as an element ofA)

(4) ⟨x, x⟩A = 0 implies x = 0

for all x, y ∈ X and a ∈ A.

We say that X is a left A-module if satisfies similar properties with respect to an
action A×X → X and we write XA or XA to emphasize whether we are regarding X as
a right or a left A-module. We put the label A on the right on the symbol ⟨·, ·⟩ both to
recall that the scalar product is A-valued and to denote in which entry it is A-linear.

Definition A.2. We say that a (right) pre-Hilbert A-module X is a Hilbert module if
it is complete in the norm ∥x∥A := ∥⟨x, x⟩A∥

1
2 . The Hilbert module is full if the ideal

I := span { ⟨x, y⟩A | x, y ∈ X } is dense in A.

Example A.3. Let A be a C∗-algebra. We can regard A as a module over itself by
right multiplication. Furthermore, A is a full Hilbert A-module with respect to the inner
product

⟨a, b⟩A := a∗b.

Note that fullness comes from the existence of approximate units. 2

Example A.4 (Direct Sums). Let A be a C∗-algebra. Suppose that X and Y are Hilbert
A-modules. Then Z = X⊕Y is a right A-module in the obvious way. The quantity defined
by

⟨(x, y), (x′, y′)⟩A := ⟨x, x′⟩A + ⟨y, y⟩A

is an A-valued inner product on Z which makes it a Hilbert A-module. 2
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Example A.5 (Standard A-Module). As a special case of the sum construction, we allow
also infinite sums in the following way. Let E be the space of sequences a = (an)n∈N with
values in A that are eventually 0 and define the pairing

⟨a,b⟩A :=
+∞∑
n=1

a∗
nbn.

By construction this is a finite sum and so it is well defined. Then E is a pre-Hilbert
A-module under the right action a · a = (ana)n∈N and the Hilbert A-module obtained
by norm completion is denoted by HA. Note that HA with A = C is just the Hilbert
space ℓ2(N).

2

While in a Hilbert space every bounded operator admits an adjoint, this is no longer
true for Hilbert modules (see [92, Example 2.19]): it turns out that the the right notion
of morphisms for Hilbert modules is the following.

Definition A.6. Let X,Y be Hilbert A-modules. A map T : X → Y is adjointable if
there exists a map T ∗ : Y → X such that

⟨Tx, y⟩A = ⟨x, T ∗y⟩A

for every x ∈ X and y ∈ Y . The map T ∗ is called the adjoint of T . We denote by
LA(X,Y ) the set of all adjointable operators from X to Y and write LA(X) for LA(X,X).

Proposition A.7 (cf. [92]). Let X,Y be Hilbert A-modules. Every adjointable map
T : X → Y is bounded and A-linear.

It is easy to prove that the space LA(X) has all the expected properties, for instance:

(1) If T ∈ LA(X) then the adjoint T ∗ is unique and still belongs to LA(X) with T ∗∗ = T .

(2) If T, S ∈ LA(X), then TS ∈ LA(X) and (TS)∗ = S∗T ∗

(3) The quantity ∥T∥ = sup∥x∥A=1 ∥Tx∥A is a norm that makes LA(X) a Banach space.

(4) With the ∗-structure given by adjointion, the space LA(X) is a C∗-algebra.

We want now to find the analogues of compact operators on a Hilbert space for Hilbert
modules. It turns out that the right way passes through the well known fact that the set
of finite rank operators on a Hilbert space H is dense in K(H) and is linearly spanned by
the rank-one projections (see for instance [75, pag. 55 − 56]).

Definition A.8. Let X and Y be Hilbert A-modules. For every x ∈ X and y ∈ Y we
define Θy,x : X → Y by

Θy,x(x′) := y · ⟨x, x′⟩A

This map is adjointable with Θy,x = Θ∗
x,y and we denote by KA(X,Y ) the closed linear

subspace of LA(X,Y ) spanned by the elements Θy,x for x ∈ X, y ∈ Y .

Proposition A.9. KA(X) is a closed two-sided ideal in LA(X).

Proof. See [92, Lemma 2.25].
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A.1 Tensor Products of Hilbert Modules
Let us now discuss the tensor product constructions of Hilbert modules.

A.1.1 Internal Tensor Product

Let X1 and X2 be Hilbert modules over C∗-algebras B1 and B2, respectively. Let φ : B1 →
LB2(X2) be a ∗-homomorphism and regard in this way X2 as a left B1-module. The
algebraic inner tensor product X1 ⊙φ X2 is defined as the free vector space generated by
elements of the form x1 ⊗ x2 such that

(x1 · b) ⊗ x2 = x1 ⊗ (b · x2)

for b ∈ B1. This is a right B2-module by setting (x1 ⊗ x2) · b = x1 ⊗ x2b. We define a
B2-valued inner product on the tensor product by

⟨⟨x1 ⊗ x2, y1 ⊗ y2⟩⟩B2 :=
〈
x2, φ(⟨x1, y1⟩B1)y2

〉
B2

(A.1)

We consider the submodule N of vectors in X1 ⊙φ X2 of length 0 with respect to the
inner product (A.1); the internal tensor product X1 ⊗φ X2 is the completion of the
algebraic tensor product X1 ⊙φ X2 quotiented by N with respect to the inner product
(A.1). This tensor product is sometimes denoted also by X1 ⊗B1 X2.

Note that if φ : B1 → B2 is a ∗-homomorphism, then B1 ⊗φ B2 is isomorphic to
the closed right ideal φ(B1)B2 of B2 generated by B1. In particular, if φ is a unital
homomorphism of unital C∗-algebras (or, more generally, if φ is essential in the sense
that φ(B1) contains an approximate units for B2), then B1 ⊗φ B2 is isomorphic to B2.

A.1.2 External Tensor Product

Let X1 and X2 be Hilbert modules over C∗-algebras B1 and B2, respectively. The alge-
braic external tensor product X1 ⊙ X2 is defined as the free vector space generated by
elements of the form x1 ⊗ x2 such that λx1 ⊗ x2 = x1 ⊗ λx2 for any λ ∈ C endowed with
a right module over the algebraic tensor product B1 ⊙B2 by

(x1 ⊗ x2)(b1 ⊗ b2) = x1b1 ⊗ x2b2 (A.2)

for xi ∈ Xi and bi ∈ Bi. We define a B1 ⊗B2-inner product on X1 ⊙X2 by

⟨⟨x1 ⊗ x2, y1 ⊗ y2⟩⟩B1⊗B2 :=
〈
x1, y1

〉
B1

⊗
〈
x2, y2

〉
B2

(A.3)

We consider the submodule N of vectors in X1 ⊙X2 of length 0 with respect to the inner
product (A.3); the external tensor product X1 ⊗X2 is the completion of the algebraic
tensor product X1 ⊙X2 quotiented by N with respect to the inner product (A.3).

A.2 Graded Algebras and Modules
Definition A.10. Let A be a C∗-algebra. A grading on A is a ∗-automorphism β such
that β2 = idA; we say that A is Z2-graded if it admits a grading.

When A is Z2-graded, it decomposes into the eigenspaces of β, i.e. A = A0 ⊕ A1
where A0 := { a ∈ A | β(a) = a } and A1 := { a ∈ A | β(a) = −a }. Note that this is just
a Banach space decomposition; in particular A0 is a C∗-algebra but A1 not. An element
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a which is in Aj for j = 0 or 1 is called homogeneous; in this case the index j is called
its degree and we write deg(a) = j. Note that if a ∈ Ai and b ∈ Aj , then ab ∈ Ai+j

where the sum i+ j is taken in Z2. Given a ∈ A = A0 ⊕A1, we denote by a = a(0) + a(1)

the decomposition of a; in this case, the action of β is given by β(a(0) +a(1)) = a(0) −a(1).
The graded commutator of a Z2-graded C∗-algebra A is defined to be the unique
bilinear map [·, ·] : A × A → A satisfying [a, b] = ab + (−1)ijba for a ∈ Ai and b ∈ Aj .
A homomorphism φ : A → B of graded C∗-algebras is a graded homomorphism if
φ ◦ βA = βB ◦ φ, namely if φ(Aj) ⊆ Bj for j = 0, 1.

Example A.11. Let A an ungraded C∗-algebra. The grading on A⊕A given by (a, b) 7→
(a,−b) is called the standard even grading; the even and odd elements are given
respectively by (A⊕A)0 = { (a, 0) | a ∈ A } and (A⊕A)1 = { (0, a) | a ∈ A }.

Example A.12. Let A an ungraded C∗-algebra. The grading on A ⊕ A given by
(a, b) 7→ (b, a) is called the standard odd grading; the even and odd elements are
given respectively by (A⊕A)0 = { (a, a) | a ∈ A } and (A⊕A)1 = { (a,−a) | a ∈ A }.

Definition A.13. Let A be a Z2-graded C∗-algebra. A graded Hilbert A-module is
a Hilbert A-module X equipped with a linear bijection S : X → X (called the grading
operator) such that S2 = IdX and

(1) S(xa) = S(x)β(a) for any x ∈ X and b ∈ A

(2) ⟨Sx, Sy⟩ = β(⟨x, y⟩A) for any x, y ∈ X

As in the case of C∗-algebras, we have that X = X0 ⊕X1 (where X0 and X1 are the
eigenspaces of S). Note that XiBj ⊆ Xi+j and that ⟨Xi, Xj⟩ ⊆ Ai+j for any i, j ∈ Z2. If
X is a graded Hilbert A-module, we denote by Xop the graded Hilbert A-module obtained
from X by interchanging X0 and X1; analogously, we write ĤA for HA⊕Hop

A endowed with
the standard even grading. Note that any grading S on a Hilbert A-module X induces
naturally a grading on the space LA(X) by T 7→ STS−1.

Let us now discuss graded tensor products. Let A and B be graded C∗-algebras and
A⊙B their algebraic tensor product. We define a product and involution on A⊙B by

(1) (a1⊗̂b1)(a2⊗̂b2) := (−1)deg(b1)·deg(a2)(a1a2⊗̂b1b2)

(2) (a1⊗̂b1)∗ := (−1)deg(b)·deg(a)(a∗⊗̂b∗)

for homogeneous elementary tensors. The algebraic tensor product with this operations
is a ∗-algebra denoted by A⊙̂B; the maximal graded tensor product A⊗̂B of A and B is
then the universal enveloping algebra of A⊙̂B.

If X1 and X2 are graded Hilbert modules over A and B respectively, and φ is a
graded ∗-homomorphism from A to B, we define the internal tensor product X1⊗̂X2 as
their ordinary tensor product with grading deg(x⊗̂y) = deg(x) + deg(y). The formula for
the external product must be modified as well: (A.2) and (A.3) become respectively

(x1 ⊗ x2)(b1 ⊗ b2) = (−1)deg(x2)·deg(b1)x1b1 ⊗ x2b2

⟨⟨x1 ⊗ x2, y1 ⊗ y2⟩⟩B1⊗B2 = (−1)deg(x2)(deg(x1)+deg(y1))〈x1, y1
〉

B1
⊗
〈
x2, y2

〉
B2



Appendix B
Operator ∗-Modules

Let X be a Banach space over the complex numbers and denote by ∥·∥X : X → [0,+∞)
its norm. We denote by M(C) the ∗-algebra of infinite matrices over C with only finitely
many entries different from 0 and M(X) := M(C) ⊗ X (where ⊗ is the algebraic tensor
product).

Definition B.1. A Banach space (X, ∥·∥) is called an operator space if there exists a
norm ∥·∥X : M(X) → [0,+∞) such that:

(1) ∥vxw∥ ≤ ∥v∥C ∥x∥X ∥w∥C for any v, w ∈ M(C) and x ∈ M(X)

(2) ∥pxp+ qyq∥X = max { ∥pxp∥X , ∥qyq∥X } for any x, y ∈ M(X) and any pair of
projections p, q ∈ M(C) with pq = 0

(3) ∥p⊗ x∥X = ∥x∥ for any rank-1 projection p ∈ M(C) and x ∈ X.

Note that the last condition implies that the norm ∥·∥X is compatible with the given
norm on X and so we will always write ∥·∥X . Let M(X) denote the completion of M(X)
in the operator norm; this can be given the structure of an operator space by using the
identification Mn(M(X)) ≃ M(Mn(X)).

Definition B.2. We say that a continuous linear map T : X → Y between operator spaces
is completely bounded if the quantity

∥T∥cb := sup
n∈N

∥id ⊗ T : Mn(C) ⊗X → Mn(C) ⊗ Y ∥

is finite. We denote by CB(X,Y ) the space of completely bounded linear maps from
X to Y .

We remark that a map T : X → Y is completely bounded if an only if it induces
a bounded map T : M(X) → M(Y ). We say that the operator spaces X and Y are
completely isomorphic if there exists a completely bounded vector space isomorphism
U : X → Y with completely bounded inverse.

Definition B.3. Let X be an operator space which is at the same time an algebra over
C. We say that X is an operator algebra if the multiplication map m : X ×X → X is
completely bounded, namely if there exists a constant K > 0 such that

∥xy∥X ≤ K ∥x∥X ∥y∥X
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for any x, y ∈ M(X). We say that X is an operator ∗-algebra if X has a completely
bounded involution ∗ : X → X.

Example B.4 (cf. [56]). Suppose we are given:
(1) A C∗-algebra B and a right Hilbert B-module E.

(2) A ∗-algebra A and a ∗-homomorphism π : A → LB(E)

(3) A self-adjoint unbounded operator D on E such that for each A the operator π(a)
maps the domain of D into itself and the commutator [D,π(a)] is in LB(E).

Let A1 ⊆ LB(E) denote the completion of π(A) in the norm

∥π(a)∥1 := ∥π(a)∥ + ∥[D,π(a)]∥ .

Then the ∗-subalgebra A1 ⊆ LB(E) can be given the structure on an operator ∗-algebra
by embedding it into L(E ⊕ E) as follows:

a 7−→
(

a 0
[D, a] a

)
.

Furthermore, the inclusion A1 → A into its C∗-completion and [D, ·] : A1 → LB(E) are
completely bounded maps. 2

Definition B.5. let A be an operator algebra and let X be a right-module over A. We
say that X is a right operator module over A if X is equipped with the structure of an
operator space such that the right action X × A → X is completely bounded, namely if
there exists a constant K > 0 such that

∥ξa∥X ≤ K ∥ξ∥X ∥a∥A

for all ξ ∈ M(X) and a ∈ M(A).
Definition B.6. Let A be an operator ∗-algebra and X a right operator module over A.
We say that X is a hermitian operator module if there exists a completely bounded
pairing ⟨·, ·⟩X : X ×X → A satisfying:

(1) ⟨x, yλ+ zµ⟩ = ⟨x, y⟩λ+ ⟨x, z⟩µ

(2) ⟨x, ya⟩ = ⟨x, y⟩a

(3) ⟨x, y⟩∗ = ⟨y, x⟩

for any x, y, z ∈ X, a ∈ A and λ, µ ∈ C.

Example B.7 (The standard module). Let A be an operator ∗-algebra. The standard
operator module HA over A is the completion of the space of finite sequences in M(A) in
its norm. Under the pairing ⟨·, ·⟩ : HA × HA → A given by

⟨(an)n, (bn)n⟩ :=
∑

n

a∗
nbn,

HA is a hermitian operator module. 2

Definition B.8. Let X be a hermitian operator module over the operator ∗-algebra A.
We say that X is an operator ∗-module if there exist a completely bounded self-adjoint
idempotent P : HA → HA and a completely bounded isomorphism of hermitian operator
modules X ≃ PHA.



Appendix C
Hopf Algebras and CQG

This Appendix gives a brief introduction to Hopf algebras and compact quantum groups
and their action and coactions. For a more detailed treatment we refer to [1, 69, 104].

C.1 Hopf Algebras
Given an unital algebra H, we denote by m : H ⊗ H → H the multiplication operator
m(e⊗ f) := ef and by η : C → H the unit map η(λ) := λ · 1H.

Definition C.1. A Hopf algebra is a unital associative algebra H equipped with:

(1) a unital algebra homomorphism ∆: H → H ⊗ H, called the coproduct, which is
coassociative in the sense that

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆

(2) a homomorphism ε : H → C, called the counit, such that

(ε⊗ id) ◦ ∆ = (id ⊗ ε) ◦ ∆ = id

(3) a linear map S : H → H, called the antipode, such that

m ◦ (S ⊗ id) ◦ ∆ = m ◦ (id ⊗ S) ◦ ∆ = η ◦ ε

We shall adopt Sweedler’s notation for which ∆h = ∑
h(1) ⊗ h(2) for any h ∈ H.

Further, the summation symbol is often omitted for sake of clearness. Using the axioms,
it is easy to see that the antipode map S must be an anti-linear homomorphism of algebras
[1, Theorem 2.1.4] and that it must be unique [69, Proposition 1.3.1].

Example C.2. Let G be a discrete group and H = CG its group algebra. One can make
H into a Hopf algebra by defining maps ∆, ε and S as follows:

∆(δg) := δg ⊗ δg ε(δg) := 1 S(δg) := δg−1 .

Then it is easy to check that CG is cocommutative (in the sense that F ◦ ∆ = ∆ for
F : H ⊗ H → H ⊗ H the flip map F (g⊗ f) = f ⊗ g) and that the antipode S is invertible
with S−1 = S. 2
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Definition C.3. A Hopf ∗-algebra is a Hopf algebra H equipped with an anti-linear
involution ∗ : H → H which makes H into an associative ∗-algebra and such that

(1) ∆(h∗) = h∗
(1) ⊗ h∗

(2) for every h ∈ H

(2) ε(h∗) = ε(h) for every h ∈ H

(3) (S ◦ ∗)2 = id

Note that point (3) in Definition C.3 means that the antipode S is invertible and that
(Sh)∗ = S−1(h∗) for any h ∈ E.

Example C.4. The Hopf algebra CG of a discrete group G admits a canonical star
structure given by the anti-linear extension of the map

∗ δg := δg−1 . (C.1)

However, differently from the antipode map which is unique, the star structure might not
be unique: for instance, if G is abelian, also the anti-linear extension of the map

⋆ δg := δg (C.2)

is a star structure. Note that we have used two different symbols for the two stars. 2

Given a Hopf algebra H, we say that an algebra A is a left H-module algebra if A
is a left H-module and the representation is compatible with the algebra structure in A,
namely if

h� (a1a2) = (h(1) � a1)(h(2) � a2)

for any h ∈ H and a1, a2 ∈ A. If A is unital, we further require that

h� 1 = ε(h)

for any h ∈ H. We say that a left A-module M over a left H-module algebra A is a left
H-equivariant A-module if M is a left H-module and

h� (am) = (h(1) � a)(h(2) �m)

for any h ∈ H, a ∈ A and m ∈ M . In this thesis, when dealing with a Hopf ∗-algebra H
and a H-module algebra A endowed with a ∗-involution, we will always assume that the
action of H is compatible with the star structure of A in the sense that

(h� a)∗ = (Sh)∗ � a∗ (C.3)

for all a ∈ A and h ∈ H.

C.2 Compact Quantum Groups

It is well known that the C∗-completion C∗
r (G) of the group algebra CG is in general not

a Hopf algebra as the counit map and the antipode map may not be bounded (see for
instance [106, Remark 3.3]). It turns out that the right notion to deal with this situation
is the following.
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Definition C.5 (cf. [104]). A C∗-algebraic compact quantum group (or CQG) is a
unital C∗-algebra Q equipped with a unital ∗-homomorphism ∆: Q → Q⊗Q such that:

(1) ∆ is coassociative in the sense that (∆ ⊗ idQ) ◦ ∆ = (idQ ⊗ ∆) ◦ ∆

(2) The subspaces

span { (p⊗ 1Q)∆(q) | p, q ∈ Q } span { (1Q ⊗ p)∆(q) | p, q ∈ Q } (C.4)

are norm dense in Q⊗Q.

Example C.6. Let G be a compact topological group and Q = C(G) the unital C∗-
algebra of continuous functions on G with values in C and pointwise multiplication. Then
Q is a CQG with respect to the comultiplication ∆: C(G) → C(G) ⊗ C(G) ≃ C(G×G)
given by

(∆f)(g, h) := f(gh)

for g, h ∈ G. In this case, the coassociativity condition is the associativity of the product
of G and conditions (C.4) represent the cancellation property of the product in G. 2

Example C.7. Under the comultiplication introduced in Example C.2, the C∗-algebra
C∗

r (G) for G discrete is a CQG. 2

Differently from algebras, the natural environment to study “actions” of compact
quantum groups on spectral triples is the one of coactions, corepresentations and comod-
ules which we now briefly recall.

Definition C.8. We say that a CQG (Q,∆) coacts on a unital C∗-algebra A if there
exists a unital C∗-homomorphism (called coaction) θ : A → A⊗Q such that:

(1) (θ ⊗ idQ)θ = (idA ⊗ ∆)θ

(2) span { θ(a)(1A ⊗ b) | a ∈ A, b ∈ Q } is norm dense in A⊗Q.

In this case we say that A is a right Q-comodule. We adopt an analogue of the Sweedler
notation for the coproduct and we denote an element θ(b) = ∑n

i=1 bi ⊗ ci with bi ∈ B and
ci ∈ Q just by

θ(b) =
∑

b(−1) ⊗ b(0), (C.5)

omitting the summation index.

It is well known (cf. [108], [91]) that condition (2) in Definition C.8 is equivalent to
the existence of a norm-dense unital ∗-subalgebra A0 of A such that θ(A0) ⊆ A0 ⊙ Q0
and (id ⊗ ε)θ = idA0 .

Example C.9 (Dual Coaction). Consider a C∗-dynamical system (A,G, α) with A unital
and (for simplicity) assume that G is discrete, and set B = A⋊α,r G. The maps iA : A →
B ⊗ C∗

r (G) and iG : G → B ⊗ C∗
r (G) given by{
iA(a) := aδe ⊗ δe

iG(g) := 1Aδg ⊗ δg,
(C.6)

form a covariant representation of (A,G, α) on B ⊗ C∗
r (G), i.e.,

iG(g)iA(a)iG(g)∗ = δgaδ
∗
g ⊗ δgδeδ

∗
g = αg(a)δe ⊗ δe = iA(αg(a)).
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The integrated form α̂ := iA ⋊ iG : B → B⊗C∗
r (G), aδg 7→ aδg ⊗ δg, is a coaction (known

as the dual coaction) of G on A⋊α,r G since

(α̂⊗ id) ◦ α̂(aδg) = aδg ⊗ δg ⊗ δg = (id ⊗ ∆) ◦ α̂(aδg)

and the density condition is trivially satisfied. When G is abelian, it is known that
any coaction δ : B → B ⊗ C∗

r (G) is equivalent via Fourier transform to an action of the
Pontryagin dual group Ĝ. In particular, the dual coaction α̂ = iA ⋊ iG corresponds to the
dual action α̂ of Ĝ on A⋊α,r G given by

α̂γ(aδg) = γ(g)aδg, γ ∈ Ĝ.

We use α̂ to denote both the action and the coaction with a slight abuse of notation. 2

Definition C.10 (cf. [104]). A (unitary) corepresentation of a CQG (Q,∆) on a
Hilbert space H is a linear map Θ: H → H ⊗Q such that:

(1) (Θ ⊗ idQ)Θ = (idH ⊗ ∆)Θ

(2) Θ(H)Q is linearly dense in H ⊗Q

(3) ⟨Θ(x) | Θ(y)⟩ = ⟨x, y⟩ · 1Q for all x, y ∈ H, where ⟨· | ·⟩ is the usual scalar product
on the external tensor product of the Hilbert modules HC and QQ.

It turns out that when dealing with spectral triples, it is more convenient to see the
corepresentations of a (C∗-algebraic) quantum group (Q,∆) on a Hilbert space H as
unitary operators X ∈ LQ(H ⊗Q) ≃ M(K(H) ⊗Q) such that

(id ⊗ ∆)(X) = X(12)X(13). (C.7)

As shown in [104, Proposition 5.2.2], these two notions coincide in the following sense:

(1) If Θ: H → H ⊗Q is a unitary corepresentation, then the map

X : H ⊙Q → H ⊗Q x⊗ q 7→ Θ(x)q (C.8)

extends to a unitary operator X ∈ LQ(H ⊗Q) satisfying (C.7).

(2) If a unitary X ∈ LQ(H ⊗Q) satisfies (C.7), then the map

Θ: H → H ⊗Q x 7→ X(x⊗ 1Q)

is a unitary corepresentation as in Definition C.10.

Definition C.11. Let A be a unital C∗-algebra represented on a Hilbert space H and
(Q,∆) be a CQG coacting on A by θ : A → A ⊗ Q. We say that H is a Q-equivariant
A-module if there is a unitary corepresentation Θ: H → H ⊗Q such that

Θ(ax) = a(−1)x(−1) ⊗ a(0)x(0)

for every a ∈ A and x ∈ H.
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