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Introduction

This thesis is devoted to the study of some dynamic viscoelastic models in domains with
prescribed growing cracks. From the mathematical point of view, the study of these models,
with prescribed growing cracks, is the first step to the study of Fracture Mechanics in which
the evolution of the crack is unknown (see for example [6, 13, 16, 38, 48]).

Let T and d be a positive real number and a natural number. Let Ω ⊂ Rd be an
open bounded set with Lipschitz boundary, which represents the reference configuration of
the viscoelastic material, and Γ ⊂ Ω a (d − 1)-dimensional closed set, which describes the
prescribed path of the crack. We consider {Γt}t∈[0,T ] a family of closed subsets of Γ increasing
in time with respect to the inclusion, which represents the evolution of the crack, and finally
let u(t) : Ω \ Γt → Rd be the displacement. In this setting, the displacement u solves the
following system out of the crack

ü(t)− div(σ(t)) = f(t) in Ω \ Γt, t ∈ [0, T ] (1)

with some prescribed boundary and initial conditions. Here f is the loading term and σ is
the stress tensor, which in our models can linearly depend on both the strain eu := ∇u+∇uT

2
and its first derivative in time eu̇.

Some materials, or materials under some conditions, exhibit a time-dependent response to
a given stress or strain, and this can be caused by a change in the properties of the material
and by viscosity. In the literature we can find two different classes of viscoelastic materials:
materials with short memory and materials with long memory. The term short memory refers
to a material in which the state of the stress at the instant t only depends on the strain at
that instant, and in the first chapter we analyze a local model in time whose stress-strain
dependence is the following

σ(t) := Aeu(t) + Ψ2(t)Beu̇(t) in Ω \ Γt, t ∈ [0, T ], (2)

where Ψ is a suitable function, A and B are the elastic and the viscous tensors. On the
contrary, the term long memory refers to a material in which the state of the stress at the
instant t depends also on the past history of the strain up to time t, and in the other chapters
of the thesis we deal with non-local models in time whose stress-strain dependences are the
following

σ(t) := (A + B)eu(t)−
∫ t

−∞

1

β
e
− t−τ

β Beu(τ)dτ in Ω \ Γt, t ∈ (−∞, T ], (3)

σ(t) := Aeu(t) +
d

dt

∫ t

0
F(t− τ)(eu(τ)− eu(0))dτ in Ω \ Γt, t ∈ [0, T ], (4)

where

F(t) := ρ(t)B, ρ(t) :=
1

Γ(1− α)tα
t ∈ [0, T ], (5)

Γ is Euler’s Gamma Function, β > 0, and α ∈ (0, 1).
The contents of the thesis are organized into four chapters.

vii



viii Introduction

Chapter 1: A dynamic model for viscoelastic materials with growing cracks

In the theory of Dynamic Fracture, the deformation of an elastic material evolves according
to the elastodynamics system, while the evolution of the crack follows Griffith’s dynamic
criterion, see [36]. This principle, originally formulated in [27] for the quasistatic setting,
states that there is an exact balance between the energy released during the evolution and
the energy used to increase the crack, which is postulated to be proportional to the area
increment of the crack itself.

The elastodynamics system leads to (1) with σ(t) = Aeu(t). In this case, Griffith’s
dynamic criterion reads

E(t) +Hd−1(Γt \ Γ0) = E(0) + work of external forces,

where E(t) is the total energy at time t, given by the sum of the kinetic and the elastic energy,
and Hd−1 is the (d− 1)-dimensional Hausdorff measure.

When we want to take into account the viscoelastic properties of the material, Kelvin-
Voigt’s model is the most common local model in time. If no crack is present, this leads to
the damped system

ü(t)− div(Aeu(t))− div(Beu̇(t)) = f(t) in Ω, t ∈ [0, T ]. (6)

As it is well-known, the solutions to (6) satisfy the energy-dissipation balance

E(t) +

∫ t

0

∫
Ω
Beu̇(τ, x) · eu̇(τ, x) dx dτ = E(0) + work of external forces. (7)

When we consider a crack in a viscoelastic material, Griffith’s dynamic criterion becomes

E(t) +Hd−1(Γt \ Γ0) +

∫ t

0

∫
Ω
Beu̇(τ, x) · eu̇(τ, x) dx dτ = E(0) + work of external forces. (8)

For a prescribed crack evolution, this model was already considered by [13] in the antiplane
case, and more in general by [48] for the vector-valued case. As proved in the quoted papers,
the solutions to (6) on a domain with a prescribed time-dependent crack, i.e., with Ω replaced
by Ω \ Γt, satisfy (7) for every time. This equality implies that (8) cannot be satisfied
unless Γt = Γ0 for every t. This phenomenon was already well-known in Mechanics as the
Viscoelastic Paradox, see for instance [47, Chapter 7].

To overcome this problem, in [7] which is a joint work with M. Caponi, we modify Kelvin-
Voigt’s model by considering a possibly degenerate viscosity term depending on t and x.
More precisely, we study system (1) with the stress-strain dependence (2), i.e.

ü(t)− div(Aeu(t))− div(Ψ2(t)Beu̇(t)) = f(t) in Ω \ Γt, t ∈ [0, T ]. (9)

On the function Ψ we only require some regularity assumptions (see (1.7)); a particularly
interesting case is when Ψ(t) assumes the value zero on some points of Ω, which means that
the material is purely elastic in such a zone.

The main result of this chapter is Theorem 1.2.1, in which we show the existence of a
weak solution to (9). To this aim, we first perform a time discretization in the same spirit
of [13], and then we pass to the limit as the time step goes to zero by relying on energy
estimates; as a byproduct, we obtain the energy-dissipation inequality (1.39). By using the
change of variables method implemented in [16, 38], we also prove a uniqueness result, but
only in dimension d = 2 and when Ψ(t) vanishes on a neighborhood of the tip of Γt.

We complete our work by providing an example in d = 2 of a weak solution to (9) for
which the fracture can grow while balancing the energy. More precisely, when the crack Γt
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moves with constant speed along the x1-axis and Ψ(t) is zero in a neighborhood of the crack
tip, we construct a function u which solves (9) and satisfies

E(t) +H1(Γt \ Γ0) +

∫ t

0

∫
Ω
|Ψ(τ, x)|2Beu̇(τ, x) · eu̇(τ, x) dx dτ

= E(0) + work of external forces. (10)

Notice that this is the natural extension of Griffith’s dynamic criterion (8) to this setting.

Chapter 2: A dynamic model with memory for viscoelasticity in domains
with time-dependent cracks

In this chapter we study the dynamic evolution of viscoelastic materials with long memory in
domains with prescribed growing cracks. When no crack is present, important contributions
in the theory of linear viscoelasticity are due to such scientists as Maxwell, Kelvin, and Voigt.
Boltzmann was the first to develop a three-dimensional theory of isotropic viscoelasticity in
[5], and later Volterra in [49] obtained similar results for anisotropic solids.

As you can find in [24] and [25], in the case of viscoelastic materials with long memory
the general stress-strain dependence is the following

σ(t) := G(0)∇u(t) +

∫ t

−∞
Ġ(t− τ)∇u(τ)dτ in Ω, t ∈ (−∞, T ],

for a suitable choice of the memory kernel G, and with some prescribed boundary and initial
conditions. In particular, in the case of Maxwell’s model the kernel G has an exponential form
(see for example [47]), hence the displacement u satisfies (1) with the stress-strain dependence
(3), i.e.

ü(t)− div((A + B)eu(t)) +

∫ t

−∞

1

β
e
− t−τ

β div(Beu(τ))dτ = `(t) in Ω, t ∈ [0, T ], (11)

where β > 0 is a material constant, and `(t) is the external loading term at time t. As in
[12, 24], we suppose that the past history of the displacement up to time 0 is already known,
hence we have the following boundary and initial conditions

u(t) = z(t) on ∂Ω, t ∈ [0, T ], (12)

u(t) = uin(t) in Ω, t ∈ (−∞, 0], (13)

where z and uin are prescribed functions, the latter representing the history of the displace-
ment for t ≤ 0.

In this chapter, we consider Maxwell’s model in the context of fractures and when the
crack evolution t 7→ Γt is prescribed. In this case, the displacement u satisfies (11) on the
cracked domains Ω \ Γt. Thanks to (13) it is convenient to write system (11) as

ü(t)− div((A + B)eu(t)) +

∫ t

0

1

β
e
− t−τ

β div(Beu(τ))dτ

= `(t)−
∫ 0

−∞

1

β
e
− t−τ

β div(Beuin(τ))dτ in Ω \ Γt, t ∈ [0, T ]. (14)

The main results of this chapter are Theorems 2.2.1 and 2.3.3, in which we prove, by two
different methods, the existence of a solution to (14).

The first method, considered in Theorem 2.2.1, is based on a generalization of Lax-
Milgram’s Theorem ([33, Chapter 3, Theorem 1.1]). We follow the lines of the proof of
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Theorem 2.1 in [11]. In doing so, the main difficulty is given by the fact that the set Ω \ Γt,
where the system (14) holds, depends on time. This requires the introduction of suitable
function spaces used to adapt the proof in [11].

The second method, provided by Theorem 2.3.3, is based on a time discretization scheme
that yields a solution which, in addition, satisfies the energy-dissipation inequality (2.132).
This procedure, adopted in [13] for the wave equation in a time-dependent domain, consists
of the following steps: time discretization, construction of an approximate solution, discrete
energy estimates, and passage to the limit.

The main difficulty in applying this procedure, in the same way it was done in [13], is
the identification of the term in the energy-dissipation inequality which corresponds to the

non-local in time viscous term
∫ t

0
1
β e
− t−τ

β Beu(τ)dτ appearing in (14).

To fix this issue, given w0 we introduce the auxiliary variable

w(t) := w0e
− t−τ

β +

∫ t

0

1

β
e
− t−τ

β eu(τ)dτ in Ω \ Γt, t ∈ [0, T ],

and we transform our system (14) into an equivalent coupled system (see Definition 2.3.1)
of two equations in the two variables u and w, without long memory terms, which has to
be solved on the time-dependent domain Ω \ Γt. The advantage of this strategy lies in the
fact that we transform a non-local model (the system in the variable u) into a local one (the
coupled system in the two variables u and w).

We discretize the time interval [0, T ] by using the time step τn := T
n . To define the

approximate solution (un, wn) at time (k+1)τn, we solve an incremental problem (see (2.94))
depending on the values of (un, wn) at times (k − 1)τn and kτn. Since the new system has
a natural notion of energy, we also obtain a discrete energy estimate for (un, wn). Then,
we extend (un, wn) to the whole interval [0, T ] by a suitable interpolation, and by using the
energy estimates together with a compactness result we pass to the limit, along a subsequence
of (un, wn). It is now possible to prove that the limit of this subsequence of (un, wn) is
a solution to the coupled system, which is equivalent to our viscoelastic dynamic system
(14). As a byproduct, from the discrete energy estimates we obtain the energy-dissipation
inequality (2.132).

Chapter 3: An existence result for the fractional Kelvin-Voigt’s model on
time-dependent cracked domains

This chapter deals with the mathematical analysis of the dynamics of a different kind of
viscoelastic materials in the presence of external forces and time-dependent cracks.

In the classical theory of linear viscoelasticity, the constitutive stress-strain dependence
of the so called Kelvin-Voigt’s model is given by

σ(t) = Aeu(t) + Beu̇(t) in Ω \ Γt, t ∈ [0, T ]. (15)

The local model associated to (15) has already been widely studied and we can find several
existence results in the literature; we refer to [6, 7, 13, 16, 38, 48] for existence and uniqueness
results in the pure elastodynamics case (B = 0) and in the classic Kelvin-Voigt’s one.

In recent years, materials whose constitutive equations can be described by non-local
models are of increasing interest. For solid viscoelastic materials, some experiments are
particularly in agreement with models using fractional derivative, see for example [22, 23, 46,
50] and the references therein.

In this chapter, which contains the results of [8] obtained in collaboration with M. Caponi,
we focus on the fractional Kelvin-Voigt’s model, i.e. we consider the following constitutive
stress-strain dependence

σ(t) = Aeu(t) + BDα
t eu(t) in Ω \ Γt, t ∈ [0, T ],
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where Dα
t denotes a fractional derivative of order α ∈ (0, 1). In the literature we can find

several definitions for the fractional derivative of a function g : (a, b) → R; here we focus on
the most used ones which are Riemann-Liouville’s derivative of order α at starting point a

RL
aD

α
t g(t) :=

1

Γ(1− α)

d

dt

∫ t

a

g(τ)

(t− τ)α
dτ,

and Caputo’s derivative of order α at starting point a

C
aD

α
t g(t) :=

1

Γ(1− α)

∫ t

a

ġ(τ)

(t− τ)α
dτ,

where Γ denotes Euler’s Gamma function. Notice that in order to define Caputo’s derivative
the function g must be differentiable, while this is not necessary for Riemann-Liouville’s
derivative. Given g ∈ AC([a, b]), and t ∈ (a, b) we have the following relation between
Riemann-Liouville’s and Caputo’s derivatives (see, e.g., [28]):

RL
aD

α
t g(t) = C

aD
α
t g(t) +

1

Γ(1− α)

g(a)

(t− a)α
. (16)

In particular, when g(a) = 0, these two notions coincide. For more properties regarding these
two fractional derivatives, we refer for example to [9, 35, 41, 43] and the references therein.

In this chapter we use Caputo’s derivative, which means we consider the dynamic system

ü(t)− div(Aeu(t))− div(B C
0D

α
t eu(t)) = f(t) in Ω \ Γt, t ∈ [0, T ]. (17)

One of the qualities of this definition for the fractional derivative is that the initial conditions
can be imposed in the classical sense, see for example [35, 41]. The choice of 0 as a starting
point is due to the fact that we want to couple the dynamic system with the initial conditions
at time t = 0.

Dealing with (17) is very difficult, since in the definition of C0D
α
t eu(t) we need that eu is

differentiable, which is a very strong request. Hence, we rephrase Caputo’s derivative in a
more suitable way. Thanks to (16) for g ∈ AC([0, T ]) we can write

C
0D

α
t g(t) =

1

Γ(1− α)

d

dt

∫ t

0

1

(t− τ)α
(g(τ)− g(0)) dτ. (18)

This formulation of Caputo’s derivative is well-posed in the distributional sense also when
the function g is only integrable. We point out that formula (18) can be found in the recent
literature on fractional derivatives, where it is used to define the notion of weak Caputo’s
derivative for less regular functions, see for example [21, 32].

Thanks to formula (18), we can write system (17) in a weaker form (see Definition 3.1.2)
as (1) with the stress-strain dependence (4), i.e.

ü(t)−div
(
Aeu(t)+

d

dt

∫ t

0
F(t−τ)(eu(τ)−eu(0)) dτ

)
= f(t) in Ω\Γt, t ∈ [0, T ], (19)

where F is defined by (5). Notice that the scalar function ρ appearing in F is positive,
decreasing, and convex on (0,∞). Moreover, ρ ∈ L1(0, T ) for every T > 0, but it is not
bounded on (0, T ). In particular, we cannot compute the derivative in front of the convolution
integral in (19).

In the literature we can find several existence and uniqueness results for fractional type
systems related to (19), but only when Ω is a smooth domain without cracks. For example
in [10] the authors studied an integral version of (19) with eu replaced by∇u, and in [4, 29, 40]
other fractional viscoelastic models are considered and the existence of solutions is obtained
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via Laplace’s transform. In the case of prescribed fracture there are no existence results for
the problem (19), since most of the previous techniques fail because the set Ω\Γt is irregular
and time-dependent.

To prove the existence of a solution to (19) we proceed into two steps, taking inspiration
from [10]. First we consider a regularized version of (19), where we replace the kernel F by a
regular kernel G ∈ C2([0, T ]). Then we prove the existence of a solution to the more regular
system

ü(t)−div
(
Aeu(t)+

d

dt

∫ t

0
G(t−τ)(eu(τ)−eu(0))dτ

)
= f(t) in Ω\Γt, t ∈ [0, T ], (20)

and we show that this solution satisfies a uniform bound depending on the L1-norm of G.
Finally, we consider a sequence of regular tensors Gε converging to F in L1 and we take the
solutions to (20) with G := Gε. By a compactness argument, we show that the sequence uε

converge to a function u∗ which solves (19). Moreover, we prove that this solution satisfies
an energy-dissipation inequality. We conclude this chapter by showing that, when the crack
is not moving, the fractional Kelvin-Voigt’s system (19) admits a unique solution.

Chapter 4: Quasistatic limit of a dynamic viscoelastic model with memory

In this chapter we consider a domain without cracks and we study a different problem for the
viscoelastic model with memory (11)–(13) of Chapter 2: the quasistatic limit. The results of
this chapter are obtained in collaboration with Prof. G. Dal Maso, see [18].

The quasistatic limit of the solutions to problem (11)–(13) means the limit of these so-
lutions when the rate of change of the data tends to zero. More precisely, given a small
parameter ε > 0, we consider the solution uε of (11)–(13) corresponding to `(εt), z(εt), and
uin(εt). To study the asymptotic behaviour of uε as ε→ 0+ it is convenient to introduce the
rescaled solution uε(t) := uε(t/ε), which turns out to be the solution of the system

ε2üε(t)−div((A+B)euε(t))+

∫ t

−∞

1

βε
e
− t−τ

βε div(Beuε(τ))dτ = `(t) in Ω, t ∈ [0, T ], (21)

with boundary and initial conditions (12) and (13).
Under different assumptions on `(t), z(t), and uin(t) we prove (Theorems 4.2.6 and 4.2.7)

that uε(t) converges, as ε→ 0+, to the solution u0(t) of the stationary problem

− div(Aeu0(t)) = `(t) in Ω, t ∈ [0, T ], (22)

with boundary condition (12).
By using just the energy-dissipation inequality, it is not difficult to prove a similar result

for the Kelvin-Voigt model, in which the viscosity term

− div(Beu(t)) +

∫ t

−∞

1

β
e
− t−τ

β div(Beu(τ))dτ (23)

is replaced by −div(Beu̇(t)). On the other hand, in the case of the equation of elastodynamics
without damping terms, i.e., when B = 0, by using the Fourier decomposition with respect to
the eigenfunctions of the operator −div(Aeu), we can easily see that the convergence of uε to
u0 does not hold in general. The purpose of this paper is to prove that the non-local damping
term (23) is enough to obtain the convergence of the solutions of the evolution problems to
the solution of the stationary problem.

Our result can be considered in the framework of the study of the quasistatic limits,
i.e. the convergence of the solutions to second order evolution equations with rescaled times
towards the solutions to the corresponding stationary equations. Similar problems in finite
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dimension have been studied in [26, 1, 37, 45]. A special case involving the wave equations
on time-dependent intervals in dimension one has been studied in [31, 42]. The main novelty
of our problem is the the non-local form of the damping term, given by (23).

The main tools to prove our results are two different estimates (Lemmas 4.2.8 and 4.4.2),
related to the energy-dissipation balance (4.24) and to the elliptic system (4.80) obtained
from (21) via Laplace Transform. After a precise statement of all assumptions, more details
on the line of proof will be given after Theorem 4.2.7.
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Notation

Basic notation. The space of m× d matrices with real entries is denoted by Rm×d, and in
the case m = d, the subspace of symmetric matrices is denoted by Rd×dsym. We denote by AT

the transpose of A ∈ Rd×d, and by Asym the symmetric part, namely Asym := 1
2(A + AT );

we use Id to denote the identity matrix in Rd×d. The Euclidian scalar product in Rd is
denoted by · and the corresponding Euclidian norm by | · |; the same notation is used also for
Rm×d. We denote by a⊗ b ∈ Rd×d the tensor product between two vectors a, b ∈ Rd, and by
a� b ∈ Rd×dsym the symmetrized tensor product, namely the symmetric part of a⊗ b.

The d-dimensional Lebesgue measure in Rd is denoted by Ld, and the (d−1)-dimensional
Hausdorff measure by Hd−1. Given a bounded open set Ω with Lipschitz boundary, we denote
by ν the outer unit normal vector to ∂Ω, which is defined Hd−1-a.e. on the boundary. We use
Br(x) to denote the ball of radius r and center x in Rd, namely Br(x) := {y ∈ Rd : |y−x| < r},
and id to denote the identity function in Rd, possibly restricted to a subset.

The partial derivatives with respect to the variable xi are denoted by ∂i or ∂xi . Given
a function u : Rd → Rm, we denote its Jacobian matrix by ∇u, whose components are
(∇u)ij := ∂jui for i = 1, . . . ,m and j = 1, . . . , d. When u : Rd → Rd, we use eu to de-
note its symmetrized gradient, namely eu := 1

2(∇u+∇uT ). Given u : Rd → R, we use ∆u to

denote its Laplacian, which is defined as ∆u :=
∑d

i=1 ∂
2
i u. For a tensor field T : Rd → Rm×d,

by div T we mean its divergence with respect to rows, namely (div T )i :=
∑d

j=1 ∂jTij for
i = 1, . . . ,m.
Function spaces. Given two metric spaces X and Y , we use C0(X;Y ) and Lip(X;Y ) to
denote, respectively, the space of continuous and Lipschitz functions from X to Y . Given
an open set Ω ⊂ Rd, we denote by Ck(Ω;Rm) the space of Rm-valued functions with k con-
tinuous derivatives; we use Ckc (Ω;Rm) and Ck,1(Ω;Rm) to denote, respectively, the subspace
of functions with compact support in Ω, and of functions whose k-derivatives are Lipschitz.
For every 1 ≤ p ≤ ∞ we denote by Lp(Ω;Rm) the Lebesgue space of p-th power integrable
functions, and by W k,p(Ω;Rm) the Sobolev space of functions with k derivatives; for p = 2
we set Hk(Ω;Rm) := W k,2(Ω;Rm), and for m = 1 we omit Rm in the previous spaces. The
boundary values of a Sobolev function are always intended in the sense of traces. The scalar
product in L2(Ω;Rm) is denoted by (·, ·)L2(Ω) and the norm in Lp(Ω;Rm) by ‖ · ‖Lp(Ω); a
similar notation is valid for the Sobolev spaces. For simplicity, we use ‖ · ‖L∞(Ω) to denote
also the supremum norm of continuous and bounded functions.

The norm of a generic Banach space X is denoted by ‖ · ‖X ; when X is a Hilbert space,
we use (·, ·)X to denote its scalar product. We denote by X ′ the dual of X, and by 〈·, ·〉X′
the duality product between X ′ and X. Given two Banach spaces X1 and X2, the space of
linear and continuous maps from X1 to X2 is denoted by L (X1;X2); given A ∈ L (X1;X2)
and u ∈ X1, we write Au ∈ X2 to denote the image of u under A.

Given an open interval (a, b) ⊂ R and 1 ≤ p ≤ ∞, we denote by Lp(a, b;X) the space
of Lp functions from (a, b) to X; we use W k,p(a, b;X) and Hk(a, b;X) (for p = 2) to denote
the Sobolev space of functions from (a, b) to X with k derivatives. Given u ∈ W 1,p(a, b;X),
we denote by u̇ ∈ Lp(a, b;X) its derivative in the sense distributions. The set of functions
from [a, b] to X with k continuous derivatives is denoted by Ck([a, b];X); we use Ckc (a, b;X)
to denote the subspace of functions with compact support in (a, b). The space of absolutely
continuous functions from [a, b] to X is denoted by AC([a, b];X); we use C0

w([a, b];X) to
denote the set of weakly continuous functions from [a, b] to X, namely

C0
w([a, b];X) := {u : [a, b]→ X : t 7→ 〈x′, u(t)〉X′ is continuous in [a, b] for every x′ ∈ X ′}.

When dealing with an element u ∈ H1(a, b;X) we always assume u to be the continuous
representative of its class. In particular, it makes sense to consider the pointwise value u(t)
for every t ∈ [a, b].





Chapter 1

A dynamic model for viscoelastic
materials with growing cracks

The chapter is organized as follows. In Section 1.1 we fix the notation adopted throughout the
chapter, we list the main assumptions on the family of cracks {Γt}t∈[0,T ] and on the function
Ψ, and we specify the notion of solution to (9). In Section 1.2 we state our main existence
result (Theorem 1.2.1), which is obtained by means of a time discretization scheme. We
conclude the proof of Theorem 1.2.1 in Section 1.3, where we show the validity of the initial
conditions (1.16) and the energy-dissipation inequality (1.39). Section 1.4 deals with the
uniqueness problem. Under stronger regularity assumptions on the cracks sets, in Theorem
1.4.5 we prove the uniqueness, but only when the space dimension is d = 2. To this aim, we
assume also that the function Ψ is zero in a neighborhood of the crack-tip. We conclude with
Section 1.5, where, in dimension d = 2 and for an antiplane evolution, we show an example
of a moving crack which satisfies the dynamic energy-dissipation balance (10).

The results presented here are obtained in collaboration with M. Caponi and are contained
in the published paper [7].

1.1 Preliminary results

Let T be a positive real number and let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary. Let ∂DΩ be a (possibly empty) Borel subset of ∂Ω and let ∂NΩ be its complement.
We assume the following hypotheses on the geometry of the cracks:

(E1) Γ ⊂ Ω is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;

(E2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ
is the union of two disjoint open sets U+ and U− with Lipschitz boundary;

(E3) {Γt}t∈[0,T ] is a family of closed subsets of Γ satisfying Γs ⊂ Γt for every 0 ≤ s ≤ t ≤ T .

Thanks (E1)–(E3) the space L2(Ω \Γt;Rm) coincides with L2(Ω;Rm) for every t ∈ [0, T ] and
m ∈ N. In particular, we can extend a function u ∈ L2(Ω\Γt;Rm) to a function in L2(Ω;Rm)
by setting u = 0 on Γt. Moreover, the trace of u ∈ H1(Ω \ Γ) is well defined on ∂Ω. Indeed,
we may find a finite number of open sets with Lipschitz boundary Uj ⊂ Ω \ Γ, j = 1, . . .m,
such that ∂Ω \ (Γ∩ ∂Ω) ⊂ ∪mj=1∂Uj . Since Hd−1(Γ∩ ∂Ω) = 0, there exists a constant C > 0,
depending only on Ω and Γ, such that

‖u‖L2(∂Ω) ≤ C‖u‖H1(Ω\Γ) for every u ∈ H1(Ω \ Γ;Rd). (1.1)

Similarly, we can find a finite number of open sets Uj ⊂ Ω \ Γ, j = 1, . . .m, with Lipschitz
boundary, such that Ω \Γ = ∪mj=1Uj . By using second Korn’s inequality in each Uj (see, e.g.,

3
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[39, Theorem 2.4]) and taking the sum over j we can find a constant CK , depending only on
Ω and Γ, such that

‖∇u‖2L2(Ω;Rd×d) ≤ CK
(
‖u‖2L2(Ω;Rd) + ‖eu‖2

L2(Ω;Rd×dsym)

)
for every u ∈ H1(Ω \ Γ;Rd), (1.2)

where eu is the symmetric part of ∇u, i.e., eu := 1
2(∇u+∇uT ).

For every t ∈ [0, T ] we define

Vt := {u ∈ L2(Ω \ Γt;Rd) : eu ∈ L2(Ω \ Γt;Rd×dsym)}.

Notice that in the definition of Vt we are considering only the distributional gradient of u in
Ω \Γt and not the one in Ω. The set Vt is a Hilbert space with respect to the following norm

‖u‖Vt := (‖u‖2 + ‖eu‖2)
1
2 for every u ∈ Vt.

To simplify our exposition, for every m ∈ N we set H := L2(Ω;Rm) and HN := L2(∂NΩ;Rm);
we always identify the dual of H by H itself and L2(0, T ;L2(Ω;Rm)) by L2((0, T )×Ω;Rm).

Thanks to (1.2), the space Vt coincides with the usual Sobolev space H1(Ω \ Γt;Rd).
Therefore, by (1.1), it makes sense to consider for every t ∈ [0, T ] the set

V D
t := {u ∈ Vt : u = 0 on ∂DΩ},

which is a Hilbert space with respect to ‖·‖Vt . Moreover, by combining (1.2) with (1.1), we
derive also the existence of a constant Ctr > 0 such that

‖u‖HN ≤ Ctr‖u‖V for every u ∈ V. (1.3)

Let A,B : Ω→ L (Rd×dsym;Rd×dsym) be the elastic and viscosity tensors, which are fourth-order
tensors such that

A,B ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), (1.4)

and which satisfy for a.e. x ∈ Ω the following properties:

A(x)ξ1 · ξ2 = ξ1 · A(x)ξ2, B(x)ξ1 · ξ2 = ξ1 · B(x)ξ2 for every ξ1, ξ2 ∈ Rd×dsym, (1.5)

cA|ξ|2 ≤ A(x)ξ · ξ ≤ CA|ξ|2, cB|ξ|2 ≤ B(x)ξ · ξ ≤ CB|ξ|2 for every ξ ∈ Rd×dsym, (1.6)

for some positive constants cA, cB, CA, and CB independent of x. Let Ψ: (0, T )× Ω→ R be
a function satisfying

Ψ ∈ L∞((0, T )× Ω), ∇Ψ ∈ L∞((0, T )× Ω;Rd). (1.7)

Given f ∈ L2(0, T ;H), z ∈ H2(0, T ;H) ∩ H1(0, T ;V0), N ∈ H1(0, T ;HN ), u0 ∈ V0 with
u0 − z(0) ∈ V D

0 , and u1 ∈ H, we want to find a solution to the viscoelastic dynamic system

ü(t)− div(Aeu(t))− div(Ψ2(t)Beu̇(t)) = f(t) in Ω \ Γt, t ∈ (0, T ), (1.8)

satisfying the following boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ), (1.9)

(Aeu(t) + Ψ2(t)Beu̇(t))ν = N(t) on ∂NΩ, t ∈ (0, T ), (1.10)

(Aeu(t) + Ψ2(t)Beu̇(t))ν = 0 on Γt, t ∈ (0, T ), (1.11)

u(0) = u0, u̇(0) = u1. (1.12)

As usual, the Neumann boundary conditions are only formal, and their meaning will be
specified in Definition 1.1.4.
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Throughout the chapter we always assume that the family {Γt}t∈[0,T ] satisfies (E1)–(E3),
as well as A, B, Ψ, f , z, N , u0, and u1 the previous hypotheses. Let us define the following
functional spaces:

V := {ϕ ∈ L2(0, T ;V ) : ϕ̇ ∈ L2(0, T ;H), ϕ(t) ∈ Vt for a.e. t ∈ (0, T )},
VD := {ϕ ∈ V : ϕ(t) ∈ V D

t for a.e. t ∈ (0, T )},
W := {u ∈ V : Ψu̇ ∈ L2(0, T ;V ),Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T )}.

Remark 1.1.1. In the classical viscoelastic case, namely when Ψ is identically equal to 1, the
solution u to system (1.8) has derivative u̇(t) ∈ Vt for a.e. t ∈ (0, T ) with eu̇ ∈ L2(0, T ;H).
For a generic Ψ we expect to have Ψeu̇ ∈ L2(0, T ;H). Therefore W is the natural setting
where looking for a solution to (1.8). Indeed, from a distributional point of view we have

Ψ(t)eu̇(t) = e(Ψ(t)u̇(t))−∇Ψ(t)� u̇(t) in D′(Ω \ Γt;Rd×dsym) for a.e. t ∈ (0, T ),

and e(Ψu̇),∇Ψ� u̇ ∈ L2(0, T ;H) if u ∈ W, thanks to (1.7).

Remark 1.1.2. The set W coincides with the space of functions u ∈ H1(0, T ;H) such that
u(t) ∈ Vt and Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ), and satisfying∫ T

0
‖u(t)‖2Vt + ‖Ψ(t)u̇(t)‖2Vtdt <∞. (1.13)

This is a consequence of the strong measurability of the maps t 7→ u(t) and t 7→ Ψ(t)u̇(t)
from (0, T ) into V , which gives that (1.13) is well defined and u,Ψu̇ ∈ L2(0, T ;V ). To prove
the strong measurability of these two maps, it is enough to observe that V is a separable
Hilbert space and that the maps t 7→ u̇(t) and t 7→ Ψ(t)u̇(t) from (0, T ) into V are weakly
measurable. Indeed, for every ϕ ∈ C∞c (Ω \ ΓT ) the maps

t 7→
∫

Ω\ΓT
eu(t, x)ϕ(x)dx = −

∫
Ω\ΓT

u(t, x)�∇ϕ(x)dx,

t 7→
∫

Ω\ΓT
e(Ψ(t, x)u̇(t, x))ϕ(x)dx = −

∫
Ω\ΓT

Ψ(t, x)u̇(t, x)�∇ϕ(x)dx

are measurable from (0, T ) into R, and C∞c (Ω \ ΓT ) is dense in L2(Ω).

Lemma 1.1.3. The spaces V and W are Hilbert spaces with respect to the following norms:

‖ϕ‖V :=
(
‖ϕ‖2L2(0,T ;V ) + ‖ϕ̇‖2L2(0,T ;H)

) 1
2

for every ϕ ∈ V,

‖u‖2W :=
(
‖u‖V + ‖Ψu̇‖2L2(0,T ;V )

) 1
2

for every u ∈ W.

Moreover, VD is a closed subspace of V.

Proof. It is clear that ‖·‖V and ‖·‖W are norms on V and W induced by scalar products. We
just have to check the completeness of such spaces with respect to these norms.

Let {ϕk}k ⊂ V be a Cauchy sequence. Then, {ϕk}k and {ϕ̇k}k are Cauchy sequences,
respectively, in L2(0, T ;V ) and L2(0, T ;H), which are complete Hilbert spaces. Thus there
exists ϕ ∈ L2(0, T ;V ) with ϕ̇ ∈ L2(0, T ;H) such that ϕk → ϕ in L2(0, T ;V ) and ϕ̇k → ϕ̇ in
L2(0, T ;H). In particular there exists a subsequence {ϕkj}j such that ϕkj (t)→ ϕ(t) in V for
a.e. t ∈ (0, T ). Since ϕkj (t) ∈ Vt for a.e. t ∈ (0, T ) we deduce that ϕ(t) ∈ Vt for a.e. t ∈ (0, T ).

Hence ϕ ∈ V and ϕk → ϕ in V. With a similar argument, we can prove that VD ⊂ V is a
closed subspace.
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Let us now consider a Cauchy sequence {uk}k ⊂ W. We have that {uk}k and {Ψu̇k}k
are Cauchy sequences, respectively, in V and L2(0, T ;V ), which are complete Hilbert spaces.
Thus there exist two functions u ∈ V and w ∈ L2(0, T ;V ) such that uk → u in V and
Ψu̇k → w in L2(0, T ;V ). Since u̇k → u̇ in L2(0, T ;H) and Ψ ∈ L∞((0, T ) × Ω), we also
have that Ψu̇k → Ψu̇ in L2(0, T ;H), which gives that w = Ψu̇. Finally let us prove that
Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ). By the fact that Ψu̇k → Ψu̇ in L2(0, T ;V ), there exists
a subsequence {Ψu̇kj}j such that Ψ(t)u̇kj (t) → Ψ(t)u̇(t) in V for a.e. t ∈ (0, T ). Since
Ψ(t)u̇kj (t) ∈ Vt for a.e. t ∈ (0, T ) we deduce that Ψ(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ). Hence
u ∈ W and uk → u in W.

We are now in position to define a weak solution to (1.8)–(1.11).

Definition 1.1.4 (Weak solution). We say that u ∈ W is a weak solution to system (1.8)
with boundary conditions (1.9)–(1.11) if u− z ∈ VD and

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt+

∫ T

0
(Be(Ψ(t)u̇(t)),Ψ(t)eϕ(t))dt

−
∫ T

0
(B∇Ψ(t)� u̇(t),Ψ(t)eϕ(t))dt =

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt

(1.14)

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Notice that the Neumann boundary conditions (1.10) and (1.11) can be obtained from
(1.14), by using integration by parts in space, only when u(t) and Γt are sufficiently regular.

Remark 1.1.5. If u̇ is regular enough (for example u̇ ∈ L2(0, T ;V ) with u̇(t) ∈ Vt for a.e.
t ∈ (0, T )), then we have Ψeu̇ = e(Ψu̇)−∇Ψ� u̇. Therefore (1.14) is coherent with the strong
formulation (1.8). In particular, for a function u ∈ W we can define

Ψeu̇ := e(Ψu̇)−∇Ψ� u̇ ∈ L2(0, T ;H), (1.15)

so that equation (1.14) can be rephrased as

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt+

∫ T

0
(BΨ(t)eu̇(t),Ψ(t)eϕ(t))dt

=

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Definition 1.1.6 (Initial conditions). We say that u ∈ W satisfies the initial conditions
(1.12) if

lim
h→0+

1

h

∫ h

0
(‖u(t)− u0‖2Vt + ‖u̇(t)− u1‖2)dt = 0. (1.16)

1.2 Existence

We now state our main existence result, whose proof will be given at the end of Section 1.3.

Theorem 1.2.1. There exists a weak solution u ∈ W to (1.8)–(1.11) satisfying the initial
conditions u(0) = u0 and u̇(0) = u1 in the sense of (1.16). Moreover u ∈ Cw([0, T ];V ),
u̇ ∈ Cw([0, T ];H) ∩H1(0, T ; (V D

0 )′), and

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H.
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To prove the existence of a weak solution to (1.8)–(1.11), we use a time discretization
scheme in the same spirit of [13]. Let us fix n ∈ N and set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1.

We define

V k
n := V D

kτn , Nk
n := N(kτn) zkn := z(kτn) for k = 0, . . . , n,

fkn := −
∫ kτn

(k−1)τn

f(s)ds, Ψk
n := −

∫ kτn

(k−1)τn

Ψ(s)ds, δNk
n :=

Nk
n −Nk−1

n

τn
for k = 1, . . . , n,

δz0
n := ż(0), δzkn :=

zkn − zk−1
n

τn
, δ2zkn :=

δzkn − δzk−1
n

τn
for k = 1, . . . , n,

For every k = 1, . . . , n let ukn ∈ V , with ukn − zkn ∈ V k
n , be the solution to

(δ2ukn, v) + (Aeukn, ev) + (BΨk
neδu

k
n,Ψ

k
nev) = (fkn , v) + (Nk

n , v)HN for every v ∈ V k
n , (1.17)

where

δukn :=
ukn − uk−1

n

τn
for k = 0, . . . , n, δ2ukn :=

δukn − δuk−1
n

τn
for k = 1, . . . , n.

The existence of a unique solution ukn to (1.17) is an easy application of Lax-Milgram’s
theorem.

Remark 1.2.2. Since δukn ∈ V(k−1)τn , then Ψk
neδu

k
n = e(Ψk

nu
k
n) − ∇Ψk

n � ukn, so that the
discrete equation (1.17) is coherent with the weak formulation given in (1.14).

In the next lemma, we show a uniform estimate for the family {ukn}nk=1 with respect to
n ∈ N that will be used later to pass to the limit in the discrete equation (1.17).

Lemma 1.2.3. There exists a constant C > 0, independent of n ∈ N, such that

max
i=1,..,n

‖δuin‖+ max
i=1,..,n

‖euin‖+
n∑
i=1

τn‖Ψi
neδu

i
n‖2 ≤ C. (1.18)

Proof. We fix n ∈ N. To simplify the notation we set

a(u, v) := (Aeu, ev), bkn(u, v) := (BΨk
neu,Ψ

k
nev) for every u, v ∈ V .

By taking as test function v = τn(δukn − δzkn) ∈ V k
n in (1.17), for k = 1, . . . , n we obtain

‖δukn‖2 − (δuk−1
n , δukn) + a(ukn, u

k
n)− a(ukn, u

k−1
n ) + τnb

k
n(δukn, δu

k
n) = τnL

k
n,

where

Lkn := (fkn , δu
k
n − δzkn) + (Nk

n , δu
k
n − δzkn)HN + (δ2ukn, δw

k
n) + a(ukn, δz

k
n) + bkn(δukn, δz

k
n).

Thanks to the following identities

‖δukn‖2 − (δuk−1
n , δukn) =

1

2
‖δukn‖2 −

1

2
‖δuk−1

n ‖2 +
τ2
n

2
‖δ2ukn‖2,

a(ukn, u
k
n)− a(ukn, u

k−1
n ) =

1

2
a(ukn, u

k
n)− 1

2
a(uk−1

n , uk−1
n ) +

τ2
n

2
a(δukn, δu

k
n),
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and by omitting the terms with τ2
n, which are non negative, we derive

1

2
‖δukn‖2 −

1

2
‖δuk−1

n ‖2 +
1

2
a(ukn, u

k
n)− 1

2
a(uk−1

n , uk−1
n ) + τnb

k
n(δukn, δu

k
n) ≤ τnLkn.

We fix i ∈ {1, . . . , n} and sum over k = 1, . . . , i to obtain the following discrete energy
inequality

1

2
‖δuin‖2 +

1

2
a(uin, u

i
n) +

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ E0 +

i∑
k=1

τnL
k
n, (1.19)

where E0 := 1
2‖u

1‖2 + 1
2(Aeu0, eu0). Let us now estimate the right-hand side in (1.19) from

above. By (1.3) and (1.4) we have∣∣∣∣ i∑
k=1

τn(fkn , δu
k
n − δzkn)

∣∣∣∣ ≤ ‖f‖2L2(0,T ;H) +
1

2
‖ż‖2L2(0,T ;H) +

1

2

i∑
k=1

τn‖δukn‖2H , (1.20)

∣∣∣∣ i∑
k=1

τna(ukn, δz
k
n)

∣∣∣∣ ≤ CA
2
‖ż‖2L2(0,T ;V0) +

CA
2

i∑
k=1

τn‖eukn‖2, (1.21)

∣∣∣∣ i∑
k=1

τn(Nk
n , δz

k
n)HN

∣∣∣∣ ≤ 1

2
‖N‖2L2(0,T ;HN ) +

C2
tr

2
‖ż‖2L2(0,T ;V0). (1.22)

For the other term involving Nk
n , we perform the following discrete integration by parts

i∑
k=1

τn(Nk
n , δu

k
n)HN = (N i

n, u
i
n)HN − (N(0), u0)HN −

i∑
k=1

τn(δNk
n , u

k−1
n )HN . (1.23)

Hence for every ε ∈ (0, 1), by using (1.3) and Young’s inequality, we get∣∣∣∣ i∑
k=1

τn(Nk
n , δu

k
n)HN

∣∣∣∣ (1.24)

≤ ε

2
‖uin‖2HN +

1

2ε
‖N‖2L∞(0,T ;HN ) + ‖N(0)‖HN ‖u

0‖HN +

i∑
k=1

τn‖δNk
n‖HN ‖u

k−1
n ‖2HN

≤ Cε +
εC2

tr

2
‖uin‖2V +

C2
tr

2

i∑
k=1

τn‖ukn‖2V , (1.25)

where Cε is a positive constant depending on ε. Thanks to Jensen’s inequality we can write

‖uln‖2V ≤ ‖euln‖2 +

(
‖u0‖+

l∑
j=1

τn‖δujn‖
)2

≤ ‖euln‖2 + 2‖u0‖2 + 2T
l∑

j=1

τn‖δujn‖2,

so that (1.24) can be further estimated as∣∣∣∣ i∑
k=1

τn(Nk
n , δu

k
n)HN

∣∣∣∣ ≤ Cε +
εC2

tr

2

(
‖euin‖2 + 2‖u0‖2 + 2T

i∑
j=1

τn‖δujn‖2
)

+
C2
tr

2

i∑
k=1

τn

(
‖eukn‖2 + 2‖u0‖2 + 2T

k∑
j=1

τn‖δujn‖2
)

≤ C̃ε +
εC2

tr

2
‖euin‖2 + C̃

i∑
k=1

τn

(
‖δukn‖2 + ‖eukn‖2

)
,

(1.26)
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for some positive constants C̃ε and C̃, with C̃ε depending on ε. Similarly to (1.23), we can
say

i∑
k=1

τn(δ2ukn, δz
k
n) = (δuin, δw

i
n)− (δu0

n, δw
0
n)−

i∑
k=1

τn(δuk−1
n , δ2wkn), (1.27)

from which we deduce that for every ε > 0∣∣∣∣ i∑
k=1

τn(δ2ukn, δz
k
n)

∣∣∣∣
≤ ‖δuin‖‖δzin‖+ ‖u1‖‖ż(0)‖+

i∑
k=1

τn‖δuk−1
n ‖‖δ2zkn‖

≤ 1

2ε
‖δzin‖2 +

ε

2
‖δuin‖2 + ‖u1‖‖ż(0)‖+

1

2

i∑
k=1

τn‖δuk−1
n ‖2 +

1

2

i∑
k=1

τn‖δ2zkn‖2

≤ C̄ε +
ε

2
‖δuin‖2 +

1

2

i∑
k=1

τn‖δukn‖2, (1.28)

where C̄ε is a positive constant depending on ε. We estimate from above the last term in
right-hand side of (1.19) in the following way

i∑
k=1

τnb
k
n(δukn, δz

k
n) ≤

i∑
k=1

τn(bkn(δukn, δu
k
n))

1
2 (bkn(δzkn, δz

k
n))

1
2

≤ 1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) +

1

2
‖B‖∞‖Ψ‖2∞‖ż‖2L2(0,T ;V0).

(1.29)

By considering (1.19)–(1.29) and using (1.6) we obtain

(1− ε
2

)
‖δuin‖2 +

cA − εC2
tr

2
‖euin‖2 +

1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ Ĉε + Ĉ

i∑
k=1

τn

(
‖δukn‖2 + ‖eukn‖2

)
for two positive constants Ĉε and Ĉ, with Ĉε depending on ε. We choose ε < 1

2 min
{

1, cA
C2
tr

}
to derive the following estimate

1

4
‖δuin‖2 +

1

4
‖euin‖2 +

1

2

i∑
k=1

τnb
k
n(δukn, δu

k
n) ≤ C1 + C2

i∑
k=1

τn

(
‖δukn‖2 + ‖eukn‖2

)
, (1.30)

where C1 and C2 are two positive constants depending only on u0, u1, f , N , and z. Thanks
to a discrete version of Gronwall’s lemma (see, e.g., [2, Lemma 3.2.4]) we deduce the existence
of a constant C3 > 0, independent of i and n, such that

‖δuin‖+ ‖euin‖ ≤ C3 for every i = 1, . . . , n and for every n ∈ N.

By combining this last estimate with (1.30) and (1.6) we finally get (1.18) and we conclude.

We now want to pass to the limit into the discrete equation (1.17) to obtain a weak
solution to (1.8)–(1.11). We start by defining the following approximating sequences of our
limit solution

un(t) = ukn + (t− kτn)δukn for t ∈ [(k − 1)τn, kτn] and k = 1, . . . , n,
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u+
n (t) = ukn for t ∈ ((k − 1)τn, kτn] and k = 1, . . . , n, u+

n (0) = u0
n,

u−n (t) = uk−1
n for t ∈ [(k − 1)τn, kτn) and k = 1, . . . , n, u−n (T ) = unn.

Moreover, we consider also the sequences

ũn(t) = δukn + (t− kτn)δ2ukn for t ∈ [(k − 1)τn, kτn] and k = 1, . . . , n,

ũ+
n (t) = δukn for t ∈ ((k − 1)τn, kτn] and k = 1, . . . , n, ũ+

n (0) = δu0
n,

ũ−n (t) = δuk−1
n for t ∈ [(k − 1)τn, kτn) and k = 1, . . . , n, ũ−n (T ) = δunn,

which approximate the first time derivative of the solution. Notice that un ∈ H1(0, T ;H)
with u̇n(t) = δukn = ũ+

n (t) for t ∈ ((k − 1)τn, kτn) and k = 1, . . . , n. Let us approximate Ψ
and z by

Ψ+
n (t) := Ψk

n, z+
n (t) := zkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

Ψ−n (t) := Ψk−1
n , z−n (t) := zk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Lemma 1.2.4. There exists a function u ∈ W, with u − z ∈ VD, such that, up to a not
relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, u±n
L2(0,T ;V )−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇, (1.31)

∇Ψ±n � ũ±n
L2(0,T ;H)−−−−−−⇀
n→∞

∇Ψ� u̇, e(Ψ±n ũ
±
n )

L2(0,T ;H)−−−−−−⇀
n→∞

e(Ψu̇). (1.32)

Proof. Thanks to Lemma 1.2.3 the sequences {un}n ⊂ H1(0, T ;H) ∩ L∞(0, T ;V ), {u±n }n ⊂
L∞(0, T ;V ), and {ũ±n }n ⊂ L∞(0, T ;H) are uniformly bounded. By Banach-Alaoglu’s the-
orem there exist u ∈ H1(0, T ;H) and v ∈ L2(0, T ;V ) such that, up to a not relabeled
subsequence

un
L2(0,T ;V )−−−−−−⇀
n→∞

u, u̇n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇, u+
n

L2(0,T ;V )−−−−−−⇀
n→∞

v.

Since there exists a constant C > 0 such that

‖un − u+
n ‖L∞(0,T ;H) ≤ Cτn −−−→

n→∞
0,

we can conclude that u = v. Moreover, given that u−n (t) = u+
n (t − τn) for t ∈ (τn, T ),

ũ+
n (t) = u̇n(t) for a.e. t ∈ (0, T ), and ũ−n (t) = ũ+

n (t− τn) for t ∈ (τn, T ), we deduce

u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇.

By (1.18) we derive that the sequences {e(Ψ+
n ũ

+
n )}n ⊂ L2(0, T ;H) and {∇Ψ+

n � ũ+
n }n ⊂

L2(0, T ;H) are uniformly bounded. Indeed there exists a constant C > 0 independent of n
such that

‖∇Ψ+
n � ũ+

n ‖2L2(0,T ;H) =

n∑
k=1

∫ kτn

(k−1)τn

‖∇Ψk
n � δukn‖2dt ≤ ‖∇Ψ‖2∞

n∑
k=1

τn‖δukn‖2H ≤ C,

‖e(Ψ+
n ũ

+
n )‖2L2(0,T ;H) =

n∑
k=1

∫ kτn

(k−1)τn

‖e(Ψk
nδu

k
n)‖2dt =

n∑
k=1

τn‖Ψk
neδu

k
n +∇Ψk

n � δukn‖2

≤ 2
n∑
k=1

τn‖Ψk
neδu

k
n‖2 + 2

n∑
k=1

τn‖∇Ψk
n � δukn‖2 ≤ C.
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Therefore, there exists w1, w2 ∈ L2(0, T ;H) such that, up to a further not relabeled subse-
quence

∇Ψ+
n � ũ+

n
L2(0,T ;H)−−−−−−⇀
n→∞

w1, e(Ψ+
n ũ

+
n )

L2(0,T ;H)−−−−−−⇀
n→∞

w2.

We want to identify the limit functions w1 and w2. Consider ϕ ∈ L2(0, T ;H), then∫ T

0
(∇Ψ+

n � ũ+
n , ϕ)dt =

1

2

∫ T

0
(ũ+
n , ϕ∇Ψ+

n )dt+
1

2

∫ T

0
(ũ+
n , ϕ

T∇Ψ+
n )dt =

∫ T

0
(ũ+
n , ϕ

sym∇Ψ+
n )dt,

where ϕsym := ϕ+ϕT

2 . Since ũ+
n

L2(0,T ;H)−−−−−−⇀
n→∞

u̇ and ϕsym∇Ψ+
n

L2(0,T ;H)−−−−−−→
n→∞

ϕsym∇Ψ by dominated

convergence theorem, we obtain∫ T

0
(∇Ψ+

n � ũ+
n , ϕ)dt −−−→

n→∞

∫ T

0
(u̇, ϕsym∇Ψ)dt =

∫ T

0
(∇Ψ� u̇, ϕ)dt,

and so w1 = ∇Ψ� u̇. Moreover for φ ∈ L2(0, T ;H) we have∫ T

0
(Ψ+

n ũ
+
n , φ)dt =

∫ T

0
(ũ+
n , φΨ+

n )dt −−−→
n→∞

∫ T

0
(u̇,Ψφ)dt =

∫ T

0
(Ψu̇, φ)dt,

thanks to ũ+
n

L2(0,T ;H)−−−−−−⇀
n→∞

u̇ and Ψ+
nφ

L2(0,T ;H)−−−−−−→
n→∞

Ψφ, again implied by dominated convergence

theorem. Therefore Ψ+
n ũ

+
n

L2(0,T ;H)−−−−−−⇀
n→∞

Ψu̇, from which e(Ψ+
n ũ

+
n )

D′(0,T ;H)−−−−−−→
n→∞

e(Ψu̇), that gives

w2 = e(Ψu̇). In particular we have Ψu̇ ∈ L2(0, T ;V ). By arguing in a similar way we also
obtain

∇Ψ−n � ũ−n
L2(0,T ;H)−−−−−−⇀
n→∞

∇Ψ� u̇, e(Ψ−n ũ
−
n )

L2(0,T ;H)−−−−−−⇀
n→∞

e(Ψu̇).

Let us check that u ∈ W. To this aim, let us consider the following set

U := {v ∈ L2(0, T ;V ) : v(t) ∈ Vt for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ).

We have that U is a (strong) closed convex subset of L2(0, T ;V ), and so by Hahn-Banach
Theorem the set U is weakly closed. Notice that {u−n }n, {Ψ−n ũ−n }n ⊂ U , indeed

u−n (t) = uk−1
n ∈ V(k−1)τn ⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

Ψ−n (t)ũ−n (t) = Ψk−1
n δuk−1

n ∈ V(k−1)τn ⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u and Ψ−n ũ
−
n

L2(0,T ;V )−−−−−−⇀
n→∞

Ψu̇, we conclude that u,Ψu̇ ∈ U . Finally, to show

that u− z ∈ VD we observe

u−n (t)− z−n (t) = uk−1
n − zk−1

n ∈ V k−1
n ⊂ V D

t for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Therefore {u−n − z−n }n ⊂ {v ∈ L2(0, T ;V ) : v(t) ∈ V D
t for a.e. t ∈ (0, T )}, which is a (strong)

closed convex subset of L2(0, T ;V ), and so it is weakly closed. Since u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u and

w−n
L2(0,T ;V0)−−−−−−→
n→∞

z, we get that u(t)−z(t) ∈ V D
t for a.e. t ∈ (0, T ), which implies u−z ∈ VD.

We now use Lemma 1.2.4 to pass to the limit in the discrete equation (1.17).

Lemma 1.2.5. The limit function u ∈ W of Lemma 1.2.4 is a weak solution to (1.8)–(1.11).
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Proof. We only need to prove that u ∈ W satisfies (1.14). We fix n ∈ N, ϕ ∈ C1
c (0, T ;V )

such that ϕ(t) ∈ V D
t for every t ∈ (0, T ), and we consider

ϕkn := ϕ(kτn) for k = 0, . . . , n, δϕkn :=
ϕkn − ϕk−1

n

τn
for k = 1, . . . , n,

and the approximating sequences

ϕ+
n (t) := ϕkn, ϕ̃+

n (t) := δϕkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

If we use τnϕ
k
n ∈ V k

n as test function in (1.17), after summing over k = 1, ..., n, we get

n∑
k=1

τn(δ2ukn, ϕ
k
n) +

n∑
k=1

τn(Aeukn, eϕkn) +
n∑
k=1

τn(BΨk
neδu

k
n,Ψ

k
neϕ

k
n)

=
n∑
k=1

τn(fkn , ϕ
k
n) +

n∑
k=1

τn(Nk
n , ϕ

k
n)HN .

(1.33)

By these identities

n∑
k=1

τn(δ2ukn, ϕ
k
n) = −

n∑
k=1

τn(δuk−1
n , δϕkn) = −

∫ T

0
(ũ−n (t), ϕ̃+

n (t))dt,

from (1.33) we deduce

−
∫ T

0
(ũ−n , ϕ̃

+
n )dt+

∫ T

0
(Aeu+

n , eϕ
+
n )dt−

∫ T

0
(B∇Ψ+

n � ũ+
n , eϕ

+
n )dt

+

∫ T

0
(Be(Ψ+

n ũ
+
n ), eϕ+

n )dt =

∫ T

0
(f+
n , ϕ

+
n )dt+

∫ T

0
(N+

n , ϕ
+
n )HNdt. (1.34)

Thanks to (1.31), (1.32), and the following convergences

ϕ+
n

L2(0,T ;V )−−−−−−→
n→∞

ϕ, ϕ̃+
n

L2(0,T ;H)−−−−−−→
n→∞

ϕ̇, f+
n

L2(0,T ;H)−−−−−−→
n→∞

f, N+
n

L2(0,T ;HN )−−−−−−−→
n→∞

N,

we can pass to the limit in (1.34), and we get that u ∈ W satisfies (1.14) for every ϕ ∈
C1
c (0, T ;V ) such that ϕ(t) ∈ V D

t for every t ∈ (0, T ). Finally, by using a density argument
(see [17, Remark 2.9]), we conclude that u ∈ W is a weak solution to (1.8)–(1.11).

1.3 Initial conditions and Energy-Dissipation Inequality

To complete our existence result, it remains to prove that the function u ∈ W given by
Lemma 1.2.5 satisfies the initial conditions (1.12) in the sense of (1.16). Let us start by
showing that the second distributional derivative ü belongs to L2(0, T ; (V D

0 )′). If we consider
the discrete equation (1.17), for every v ∈ V D

0 ⊂ V k
n , with ‖v‖V0 ≤ 1, we have

|(δ2ukn, v)| ≤CA‖eukn‖+ ‖B‖∞‖Ψ‖∞‖Ψk
neδu

k
n‖+ ‖fkn‖+ Ctr‖Nk

n‖HN .

Therefore, taking the supremum over v ∈ V D
0 with ‖v‖V0 ≤ 1, we obtain the existence of a

positive constant C such that

‖δ2ukn‖2(V D0 )′ ≤ C
(
‖eukn‖2 + ‖Ψk

neδu
k
n‖2 + ‖fkn‖2 + ‖Nk

n‖2HN
)
.

If we multiply this inequality by τn and we sum over k = 1, . . . , n, we get

n∑
k=1

τn‖δ2ukn‖2(V D0 )′ (1.35)
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≤ C
( n∑
k=1

τn‖eukn‖2 +
n∑
k=1

τn‖Ψk
neδu

k
n‖2 + ‖f‖2L2(0,T ;H) + ‖N‖2L2(0,T ;HN )

)
. (1.36)

Thanks to (1.35) and Lemma 1.2.3 we conclude that

n∑
k=1

τn‖δ2ukn‖2(V D0 )′ ≤ C̃ for every n ∈ N,

for a positive constant C̃ independent on n ∈ N. In particular the sequence {ũn}n ⊂
H1(0, T ; (V D

0 )′) is uniformly bounded (notice that ˙̃un(t) = δ2ukn for t ∈ ((k − 1)τn, kτn)
and k = 1, . . . , n). Hence, up to extract a further (not relabeled) subsequence from the one
of Lemma 1.2.4, we get

ũn
H1(0,T ;(V D0 )′)
−−−−−−−−−⇀

n→∞
w3, (1.37)

and by using the following estimate

‖ũn − ũ+
n ‖L2(0,T ;(V D0 )′) ≤ τn‖ ˙̃un‖L2(0,T ;(V D0 )′) ≤ C̃τn −−−→n→∞

0

we conclude that w3 = u̇.
Let us recall the following result, whose proof can be found for example in [20].

Lemma 1.3.1. Let X,Y be two reflexive Banach spaces such that X ↪→ Y continuously.
Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Since H1(0, T ; (V D
0 )′) ↪→ C0([0, T ], (V D

0 )′), by using Lemmas 1.2.4 and 1.3.1 we get that
our weak solution u ∈ W satisfies

u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H), ü ∈ L2(0, T ; (V D
0 )′).

By (1.31) and (1.37) we hence obtain

un(t)
H−−−⇀

n→∞
u(t), ũn(t)

(V D0 )′

−−−−⇀
n→∞

u̇(t) for every t ∈ [0, T ], (1.38)

so that u(0) = u0 and u̇(0) = u1, since un(0) = u0 and ũn(0) = u1.
To prove that

lim
h→0+

1

h

∫ h

0

(
‖u(t)− u0‖2Vt + ‖u̇(t)− u1‖2H

)
dt = 0

we will actually show

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H.

This is a consequence of following energy-dissipation inequality which holds for the weak
solution u ∈ W of Lemma 1.2.5. Let us define the total energy as

E (t) :=
1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) t ∈ [0, T ].

Notice that E (t) is well defined for every t ∈ [0, T ] since u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H),
and that E (0) = 1

2‖u
1‖2 + 1

2(Aeu0, eu0). By defining

D(t) :=

∫ t

0
(BΨ(τ)eu̇(τ),Ψ(τ)eu̇(τ))dτ for every t ∈ [0, T ]

we have the following theorem.
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Theorem 1.3.2. The weak solution u ∈ W to (1.8)–(1.11), given by Lemma 1.2.5, satisfies
for every t ∈ [0, T ] the following energy-dissipation inequality

E (t) + D(t) ≤ E (0) + Wtot(t), (1.39)

where Ψeu̇ is the function defined in (1.15) and Wtot(t) is the total work on the solution u at
time t ∈ [0, T ], which is given by

Wtot(t) : =

∫ t

0
[(f(τ), u̇(τ)− ż(τ)) + (Aeu(τ), eż(τ)) + (BΨ(τ)eu̇(τ),Ψ(τ)eż(τ))] dτ

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

−
∫ t

0
(Ṅ(τ), u(τ)− z(τ))HNdτ + (N(t), u(t)− z(t))HN − (N(0), u0 − z(0))HN .

(1.40)

Remark 1.3.3. From the classical point of view, the total work on the solution u at time
t ∈ [0, T ] is given by

Wtot(t) := Wload(t) + Wbdry(t), (1.41)

where Wload(t) is the work on the solution u at time t ∈ [0, T ] due to the loading term, which
is defined as

Wload(t) :=

∫ t

0
(f(τ), u̇(τ))dτ,

and Wbdry(t) is the work on the solution u at time t ∈ [0, T ] due to the varying boundary
conditions, which one expects to be equal to

Wbdry(t) :=

∫ t

0
(N(τ), u̇(τ))HNdτ +

∫ t

0
((Aeu(τ) + Ψ2(τ)Beu̇(τ))ν, ż(τ))HDdτ,

being HD := L2(∂DΩ;Rd). Unfortunately, Wbdry(t) is not well defined under our assumptions
on u. Notice that when Ψ ≡ 1 on a neighborhood U of the closure of ∂NΩ, then every
weak solution u to (1.8)–(1.11) satisfies u ∈ H1(0, T ;H1((Ω ∩ U) \ Γ;Rd)), which gives that
u ∈ H1(0, T ;HN ) by our assumptions on Γ. Hence the first term of Wbdry(t) makes sense and
satisfies∫ t

0
(N(τ), u̇(τ))HNdτ = (N(t), u(t))HN − (N(0), u(0))HN −

∫ t

0
(Ṅ(τ), u(τ))HNdτ.

The term involving the Dirichlet datum z is more difficult to handle since the trace of (Aeu+
Ψ2Beu̇)ν on ∂DΩ is not well defined even when Ψ ≡ 1 on a neighborhood of the closure of
∂DΩ. If we assume that u ∈ H1(0, T ;H2(Ω \ Γ;Rd)) ∩ H2(0, T ;L2(Ω;Rd)) and that Γ is a
smooth manifold, then we can integrate by part equation (1.14) to deduce that u satisfies
(1.8). In this case, (Aeu + Ψ2Beu̇)ν ∈ L2(0, T ;HD) and by using (1.8), together with the
divergence theorem and the integration by parts formula, we deduce∫ t

0
((Aeu(τ) + Ψ2(τ)Beu̇(τ))ν, ż(τ))HDdτ

=

∫ t

0

[
(div(Aeu(τ) + Ψ2(τ)Beu̇(τ)), ż(τ)) + (Aeu(τ), eż(τ))

]
dτ

+

∫ t

0

[
(Ψ2(τ)Beu̇(τ), eż(τ))− (N(τ), ż(τ))HN

]
dτ

=

∫ t

0

[
(ü(τ), ż(τ))− (f(τ), ż(τ)) + (Aeu(τ) + Ψ2(τ)Beu̇(τ), eż(τ))− (N(τ), ż(τ))HN

]
dτ
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=

∫ t

0
[(Aeu(τ), eż(τ)) + (BΨ(τ)eu̇(τ),Ψ(τ)eż(τ))− (f(τ), ż(τ))] dτ

+

∫ t

0
(Ṅ(τ), z(τ))HNdτ − (N(t), z(t))HN + (N(0), z(0))HN

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

Hence, the definition of total work given in (1.40) is coherent with the classical one (1.41).
Notice that if u is the solution to (1.8)–(1.11) given by Lemma 1.2.5, then (1.40) is well
defined for every t ∈ [0, T ], since N ∈ C0([0, T ];HN ), ż ∈ C0([0, T ];H), u ∈ C0

w([0, T ];V ),
and u̇ ∈ C0

w([0, T ];H). In particular, the function t 7→ Wtot(t) from [0, T ] to R is continuous.

Proof. Fixed t ∈ (0, T ], for every n ∈ N there exists a unique j ∈ {1, . . . , n} such that
t ∈ ((j − 1)τn, jτn]. After setting tn := jτn, we can rewrite (1.19) as

1

2
‖ũ+

n (t)‖2 +
1

2
(Aeu+

n (t), eu+
n (t))

+

∫ tn

0
(BΨ+

n (τ)eũ+
n (τ),Ψ+

n (τ)eũ+
n (τ))dτ ≤ E(0) + W +

n (t), (1.42)

where

W +
n (t) :=

∫ tn

0

[
(Aeu+

n (τ), ez̃+
n (τ)) + (BΨ+

n (τ)eũ+
n (τ),Ψ+

n (τ)ez̃+
n (τ))

]
dτ

+

∫ tn

0

[
(f+
n (τ), ũ+

n (τ)− z̃+
n (τ)) + (ũ+

n (τ), z̃+
n (τ)) + (N+

n (τ), ũ+
n (τ)− z̃+

n (τ))HN
]

dτ.

Thanks to (1.18), we have

‖un(t)− u+
n (t)‖ = ‖ujn + (t− jτn)δujn − ujn‖ ≤ τn‖δujn‖ ≤ Cτn −−−→n→∞

0,

‖ũn(t)− ũ+
n (t)‖2

(V D0 )′ = ‖δujn + (t− jτn)δ2ujn − δujn‖2(V D0 )′ ≤ τ
2
n‖δ2ujn‖2(V D0 )′ ≤ Cτn −−−→n→∞

0.

The last convergences and (1.38) imply

u+
n (t)

H−−−⇀
n→∞

u(t), ũ+
n (t)

(V D0 )′

−−−−⇀
n→∞

u̇(t),

and since ‖u+
n (t)‖V + ‖ũ+

n (t)‖ ≤ C for every n ∈ N, we get

u+
n (t)

V−−−⇀
n→∞

u(t), ũ+
n (t)

H−−−⇀
n→∞

u̇(t). (1.43)

By the lower semicontinuity properties of v 7→ ‖v‖2 and v 7→ (Aev, ev), we conclude

‖u̇(t)‖2 ≤ lim inf
n→∞

‖ũ+
n (t)‖2, (1.44)

(Aeu(t), eu(t)) ≤ lim inf
n→∞

(Aeu+
n (t), eu+

n (t)). (1.45)

Thanks to Lemma 1.2.4 and (1.15), we obtain

Ψ+
n eũ

+
n = e(Ψ+

n ũ
+
n )−∇Ψ+

n � ũ+
n

L2(0,T ;H)−−−−−−⇀
n→∞

e(Ψu̇)−∇Ψ� u̇ = Ψeu̇,

so that∫ t

0
(BΨ(τ)eu̇(τ),Ψ(τ)eu̇(τ))dτ ≤ lim inf

n→∞

∫ t

0
(BΨ+

n (τ)eũ+
n (τ),Ψ+

n (τ)eũ+
n (τ))dτ
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≤ lim inf
n→∞

∫ tn

0
(BΨ+

n (τ)eũ+
n (τ),Ψ+

n (τ)eũ+
n (τ))dτ, (1.46)

since t ≤ tn and v 7→
∫ t

0 (Bv(τ), v(τ))dτ is a non negative quadratic form on L2(0, T ;H). Let
us study the right-hand side of (1.42). Given that we have

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]f, ũ+
n − z̃+

n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇− ż,

we can deduce ∫ tn

0
(f+
n (τ), ũ+

n (τ)− z̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(f(τ), u̇(τ)− ż(τ))dτ. (1.47)

In a similar way, we can prove∫ tn

0
(Aeu+

n (τ), ez̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(Aeu(τ), eż(τ))dτ, (1.48)∫ tn

0
(BΨ+

n (τ)eũ+
n (τ),Ψ+

n (τ)ez̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(BΨ(τ)eu̇(τ),Ψ(τ)eż(τ))dτ, (1.49)

since the following convergences hold

χ[0,tn]ez̃
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]eż, Aeu+
n

L2(0,T ;H)−−−−−−⇀
n→∞

Aeu,

χ[0,tn]Ψ
+
n ez̃

+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]Ψeż, Ψ+
n eũ

+
n

L2(0,T ;H)−−−−−−⇀
n→∞

Ψeu̇.

It remains to study the behaviour as n→∞ of the terms∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ,

∫ tn

0
(N+

n (τ), ũ+
n (τ)− z̃+

n (τ))HNdτ.

Thanks to formula (1.27) we have∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ = (ũ+
n (t), z̃+

n (t))− (u1, ż(0))−
∫ tn

0
(ũ−n (τ), ˙̃zn(τ))dτ.

By arguing as before we hence deduce∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ −−−→
n→∞

(u̇(t), ż(t))− (u1, ż(0))−
∫ t

0
(u̇(τ), z̈(τ))dτ, (1.50)

thanks to (1.43) and by these convergences

χ[0,tn]
˙̃zn

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]z̈, ũ−n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇,

‖z̃+
n (t)− ż(t)‖ =

∥∥∥z(jτn)− z((j − 1)τn)

τn
− ż(t)

∥∥∥ ≤ −∫ jτn

(j−1)τn

‖ż(τ)− ż(t)‖dτ −−−→
n→∞

0.

Notice that in the last convergence we used the continuity of z from [0, T ] in H. Similarly
we have∫ tn

0
(N+

n (τ), ũ+
n (τ)− z̃+

n (τ))HNdτ

= (N+
n (t), u+

n (t)− z+
n (t))HN − (N(0), u0 − z(0))HN −

∫ tn

0
(Ṅn(τ), u−n (τ)− z−n (τ))HNdτ
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so that we get∫ tn

0
(N+

n (τ), ũ+
n (τ)− z̃+

n (τ))HNdτ

−−−→
n→∞

(N(t), u(t)− z(t))HN − (N(0), u0 − z(0))HN −
∫ t

0
(Ṅ(τ), u(τ)− z(τ))HNdτ (1.51)

thanks to (1.43), the continuity of s 7→ N(s) in HN , and the fact that

χ[0,tn]Ṅn
L2(0,T ;HN )−−−−−−−→

n→∞
χ[0,t]Ṅ , u−n − z−n

L2(0,T ;HN )−−−−−−−⇀
n→∞

u− z.

By combining (1.44)–(1.51), we deduce the energy-dissipation inequality (1.39) for every
t ∈ (0, T ]. Finally, for t = 0 the inequality trivially holds since u(0) = u0 and u̇(0) = u1.

We now are in position to prove the validity of the initial conditions.

Lemma 1.3.4. The weak solution u ∈ W to (1.8)–(1.11) of Lemma 1.2.5 satisfies

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H. (1.52)

In particular u satisfies the initial conditions (1.12) in the sense of (1.16).

Proof. By sending t → 0+ into the energy-dissipation inequality (1.39) and using that u ∈
C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H), and the lower semicontinuity of the real valued functions

t 7→ ‖u̇(t)‖2 t 7→ (Aeu(t), eu(t)),

we deduce

E (0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) ≤ 1

2

[
lim inf
t→0+

‖u̇(t)‖2 + lim inf
t→0+

(Aeu(t), eu(t))
]

≤ lim inf
t→0+

[1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t))

]
= lim inf

t→0+
E (t) ≤ lim sup

t→0+
E (t) ≤ E (0),

since the right-hand side of (1.39) is continuous in t, u(0) = u0, and u̇(0) = u1. Therefore
there exists limt→0+ E (t) = E (0). Moreover, we have

E (0) ≤ 1

2
lim inf
t→0+

‖u̇(t)‖2 +
1

2
lim inf
t→0+

(Aeu(t), eu(t))

≤ 1

2
lim sup
t→0+

‖u̇(t)‖2 +
1

2
lim inf
t→0+

(Aeu(t), eu(t))

≤ lim sup
t→0+

[1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t))

]
= E (0),

which gives
lim
t→0+

‖u̇(t)‖2 = ‖u1‖2.

Similarly we can dedeuce

lim
t→0+

(Aeu(t), eu(t)) = (Aeu0, eu0).

Finally, since we have

u̇(t)
H−−−⇀

t→0+
u1, eu(t)

H−−−⇀
t→0+

eu0,

we deduce (1.52). In particular the functions u : [0, T ]→ V and u̇ : [0, T ]→ H are continuous
at t = 0, which implies (1.16).
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We can finally prove Theorem 1.2.1.

Proof of Theorem 1.2.1. It is enough to combine Lemmas 1.2.5 and 1.3.4.

Remark 1.3.5. We have proved Theorem 1.2.1 for the d-dimensional linear elastic case,
namely when the displacement u is a vector-valued function. The same result is true with
identical proofs in the antiplane case, that is when the displacement u is a scalar function
and satisfies (9).

1.4 Uniqueness

In this section we investigate the uniqueness properties of system (1.8) with boundary and
initial conditions (1.9)–(1.12). To this aim, we need to assume stronger regularity assumptions
on the crack sets {Γt}t∈[0,T ] and on the function Ψ. Moreover, we have to restrict our problem
to the dimensional case d = 2, since in our proof we need to construct a suitable family of
diffeomorphisms which maps the time-dependent crack Γt into a fixed set, and this can be
explicitly done only for d = 2 (see [16, Example 2.14]).

We proceed in two steps; first, in Lemma 1.4.2 we prove a uniqueness result in every
dimension d, but when the cracks are not increasing, that is ΓT = Γ0. Next, in Theorem
1.4.5 we combine Lemma 1.4.2 with the finite speed of propagation theorem of [15] and the
uniqueness result of [17] to derive the uniqueness of a weak solution to (1.8)–(1.12) in the
case d = 2.

Let us start with the following lemma, whose proof is similar to that one of [17, Proposition
2.10].

Lemma 1.4.1. Let u ∈ W be a weak solution to (1.8)–(1.11) satisfying the initial condition
u̇(0) = 0 in the following sense

lim
h→0+

1

h

∫ h

0
‖u̇(t)‖2dt = 0.

Then u satisfies

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt+

∫ T

0
(BΨ(t)eu̇(t),Ψ(t)eϕ(t))dt

=

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt

for every ϕ ∈ VD such that ϕ(T ) = 0, where Ψeu̇ is the function defined in (1.15).

Proof. We fix ϕ ∈ VD with ϕ(T ) = 0 and for every ε > 0 we define the following function

ϕε(t) :=

{
t
εϕ(t) t ∈ [0, ε],

ϕ(t) t ∈ [ε, T ].

We have that ϕε ∈ VD and ϕε(0) = ϕε(T ) = 0, so we can use ϕε as test function in (1.14).
By proceeding as in [17, Proposition 2.10] we obtain

lim
ε→0+

∫ T

0
(u̇(t), ϕ̇ε(t))dt =

∫ T

0
(u̇(t), ϕ̇(t))dt,

lim
ε→0+

∫ T

0
(Aeu(t), eϕε(t))dt =

∫ T

0
(Aeu(t), eϕ(t))dt,
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lim
ε→0+

∫ T

0
(f(t), ϕε(t))dt =

∫ T

0
(f(t), ϕ(t))dt.

It remains to consider the terms involving B and N . We have∫ T

0
(BΨ(t)eu̇(t),Ψ(t)eϕε(t))dt

=

∫ ε

0
(BΨ(t)eu̇(t),

t

ε
Ψ(t)eϕ(t))dt+

∫ T

ε
(BΨ(t)eu̇(t),Ψ(t)eϕ(t))dt,∫ T

0
(N(t), ϕε(t))HNdt =

∫ ε

0
(N(t),

t

ε
ϕ(t))HNdt+

∫ T

ε
(N(t), ϕ(t))HNdt,

hence by the dominated convergence theorem we get∫ T

ε
(BΨ(t)eu̇(t),Ψ(t)eϕ(t))dt −−−−→

ε→0+

∫ T

0
(BΨ(t)eu̇(t),Ψ(t)eϕ(t))dt,∫ T

ε
(N(t), ϕ(t))HNdt −−−−→

ε→0+

∫ T

0
(N(t), ϕ(t))HNdt,∣∣∣ ∫ ε

0
(BΨ(t)eu̇(t),

t

ε
Ψ(t)eϕ(t))dt

∣∣∣ ≤ ‖B‖∞‖Ψ‖∞ ∫ ε

0
‖Ψ(t)eu̇(t)‖‖eϕ(t)‖dt −−−−→

ε→0+
0,∣∣∣ ∫ ε

0
(N(t),

t

ε
ϕ(t))HNdt

∣∣∣ ≤ ∫ ε

0
‖N(t)‖HN ‖ϕ(t)‖HNdt −−−−→

ε→0+
0.

By combining together all the previous convergences we get the thesis.

We now state the uniqueness result in the case of a fixed domain, that is ΓT = Γ0. We
follow the same ideas of [30], and we need to assume

Ψ ∈ Lip([0, T ]× Ω), ∇Ψ̇ ∈ L∞((0, T )× Ω;Rd), (1.53)

while on Γ0 we do not require any further hypotheses.

Lemma 1.4.2 (Uniqueness in a fixed domain). Assume (1.53) and ΓT = Γ0. Then the
viscoelastic dynamic system (1.8) with boundary and initial conditions (1.9)–(1.12) (the latter
in the sense of (1.16)) has a unique weak solution.

Proof. Let u1, u2 ∈ W be two weak solutions to (1.8)–(1.11) with initial conditions (1.12).
The function u := u1 − u2 satisfies

1

h

∫ h

0

(
‖u(t)‖2Vt + ‖u̇(t)‖2

)
dt −−−−→

h→0+
0, (1.54)

hence by Lemma 1.4.1 it solves

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt+

∫ T

0
(BΨ(t)eu̇(t),Ψ(t)eϕ(t))dt = 0 (1.55)

for every ϕ ∈ VD such that ϕ(T ) = 0. We fix s ∈ (0, T ] and consider the function

ϕs(t) :=

{
−
∫ s
t u(τ)dτ t ∈ [0, s],

0 t ∈ [s, T ].

Since ϕs ∈ VD and ϕs(T ) = 0, we can use it as test function in (1.55) to obtain

−
∫ s

0
(u̇(t), u(t))dt+

∫ s

0
(Aeϕ̇s(t), eϕs(t))dt+

∫ s

0
(BΨ(t)eu̇(t),Ψ(t)eϕs(t))dt = 0.



20 1.4. Uniqueness

In particular we deduce

−1

2

∫ s

0

d

dt
‖u(t)‖2dt+

1

2

∫ s

0

d

dt
(Aeϕs(t), eϕs(t))dt+

∫ s

0
(BΨ(t)eu̇(t),Ψ(t)eϕs(t))dt = 0,

which implies

1

2
‖u(s)‖2 +

1

2
(Aeϕs(0), eϕs(0)) =

∫ s

0
(BΨ(t)eu̇(t),Ψ(t)eϕs(t))dt, (1.56)

since u(0) = 0 = ϕs(s). From the distributional point of view the following equality holds

d

dt
(Ψeu) = Ψ̇eu+ Ψeu̇ ∈ L2(0, T ;H), (1.57)

indeed, for all v ∈ C∞c (0, T ;H) we have∫ T

0
(

d

dt
(Ψ(t)eu(t)), v(t))dt = −

∫ T

0
(Ψ(t)eu(t), v̇(t)) dt

= −
∫ T

0
(e(Ψ(t)u(t))−∇Ψ(t)� u(t), v̇(t)) dt

=

∫ T

0
(e(Ψ̇(t)u(t)) + e(Ψ(t)u̇(t)), v(t))dt−

∫ T

0
(∇Ψ̇(t)� u(t) +∇Ψ(t)� u̇(t), v(t))dt

=

∫ T

0
(Ψ̇(t)eu(t), v(t))dt+

∫ T

0
(Ψ(t)eu̇(t), v(t))dt.

In particular Ψeu ∈ H1(0, T ;H) ⊂ C0([0, T ], H), so that by (1.54)

‖Ψ(0)eu(0)‖2 = lim
h→0

1

h

∫ h

0
‖Ψ(t)eu(t)‖2dt ≤ C lim

h→0

1

h

∫ h

0
‖u(t)‖2Vtdt = 0

which yields Ψ(0)eu(0) = 0. Thanks to (1.57) and to property Ψu ∈ H1(0, T ;H), we deduce

d

dt
(BΨeu,Ψeϕs) = (BΨ̇eu,Ψeϕs) + (BΨeu̇,Ψeϕs) + (BΨeu, Ψ̇eϕs) + (BΨeu,Ψeϕ̇s)

= 2(BΨeu, Ψ̇eϕs) + (BΨeu̇,Ψeϕs) + (BΨeu,Ψeϕ̇s),

and by integrating on [0, s] we get∫ s

0
(BΨ(t)eu̇(t),Ψ(t)eϕs(t))dt =

∫ s

0

d

dt
(BΨ(t)eu(t),Ψ(t)eϕs(t))dt

−
∫ s

0

[
(BΨ(t)eϕ̇s(t),Ψ(t)eϕ̇s(t)) + 2(BΨ(t)eu(t), Ψ̇(t)eϕs(t))

]
dt

≤ (BΨ(s)eu(s),Ψ(s)eϕs(s))− (BΨ(0)eu(0),Ψ(0)eϕs(0))−
∫ s

0
(BΨ(t)eϕ̇s(t),Ψ(t)eϕ̇s(t))dt

+

∫ s

0

[
2(BΨ(t)eu(t),Ψ(t)eu(t))

1
2 (BΨ̇(t)eϕs(t), Ψ̇(t)eϕs(t))

1
2

]
dt

≤
∫ s

0

[
(BΨ(t)eu(t),Ψ(t)eu(t)) + (BΨ̇(t)eϕs(t), Ψ̇(t)eϕs(t))− (BΨ(t)eϕ̇s(t),Ψ(t)eϕ̇s(t))

]
dt

≤ ‖B‖∞‖Ψ̇‖2∞
∫ s

0
‖eϕs(t)‖2dt,

since eϕs(s) = 0 = Ψ(0)eu(0) and eϕ̇s = eu in (0, s). By combining the previous inequality
with (1.56) and using the coercivity of the tensor A, we derive

cA
2
‖eϕs(0)‖2 +

1

2
‖u(s)‖2 ≤ 1

2
(Aeϕs(0), eϕs(0)) +

1

2
‖u(s)‖2 ≤ ‖B‖∞‖Ψ̇‖2∞

∫ s

0
‖eϕs(t)‖2dt.
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Let us set ξ(t) :=
∫ t

0 u(τ)dτ , then

‖eϕs(0)‖2 = ‖eξ(s)‖2, ‖eϕs(t)‖2 = ‖eξ(t)− eξ(s)‖2 ≤ 2‖eξ(t)‖2 + 2‖eξ(s)‖2,

from which we deduce

cA
2
‖eξ(s)‖2 +

1

2
‖u(s)‖2 ≤ C

∫ s

0
‖eξ(t)‖2dt+ Cs‖eξ(s)‖2, (1.58)

where C := 2‖B‖∞‖Ψ̇‖2∞. Therefore, if we set s0 := cA
4C , for all s ≤ s0 we obtain

cA
4
‖eξ(s)‖2 ≤

(cA
2
− Cs

)
‖eξ(s)‖2 ≤ C

∫ s

0
‖eξ(t)‖2dt.

By Gronwall’s lemma the last inequality implies eξ(s) = 0 for all s ≤ s0. Hence, thanks to
(1.58) we get ‖u(s)‖2 ≤ 0 for all s ≤ s0, which yields u(s) = 0 for all s ≤ s0. Since s0 depends
only on A, B, and Ψ, we can repeat this argument starting from s0, and with a finite number
of steps we obtain u ≡ 0 on [0, T ].

In order to prove our uniqueness result in the case of a moving crack we need two auxiliary
results, which are [14, Theorem 6.1] and [17, Theorem 4.3]. For the sake of the readers, we
rewrite below the statements without proof.

The first one ([14, Theorem 6.1]) is a generalization of the well-known result of finite
speed of propagation for the wave equation. Given an open bounded set U ⊂ Rd, we define
by ∂LU the Lipschitz part of the boundary ∂U , which is the collection of points x ∈ ∂U for
which there exist an orthogonal coordinate system y1, . . . , yd, a neighborhood V of x of the
form A×I, with A open in Rd−1 and I open interval in R, and a Lipschitz function g : A→ I,
such that V ∩ U := {(y1, . . . , yd) ∈ V : yd < g(y1, . . . , yd−1)}. Moreover, given a Borel set
S ⊂ ∂LU , we define

HS(U ;Rd) := {u ∈ H1(U ;Rd) : u = 0 on S}.

Notice that HS(U ;Rd) is a Hilbert space, and we denote its dual by H−1
S (U ;Rd).

Theorem 1.4.3 (Finite speed of propagation). Let U ⊂ Rd be an open bounded set and let
∂LU be the Lipschitz part of ∂U . Let S0 and S1 be two Borel sets with S0 ⊂ S1 ⊂ ∂LU , and
let A : U → L (Rd×dsym;Rd×dsym) be a fourth-order tensor satisfying (1.4)–(1.6). Let

u ∈ L2(0, T ;H1
S0

(U ;Rd)) ∩H1(0, T ;L2(U ;Rd)) ∩H2(0, T ;H−1
S1

(U ;Rd))

be a solution to

〈ü(t), ψ〉H−1
S1

(U ;Rd) + (Aeu(t), eψ)L2(U ;Rd×dsym) = 0 for every ψ ∈ H1
S1

(U ;Rd),

with initial conditions u(0) = 0 and u̇(0) = 0 in the sense of L2(U ;Rd) and H−1
S1

(U ;Rd),
respectively. Then

u(t) = 0 a.e. in Ut := {x ∈ U : dist(x, S1 \ S0) > t
√
‖A‖∞}

for every t ∈ [0, T ].

Proof. See [14, Theorem 6.1].

The second one ([17, Theorem 4.3]) is a uniqueness result for the weak solutions of the
wave equation in a moving domain. Let Ĥ be a separable Hilbert space, and let {V̂t}t∈[0,T ]

be a family of separable Hilbert spaces with the following properties:
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(i) for every t ∈ [0, T ] the space V̂t is contained and dense in Ĥ with continuous embedding;

(ii) for every s, t ∈ [0, T ], with s < t, V̂s ⊂ V̂t and the Hilbert space structure on V̂s is the
one induced by V̂t.

Let a : V̂ × V̂ → R be a bilinear symmetric form satisfying the following conditions:

(iii) there exists M0 such that

|a(u, v)| ≤M0‖u‖V̂ ‖v‖V̂ for every u, v ∈ V̂ ;

(iv) there exist λ0 > 0 and ν0 ∈ R such that

a(u, u) ≥ λ0‖u‖2V̂ − ν0‖u‖2Ĥ for every u ∈ V̂ .

Assume that

(U1) for every t ∈ [0, T ] there exists a continuous and linear bijective operator Qt : V̂t → V̂0,
with continuous inverse Rt : V̂0 → V̂t;

(U2) Q0 and R0 are the identity maps on V̂0;

(U3) there exists a constant M1 independent of t such that

‖Qtu‖Ĥ ≤M1‖u‖Ĥ for every u ∈ V̂t, ‖Rtu‖Ĥ ≤M1‖u‖Ĥ for every u ∈ V̂0,

‖Qtu‖V̂0 ≤M1‖u‖V̂t for every u ∈ V̂t, ‖Rtu‖V̂t ≤M1‖u‖V̂0 for every u ∈ V̂0.

Since V̂t is dense in Ĥ, (U3) implies that Rt and Qt can be extended to continuous linear
operators from Ĥ into itself, still denoted by Qt and Rt. We also require

(U4) for every v ∈ V̂0 the function t 7→ Rtv from [0, T ] into Ĥ has a derivative, denoted by
Ṙtv;

(U5) there exists η ∈ (0, 1) such that

‖ṘtQtv‖2Ĥ ≤ λ0(1− η)‖v‖2
V̂t

for every v ∈ V̂t;

(U6) there exists a constant M2 such that

‖Qtv −Qsv‖Ĥ ≤M2‖v‖V̂s(t− s) for every 0 ≤ s < t ≤ T and every v ∈ V̂s;

(U7) for very t ∈ [0, T ) and for every v ∈ V̂t there exists an element of Ĥ, denoted by Q̇tv,
such that

lim
h→0+

Qt+hv −Qtv
h

= Q̇tv in Ĥ.

For every t ∈ [0, T ], define

α(t) : V̂0 × V̂0 → R as α(t)(u, v) := a(Rtu,Rtv) for u, v ∈ V̂0,

β(t) : V̂0 × V̂0 → R as β(t)(u, v) := (Ṙtu, Ṙtv) for u, v ∈ V̂0,

γ(t) : V̂0 × Ĥ → R as γ(t)(u, v) := (Ṙtu,Rtv) for u ∈ V̂0 and v ∈ Ĥ,
δ(t) : Ĥ × Ĥ → R as δ(t)(u, v) := (Rtu,Rtv)− (u, v) for u, v ∈ Ĥ.

We assume that there exists a constant M3 such that
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(U8) the maps t 7→ α(t)(u, v), t 7→ β(t)(u, v), t 7→ γ(t)(u, v), and t 7→ δ(t)(u, v) are Lipschitz
continuous and for a.e. t ∈ (0, T ) their derivatives satisfy

|α̇(t)(u, v)| ≤M3‖u‖V̂0‖v‖V̂0 for u, v ∈ V̂0,

|β̇(t)(u, v)| ≤M3‖u‖V̂0‖v‖V̂0 for u, v ∈ V̂0,

|γ̇(t)(u, v)| ≤M3‖u‖V̂0‖v‖Ĥ for u ∈ V̂0 and v ∈ Ĥ,

|δ̇(t)(u, v)| ≤M3‖u‖Ĥ‖v‖Ĥ for u, v ∈ Ĥ.

Theorem 1.4.4 (Uniqueness for the wave equation). Assume that Ĥ, {V̂t}t∈[0,T ], and a

satisfy (i)–(iv) and that (U1)–(U8) hold. Given u0 ∈ V̂0, u1 ∈ Ĥ, and f ∈ L2(0, T ; Ĥ), there
exists a unique solution

u ∈ V̂ := {ϕ ∈ L2(0, T ; V̂ ) : u̇ ∈ L2(0, T ; Ĥ), u(t) ∈ V̂t for a.e. t ∈ (0, T )}

to the wave equation

−
∫ T

0
(u̇(t), ϕ̇(t))Ĥdt+

∫ T

0
a(u(t), ϕ(t))dt =

∫ T

0
(f(t), ϕ(t))Ĥdt for every ϕ ∈ V̂,

satisfying the initial conditions u(0) = u0 and u̇(0) = u1 in the sense that

lim
h→0+

1

h

∫ h

0

(
‖u(t)− u0‖2

V̂t
+ ‖u̇(t)− u1‖2

Ĥ

)
dt = 0.

Proof. See [17, Theorem 4.3].

We now are in position to prove the uniqueness theorem in the case of a moving domain.
We consider the dimensional case d = 2, and we require the following assumptions:

(H1) there exists a C2,1 simple curve Γ ⊂ Ω ⊂ R2, parametrized by arc-length γ : [0, `]→ Ω,
such that Γ ∩ ∂Ω = γ(0) ∪ γ(`) and Ω \ Γ is the union of two disjoint open sets with
Lipschitz boundary;

(H2) there exists a non decreasing function s : [0, T ] → (0, `) of class C1,1 such that Γt =
γ([0, s(t)]);

(H3) |ṡ(t)|2 < cA
CK

, where cA is the ellipticity constant of A and CK is the constant that
appears in Korn’s inequality in (1.2).

Notice that hypotheses (H1) and (H2) imply (E1)–(E3). We also assume that Ψ satisfies
(1.53) and there exists a constant ε > 0 such that for every t ∈ [0, T ]

Ψ(t, x) = 0 for every x ∈ {y ∈ Ω : |y − γ(s(t))| < ε}. (1.59)

Theorem 1.4.5. Assume d = 2 and (H1)–(H3), (1.53), and (1.59). Then the system (1.8)
with boundary conditions (1.9)–(1.11) has a unique weak solution u ∈ W which satisfies
u(0) = u0 and u̇(0) = u1 in the sense of (1.16).

Proof. As before let u1, u2 ∈ W be two weak solutions to (1.8)–(1.11) with initial conditions
(1.12). Then u := u1 − u2 satisfies (1.54) and (1.55) for every ϕ ∈ VD such that ϕ(T ) = 0.
Let us define

t0 := sup{t ∈ [0, T ] : u(s) = 0 for every s ∈ [0, t]},

and assume by contradiction that t0 < T . Consider first the case in which t0 > 0. By (H1),
(H2), (1.53), and (1.59) we can find two open sets A1 and A2, with A1 ⊂⊂ A2 ⊂⊂ Ω, and a
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number δ > 0 such that for every t ∈ [t0−δ, t0 +δ] we have γ(s(t)) ∈ A1, Ψ(t, x) = 0 for every
x ∈ A2, and (A2 \A1) \Γ is the union of two disjoint open sets with Lipschitz boundary. Let
us define

V̂ 1 := {u ∈ H1((A2 \A1) \ Γt0−δ;R
2) : u = 0 on ∂A1 ∪ ∂A2}, Ĥ1 := L2(A2 \A1;R2).

Since every function in V̂ 1 can be extended to a function in V D
t0−δ, by classical results for

linear hyperbolic equations (se, e.g., [20]), we deduce ü ∈ L2(t0 − δ, t0 + δ; (V̂ 1)′) and that u
satisfies for a.e. t ∈ (t0 − δ, t0 + δ)

〈ü(t), φ〉(V̂ 1)′ + (Aeu(t), eφ)Ĥ1 = 0 for every φ ∈ V̂ 1.

Moreover, we have u(t0) = 0 as element of Ĥ1 and u̇(t0) = 0 as element of (V̂ 1)′, since
u(t) ≡ 0 in [t0 − δ, t0), u ∈ C0([t0 − δ, t0]; Ĥ1), and u̇ ∈ C0([t0 − δ, t0]; (V̂ 1)′). We are now in
position to apply the result of finite speed of propagation of Theorem 1.4.3. This theorem
ensures the existence of a third open set A3, with A1 ⊂⊂ A3 ⊂⊂ A2, such that, up to choose
a smaller δ, we have u(t) = 0 on ∂A3 for every t ∈ [t0, t0 + δ], and both (Ω \ A3) \ Γ and
A3 \ Γ are union of two disjoint open sets with Lipschitz boundary.

In Ω \A3 the function u solves

−
∫ t0+δ

t0−δ

∫
Ω\A3

u̇(t, x) · ϕ̇(t, x)dxdt+

∫ t0+δ

t0−δ

∫
Ω\A3

A(x)eu(t, x) · eϕ(t, x)dxdt

+

∫ t0+δ

t0−δ

∫
Ω\A3

B(x)Ψ(t, x)eu̇(t, x) ·Ψ(t, x)eϕ(t, x)dxdt = 0

for every ϕ ∈ L2(t0− δ, t0 + δ; V̂ 2)∩H1(t0− δ, t0 + δ; Ĥ2) such that ϕ(t0− δ) = ϕ(t0 + δ) = 0,
where

V̂ 2 := {u ∈ H1((Ω \A3) \ Γt0−δ;R
2) : u = 0 on ∂DΩ ∪ ∂A3}, Ĥ2 := L2(Ω \A3;R2).

Since u(t) = 0 on ∂DΩ ∪ ∂A3 for every t ∈ [t0 − δ, t0 + δ] and u(t0 − δ) = u̇(t0 − δ) = 0 in
the sense of (1.16) (recall that u ≡ 0 in [t0 − δ, t0)), we can apply Lemma 1.4.2 to deduce
u(t) = 0 in Ω \A3 for every t ∈ [t0 − δ, t0 + δ].

On the other hand in A3, by setting

V̂ 3
t := {u ∈ H1(A3 \ Γt;R2) : u = 0 on ∂A3}, Ĥ3 := L2(A3;R2),

we get that the function u solves

−
∫ t0+δ

t0−δ

∫
A3

u̇(t, x) · ϕ̇(t, x)dxdt+

∫ t0+δ

t0−δ

∫
A3

A(x)eu(t, x) · eϕ(t, x)dxdt = 0

for every ϕ ∈ L2(t0 − δ, t0 + δ; V̂ 3
t0+δ) ∩ H1(t0 − δ, t0 + δ; Ĥ3) such that ϕ(t) ∈ V̂ 3

t for a.e.
t ∈ (t0− δ, t0 + δ) and ϕ(t0− δ) = ϕ(t0 + δ) = 0. Here we would like to apply the uniqueness
result of Theorem 1.4.4 for the spaces {V̂ 3

t }t∈[t0−δ,t0+δ] and Ĥ3, endowed with the usual
norms, and for the bilinear form

a(u, v) :=

∫
A3

A(x)eu(x) · ev(x)dx for every u, v ∈ V̂ 3
t0+δ.

As show in [16, Example 2.14] we can construct two maps Φ,Λ ∈ C1,1([t0−δ, t0 +δ]×A3;R2)
such that for every t ∈ [0, T ] the function Φ(t, ·) : A3 → A3 is a diffeomorfism of A3 in itself
with inverse Λ(t, ·) : A3 → A3. Moreover, Φ(0, y) = y for every y ∈ A3, Φ(t,Γ∩A3) = Γ∩A3
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and Φ(t,Γt0−δ ∩ A3) = Γt ∩ A3 for every t ∈ [t0 − δ, t0 + δ]. For every t ∈ [t0 − δ, t0 + δ], the
maps (Qtu)(y) := u(Φ(t, y)), u ∈ V̂ 3

t and y ∈ A3, and (Rtv)(x) := v(Λ(t, x)), v ∈ V̂ 3
t0−δ and

x ∈ A3, provide a family of linear and continuous operators which satisfy the assumptions
(U1)–(U8) of Theorem 1.4.4 (see [17, Example 4.2]). The only condition to check is (U5).
The bilinear form a satisfies the following ellipticity condition

a(u, u) ≥ cA‖eu‖2L2(A3;R2×2
sym)
≥ cA

Ĉk
‖u‖2

V̂ 3
t0+δ

− cA‖u‖2Ĥ3 for every u ∈ V̂ 3
t0+δ, (1.60)

where ĈK is the constant in Korn’s inequality in V̂ 3
t0+δ, namely

‖∇u‖2L2(A3;R2×2) ≤ ĈK(‖u‖2L2(A3;R2) + ‖eu‖2
L2(A3;R2×2

sym)
) for every u ∈ V̂ 3

t0+δ.

Notice that for t ∈ [t0 − δ, t0 + δ]

(Ṙtv)(x) = ∇v(Λ(t, x))Λ̇(t, x) for a.e. x ∈ A3,

from which we obtain

‖ṘtQtu‖2Ĥ3 ≤
∫
A3

|∇u(x)|2|Φ̇(t,Λ(t, x))|2dx.

Hence, have to show the property

|Φ̇(t, y)|2 < cA

ĈK
for every t ∈ [t0 − δ, t0 + δ] and y ∈ A3.

This is ensured by (H3). Indeed, as explained in [16, Example 3.1], we can construct the
maps Φ and Λ in such a way that

|Φ̇(t, y)|2 < cA
CK

,

since |ṡ(t)|2 < cA
CK

. Moreover, every function in V̂ 3
t0+δ can be extended to a function in

H1(Ω \ Γ;Rd). Hence, for Korn’s inequality in V̂ 3
t0+δ, we can use the same constant CK of

H1(Ω \Γ;Rd). This allows us to apply Theorem 1.4.4, which implies u(t) = 0 in A3 for every
t ∈ [t0, t0 + δ]. In the case t0 = 0, it is enough to argue as before in [0, δ], by exploiting
(1.54). Therefore u(t) = 0 in Ω for every t ∈ [t0, t0 + δ], which contradicts the maximality of
t0. Hence t0 = T , that yields u(t) = 0 in Ω for every t ∈ [0, T ].

Remark 1.4.6. Also Theorem 1.4.5 is true in the antiplane case, with essentially the same
proof. Notice that, when the displacement is scalar, we do not need to use Korn’s inequality
in (1.60) to get the coercivity in V̂ 3

t0+δ of the bilinear form a defined before. Therefore, in
this case in (H3) it is enough to assume |ṡ(t)|2 < cA.

1.5 A moving crack satisfying Griffith’s Dynamic Energy-Dis-
sipation Balance

We conclude this chapter with an example of a moving crack {Γt}t∈[0,T ] and weak solution
to (1.8)–(1.12) which satisfy the energy-dissipation balance of Griffith’s dynamic criterion,
as happens in [14] for the purely elastic case. In dimension d = 2 we consider an antiplane
evolution, which means that the displacement u is scalar, and we take Ω := {x ∈ R2 : |x| <
R}, with R > 0. We fix a constant 0 < c < 1 such that cT < R, and we set

Γt := {(σ, 0) ∈ Ω : σ ≤ ct}.
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Let us define the following function

S(x1, x2) := Im(
√
x1 + ix2) x ∈ R2 \ {(σ, 0) : σ ≤ 0},

where Im denotes the imaginary part of a complex number. Notice that the function previ-
ously defined satisfies S ∈ H1(Ω \ Γ0) \H2(Ω \ Γ0), and it is a weak solution to{

∆S = 0 in Ω \ Γ0,

∇S · ν = ∂2S = 0 on Γ0.

Let us consider the function

u(t, x) :=
2√
π
S
( x1 − ct√

1− c2
, x2

)
t ∈ [0, T ], x ∈ Ω \ Γt

and let z(t) be its restriction to ∂Ω. Since u(t) has a singularity only at the crack tip (ct, 0),
the function z(t) can be seen as the trace on ∂Ω of a function belonging to H2(0, T ;L2(Ω))∩
H1(0, T ;H1(Ω \ Γ0)), still denoted by z(t). It is easy to see that u solves the wave equation

ü(t)−∆u(t) = 0 in Ω \ Γt, t ∈ (0, T ),

with boundary conditions

u(t) = z(t) on ∂Ω, t ∈ (0, T ),

∂u

∂ν
(t) = ∇u(t) · ν = 0on Γt, t ∈ (0, T ),

and initial data

u0(x1, x2) :=
2√
π
S
( x1√

1− c2
, x2

)
∈ H1(Ω \ Γ0),

u1(x1, x2) := − 2√
π

c√
1− c2

∂1S
( x1√

1− c2
, x2

)
∈ L2(Ω).

Let us consider a function Ψ which satisfies the regularity assumptions (1.53) and condi-
tion (1.59), namely

Ψ(t) = 0 on Bε(t) := {x ∈ R2 : |x− (ct, 0)| < ε} for every t ∈ [0, T ],

with 0 < ε < R − cT . In this case u is a weak solution, in the sense of Definition 1.1.4, to
the damped wave equation

ü(t)−∆u(t)− div(Ψ2(t)∇u̇(t)) = f(t) in ∈ Ω \ Γt, t ∈ (0, T ),

with forcing term f given by

f := −div(Ψ2∇u̇) = −∇Ψ · 2Ψ∇u̇−Ψ2∆u̇ ∈ L2(0, T ;L2(Ω)),

and boundary and initial conditions

u(t) = z(t) on ∂Ω, t ∈ (0, T ),

∂u

∂ν
(t) + Ψ2(t)

∂u̇

∂ν
(t) = 0 on Γt, t ∈ (0, T ),

u(0) = u0, u̇(0) = u1.

Notice that for the homogeneous Neumann boundary conditions on Γt we used ∂u̇
∂ν (t) =

∇u̇(t) · ν = ∂2u̇(t) = 0 on Γt. By the uniqueness result proved in the previous section, the
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function u coincides with that one found in Theorem 1.2.1. Thanks to the computations done
in [14, Section 4], we know that u satisfies for every t ∈ [0, T ] the following energy-dissipation
balance for the undamped equation, where ct coincides with the length of Γt \ Γ0

1

2
‖u̇(t)‖2L2(Ω) +

1

2
‖∇u(t)‖2L2(Ω;R2) + ct

=
1

2
‖u̇(0)‖2L2(Ω) +

1

2
‖∇u(0)‖2L2(Ω;R2) +

∫ t

0
(
∂u

∂ν
(τ), ż(τ))L2(∂Ω)dτ. (1.61)

Moreover, we have∫ t

0
(
∂u

∂ν
(τ), ż(τ))L2(∂Ω)dτ =

∫ t

0
(∇u(τ),∇ż(τ))L2(Ω;R2)dτ −

∫ t

0
(u̇(τ), z̈(τ))L2(Ω)dτ

+ (u̇(t), ż(t))L2(Ω) − (u̇(0), ż(0))L2(Ω).

(1.62)

For every t ∈ [0, T ] we compute

(f(t), u̇(t)− ż(t))L2(Ω) = −
∫

(Ω\Bε(t))\Γt
div[Ψ2(t, x)∇u̇(t, x)](u̇(t, x)− ż(t, x))dx

= −
∫

(Ω\Bε(t))\Γt
div[Ψ2(t, x)∇u̇(t, x)(u̇(t, x)− ż(t, x))]dx

+

∫
(Ω\Bε(t))\Γt

Ψ2(t, x)∇u̇(t, x) · (∇u̇(t, x)−∇ż(t, x))dx.

If we denote by u̇⊕(t) and ż⊕(t) the traces of u̇(t) and ż(t) on Γt from above and by u̇	(t)
and ż	(t) the trace from below, thanks to the divergence theorem we have∫

(Ω\Bε(t))\Γt
div[Ψ2(t, x)∇u̇(t, x)(u̇(t, x)− ż(t, x))]dx

=

∫
∂Ω

Ψ2(t, x)
∂u̇

∂ν
(t, x)(u̇(t, x)− ż(t, x))dx+

∫
∂Bε(t)

Ψ2(t, x)
∂u̇

∂ν
(t, x)(u̇(t, x)− ż(t, x))dx

−
∫

(Ω\Bε(t))∩Γt

Ψ2(t, x)∂2u̇
⊕(t, x)(u̇⊕(t, x)− ż⊕(t, x))dH1(x)

+

∫
(Ω\Bε(t))∩Γt

Ψ2(t, x)∂2u̇
	(t, x)(u̇	(t, x)− ż	(t, x))dH1(x) = 0,

since u(t) = z(t) on ∂Ω, Ψ(t) = 0 on ∂Bε(t), and ∂2u̇(t) = 0 on Γt. Therefore for every
t ∈ [0, T ] we get

(f(t), u̇(t)− ż(t))L2(Ω) = ‖Ψ(t)∇u̇(t)‖2L2(Ω;R2) − (Ψ(t)∇u̇(t),Ψ(t)∇ż(t))L2(Ω;R2). (1.63)

By combining (1.61)–(1.63) we deduce that u satisfies for every t ∈ [0, T ] the following
Griffith’s energy-dissipation balance for the viscoelastic dynamic equation

1

2
‖u̇(t)‖2L2(Ω) +

1

2
‖∇u(t)‖2L2(Ω;R2) +

∫ t

0
‖Ψ(τ)∇u̇(τ)‖2L2(Ω;R2)dτ + ct

=
1

2
‖u̇(0)‖2L2(Ω) +

1

2
‖∇u(0)‖2L2(Ω;R2) + Wtot(t),

(1.64)

where in this case the total work takes the form

Wtot(t) :=

∫ t

0

[
(f(τ), u̇(τ)− ż(τ))L2(Ω) + (Ψ(τ)∇u̇(τ),Ψ(τ)∇ż(τ))L2(Ω;R2)

]
dτ
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−
∫ t

0

[
(u̇(τ), z̈(τ))L2(Ω) − (∇u(τ),∇ż(τ))L2(Ω;R2)

]
dτ

+ (u̇(t), ż(t))L2(Ω) − (u̇(0), ż(0))L2(Ω).

Notice that equality (1.64) gives (10). This show that in this model Griffith’s dynamic energy-
dissipation balance can be satisfied by a moving crack, in contrast with the case Ψ = 1, which
always leads to (7).



Chapter 2

A dynamic model with memory for
viscoelasticity in domains with
time-dependent cracks

The chapter is organized as follows. In Section 1.2 we fix the notation adopted throughout the
chapter. In Section 2.1 we list the standard assumptions on the family of cracks {Γt}t∈[0,T ],
we state the evolution problem in the general case, and we specify the notion of solution to
the problem. In Section 2.2 and 2.3 we deal with the existence of a solution to the viscoelastic
dynamic model; in particular in Section 2.2, we provide a solution by means of a generalization
of Lax-Milgram’s theorem by Lions. After that, in Section 2.3, as previously anticipated, we
define a coupled system equivalent to our viscoelastic dynamic system. In particular, in
Subsection 2.3.1 we implement the time discretization method on such a system, and we
conclude with Subsection 2.3.2 by showing the validity of the energy-dissipation inequality,
and of the initial conditions.

The results presented here are contained in [44].

2.1 Formulation of the evolution problem, notion of solution

Let T be a positive real number and d ∈ N. Let Ω ⊂ Rd be a bounded open set (which
represents the reference configuration of the body) with Lipschitz boundary. Let ∂DΩ be
a (possibly empty) Borel subset of ∂Ω, on which we prescribe the Dirichlet condition, and
let ∂NΩ be its complement, on which we give the Neumann condition. Let Γ ⊂ Ω be the
prescribed crack path. We assume the following hypotheses on the geometry of the cracks:

(E1) Γ is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;

(E2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ
is the union of two disjoint open sets U+ and U− with Lipschitz boundary;

(E3) {Γt}t∈(−∞,T ] is a family of closed subsets of Γ satisfying Γs ⊂ Γt for every −∞ < s ≤
t ≤ T .

Notice that the set Γt represents the crack at time t. Thanks to (E1)–(E3) the space L2(Ω \
Γt;Rd) coincides with L2(Ω;Rd) for every t ∈ (−∞, T ]. In particular, we can extend a function
u ∈ L2(Ω\Γt;Rd) to a function in L2(Ω;Rd) by setting u = 0 on Γt. Since Hd−1(Γ∩∂Ω) = 0
the trace of u ∈ H1(Ω \ Γ;Rd) is well defined on ∂Ω. Indeed, we may find a finite number
of open sets with Lipschitz boundary Uj ⊂ Ω \ Γ, j = 1, . . . k, such that ∂Ω \ Γ ⊂ ∪kj=1∂Uj .
There exists a positive constant C, depending only on Ω and Γ, such that

‖u‖L2(∂Ω;Rd) ≤ C‖u‖H1(Ω\Γ;Rd) for every u ∈ H1(Ω \ Γ;Rd). (2.1)

29
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Similarly, we can find a finite number of open sets Vj ⊂ Ω \ Γ, j = 1, . . . l, with Lipschitz
boundary, such that Ω \ Γ = ∪lj=1Vj . By using the second Korn’s inequality in each Vj
(see, e.g., [39, Theorem 2.4]) and taking the sum over j we can find a positive constant CK ,
depending only on Ω and Γ, such that

‖∇u‖2L2(Ω;Rd×d) ≤ CK(‖u‖2L2(Ω;Rd) + ‖eu‖2
L2(Ω;Rd×dsym)

) for every u ∈ H1(Ω \ Γ;Rd). (2.2)

For convenience we set for every m ∈ N the space H := L2(Ω;Rm) and we always identify
the dual of H with H itself. Moreover, let HN := L2(∂NΩ;Rd) and HD := L2(∂DΩ;Rd); the
symbols (·, ·) and ‖ · ‖ denote the scalar product and the norm in H Moreover, we define the
following spaces

V := H1(Ω \ Γ;Rd) and Vt := H1(Ω \ Γt;Rd) for every t ∈ (−∞, T ].

Notice that in the definition of Vt and V , we are considering only the distributional gradient
of u in Ω \ Γt and in Ω \ Γ, respectively, and not the one in Ω. By means of (2.2), we shall
use on the set Vt (and also on the set V ) the equivalent norm

‖u‖Vt := (‖u‖2 + ‖eu‖2)
1
2 for every u ∈ Vt.

Furthermore, by (2.1), we can consider for every t ∈ (−∞, T ] the set

V D
t := {u ∈ Vt : u = 0 on ∂DΩ},

which is a closed subspace of Vt.
We assume that the elasticity and viscosity tensors A and B satisfy the following assump-

tions:
A,B ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), , (2.3)

and for a.e. x ∈ Ω

A(x)ξ1 · ξ2 = ξ1 · A(x)ξ2, B(x)ξ1 · ξ2 = ξ1 · B(x)ξ2 for every ξ1, ξ2 ∈ Rd×dsym, (2.4)

cA|ξ|2 ≤ A(x)ξ · ξ ≤ CA|ξ|2, cB|ξ|2 ≤ B(x)ξ · ξ ≤ CB|ξ|2 for every ξ ∈ Rd×dsym, (2.5)

for some positive constants cA, cB, CA, and CB independent of x, and the dot denotes the
Euclidean scalar product of matrices.

Let β a positive real number. We want to study the following viscoelastic dynamic system

ü(t)−div((A+B)eu(t))+

∫ t

−∞

1

β
e
− t−τ

β div(Beu(τ))dτ = f(t) in Ω \ Γt, t ∈ (−∞, T ), (2.6)

together with the boundary conditions

u(t) = z(t) on ∂DΩ, t ∈ (−∞, T ), (2.7)[
(A + B) eu(t)−

∫ t

−∞

1

β
e
− t−τ

β Beu(τ)dτ
]
ν = N(t) on ∂NΩ, t ∈ (−∞, T ), (2.8)[

(A + B) eu(t)−
∫ t

−∞

1

β
e
− t−τ

β Beu(τ)dτ
]
ν = 0 on Γt, t ∈ (−∞, T ), (2.9)

where the data satisfy

(D1) f ∈ L2
loc((−∞;T ];H);

(D2) N ∈ L2
loc((−∞;T ];HN ) such that Ṅ ∈ L2

loc((−∞;T ];HN );
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(D3) z ∈ L2
loc((−∞;T ];V ) such that ż ∈ L2

loc((−∞;T ];V ), z̈ ∈ L2
loc((−∞;T ];H), and z(t) ∈

Vt for every t ∈ (−∞, T ].

Notice that in (2.6)–(2.9) the explicit dependence on x is omitted to enlighten notation.

As usual, the Neumann boundary conditions are only formal, and their meaning will be
specified in Definition 2.1.1. To this aim, we define Vloc(−∞, T ) as the space of all function
u ∈ L2

loc((−∞, T ];V ) such that u̇ ∈ L2
loc((−∞, T ];H), u(t) ∈ Vt for a.e. t ∈ (−∞, T ), and∫ T

−∞
e
t
β ‖eu(t)‖dt < +∞. (2.10)

Now we are in position to explain in which sense we mean that u ∈ Vloc(−∞, T ) is a
solution to the viscoelastic dynamic system (2.6)–(2.9). Roughly speaking, we multiply (2.6)
by a test function, we integrate by parts in time and in space, and taking into account
(2.7)–(2.9) we obtain the following definition.

Definition 2.1.1 (Weak solution). We say that u ∈ Vloc(−∞, T ) is a weak solution to system
(2.6) with boundary conditions (2.7)–(2.9) if u(t)− z(t) ∈ V D

t for a.e. t ∈ (−∞, T ), and

−
∫ T

−∞
(u̇(t), v̇(t))dt+

∫ T

−∞
((A + B)eu(t), ev(t))dt

−
∫ T

−∞

∫ t

−∞

1

β
e
− t−τ

β (Beu(τ), ev(t))dτdt =

∫ T

−∞
(f(t), v(t))dt+

∫ T

−∞
(N(t), v(t))HNdt

for every v ∈ C∞c (−∞, T ;V ) such that v(t) ∈ V D
t for every t ∈ (−∞, T ].

Now, let us consider a, b ∈ [0, T ] such that a < b. We define the spaces

V(a, b) := {u ∈ L2(a, b;V ) ∩H1(a, b;H) : u(t) ∈ Vt for a.e. t ∈ (a, b)},
VD(a, b) := {v ∈ V(a, b) : v(t) ∈ V D

t for a.e. t ∈ (a, b)},
DD(a, b) := {v ∈ C∞c (a, b;V ) : v(t) ∈ V D

t for every t ∈ [a, b]},

and we have the following lemma.

Lemma 2.1.2. The space V(a, b) is a Hilbert space with respect to the following norm

‖ϕ‖V(a,b) :=
(
‖ϕ‖2L2(a,b;V ) + ‖ϕ̇‖2L2(a,b;H)

) 1
2

ϕ ∈ V(a, b).

Moreover, VD(a, b) is a closed subspace of V(a, b), and DD(a, b) is a dense subset of the space
of functions belonging to VD(a, b) which vanish on a and b.

Proof. It is clear that ‖·‖V(a,b) is a norm induced by a scalar product on the set V(a, b). We just
have to check the completeness of this space with respect to this norm. Let {ϕk}k ⊂ V(a, b)
be a Cauchy sequence. Then, {ϕk}k and {ϕ̇k}k are Cauchy sequences in L2(a, b;V ) and
L2(a, b;H), respectively, which are complete Hilbert spaces. Thus, there exists ϕ ∈ L2(a, b;V )
with ϕ̇ ∈ L2(a, b;H) such that ϕk → ϕ in L2(a, b;V ) and ϕ̇k → ϕ̇ in L2(a, b;H). In particular
there exists a subsequence {ϕkj}j such that ϕkj (t) → ϕ(t) in V for a.e. t ∈ (a, b). Since
ϕkj (t) ∈ Vt for a.e. t ∈ (a, b) we deduce that ϕ(t) ∈ Vt for a.e. t ∈ (a, b). Hence ϕ ∈ V(a, b)

and ϕk → ϕ in V(a, b). With a similar argument, we can prove that VD(a, b) ⊂ V(a, b) is a
closed subspace. For the proof of the last statement we refer to [17, Lemma 2.8].
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Now, suppose we know the past history of the system up to time 0. In particular, let
uin ∈ Vloc(−∞, 0) be a weak solution to (2.6)–(2.9) on the interval (−∞, 0) in the sense of
Definition 2.1.1, in such a way that 0 is a Lebesgue’s point for both uin and u̇in. This implies
that there exist u0 ∈ V0, with u0 − z(0) ∈ V D

0 , and u1 ∈ H such that

lim
h→0+

1

h

∫ 0

−h
‖uin(t)− u0‖2V0dt = 0, lim

h→0+

1

h

∫ 0

−h
‖u̇in(t)− u1‖2dt = 0.

From this assumption, by defining

F0(t) :=
1

β
e
− t
β

∫ 0

−∞
e
τ
βBeuin(τ)dτ,

we can reformulate (2.6)–(2.9) on the interval [0, T ] in the following way: for every t ∈ [0, T ]

ü(t)− div((A + B)eu(t)) +

∫ t

0

1

β
e
− t−τ

β div(Beu(τ))dτ = f(t)− divF0(t), in Ω \ Γt, (2.11)

with boundary and initial conditions

u(t) = z(t) on ∂DΩ, (2.12)[
(A + B) eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ
]
ν = N(t) + F0(t)ν on ∂NΩ (2.13)[

(A + B) eu(t)−
∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ
]
ν = F0(t)ν on Γt, (2.14)

u(0) = u0, u̇(0) = u1. (2.15)

Thanks to (D1)–(D3) and (2.10) (on the interval (−∞, 0]), we have f ∈ L2(0, T ;H),
F0 ∈ C∞([0, T ];H), N ∈ H1(0, T ;HN ), and z ∈ H2(0, T ;H)∩H1(0, T ;V ) with z(t) ∈ Vt for
every t ∈ [0, T ].

More in general, given F ∈ H1(0, T ;H) we will study the following viscoelastic dynamic
system: for every t ∈ [0, T ]

ü(t)− div((A + B)eu(t)) +

∫ t

0

1

β
e
− t−τ

β div(Beu(τ))dτ = f(t)− divF (t), in Ω \ Γt, (2.16)

with boundary and initial conditions

u(t) = z(t) on ∂DΩ, (2.17)[
(A + B) eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ
]
ν = F (t)ν on ∂NΩ, (2.18)[

(A + B) eu(t)−
∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ
]
ν = F (t)ν on Γt, (2.19)

u(0) = u0, u̇(0) = u1. (2.20)

Notice that system (2.11)–(2.15) is a particular case of system (2.16)–(2.20). As we
have already specified for system (2.6)–(2.9), also for (2.16)–(2.20) the Neumann boundary
conditions are only formal, and their meaning is clarified by the following definition.

Definition 2.1.3. We say that u ∈ V(0, T ) is a weak solution to the viscoelastic dynamic
system (2.16)–(2.20) on the interval [0, T ] if u− z ∈ VD(0, T ),

−
∫ T

0
(u̇(t), v̇(t))dt+

∫ T

0

(
(A + B)eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ, ev(t)
)

dt
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=

∫ T

0
(f(t), v(t))dt+

∫ T

0
(F (t), ev(t))dt (2.21)

for every v ∈ DD(0, T ), and

lim
t→0+

‖u(t)− u0‖ = 0, lim
t→0+

‖u̇(t)− u1‖(V D0 )′ = 0. (2.22)

Remark 2.1.4. From Lemma 2.1.2, if a function u ∈ V(0, T ) satisfies (2.21) for every v ∈
DD(0, T ), then it satisfies the same equality for every v ∈ VD(0, T ) such that v(0) = v(T ) = 0.

2.2 Existence by using Dafermos’ method

In this section we present an existence result which is to be considered in the framework of
functional analysis; in particular it derives from an idea of C. Dafermos (see [11]) based on
a generalization of Lax-Milgram’s Theorem by J.L. Lions (see [33]). We start by stating the
main result of this section.

Theorem 2.2.1. There exists a weak solution u ∈ V(0, T ) to the viscoelastic dynamic system
(2.16)–(2.20) on the interval [0, T ] in the sense of Definition 2.1.3. Moreover, there exists a
positive constant C = C(T,A,B, β) such that

‖u‖V(0,T ) ≤ C
(
‖f‖L2(0,T ;H) + ‖F‖H1(0,T ;H) + ‖z̈‖L2(0,T ;H) + ‖z‖H1(0,T ;V ) + ‖u0‖V + ‖u1‖

)
.

(2.23)

Remark 2.2.2. Without loss of generality we may assume that the Dirichlet datum and the
initial displacement are identically equal to zero. Indeed, the function u is a weak solution
to the viscoelastic dynamic system (2.16)–(2.20) according to Definition 2.1.3 if and only if
the function u∗, defined by u∗(t) := u(t)− u0 + z(0)− z(t), satisfies

−
∫ T

0
(u̇∗(t), ψ̇(t))dt+

∫ T

0
((A + B)eu∗(t), eψ(t))dt

−
∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu∗(τ), eψ(t))dτdt =

∫ T

0
(f∗(t), ψ(t))dt+

∫ T

0
(F ∗(t), eψ(t))dt,

for every ψ ∈ DD(0, T ), and

lim
t→0+

‖u∗(t)‖ = 0, lim
t→0+

‖u̇∗(t)− u1
∗‖(V D0 )′ = 0,

where f∗ := f − z̈, u1
∗ := u1 − ż(0), and for every t ∈ [0, T ]

F ∗(t) := F (t) +

∫ t

0

1

β
e
− t−τ

β Bez(τ)dτ − (A + B)ez(t)− (A + e
− t
βB)(eu0 − ez(0)).

Moreover, if u∗ satisfies for some positive constants C∗ the following estimate

‖u∗‖V(0,T ) ≤ C∗
(
‖f∗‖L2(0,T ;H) + ‖F ∗‖H1(0,T ;H) + ‖u1

∗‖
)
, (2.24)

then u satisfies (2.23). Indeed, since

‖f∗‖L2(0,T ;H) ≤ ‖f‖L2(0,T ;H) + ‖z̈‖L2(0,T ;H),

and for some positive constants C̄ = C(T,A,B, β) we have

‖F ∗‖H1(0,T ;H) ≤ ‖F‖H1(0,T ;H) +
(

1 +
2

1
2

β

)∥∥∥∫ ·
0

1

β
e
− ·−τ

β Bez(τ)dτ
∥∥∥
L2(0,T ;H)
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+
2

1
2

β
CB‖z‖L2(0,T ;V ) + (CA + CB)‖z‖H1(0,T ;V )

+ (CA + ‖e−
·
β ‖H1(0,T )CB)(‖u0‖V + ‖z(0)‖V )

≤ C̄(‖F‖H1(0,T ;H) + ‖z‖H1(0,T ;V ) + ‖u0‖V ),

from (2.24) we deduce

‖u‖V(0,T ) ≤ ‖u∗‖V(0,T ) + T
1
2 (‖u0‖V + ‖z(0)‖V ) + ‖z‖V(0,T )

≤ C
(
‖f‖L2(0,T ;H) + ‖F‖H1(0,T ;H) + ‖z̈‖L2(0,T ;H) + ‖z‖H1(0,T ;V ) + ‖u0‖V + ‖u1‖

)
,

where C = C(T,A,B, β) is a positive constant.

Based on Remark 2.2.2, we now assume that the Dirichlet datum and the initial displace-
ment are identically equal to zero. To prove the theorem in this case, we first prove that our
weak formulation (2.21) with initial conditions (2.22) is equivalent to another one, which we
call Dafermos’ Equality. After that, by means of a Lions’ theorem we prove that there exists
an element which satisfies this equality. Namely, by defining for every a, b ∈ [0, T ] such that
a < b the space

ED0 (a, b) := {ϕ ∈ C∞([a, b];V ) : ϕ(a) = 0, ϕ(t) ∈ V D
t for every t ∈ [a, b]},

we can state the following equivalence result.

Proposition 2.2.3. Suppose that there exists u ∈ VD(0, T ) which satisfies the initial condi-
tion u(0) = 0 in the sense of (2.22), and such that Dafermos’ Equality holds:∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(t− T )

[
(u̇(t), ϕ̈(t))− ((A + B)eu(t), eϕ̇(t))

]
dt

+

∫ T

0
(t− T )

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eϕ̇(t))dτdt = T (u1, ϕ̇(0))

−
∫ T

0
(t− T ) [(f(t), ϕ̇(t)) + (F (t), eϕ̇(t))] dt for every ϕ ∈ ED0 (0, T ). (2.25)

Then u satisfies (2.21), u(0) = 0 and u̇(0) coincides with u1 in (V D
0 )′. Moreover, if u ∈

VD(0, T ) is a weak solution in the sense of Definition 2.1.3, then it satisfies (2.25).

At this point, we state and prove some lemmas and propositions needed for the proof
of Proposition 2.2.3. In particular, in the following lemma, we highlight a useful relation
between DD(0, T ) and ED0 (0, T ).

Lemma 2.2.4. For every v ∈ DD(0, T ) the function defined by

ϕv(t) =

∫ t

0

v(τ)

τ − T
dτ

is well defined and satisfies ϕv ∈ ED0 (0, T ).

Proof. Firstly, we can notice that ϕv is well defined because v is a function with compact
support, hence it vanishes in a neighborhood of T . Moreover, ϕv(0) = 0 by definition and
ϕv ∈ C∞([0, T ];V ) because it is a primitive of a function with the same regularity. Now, we

can observe that v(τ) ∈ V D
τ ⊂ V D

t for every τ ≤ t, therefore we have v(τ)
τ−T ∈ V

D
t for every

τ ≤ t, and by the properties of Bochner’s integral we get ϕv(t) ∈ V D
t .
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In the next proposition we show that the distributional second derivative in time of a
weak solution is an element of the space L2(0, T ; (V D

0 )′). Therefore, such a solution has an
initial velocity in the space (V D

0 )′.

Proposition 2.2.5. Let u ∈ VD(0, T ) be a function which satisfies (2.21). Then the distri-
butional derivative of u̇ belongs to the space L2(0, T ; (V D

0 )′).

Proof. Let Λ ∈ L2(0, T ; (V D
0 )′) be defined in the following way: for a.e. t ∈ (0, T ) and for

every v ∈ V D
0

〈Λ(t),v〉 := −((A + B)eu(t), ev) +

∫ t

0

1

β
e
− t−τ

β (Beu(τ), ev)dτ + (f(t),v) + (F (t), ev) (2.26)

where 〈·, ·〉 represents the duality product between (V D
0 )′ and V D

0 .
Let us consider a test function ϕ ∈ C∞c (0, T ), then for every v ∈ V D

0 the function ψ(t) :=
ϕ(t)v belongs to the space C∞c (0, T ;V0), and consequently ψ ∈ DD(0, T ). Now we multiply
both sides of (2.26) by ϕ(t) and we integrate it on (0, T ). Thanks to (2.21) we can write∫ T

0
〈Λ(t),v〉ϕ(t)dt =−

∫ T

0
((A + B)eu(t), eψ(t))dt+

∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eψ(t))dτdt

+

∫ T

0
(f(t), ψ(t))dt+

∫ T

0
(F (t), eψ(t))dt = −

∫ T

0
(u̇(t),v)ϕ̇(t)dt,

which implies

〈
∫ T

0
Λ(t)ϕ(t)dt,v〉 = 〈−

∫ T

0
u̇(t)ϕ̇(t)dt,v〉 for every v ∈ V D

0 .

Hence, we get ∫ T

0
Λ(t)ϕ(t)dt = −

∫ T

0
u̇(t)ϕ̇(t)dt for every ϕ ∈ C∞c (0, T )

as elements of (V D
0 )′, which concludes the proof.

Remark 2.2.6. Proposition 2.2.5 implies that u̇ ∈ H1(0, T ; (V D
0 )′), hence it admits a con-

tinuous representative. Therefore, we can say that there exists u̇(0) ∈ (V D
0 )′ such that

lim
t→0+

‖u̇(t)− u̇(0)‖(V D0 )′ = 0. (2.27)

In the next proposition we show how the weak formulation (2.21) changes if we use test
functions which do not vanish at zero. In particular, we use the notation η(T ) to refer to the
family of open neighborhoods of T , and we consider the following spaces

LipD(0, T ) := {ψ ∈ Lip([0, T ];V ) : ψ(t) ∈ V D
t for every t ∈ [0, T ]},

LipD0,T (0, T ) := {ψ ∈ LipD(0, T ) : ∃Iψ ∈ η(T ), s.t. ψ(t) = 0 for every t ∈ Iψ ∪ {0}},
LipDT (0, T ) := {Ψ ∈ LipD(0, T ) : Ψ(T ) = 0}.

Proposition 2.2.7. Let u ∈ VD(0, T ) be a function which satisfies (2.21) for every ψ ∈
LipD0,T (0, T ). Then u satisfies the equality

−
∫ T

0
(u̇(t), Ψ̇(t))dt+

∫ T

0
((A + B)eu(t), eΨ(t))dt−

∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eΨ(t))dτdt

=

∫ T

0
(f(t),Ψ(t))dt+

∫ T

0
(F (t), eΨ(t))dt+ 〈u̇(0),Ψ(0)〉,

(2.28)

for every Ψ ∈ LipDT (0, T ).
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Proof. Let us consider Ψ ∈ LipDT (0, T ) and define for every ε ∈ (0, T3 ) the function

ψε(t) :=


t
εΨ(0) t ∈ [0, ε]

Ψ(t− ε) t ∈ [ε, T − 2ε](
− t
ε + T−ε

ε

)
Ψ(T − 3ε) t ∈ [T − 2ε, T − ε]

0 t ∈ [T − ε, T ].

It is easy to see that ψε ∈ LipD0,T (0, T ), and by using ψε as test function in (2.21) we get
Iε + Imε + Jmε = 0, where the three terms Iε, I

m
ε , and Jmε are defined in the following way:

Iε :=−
∫ T−2ε

ε
(u̇(t), Ψ̇(t− ε))dt+

∫ T−2ε

ε
((A + B)eu(t), eΨ(t− ε))dt

−
∫ T−2ε

ε

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eΨ(t− ε))dτdt

−
∫ T−2ε

ε
(f(t),Ψ(t− ε))dt−

∫ T−2ε

ε
(F (t), eΨ(t− ε))dt,

Imε :=−−
∫ ε

0
(u̇(t),Ψ(0))dt+−

∫ ε

0
((A + B)eu(t), teΨ(0))dt

−−
∫ ε

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), teΨ(0))dτdt−−
∫ ε

0
(f(t), tΨ(0))dt−−

∫ ε

0
(F (t), teΨ(0))dt,

and

Jmε : = −
∫ T−ε

T−2ε
(u̇(t),Ψ(T − 3ε))dt+−

∫ T−ε

T−2ε
((A + B)eu(t), (−t+ T − ε)eΨ(T − 3ε))dt

−−
∫ T−ε

T−2ε

∫ t

0

1

β
e
− t−τ

β (Beu(τ), (−t+ T − ε)eΨ(T − 3ε))dτdt

−−
∫ T−ε

T−2ε
(f(t), (−t+ T − ε)Ψ(T − 3ε))dt−−

∫ T−ε

T−2ε
(F (t), (−t+ T − ε)eΨ(T − 3ε))dt.

Let us study the convergence of Iε, I
m
ε , and Jmε as ε→ 0+. First of all, we notice that from

the definition of ψε and the Lipschitz continuity of Ψ we have

‖ψε −Ψ‖2L2(0,T ;V ) =

∫ ε

0

∥∥∥ t
ε

Ψ(0)−Ψ(t)
∥∥∥2

V
dt+

∫ T−2ε

ε
‖Ψ(t− ε)−Ψ(t)‖2V dt

+

∫ T−ε

T−2ε

∥∥∥(− t

ε
+
T − ε
ε

)
Ψ(T − 3ε)−Ψ(t)

∥∥∥2

V
dt

≤ 2‖Ψ(0)‖2V
∫ ε

0

t2

ε2
dt+ 2

∫ ε

0
‖Ψ(t)‖2V dt+

∫ T−2ε

ε
L2

Ψ|t− ε− t|2dt

+ 2‖Ψ(T − 3ε)‖2V
∫ T−ε

T−2ε

(
− t

ε
+
T − ε
ε

)2
dt+ 2

∫ T−ε

T−2ε
‖Ψ(t)‖2V dt

≤ 4

3
ε‖Ψ‖2L∞(0,T ;V ) + 2

∫ ε

0
‖Ψ(t)‖2V dt

+ 2

∫ T−ε

T−2ε
‖Ψ(t)‖2V dt+ L2

Ψε
2(T − 3ε) −−−−→

ε→0+
0. (2.29)

From (2.3), (2.29), and to the absolute continuity of Lebesgue’s integral, we have∣∣∣ ∫ T−2ε

ε
((A + B)eu(t), eΨ(t− ε))dt−

∫ T

0
((A + B)eu(t), eΨ(t))dt

∣∣∣
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≤
∣∣∣ ∫ ε

0
((A + B)eu(t), eΨ(t))dt

∣∣∣+
∣∣∣ ∫ T

T−2ε
((A + B)eu(t), eΨ(t))dt

∣∣∣
+
∣∣∣ ∫ T−2ε

ε
((A + B)eu(t), eΨ(t− ε)− eΨ(t))dt

∣∣∣
≤ (CA + CB)

[ ∫ ε

0
‖u(t)‖V ‖Ψ(t)‖V dt+

∫ T

T−2ε
‖u(t)‖V ‖Ψ(t))‖V dt

]
+ (CA + CB)

[
‖u‖L2(0,T ;V )‖ψε −Ψ‖L2(0,T ;V )

]
−−−−→
ε→0+

0. (2.30)

In the same way we can prove that∫ T−2ε

ε

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eΨ(t− ε))dτdt −−−−→
ε→0+

∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eΨ(t))dτdt, (2.31)∫ T−2ε

ε
(f(t),Ψ(t− ε))dt −−−−→

ε→0+

∫ T

0
(f(t),Ψ(t))dt, (2.32)∫ T−2ε

ε
(F (t), eΨ(t− ε))dt −−−−→

ε→0+

∫ T

0
(F (t), eΨ(t))dt. (2.33)

Notice that, by virtue of the continuity of the translation operator in L2, and again by the
absolute continuity of Lebesgue’s integral, we can write∣∣∣ ∫ T−2ε

ε
(u̇(t), Ψ̇(t− ε))dt−

∫ T

0
(u̇(t), Ψ̇(t))dt

∣∣∣
≤
∣∣∣ ∫ ε

0
(u̇(t), Ψ̇(t))dt

∣∣∣+
∣∣∣ ∫ T−2ε

ε
(u̇(t), Ψ̇(t− ε)− Ψ̇(t))dt

∣∣∣+
∣∣∣ ∫ T

T−2ε
(u̇(t), Ψ̇(t))dt

∣∣∣
≤
∫ ε

0
‖u̇(t)‖‖Ψ̇(t)‖dt+ ‖u̇‖L2(0,T ;H)‖Ψ̇(· − ε)− Ψ̇(·)‖L2(0,T ;H)

+

∫ T

T−2ε
‖u̇(t)‖‖Ψ̇(t))‖dt −−−−→

ε→0+
0. (2.34)

Taking into account (2.30)–(2.34) we conclude that

Iε −−−−→
ε→0+

−
∫ T

0
(u̇(t), Ψ̇(t))dt+

∫ T

0
((A + B)eu(t), eΨ(t))dt

−
∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eΨ(t))dτdt−
∫ T

0
(f(t),Ψ(t))dt−

∫ T

0
(F (t), eΨ(t))dt.

Now we analyze the limit of Imε as ε→ 0+. By (2.27) we obtain

−
∫ ε

0
(u̇(t),Ψ(0))dt = (−

∫ ε

0
u̇(t)dt,Ψ(0)) = 〈−

∫ ε

0
u̇(t)dt,Ψ(0)〉 −−−−→

ε→0+
〈u̇(0),Ψ(0)〉. (2.35)

Moreover∣∣∣−∫ ε

0
((A + B)eu(t), teΨ(0))dt

∣∣∣ ≤ (CA + CB)‖Ψ(0)‖V−
∫ ε

0
t‖u(t)‖V dt

≤ (CA + CB)‖Ψ‖L∞(0,T ;V )

(ε
3

) 1
2 ‖u‖L2(0,T ;V ) −−−−→

ε→0+
0. (2.36)

In the same way, we can prove that

−
∫ ε

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), teΨ(0))dτdt −−−−→
ε→0+

0, (2.37)
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−
∫ ε

0
(f(t), tΨ(0))dt −−−−→

ε→0+
0, (2.38)

−
∫ ε

0
(F (t), teΨ(0))dt −−−−→

ε→0+
0, (2.39)

hence, by (2.35)–(2.39) we obtain Imε −−−−→
ε→0+

−〈u̇(0),Ψ(0)〉.

Finally, we study the behaviour of Jmε as ε→ 0+. Since Ψ(T ) = 0, we can write∣∣∣−∫ T−ε

T−2ε
(u̇(t),Ψ(T − 3ε))dt

∣∣∣
≤ 1

ε
1
2

‖u̇‖L2(0,T ;H)‖Ψ(T − 3ε)−Ψ(T )‖ ≤ 3LΨ‖u̇‖L2(0,T ;H)ε
1
2 −−−−→
ε→0+

0. (2.40)

Moreover∣∣∣−∫ T−ε

T−2ε
((A + B)eu(t), (−t+ T − ε)eΨ(T − 3ε))dt

∣∣∣
≤ (CA + CB)‖Ψ(T − 3ε)‖V

(
−
∫ T−ε

T−2ε
(T − t)‖u(t)‖V dt+

∫ T−ε

T−2ε
‖u(t)‖V dt

)
≤ (CA + CB)‖Ψ‖L∞(0,T ;V )

((7

3

) 1
2

+ 1
)
ε

1
2 ‖u‖L2(0,T ;V ) −−−−→

ε→0+
0. (2.41)

By following the same strategy used in (2.41), we can prove that

−
∫ T−ε

T−2ε

∫ t

0

1

β
e
− t−τ

β (Beu(τ), (−t+ T − ε)eΨ(T − 3ε))dτdt −−−−→
ε→0+

0, (2.42)

−
∫ T−ε

T−2ε
(f(t), (−t+ T − ε)Ψ(T − 3ε))dt −−−−→

ε→0+
0, (2.43)

−
∫ T−ε

T−2ε
(F (t), (−t+ T − ε)eΨ(T − 3ε))dt −−−−→

ε→0+
0. (2.44)

Thanks to (2.40)–(2.44) we can say that Jmε → 0 as ε→ 0+, and this concludes the proof.

We are now in position to prove the equivalence result between the viscoelastic dynamic
system (2.16)–(2.20) and Dafermos’ Equality (2.25), stated in Proposition 2.2.3.

Proof of Proposition 2.2.3. Let u ∈ VD(0, T ) be a function with u(0) = 0, and which satisfies
(2.25). Let us consider v ∈ DD(0, T ). By Lemma 2.2.4, the function defined by

ϕv(t) =

∫ t

0

v(τ)

τ − T
dτ (2.45)

is well defined and belongs to the space ED0 (0, T ). By taking ϕv as a test function in (2.25)
we obtain

−
∫ T

0
(u̇(t), ϕ̇v(t) + (t− T )ϕ̈v(t))dt+

∫ T

0
((A + B)eu(t), e((t− T )ϕ̇v(t)))dt

−
∫ T

0

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ, e((t− T )ϕ̇v(t)))dt

=

∫ T

0
(f(t), (t− T )ϕ̇v(t))dt+

∫ T

0
(F (t), e((t− T )ϕ̇v(t)))dt, (2.46)
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since ϕ̇v(0) = v(0)
−T = 0. Notice that v(t) = (t− T )ϕ̇v(t) and consequently v̇(t) = ϕ̇v(t) + (t−

T )ϕ̈v(t), by the definition of ϕv itself. This, together with (2.46), allows us to conclude that
u ∈ VD(0, T ) satisfies (2.21) for every v ∈ DD(0, T ).

Now we prove that u1 coincides with u̇(0). Since the function u satisfies (2.21) for every
v ∈ DD(0, T ), in particular, from Remark 2.1.4, it satisfies the same equality for every
v ∈ LipD0,T (0, T ). Thanks to Proposition 2.2.7, the function u satisfies (2.28) for every

v ∈ LipDT (0, T ), and therefore, by defining

ET (0, T ) := {v ∈ C∞([0, T ];V ) : ∃Iv ∈ η(T ), s.t. v(t) = 0 for every t ∈ Iv},

it satisfies (2.28) for every function in the space

EDT (0, T ) := {v ∈ ET (0, T ) : v(t) ∈ V D
t for every t ∈ [0, T ]}.

Moreover, if we define ϕv as in (2.45) we have ϕv ∈ ED0 (0, T ), and we can use it as a test
function in (2.25) to deduce

−
∫ T

0
(u̇(t), v̇(t))dt+

∫ T

0
((A + B)eu(t), ev(t))dt−

∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), ev(t))dτdt

=

∫ T

0
(f(t), v(t))dt+

∫ T

0
(F (t), ev(t))dt+ (u1, v(0)). (2.47)

By taking the difference between (2.28) and (2.47) we get 〈u1 − u̇(0), v(0)〉 = 0 for every
v ∈ EDT (0, T ). Since for every v ∈ V D

0 there exists a function v ∈ EDT (0, T ) such that
v(0) = v, we can obtain that 〈u1 − u̇(0),v〉 = 0 for every v ∈ V D

0 , and so u1 − u̇(0) = 0 as
element of (V D

0 )′. This proves the first part of the proposition.
Vice versa, let u ∈ VD(0, T ) be a weak solution in the sense of Definition 2.1.3. Therefore,

u satisfies (2.21) for every v ∈ DD(0, T ), and as we have already shown before, u satisfies
(2.28), with u1 in place of u̇(0), for every function v ∈ LipDT (0, T ). Let us consider ϕ ∈
ED0 (0, T ), then vϕ(t) = (t − T )ϕ̇(t) ∈ LipDT (0, T ), and so it can be used as a test function
in (2.28). By noticing that v̇ϕ(t) = ϕ̇(t) + (t − T )ϕ̈(t) and vϕ(0) = −T ϕ̇(0) we obtain the
thesis.

In view of the previous proposition, it will be enough to prove the existence of a solution
to Dafermos’ Equality (2.25). In particular, we shall prove the existence of t0 ∈ (0, T ] and of
a function u ∈ VD(0, t0) such that u(0) = 0, and which satisfies Dafermos’ Equality on the
interval [0, t0]. In order to do this, we use an abstract result due to Lions (see [33, Chapter 3,
Theorem 1.1 and Remark 1.2]). We first introduce the necessary setting. Let X be a Hilbert
space and Y ⊂ X be a linear subspace, endowed with the scalar product (·, ·)Y which makes
it a pre-Hilbert space. Suppose that the inclusion of Y in X is a continuous map, i.e., there
exists a positive constant C such that

‖u‖X ≤ C‖u‖Y for every u ∈ Y . (2.48)

Let us consider a bilinear form B : X × Y → R such that

B(·, ϕ) : X → R is a linear continuous function on X for every ϕ ∈ Y , (2.49)

B(ϕ,ϕ) ≥ α‖ϕ‖2Y for every ϕ ∈ Y , for some positive constant α. (2.50)

Now, we can state the aforementioned existence theorem.

Theorem 2.2.8 (J.L. Lions). Suppose that hypotheses (2.48)–(2.50) are satisfied, and let
L : Y → R be a linear continuous map. Then there exists u ∈ X such that

B(u, ϕ) = L(ϕ) for every ϕ ∈ Y .
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Moreover, the solution u satisfies

‖u‖X ≤
C

α
sup{|L(ϕ)| : ‖ϕ‖Y = 1}. (2.51)

After defining for every a, b ∈ [0, T ] with a < b the space

VD0 (a, b) := {u ∈ VD(a, b) : u(a) = 0},

we can state the following proposition.

Proposition 2.2.9. There exists t0 ∈ (0, T ] and a function u ∈ VD0 (0, t0) which satisfies
Dafermos’ Equality (2.25) on the interval [0, t0] for every ϕ ∈ ED0 (0, t0). Moreover, there
exists a positive constant C0 = C0(t0,A) such that

‖u‖V(0,t0) ≤ C0

(
‖f‖L2(0,t0;H) + ‖F‖H1(0,t0;H) + ‖u1‖

)
. (2.52)

Proof. We fix t0 ∈ (0, T ] such that {
t0 <

1
2cA

if 1
2cA

< T

t0 = T otherwise.
(2.53)

For simplicity of notation, we denote the spaces VD0 (0, t0) and ED0 (0, t0) with the symbols Vt0
and Et0 , respectively. On the space Vt0 we take the usual scalar product, instead on the space
Et0 we consider the following one

(φ, ϕ)Et0 :=

∫ t0

0
[(φ̇(t), ϕ̇(t)) + (φ(t), ϕ(t))V ]dt+ t0(φ̇(0), ϕ̇(0)) for every φ, ϕ ∈ Et0 ,

and we denote by ‖ · ‖Et0 the norm associated.
Let us consider the bilinear form B : Vt0 × Et0 → R defined by

B(u, ϕ) :=

∫ t0

0
[(u̇(t), ϕ̇(t)) + (t− t0)(u̇(t), ϕ̈(t))]dt

−
∫ t0

0
(t− t0)((A + B)eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ, eϕ̇(t))dt,

and the linear operator L : Et0 → R represented by

L(ϕ) := t0(u1, ϕ̇(0))−
∫ t0

0
(t− t0)(f(t), ϕ̇(t))dt

+

∫ t0

0
(t− t0)(Ḟ (t), eϕ(t))dt+

∫ t0

0
(F (t), eϕ(t))dt.

Notice that, from these definitions, Dafermos’ Equality (2.25) on the interval [0, t0] can be
rephrased as follows

B(u, ϕ) = L(ϕ) for every ϕ ∈ Et0 .

Now we are in the framework of Theorem 2.2.8, and we want to show that (2.49) and (2.50)
are satisfied. Foremost, we prove the existence of a positive constant α such that

B(ϕ,ϕ) ≥ α‖ϕ‖2Et0 for every ϕ ∈ Et0 .

By definition we have

B(ϕ,ϕ) =

∫ t0

0
[‖ϕ̇(t)‖2 + (t− t0)(ϕ̇(t), ϕ̈(t))]dt
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−
∫ t0

0
(t− t0)

[
((A + B)eϕ(t), eϕ̇(t))−

∫ t

0

1

β
e
− t−τ

β (Beϕ(τ), eϕ̇(t))dτ
]
dt. (2.54)

Now we define

ψ(t) :=

∫ t

0

1

β
e
− t−τ

β eϕ(τ)dτ hence we have ψ̇(t) =
1

β
eϕ(t)−

∫ t

0

1

β2
e
− t−τ

β eϕ(τ)dτ ;

then (2.54) can be reworded as

B(ϕ,ϕ) =

∫ t0

0
‖ϕ̇(t)‖2 +(t−t0)[(ϕ̇(t), ϕ̈(t))−((A+B)eϕ(t), eϕ̇(t))+(Bψ(t), eϕ̇(t))]dt. (2.55)

Thanks to the chain rule and to the symmetry property (2.4), we can write

1

2

d

dt
‖ϕ̇(t)‖2 = (ϕ̇(t), ϕ̈(t)),

1

2

d

dt
((A + B)eϕ(t), eϕ(t)) = ((A + B)eϕ(t), eϕ̇(t)),

d

dt
(Bψ(t), eϕ(t)) = (Bψ̇(t), eϕ(t)) + (Bψ(t), eϕ̇(t)).

By substituting this information in (2.55), we get after some integration by parts

B(ϕ,ϕ) =

∫ t0

0
‖ϕ̇(t)‖2dt+

1

2

∫ t0

0
(t− t0)

d

dt
‖ϕ̇(t)‖2dt−

∫ t0

0
(t− t0)(Bψ̇(t), eϕ(t))dt

+

∫ t0

0
(t− t0)

d

dt
(Bψ(t), eϕ(t))dt− 1

2

∫ t0

0
(t− t0)

d

dt
((A + B)eϕ(t), eϕ(t))dt

=
t0
2
‖ϕ̇(0)‖2 +

1

2

∫ t0

0
‖ϕ̇(t)‖2dt+

1

2

∫ t0

0
((A + B)eϕ(t), eϕ(t))dt

−
∫ t0

0
(Bψ(t), eϕ(t))dt−

∫ t0

0
(t− t0)(Bψ̇(t), eϕ(t))dt

=
t0
2
‖ϕ̇(0)‖2 +

1

2

∫ t0

0
‖ϕ̇(t)‖2dt+

1

2

∫ t0

0
((A + B)eϕ(t), eϕ(t))dt

−
∫ t0

0
(t− t0)(βBψ̇(t), ψ̇(t))dt−

∫ t0

0
(t− t0)(Bψ̇(t), ψ(t))−

∫ t0

0
(Bψ(t), eϕ(t))dt

=
t0
2
‖ϕ̇(0)‖2 +

1

2

∫ t0

0
‖ϕ̇(t)‖2dt+

1

2

∫ t0

0
(Aeϕ(t), eϕ(t))dt

+
1

2

∫ t0

0
(B(eϕ(t)− ψ(t)), eϕ(t)− ψ(t))dt+

∫ t0

0
(t0 − t)(βBψ̇(t), ψ̇(t))dt. (2.56)

From the coerciveness in (2.5) and to the definition of the V -norm, we have

(Aeϕ(t), eϕ(t)) ≥ cA‖ϕ(t)‖2V − cA‖ϕ(t)‖2 for every t ∈ [0, T ]. (2.57)

Moreover, since

ϕ(t) = ϕ(0) +

∫ t

0
ϕ̇(τ)dτ =

∫ t

0
ϕ̇(τ)dτ,

inequality (2.57) implies

1

2

∫ t0

0
(Aeϕ(t), eϕ(t))dt ≥ cA

2

∫ t0

0
‖ϕ(t)‖2V dt− cAt0

2

∫ t0

0
‖ϕ̇(t)‖2dt. (2.58)

By (2.56), (2.58), and in view of the choice done in (2.53), we can deduce

B(ϕ,ϕ) ≥ t0
2
‖ϕ̇(0)‖2 +

1− cAt0
2

∫ t0

0
‖ϕ̇(t)‖2dt+

cA
2

∫ t0

0
‖ϕ(t)‖2V dt ≥ 1

4
min{1, cA}‖ϕ‖2Et0 ,
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which corresponds to the hypothesis (2.50), with

α =
1

4
min{1, cA}. (2.59)

We now show the validity of assumption (2.49). We have to prove that for every ϕ ∈ Et0
the functional B(·, ϕ) is continuous on Vt0 , and that L : Et0 → R is a linear continuous
operator on the space Et0 . To this aim, we fix ϕ ∈ Et0 and we consider {uk}k ⊂ Vt0 such that

uk
Vt0−−−→
k→∞

u.

Therefore

Uk := uk − u
L2(0,t0;V )−−−−−−→
k→∞

0 and U̇k := u̇k − u̇
L2(0,t0;H)−−−−−−→
k→∞

0.

By using Cauchy-Schwarz’s inequality we get

|B(Uk, ϕ)| ≤
∫ t0

0
|(U̇k(t), ϕ̇(t))|dt+ t0

∫ t0

0
|(U̇k(t), ϕ̈(t))|dt

+ t0

∫ t0

0
|((A + B)eUk(t), eϕ̇(t))|dt+ t0

∫ t0

0

∫ t

0

1

β
e
− t−τ

β |(BeUk(τ), eϕ̇(t))|dτdt

≤ ‖U̇k‖L2(0,t0;H)‖ϕ̇‖L2(0,t0;H) + t0(CA + CB)‖Uk‖L2(0,t0;V )‖ϕ̇‖L2(0,t0;V )

+ t0‖U̇k‖L2(0,t0;H)‖ϕ̈‖L2(0,t0;H) +
t0
β
CB

∫ t0

0

∫ t

0
|(eUk(τ), eϕ̇(t))|dτdt. (2.60)

Notice that∫ t0

0

∫ t

0
|(eUk(τ), eϕ̇(t))|dτdt

≤ ‖ϕ̇‖L2(0,t0;V )

(∫ t0

0

(∫ t

0
‖Uk(τ)‖V dτ

)2
dt
) 1

2 ≤ t0‖ϕ̇‖L2(0,t0;V )‖Uk‖L2(0,t0;V ),

whence, by considering (2.60), we can say that there exist two positive constants C1 =
C1(ϕ, t0) and C2 = C2(A,B, t0, β, ϕ) such that

|B(Uk, ϕ)| ≤ C1‖U̇k‖L2(0,t0;H) + C2‖Uk‖L2(0,t0,V ) −−−→
k→∞

0.

Now it remains to show that L is a continuous operator on Et0 , and since it is linear it is
enough to show its boundedness. Let ϕ ∈ Et0 , then

|L(ϕ)| ≤
∣∣∣ ∫ t0

0

[
(t− t0)(f(t), ϕ̇(t))− (t− t0)(Ḟ (t), eϕ(t))− (F (t), eϕ(t))

]
dt
∣∣∣+ t0‖u1‖‖ϕ̇(0)‖.

(2.61)

In particular there exists a positive constant C = C(f, F, t0) such that∫ t0

0
|(t− t0)(f(t), ϕ̇(t))− (F (t), eϕ(t))− (t− t0)(Ḟ (t), eϕ(t))|dt

≤ t0‖f‖L2(0,t0;H)‖ϕ̇‖L2(0,t0;H) +
(∫ t0

0
‖(t− t0)Ḟ (t) + F (t)‖2dt

) 1
2 ‖ϕ‖L2(0,t0;V )

≤ t0‖f‖L2(0,t0;H)‖ϕ‖Et0 + 2
1
2 max{t0, 1}‖F‖H1(0,t0;H)‖ϕ‖Et0 ≤ C‖ϕ‖Et0 . (2.62)

Moreover, we have

t0‖u1‖‖ϕ̇(0)‖ ≤ t0‖u1‖t−
1
2

0 ‖ϕ‖Et0 = t
1
2
0 ‖u

1‖‖ϕ‖Et0 . (2.63)
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By applying Theorem 2.2.8 with X = Vt0 and Y = Et0 , we have the existence of a solution
to (2.25) on the interval [0, t0].

Furthermore, we can use (2.51) and (2.59), and by means of (2.61)–(2.63) we obtain (2.52)
with

C0 :=
max{2

1
2 max{t0, 1}, t

1
2
0 }

1
4 min{1, cA}

.

Remark 2.2.10. At this point, from Remark 2.2.2, Propositions 2.2.3 and 2.2.9, we can find
a weak solution to the viscoelastic dynamic system (2.16)–(2.20) on the interval [0, t0].

Now we want to show that it is possible to find a weak solution on the whole interval
[0, T ]. Let b, c ∈ [t0, T ) be two real numbers such that b < c, then we can state the following
lemma.

Lemma 2.2.11. Let u ∈ VD(0, b) be a function which satisfies (2.21) on the interval [0, b],
then the following equality holds

〈u̇(b), ψ(b)〉 −
∫ b

0
(u̇(t), ψ̇(t))dt+

∫ b

0
((A + B)eu(t), eψ(t))dt

−
∫ b

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eψ(t))dτdt =

∫ b

0
(f(t), ψ(t))dt+

∫ b

0
(F (t), eψ(t))dt, (2.64)

for every ψ ∈ VD(0, b) such that ψ(0) = 0.
Moreover, if u ∈ VD(b, c) is a function which satisfies (2.21) on the interval [b, c], then

the following equality holds

− 〈u̇(b),Ψ(b)〉 −
∫ c

b
(u̇(t), Ψ̇(t))dt+

∫ c

b
((A + B)eu(t), eΨ(t))dt

−
∫ c

b

∫ t

b

1

β
e
− t−τ

β (Beu(τ), eΨ(t))dτdt =

∫ c

b
(f(t),Ψ(t))dt+

∫ c

b
(F (t), eΨ(t))dt, (2.65)

for every Ψ ∈ VD(b, c) such that Ψ(c) = 0.

Proof. We begin by proving (2.64). We consider ψ ∈ VD(0, b) such that ψ(0) = 0, and we
define for ε ∈ (0, b) the function

ψε(t) =

{
ψ(t) t ∈ [0, b− ε]
b−t
ε ψ(t) t ∈ [b− ε, b].

Since ψε ∈ VD(0, b) and ψε(0) = ψε(b) = 0, we can use it as a test function in (2.21) to obtain
Iε + Jε = Kε, where

Iε :=−
∫ b−ε

0
(u̇(t), ψ̇(t))dt+−

∫ b

b−ε
(u̇(t), ψ(t))dt

+

∫ b−ε

0
((A + B)eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ, eψ(t))dt,

Jε := −−
∫ b

b−ε
(b− t)(u̇(t), ψ̇(t))dt+−

∫ b

b−ε
(b− t)((A + B)eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ, eψ(t))dt,

Kε :=

∫ b−ε

0
(f(t), ψ(t))dt+−

∫ b

b−ε
(b− t)(f(t), ψ(t))dt
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+

∫ b−ε

0
(F (t), eψ(t))dt+−

∫ b

b−ε
(b− t)(F (t), eψ(t))dt.

Thanks to the absolute continuity of Lebesgue’s integral and to Remark 2.2.6 we get

Iε −−−−→
ε→0+

−
∫ b

0
(u̇(t), ψ̇(t))dt+

∫ b

0
((A + B)eu(t), eψ(t))dt

−
∫ b

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ)dτ, eψ(t))dt+ 〈u̇(b), ψ(b)〉,

Jε −−−−→
ε→0+

0, Kε −−−−→
ε→0+

∫ b

0
(f(t), ψ(t))dt+

∫ b

0
(F (t), eψ(t))dt,

which concludes the proof of (2.64).

To prove (2.65), it is enough to consider for ε ∈ (0, c− b) the function

Ψε(t) =

{
t−b
ε Ψ(t) t ∈ [b, b+ ε]

Ψ(t) t ∈ [b+ ε, c]

where Ψ ∈ VD(b, c) such that Ψ(c) = 0, and to repeat similar argument before performed.

Taking into account the previous lemma we can state and prove the following proposition.

Proposition 2.2.12. Let ũ ∈ VD(0, b) be a weak solution to the viscoelastic dynamic system
(2.16)–(2.20) in the sense of Definition 2.1.3 on the interval [0, b] which satisfies for some
positive constants C̃ the following estimate

‖ũ‖V(0,b) ≤ C̃
(
‖f‖L2(0,b;H) + ‖F‖H1(0,b;H) + ‖u1‖

)
. (2.66)

Then, for every l ≥ 1 there exists c ∈ (b, b + t0
l ] such that we can extend ũ to a function

u ∈ VD(0, c) which is a weak solution on the interval [0, c]. Moreover u satisfies for some
positive constants C the following estimate

‖u‖V(0,c) ≤ C
(
‖f‖L2(0,c;H) + ‖F‖H1(0,c;H) + ‖u1‖

)
. (2.67)

Proof. We divide the proof into two steps. In the first one, we show how to extend the
solution. After this, in the second step, we prove (2.67). We firstly choose b̂ ∈ (b − t0

2l , b) in
such a way that

• ũ(b̂) ∈ V and

‖ũ(b̂)‖2V ≤ −
∫ b

b− t0
2l

‖ũ(t)‖2V dt; (2.68)

• b̂ is a Lebesgue’s point for ˙̃u, that is

lim
ε→0+

−
∫ b̂+ε

b̂
‖ ˙̃u(t)− ˙̃u(b̂)‖dt = 0, (2.69)

and ˙̃u(b̂) ∈ H satisfies

‖ ˙̃u(b̂)‖2 ≤ −
∫ b

b− t0
2l

‖ ˙̃u(t)‖2dt. (2.70)
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Notice that (2.68)–(2.70) are possible because ũ ∈ V(0, b).
Step 1. Since ũ is a weak solution on the interval [0, b], then

−
∫ b

0
( ˙̃u(t), v̇(t))dt+

∫ b

0
((A + B)eũ(t), ev(t))dt−

∫ b

0

∫ t

0

1

β
e
− t−τ

β (Beũ(τ), ev(t))dτdt

=

∫ b

0
(f(t), v(t))dt+

∫ b

0
(F (t), ev(t))dt,

for every v ∈ VD(0, b) such that v(0) = v(b) = 0, and moreover ũ satisfies

lim
t→0+

‖ũ(t)‖ = 0 and lim
t→0+

‖ ˙̃u(t)− u1‖(V D0 )′ = 0. (2.71)

We define the function G ∈ H1(b̂, b̂+ t0
l ;H) in the following way

G(t) := F (t) +

∫ b̂

0

1

β
e
− t−τ

β Beũ(τ)dτ.

Since t0
l ≤ t0, ũ(b̂) ∈ V , and ˙̃u(b̂) ∈ H, we can apply Remark 2.2.2, Propositions 2.2.3 and

2.2.9 on the interval [b̂, b̂+ t0
l ], to find a function ū ∈ VD(b̂, b̂+ t0

l ) which satisfies, for every

v ∈ VD(b̂, b̂+ t0
l ) such that v(b̂) = v(b̂+ t0

l ) = 0, the following equality

−
∫ b̂+

t0
l

b̂
( ˙̄u(t), v̇(t))dt+

∫ b̂+
t0
l

b̂
((A + B)eū(t), ev(t))dt

−
∫ b̂+

t0
l

b̂

∫ t

b̂

1

β
e
− t−τ

β (Beū(τ), ev(t))dτdt =

∫ b̂+
t0
l

b̂
(f(t), v(t))dt+

∫ b̂+
t0
l

b̂
(G(t), ev(t))dt,

and also the following limits

lim
t→b̂+

‖ū(t)− ũ(b̂)‖ = 0, lim
t→b̂+

‖ ˙̄u(t)− ˙̃u(b̂)‖(V D0 )′ = 0. (2.72)

Notice that the initial data ũ(b̂) and ˙̃u(b̂) are well defined because ũ ∈ C0([0, b];H) and
˙̃u ∈ C0([0, b]; (V D

0 )′).
Now we define the function

u(t) :=

{
ũ(t) t ∈ [0, b̂]

ū(t) t ∈ [b̂, b̂+ t0
l ],

(2.73)

and we claim that it is a weak solution on the interval [0, b̂+ t0
l ]. Notice that, since b̂ ≥ b− t0

2l

then b̂+ t0
l > b. To prove this, let us fix ψ ∈ DD(0, b̂+ t0

l ). Clearly ψ ∈ VD(0, b̂) and ψ(0) = 0,

and since ũ is a weak solution on [0, b̂], we can use (2.64) of Lemma 2.2.11 to get

( ˙̃u(b̂), ψ(b̂))−
∫ b̂

0
(u̇(t), ψ̇(t))dt+

∫ b̂

0
((A + B)eu(t), eψ(t))dt

−
∫ b̂

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ)dτ, eψ(t))dt =

∫ b̂

0
(f(t), ψ(t))dt+

∫ b̂

0
(F (t), eψ(t))dt. (2.74)

Moreover, ψ ∈ VD(b̂, b̂+ t0
l ) and ψ(b̂+ t0

l ) = 0, and since ū is a weak solution on [b̂, b̂+ t0
l ],

by (2.65) of Lemma 2.2.11 we obtain

− ( ˙̄u(b̂), ψ(b̂))−
∫ b̂+

t0
l

b̂
(u̇(t), ψ̇(t))dt+

∫ b̂+
t0
l

b̂
((A + B)eu(t), eψ(t))dt
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−
∫ b̂+

t0
l

b̂

∫ t

b̂

1

β
e
− t−τ

β (Beu(τ)dτ, eψ(t))dt =

∫ b̂+
t0
l

b̂
(f(t), ψ(t))dt+

∫ b̂+
t0
l

b̂
(G(t), eψ(t))dt,

that is

− ( ˙̄u(b̂), ψ(b̂))−
∫ b̂+

t0
l

b̂
(u̇(t), ψ̇(t))dt+

∫ b̂+
t0
l

b̂
((A + B)eu(t), eψ(t))dt

−
∫ b̂+

t0
l

b̂

∫ t

0

1

β
e
− t−τ

β (Beu(τ)dτ, eψ(t))dt =

∫ b̂+
t0
l

b̂
(f(t), ψ(t))dt+

∫ b̂+
t0
l

b̂
(F (t), eψ(t))dt.

(2.75)

From (2.69) and (2.72), by summing (2.74) and (2.75), we obtain the following equality

−
∫ b̂+

t0
l

0
(u̇(t), ψ̇(t))dt+

∫ b̂+
t0
l

0
((A + B)eu(t), eψ(t))dt

−
∫ b̂+

t0
l

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eψ(t))dτdt =

∫ b̂+
t0
l

0
(f(t), ψ(t))dt+

∫ b̂+
t0
l

0
(F (t), eψ(t))dt.

(2.76)

By setting c := b̂ + t0
l we have that the function u defined in (2.73) is a weak solution to

the viscoelastic dynamic system (2.16)–(2.20) in the sense of Definition 2.1.3 on the interval
[0, c], since it satisfies (2.71) and (2.76).

Step 2. Now, we want to prove (2.67). We can write

‖u‖2V(0,c) = ‖ũ‖2V(0,b̂)
+ ‖ū‖2V(b̂,c)

≤ ‖ũ‖2V(0,b) + ‖ū‖2V(b̂,c)
. (2.77)

Notice that ū− ũ(b̂) ∈ VD0 (b̂, c) is a function which satisfies Dafermos’ Equality (2.25) on the
interval [b̂, c] with the right-hand side equal to

t0( ˙̃u(b̂), ϕ̇(0))−
∫ c

b̂
(t− t0)

[
(f(t), ϕ̇(t)) + (G(t)− Aeũ(b̂)− e

− t−b̂
β Beũ(b̂), eϕ̇(t))

]
dt,

for every ϕ ∈ ED0 (b̂, c). Therefore, by following the estimates in (2.61)–(2.63), we can apply
(2.51) of Theorem 2.2.8, with X = VD(b̂, c) and Y = ED0 (b̂, c), to obtain the existence of a
positive constant K = K(t0,A) such that

‖ū− ũ(b̂)‖V(b̂,c) ≤ K
[
‖f‖L2(b̂,c;H) + ‖G− Aeũ(b̂)− e

− ·−b̂
β Beũ(b̂)‖H1(b̂,c;H) + ‖ ˙̃u(b̂)‖

]
. (2.78)

Now notice that

‖G‖H1(b̂,c;H) ≤ ‖F‖H1(b̂,c;H) + CB

(β
2

) 1
2
(

1 +
1

β

)(∫ b̂

0

1

β2
e
− 2(b̂−τ)

β dτ
) 1

2 ‖ũ‖L2(0,b̂;V )

≤ ‖F‖H1(b̂,c;H) +
CB
2

(
1 +

1

β

)
‖ũ‖V(0,b̂), (2.79)

and

‖Aeũ(b̂) + e
− ·−b̂

β Beũ(b̂)‖H1(b̂,c;H) ≤
[
CA

( t0
l

) 1
2

+ CB‖e−
·−b̂
β ‖H1(b̂,c)

]
‖ũ(b̂)‖V

≤
[
CA

( t0
l

) 1
2

+ CB

(β
2

) 1
2
(

1 +
1

β

)]
‖ũ(b̂)‖V . (2.80)

Taking into account the information provided by (2.68)–(2.70), we can use estimates (2.78)–
(2.80) to deduce the existence of a positive constant C̄ = C̄(t0, l,A,B, β) such that

‖ū‖V(b̂,c) ≤ C̄
(
‖f‖L2(b̂,c;H) + ‖F‖H1(b̂,c;H) + ‖ũ‖V(0,b)

)
. (2.81)

By (2.66), (2.77), and (2.81) we obtain the final estimate (2.67).
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Now we are in position to prove the main theorem of this section.

Proof of Theorem 2.2.1. Let us consider u0 ∈ VD(0, t0) a weak solution to the viscoelastic
dynamic system (2.16)–(2.20) in the sense of Definition 2.1.3 on the interval [0, t0], whose
existence is guaranteed by Remark 2.2.10. Moreover, u0 satisfies (2.52). By applying a finite
number of times Proposition 2.2.12 with l = 1 we can extend u0 to ũ ∈ VD(0, b) which is a
weak solution on the interval [0, b], where T − b < t0. Now we select b̂ ∈ (T − t0, b) in such
a way (2.68)–(2.70) are satisfied on the interval [T − t0, b]. By choosing l = t0

T−b̂
≥ 1, since

b̂ + t0
l = T , thanks to Proposition 2.2.12 we can extend ũ to a function u ∈ VD(0, T ) which

is a weak solution to the viscoelastic dynamic system (2.16)–(2.20) on the interval [0, T ].
Moreover u satisfies (2.67) on [0, T ]. Finally, by applying Remark 2.2.2 we get the thesis.

2.3 Existence: A coupled system equivalent to the viscoelastic
dynamic system

In this section, we illustrate a second method to find solutions to the viscoelastic dynamic
system (2.16)–(2.20) according to Definition 2.1.3. This method is based on a minimizing
movement approach deriving from the theory of gradient flows, and it is a classical tool used
to prove the existence of solutions in the context of fractures, see, e.g., [7], [13], [17]. By
means of this method, we are also able to provide an energy-dissipation inequality satisfied
by the solution, and consequently, thanks to this inequality, we prove that such a solution
satisfies the initial conditions (2.20) in a stronger sense than the one stated in (2.22).

To this aim, let us define the following coupled system{
ü(t)− div(Aeu(t))− div(B(eu(t)− w(t))) = f(t)− divG(t) in Ω \ Γt, t ∈ (0, T ),

βẇ(t) + w(t) = eu(t)
(2.82)

with the following boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ), (2.83)

[Aeu(t) + B(eu(t)− w(t))]ν = G(t)ν on ∂NΩ, t ∈ (0, T ), (2.84)

[Aeu(t) + B(eu(t)− w(t))]ν = G(t)ν on Γt, t ∈ (0, T ), (2.85)

u(0) = u0, w(0) = w0, u̇(0) = u1, (2.86)

where w0 ∈ H and G(t) := F (t)− e
− t
βBw0. Also in this case, the strong formulation of the

coupled system (2.82)–(2.86) is only formal. By setting

V := V(0, T ), VD := VD(0, T ), DD := DD(0, T ),

we give the following definition.

Definition 2.3.1. We say that (u,w) ∈ V × H1(0, T ;H) is a weak solution to the coupled
system (2.82)–(2.86) if the following conditions hold:

• u− z ∈ VD and

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt+

∫ T

0
(B(eu(t)− w(t)), eϕ(t))dt

=

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(F (t), eϕ(t))dt−

∫ T

0
e
− t
β (Bw0, eϕ(t))dt,

(2.87)

for every ϕ ∈ DD;
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• for a.e. t ∈ (0, T ) {
βẇ(t) + w(t) = eu(t)

w(0) = w0
(2.88)

where the equalities are to be understood in the sense of the Hilbert space H;

• the initial conditions (2.22) are satisfied.

The following result proves that the new problem is equivalent to the first one.

Theorem 2.3.2. The viscoelastic dynamic system (2.16)–(2.20) is equivalent to the coupled
system (2.82)–(2.86).

Proof. Let us consider a weak solution (u,w) ∈ V×H1(0, T ;H) to the coupled system (2.82)–
(2.86) according to Definition 2.3.1. In view of the theory of ordinary differential equations
valued in Hilbert spaces, by (2.88) we can write

w(t) = w0e
− t
β + e

− t
β

∫ t

0

1

β
e
τ
β eu(τ)dτ for every t ∈ [0, T ]. (2.89)

Moreover, by definition u−z ∈ VD and (2.87) holds for every ϕ ∈ DD. By substituting (2.89)
in (2.87) we obtain

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
((A + B)eu(t)−

∫ t

0

1

β
e
− t−τ

β Beu(τ)dτ, eϕ(t))dt

−
∫ T

0
e
− t
β (Bw0, eϕ(t))dt =

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(F (t), eϕ(t))dt−

∫ T

0
e
− t
β (Bw0, eϕ(t))dt.

Therefore, since, again by definition, (2.22) holds, u is a weak solution to the viscoelastic
dynamic system (2.16)–(2.20) in the sense of Definition 2.1.3.

Vice versa, if we consider a solution u ∈ V to the viscoelastic dynamic system (2.16)–
(2.20), then u− z ∈ VD and

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
((A + B)eu(t), eϕ(t))dt

−
∫ T

0

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eϕ(t))dτdt =

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(F (t), eϕ(t))dt, (2.90)

for every ϕ ∈ DD. Let w0 ∈ H and let w be the function defined in (2.89). It is easy to see
that w ∈ H1(0, T ;H) and by summing to both hand sides of (2.90) the term

−
∫ T

0
e
− t
β (Bw0, eϕ(t))dt,

we get (2.87). This, together with (2.22), shows that (u,w) ∈ V × H1(0, T ;H) is a weak
solution to the coupled system (2.82)–(2.86) in the sense of Definition 2.3.1. The proof is
then complete.

Now we are in position to state the main result of this section.

Theorem 2.3.3. There exists a weak solution (u,w) ∈ V×H1(0, T ;H) to the coupled system
(2.82)–(2.86). Moreover, we have u ∈ C0

w([0, T ];V ), u̇ ∈ C0
w([0, T ];H)∩H1(0, T ; (V D

0 )′), and

lim
t→0+

u(t) = u0 in V and lim
t→0+

u̇(t) = u1 in H.

The proof of this result will be given at the end of this section.
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2.3.1 Discretization in time

In this subsection we prove Theorem 2.3.3 by means of a time discretization scheme in the
same spirit of [13].

Let us fix n ∈ N and set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1,

w0
n := w0, F 0

n := F (0), h0
n := Bw0.

(2.91)

We define

V k
n := V D

kτn , zkn := z(kτn) for k = 0, . . . , n,

F kn := F (kτn), hkn := e
− kτn

β Bw0, fkn := −
∫ kτn

(k−1)τn

f(τ)dτ for k = 1, . . . , n.

For k = 1, ..., n let (ukn, w
k
n) be the minimizer in V k

n ×H of the functional

(u,w) 7→ 1

2τ2
n

‖u− 2uk−1
n + uk−2

n ‖2 +
1

2
(Aeu, eu) +

1

2
(B(eu− w), eu− w)

+
β

2τ2
n

(B(w − wk−1
n ), w − wk−1

n )− (fkn , u)− (F kn − hkn, eu). (2.92)

Using the coerciveness (2.5), it is easy to see that the functional in (2.92) is convex and
bounded from below by

1

4
min

{ 1

2τ2
n

, CA,
1

τ2
n

CBβ
}

(‖u‖2V + ‖w‖2)− Ckn,

for a suitable positive constant Ckn. The existence of a minimizer then follows from the
lower semicontinuity of the functional with respect to the strong (and hence to the weak)
convergence in V k

n ×H.
To simplify the exposition, for k = 0, ..., n we define

δukn :=
ukn − uk−1

n

τn
and δ2ukn :=

δukn − δuk−1
n

τn
. (2.93)

The Euler equation for (2.92) gives

(δ2ukn, ϕ) + (Aeukn, eϕ) + (B(eukn − wkn), eϕ− ψ)

+ β(Bδwkn, ψ) = (fkn , ϕ) + (F kn , eϕ)− (hkn, eϕ), (2.94)

for every (ϕ,ψ) ∈ V k
n × H, where δwkn is defined for every k = 1, . . . , n as in (2.93), and

δu0
n = u1 by (2.91). Notice that by choosing as a test function the pair (ϕ, 0) with ϕ ∈ V k

n ,
we get

(δ2ukn, ϕ) + ((A + B)eukn − Bwkn, eϕ) = (fkn , ϕ) + (F kn , eϕ)− (hkn, eϕ),

which is a discrete-in-time approximation of (2.87). On the other hand, if we use as a test
function in (2.94) the pair (0, ψ) with ψ ∈ H, we have

(βδwkn + wkn − eukn, ψ) = 0,

thus βδwkn + wkn − eukn = 0 (as element of H), which is an approximation in time of (2.88).
In the next lemma we show an estimate for the family {(ukn, wkn)}nk=1, which is uniform

with respect to n, and it will be used later to pass to the limit in the discrete equation (2.94).
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Lemma 2.3.4. There exists a positive constant C, independent of n, such that

max
i=1,..,n

‖δuin‖+ max
i=1,..,n

‖euin‖+ max
i=1,..,n

‖win‖+
n∑
i=1

τn‖δwin‖2 ≤ C. (2.95)

Proof. To simplify our computations, we define the following two bilinear symmetric forms

a : (V ×H)× (V ×H)→ R b : H ×H → R
a((u,w), (ϕ,ψ)) := (Aeu, eϕ) + (B(eu− w), eϕ− ψ), b(w,ψ) := β(Bw,ψ).

Thanks to (2.5) we have that a((ϕ,ψ), (ϕ,ψ)) ≥ 0 and b(ψ,ψ) ≥ 0 for every ϕ ∈ V and ψ ∈ H.
Now we set ωkn := (ukn, w

k
n) for k = 0, . . . , n, and we take (ϕ,ψ) = τn(δukn−δzkn, δwkn) ∈ V k

n ×H
as a test function in (2.94), where δz0

n := ż(0) and δzkn is defined as in (2.93). Therefore, we
obtain

‖δukn‖2 − (δuk−1
n , δukn)− τn(δ2ukn, δz

k
n) + a(ωkn, ω

k
n)− a(ωk−1

n , ωkn)− τna(ωkn, (δz
k
n, 0))

+ τnb(δw
k
n, δw

k
n) = τn(fkn , δu

k
n − δzkn) + τn(F kn , eδu

k
n − eδzkn)− τn(hkn, eδu

k
n − eδzkn). (2.96)

By means of the following identities

‖δukn‖2 − (δuk−1
n , δukn) =

1

2
‖δukn‖2 −

1

2
‖δuk−1

n ‖2 +
τ2
n

2
‖δ2ukn‖2,

a(ωkn, ω
k
n)− a(ωk−1

n , ωkn) =
1

2
a(ωkn, ω

k
n)− 1

2
a(ωk−1

n , ωk−1
n ) +

τ2
n

2
a(δωkn, δω

k
n),

from (2.96) we infer

1

2
‖δukn‖2 −

1

2
‖δuk−1

n ‖2 +
1

2
a(ωkn, ω

k
n)− 1

2
a(ωk−1

n , ωk−1
n ) + τnb(δw

k
n, δw

k
n) ≤ τnW k

n , (2.97)

where

W k
n := (fkn , δu

k
n − δzkn) + (F kn , eδu

k
n − eδzkn)

− (hkn, eδu
k
n − eδzkn) + (δ2ukn, δz

k
n) + a(ωkn, (δz

k
n, 0)).

We fix i ∈ {1, . . . , n} and we sum in (2.97) over k = 1, . . . , i to obtain the following discrete
energy inequality

1

2
‖δuin‖2 +

1

2
a(ωin, ω

i
n) +

i∑
k=1

τnb(δw
k
n, δw

k
n) ≤ E0 +

i∑
k=1

τnW
k
n , (2.98)

where

E0 :=
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

1

2
(B(eu0 − w0), eu0 − w0).

Let us now estimate the right-hand side of (2.98) from above. We can write

∣∣∣ i∑
k=1

τn(fkn , δu
k
n − δzkn)

∣∣∣ ≤ ‖f‖2L2(0,T ;H) +
1

2
‖ż‖2L2(0,T ;H) +

1

2

i∑
k=1

τn‖δukn‖2, (2.99)

∣∣∣ i∑
k=1

τn(hkn, δz
k
n)
∣∣∣ ≤ 1

2

i∑
k=1

τne
− 2kτn

β ‖Bw0‖2 +
1

2

i∑
k=1

τn‖δzkn‖2

≤ T

2
‖Bw0‖2 +

1

2
‖ż‖2L2(0,T ;H), (2.100)
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∣∣∣ i∑
k=1

τn(F kn , eδz
k
n)
∣∣∣ ≤ 1

2

i∑
k=1

τn‖F kn‖2 +
1

2

i∑
k=1

τn‖eδzkn‖2

≤ T‖F (0)‖2 + T 2‖Ḟ‖2L2(0,T ;H) +
1

2
‖ż‖2L2(0,T ;V ), (2.101)∣∣∣ i∑

k=1

τna(ωkn, (δz
k
n, 0))

∣∣∣ ≤ C2
A

2

i∑
k=1

τn‖eukn‖2 +
C2
B

2

i∑
k=1

τn‖eukn − wkn‖2 +
i∑

k=1

τn‖eδzkn‖2

≤ 1

2
(C2

A + C2
B)

i∑
k=1

τn

[
‖eukn‖2 + ‖eukn − wkn‖2

]
+ ‖ż‖2L2(0,T ;V ).

(2.102)

Notice that the following discrete integrations by parts hold

i∑
k=1

τn(δ2ukn, δz
k
n) = (δuin, δz

i
n)− (δu0

n, δz
0
n)−

i∑
k=1

τn(δuk−1
n , δ2zkn), (2.103)

i∑
k=1

τn(hkn, eδu
k
n) = (hin, eu

i
n)− (h0

n, eu
0
n)−

i∑
k=1

τn(δhkn, eu
k−1
n ), (2.104)

i∑
k=1

τn(F kn , eδu
k
n) = (F in, eu

i
n)− (F 0

n , eu
0)−

i∑
k=1

τn(δF kn , eu
k−1
n ). (2.105)

where δhkn, δF kn , and δ2zkn are defined as in (2.93). By (2.103) and

i∑
k=1

τn‖δuk−1
n ‖2 =

i−1∑
k=0

τn‖δukn‖2 ≤ T‖u1‖2 +
i∑

k=1

τn‖δukn‖2, (2.106)

we can write for every ε1 > 0∣∣∣ i∑
k=1

τn(δ2ukn, δz
k
n)
∣∣∣ ≤ 1

2ε1
‖δzin‖2 +

ε1

2
‖δuin‖2 + ‖u1‖‖ż(0)‖+

i∑
k=1

τn‖δuk−1
n ‖‖δ2zkn‖

≤ Cε1 + ‖z̈‖2L2(0,T ;H) +
ε1

2
‖δuin‖2 +

1

2

i∑
k=1

τn‖δukn‖2, (2.107)

where Cε1 is a positive constant depending on ε1. Thanks to (2.104) and to (2.106) (applied
to euk−1

n in place of δuk−1
n ) we have for every ε2 > 0∣∣∣ i∑

k=1

τn(hkn, eδu
k
n)
∣∣∣ ≤ 1

2ε2
‖hin‖2 +

ε2

2
‖euin‖2 + ‖eu0‖‖Bw0‖+

i∑
k=1

τn‖δhkn‖‖euk−1
n ‖

≤ Cε2 +
1

2β
‖Bw0‖2 +

ε2

2
‖euin‖2 +

1

2

i∑
k=1

τn‖eukn‖2, (2.108)

where Cε2 is a positive constant depending on ε2. Moreover, notice that

uin =
i∑

k=1

τnδu
k
n + u0,

hence by means of the discrete Holder’s inequality

‖uin‖ ≤
i∑

k=1

τn‖δukn‖+ ‖u0‖ ≤ T
1
2

( i∑
k=1

τn‖δukn‖2
) 1

2
+ ‖u0‖. (2.109)
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By (2.105), (2.106) (applied again to euk−1
n in place of δuk−1

n ), and (2.109) we get for every
ε3 > 0∣∣∣ i∑

k=1

τn(F kn , eδu
k
n)
∣∣∣ ≤ 1

2ε3
‖F in‖2 +

ε3

2
‖euin‖2 + ‖F (0)‖‖eu0‖+

i∑
k=1

τn‖δF kn‖‖euk−1
n ‖

≤ Cε3 +
ε3

2
‖euin‖2 +

1

2
‖Ḟ‖2L2(0,T ;H) +

1

2

i∑
k=1

τn‖eukn‖2, (2.110)

where Cε3 is a positive constant depending on ε3.
Now we consider (2.98)–(2.110). By choosing ε1 = 1

2 , ε2 = ε3 = cA
4 and using (2.4) and

(2.5) we obtain the existence of two positive constants C1 and C2 such that

1

4
‖δuin‖2 +

cA
4
‖euin‖2 +

cB
2
‖euin − win‖2 + βcB

i∑
k=1

τn‖δwkn‖2

≤ C1 + C2

i∑
k=1

τn

[
‖δukn‖2 + ‖eukn‖2 + ‖eukn − wkn‖2 +

k∑
l=1

τn‖δwln‖2
]
. (2.111)

By defining

ain := ‖δuin‖2 + ‖euin‖2 + ‖euin − win‖2 +
i∑

k=1

τn‖δwkn‖2,

from (2.111) we can derive

ain ≤ C̃1 + C̃2

i∑
k=1

τna
k
n,

for two positive constants C̃1 and C̃2. Taking into account a discrete version of Gronwall’s
lemma (see, e.g., [2, Lemma 3.2.4]) we deduce that ain is bounded by a positive constant C∗

independent of i and n; i.e.,

‖δuin‖2 + ‖euin‖2 + ‖euin − win‖2 +
i∑

k=1

τn‖δwkn‖2 ≤ C∗ for every i = 1, . . . , n and n ∈ N.

Therefore

‖δuin‖2 + ‖euin‖2 + ‖win‖2 +

i∑
k=1

τn‖δwkn‖2 ≤ 3C∗ for every i = 1, . . . , n and n ∈ N,

and this concludes the proof.

We now want to pass to the limit into the discrete equation (2.94) to obtain a solution
to the coupled system (2.82)–(2.86) according to Definition 2.3.1. We start by defining the
following interpolation sequences of our limit solution

un(t) = ukn + (t− kτn)δukn for t ∈ [(k − 1)τn, kτn] and k = 1, . . . , n,

u+
n (t) = ukn for t ∈ ((k − 1)τn, kτn] and k = 1, . . . , n, u+

n (0) = u0
n,

u−n (t) = uk−1
n for t ∈ [(k − 1)τn, kτn) and k = 1, . . . , n, u−n (T ) = unn.

and the same approximations wn, w
+
n , w

−
n for the function w. Moreover, we consider also the

sequences

ũn(t) = δukn + (t− kτn)δ2ukn for t ∈ [(k − 1)τn, kτn] and k = 1, . . . , n,
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ũ+
n (t) = δukn for t ∈ ((k − 1)τn, kτn] and k = 1, . . . , n, ũ+

n (0) = δu0
n,

ũ−n (t) = δuk−1
n for t ∈ [(k − 1)τn, kτn) and k = 1, . . . , n, ũ−n (T ) = δunn,

which approximate the first time derivative of u. By using this notation, we can state the
following convergence lemma.

Lemma 2.3.5. There exists (u,w) ∈ V ×H1(0, T ;H), with u − z ∈ VD, such that, up to a
not relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, u±n
L2(0,T ;V )−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇, (2.112)

wn
H1(0,T ;H)−−−−−−−⇀
n→∞

w, w±n
L2(0,T ;H)−−−−−−⇀
n→∞

w. (2.113)

Proof. Thanks to Lemma 2.3.4 the sequences

{un}n ⊂ H1(0, T ;H) ∩ L∞(0, T ;V ), {wn}n ⊂ H1(0, T ;H) ∩ L∞(0, T ;H),

{u±n }n ⊂ L∞(0, T ;V ), {w±n }n ⊂ L∞(0, T ;H),

{ũ±n }n ⊂ L∞(0, T ;H),

are uniformly bounded. Indeed, by means of (2.95) and (2.109) there exists a positive constant
C̄ such that ‖uin‖V ≤ C̄ for every n ∈ N and i = 1, .., n, and therefore

‖un‖L∞(0,T ;V ) ≤ max
k=1,..,n

sup
t∈[(k−1)τn,kτn]

‖
(
1− k + tτ−1

n

)
ukn +

(
k − tτ−1

n

)
uk−1
n ‖V ≤ 2C̄.

By Banach-Alaoglu’s Theorem there exist some functions

u ∈ H1(0, T ;H), w ∈ H1(0, T ;H), v1 ∈ L2(0, T ;V ), v2 ∈ L2(0, T ;H)

such that, up to a not relabeled subsequence

un
L2(0,T ;V )−−−−−−⇀
n→∞

u, u̇n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇, u+
n

L2(0,T ;V )−−−−−−⇀
n→∞

v1, (2.114)

wn
L2(0,T ;H)−−−−−−⇀
n→∞

w, ẇn
L2(0,T ;H)−−−−−−⇀
n→∞

ẇ, w+
n

L2(0,T ;H)−−−−−−⇀
n→∞

v2. (2.115)

Since there exists a positive constant C such that

‖un − u+
n ‖L∞(0,T ;H) ≤ Cτn −−−→

n→∞
0, ‖wn − w+

n ‖L∞(0,T ;H) ≤ Cτn −−−→
n→∞

0, (2.116)

by using (2.114), (2.115) and triangle inequality, we can conclude that u = v1 and w = v2.
Moreover, given that

u−n (t) = u+
n (t− τn), w−n (t) = w+

n (t− τn) for t ∈ (τn, T ),

ũ−n (t) = ũ+
n (t− τn), for t ∈ (τn, T ),

ũ+
n (t) = u̇n(t), for a.e. t ∈ (0, T ),

with (2.116) and the continuity of the translations in L2 we deduce that

u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, ũ±n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇, w−n
L2(0,T ;H)−−−−−−⇀
n→∞

w.

Now let us check that u ∈ V. To this aim, we define the following sets

Ṽ := {u ∈ L2(0, T ;V ) : u(t) ∈ Vt for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ),
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ṼD := {u ∈ Ṽ : u(t) ∈ V D
t for a.e. t ∈ (0, T )} ⊂ L2(0, T ;V ).

Notice that Ṽ is a (strong) closed convex subset of L2(0, T ;V ), and so by Hahn-Banach
Theorem the set Ṽ is weakly closed. In the same way we can prove that ṼD is also a weakly
closed set. Notice that {u−n }n ⊂ Ṽ, indeed

u−n (t) = uk−1
n ∈ V(k−1)τn ⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, we conclude that u ∈ Ṽ. Moreover ũ+
n

L2(0,T ;H)−−−−−−⇀
n→∞

u̇ and so u̇ ∈
L2(0, T ;H), from which we have u ∈ V. Finally, to show that u− z ∈ VD we observe that

u−n (t)− z−n (t) = uk−1
n − zk−1

n ∈ V k−1
n ⊂ V D

t for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

therefore {u−n − z−n }n ⊂ ṼD. Since

u−n
L2(0,T ;V )−−−−−−⇀
n→∞

u, z−n
L2(0,T ;V )−−−−−−→
n→∞

z,

we get u− z ∈ VD. This concludes the proof.

With the next lemma we show that the limit identified by Lemma 2.3.5 is actually a weak
solution to the coupled system (2.82)–(2.86).

Lemma 2.3.6. The limit pair (u,w) ∈ V ×H1(0, T ;H) of Lemma 2.3.5 satisfies (2.87) and
(2.88).

Proof. We fix n ∈ N and the functions ϕ ∈ DD and ψ ∈ C∞c (0, T ;H). We consider the
following piecewise-constant approximating sequences

ϕkn := ϕ(kτn) ψkn := ψ(kτn) for k = 0, . . . , n,

δϕkn :=
ϕkn − ϕk−1

n

τn
δψkn :=

ψkn − ψk−1
n

τn
for k = 1, . . . , n,

and the approximating sequences

ϕ+
n (t) := ϕkn, ϕ̃+

n (t) := δϕkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

ψ+
n (t) := ψkn, ψ̃+

n (t) := δψkn t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

If we use τn(ϕkn, 0) ∈ V k
n ×H as a test function in (2.94), after summing over k = 1, ..., n, we

get

n∑
k=1

τn(δ2ukn, ϕ
k
n) +

n∑
k=1

τn((A + B)eukn − Bwkn, eϕkn)

=
n∑
k=1

τn(fkn , ϕ
k
n) +

n∑
k=1

τn(F kn , eϕ
k
n)−

n∑
k=1

τn(hkn, eϕ
k
n). (2.117)

Since ϕ0
n = ϕnn = 0 we obtain

n∑
k=1

τn(δ2ukn, ϕ
k
n) =

n∑
k=1

(δukn, ϕ
k
n)−

n∑
k=1

(δuk−1
n , ϕkn) =

n−1∑
k=0

(δukn, ϕ
k
n)−

n−1∑
k=0

(δukn, ϕ
k+1
n )

= −
n−1∑
k=0

(δukn, δϕ
k+1
n ) = −

n∑
k=1

τn(δuk−1
n , δϕkn) = −

∫ T

0
(ũ−n (t), ϕ̃+

n (t))dt,
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and from (2.117) we deduce

−
∫ T

0
(ũ−n (t), ϕ̃+

n (t))dt+

∫ T

0
((A + B)eu+

n (t)− Bw+
n (t), eϕ+

n (t))dt

=

∫ T

0
(f+
n (t), ϕ+

n (t))dt+

∫ T

0
(F+

n (t), eϕ+
n (t))dt−

∫ T

0
(h+
n (t), eϕ+

n (t))dt. (2.118)

Thanks to (2.112), (2.113), and to the convergences

ϕ+
n

L2(0,T ;V )−−−−−−→
n→∞

ϕ, ϕ̃+
n

L2(0,T ;H)−−−−−−→
n→∞

ϕ̇

we can pass to the limit in (2.118), and we get that u ∈ V satisfies (2.87) for every function
ϕ ∈ DD.

If we use τn(0, ψkn) ∈ V k
n ×H as a test function in (2.94), we have

(βδwkn + wkn − eukn, ψkn) = 0,

which corresponds to

(βẇn(t) + w+
n (t)− eu+

n (t), ψ+
n (t)) = 0 t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

Therefore, for every (a, b) ⊂ (0, T ), from (2.112) and (2.113), we can write

0 = lim
n→∞

−
∫ b

a
(βẇn(t) +w+

n (t)− eu+
n (t), ψ+

n (t))dt = −
∫ b

a
(βẇ(t) +w(t)− eu(t), ψ(t))dt. (2.119)

Now we pass to the limit in (2.119) as a→ b and we obtain

(βẇ(b) + w(b)− eu(b), ψ(b)) = 0 for every b ∈ [0, T ].

Given that, fixed b ∈ (0, T ) for every p ∈ H there exists ψp(t) := (t+ 1− b)p ∈ H1(0, T ;H)
such that ψp(b) = p, we can say that for a.e. t ∈ (0, T ) we have βẇ(t)+w(t)−eu(t) = 0 in H.
Finally, since wn(0) = w0, taking into account (2.113) we can conclude that w(0) = w0.

It remains to show that the limit previously found assumes the initial data in the sense
of (2.22). Before doing this, let us recall the following result, whose proof can be found for
example in [20].

Lemma 2.3.7. Let X,Y be reflexive Banach spaces such that X ↪→ Y continuously. Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Proposition 2.3.8. The limit pair (u,w) ∈ V × H1(0, T ;H) of Lemma 2.3.5 is a weak
solution to the coupled system (2.82)–(2.86). Moreover, u ∈ C0

w([0, T ];V ), u̇ ∈ C0
w([0, T ];H)

and it admits a distributional derivative in the space L2(0, T ; (V D
0 )′).

Proof. From the discrete equation (2.94) we deduce

|(δ2ukn, ϕ)| ≤ CA‖eukn‖+ CB‖eukn − wkn‖+ βCB‖δwkn‖+ ‖fkn‖+ ‖F kn‖+ ‖hkn‖,

for every (ϕ,ψ) ∈ V D
0 × H ⊂ V k

n × H such that ‖(ϕ,ψ)‖V×H ≤ 1. Therefore, taking the
supremum over (ϕ,ψ) ∈ V D

0 ×H with ‖(ϕ,ψ)‖V×H ≤ 1, we obtain the existence of a positive
constant C ′ such that

‖δ2ukn‖2(V D0 )′ ≤ C
′(‖eukn‖2 + ‖eukn − wkn‖2 + ‖δwkn‖2 + ‖fkn‖2 + ‖F kn‖2 + ‖hkn‖2).
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By multiplying this inequality by τn and then by summing over k = 1, . . . , n, we get

n∑
k=1

τn‖δ2ukn‖2(V D0 )′ ≤ C
′
( n∑
k=1

τn‖eukn‖2 +
n∑
k=1

τn‖eukn − wkn‖2 +
n∑
k=1

τn‖δwkn‖2 + C ′′
)
, (2.120)

where
C ′′ := ‖f‖2L2(0,T ;H) + ‖F‖2L2(0,T ;H) + T‖Bw0‖2.

Thanks to (2.120) and Lemma 2.3.4 we conclude that there exists a positive constant C̃,
which does not depend on n, such that

n∑
k=1

τn‖δ2ukn‖2(V D0 )′ ≤ C̃. (2.121)

In particular {ũn}n ⊂ H1(0, T ; (V D
0 )′) is uniformly bounded (notice that ˙̃un(t) = δ2ukn for

t ∈ ((k − 1)τn, kτn) and k = 1, . . . , n). Hence, up to extracting a further (not relabeled)
subsequence from the one of Lemma 2.3.5, we have

ũn
H1(0,T ;(V D0 )′)
−−−−−−−−−⇀

n→∞
v, (2.122)

and by using the following estimate

‖ũn − ũ+
n ‖2L2(0,T ;(V D0 )′) ≤ C̃τ

2
n −−−→n→∞

0,

we conclude that v = u̇.
Since H1(0, T ; (V D

0 )′) ↪→ C0([0, T ], (V D
0 )′), by using Lemma 2.3.5 and Lemma 2.3.7 we

deduce that the limit pair (u,w) ∈ V ×H1(0, T ;H) satisfies

u ∈ C0
w([0, T ];V ) and u̇ ∈ C0

w([0, T ];H).

By (2.112) and (2.122) we then obtain

un(t)
H−−−⇀

n→∞
u(t) and ũn(t)

(V D0 )′

−−−−⇀
n→∞

u̇(t) for every t ∈ [0, T ], (2.123)

so that u(0) = u0 and u̇(0) = u1, since un(0) = u0 and ũn(0) = u1. By Lemma 2.3.6 we get
the thesis.

2.3.2 Energy Estimate

In this subsection, we prove an energy-dissipation inequality which holds for the weak solution
(u,w) ∈ V × H1(0, T ;H) to the coupled system (2.82)–(2.86), provided by Lemma 2.3.5.
Thanks to this, we are able to show the validity of the initial conditions in a stronger sense.
The energy-dissipation inequality give us a relation among the mechanical energy defined by
the sum of kinetic and elastic energy, the dissipation and the total work exerted by external
forces and by the boundary conditions. Therefore, let us define the total energy as

Eu,w(t) :=
1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t)). (2.124)

Notice that Eu,w(t) is well defined for every time t ∈ [0, T ] since u ∈ C0
w([0, T ];V ), u̇ ∈

C0
w([0, T ];H) and w ∈ C0([0, T ];H), and that

Eu,w(0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

1

2
(B(eu0 − w0), eu0 − w0).
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The dissipation, on the interval [0, t], is defined by

Du,w(t) := β

∫ t

0
(Bẇ(τ), ẇ(τ))dτ, (2.125)

and the total work is given by

Wtot(t) : =

∫ t

0
[(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ))]dτ

−
∫ t

0
(Ḟ (τ), eu(τ)− ez(τ))dτ + (F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

+

∫ t

0

[
e
− τ
β (Bw0, eż(τ))− 1

β
e
− τ
β (Bw0, eu(τ))

]
dτ − e

− t
β (Bw0, eu(t)) + (Bw0, eu0).

(2.126)

Remark 2.3.9. From the classical point of view, the total work on the solution (u,w) at
time t ∈ [0, T ] is given by

WC(t) := Wload(t) + Wbdry(t), (2.127)

where Wload(t) is the work on the solution at time t ∈ [0, T ] due to the loading term, which
is defined as

Wload(t) :=

∫ t

0
(f(τ), u̇(τ))dτ +

∫ t

0
(div(e

− τ
βBw0 − F (τ)), u̇(τ))dτ, (2.128)

and Wbdry(t) is the work on the solution at time t ∈ [0, T ] due to the varying boundary
conditions, which one expects to be equal to

Wbdry(t) : =

∫ t

0
((F+(τ)− e

− τ
βBw0

+)ν, u̇(τ))L2(Γτ )dτ +

∫ t

0
((F−(τ)− e

− τ
βBw0

−)ν, u̇(τ))L2(Γτ )dτ

+

∫ t

0
((F (τ)− e

− τ
βBw0)ν, u̇(τ))HNdτ +

∫ t

0
(((A + B)eu(τ)− Bw(τ))ν, ż(τ))HDdτ,

where F+(t), w0
+ and F−(t), w0

− are the traces of F (t) and w0, respectively, from above and
below on Γt.

Unfortunately, Wload(t) and Wbdry(t) are not well defined under our assumptions on u, F ,
and w0. However, if we suppose more regularity, i.e. u ∈ H1(0, T ;H2(Ω\Γ;Rd))∩H2(0, T ;H),
w ∈ H1(0, T ;H1(Ω \ Γ;Rd×dsym))), F ∈ H1(0, T ;H1(Ω \ Γ;Rd×dsym)), w0 ∈ V0, and that Γ is a
smooth manifold, then we can deduce from (2.87), (2.88), and (2.22) that the pair (u,w)
satisfies{

ü(t)− div(Aeu(t))− div(B(eu(t)− w(t))) = f(t) + g(t) in Ω \ Γt, t ∈ (0, T ),

βẇ(t) + w(t)− eu(t) = 0
(2.129)

with boundary and initial conditions

u(t) = z(t) on ∂DΩ, t ∈ (0, T ),

[(A + B)eu(t)− Bw(t)]ν = [F (t)− e
− t
βBw0]ν on ∂NΩ, t ∈ (0, T ),

[(A + B)eu+(t)− Bw+(t)]ν = [F+(t)− e
− t
βBw0

+]ν on Γt, t ∈ (0, T ),

[(A + B)eu−(t)− Bw−(t)]ν = [F−(t)− e
− t
βBw0

−]ν on Γt, t ∈ (0, T ),
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u(0) = u0, w(0) = w0, u̇(0) = u1,

where g(t) := div(e
− t
βBw0 − F (t)).

In this case, ((A + B)eu − w)ν ∈ L2(0, T ;HD) and by using (2.129), together with the
divergence theorem and the integration by parts formula, we deduce∫ t

0
(((A + B)eu(τ)− Bw(τ))ν, ż(τ))HDdτ =

∫ t

0
((A + B)eu(τ)− Bw(τ), eż(τ))dτ

+

∫ t

0

[
(div((A + B)eu(τ)− Bw(τ)), ż(τ)) + ((e

− τ
βBw0 − F (τ))ν, ż(τ))HN

]
dτ

+

∫ t

0

[
((e
− τ
βBw0

+ − F+(τ))ν, ż(τ))L2(Γτ ) + ((e
− τ
βBw0

− − F−(τ))ν, ż(τ))L2(Γτ )

]
dτ

=

∫ t

0

[
((A + B)eu(τ)− Bw(τ), eż(τ)) + ((e

− τ
βBw0 − F (τ))ν, ż(τ))HN

]
dτ

+

∫ t

0

[
(ü(τ), ż(τ))− (f(τ), ż(τ)) + (divF (τ), ż(τ))− e

− τ
β (div(Bw0), ż(τ))

]
dτ

+

∫ t

0

[
((e
− τ
βBw0

+ − F+(τ))ν, ż(τ))L2(Γτ ) + ((e
− τ
βBw0

− − F−(τ))ν, ż(τ))L2(Γτ )

]
dτ

=

∫ t

0

[
((A + B)eu(τ)− Bw(τ), eż(τ)) + ((e

− τ
βBw0 − F (τ))ν, ż(τ))HN

]
dτ

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

+

∫ t

0

[
−(f(τ), ż(τ)) + (divF (τ), ż(τ))− e

− τ
β (div(Bw0), ż(τ))

]
dτ

+

∫ t

0

[
((e
− τ
βBw0

+ − F+(τ))ν, ż(τ))L2(Γτ ) + ((e
− τ
βBw0

− − F−(τ))ν, ż(τ))L2(Γτ )

]
dτ. (2.130)

From (2.130) and the definition of Wbdry, we have

Wbdry(t) =

∫ t

0

[
((A + B)eu(τ)− Bw(τ), eż(τ)) + ((F (τ)− e

− τ
βBw0)ν, u̇(τ)− ż(τ))HN

]
dτ

+

∫ t

0

[
− (f(τ), ż(τ)) + (div(F (τ)− e

− τ
βBw0), ż(τ))

]
dτ

−
∫ t

0
(u̇(τ), z̈(τ))dτ − (u1, ż(0)) + (u̇(t), ż(t))

+

∫ t

0
((F+(τ)− e

− τ
βBw0

+)ν, u̇(τ)− ż(τ))L2(Γτ )dτ

+

∫ t

0
((F−(τ)− e

− τ
βBw0

−)ν, u̇(τ)− ż(τ))L2(Γτ )dτ. (2.131)

Taking into account (2.128) and (2.131), the classical work (2.127) can be written as

WC(t) =

∫ t

0
[(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ))] dτ

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

+

∫ t

0
((F+(τ)− e

− τ
βBw0

+)ν, u̇(τ)− ż(τ))L2(Γτ )dτ

+

∫ t

0
((F−(τ)− e

− τ
βBw0

−)ν, u̇(τ)− ż(τ))L2(Γτ )dτ
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−
∫ t

0
(div(F (τ)− e

− τ
βBw0), u̇(τ)− ż(τ))dτ

+

∫ t

0
((F (τ)− e

− τ
βBw0)ν, u̇(τ)− ż(τ))HNdτ

=

∫ t

0
[(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ))] dτ + (u̇(t), ż(t))

+

∫ t

0

[
(F (τ)− e

− τ
βBw0, eu̇(τ)− eż(τ))− (u̇(τ), z̈(τ))

]
dτ − (u1, ż(0))

=

∫ t

0

[
(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ)− Bw(τ), eż(τ)) + e

− τ
β (Bw0, eż(τ))

]
dτ

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

−
∫ t

0
(Ḟ (τ), eu(τ)− ez(τ))dτ + (F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0

1

β
e
− τ
β (Bw0, eu(τ))dτ + (Bw0, eu0)− e

− t
β (Bw0, eu(t)).

Therefore, the definition of total work given in (2.126) is coherent with the classical one
(2.127).

Now we are in position to prove the energy-dissipation inequality before mentioned. For

convenience of notation we set h(t) := e
− t
βBw0.

Theorem 2.3.10. The weak solution (u,w) ∈ V ×H1(0, T ;H) to the coupled system (2.82)–
(2.86), given by Lemma 2.3.5, satisfies for every t ∈ [0, T ] the following energy-dissipation
inequality

Eu,w(t) + Du,w(t) ≤ Eu,w(0) + Wtot(t), (2.132)

where Eu,w, Du,w, and Wtot are defined in (2.124), (2.125), and (2.126), respectively.

Proof. Fixed t ∈ (0, T ], for every n ∈ N there exists a unique j ∈ {1, . . . , n} such that
t ∈ ((j − 1)τn, jτn]. In particular, denoting by dxe the superior integer part of the number x,
it reads as

j(n) =

⌈
t

τn

⌉
.

After setting tn := jτn, we can rewrite (2.98) as follows

1

2
‖ũ+

n (t)‖2 +
1

2
(Aeu+

n (t), eu+
n (t)) +

1

2
(B(eu+

n (t)− w+
n (t)), eu+

n (t)− w+
n (t))

+ β

∫ tn

0
(Bẇn(τ), ẇn(τ))dτ ≤ Eu,w(0) + W +

n (t), (2.133)

where

W +
n (t) : =

∫ tn

0
[(f+

n (τ), ũ+
n (τ)− z̃+

n (τ)) + (F+
n (τ), eũ+

n (τ)− ez̃+
n (τ)) + ( ˙̃un(τ), z̃+

n (τ))]dτ

+

∫ tn

0

[
((A + B)eu+

n (τ)− Bw+
n (τ), ez̃+

n (τ))− (h+
n (τ), eũ+

n (τ)− ez̃+
n (τ))

]
dτ.

Thanks to (2.95) and (2.121), we have

‖wn(t)− w+
n (t)‖2 = ‖wjn + (t− jτn)δwjn − wjn‖2 ≤ τ2

n‖δwjn‖2 ≤ Cτn −−−→n→∞
0,
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‖un(t)− u+
n (t)‖ = ‖ujn + (t− jτn)δujn − ujn‖ ≤ τn‖δujn‖ ≤ Cτn −−−→n→∞

0,

‖ũn(t)− ũ+
n (t)‖2

(V D0 )′ = ‖δujn + (t− jτn)δ2ujn − δujn‖2(V D0 )′ ≤ τ
2
n‖δ2ujn‖2(V D0 )′ ≤ C̃τn −−−→n→∞

0.

The last convergences and (2.123) imply

u+
n (t)

H−−−⇀
n→∞

u(t), w+
n (t)

H−−−⇀
n→∞

w(t), ũ+
n (t)

(V D0 )′

−−−−⇀
n→∞

u̇(t),

and since ‖u+
n (t)‖V + ‖ũ+

n (t)‖ ≤ C for every n ∈ N, we get

u+
n (t)

V−−−⇀
n→∞

u(t), w+
n (t)

H−−−⇀
n→∞

w(t), ũ+
n (t)

H−−−⇀
n→∞

u̇(t). (2.134)

By (2.134) and the lower semicontinuity property of the maps v 7→ ‖v‖2, v 7→ (Av, v), and
v 7→ (Bv, v), we conclude

‖u̇(t)‖2 ≤ lim inf
n→∞

‖ũ+
n (t)‖2, (2.135)

(Aeu(t), eu(t)) ≤ lim inf
n→∞

(Aeu+
n (t), eu+

n (t)), (2.136)

(B(eu(t)− w(t)), eu(t)− w(t)) ≤ lim inf
n→∞

(B(eu+
n (t)− w+

n (t)), eu+
n (t)− w+

n (t)). (2.137)

Moreover, from Lemma 2.3.5, and in particular by (2.113) we get∫ t

0
(Bẇ(τ), ẇ(τ))dτ ≤ lim inf

n→∞

∫ t

0
(Bẇn(τ), ẇn(τ))dτ

≤ lim inf
n→∞

∫ tn

0
(Bẇn(τ), ẇn(τ))dτ, (2.138)

since t ≤ tn and v 7→
∫ t

0 (Bv(τ), v(τ))dτ is a non negative quadratic form on L2(0, T ;H).
Now, we study the right-hand side of (2.133). Since we have

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]f and ũ+
n − z̃+

n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇− ż,

we deduce that∫ tn

0
(f+
n (τ), ũ+

n (τ)− z̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(f(τ), u̇(τ)− ż(τ))dτ. (2.139)

In a similar way, since the following convergences hold

χ[0,tn]ez̃
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]eż, h+
n

L2(0,T ;H)−−−−−−→
n→∞

h,

(A + B)eu+
n − Bw+

n
L2(0,T ;H)−−−−−−⇀
n→∞

(A + B)eu− Bw,

we obtain ∫ tn

0
(h+
n (τ), ez̃+

n (τ))dτ −−−→
n→∞

∫ t

0
(h(τ), eż(τ))dτ (2.140)∫ tn

0
((A + B)eu+

n (τ)− Bw+
n (τ), ez̃+

n (τ))dτ −−−→
n→∞

∫ t

0
((A + B)eu(τ)− Bw(τ), eż(τ))dτ.

(2.141)

By means of the discrete integration by parts formulas (2.103)–(2.105) we can write∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ = (ũ+
n (t), z̃+

n (t))− (u1, ż(0))−
∫ tn

0
(ũ−n (τ), ˙̃zn(τ))dτ,

(2.142)
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∫ tn

0
(h+
n (τ), eũ+

n (τ))dτ = (eu+
n (t), h+

n (t))− (eu0, h(0))−
∫ tn

0
(h̃+
n (τ), eu−n (τ))dτ,

(2.143)∫ tn

0
(F+

n (τ), eũ+
n (τ)− ez̃+

n (τ))dτ = (F+
n (t), eu+

n (t)− ez+
n (t))− (F (0), eu0 − ez(0))

−
∫ tn

0
(F̃+

n (τ), eu−n (τ)− ez−n (τ))dτ.

(2.144)

Notice that the following convergences hold

‖z̃+
n (t)− ż(t)‖ =

∥∥∥z(jτn)− z((j − 1)τn)

τn
− ż(t)

∥∥∥ ≤ ∫ jτn

(j−1)τn

‖ż(τ)− ż(t)‖dτ −−−→
n→∞

0,

‖h+
n (t)− h(t)‖ = ‖Bw0‖|e−

jτn
β − e

− t
β | ≤ 1

β2
‖Bw0‖|t− jτn| ≤

1

β2
‖Bw0‖τn −−−→

n→∞
0,

‖z+
n (t)− z(t)‖V = ‖z(jτn)− z(t)‖V ≤ (jτn − t)

1
2 ‖ż‖L2(0,T ;V ) ≤ τ

1
2
n ‖ż‖L2(0,T ;V ) −−−→

n→∞
0,

‖F+
n (t)− F (t)‖ = ‖F (jτn)− F (t)‖ ≤ (jτn − t)

1
2 ‖Ḟ‖L2(0,T ;H) ≤ τ

1
2
n ‖Ḟ‖L2(0,T ;H) −−−→

n→∞
0,

χ[0,tn]
˙̃zn

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]z̈, χ[0,tn]h̃
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]ḣ,

z−n
L2(0,T ;V )−−−−−−→
n→∞

z, χ[0,tn]F̃
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]Ḟ .

By means of these convergences, (2.134), and Lemma 2.3.5, we can argue as before to deduce
from (2.142)–(2.144) that∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ −−−→
n→∞

(u̇(t), ż(t))− (u1, ż(0))−
∫ t

0
(u̇(τ), z̈(τ))dτ, (2.145)∫ tn

0
(h+
n (τ), eũ+

n (τ))dτ −−−→
n→∞

(h(t), eu(t))− (h(0), eu0)−
∫ t

0
(ḣ(τ), eu(τ))dτ,

(2.146)∫ tn

0
(F+

n (τ), eũ+
n (τ)− ez̃+

n (τ))dτ −−−→
n→∞

(F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0
(Ḟ (τ), eu(τ)− ez(τ))dτ. (2.147)

By combining (2.133) and (2.135)–(2.147) we obtain the energy-dissipation inequality
(2.132) for t ∈ (0, T ]. Finally, for t = 0 the inequality trivially holds since u(0) = u0 and
u̇(0) = u1.

Remark 2.3.11. Thanks to the last theorem and to the equivalence between the viscoelastic
dynamic system (2.16)–(2.20) and the coupled system (2.82)–(2.86), we can derive an energy-
dissipation inequality for a weak solution to our viscoelastic dynamic system. As can be seen
from (2.87) and the proof of Theorem 2.3.2 it is not restrictive to assume w0 = 0.

Let (u,w) be the weak solution to the coupled system (2.82)–(2.86) provided by Lemma
2.3.5. Then, it satisfies the energy-dissipation inequality (2.132). Moreover, from Theorem
2.3.2 the function u is a solution to the viscoelastic dynamic system (2.16)–(2.20) in the sense
of Definition 2.1.3. Therefore, by substituting (2.89) in (2.132) we get for the conservative
part

Eu,w(t) =
1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t))
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=
1

2
‖u̇(t)‖2 +

1

2
((A + B)eu(t), eu(t))−

∫ t

0

1

β
e
− t−τ

β (Beu(τ), eu(t))dτ

+
1

2β2

∫ t

0

∫ t

0
e
− 2t−r−τ

β (Beu(r), eu(τ))drdτ (2.148)

and for the dissipation

Du,w(t) =

∫ t

0
(Bẇ(τ), eu(τ)− w(τ))dτ =

∫ t

0
(Bẇ(τ), eu(τ))dτ −

∫ t

0
(Bẇ(τ), w(τ))dτ

=
1

β

∫ t

0

(
Beu(τ)−

∫ τ

0

1

β
e
− τ−r

β Beu(r)dr, eu(τ)
)

dτ − 1

2
(Bw(t), w(t))

=
1

β

∫ t

0
(Beu(τ), eu(τ))dτ − 1

β2

∫ t

0

∫ τ

0
e
− τ−r

β (Beu(r), eu(τ))drdτ

− 1

2β2

∫ t

0

∫ t

0
e
− 2t−r−τ

β (Beu(r), eu(τ))drdτ. (2.149)

By substituting the same information in the total work, we obtain

Wtot(t) =

∫ t

0

[
(f(τ), u̇(τ)− ż(τ)) + ((A + B)eu(τ), eż(τ))−

∫ τ

0

1

β
e
− τ−r

β (Beu(r), eż(τ))dr
]
dτ

−
∫ t

0
(Ḟ (τ), eu(τ)− ez(τ))dτ + (F (t), eu(t)− ez(t))− (F (0), eu0 − ez(0))

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0)). (2.150)

After defining the elastic energy as

E (t) :=
1

2
‖u̇(t)‖2 +

1

2
((A + B)eu(t), eu(t))

−
∫ t

0

1

β
e
− t−τ

β (Beu(τ), eu(t))dτ +
1

2β2

∫ t

0

∫ t

0
e
− 2t−r−τ

β (Beu(r), eu(τ))drdτ,

and the dissipative term

D(t) :=
1

β

∫ t

0
(Beu(τ), eu(τ))dτ − 1

β2

∫ t

0

∫ τ

0
e
− τ−r

β (Beu(r), eu(τ))drdτ

− 1

2β2

∫ t

0

∫ t

0
e
− 2t−r−τ

β (Beu(r), eu(τ))drdτ,

taking into account (2.148), (2.149), and (2.150) we can rephrase the energy-dissipation
inequality (2.132) as

E (t) + D(t) ≤ E (0) + Wtot(t),

where the total work Wtot now depends just on the function u.

Finally, in view of Theorem 2.3.10 we are ready to show that our weak solution satisfies
the initial conditions in a stronger sense than the one stated in (2.22), that is the content of
the following lemma.

Lemma 2.3.12. The weak solution (u,w) ∈ V ×H1(0, T ;H) to the coupled system (2.82)–
(2.86), provided by Lemma 2.3.5, satisfies the initial conditions in the following sense:

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H, lim
t→0+

w(t) = w0 in H. (2.151)
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Proof. Since u ∈ C0
w([0, T ];V ), u̇ ∈ C0

w([0, T ];H), w ∈ C0([0, T ];H), from the lower semicon-
tinuity of the real valued functions

t 7→ ‖u̇(t)‖2, t 7→ (Aeu(t), eu(t)), t 7→ (B(eu(t)− w(t)), eu(t)− w(t)),

we can let t→ 0+ into the energy-dissipation inequality (2.132) to deduce that

Eu,w(0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

1

2
(B(eu0 − w0), eu0 − w0)

≤ 1

2

[
lim inf
t→0+

‖u̇(t)‖2 + lim inf
t→0+

(Aeu(t), eu(t)) + lim inf
t→0+

(B(eu(t)− w(t)), eu(t)− w(t))
]

≤ lim inf
t→0+

[1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)− w(t)), eu(t)− w(t))

]
= lim inf

t→0+
Eu,w(t) ≤ lim sup

t→0+
Eu,w(t) ≤ Eu,w(0). (2.152)

Notice that the last inequality in (2.152) holds because the right-hand side of (2.132) is
continuous in t, and u(0) = u0, u̇(0) = u1, and w(0) = w0. Therefore, there exists
limt→0+ Eu,w(t) = Eu,w(0). Moreover, we have

Eu,w(0) ≤ 1

2
lim inf
t→0+

‖u̇(t)‖2 +
1

2
lim inf
t→0+

[
(Aeu(t), eu(t)) + (B(eu(t)− w(t)), eu(t)− w(t))

]
≤ 1

2
lim sup
t→0+

‖u̇(t)‖2 +
1

2
lim inf
t→0+

[
(Aeu(t), eu(t)) + (B(eu(t)− w(t)), eu(t)− w(t))

]
≤ lim sup

t→0+

[1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(B(eu(t)−w(t)), eu(t)−w(t))

]
= Eu,w(0),

which gives
lim
t→0+

‖u̇(t)‖2 = ‖u1‖2.

In a similar way, we can also show that

lim
t→0+

(Aeu(t), eu(t)) = (Aeu0, eu0).

Finally, since we have

u̇(t)
H−−−⇀

t→0+
u1, eu(t)

H−−−⇀
t→0+

eu0

and u ∈ C0([0, T ];H), we deduce (2.151). In particular the functions u : [0, T ] → V and
u̇ : [0, T ]→ H are continuous at t = 0.

We can finally prove the main theorem of Section 2.3.

Proof of Theorem 2.3.3. It is enough to combine Proposition 2.3.8 and Lemma 2.3.12.

Remark 2.3.13. We have proved Theorem 2.3.3 for the d-dimensional linear viscoelastic
case, namely when the displacement u is a vector-valued function. The same result is true
with identical proof in the antiplane case, that is when the displacement u is a scalar function
and satisfies (9).





Chapter 3

An existence result for the
fractional Kelvin-Voigt’s model on
time-dependent cracked domains

The chapter is organized as follows. In Section 3.1 we fix the notation and the framework of
our problem. Moreover, we give the notion of solution to the fractional Kelvin-Voigt’s system
involving Caputo’s derivative (19) and we state our main existence result (see Theorem 3.1.4).
Section 3.2 deals with the regularized system (20). First, by a time-discretization procedure
in Theorem 3.2.13 we prove the existence of a solution to (20). Then, in Lemma 3.2.14
we derive the uniform energy estimate which depends on the L1-norm of G. In Section 3.3
we consider Kelvin-Voigt’s system (19): we prove the existence of a generalized solution to
system (19) and in Theorem 3.3.2 we show that such a solution satisfies an energy-dissipation
inequality. Finally, in Section 3.4 we prove that, for a not moving crack, the solution to (19)
is unique.

The results presented here are obtained in collaboration with M. Caponi and are contained
in the published paper [8].

3.1 Framework of the problem

Let T be a positive real number and let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary. Let ∂DΩ be a (possibly empty) Borel subset of ∂Ω and let ∂NΩ be its complement.
Throughout the chapter we assume the following hypotheses on the geometry of the cracks:

(H1) Γ ⊂ Ω is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;

(H2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ
is the union of two disjoint open sets U+ and U− with Lipschitz boundary;

(H3) {Γt}t∈[0,T ] is an increasing family in time of closed subsets of Γ, i.e. Γs ⊂ Γt for every
0 ≤ s ≤ t ≤ T .

Thanks (H1)–(H3) the space L2(Ω \ Γt;Rm) coincides with L2(Ω;Rm) for every t ∈ [0, T ]
and m ∈ N. In particular, we can extend a function u ∈ L2(Ω \ Γt;Rm) to a function in
L2(Ω;Rm) by setting u = 0 on Γt. To simplify our exposition, for every m ∈ N we define the
spaces H := L2(Ω;Rm), HN := L2(∂NΩ;Rm) and HD := L2(∂DΩ;Rm); we always identify
the dual of H by H itself, and L2((0, T )× Ω;Rm) by the space L2(0, T ;H). We define

Vt := H1(Ω \ Γt;Rd) for every t ∈ [0, T ].

65
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Notice that in the definition of Vt we are considering only the distributional gradient of u in
Ω \ Γt and not the one in Ω. By (H2) we can find a finite number of open sets Uj ⊂ Ω \ Γ,
j = 1, . . .m, with Lipschitz boundary, such that Ω \ Γ = ∪mj=1Uj . By using second Korn’s
inequality in each Uj (see, e.g., [39, Theorem 2.4]) and taking the sum over j we can find a
constant CK , depending only on Ω and Γ, such that

‖∇u‖2 ≤ CK
(
‖u‖2 + ‖eu‖2

)
for every u ∈ H1(Ω \ Γ;Rd),

where eu is the symmetric part of ∇u. Therefore, we can use on the space Vt the equivalent
norm

‖u‖Vt := (‖u‖2 + ‖eu‖2)
1
2 for every u ∈ Vt.

Furthermore, the trace of u ∈ H1(Ω \ Γ;Rd) is well defined on ∂Ω. Indeed, we may find
a finite number of open sets with Lipschitz boundary Vk ⊂ Ω \ Γ, k = 1, . . . l, such that
∂Ω \ (Γ ∩ ∂Ω) ⊂ ∪lk=1∂Vk. Since Hd−1(Γ ∩ ∂Ω) = 0, there exists a constant C, depending
only on Ω and Γ, such that

‖u‖L2(∂Ω;Rd) ≤ C‖u‖H1(Ω\Γ;Rd) for every u ∈ H1(Ω \ Γ;Rd).

Hence, we can consider the set

V D
t := {u ∈ Vt : u = 0 on ∂DΩ} for every t ∈ [0, T ],

which is a closed subspace of Vt. Moreover, there exists a positive constant Ctr such that

‖u‖HN ≤ Ctr‖u‖V for every u ∈ V.

Now, we define the following sets of functions

Cw := {u ∈ C0
w([0, T ];V ) : u̇ ∈ C0

w([0, T ];H), u(t) ∈ Vt for every t ∈ [0, T ]},
C1
c := {ϕ ∈ C1

c (0, T ;V ) : ϕ(t) ∈ V D
t for every t ∈ [0, T ]},

in which we develop our theory. Moreover, we consider the Banach space

B := L∞(Ω;Lsym(Rd×dsym,Rd×dsym)),

where Lsym(Rd×dsym,Rd×dsym) represents the space of symmetric tensor fields, i.e. the collections

of linear and continuous maps A : Rd×dsym → Rd×dsym satisfying

Aξ1 · ξ2 = ξ1 · Aξ2 for every ξ1, ξ2 ∈ Rd×dsym.

We consider a tensor A ∈ B such that

cA|ξ|2 ≤ A(x)ξ · ξ ≤ CA|ξ|2 for every ξ ∈ Rd and a.e. x ∈ Ω, (3.1)

where cA and CA are to positive constants independent of x.
We assume that the Dirichlet datum z, the Neumann datum N , the forcing term f , the

initial displacement u0, and the initial velocity u1 satisfy

z ∈W 2,1(0, T ;V0), (3.2)

N ∈W 1,1(0, T ;HN ), f ∈ L2(0, T ;H), (3.3)

u0 ∈ V0 with u0 − z(0) ∈ V D
0 , u1 ∈ H. (3.4)

Moreover, let us take a time-dependent tensor F : (0, T0) → B, where T0 := T + δ0 with
δ0 > 0, satisfying

F ∈ C2(0, T0;B) ∩ L1(0, T0;B), (3.5)

F(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ (0, T0), and a.e. x ∈ Ω, (3.6)

Ḟ(t, x)ξ · ξ ≤ 0 for every ξ ∈ Rd, t ∈ (0, T0), and a.e. x ∈ Ω, (3.7)

F̈(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ (0, T0), and a.e. x ∈ Ω. (3.8)
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Remark 3.1.1. The tensor F may be not defined at t = 0 and unbounded on (0, T0). In
the case of (5), the function F associated to the fractional Kelvin-Voigt’s model involving
Caputo’s derivative, satisfies (3.5)–(3.8) provided that B ∈ B is non-negative, that is

B(x)ξ · ξ ≥ 0 for every ξ ∈ Rd and a.e. x ∈ Ω.

Since in our existence result we first regularize the tensor F by means of translations (see
Section 3.3) we need that F is defined also on the right of T . This is not a problem, because
our standard example for F, which is (5), is defined on the whole (0,∞).

In this chapter we want to study the following problem

ü(t)− div(Aeu(t))− div
(

d
dt

∫ t
0 F(t− τ)(eu(τ)− eu0)dτ

)
= f(t) in Ω \ Γt, t ∈ (0, T ),

u(t) = z(t) on ∂DΩ, t ∈ (0, T ),

Aeu(t)ν +
(

d
dt

∫ t
0 F(t− τ)(eu(τ)− eu0)dτ

)
ν = N(t) on ∂NΩ, t ∈ (0, T ),

Aeu(t)ν +
(

d
dt

∫ t
0 F(t− τ)(eu(τ)− eu0)dτ

)
ν = 0 on Γt, t ∈ (0, T ),

u(0) = u0, u̇(0) = u1 in Ω \ Γ0.

(3.9)

We give the following notion of solution to system (3.9):

Definition 3.1.2 (Generalized solution). Assume (3.2)–(3.8). A function u ∈ Cw is a gen-
eralized solution to system (3.9) if u(t) − z(t) ∈ V D

t for every t ∈ [0, T ], u(0) = u0 in V0,
u̇(0) = u1 in H, and for every ϕ ∈ C1

c the following equality holds

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt−

∫ T

0

∫ t

0
(F(t− τ)(eu(τ)− eu0), eϕ̇(t))dτdt

=

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt. (3.10)

Remark 3.1.3. The Neumann conditions appearing in (3.9) are only formal; they are used
to pass from the strong formulation in (3.9) to the weak one (3.10).

The main existence result of this chapter is the following theorem:

Theorem 3.1.4. Assume (3.2)–(3.8). Then there exists a generalized solution u ∈ Cw to
system (3.9).

The proof of this theorem requires several preliminary results. First, in the next section,
we prove the existence of a generalized solution when the tensor F is replaced by a tensor
G ∈ C2([0, T ];B). Then, we show that such a solution satisfies an energy estimate, which
depends via G only by its L1-norm. In Section 3.3 we combine these two results to prove
Theorem 3.1.4.

3.2 The regularized model

In this section we deal with a regularized version of the system (3.9), where the tensor F is
replaced by a tensor G which is bounded at t = 0. More precisely, we consider the following
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system

ü(t)− div(Aeu(t))− div
(

d
dt

∫ t
0 G(t− τ)(eu(τ)− eu0)dτ

)
= f(t) in Ω \ Γt, t ∈ (0, T ),

u(t) = z(t) on ∂DΩ, t ∈ (0, T ),

Aeu(t)ν +
(

d
dt

∫ t
0 G(t− τ)(eu(τ)− eu0)dτ

)
ν = N(t) on ∂NΩ, t ∈ (0, T ),

Aeu(t)ν +
(

d
dt

∫ t
0 G(t− τ)(eu(τ)− eu0)dτ

)
ν = 0 on Γt, t ∈ (0, T ),

u(0) = u0, u̇(0) = u1 in Ω \ Γ0,

(3.11)
and we assume that G : [0, T ]→ B satisfies

G ∈ C2([0, T ];B), (3.12)

G(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ [0, T ], and a.e. x ∈ Ω, (3.13)

Ġ(t, x)ξ · ξ ≤ 0 for every ξ ∈ Rd, t ∈ [0, T ], and a.e. x ∈ Ω, (3.14)

G̈(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ [0, T ], and a.e. x ∈ Ω. (3.15)

As before, on N , u0, u1, and A we assume (3.3)–(3.1), while for the Dirichlet datum z we
can require the weaker assumption

z ∈W 2,1(0, T ;H) ∩W 1,1(0, T ;V0). (3.16)

The notion of generalized solution to (3.11) is the same as before.

Definition 3.2.1 (Generalized solution). Assume (3.3)–(3.1) and (3.12)–(3.16). A function
u ∈ Cw is a generalized solution to system (3.11) if u(t) − z(t) ∈ V D

t for every t ∈ [0, T ],
u(0) = u0 in V0, u̇(0) = u1 in H, and for every ϕ ∈ C1

c the following equality holds

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt−

∫ T

0

∫ t

0
(G(t− τ)(eu(τ)− eu0), eϕ̇(t))dτdt

=

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt. (3.17)

Since the time-dependent tensor G is well defined in t = 0, we can give another notion of
solution. In particular, the convolution integral is now differentiable, and we can write

d

dt

∫ t

0
G(t− τ)(eu(τ)− eu0)dτ = G(0)(eu(t)− eu0) +

∫ t

0
Ġ(t− τ)(eu(τ)− eu0)dτ.

Definition 3.2.2 (Weak solution). Assume (3.3)–(3.1) and (3.12)–(3.16). A function u ∈ Cw
is a weak solution to system (3.11) if u(t) − z(t) ∈ V D

t for every t ∈ [0, T ], u(0) = u0 in V0,
u̇(0) = u1 in H, and for every ϕ ∈ C1

c the following equality holds

−
∫ T

0
(u̇(t), ϕ̇(t))dt+

∫ T

0
(Aeu(t), eϕ(t))dt+

∫ T

0
(G(0)(eu(t)− eu0), eϕ(t))dt

+

∫ T

0

∫ t

0
(Ġ(t− τ)(eu(τ)− eu0), eϕ(t))dτdt =

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt.

(3.18)

In this framework the two previous definitions are equivalent.

Proposition 3.2.3. Assume (3.3)–(3.1) and (3.12)–(3.16). Then u ∈ Cw is a generalized
solution to (3.11) if and only if u is a weak solution.
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Proof. We only need to prove that (3.18) is equivalent to (3.17). This is true if and only if
the function u ∈ Cw satisfies for every ϕ ∈ C1

c the following equality∫ T

0
(G(0)(eu(t)− eu0), eϕ(t))dt+

∫ T

0

∫ t

0
(Ġ(t− τ)(eu(τ)− eu0), eϕ(t))dτdt

= −
∫ T

0

∫ t

0
(G(t− τ)(eu(τ)− eu0), eϕ̇(t))dτdt. (3.19)

Let us consider for t ∈ [0, T ] the function

p(t) :=

∫ t

0
(G(t− τ)(eu(τ)− eu0), eϕ(t))dτ.

We claim that p ∈ Lip([0, T ]). Indeed, for every s, t ∈ [0, T ] with s < t we have

|p(s)− p(t)| ≤
∣∣∣ ∫ t

s
(G(t− τ)(eu(τ)− eu0), eϕ(t))dτ

∣∣∣
+
∣∣∣ ∫ s

0
(G(s− τ)(eu(τ)− eu0), eϕ(t)− eϕ(s))dτ

∣∣∣
+
∣∣∣ ∫ s

0
((G(t− τ)−G(s− τ))(eu(τ)− eu0), eϕ(t))dτ

∣∣∣.
Since∣∣∣ ∫ t

s
(G(t− τ)(eu(τ)− eu0), eϕ(t))dτ

∣∣∣ ≤ 2(t− s)‖G‖C0([0,T ];B)‖eϕ‖C0([0,T ];H)‖eu‖L∞(0,T ;H),∣∣∣ ∫ s

0
(G(s− τ)(eu(τ)− eu0), eϕ(t)− eϕ(s))dτ

∣∣∣
≤ 2(t− s)‖G‖C0([0,T ];B)‖eϕ̇‖C0([0,T ];H)T‖eu‖L∞(0,T ;H),∣∣∣ ∫ s

0
((G(t− τ)−G(s− τ))(eu(τ)− eu0), eϕ(t))dτ

∣∣∣
≤ 2(t− s)‖Ġ‖C0([0,T ];B)‖eϕ‖C0([0,T ];H)T‖eu‖L∞(0,T ;H),

we deduce that p ∈ Lip([0, T ]). In particular, there exists ṗ(t) for a.e. t ∈ (0, T ). Given
t ∈ (0, T ) and h > 0 we can write

p(t+ h)− p(t)
h

=

∫ t

0
(
G(t+ h− τ)−G(t− τ)

h
(eu(τ)− eu0), eϕ(t+ h))dτ

+−
∫ t+h

t
(G(t+ h− τ)(eu(τ)− eu0), eϕ(t+ h))dτ

+

∫ t

0
(G(t− τ)(eu(τ)− eu0),

eϕ(t+ h)− eϕ(t)

h
)dτ.

Let us compute these three limits separately. We claim that for a.e. t ∈ (0, T ) we have

lim
h→0+

−
∫ t+h

t
(G(t+ h− τ)(eu(τ)− eu0), eϕ(t+ h))dτ = (G(0)(eu(t)− eu0), eϕ(t)).

Indeed, by the Lebesgue’s differentiation theorem, for a.e. t ∈ (0, T ) we get∣∣∣−∫ t+h

t
(G(t+ h− τ)(eu(τ)− eu0), eϕ(t+ h))dτ − (G(0)(eu(t)− eu0), eϕ(t))

∣∣∣
≤ ‖G(0)‖B‖eϕ(t)‖−

∫ t+h

t
‖eu(t)− eu(τ)‖dτ
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+ ‖G(0)‖B‖eϕ(t+ h)− eϕ(t)‖−
∫ t+h

t
‖eu(τ)− eu0‖dτ

+ ‖eϕ(t+ h)‖−
∫ t+h

t
‖G(t+ h− τ)−G(0)‖B‖eu(τ)− eu0‖dτ −−−−→

h→0+
0.

Moreover, for every t ∈ (0, T ) we have

lim
h→0+

∫ t

0
(
G(t+ h− τ)−G(t− τ)

h
(eu(τ)− eu0), eϕ(t+ h))dτ

=

∫ t

0
(Ġ(t− τ)(eu(τ)− eu0), eϕ(t))dτ

since

eϕ(t+ h)
H−−−−→

h→0+
eϕ(t),

G(t+ h− ·)−G(t− ·)
h

(eu(·)− eu0)
L1(0,t;H)−−−−−−→
h→0+

Ġ(t− ·)(eu(·)− eu0).

Finally, for every t ∈ (0, T ) we get

lim
h→0+

∫ t

0
(G(t− τ)(eu(τ)− eu0),

eϕ(t+ h)− eϕ(t)

h
)dτ =

∫ t

0
(G(t− τ)(eu(τ)− eu0), eϕ̇(t))dτ

because
eϕ(t+ h)− eϕ(t)

h

H−−−−→
h→0+

eϕ̇(t).

Therefore, by the identity

0 = p(T )− p(0) =

∫ T

0
ṗ(t)dt

and the previous computations we deduce (3.19).

In the particular case in which the tensor G appearing in (3.11) is the one associated to
the Standard viscoelastic model, i.e.

G(t) =
1

β
e
− t
βB for t ∈ [0, T ]

with β > 0 and B ∈ B non-negative tensor, then the existence of weak solutions (and so
generalized solutions) was proved in [44]. Here we adapt the techniques of [44] to a general
tensor G satisfying (3.12)–(3.15).

3.2.1 Existence and Energy-Dissipation Inequality

In this subsection we prove the existence of a generalized solution to system (3.11), by means
of a time discretization scheme in the same spirit of [13]. Moreover, we show that such a
solution satisfies the energy-dissipation inequality (3.49).

We fix n ∈ N and we set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1, δz0

n := ż(0), δG0
n := 0.

Let us define for j = 0, . . . , n

V j
n := V D

jτn , zjn := z(jτn), Gj
n := G(jτn),

and for j = 1, . . . , n

δzjn :=
zjn − zj−1

n

τn
, δ2zjn :=

δzjn − δzj−1
n

τn
, δGj

n :=
Gj
n −Gj−1

n

τn
, δ2Gj

n :=
δGj

n − δGj−1
n

τn
.
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Regarding the forcing term and the Neumann datum we pose

N j
n := N(jτn) for j = 0, . . . , n,

f jn := −
∫ jτn

(j−1)τn

f(τ)dτ, δN j
n :=

N j
n −N j−1

n

τn
for j = 1, . . . , n.

For every j = 1, . . . , n let us consider the unique ujn ∈ V with ujn − zjn ∈ V j
n , which satisfies

(δ2ujn, v) + (Aeujn, ev) + (G0
n(eujn − eu0), ev)

+

j∑
k=1

τn(δGj−k
n (eukn − eu0), ev) = (f jn, v) + (N j

n, v)HN (3.20)

for every v ∈ V j
n , where

δujn :=
ujn − uj−1

n

τn
for j = 0, . . . , n, δ2ujn :=

δujn − δuj−1
n

τn
for j = 1, . . . , n.

The existence and uniqueness of ujn is a consequence of Lax-Milgram’s lemma. Notice that
equation (3.20) is a sort of discrete version of (3.18), which we already know that is equivalent
to (3.17).

We now use equation (3.20) to derive an energy estimate for the family {ujn}nj=1, which
is uniform with respect to n ∈ N.

Lemma 3.2.4. Assume (3.3)–(3.1) and (3.12)–(3.16). Then there exists a constant C, in-
dependent of n ∈ N, such that

max
j=0,...,n

‖δujn‖+ max
j=0,...,n

‖eujn‖ ≤ C. (3.21)

Proof. First, since

Gj−1
n −G0

n =

j−1∑
k=0

τnδGk
n =

j∑
k=1

τnδGj−k
n for j = 1, . . . , n,

we have for j = 1, . . . , n that

G0
n(eujn − eu0) +

j∑
k=1

τnδGj−k
n (eukn − eu0) = Gj−1

n (eujn − eu0) +

j∑
k=1

τnδGj−k
n (eukn − eujn).

Therefore, equation (3.20) can be written as

(δ2ujn, v) + (Aeujn, ev) + (Gj−1
n (eujn − eu0), ev)

+

j∑
k=1

τn(δGj−k
n (eukn − eujn), ev) = (f jn, v) + (N j

n, v)

for every v ∈ V j
n . We fix i ∈ {1, . . . , n}. By taking v := τn(δujn − δzjn) ∈ V j

n and summing
over j = 1, . . . , i, we get the following identity

i∑
j=1

τn(δ2ujn, δu
j
n) +

i∑
j=1

τn(Aeujn, eδujn) +

i∑
j=1

τn(Gj−1
n (eujn − eu0), eδujn)

+

i∑
j=1

j∑
k=1

τ2
n(δGj−k

n (eukn − eujn), eδujn) =

i∑
j=1

τnL
j
n, (3.22)
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where

Ljn := (f jn, δu
j
n − δzjn) + (N j

n, δu
j
n − δzjn)HN + (δ2ujn, δz

j
n)

+ (Aeujn, eδzjn) + (Gj−1
n (eujn − eu0), eδzjn) +

j∑
k=1

τn(δGj−k
n (eukn − eujn), eδzjn).

By using the identity

|a|2 − a · b =
1

2
|a|2 − 1

2
|b|2 +

1

2
|a− b|2 for every a, b ∈ Rd

we deduce

τn(δ2ujn, δu
j
n) = ‖δujn‖2 − (δujn, δu

j−1
n ) =

1

2
‖δujn‖2 −

1

2
‖δuj−1

n ‖2 +
1

2
τ2
n‖δ2ujn‖2.

Therefore

i∑
j=1

τn(δ2ujn, δu
j
n) =

1

2

i∑
j=1

‖δujn‖2 −
1

2

i∑
j=1

‖δuj−1
n ‖2 +

1

2

i∑
j=1

τ2
n‖δ2ujn‖2

=
1

2
‖δuin‖2 −

1

2
‖u1‖2 +

1

2

i∑
j=1

τ2
n‖δ2ujn‖2. (3.23)

Similarly, we have

i∑
j=1

τn(Aeujn, eδujn) =
1

2
(Aeuin, euin)− 1

2
(Aeu0, eu0) +

1

2

i∑
j=1

τ2
n(Aeδujn, eδujn). (3.24)

Moreover, we can write

τn(Gj−1
n (eujn − eu0), eδujn) = (Gj−1

n (eujn − eu0), eujn − eu0)− (Gj−1
n (eujn − eu0), euj−1

n − eu0)

=
1

2
(Gj−1

n (eujn − eu0), eujn − eu0)− 1

2
(Gj−1

n (euj−1
n − eu0), euj−1

n − eu0)

+
τ2
n

2
(Gj−1

n eδujn, eδu
j
n)

=
1

2
(Gj

n(eujn − eu0), eujn − eu0)− 1

2
(Gj−1

n (euj−1
n − eu0), euj−1

n − eu0)

− 1

2
τn(δGj

n(eujn − eu0), eujn − eu0) +
1

2
τ2
n(Gj−1

n eδujn, eδu
j
n).

As consequence of this we obtain

i∑
j=1

τn(Gj−1
n (eujn − eu0), eδujn)

=
1

2

i∑
j=1

(Gj
n(eujn − eu0), eujn − eu0)− 1

2

i∑
j=1

(Gj−1
n (euj−1

n − eu0), euj−1
n − eu0)

− 1

2

i∑
j=1

τn(δGj
n(eujn − eu0), eujn − eu0) +

1

2

i∑
j=1

τ2
n(Gj−1

n eδujn, eδu
j
n)

=
1

2
(Gi

n(euin − eu0), euin − eu0) +
1

2

i∑
j=1

τ2
n(Gj−1

n eδujn, eδu
j
n)

− 1

2

i∑
j=1

τn(δGj
n(eujn − eu0), eujn − eu0)
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Finally, let us consider the term

i∑
j=1

j∑
k=1

τ2
n(δGj−k

n (eukn − eujn), eδujn) =
i∑

k=1

i∑
j=k

τ2
n(δGj−k

n (eukn − eujn), eδujn).

We can write

i∑
j=k

τ2
n(δGj−k

n (eukn − eujn), eδujn) = −
i∑

j=k

τn(δGj−k
n (eujn − eukn), eujn − euj−1

n )

= −
i∑

j=k

τn(δGj−k
n (eujn − eukn), eujn − eukn) +

i∑
j=k

τn(δGj−k
n (eujn − eukn), euj−1

n − eukn)

= −1

2

i∑
j=k

τn(δGj−k
n (eujn − eukn), eujn − eukn) +

1

2

i∑
j=k

τn(δGj−k
n (euj−1

n − eukn), euj−1
n − eukn)

− 1

2

i∑
j=k

τ3
n(δGj−k

n eδujn, eδu
j
n)

=− 1

2

i∑
j=k

τn(δGj−k+1
n (eujn − eukn), eujn − eukn) +

1

2

i∑
j=k

τn(δGj−k
n (euj−1

n − eukn), euj−1
n − eukn)

+
1

2

i∑
j=k

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)− 1

2

i∑
j=k

τ3
n(δGj−k

n eδujn, eδu
j
n)

=
1

2

i∑
j=k

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)− 1

2

i∑
j=k

τ3
n(δGj−k

n eδujn, eδu
j
n)

− 1

2
τn(δGi−k+1

n (euin − eukn), euin − eukn)

because δG0
n = 0. Therefore, we deduce

i∑
j=1

j∑
k=1

τ2
n(δGj−k

n (eukn − eujn), eδujn)

=
1

2

i∑
k=1

i∑
j=k

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)− 1

2

i∑
k=1

i∑
j=k

τ3
n(δGj−k

n eδujn, eδu
j
n)

− 1

2

i∑
k=1

τn(δGi−k+1
n (euin − eukn), euin − eukn)

=
1

2

i∑
j=1

j∑
k=1

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)− 1

2

i∑
j=1

j∑
k=1

τ3
n(δGj−k

n eδujn, eδu
j
n)

− 1

2

i∑
j=1

τn(δGi−j+1
n (euin − eujn), euin − eujn). (3.25)

By combining together (3.22)–(3.25), we obtain for i = 1, . . . , n the following discrete
energy equality

1

2
‖δuin‖2 +

1

2
(Aeuin, euin) +

1

2
(Gi

n(euin − eu0), euin − eu0)
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− 1

2

i∑
j=1

τn(δGi−j+1
n (euin − eujn), euin − eujn)− 1

2

i∑
j=1

τn(δGj
n(eujn − eu0), eujn − eu0)

+
1

2

i∑
j=1

j∑
k=1

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn) +
τ2
n

2

( i∑
j=1

‖δ2ujn‖2 +

i∑
j=1

(Aeδujn, eδujn)

)

+
τ2
n

2

( i∑
j=1

(Gj−1
n eδujn, eδu

j
n)−

i∑
j=1

j∑
k=1

τn(δGj−keδujn, eδu
j
n)

)

=
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

i∑
j=1

τnL
j
n. (3.26)

By our assumptions on G we deduce for a.e. x ∈ Ω and every ξ ∈ Rd that

Gj
n(x)ξ · ξ ≥ 0 j = 0, . . . , n,

δGj
n(x)ξ · ξ = −

∫ jτn

(j−1)τn

Ġ(τ, x)ξ · ξdτ ≤ 0 j = 1, . . . , n,

δ2Gj
n(x)ξ · ξ = −

∫ jτn

(j−1)τn

−
∫ τ

τ−τn
G̈(r, x)ξ · ξdrdτ ≥ 0 j = 2, . . . , n.

Hence, thanks to (3.26), for every i = 1, . . . , n we can write

1

2
‖δuin‖2 +

1

2
(Aeuin, euin) ≤ 1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +

i∑
j=1

τnL
j
n. (3.27)

Let us estimate the right-hand side in (3.27) from above. We set

Kn := max
j=0,..,n

‖δujn‖, En := max
j=0,..,n

‖eujn‖.

Therefore, we have the following bounds

∣∣∣ i∑
j=1

τn(f jn, δu
j
n)
∣∣∣ ≤ √T‖f‖L2(0,T ;H)Kn, (3.28)

∣∣∣ i∑
j=1

τn(f jn, δz
j
n)
∣∣∣ ≤ ‖f‖L2(0,T ;H)‖ż‖L2(0,T ;H), (3.29)

∣∣∣ i∑
j=1

τn(Aeujn, eδzjn)
∣∣∣ ≤ CA‖eż‖L1(0,T ;H)En, (3.30)

∣∣∣ i∑
j=1

τn(Gj−1
n (eujn − eu0), eδzjn)

∣∣∣ ≤ 2‖G‖C0([0,T ];B)‖eż‖L1(0,T ;H)En. (3.31)

Notice that the following discrete integrations by parts hold

i∑
j=1

τn(δ2ujn, δz
j
n) = (δuin, δz

i
n)− (δu0

n, δz
0
n)−

i∑
j=1

τn(δuj−1
n , δ2zjn), (3.32)

i∑
j=1

τn(N j
n, δu

j
n)HN = (N i

n, u
i
n)HN − (N0

n, u
0
n)HN −

i∑
j=1

τn(δN j
n, u

j−1
n )HN , (3.33)
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i∑
j=1

τn(N j
n, δz

j
n)HN = (N i

n, z
i
n)HN − (N0

n, z
0
n)HN −

i∑
j=1

τn(δN j
n, z

j−1
n )HN . (3.34)

By means of (3.32) we can write

∣∣∣ i∑
j=1

(δ2ujn, δz
j
n)
∣∣∣ ≤ ‖δuin‖‖δzin‖+ ‖δu0

n‖‖δz0
n‖+

i∑
j=1

τn‖δuj−1
n ‖‖δ2zjn‖

≤ (2‖ż‖C0([0,T ];H) + ‖z̈‖L1(0,T ;H))Kn. (3.35)

Moreover, thanks to

‖uin‖V ≤ ‖uin‖+En ≤
i∑

j=1

τn‖δujn‖+‖u0‖+En ≤ TKn+En+‖u0‖ for i = 0, . . . , n (3.36)

and to (3.33) we obtain

∣∣∣ i∑
j=1

τn(N j
n, δu

j
n)HN

∣∣∣ ≤ ‖N i
n‖HN ‖u

i
n‖HN + ‖N0

n‖HN ‖u
0
n‖HN +

i∑
j=1

τn‖δN j
n‖HN ‖u

j−1
n ‖HN

≤ Ctr‖N‖C0([0,T ];HN )(‖uin‖V + ‖u0
n‖V ) + Ctr

i∑
j=1

τn‖δN j
n‖HN ‖u

j−1
n ‖V

≤ Ctr
(
2‖N‖C0([0,T ];HN ) + ‖Ṅ‖L1(0,T ;HN )

)
(En + TKn + ‖u0‖). (3.37)

Similarly, by (3.34) we obtain

∣∣∣ i∑
j=1

τn(N j
n, δz

j
n)HN

∣∣∣ ≤ Ctr(2‖N‖C0([0,T ];HN ) + ‖Ṅ‖L1(0,T ;HN )

)
‖z‖C0([0,T ];V0). (3.38)

Finally, we have

∣∣∣ i∑
j=1

j∑
k=1

τ2
n(δGj−k

n (eukn − eujn), eδzjn)
∣∣∣ ≤ i∑

j=1

j∑
k=1

τ2
n‖δGj−k

n ‖B‖eukn − eujn‖‖eδzjn‖

≤ 2T‖Ġ‖C0([0,T ];B)‖eż‖L1(0,T ;H)En. (3.39)

By considering (3.27)–(3.39) and using (3.1), we obtain the existence of a positive constant
C1 = C1(z,N, f, u0,A,G) such that

‖δuin‖2 + cA‖euin‖2 ≤ ‖u1‖2 + CA‖eu0‖2 + C1 (1 +Kn + En) for i = 1, . . . , n.

In particular, since the right-hand side is independent of i, u0
n = u0 and δu0

n = u1, there
exists another constant C2 = C2(z,N, f, u0, u1,A,G) for which we have

K2
n + E2

n ≤ C2(1 +Kn + En) for every n ∈ N.

This implies the existence of a constant C = C(z,N, f, u0, u1,A,G) independent of n ∈ N
such that

‖δujn‖+ ‖eujn‖ ≤ Kn + En ≤ C for every j = 1, . . . , n and n ∈ N,

which gives (3.21).
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A first consequence of Lemma 3.2.4 is the following uniform estimate on the family
{δ2ujn}nj=1.

Corollary 3.2.5. Assume (3.3)–(3.1) and (3.12)–(3.16). Then there exists a constant C̃,
independent of n ∈ N, such that

n∑
j=1

τn‖δ2ujn‖2(V D0 )′ ≤ C̃. (3.40)

Proof. Thanks to equation (3.20) and to Lemma 3.2.4, for every j = 1, . . . , n and v ∈ V D
0 ⊂

V j
n with ‖v‖V0 ≤ 1 we have

|(δ2ujn, v)| ≤ C
(
CA + 2‖G‖C0([0,T ];B) + 2T‖Ġ‖C0([0,T ];B)

)
+ ‖f jn‖+ Ctr‖N‖C0([0,T ];HN ).

By taking the supremum over v ∈ V D
0 with ‖v‖V0 ≤ 1 we obtain

‖δ2ujn‖2(V D0 )′ ≤ 3C2
(
CA + 2‖G‖C0([0,T ];B) + 2T‖Ġ‖C0([0,T ];B)

)2
+ 3‖f jn‖2 + 3C2

tr‖N‖2C0([0,T ];HN ).

We multiply this inequality by τn and we sum over j = 1, . . . , n to get (3.40).

We now want to pass to the limit into equation (3.20) to obtain a generalized solution to
system (3.11). Let us recall the following result, whose proof can be found for example in
[19].

Lemma 3.2.6. Let X,Y be two reflexive Banach spaces such that X ↪→ Y continuously.
Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Let us define the following sequences of functions which are an approximation of the
generalized solution:

un(t) = uin + (t− iτn)δuin for t ∈ [(i− 1)τn, iτn] and i = 1, . . . , n,

u+
n (t) = uin for t ∈ ((i− 1)τn, iτn] and i = 1, . . . , n, u+

n (0) = u0
n,

u−n (t) = ui−1
n for t ∈ [(i− 1)τn, iτn) and i = 1, . . . , n, u−n (T ) = unn.

Moreover, we consider also the sequences

ũn(t) = δuin + (t− iτn)δ2uin for t ∈ [(i− 1)τn, iτn] and i = 1, . . . , n,

ũ+
n (t) = δuin for t ∈ ((i− 1)τn, iτn] and i = 1, . . . , n, ũ+

n (0) = δu0
n,

ũ−n (t) = δui−1
n for t ∈ [(i− 1)τn, iτn) and i = 1, . . . , n, ũ−n (T ) = δunn,

which approximate the first time derivative of the generalized solution. In a similar way,
we define also f+

n , N+
n , Ñ+

n , z±n , z̃n, z̃+
n , G±n , G̃n, G̃+

n . Thanks to the uniform estimates of
Lemma 3.2.4 we derive the following compactness result:

Lemma 3.2.7. Assume (3.3)–(3.1) and (3.12)–(3.16). There exists a function u ∈ Cw ∩
H2(0, T ; (V D

0 )′) such that, up to a not relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, u±n
L∞(0,T ;V ) ∗−−−−−−−⇀
n→∞

u, ũn
H1(0,T ;(V D0 )′)
−−−−−−−−−⇀

n→∞
u̇, ũ±n

L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

u̇, (3.41)

and for every t ∈ [0, T ]

u±n (t)
V−−−⇀

n→∞
u(t), ũ±n (t)

H−−−⇀
n→∞

u̇(t). (3.42)
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Proof. Thanks to Lemma 3.2.4 and the estimate (3.40), the sequences

{un}n ⊂ L∞(0, T ;V ) ∩H1(0, T ;H), {ũn}n ⊂ L∞(0, T ;H) ∩H1(0, T ; (V D
0 )′),

{u±n }n ⊂ L∞(0, T ;V ), {ũ±n }n ⊂ L∞(0, T ;H),

are uniformly bounded with respect to n ∈ N. By Banach-Alaoglu’s theorem and Lemma
3.2.6 there exist two functions u ∈ C0

w([0, T ];V ) ∩ H1(0, T ;H) and v ∈ C0
w([0, T ];H) ∩

H1(0, T ; (V D
0 )′), such that, up to a not relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, un
L∞(0,T ;V ) ∗−−−−−−−⇀
n→∞

u, ũn
H1(0,T ;(V D0 )′)
−−−−−−−−−⇀

n→∞
v, ũn

L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

v. (3.43)

Thanks to (3.40) we get

‖u̇n − ũn‖2L2(0,T ;(V D0 )′) ≤ C̃τ
2
n −−−→n→∞

0,

therefore we deduce that v = u̇. Moreover, by using (3.21) and (3.40) we have

‖u±n − un‖L∞(0,T ;H) ≤ Cτn −−−→
n→∞

0, ‖ũ±n − ũn‖2L2(0,T ;(V D0 )′) ≤ C̃τ
2
n −−−→n→∞

0.

We combine the previous convergences with (3.43) to derive

u±n
L∞(0,T ;V ) ∗−−−−−−−⇀
n→∞

u, ũ±n
L∞(0,T ;H) ∗−−−−−−−⇀

n→∞
u̇.

By (3.43) for every t ∈ [0, T ] we have

un(t)
V−−−⇀

n→∞
u(t), ũn(t)

H−−−⇀
n→∞

u̇(t).

Again, thanks to (3.21) and (3.40), for every t ∈ [0, T ] we get

‖u±n (t)‖V ≤ C, ‖u±n (t)− un(t)‖ ≤ Cτn −−−→
n→∞

0,

‖ũ±n (t)‖ ≤ C, ‖ũ±n (t)− ũn(t)‖2
(V D0 )′ ≤ C̃τn −−−→n→∞

0,

which imply (3.42). Finally, observe that for every t ∈ [0, T ]

u−n (t) ∈ Vt, u−n (t)
V−−−⇀

n→∞
u(t).

Therefore, u(t) ∈ Vt for every t ∈ [0, T ] since Vt is a closed subspace of V . Hence, u ∈ Cw.

Let us check that the limit function u defined before satisfies the boundary and initial
conditions.

Corollary 3.2.8. Assume (3.3)–(3.1) and (3.12)–(3.16). Then the function u ∈ Cw of
Lemma 3.2.7 satisfies for every t ∈ [0, T ] the condition u(t) − z(t) ∈ V D

t , and it assumes
the initial conditions u(0) = u0 in V0 and u̇(0) = u1 in H.

Proof. By (3.41) we have

u0 = un(0)
V−−−⇀

n→∞
u(0), u1 = ũn(0)

H−−−⇀
n→∞

u̇(0).

Hence, u ∈ Cw satisfies u(0) = u0 in V0 and u̇(0) = u1 in H. Moreover, since z ∈ C0([0, T ];V0)
and thanks to (3.42), we have for every t ∈ [0, T ]

u−n (t)− z−n (t) ∈ V D
t , u−n (t)− z−n (t)

V−−−⇀
n→∞

u(t)− z(t).

Thus, u(t)− z(t) ∈ V D
t for every t ∈ [0, T ] because V D

t is a closed subspace of V .
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Lemma 3.2.9. Assume (3.3)–(3.1) and (3.12)–(3.16). Then the function u ∈ Cw of Lemma
3.2.7 is a generalized solution to system (3.11).

Proof. We only need to prove that the function u ∈ Cw satisfies (3.17). We fix n ∈ N and a
function ϕ ∈ C1

c . Let us consider

ϕjn := ϕ(jτn) for j = 0, . . . , n, δϕjn :=
ϕjn − ϕj−1

n

τn
for j = 1, . . . , n,

and, as we did before for the family {ujn}nj=1, we define the approximating sequences {ϕ+
n }n

and {ϕ̃+
n }n. If we use τnϕ

j
n ∈ V j

n as a test function in (3.20), after summing over j = 1, ..., n,
we get

n∑
j=1

τn(δ2ujn, ϕ
j
n) +

n∑
j=1

τn(Aeujn, eϕjn) +
n∑
j=1

τn(G0
n(eujn − eu0), eϕjn)

+

n∑
j=1

j∑
k=1

τ2
n(δGj−k

n (eukn − eu0), eϕjn) =

n∑
j=1

τn(f jn, ϕ
j
n) +

n∑
j=1

τn(N j
n, ϕ

j
n)HN . (3.44)

By means of a time discrete integration by parts we obtain

n∑
j=1

τn(δ2ujn, ϕ
j
n) = −

n∑
j=1

τn(δuj−1
n , δϕjn) = −

∫ T

0
(ũ−n (t), ϕ̃+

n (t))dt,

and since δG0
n = 0 and ϕ0

n = ϕnn = 0 we get

n∑
j=1

τn(G0
n(eujn − eu0), eϕjn) +

n∑
j=1

j∑
k=1

τ2
n(δGj−k

n (eukn − eu0), eϕjn)

= −
n−1∑
j=1

j∑
k=1

τ2
n(Gj−k

n (eukn − eu0), eδϕj+1
n )

= −
∫ T−τn

0

∫ tn

0
(G−n (tn − τ)(eu+

n (τ)− eu0), eϕ̃+
n (t+ τn))dτdt,

where tn :=
⌈
t
τn

⌉
τn for t ∈ (0, T ) and dxe is the superior integer part of the number x.

Thanks to (3.44) we deduce

−
∫ T

0
(ũ−n (t), ϕ̃+

n (t))dt−
∫ T−τn

0

∫ tn

0
(G−n (tn − τ)(eu+

n (τ)− eu0), eϕ̃+
n (t+ τn))dτdt

+

∫ T

0
(Aeu+

n (t), eϕ+
n (t))dt =

∫ T

0
(f+
n (t), ϕ+

n (t))dt+

∫ T

0
(N+

n (t), ϕ+
n (t))HNdt. (3.45)

We use (3.41) and the following convergences

ϕ+
n

L2(0,T ;V )−−−−−−→
n→∞

ϕ, ϕ̃+
n

L2(0,T ;H)−−−−−−→
n→∞

ϕ̇, f+
n

L2(0,T ;H)−−−−−−→
n→∞

f, N+
n

L2(0,T ;HN )−−−−−−−→
n→∞

N,

to derive ∫ T

0
(ũ−n (t), ϕ̃+

n (t))dt −−−→
n→∞

∫ T

0
(u̇(t), ϕ̇(t))dt,∫ T

0
(Aeu+

n (t), eϕ+
n (t))dt −−−→

n→∞

∫ T

0
(Aeu(t), eϕ(t))dt,
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∫ T

0
(f+
n (t), ϕ+

n (t))dt −−−→
n→∞

∫ T

0
(f(t), ϕ(t))dt,∫ T

0
(N+

n (t), ϕ+
n (t))HNdt −−−→

n→∞

∫ T

0
(N(t), ϕ(t))HNdt.

Moreover, for every fixed t ∈ (0, T )

χ[0,T−τn](t)χ[0,tn](·)G−n (tn − ·)eϕ̃+
n (t+ τn)

L2(0,T ;H)−−−−−−→
n→∞

χ[0,T ](t)χ[0,t](·)G(t− ·)eϕ̇(t), (3.46)

which together with (3.41) gives

χ[0,T−τn](t)

∫ tn

0
(G−n (tn − τ)(eu+

n (τ)− eu0), eϕ̃+
n (t+ τn))dτ

−−−→
n→∞

χ[0,T ](t)

∫ t

0
(G(t− τ)(eu(τ)− eu0), eϕ̇(t))dτ. (3.47)

By (3.21) for every t ∈ (0, T ) we deduce∣∣∣χ[0,T−τn](t)

∫ tn

0
(G−n (tn − τ)(eu+

n (τ)− eu0), eϕ̃+
n (t+ τn))dτ

∣∣∣
≤ 2T‖G‖C0([0,T ];B)C‖eϕ̇‖C0([0,T ];H). (3.48)

Therefore, we can use the dominated convergence theorem to pass to the limit in the double
integral of (3.45), and we obtain that u satisfies (3.17) for every function ϕ ∈ C1

c .

Now we want to deduce an energy-dissipation inequality for the generalized solution u ∈
Cw of Lemma 3.2.7. Let us define for every t ∈ [0, T ] the total energy E (t) and the dissipation
D(t) as

E (t) :=
1

2
‖u̇(t)‖2 +

1

2
(Aeu(t), eu(t)) +

1

2
(G(t)(eu(t)− eu0), eu(t)− eu0)

− 1

2

∫ t

0
(Ġ(t− τ)(eu(t)− eu(τ)), eu(t)− eu(τ))dτ,

D(t) := −1

2

∫ t

0
(Ġ(τ)(eu(τ)− eu0), eu(τ)− eu0)dτ

+
1

2

∫ t

0

∫ τ

0
(G̈(τ − r)(eu(τ)− eu(r)), eu(τ)− eu(r))drdτ.

Notice that E (t) is well defined for every time t ∈ [0, T ] since u ∈ C0
w([0, T ];V ) and u̇ ∈

C0
w([0, T ];H). Moreover, by the initial conditions we have

E (0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0).

Proposition 3.2.10. Assume (3.3)–(3.1) and (3.12)–(3.16). Then the generalized solution
u ∈ Cw to system (3.11) of Lemma 3.2.7 satisfies for every t ∈ [0, T ] the following energy-
dissipation inequality

E (t) + D(t) ≤ E (0) + Wtot(t), (3.49)

where the total work is defined as

Wtot(t) :=

∫ t

0
[(f(τ), u̇(τ)− ż(τ)) + (Aeu(τ), eż(τ))]dτ
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−
∫ t

0
(Ṅ(τ), u(τ)− z(τ))HNdτ + (N(t), u(t)− z(t))HN − (N(0), u0 − z(0))HN

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0))

+

∫ t

0
(G(τ)(eu(τ)− eu0), eż(τ))dτ +

∫ t

0

∫ τ

0
(Ġ(τ − r)(eu(r)− eu(τ)), eż(τ))drdτ.

(3.50)

Proof. Fixed t ∈ (0, T ] and n ∈ N there exists a unique i = i(n) ∈ {1, . . . , n} such that

t ∈ ((i − 1)τn, iτn]. In particular, i(n) =
⌈
t
τn

⌉
. After setting tn := iτn and using that

δG0
n = 0, we rewrite (3.26) as

1

2
‖ũ+

n (t)‖2 +
1

2
(Aeu+

n (t), eu+
n (t)) +

1

2
(G+

n (t)(eu+
n (t)− eu0), eu+

n (t)− eu0)

− 1

2

∫ tn

0
(G̃+

n (tn − τ)(eu+
n (t)− eu+

n (τ)), eu+
n (t)− eu+

n (τ))dτ

+
1

2

∫ tn

τn

∫ τ̄n−τn

0
( ˙̃Gn(τ̄n − r)(eu+

n (τ)− eu+
n (r)), eu+

n (τ)− eu+
n (r))drdτ

− 1

2

∫ tn

0
(G̃+

n (τ)(eu+
n (τ)− eu0), eu+

n (τ)− eu0)dτ ≤ 1

2
‖u1‖2 +

1

2
(Aeu0, eu0) +W+

n (t),

(3.51)

where τ̄n :=
⌈
τ
τn

⌉
τn for τ ∈ (τn, tn), and the approximate total work W +

n (t) is given by

W +
n (t) :=

∫ tn

0
[(f+

n (τ), ũ+
n (τ)− z̃+

n (τ)) + (N+
n (τ), ũ+

n (τ)− z̃+
n (τ))HN + ( ˙̃un(τ), z̃+

n (τ))]dτ

+

∫ tn

0
[(Ceu+

n (τ), ez̃+
n (τ)) + (G−n (τ)(eu+

n (τ)− eu0), ez̃+
n (τ))]dτ

+

∫ tn

τn

∫ τ̄n−τn

0
(G̃−n (τ̄n − r)(eu+

n (r)− eu+
n (τ)), ez̃+

n (τ))drdτ.

By (3.1), (3.13), and (3.42) we derive

‖u̇(t)‖2 ≤ lim inf
n→∞

‖ũ+
n (t)‖2, (3.52)

(Aeu(t), eu(t)) ≤ lim inf
n→∞

(Aeu+
n (t), eu+

n (t)), (3.53)

(G(t)(eu(t)− eu0), eu(t)− eu0) ≤ lim inf
n→∞

(G(t)(eu+
n (t)− eu0), eu+

n (t)− eu0). (3.54)

Moreover, the estimate (3.21) imply∣∣((G(t)−G+
n (t))(eu+

n (t)− eu0), eu+
n (t)− eu0)

∣∣ ≤ 4C2‖Ġ‖C0([0,T ];B)τn −−−→
n→∞

0,

which together with inequality (3.54) gives

(G(t)(eu(t)− eu0), eu(t)− eu0) ≤ lim inf
n→∞

(G+
n (t)(eu+

n (t)− eu0), eu+
n (t)− eu0). (3.55)

By (3.14) and (3.42), for every τ ∈ (0, t) we have

(−Ġ(t− τ)(eu(t)− eu(τ)), eu(t)− eu(τ))

≤ lim inf
n→∞

(−Ġ(t− τ)(eu+
n (t)− eu+

n (τ)), eu+
n (t)− eu+

n (τ)).
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Moreover

‖G̃+
n (tn − τ)− Ġ(t− τ)‖B ≤ −

∫ tn−τ̄n+τn

tn−τ̄n
‖Ġ(r)− Ġ(t− τ)‖Bdr −−−→

n→∞
0

because tn − τ̄n → t− τ . Hence, we can argue as before to deduce

(−Ġ(t− τ)(eu(t)− eu(τ)), eu(t)− eu(τ))

≤ lim inf
n→∞

(−G̃+
n (tn − τ)(eu+

n (t)− eu+
n (τ)), eu+

n (t)− eu+
n (τ)).

In particular, we can use Fatou’s lemma and the fact that t ≤ tn to obtain∫ t

0
(−Ġ(t− τ)(eu(t)− eu(τ)), eu(t)− eu(τ))dτ

≤ lim inf
n→∞

∫ tn

0
(−G̃+

n (tn − τ)(eu+
n (t)− eu+

n (τ)), eu+
n (t)− eu+

n (τ))dτ.

By arguing in a similar way, we can derive∫ t

0
(−Ġ(τ)(eu(τ)− eu0), eu(τ)− eu0)dτ

≤ lim inf
n→∞

∫ tn

0
(−G̃+

n (τ)(eu+
n (τ)− eu0), eu+

n (τ)− eu0)dτ.

Let us consider the double integral in the left-hand side. We fix τ ∈ (0, t) and by (3.15)
for every r ∈ (0, τ) we have

(G̈(τ − r)(eu(τ)− eu(r)), eu(τ)− eu(r))

≤ lim inf
n→∞

(G̈(τ − r)(eu+
n (τ)− eu+

n (r)), eu+
n (τ)− eu+

n (r)).

Moreover, for a.e. r ∈ (0, τ̄n − τn) by defining rn :=
⌈
r
τn

⌉
τn we deduce

‖ ˙̃Gn(τ̄n − r)− G̈(τ − r)‖B ≤ −
∫ τ̄n−rn+τn

τ̄n−rn
−
∫ λ

λ−τn
‖G̈(θ)− G̈(τ − r)‖Bdθdλ −−−→

n→∞
0.

Therefore, for a.e. r ∈ (0, τ) we get

(G̈(τ − r)(eu(τ)− eu(r)), eu(τ)− eu(r))

≤ lim inf
n→∞

( ˙̃Gn(τ̄n − r)(eu+
n (τ)− eu+

n (r)), eu+
n (τ)− eu+

n (r)),

since r ∈ (0, τ̄n − τn) for n large enough. If we apply again Fatou’s lemma we conclude∫ τ

0
(G̈(τ − r)(eu(τ)− eu(r)), eu(τ)− eu(r))dr

≤ lim inf
n→∞

∫ τ

0
( ˙̃Gn(τ̄n − r)(eu+

n (τ)− eu+
n (r)), eu+

n (τ)− eu+
n (r))dr.

By (3.21) we get∣∣∣∣∫ τ

τ̄n−τn
( ˙̃Gn(τ̄n − r)(eu+

n (τ)− eu+
n (r)), eu+

n (τ)− eu+
n (r))dr

∣∣∣∣
≤ 4C2‖G̈‖C0([0,T ];B)(τ − τ̄n + τn) −−−→

n→∞
0,
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from which we derive∫ τ

0
(G̈(τ − r)(eu(τ)− eu(r)), eu(τ)− eu(r))dr

≤ lim inf
n→∞

∫ τ̄n−τn

0
( ˙̃Gn(τ̄n − r)(eu+

n (τ)− eu+
n (r)), eu+

n (τ)− eu+
n (r))dr.

Since this is true for every τ ∈ (0, t), arguing as before we obtain∫ t

0

∫ τ

0
(G̈(τ − r)(eu(τ)− eu(r)), eu(τ)− eu(r))drdτ

≤ lim inf
n→∞

∫ tn

τn

∫ τ̄n−τn

0
( ˙̃Gn(τ̄n − r)(eu+

n (τ)− eu+
n (r)), eu+

n (τ)− eu+
n (r))drdτ.

Let us study the right-hand side of (3.51). Given that

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−→
n→∞

χ[0,t]f, ũ+
n − z̃+

n
L2(0,T ;H)−−−−−−⇀
n→∞

u̇− ż,

χ[0,tn]G−n ez̃+
n

L1(0,T ;H)−−−−−−→
n→∞

χ[0,t]Geż, u+
n

L∞(0,T ;V ) ∗−−−−−−−⇀
n→∞

u,

we can deduce∫ tn

0
(f+
n (τ), ũ+

n (τ)− z̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(f(τ), u̇(τ)− ż(τ))dτ, (3.56)∫ tn

0
(Aeu+

n (τ), ez̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(Aeu(τ), eż(τ))dτ, (3.57)∫ tn

0
(G−n (τ)(eu+

n (τ)− eu0), ez̃+
n (τ))dτ −−−→

n→∞

∫ t

0
(G(τ)(eu(τ)− eu0), eż(τ))dτ. (3.58)

By using the same argumentations of (3.46)–(3.48), together with the dominate convergence
theorem, we can write∫ tn

τn

∫ τ̄n−τn

0
(G̃−n (τ̄n − r)(eu+

n (r)− eu+
n (τ)), ez̃+

n (τ))drdτ

−−−→
n→∞

∫ t

0

∫ τ

0
(Ġ(τ − r)(eu(r)− eu(τ)), eż(τ))drdτ. (3.59)

Thanks to the discrete integration by parts formulas (3.32)–(3.34) we have∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ = (ũ+
n (t), z̃+

n (t))− (u1, ż(0))−
∫ tn

0
(ũ−n (τ), ˙̃zn(τ))dτ,∫ tn

0
(N+

n (τ), ũ+
n (τ)− z̃+

n (τ))HNdτ = (N+
n (t), u+

n (t)− z+
n (t))HN − (N(0), u0 − z(0))HN

−
∫ tn

0
(Ñ+

n (τ), u−n (τ)− z−n (τ))HNdτ.

By arguing as before we deduce∫ tn

0
( ˙̃un(τ), z̃+

n (τ))dτ −−−→
n→∞

(u̇(t), ż(t))− (u1, ż(0))−
∫ t

0
(u̇(τ), z̈(τ))dτ, (3.60)∫ tn

0
(N+

n (τ), ũ+
n (τ)− z̃+

n (τ))HNdτ
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−−−→
n→∞

(N(t), u(t)− z(t))HN − (N(0), u0 − z(0))HN −
∫ t

0
(Ṅ(τ), u(τ)− z(τ))HNdτ, (3.61)

thanks to Lemma 3.2.7 and to the following convergences:

‖z̃+
n (t)− ż(t)‖ ≤ −

∫ tn

tn−τn
‖ż(τ)− ż(t)‖dτ −−−→

n→∞
0,

‖z+
n (t)− z(t)‖HN ≤ Ctr

√
τn‖ż‖L2(0,T ;V0) −−−→

n→∞
0,

‖N+
n (t)−N(t)‖HN ≤

∫ tn

t
‖Ṅ(τ)‖HNdτ −−−→

n→∞
0,

and

χ[0,tn]
˙̃zn

L1(0,T ;H)−−−−−−→
n→∞

χ[0,t]z̈, ũ−n
L∞(0,T ;H) ∗−−−−−−−⇀

n→∞
u̇,

χ[0,tn]Ñ
+
n

L1(0,T ;HN )−−−−−−−→
n→∞

χ[0,t]Ṅ , u−n − z−n
L∞(0,T ;V ) ∗−−−−−−−⇀
n→∞

u− z.

By combining (3.51) with (3.52)–(3.61) we deduce the energy-dissipation inequality (3.49)
for every t ∈ (0, T ]. Finally, for t = 0 the inequality trivially holds since u(0) = u0 in V0 and
u̇(0) = u1 in H.

Remark 3.2.11. From the classical point of view, the total work on the solution u at time
t ∈ [0, T ] is given by

W C
tot(t) := Wload(t) + Wbdry(t), (3.62)

where Wload(t) is the work on the solution u at time t ∈ [0, T ] due to the loading term, which
is defined as

Wload(t) :=

∫ t

0
(f(τ), u̇(τ))dτ,

and Wbdry(t) is the work on the solution u at time t ∈ [0, T ] due to the varying boundary
conditions, which one expects to be equal to

Wbdry(t) :=

∫ t

0
(N(τ), u̇(τ))HNdτ +

∫ t

0
(Aeu(τ)ν, ż(τ))HDdτ

+

∫ t

0

(
d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr

)
ν, ż(τ))HDdτ

Unfortunately, Wbdry(t) is not well defined under our assumptions on u. In particular, the
term involving the Dirichlet datum z is difficult to handle since the trace of the function
Aeu(τ)ν + d

dτ

(∫ τ
0 G(τ − r)eu(r)dr

)
ν on ∂DΩ is not well defined. If we assume that u ∈

L2(0, T ;H2(Ω \ Γ;Rd)) ∩H2(0, T ;L2(Ω \ Γ;Rd)) and that Γ is a smooth manifold, then the
first term of Wbdry(t) makes sense and satisfies∫ t

0
(N(τ), u̇(τ))HNdτ = (N(t), u(t))HN − (N(0), u(0))HN −

∫ t

0
(Ṅ(τ), u(τ))HNdτ.

Moreover, we have

d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr = G(0)(eu(τ)− eu0) +

∫ τ

0
Ġ(τ − r)(eu(r)− eu0)dr

= G(τ)(eu(τ)− eu0) +

∫ τ

0
Ġ(τ − r)(eu(r)− eu(τ))dr,

(3.63)
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therefore
(

d
dτ

∫ τ
0 G(τ − r)(eu(r)− eu0)dr

)
ν ∈ L2(0, T ;HD). By using (3.11), together with

the divergence theorem and the integration by parts formula, we derive∫ t

0
(Aeu(τ)ν +

( d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr

)
ν, ż(τ))HDdτ

=

∫ t

0
(Aeu(τ) +

d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr, eż(τ))dτ

+

∫ t

0

[
(div

(
Aeu(τ) +

d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr

)
, ż(τ))− (N(τ), ż(τ))HN

]
dτ

=

∫ t

0
(Aeu(τ) +

d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr, eż(τ))dτ

+

∫ t

0

[
(ü(τ)− f(τ), ż(τ))− (N(τ), ż(τ))HN

]
dτ

=

∫ t

0

[
(Aeu(τ) +

d

dτ

∫ τ

0
G(τ − r)(eu(r)− eu0)dr, eż(τ))− (f(τ), ż(τ))

]
dτ

+

∫ t

0
(Ṅ(τ), z(τ))HNdτ − (N(t), z(t))HN + (N(0), z(0))HN

−
∫ t

0
(u̇(τ), z̈(τ))dτ + (u̇(t), ż(t))− (u1, ż(0)). (3.64)

Therefore, by (3.63) and (3.64) we deduce the definition of total work given in (3.50) is
coherent with the classical one (3.62).

We conclude this subsection by showing that the generalized solution of Lemma 3.2.7
satisfies the initial conditions in a stronger sense than the ones stated in Definition 3.1.2.

Lemma 3.2.12. Assume (3.3)–(3.1) and (3.12)–(3.16). Then the generalized solution u ∈ Cw
to system (3.11) of Lemma 3.2.7 satisfies

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H. (3.65)

In particular, the functions u : [0, T ]→ V and u̇ : [0, T ]→ H are continuous at t = 0.

Proof. The proof is the same of Lemma (1.3.4)

By combining the previous results together we obtain the following existence result for
the system (3.11).

Theorem 3.2.13. Assume (3.3)–(3.1) and (3.12)–(3.16). Then there exists a generalized
solution u ∈ Cw to system (3.11). Moreover, we have u ∈ H2(0, T ; (V D

0 )′) and it satisfies the
energy-dissipation inequality (3.49) and

lim
t→0+

u(t) = u0 in V , lim
t→0+

u̇(t) = u1 in H.

Proof. It is enough to combine Lemma 3.2.7, Corollary 3.2.8, Lemma 3.2.9, Proposition
3.2.10, and Lemma 3.2.12.

3.2.2 Uniform energy estimates

In this subsection we show that, under the stronger assumption (3.2) on z, the generalized
solution to (3.11) of Theorem 3.2.13 satisfies some uniform estimates which depends on G
only via ‖G‖L1(0,T ;B).



Chapter 3. The fractional Kelvin-Voigt’s model on time-dependent cracked domains 85

Lemma 3.2.14. Assume (3.2)–(3.1) and (3.12)–(3.15). Let u be the generalized solution to
system (3.11) of Theorem 3.2.13. Then the following estimate holds

‖u̇(t)‖+ ‖eu(t)‖ ≤M for every t ∈ [0, T ], (3.66)

where M = M(z,N, f, u0, u1,A, ‖G‖L1(0,T ;B)) is a positive constant.

Proof. We define

K := sup
t∈[0,T ]

‖u̇(t)‖ = ‖u̇‖L∞(0,T ;H), E := sup
t∈[0,T ]

‖eu(t)‖ = ‖eu‖L∞(0,T ;H).

Notice that K and E are well-posed since u ∈ C0
w([0, T ];V ) and u̇ ∈ C0

w([0, T ];H). Let us
estimate the total work Wtot(t) in (3.49) by means of K and E. Since

‖u(t)‖V ≤ ‖u0‖+ TK + E for every t ∈ [0, T ],

we have ∣∣∣ ∫ t

0
(f(τ), u̇(τ))dτ

∣∣∣ ≤ √T‖f‖L2(0,T ;H)K,∣∣∣ ∫ t

0
(Ṅ(τ), u(τ))HNdτ

∣∣∣ ≤ Ctr‖Ṅ‖L2(0,T ;HN )

(
‖u0‖+ TK + E

)
,

|(N(t), u(t))HN | ≤ Ctr‖N‖C0([0,T ];HN )

(
‖u0‖+ TK + E

)
,

|(N(0), u0)HN | ≤ Ctr‖N‖C0([0,T ];HN )

(
‖u0‖+ TK + E

)
,∣∣∣ ∫ t

0
(f(τ), ż(τ))dτ

∣∣∣ ≤ √T‖f‖L2(0,T ;H)‖ż‖C0([0,T ];H),∣∣∣ ∫ t

0
(N(τ), ż(τ))HNdτ

∣∣∣ ≤ Ctr‖N‖C0([0,T ];HN )‖ż‖L1(0,T ;V0),∣∣∣ ∫ t

0
(Aeu(τ), eż(τ))dτ

∣∣∣ ≤ CA‖eż‖L1(0,T ;H)E,∣∣∣ ∫ t

0
(u̇(τ), z̈(τ))dτ

∣∣∣ ≤ ‖z̈‖L1(0,T ;H)K,

|(u̇(t), ż(t))| ≤ ‖ż‖C0([0,T ];H)K,

|(u1, ż(0))| ≤ ‖ż‖C0([0,T ];H)K.

It remains to study the last two terms, which are∫ t

0
(G(τ)(eu(τ)− eu0), eż(τ))dτ +

∫ t

0

∫ τ

0
(Ġ(τ − r)(eu(r)− eu(τ)), eż(τ))drdτ

=

∫ t

0
(G(0)(eu(τ)− eu0), eż(τ))dτ +

∫ t

0

∫ τ

0
(Ġ(τ − r)(eu(r)− eu0), eż(τ))drdτ.

Since z ∈W 2,1(0, T ;V0), arguing as in Proposition 3.2.3 we can deduce that the function

p(t) :=

∫ t

0
(G(t− τ)(eu(τ)− eu0), eż(t))dτ

is absolutely continuous on [0, T ]. In particular

p(t)− p(0) =

∫ t

0
ṗ(τ)dτ,
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which gives∫ t

0
(G(τ)(eu(τ)− eu0), eż(τ))dτ +

∫ t

0

∫ τ

0
(Ġ(τ − r)(eu(r)− eu(τ)), eż(τ))drdτ

=

∫ t

0
(G(t− τ)(eu(τ)− eu0), eż(t))dτ −

∫ t

0

∫ τ

0
(G(τ − r)(eu(r)− eu0), ez̈(τ))drdτ. (3.67)

Hence, we deduce∣∣∣ ∫ t

0
(G(τ)(eu(τ)− eu0), eż(τ))dτ +

∫ t

0

∫ τ

0
(Ġ(τ − r)(eu(r)− eu(τ)), eż(τ))drdτ

∣∣∣
≤ 2(‖eż‖C0([0,T ];H) + ‖ez̈‖L1(0,T ;H))‖G‖L1(0,T ;B)E.

Therefore, since

E (0) ≤ 1

2
‖u1‖2 +

CA
2
‖eu0‖2,

by (3.49) we deduce the following estimate

‖u̇(t)‖2 + cA‖eu(t)‖2 ≤ C0 + C1K + C2E for every t ∈ [0, T ],

where

C0 = C0(z,N, f, u0, u1,A), C1 = C1(f, z,N), C2 = C2(z,N,A, ‖G‖L1(0,T ;B)).

In particular, being the right-hand side independent of t ∈ [0, T ], we conclude

K2 + cAE
2 ≤ 2C0 + 2C1K + 2C2E for every t ∈ [0, T ].

This implies the existence of a constant M = M(C0, C1, C2) for which (3.66) is satisfied.

Remark 3.2.15. By the previous estimate, we can easily derive a uniform bound also for
u̇ in H1(0, T ; (V D

0 )′), which unfortunately depends on G via ‖G(0)‖B. Indeed, let us as-
sume that z, N , f , u0, u1, A, and G satisfy (3.2)–(3.1) and (3.12)–(3.15) and let u be the
generalized solution of Theorem 3.2.13. Thanks to (3.49) and (3.66) there exists a constant
M = M(z,N, f, u0, u1,A, ‖G‖L1(0;T ;B)) such that for every t ∈ [0, T ]

‖eu(t)‖2+(G(t)(eu(t)−eu0), eu(t)−eu0)+

∫ t

0
(−Ġ(t−τ)(eu(t)−eu(τ)), eu(t)−eu(τ))dτ ≤M.

By equation (3.17) it is easy to see that u̇ ∈ H1(0, T ; (V D
0 )′) and that ü satisfies for a.e.

t ∈ (0, T ) and for every v ∈ V D
0

|〈ü(t), v〉(V D0 )′ |

≤ CA‖eu(t)‖‖ev‖+
√

(G(t)(eu(t)− eu0), eu(t)− eu0)
√

(G(t)ev, ev)

+

√∫ t

0
(−Ġ(t− τ)(eu(t)− eu(τ)), eu(t)− eu(τ))dτ

√∫ t

0
(−Ġ(t− τ)ev, ev)dτ

+ ‖f(t)‖‖v‖+ ‖N(t)‖HN ‖v‖HN .

Hence, we derive

|〈ü(t), v〉(V D0 )′ |
2 ≤ 5C2

AM‖ev‖2 + 5M(G(t)ev, ev) + 5M

∫ t

0
(−Ġ(t− τ)ev, ev)dτ

+ 5‖f(t)‖2‖v‖2 + 5C2
tr‖N(t)‖2HN ‖v‖

2
V0
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= 5C2
AM‖ev‖2 + 5M(G(0)ev, ev) + 5‖f(t)‖2‖v‖2 + 5C2

tr‖N(t)‖2HN ‖v‖
2
V0 ,

which gives

‖ü‖2
L2(0,T ;(V D0 )′) ≤ 5C2

AMT + 5MT‖G(0)‖B + 5‖f‖2L2(0,T ;H) + 5C2
tr‖N‖2L2(0,T ;HN ).

Therefore the bounds on ü depends on ‖G(0)‖B even when z ∈W 2,1(0, T ;V0).

As explained in the previous remark, we cannot deduce a uniform bound for u̇ in the
space H1(0, T ; (V D

0 )′) depending on G only via its L1-norm. On the other hand, the bound
on u̇ in H1(0, T ; (V D

0 )′) is useful if we want to prove the existence of a generalized solution u∗

to the fractional Kelvin-Voigt’s system (3.9), especially to show that u̇∗ ∈ C0
w([0, T ];H). To

overcome this problem, we introduce another function that is related to u̇ and for which is
possible to derive a uniform bound. Let us consider the auxiliary function α : [0, T ]→ (V D

0 )′

defined for every v ∈ V D
0 and t ∈ [0, T ] as

〈α(t), v〉(V D0 )′ := (u̇(t), v) +

∫ t

0
(G(t− τ)(eu(τ)− eu0), ev)dτ.

Notice that α ∈ C0
w([0, T ]; (V D

0 )′). Indeed, given t∗ ∈ [0, T ] and

{tk}k ⊂ [0, T ] such that tk −−−→
k→∞

t∗,

we have for every v ∈ V D
0 the following convergence

〈α(tk), v〉(V D0 )′ = (u̇(tk), v) +

∫ tk

0
(G(tk − τ)(eu(τ)− eu0), ev)dτ

−−−→
k→∞

(u̇(t∗), v) +

∫ t∗

0
(G(t∗ − τ)(eu(τ)− eu0), ev)dτ = 〈α(t∗), v〉(V D0 )′ ,

since

u̇(tk)
H−−−⇀

k→∞
u̇(t∗),∫ tk

0
(G(tk − τ)(eu(τ)− eu0), ev)dτ −−−→

k→∞

∫ t∗

0
(G(t∗ − τ)(eu(τ)− eu0), ev)dτ.

The second convergence is true because∫ tk

0
(G(tk − τ)(eu(τ)− eu0), ev)dτ

=

∫ t∗

0
(eu(τ)− eu0,G(tk − τ)ev)dτ −

∫ t∗

tk

(eu(τ)− eu0,G(tk − τ)ev)dτ.

Clearly

G(tk − ·)ev
L1(0,t∗;H)−−−−−−→
k→∞

G(t∗ − ·)ev

while eu ∈ L∞(0, t∗;H). Therefore∫ t∗

0
(eu(τ)− eu0,G(tk − τ)ev)dτ −−−→

k→∞

∫ t∗

0
(eu(τ)− eu0,G(t∗ − τ)ev)dτ

=

∫ t∗

0
(G(t∗ − τ)(eu(τ)− eu0), ev)dτ.



88 3.3. The fractional Kelvin-Voigt’s model

Moreover∣∣∣ ∫ t∗

tk

(eu(τ)− eu0,G(tk − τ)ev)dτ
∣∣∣ ≤ 2M‖ev‖

∣∣∣ ∫ tk−t∗

0
‖G(τ)‖Bdτ

∣∣∣ −−−→
k→∞

0.

For this function α is possible to find a uniform bound in H1(0, T ; (V D
0 )′) which depends

on ‖G‖L1(0,T ;B).

Corollary 3.2.16. Assume (3.2)–(3.1) and (3.12)–(3.15). Then α ∈ H1(0, T ; (V D
0 )′) and

there exists a constant M̃ = M̃(z,N, f, u0, u1,A, ‖G‖L1(0,T ;B)) such that

‖α‖H1(0,T ;(V D0 )′) ≤ M̃. (3.68)

Proof. First, by Lemma 3.2.14 we have

‖α(t)‖(V D0 )′ ≤M(1 + 2‖G‖L1(0,T ;B)) for every t ∈ [0, T ].

Moreover, by the definition of generalized solution, we deduce that for every ψ ∈ C1
c (0, T )

and v ∈ V D
0 it holds

−
∫ T

0
〈α(t), v〉(V D0 )′ψ̇(t)dt

= −
∫ T

0
(Aeu(t), ev)ψ(t)dt+

∫ T

0
(f(t), v)ψ(t)dt+

∫ T

0
(N(t), v)HNψ(t)dt.

This gives that there exists α̇ ∈ L2(0, T ; (V D
0 )′) such that for every v ∈ V D

0 and for a.e.
t ∈ (0, T ) we have

〈α̇(t), v〉(V D0 )′ = −(Aeu(t), ev) + (f(t), v) + (N(t), v)HN .

In particular, α ∈ C0([0, T ]; (V D
0 )′) and

‖α̇‖2
L2(0,T ;(V D0 )′) ≤ 3C2

AM
2T + 3‖f‖2L2(0,T ;H) + 3C2

tr‖N‖2L2(0,T ;HN ),

which gives (3.68).

3.3 The fractional Kelvin-Voigt’s model

In this section we prove the existence of a generalized solution to (3.9) for a tensor F which
is not necessary bounded at t = 0, as it happens in (5). Here, we assume that our data
z,N, f, u0, u1,A, and F satisfy the conditions (3.2)–(3.8). To prove the existence of a gener-
alized solution to (3.9) under these assumptions, we first regularize F by a parameter ε > 0
and we consider system (3.11) associated to this regularization. Then, we take the solution
uε given by Theorem 3.2.13 and thanks to Lemma 3.2.14 and Corollary 3.2.16 we obtain a
generalized solution to (3.9).

Let us regularize F by defining

Gε(t) := F (t+ ε) for t ∈ [0, T ] and ε ∈ (0, δ0).

Clearly Gε satisfies (3.12)–(3.15). Moreover, we have Gε → F in L1(0, T ;B) since F ∈
L1(0, T0;B). For every fixed ε ∈ (0, δ0) we can consider the generalized solution uε to system
(3.11) with G replaced by Gε of Theorem 3.2.13. By Lemma 3.2.14 and Corollary 3.2.16 we
deduce the following compactness result:
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Lemma 3.3.1. Assume (3.2)–(3.8). For every ε ∈ (0, δ0) let uε be the generalized solution
associated to system (3.11) with G replaced by Gε given by Theorem 3.2.13. Then there exists
a function u∗ ∈ Cw and a subsequence of ε, not relabeled, such that

uε
L2(0,T ;V )−−−−−−⇀
ε→0+

u∗, u̇ε
L2(0,T ;H)−−−−−−⇀
ε→0+

u̇∗, (3.69)

and for every t ∈ [0, T ]

uε(t)
V−−−−⇀

ε→0+
u∗(t), u̇ε(t)

H−−−−⇀
ε→0+

u̇∗(t). (3.70)

Moreover, u∗(0) = u0 in V0, u̇∗(0) = u1 in H, and u∗(t)− z(t) ∈ V D
t for every t ∈ [0, T ].

Proof. Thanks to Lemma 3.2.14 we deduce

‖u̇ε(t)‖+ ‖euε(t)‖ ≤M for every t ∈ [0, T ] and ε ∈ (0, δ0),

with a constant M independent of ε since ‖Gε‖L1(0,T ;B) ≤ ‖F‖L1(0,T0;B). Hence, by Banach-
Alaoglu’s theorem and Lemma 3.2.6 there exists

u∗ ∈ C0
w([0, T ];V ) ∩W 1,∞(0, T ;H)

and a not relabeled subsequence of ε such that

uε
L2(0,T ;V )−−−−−−⇀
ε→0+

u∗, u̇ε
L2(0,T ;H)−−−−−−⇀
ε→0+

u̇∗, uε(t)
V−−−−⇀

ε→0+
u∗(t) for every t ∈ [0, T ]. (3.71)

In particular, we deduce that u∗(0) = u0 in V0, u∗(t) ∈ Vt and u∗(t) − z(t) ∈ V D
t for every

t ∈ [0, T ].
It remains to show that u̇∗ ∈ C0

w([0, T ];H), u̇∗(0) = u1 in H, and that for every t ∈ [0, T ]

u̇ε(t)
H−−−−⇀

ε→0+
u̇∗(t).

To this aim we consider the auxiliary function defined at the end of the previous section.
More precisely, for every ε ∈ (0, δ0) let αε : [0, T ] → (V D

0 )′ be defined for every v ∈ V D
0 and

t ∈ [0, T ] as

〈αε(t), v〉(V D0 )′ := (u̇ε(t), v) +

∫ t

0
(Gε(t− τ)(euε(τ)− eu0), ev)dτ.

In view of Corollary 3.2.16, we have

‖αε‖H1(0,T ;(V D0 )′) ≤ M̃ for every ε ∈ (0, δ0),

with M̃ independent of ε > 0 being ‖Gε‖L1(0,T ;B) ≤ ‖F‖L1(0,T0;B). Hence, up to extract a

further subsequence, there exists α∗ ∈ H1(0, T ; (V D
0 )′) such that

αε
H1(0,T ;(V D0 )′)
−−−−−−−−−⇀

ε→0+
α∗, αε(t)

(V D0 )′

−−−−⇀
ε→0+

α∗(t) for every t ∈ [0, T ]. (3.72)

In particular, since αε(0) = u1 in (V D
0 )′ we conclude that α∗(0) = u1 in (V D

0 )′. For every
v ∈ V D

0 and for a.e. t ∈ (0, T ) we claim that

〈α∗(t), v〉(V D0 )′ = (u̇∗(t), v) +

∫ t

0
(F(t− τ)(eu∗(τ)− eu0), ev)dτ.
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Indeed, for every ϕ ∈ C∞c (0, T ;V D
0 ) we have∫ T

0
〈αε(t), ϕ(t)〉(V D0 )′dt =

∫ T

0
(u̇ε(t), ϕ(t))dt+

∫ T

0

∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eϕ(t))dτdt

−−−−→
ε→0+

∫ T

0
(u̇∗(t), ϕ(t))dt+

∫ T

0

∫ t

0
(F(t− τ)(eu∗(τ)− eu0), eϕ(t))dτdt.

Notice that this convergence is true thanks to (3.71) and

Gε(t− ·) L1(0,t;B)−−−−−−→
ε→0+

F(t− ·),

which gives ∫ T

0
(u̇ε(t), ϕ(t))dt −−−−→

ε→0+

∫ T

0
(u̇∗(t), ϕ(t))dt,∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eϕ(t))dτ −−−−→

ε→0+

∫ t

0
(F(t− τ)(eu∗(τ)− eu0), eϕ(t))dτ.

Hence by the dominated convergence theorem we have∫ T

0

∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eϕ(t))dτdt

−−−−→
ε→0+

∫ T

0

∫ t

0
(F(t− τ)(eu∗(τ)− eu0), eϕ(t))dτdt.

Therefore, for a.e. t ∈ (0, T ) we deduce for every v ∈ V D
0 that

〈u̇∗(t), v〉(V D0 )′ = (u̇∗(t), v) = 〈α∗(t), v〉(V D0 )′ −
∫ t

0
(F(t− τ)(eu∗(τ)− eu0), ev)dτ.

Notice the function on the right-hand side is well defined in (V D
0 )′ for every t ∈ [0, T ].

Therefore, we can extend u̇∗ to a function defined in the whole interval [0, T ] with values
in (V D

0 )′. In particular, we deduce u̇∗ ∈ C0
w([0, T ]; (V D

0 )′), arguing in a similar way as we
did in the previous section for α, and thanks to the fact that u̇∗(0) = α∗(0) = u1 in (V D

0 )′.
Therefore, since u̇∗ ∈ C0

w([0, T ]; (V D
0 )′) ∩ L∞(0, T ;H) we derive that u̇∗ ∈ C0

w([0, T ];H)
(thanks to Lemma 3.2.6), and that u̇∗(0) = u1 in H. Finally, we have

u̇ε(t)
(V D0 )′

−−−−⇀
ε→0+

u̇∗(t) for every t ∈ [0, T ] (3.73)

by definition of u̇∗ and by (3.71) and (3.72). The convergence (3.73) combined with

‖u̇ε(t)‖ ≤M for every t ∈ [0, T ],

give us the last convergence required.

We can now prove the main existence result of Theorem 3.1.4 for the fractional Kelvin-
Voigt’s system involving Caputo’s derivative.

Proof of Theorem 3.1.4. It is enough to show that the function u∗ given by Lemma 3.3.1 is
a generalized solution to (3.9). To this aim, it remains to prove that u∗ satisfies (3.10). For
every ϕ ∈ C1

c we know that the function uε ∈ Cw satisfy for every ε ∈ (0, δ0) the following
equality

−
∫ T

0
(u̇ε(t), ϕ̇(t))dt+

∫ T

0
(Aeuε(t), eϕ(t))dt−

∫ T

0

∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eϕ̇(t))dτdt
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=

∫ T

0
(f(t), ϕ(t))dt+

∫ T

0
(N(t), ϕ(t))HNdt.

Let us pass to the limit as ε→ 0+. Clearly, by (3.69) we have∫ T

0
(u̇ε(t), ϕ̇(t))dt −−−−→

ε→0+

∫ T

0
(u̇∗(t), ϕ̇(t))dt,∫ T

0
(Aeuε(t), eϕ(t))dt −−−−→

ε→0+

∫ T

0
(Aeu∗(t), eϕ(t))dt.

It remains to study the behaviour as ε→ 0+ of∫ T

0

∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eϕ̇(t))dτdt.

We define for every ε ∈ (0, δ0) the function

vε(t) :=

∫ t

0
(Gε(t− τ)− F(t− τ))(euε(τ)− eu0)dτ for t ∈ [0, T ].

By (3.66) for every t ∈ [0, T ] it holds

‖vε(t)‖ ≤ ‖Gε − F‖L1(0,T ;B)‖euε − eu0‖L∞(0,T ;H) ≤ 2M‖Gε − F‖L1(0,T ;B), (3.74)

with M independent of ε being ‖Gε‖L1(0,T ;B) ≤ ‖F‖L1(0,T0;B). Notice that∫ T

0

∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eϕ̇(t))dτdt

=

∫ T

0
(vε(t), eϕ̇(t))dt+

∫ T

0

∫ t

0
(F(t− τ)(euε(τ)− eu0), eϕ̇(t))dτdt,

and thanks to (3.74) and to the fact that Gε → F in L1(0, T ;B) as ε→ 0+, we get∣∣∣ ∫ T

0
(vε(t), eϕ̇(t))dt

∣∣∣ ≤ ∫ T

0
‖vε(t)‖‖eϕ̇(t)‖dt ≤ 2M‖Gε − F‖L1(0,T ;B)‖eϕ̇‖L1(0,T ;H) −−−−→

ε→0+
0.

On the other hand, since τ 7→
∫ T
τ F(t− τ)eϕ̇(t)dt belongs to L∞(0, T ;H), we can write∫ T

0

∫ t

0
(F(t− τ)(euε(τ)− eu0), eϕ̇(t))dτdt

=

∫ T

0
(euε(τ)− eu0,

∫ T

τ
F(t− τ)eϕ̇(t)dt)dτ −−−−→

ε→0+

∫ T

0
(eu∗(τ)− eu0,

∫ T

τ
F(t− τ)eϕ̇(t)dt)dτ

=

∫ T

0

∫ t

0
(F(t− τ)(eu∗(τ)− eu0), eϕ̇(t))dτdt.

As a consequence, u∗ is a generalized solution to system (3.9).

We conclude this section by showing that for the fractional Kelvin-Voigt’s model, the
generalized solution u∗ ∈ Cw to (3.9) found before satisfies an energy-dissipation inequality.
As before, for t ∈ (0, T ] we define the functions E ∗(t) and D∗(t) as

E ∗(t) :=
1

2
‖u̇∗(t)‖2 +

1

2
(Aeu∗(t), eu∗(t))dt+

1

2
(F(t)(eu∗(t)− eu0), eu∗(t)− eu0)

− 1

2

∫ t

0
(Ḟ(t− τ)(eu∗(t)− eu∗(τ)), eu∗(t)− eu∗(τ))dτ,
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D∗(t) := −1

2

∫ t

0
(Ḟ(τ)(eu∗(τ)− eu0), eu∗(τ)− eu0)dτ

+
1

2

∫ t

0

∫ τ

0
(F̈(τ − r)(eu∗(τ)− eu∗(r)), eu∗(τ)− eu∗(r))drdτ.

Notice that the integrals in E ∗ and D∗ are well-posed, eventually with values∞. Furthermore,
we define the total work W ∗

tot(t) for t ∈ [0, T ] as

W ∗
tot(t) : =

∫ t

0
[(f(τ), u̇∗(τ)− ż(τ)) + (Aeu∗(t), eż(t)) + (F(t− τ)(eu∗(τ)− eu0), eż(t))]dτ

−
∫ t

0

∫ τ

0
(F(τ − r)(eu∗(r)− eu0), ez̈(τ))drdτ

−
∫ t

0
(Ṅ(τ), u∗(τ)− z(τ))HNdτ + (N(t), u∗(t)− z(t))HN − (N(0), u0 − z(0))HN

−
∫ t

0
(u̇∗(τ), z̈(τ))dτ + (u̇∗(t), ż(t))− (u1, ż(0)). (3.75)

We point out the total work W ∗
tot is continuous in [0, T ] and that the definition given in (3.75)

is coherent with the one of (3.50) thanks to identity (3.67).

Theorem 3.3.2. Assume (3.2)–(3.8). Then the generalized solution u∗ ∈ Cw to system (3.9)
of Theorem 3.1.4 satisfies for every t ∈ (0, T ] the following energy-dissipation inequality

E ∗(t) + D∗(t) ≤ 1

2
‖u1‖2 +

1

2
(Aeu0, eu0) + W ∗

tot(t). (3.76)

In particular, E ∗(t) and D∗(t) are finite for every t ∈ (0, T ].

Proof. Let us fix t ∈ (0, T ]. For every ε ∈ (0, δ0) let uε ∈ Cw be the generalized solution to
system (3.11) with G replaced by Gε given by Lemma 3.3.1. Thanks to Proposition 3.2.10
we know that the function uε satisfies the energy-dissipation inequality (3.49) and we can
rewrite the total work (3.50) as in (3.75) since z ∈ W 2,1(0, T ;V0) (as suggested by formula
(3.67)). The convergences (3.70) of Lemma 3.3.1, and the lower semicontinuous property of
the maps v 7→ ‖v‖2, w 7→ (Aw,w) (by (3.1)), and w 7→ (F(t)w,w) (by (3.6)), imply

‖u̇∗(t)‖2 ≤ lim inf
ε→0+

‖u̇ε(t)‖2, (3.77)

(Aeu∗(t), eu∗(t)) ≤ lim inf
ε→0+

(Aeuε(t), euε(t)), (3.78)

(F(t)(eu∗(t)− eu0), eu∗(t)− eu0) ≤ lim inf
ε→0+

(F(t)(euε(t)− eu0), euε(t)− eu0). (3.79)

Moreover, by (3.5) we have

|((F(t)−Gε(t))(euε(t)− eu0), euε(t)− eu0)| ≤ ‖F(t)−Gε(t)‖B‖euε(t)− eu0‖2

≤ 4M2‖F(t)− F(t+ ε)‖B −−−−→
ε→0+

0,

being M independent of ε. Hence (3.79) reads as

(F(t)(eu∗(t)− eu0), eu∗(t)− eu0) ≤ lim inf
ε→0+

(Gε(t)(euε(t)− eu0), euε(t)− eu0). (3.80)

Similarly, by (3.5), (3.7), and (3.70), for every τ ∈ (0, t) we have

(−Ḟ(t− τ)(eu∗(t)− eu∗(τ)), eu∗(t)− eu∗(τ))
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≤ lim inf
ε→0+

(−Ġε(t− τ)(euε(t)− euε(τ)), euε(t)− euε(τ)).

In particular, we can use Fatou’s lemma to obtain∫ t

0
(−Ḟ(t− τ)(eu∗(t)− eu∗(τ)), eu∗(t)− eu∗(τ))dτ

≤ lim inf
ε→0+

∫ t

0
(−Ḟ(t− τ)(euε(t)− euε(τ)), euε(t)− euε(τ))dτ.

By arguing in a similar way, we can derive∫ t

0
(−Ḟ(τ)(eu∗(τ)−eu0), eu∗(τ)−eu0)dτ ≤ lim inf

ε→0+

∫ t

0
(−Ġε(τ)(euε(τ)−eu0), euε(τ)−eu0)dτ.

For the term involving F̈, we argue as we already did for Ḟ and by using two times Fatou’s
lemma we get∫ t

0

∫ τ

0
(F̈(τ − r)(eu∗(τ)− eu∗(r)), eu∗(τ)− eu∗(r))drdτ

≤ lim inf
ε→0+

∫ t

0

∫ τ

0
(G̈ε(τ − r)(euε(τ)− euε(r)), euε(τ)− euε(r))drdτ.

It remains to study the right-hand side of (3.49) with the formulation of the total work
as in (3.75). Thanks to Lemma 3.3.1 and the fact that Gε → F in L1(0, T ;B) we deduce∫ t

0
(f(τ), u̇ε(τ))dτ −−−−→

ε→0+

∫ t

0
(f(τ), u̇∗(τ))dτ, (3.81)∫ t

0
(Aeuε(τ), eż(τ))dτ −−−−→

ε→0+

∫ t

0
(Aeu∗(τ), eż(τ))dτ, (3.82)∫ t

0
(Gε(t− τ)(euε(τ)− eu0), eż(τ))dτ −−−−→

ε→0+

∫ t

0
(F(t− τ)(eu∗(τ)− eu0), eż(τ))dτ, (3.83)

(u̇ε(t), ż(t))−
∫ t

0
(u̇ε(τ), z̈(τ))dτ −−−−→

ε→0+
(u̇∗(t), ż(t))−

∫ t

0
(u̇∗(τ), z̈(τ))dτ, (3.84)

(N(t), uε(t))HN −
∫ t

0
(N(τ), u̇ε(τ))HNdτ −−−−→

ε→0+
(N(t), u∗(t))HN −

∫ t

0
(Ṅ(τ), u∗(τ))HNdτ.

(3.85)

It remains to study the term∫ t

0

∫ τ

0
(Gε(τ − r)(euε(r)− eu0), ez̈(τ))drdτ.

For a.e. τ ∈ (0, t) we have∫ τ

0
(Gε(τ − r)(euε(r)− eu0), ez̈(τ))dr −−−−→

ε→0+

∫ τ

0
(F(τ − r)(eu∗(r)− eu0), ez̈(τ))dr∣∣∣ ∫ τ

0
(Gε(τ − r)(euε(r)− eu0), ez̈(τ))dr

∣∣∣ ≤ 2M‖F‖L1(0,T0;B)‖ez̈(τ)‖ ∈ L1(0, t),

with M independent of ε. By the dominated convergence theorem we conclude∫ t

0

∫ τ

0
(Gε(τ−r)(euε(r)−eu0), ez̈(τ))drdτ −−−−→

ε→0+

∫ t

0

∫ τ

0
(F(τ−r)(eu∗(r)−eu0), ez̈(τ))drdτ.

(3.86)
By combining (3.77)–(3.86) we deduce the energy-dissipation inequality (3.76) for every t ∈
(0, T ].
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Remark 3.3.3. Although we do not have any information about L1-integrability of Ḟ and
F̈ in t = 0, for the generalized solution u∗ of Theorem 3.1.4 we obtain that the energy terms
E ∗ and D∗ are finite.

Corollary 3.3.4. Assume (3.2)–(3.8). Then the generalized solution u∗ ∈ Cw to system (3.9)
of Theorem 3.1.4 satisfies

lim
t→0+

E ∗(t) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0). (3.87)

In particular, (3.76) holds true also in t = 0 and

lim
t→0+

‖u∗(t)− u0‖V = 0, lim
t→0+

‖u̇∗(t)− u1‖ = 0.

Proof. By (3.76) for every t ∈ (0, T ] we have

1

2
‖u̇∗(t)‖2 +

1

2
(Aeu0, eu0) ≤ E ∗(t) ≤ 1

2
‖u1‖2 +

1

2
(Aeu0, eu0) + W ∗

tot(t).

Since u∗ ∈ C0
w([0, T ];V ) and u̇∗ ∈ C0

w([0, T ];H) we get

1

2
‖u1‖2 +

1

2
(Aeu0, eu0) ≤ lim inf

t→0+
E ∗(t) ≤ lim sup

t→0+
E ∗(t) ≤ 1

2
‖u1‖2 +

1

2
(Aeu0, eu0).

Therefore, we get (3.87). As consequence of this, we derive

lim
t→0+

‖u̇∗(t)‖2 = ‖u1‖2, lim
t→0+

(Aeu∗(t), eu∗(t)) = (Aeu0, eu0),

and this conclude the proof.

For the fractional Kelvin-Voigt’s model (3.9) we expect to have uniqueness of the solution,
as it happens in [13, 48] for the classic Kelvin-Voigt’s one. Unfortunately, the technique used
in the cited papers cannot be applied here, and we are able to prove it only when the crack
is not moving (see Section 3.4). We point out that the uniqueness of the solution is still an
open problem even for the pure elastic case (B = 0), unless the family of cracks is sufficiently
regular (see [6, 16]).

Moreover, according the theory of dynamic fracture, we do not expect to have the equality
in (3.76). Indeed, we should add also the energy used to the increasing crack, which is
postulated to be proportional to the area increment of the crack itself, in line with Griffith’s
criterion [27]. More precisely, we would like to have

E ∗(t) + D∗(t) +Hd−1(Γt \ Γ0) =
1

2
‖u1‖2 +

1

2
(Aeu0, eu0) + W ∗

tot(t) for t ∈ [0, T ]. (3.88)

However, with our approach we are not able to show the previous identity, which again is
unknown even in the pure elastic case. We underline that there are no results regarding the
validity of (3.88) for the fractional Kelvin-Voigt’s model (3.9) even when the crack is not
moving.

3.4 Uniqueness for a not moving crack

Let us consider the case of a domain with a fixed crack, i.e. ΓT = Γ0 (possibly ΓT = ∅). In
this case we can show that the generalized solution to (3.9) is unique. As we explained in the
introduction, uniqueness results for fractional type systems can be found in the literature,
but they are proved only for regular sets Ω (without cracks) and in particular cases (for F
given by (5) or when eu is replaced by ∇u).



Chapter 3. The fractional Kelvin-Voigt’s model on time-dependent cracked domains 95

The proof of the uniqueness is based on a particular energy estimate which holds for the
primitive of a generalized solution. To this aim, we need to estimate∫ t

0

∫ τ

0
(F(τ − r)eu(r), eu(τ))drdτ

and we start with the following identity which is true for a regular tensor K (see also [51,
Lemma 2.1]).

Lemma 3.4.1. Let K ∈ C1([0, T ];B) and v ∈ L2(0, T ;V0). Then, for every t ∈ [0, T ]∫ t

0
(

d

dτ

∫ τ

0
K(τ − r)ev(r)dr, ev(τ))dτ

=
1

2

∫ t

0
(K(t− τ)ev(τ), ev(τ))dτ +

1

2

∫ t

0
(K(τ)ev(τ), ev(τ))dτ

− 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ. (3.89)

Proof. Let us fix t ∈ [0, T ] and let us analyze the right hand-side of (3.89). We have

− 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ

=

∫ t

0

∫ τ

0
(K̇(τ − r)ev(r), ev(τ))drdτ − 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)ev(r), ev(r))drdτ

− 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)ev(τ), ev(τ))drdτ. (3.90)

Notice that

− 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)ev(τ), ev(τ))drdτ (3.91)

= −1

2

∫ t

0
(

(∫ τ

0
K̇(τ − r)dr

)
ev(τ), ev(τ))drdτ

= −1

2

∫ t

0
(K(τ)ev(τ), ev(τ))dτ +

1

2

∫ t

0
(K(0)ev(τ), ev(τ))dτ, (3.92)

and that for a.e. τ ∈ (0, t)

d

dτ

∫ τ

0
(K(τ − r)ev(r), ev(r))dr = (K(0)ev(τ), ev(τ)) +

∫ τ

0
(K̇(τ − r)ev(r), ev(r))dr,

from which we deduce

− 1

2

∫ t

0
(K(t− τ)ev(τ), ev(τ))dτ (3.93)

= −1

2

∫ t

0

d

dτ

∫ τ

0
(K(τ − r)ev(r), ev(r))drdτ

= −1

2

∫ t

0
(K(0)ev(τ), ev(τ))dτ − 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)ev(r), ev(r))drdτ. (3.94)

By (3.90)–(3.93) we can say

− 1

2

∫ t

0

∫ τ

0
(K̇(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ
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=

∫ t

0

∫ τ

0
(K̇(τ − r)ev(r), ev(τ))drdτ +

∫ t

0
(K(0)ev(τ), ev(τ))dτ

− 1

2

∫ t

0
(K(τ)ev(τ), ev(τ))dτ − 1

2

∫ t

0
(K(t− τ)ev(τ), ev(τ))dτ,

and thanks to the following relation

d

dτ

∫ τ

0
K(τ − r)ev(r)dr = K(0)ev(τ) +

∫ τ

0
K̇(τ − r)ev(r)dr for a.e. τ ∈ (0, t),

we can conclude the proof.

Lemma 3.4.2. Let F be satisfying (3.5)–(3.8) and u ∈ C0
w([0, T ];V0). Then for every t ∈

[0, T ] it holds ∫ t

0

∫ τ

0
(F(τ − r)eu(r), eu(τ))drdτ ≥ 0. (3.95)

Proof. First, we fix ε ∈ (0, δ0) and we consider for every t ∈ [0, T ] the following regularized
kernel

Gε(t) := F(t+ ε).

Moreover, we fix t ∈ [0, T ] and we define for every τ ∈ [0, t] a primitive of u in the following
way

v(τ) := −
∫ t

r
u(r)dr.

Clearly Gε ∈ C2([0, T ];B) and after an integration by parts, since ev(t) = 0, we obtain∫ t

0

∫ τ

0
(Gε(τ − r)eu(r), eu(τ))drdτ

=

∫ t

0

∫ τ

0
(Gε(τ − r)eu(r), ev̇(τ))drdτ

= −
∫ t

0
(Gε(0)ev̇(τ), ev(τ))dτ −

∫ t

0

∫ τ

0
(Ġε(τ − r)eu(r), ev(τ))drdτ

=
1

2
(Gε(0)ev(0), ev(0))−

∫ t

0

∫ τ

0
(Ġε(τ − r)eu(r), ev(τ))drdτ.

Moreover, we have∫ τ

0
Ġε(τ − r)eu(r)dr =

d

dτ

∫ τ

0
Ġε(τ − r)ev(r)dr − Ġε(τ)ev(0).

Therefore, by (3.89) we can write∫ t

0

∫ τ

0
(Ġε(τ − r)eu(r), ev(τ))drdτ

=

∫ t

0
(

d

dτ

∫ τ

0
Ġε(τ − r)ev(r)dr − Ġε(τ)ev(0), ev(τ))dτ

=
1

2

∫ t

0
(Ġε(t− τ)ev(τ), ev(τ))dτ +

1

2

∫ t

0
(Ġε(τ)ev(τ), ev(τ))dτ

− 1

2

∫ t

0

∫ τ

0
G̈ε(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ

−
∫ t

0
(Ġε(τ)ev(0), ev(τ))dτ,
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which implies∫ t

0

∫ τ

0
(Gε(τ − r)eu(r), eu(τ))drdτ

=
1

2
(Gε(0)ev(0), ev(0)) +

∫ t

0
(Ġε(τ)ev(0), ev(τ))dτ

− 1

2

∫ t

0
(Ġε(t− τ)ev(τ), ev(τ))dτ − 1

2

∫ t

0
(Ġε(τ)ev(τ), ev(τ))dτ

+
1

2

∫ t

0

∫ τ

0
(G̈ε(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ

≥ 1

2
(Gε(0)ev(0), ev(0)) +

1

2

∫ t

0
(Ġε(τ)ev(0), ev(0))dτ

− 1

2

∫ t

0
(Ġε(t− τ)ev(τ), ev(τ))dτ

+
1

2

∫ t

0

∫ τ

0
(G̈ε(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ

=
1

2
(Gε(t)ev(0), ev(0))− 1

2

∫ t

0
(Ġε(t− τ)ev(τ), ev(τ))dτ

+
1

2

∫ t

0

∫ τ

0
G̈ε(τ − r)(ev(τ)− ev(r)), ev(τ)− ev(r))drdτ ≥ 0.

By sending ε→ 0+ we conclude.

We can now state our uniqueness result.

Theorem 3.4.3. Assume (3.2)–(3.8) and ΓT = Γ0. Then there exists at most one generalized
solution to system (3.9).

Proof. Let u1, u2 ∈ Cw be two generalized solutions to (3.9). Then u := u1 − u2 satisfies
equality (3.10) with z = N = f = u0 = u1 = 0. Consider the function β : [0, T ] → (V D

0 )′

defined for every τ ∈ [0, T ] as

〈β(τ), v〉(V D0 )′ := (u̇(τ), v) +

∫ τ

0
(Ceu(r), ev)dr +

∫ τ

0
(F(τ − r)eu(r), ev)dr

for every v ∈ V D
0 . Clearly β ∈ C0

w([0, T ]; (V D
0 )′), β(0) = 0 since u̇(0) = 0 in (V D

0 )′, and by
(3.10) we derive∫ T

0
〈β(τ), v〉(V D0 )′ψ̇(τ)dτ = 0 for every v ∈ V D

0 and ψ ∈ C1
c (0, T ).

Therefore β is constant in [0, T ], which gives β(τ) = 0 in (V D
0 )′ for every τ ∈ [0, T ], namely

for every v ∈ V D
0 and τ ∈ [0, T ] we have

(u̇(τ), v) +

∫ τ

0
(Ceu(r), ev)dr +

∫ τ

0
(F(τ − r)eu(r), ev)dr = 0.

In particular, for every t ∈ [0, T ] we deduce∫ t

0
(u̇(τ), u(τ))dτ +

∫ t

0

∫ τ

0
(Ceu(r), eu(τ))drdτ +

∫ t

0

∫ τ

0
(F(τ − r)eu(r), eu(τ))drdτ = 0.

Hence, by (3.95) we conclude

1

2
‖u(t)‖2 +

1

2
(A
(∫ t

0
eu(τ)dτ

)
,

∫ t

0
eu(τ)dτ) ≤ 0 for every t ∈ [0, T ].

Therefore, since both terms are non-negative, we get that u(t) = 0 for every t ∈ [0, T ].





Chapter 4

Quasistatic limit of a dynamic
viscoelastic model with memory

The chapter is organized as follows. In Section 4.1 we fix the notation adopted throughout
the chapter and we prove some properties of the solutions to (21) such as the energy balance
(4.24) of Proposition 4.1.7. In Section 4.2 we state our main results (Theorems 4.2.6 and
4.2.7). In Section 4.3, under the assumption of the compatibility condition (4.38), we prove
the uniform convergence of Theorem 4.2.6 of the solutions of dynamic evolution problem (21)
to the solution of stationary problem (22) by means of energy estimate (4.44) of Lemma 4.2.8,
derived by energy balance (4.24). In Section 4.4 we recall the main properties of the Laplace
Transform and of the Inverse Laplace Transform for functions with values in Hilbert spaces.
In particular, in Subsection 4.4.1 we develop the Laplace Transform tools, consequently in
Subsection 4.4.2 we study the equation satisfied by the Laplace Transforms of the solutions to
(21) and (22) (see (4.80) and (4.81)), and finally in Subsection 4.4.3 we prove the convergence
in L2 of the solutions of (4.80) to the solution of (4.81). Thanks to the theory developed in
Section 4.4 and to energy inequality (4.44) of Lemma 4.2.8, under general assumptions, we
prove in Section 4.5 and 4.6 the convergence in L2 and the local uniform convergence of the
solution of dynamic evolution problem (21) to the solution of stationary problem (22).

The results presented here are obtained in collaboration with Prof. G. Dal Maso and are
contained in [18].

4.1 Hypotheses and statement of the problem

Let d be a positive integer and let Ω ⊂ Rd be a bounded open set with Lipschitz boundary.
We use standard notation for Lebesgue and Sobolev spaces. For convenience we set for every
m ∈ N the space H := L2(Ω;Rm) and we always identify the dual of H with H itself.
Moreover, we define

V := H1(Ω;Rd), V0 := H1
0 (Ω;Rd), V ′0 := H−1(Ω;Rd).

The symbols (·, ·) and ‖·‖ denote the scalar product and the norm in H. The duality product
between V ′0 and V0 is denoted by 〈·, ·〉. Given u ∈ V we denote with eu its strain, which is
defined as the symmetric part of the gradient.

Under these assumptions, the Second Korn Inequality (see, e.g., [39, Theorem 2.4]) states
that there exists a positive constant CK = CK(Ω) such that

‖∇u‖ ≤ CK
(
‖u‖2 + ‖eu‖2

)1/2
for every u ∈ V. (4.1)

Moreover, there exists a positive constant CP = CP (Ω) such that the following Korn-Poincaré
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Inequality holds (see, e.g., [39, Theorem 2.7]):

‖u‖ ≤ CP ‖eu‖ for every u ∈ V0. (4.2)

Thanks to (4.1) we can use on the space V the equivalent norm

‖u‖V := (‖u‖2 + ‖eu‖2)1/2 for every u ∈ V.

Let L (Rd×dsym;Rd×dsym) be the space of all linear operators from Rd×dsym into itself. We assume
that the elasticity and viscosity tensors A and B satisfy the following assumptions:

A,B ∈ L∞(Ω; L (Rd×dsym;Rd×dsym)), (4.3)

and for a.e. x ∈ Ω

A(x)ξ1 · ξ2 = ξ1 · A(x)ξ2, B(x)ξ1 · ξ2 = ξ1 · B(x)ξ2 for every ξ1, ξ2 ∈ Rd×dsym, (4.4)

cA|ξ|2 ≤ A(x)ξ · ξ ≤ CA|ξ|2, cB|ξ|2 ≤ B(x)ξ · ξ ≤ CB|ξ|2 for every ξ ∈ Rd×dsym, (4.5)

where cA, cB, CA, and CB are positive constants independent of x, and the dot denotes the
Euclidean scalar product of matrices.

Let us fix T > 0 and β > 0. To give a precise meaning to the notion of solution to problem
(12)–(21) we introduce the function spaces

V := L2(0, T ;V ) ∩ H1(0, T ;H) ∩H2(0, T ;V ′0)

V0 := L2(0, T ;V0) ∩H1(0, T ;H) ∩H2(0, T ;V ′0),

Vloc := L2
loc(−∞, T ;V ) ∩H1

loc(−∞, T ;H) ∩H2
loc(−∞, T ;V ′0).

Remark 4.1.1. By the Sobolev Embedding Theorem, if u ∈ V (resp. u ∈ Vloc), then

u ∈ C0([0, T ];H) ∩ C1([0, T ];V ′0) (resp. u ∈ C0((−∞, T );H) ∩ C1((−∞, T );V ′0)).

We study problem (12)–(21) with `, z, and uin depending on ε. Let us consider ε > 0 and

fε ∈ L2(0, T ;H), gε ∈ H1(0, T ;V ′0), zε ∈ H2(0, T ;H) ∩H1(0, T ;V ), (4.6)

uε,in ∈ C0((−∞, T );H) ∩ C1((−∞, T );V ′0) such that

uε,in(0) ∈ V, uε,in(0)− zε(0) ∈ V0, u̇ε,in(0) ∈ H,∫ 0

−∞

1

βε
e
τ
βε ‖uε,in(τ)‖V dτ < +∞.

(4.7)

The notion of solution to (12)–(21) is made precise by the following definition.

Definition 4.1.2. We say that uε is a solution to the viscoelastic dynamic system (12)–(21),
with forcing term ` = fε + gε, boundary condition zε, and initial condition uε,in, if

uε ∈ Vloc and uε − zε ∈ V0, (4.8a)

ε2üε(t)− div((A + B)euε(t)) +

∫ t

−∞

1

βε
e
− t−τ

βε div(Beuε(τ))dτ = fε(t) + gε(t)

for a.e. t ∈ [0, T ], (4.8b)

uε(t) = uε,in(t) for every t ∈ (−∞, 0]. (4.8c)
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In the next remark we shall see that (4.8) can be reduced to the following problem starting
from 0:

uε ∈ V and uε − zε ∈ V0, (4.9a)

ε2üε(t)− div((A + B)euε(t)) +

∫ t

0

1

βε
e
− t−τ

βε div(Beuε(τ))dτ = ϕε(t) + γε(t)

for a.e. t ∈ [0, T ], (4.9b)

uε(0) = u0
ε in H and u̇ε(0) = u1

ε in V ′0 , (4.9c)

with ϕε ∈ L2(0, T ;H), γε ∈ H1(0, T ;V ′0), u0
ε ∈ V , u0

ε − zε(0) ∈ V0, u1
ε ∈ H.

Remark 4.1.3. It is easy to see that uε is a solution according to Definition 4.1.2 if and
only if its restriction to [0, T ], still denoted by uε, solves (4.9) with

ϕε = fε, γε = gε − pε, u0
ε = uε,in(0), u1

ε = u̇ε,in(0), (4.10)

where

pε(t) := e
− t
βε g0

ε with g0
ε :=

∫ 0

−∞

1

βε
e
τ
βε div(Beuε,in(τ))dτ. (4.11)

To solve problem (4.9) it is enough to study the corresponding problem with homogeneous
boundary condition:

vε ∈ V0, (4.12a)

ε2v̈ε(t)− div((A + B)evε(t)) +

∫ t

0

1

βε
e
− t−τ

βε div(Bevε(τ))dτ = hε(t) + `ε(t)

for a.e. t ∈ [0, T ], (4.12b)

vε(0) = v0
ε in H and v̇ε(0) = v1

ε in V ′0 , (4.12c)

with
hε ∈ L2(0, T ;H), `ε ∈ H1(0, T ;V ′0), v0

ε ∈ V0, v1
ε ∈ H. (4.13)

Remark 4.1.4. The function uε is a solution to (4.9) if and only if vε = uε− zε solves (4.12)
with

hε(t) = ϕε(t)− ε2z̈ε(t), `ε(t) = γε(t) + div((A + B)ezε(t))−
∫ t

0

1

βε
e
− t−τ

βε div(Bezε(τ))dτ,

v0
ε = u0

ε − zε(0), v1
ε = u1

ε − żε(0), (4.14)

Therefore, existence and uniqueness for (4.12) imply existence and uniqueness for (4.9).

Remark 4.1.5. In [11] problem (4.12) has been studied with initial conditions taken in the
sense of interpolation spaces. Given two Hilbert spaces X and Y , the symbol [X,Y ]θ denotes
the interpolation space between X and Y of exponent θ ∈ (0, 1). Thanks to [34, Theorem
3.1] we have the following inclusions:

L2(0, T ;V0) ∩H1(0, T ;H) ⊂ C0([0, T ];V
1
2

0 ),

L2(0, T ;H) ∩H1(0, T ;V ′0) ⊂ C0([0, T ];V
− 1

2
0 ),

where V
1
2

0 := [V0, H] 1
2

and V
− 1

2
0 := [H,V ′0 ] 1

2
. Consequently

V0 ⊂ C0([0, T ];V
1
2

0 ) ∩ C1([0, T ];V
− 1

2
0 ).

Therefore, the initial conditions in (4.12) are satisfied also in the stronger sense

vε(0) = v0
ε in V

1
2

0 and v̇ε(0) = v1
ε in V

− 1
2

0 . (4.15)
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The following proposition provides the main properties of the solutions. We recall that,
if X is a Banach space, C0

w([0, T ];X) denotes the space of all weakly continuous functions
from [0, T ] to X, namely, the vector space of all functions u : [0, T ]→ X such that for every
x′ ∈ X ′ the function t 7→ 〈x′, u(t)〉 is continuous from [0, T ] to R.

Proposition 4.1.6. Given ε > 0, assume (4.6) and (4.7). Then there exists a unique solution
uε to the viscoelastic dynamic system (4.8). Moreover, it satisfies

uε ∈ C0([0, T ];V ) ∩ C1([0, T ];H). (4.16)

Proof. By Remarks 4.1.3 and 4.1.4 it is enough to prove the theorem for (4.12). Existence
and uniqueness are proved in [11], taking into account Remark 4.1.5 about the equivalence
between the initial conditions in the sense of (4.12) and (4.15).

After an integration by parts with respect to time, it easy to see that the weak formulation
(4.12) is equivalent to the following one:

−ε2

∫ T

0
(v̇ε(t),ϕ̇(t))dt+

∫ T

0
((A + B)evε(t), eϕ(t))dt−

∫ T

0

∫ t

0

1

βε
e
− t−τ

βε (Bevε(τ), eϕ(t))dτdt

=

∫ T

0
(hε(t), ϕ(t))dt+

∫ T

0
〈`ε(t), ϕ(t)〉dt for every ϕ ∈ C∞c (0, T ;V ). (4.17)

In [44], in a more general context, it has been proved that if vε satisfies (4.17) and the initial
conditions in the sense of (4.12), then it satisfies also

vε ∈ C0
w([0, T ];V ) and v̇ε ∈ C0

w([0, T ];H), (4.18)

lim
t→0+

‖vε(t)− v0
ε‖V = 0 and lim

t→0+
‖v̇ε(t)− v1

ε‖ = 0.

We fix s ∈ [0, T ). We want to prove

lim
t→s+

‖vε(t)− vε(s)‖V = 0 and lim
t→s+

‖v̇ε(t)− v̇ε(s)‖ = 0. (4.19)

Thanks to the theory developed in [11] there exists a unique ṽε ∈ L2(s, T ;V0)∩H1(s, T ;H)∩
H2(s, T ;V ′0) such that

ε2 ¨̃vε(t)− div((A + B)eṽε(t)) +

∫ t

s

1

βε
e
− t−τ

βε div(Beṽε(τ))dτ

= hε(t) + `ε(t)−
∫ s

0

1

βε
e
− t−τ

βε div(Bevε(τ))dτ for a.e. t ∈ [s, T ], (4.20)

lim
t→s+

‖ṽε(t)− vε(s)‖ = 0 and lim
t→s+

‖ ˙̃vε(t)− v̇ε(s)‖V ′0 = 0. (4.21)

By the results in [44] the function ṽε satisfies also

lim
t→s+

‖ṽε(t)− vε(s)‖V = 0 and lim
t→s+

‖ ˙̃vε(t)− v̇ε(s)‖ = 0. (4.22)

Since clearly vε satisfies (4.20) and (4.21), by uniqueness we have ṽε(t) = vε(t) for every
t ∈ [s, T ]. In particular, from (4.22) we deduce that (4.19) holds.

To complete the proof we need the following proposition about the energy-dissipation
balance, where Wε(t) represents the work done in the interval [0, t].
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Proposition 4.1.7. Given ε > 0, we assume (4.13). Let vε be the solution to (4.12) and let
wε : [0, T ]→ H be defined by

wε(t) := e
− t
βε

∫ t

0

1

βε
e
τ
βε evε(τ)dτ for every t ∈ [0, T ]. (4.23)

Then wε ∈ H1(0, T ;H) and the following energy-dissipation balance holds for every t ∈ [0, T ]:

ε2

2
‖v̇ε(t)‖2 +

1

2
(Aevε(t), evε(t)) +

1

2
(B(evε(t)− wε(t)), evε(t)− wε(t))

+ βε

∫ t

0
(Bẇε(τ), ẇε(τ))dτ =

ε2

2
‖v1
ε‖2 +

1

2
((A + B)ev0

ε , ev
0
ε) + Wε(t), (4.24)

where

Wε(t) : =

∫ t

0
(hε(τ), v̇ε(τ))dτ −

∫ t

0
〈 ˙̀ε(τ), vε(τ)〉dτ + 〈`ε(t), vε(t)〉 − 〈`ε(0), v0

ε〉.

Proof. It is convenient to extend the data of our problem to the interval [0, 2T ] by setting

hε(t) := 0 and `ε(t) := `ε(T ) for every t ∈ (T, 2T ].

It is clear that hε ∈ L2(0, 2T ;H) and `ε ∈ H1(0, 2T ;V ′0). By uniqueness of the solution to
(4.12), the solution on [0, 2T ] is an extension of vε, still denoted by vε. We also consider the
extension of wε on [0, 2T ] defined by (4.23).

Since evε ∈ L2(0, 2T ;H), it follows from (4.23) that wε ∈ H1(0, 2T ;H), and

βεẇε(t) = evε(t)− wε(t) for a.e. t ∈ [0, 2T ]. (4.25)

Thanks to (4.19) in [0, 2T ] and (4.25) there exists a representative of ẇε such that

lim
t→s+

‖ẇε(t)− ẇε(s)‖ = 0 for every s ∈ [0, 2T ). (4.26)

Moreover, since vε satisfies (4.12) in [0, 2T ], we have

ε2v̈ε(t)− div(Aevε(t))− div(B(evε(t)− wε(t))) = hε(t) + `ε(t) for a.e. t ∈ [0, 2T ]. (4.27)

Multiplying (4.25) and (4.27) by ψ ∈ H and ϕ ∈ V0, respectively, and then integrating over
Ω and adding the results, we get

ε2〈v̈ε(t), ϕ〉+ (Aevε(t), eϕ) + (B(evε(t)− wε(t)), eϕ− ψ)

+ βε(Bẇε(t), ψ) = (hε(t), ϕ) + 〈`ε(t), ϕ〉 for a.e. t ∈ [0, 2T ]. (4.28)

Given a function r from [0, 2T ] into a Banach space X, for every η > 0 we define the
sum and the difference functions σηr, δηr : [0, 2T − η] → X by σηr(t) := r(t + η) + r(t)
and δηr(t) := r(t + η) − r(t). For a.e. t ∈ [0, 2T − η] we have σηvε(t), δ

ηvε(t) ∈ V0 and
σηwε(t), δ

ηwε(t) ∈ H. For a.e. t ∈ [0, 2T − η] we use (4.28) first at time t and then at
time t + η, with ϕ := δηvε(t) and ψ := δηwε(t). By summing the two expressions and then
integrating in time on the interval [0, t] we get∫ t

0
[ε2Kη(τ) +Aη(τ) +Bη(τ) + εDη(τ)]dτ =

∫ t

0
Wη(τ)dτ, (4.29)

where for a.e. τ ∈ [0, 2T − η]

Kη(τ) := 〈σηv̈ε(τ), δηvε(τ)〉,



104 4.1. Hypotheses and statement of the problem

Aη(τ) := (Aσηevε(τ), δηevε(τ)),

Bη(τ) := (B(σηevε(τ)− σηwε(τ)), δηevε(τ)− δηwε(τ)),

Dη(τ) := β(Bσηẇε(τ), δηwε(τ)),

Wη(τ) := (σηhε(τ), δηvε(τ)) + 〈ση`ε(τ), δηvε(τ)〉.

An integration by parts in time gives∫ t

0
Kη(τ)dτ = (σηv̇ε(t), δ

ηvε(t))− (σηv̇ε(0), δηvε(0))−
∫ t

0
(σηv̇ε(τ), δηv̇ε(τ))dτ

=

∫ t+η

t
(σηv̇ε(t), v̇ε(τ))dτ −

∫ η

0
(σηv̇ε(0), v̇ε(τ))dτ −

∫ t

0
‖v̇ε(τ + h)‖2dτ +

∫ t

0
‖v̇ε(τ)‖2dτ

=

∫ t+η

t

[
(σηv̇ε(t), v̇ε(τ))− ‖v̇ε(τ)‖2

]
dτ −

∫ η

0

[
(σηv̇ε(0), v̇ε(τ))− ‖v̇ε(τ)‖2

]
dτ. (4.30)

Moreover∫ t

0
Aη(τ)dτ =

∫ t+η

t
(Aevε(τ), evε(τ))dτ −

∫ η

0
(Aevε(τ), evε(τ))dτ, (4.31)∫ t

0
Bη(τ)dτ =

∫ t+η

t
(B(evε(τ)− wε(τ)), evε(τ)− wε(τ))dτ

−
∫ η

0
(B(evε(τ)− wε(τ)), evε(τ)− wε(τ))dτ, (4.32)∫ t

0
Dη(τ)dτ = β

∫ t

0

∫ τ+η

τ
(Bσηẇε(τ), ẇε(s))dsdτ, (4.33)∫ t

0
Wη(τ)dτ =

∫ t

0

∫ τ+η

τ
(σηhε(τ), v̇ε(s))dsdτ −

∫ t

η

∫ τ+η

τ−η
〈 ˙̀ε(s), vε(τ)〉dsdτ

+

∫ t

t−η
〈ση`ε(τ), vε(τ + η)〉dτ −

∫ η

0
〈ση`ε(τ), vε(τ)〉dτ. (4.34)

We now divide by η all terms of (4.30)–(4.34). Observing that

σηhε
L2(0,T ;H)−−−−−−→
η→0+

2hε,∫ t

0

∥∥∥−∫ τ+η

τ
v̇ε(s)ds− v̇ε(τ)

∥∥∥2
dτ −−−−→

η→0+
0,∫ t

η

∥∥∥−∫ τ+η

τ−η
˙̀
ε(s)ds− ˙̀

ε(τ)
∥∥∥2

V ′0
dτ −−−−→

η→0+
0,

thanks to (4.19) in [0, 2T ) and (4.26), we can pass to the limit as η → 0+, and from (4.29)
we obtain that (4.24) is satisfied for every t ∈ [0, T ].

Proof of Proposition 4.1.6 (Continuation). Now we want to prove (4.16). By using (4.24),
for every t ∈ [0, T ] we can write

ε2

2
‖v̇ε(t)‖2 +

1

2
((A + B)evε(t), evε(t)) =

ε2

2
‖v1
ε‖2 +

1

2
((A + B)ev0

ε , ev
0
ε) + Wε(t)

− 1

2
(Bwε(t), wε(t)) + (Bevε(t), wε(t))− βε

∫ t

0
(Bẇε(τ), ẇε(τ))dτ. (4.35)

Let Ψε : [0, T ]→ [0,+∞) be defined by

Ψε(t) :=
ε2

2
‖v̇ε(t)‖2 +

1

2
((A + B)evε(t), evε(t));
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since wε ∈ C0([0, T ];H), thanks to (4.18) and (4.35) we have Ψε ∈ C0([0, T ]).

Now we fix t ∈ [0, T ]. Given a sequence {tk}k ⊂ [0, T ] such that tk → t as k → +∞, we
define

Ek :=
ε2

2
‖v̇ε(tk)− v̇ε(t)‖2 +

1

2
((A + B)(evε(tk)− evε(t)), evε(tk)− evε(t)).

By elementary computations we have

Ek = Ψε(tk) + Ψε(t)− ε2(v̇ε(tk), v̇ε(t))− ((A + B)evε(tk), evε(t)),

therefore, by (4.2) and (4.5) there exists a positive constant C = C(A,B,Ω) such that

ε2‖v̇ε(tk)− v̇ε(t)‖2 + ‖vε(tk)− vε(t)‖2V
≤ C

(
Ψε(tk) + Ψε(t)− ε2(v̇ε(tk), v̇ε(t))− ((A + B)evε(tk), evε(t))

)
.

The right-hand side of the previous inequality tends to 0 as k → +∞ because of (4.18) and
the continuity of Ψε. Since zε ∈ C0([0, T ];V ), by (4.6), and uε = vε+zε, we obtain (4.16).

4.2 Statement of the main results

In this section we present the main results about the convergence, as ε→ 0+, of the solutions
uε. We assume the following hypotheses on the dependence on ε > 0 of our data:

(H1) {fε}ε ⊂ L2(0, T ;H), f ∈ L2(0, T ;H), {gε}ε ⊂ H1(0, T ;V ′0), g ∈W 1,1(0, T ;V ′0),

fε
L2(0,T ;H)−−−−−−→
ε→0+

f, and gε
W 1,1(0,T ;V ′0)
−−−−−−−−→

ε→0+
g;

(H2) {zε}ε ⊂ H2(0, T ;H) ∩H1(0, T ;V ), z ∈W 2,1(0, T ;H) ∩W 1,1(0, T ;V ), and

zε
W 2,1(0,T ;H)∩W 1,1(0,T ;V )−−−−−−−−−−−−−−−−−→

ε→0+
z;

(H3) {uε,in}ε ⊂ C0((−∞, 0];V ) ∩ C1((−∞, 0];H), u0,in ∈ C0((−∞, 0];V ), and there exist
a > 0 such that

uε,in
C0([−a,0];V )−−−−−−−−→

ε→0+
u0,in, εu̇ε,in

C0([−a,0];H)−−−−−−−−→
ε→0+

0,∫ −a
−∞

1

βε
e
τ
βε ‖uε,in(τ)‖V dτ −−−−→

ε→0+
0,

∫ −a
−∞

1

βε
e
τ
βε ‖u0,in(τ)‖V dτ −−−−→

ε→0+
0.

Remark 4.2.1. Let u0
ε = uε,in(0), u1

ε = u̇ε,in(0), and u0 = u0,in(0). Hypothesis (H3) implies

u0
ε

V−−−−→
ε→0+

u0 and εu1
ε

H−−−−→
ε→0+

0.

Our purpose is to show that the solutions uε converge, as ε → 0+, to the solution u0 of
the stationary problem (22) with boundary condition (12). The notion of solution to this
problem is the usual one:{

u0(t) ∈ V, u0(t)− z(t) ∈ V0, for a.e. t ∈ [0, T ],

−div(Aeu0(t)) = f(t) + g(t) for a.e. t ∈ [0, T ].
(4.36)
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Remark 4.2.2. The existence and uniqueness of a solution u0 to (4.36) follows easily from
the Lax-Milgram Lemma. Since f + g ∈ L2(0, T ;V ′0), the estimate for the solution implies
also u0 ∈ L2(0, T ;V ).

We shall sometimes use the corresponding problem with homogeneous boundary condi-
tions: {

v0(t) ∈ V0 for a.e. t ∈ [0, T ],

−div(Aev0(t)) = h(t) + `(t) for a.e. t ∈ [0, T ],
(4.37)

with h ∈ L2(0, T ;H) and ` ∈ H1(0, T ;V ′0).

Remark 4.2.3. The function u0 is a solution to (4.36) if and only if v0 = u0− z is a solution
to (4.37) with

h(t) = f(t) and `(t) = g(t) + div(Aez(t)).

The following lemma will be used to prove the regularity with respect to time of the
solution to (4.36).

Lemma 4.2.4. Let m ∈ N and p ∈ [1,+∞). If f = 0, g ∈ Wm,p(0, T ;V ′0), and z ∈
Wm,p(0, T ;V ), then the solution u0 to problem (4.36) satisfies u0 ∈Wm,p(0, T ;V ).

Proof. By Remark 4.2.3 it is enough to consider the case z = 0. Let R : V ′0 → V0 be the
resolvent operator defined as follows:

R(ψ) = ϕ ⇐⇒

{
ϕ ∈ V0,

−div(Aeϕ) = ψ.

Since u0(t) = R(g(t)), the conclusion follows from the continuity of the linear operator R.

Remark 4.2.5. In the case f = 0, since g ∈ W 1,1(0, T ;V ′0) and z ∈ W 1,1(0, T ;V ), we can
apply Lemma 4.2.4 to obtain that the solution u0 to (4.36) belongs to W 1,1(0, T ;V ), hence
u0 ∈ C0([0, T ];V ).

In the final statement of the next theorem, besides (H1)–(H3) we assume fε = 0 and the
following compatibility condition: there exists an extension of g (still denoted by g) such that

g ∈W 1,1(−a, T ;V ′0) and − div(Aeuin(t)) = g(t) for t ∈ [−a, 0]. (4.38)

The meaning of (4.38) is that uin(t) is in equilibrium with external loads for t ∈ [−a, 0]. This
condition must be required if we want to obtain uniform convergence of uε to u0 also near
t = 0.

We are now in position to state the main results of this chapter.

Theorem 4.2.6. Let us assume (H1)–(H3). Let uε be the solution to the viscoelastic dynamic
system (4.8) and let u0 be the solution to the stationary problem (4.36). Then

uε
L2(0,T ;V )−−−−−−→
ε→0+

u0, (4.39)

εu̇ε
L2(0,T ;H)−−−−−−→
ε→0+

0. (4.40)

If, in addition, fε = 0 for every ε > 0, then

uε
L∞(η,T ;V )−−−−−−−→
ε→0+

u0 and εu̇ε
L∞(η,T ;H)−−−−−−−→
ε→0+

0 for every η ∈ (0, T ). (4.41)

If fε = 0 for every ε > 0 and the compatibility condition (4.38) holds, then we have also

uε
L∞(0,T ;V )−−−−−−−→
ε→0+

u0 and εu̇ε
L∞(0,T ;H)−−−−−−−→
ε→0+

0. (4.42)
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In the case of solutions to problems (4.9) we have the following results, assuming that

u0
ε

V−−−−→
ε→0+

u0 and εu1
ε

H−−−−→
ε→0+

0. (4.43)

Theorem 4.2.7. Let us assume (H1), (H2), and (4.43). Let uε be the solution to the
viscoelastic dynamic system (4.9), with ϕε = fε and γε = gε, and let u0 be the solution to the
stationary problem (4.36). Then (4.39) and (4.40) hold. Moreover, if fε = 0 for every ε > 0,
then (4.41) holds.

Theorems 4.2.6 and 4.2.7 will be proved in several steps. First, we prove (4.42) when
fε = 0 and the compatibility condition (4.38) holds (Theorem 4.3.1). For g ∈ H2(0, T ;V ′0)
the proof is based on the estimate in Lemma 4.2.8 below, which is derived from the energy-
dissipation balance (4.24). The general case is obtained by an approximation argument based
on the same estimate.

Next, we prove that (4.39) holds for the solution to (4.9) if γε = γ = 0, zε = 0, u0
ε = 0,

and u1
ε = 0 (Proposition 4.5.1). The proof is obtained by means of a careful estimate of the

solutions to the elliptic system (4.80) obtained from (4.12) via Laplace Transform (Section
4.4). Under the general assumptions (H1), (H2), and (4.43) the same result is deduced from
the previous one by an approximation argument based again on Lemma 4.2.8 below.

Then, (4.40) is obtained from (4.39) using a suitable test function in (4.9) (Theorem 4.5.3).
A further approximation argument gives (4.39) and (4.40) under the assumptions (H1), (H2),
and (H3) (Theorem 4.5.4).

Finally, if fε = 0, we obtain (4.41) from (4.39) and (4.40) (Lemma 4.6.1), concluding the
proof of Theorems 4.2.6 and 4.2.7.

The following lemma, derived from the energy-dissipation balance (4.24), will be fre-
quently used to approximate the solution to (4.12) by means of solutions corresponding to
more regular data.

Lemma 4.2.8. Given ε > 0, ϕε ∈ L2(0, T ;H), `ε ∈ H1(0, T ;V ′0), v0
ε ∈ V0, and v1

ε ∈ H, let
vε be the solution to (4.12) with hε = εϕε. Then there exists

ε2‖v̇ε‖2L∞(0,T ;H) + ‖vε‖2L∞(0,T ;V )

≤ CE
(
ε2‖v1

ε‖2 + ‖v0
ε‖2V + ‖ϕε‖2L1(0,T ;H) + ‖`ε‖2W 1,1(0,T ;V ′0)

)
. (4.44)

a positive constant CE = CE(A,B,Ω, T ), independent of ε, such that

Proof. By the energy-dissipation balance (4.24) proved in Proposition 4.1.7 and by (4.2) and
(4.5) there exists a positive constant C = C(A,B,Ω) such that

ε2‖v̇ε(t)‖2 + ‖vε(t)‖2V ≤ C
(
ε2‖v1

ε‖2 + ‖v0
ε‖2V + Wε(t)

)
for every t ∈ [0, T ], (4.45)

where the work is now defined by

Wε(t) = 〈`ε(t), vε(t)〉 − 〈`ε(0), v0
ε〉 −

∫ t

0
〈 ˙̀ε(τ), vε(τ)〉dτ +

∫ t

0
(ϕε(τ), εv̇ε(τ))dτ. (4.46)

Let Kε := ε‖v̇ε(t)‖L∞(0,T ;H) and Eε := ‖vε(t)‖L∞(0,T ;V ), which are finite by (4.16). Thanks
to (4.45) and (4.46) for every t ∈ [0, T ] we get

ε2‖v̇ε(t)‖2 + ‖vε(t)‖2V
≤ C

(
ε2‖v1

ε‖2 + ‖v0
ε‖2V +

(
3 + 2

T

)
‖`ε‖W 1,1(0,T ;V ′0)Eε + ‖ϕε‖L1(0,T ;H)Kε

)
.
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By passing to the supremum with respect to t and using the Young Inequality we can find a
positive constant CE = CE(A,B,Ω, T ) such that

K2
ε + E2

ε ≤ CE
(
ε2‖v1

ε‖2 + ‖v0
ε‖2V + ‖ϕε‖2L1(0,T ;H) + ‖`ε‖2W 1,1(0,T ;V ′0)

)
,

which concludes the proof.

In the proof of Theorem 4.2.6 we shall use the following lemma, which ensure that it is
enough to consider the case zε = 0 and z = 0.

Lemma 4.2.9. If Theorem 4.2.6 holds when zε = 0 for every ε > 0, then it holds for arbitrary
{zε}ε and z satisfying (H2).

Proof. It is not restrictive to assume div(Bezε(0)) = div(Bez(0)) = 0. Indeed, if this is not
the case, we can consider the solutions z0

ε and z0 to the stationary problems{
z0
ε ∈ V0,

−div(Bez0
ε ) = div(Bezε(0)),

and

{
z0 ∈ V0,

−div(Bez0) = div(Bez(0)),

and we can replace zε(t) and z(t) by z̃ε(t) := zε(t) + z0
ε and z̃(t) := z(t) + z0. It is clear that

div(Bez̃ε(0)) = div(Bez̃(0)) = 0 and that problems (4.8) and (4.36) do not change passing
from zε and z to z̃ε and z̃, respectively.

Let ψε, ψ : [0, T ]→ V ′0 be the functions defined by

ψε(t) :=


0 if t ∈ (−∞, 0),

div(Bezε(t)) if t ∈ [0, T ],

div(Bezε(T )) if t ∈ (T,+∞),

ψ(t) :=


0 if t ∈ (−∞, 0),

div(Bez(t)) if t ∈ [0, T ],

div(Bez(T )) if t ∈ (T,+∞).

(4.47)

Since div(Bezε(0)) = div(Bez(0)) = 0, zε ∈ H1(0, T ;V ), and z ∈ W 1,1(0, T ;V ), we have
ψε ∈ H1

loc(R;V ′0) and ψ ∈W 1,1
loc (R;V ′0). Moreover, thanks to (H2) we have

ψε
W 1,1
loc (R;V ′0)
−−−−−−−→

ε→0+
ψ. (4.48)

Since uε is the solution to (4.8), by Remark 4.1.3 it solves (4.9) with γε = gε−pε and initial
conditions defined by (4.10), where pε is defined by (4.11). By Remark 4.1.4 the function
vε = uε − zε is the solution to (4.12) with

hε(t) = fε(t)− ε2z̈ε(t),

`ε(t) = gε(t)− pε(t)+ div((A + B)ezε(t))−
∫ t

0

1

βε
e
− t−τ

βε div(Bezε(τ))dτ,
(4.49)

and initial conditions v0
ε and v1

ε defined by (4.14). We define the family of convolution kernels
{ρε}ε ⊂ L1(R) by

ρε(t) :=

{
1
βεe
− t
βε if t ∈ [0,+∞),

0 if t ∈ (−∞, 0),
(4.50)

and notice that, by (4.47), the integral in (4.49) coincides with (ρε ∗ ψε)(t), hence

`ε(t) = gε(t)− pε(t) + div(Aezε(t)) + ψε(t)− (ρε ∗ ψε)(t) for every t ∈ [0, T ].

By Remark 4.2.3 the function v0 = u0 − z is the solution to (4.37) with h = f and
` = g + div(Aez). By the definition of vε and v0 it is clear that to prove the theorem it is
enough to show that the conclusions of Theorem 4.2.6 holds for vε and v0. To this aim, we



Chapter 4. Quasistatic limit of a dynamic viscoelastic model with memory 109

introduce the solution ṽε to (4.12) with hε = fε, `ε = gε − pε + div(Aezε), and v0
ε , v

1
ε defined

by (4.14). Then the function v̄ε := vε− ṽε satisfies (4.12) with hε = −ε2z̈ε, `ε = ψε− ρε ∗ψε,
and homogeneous initial conditions. By Lemma 4.2.8 we can write

ε2‖ ˙̄vε‖2L∞(0,T ;H) + ‖v̄ε‖2L∞(0,T ;V ) ≤ CE
(
ε2‖z̈ε‖2L1(0,T ;H) + ‖ψε − ρε ∗ ψε‖2W 1,1(0,T ;V ′0)

)
. (4.51)

By (4.48) and by classical results on convolutions we obtain

ψε − ρε ∗ ψε
W 1,1(0,T ;V ′0)
−−−−−−−−→

ε→0+
0.

Since {z̈ε}ε is bounded in L1(0, T ;H) by (H2), from (4.51) we deduce

vε − ṽε
L∞(0,T ;V )−−−−−−−→
ε→0+

0 and ε(v̇ε − ˙̃vε)
L∞(0,T ;H)−−−−−−−→
ε→0+

0. (4.52)

By Remark 4.1.3 the function ṽε is the solution to (4.8) with gε replaced by gε+div(Aezε)
and zε = 0. Thanks to (H1) and (H2) we have

gε + div(Aezε)
W 1,1(0,T ;V ′0)
−−−−−−−−→

ε→0+
g + div(Aez).

Since by hypothesis, Theorem 4.2.6 holds in the case of homogeneous boundary condition,
its conclusions are valid for ṽε and v0. Thanks to (4.52) the same results hold for vε and v0.
This concludes the proof.

In a similar way we can prove the following result.

Lemma 4.2.10. If Theorem 4.2.7 holds when zε = 0 for every ε > 0, then it holds for
arbitrary {zε}ε and z satisfying (H2).

4.3 The uniform convergence

In this section we shall prove (4.42) of Theorem 4.2.6 under the compatibility condition (4.38).

Theorem 4.3.1. Let us assume (H1)–(H3), the compatibility condition (4.38), and fε = 0
for every ε > 0. Let uε be the solution to the viscoelastic dynamic system (4.8) and let u0 be
the solution to the stationary problem (4.36), with f = 0. Then (4.42) holds.

To prove the theorem we need the following lemma, which gives the result when g is more
regular.

Lemma 4.3.2. Under the assumptions of Theorem 4.3.1, if g ∈ H2(0, T ;V ′0), then (4.42)
holds.

Proof. Thanks to Lemma 4.2.9 we can suppose z = 0 and zε = 0 for every ε > 0. Let pε be
defined by (4.10). Since uε is the solution to (4.8), thanks to Remark 4.1.3 it solves (4.12)
with hε = 0, `ε = gε − pε, v0

ε = uε,in(0), and v1
ε = u̇ε,in(0). We fix b > a > 0 and we extend

the function g in (4.38) to (−∞, T ) in such a way g ∈W 1,1(−∞, T ;V ′0) and g(t) = 0 for every
t ∈ (−∞,−b]. Since z = 0 we can extend u0 by solving the following problem:{

u0(t) ∈ V0 for every t ∈ (−∞, T ],

−div(Aeu0(t)) = g(t) for every t ∈ (−∞, T ].

We observe that u0 = 0 on (−∞,−b] and u0 = u0,in on [−a, 0] by the compatibility condition
(4.38).
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Assume g ∈ H2(0, T ;V ′0). By Lemma 4.2.4 (with z = 0) we have u0 ∈ H2(0, T ;V ), hence
by (4.36) we get

ε2ü0(t)− div((A + B)eu0(t)) +

∫ t

0

1

βε
e
− t−τ

βε div(Beu0(τ))dτ

= ε2ü0(t) + g(t)− div(Beu0(t)) + (ρε ∗ div(Beu0))(t)− p̃ε(t) for a.e. t ∈ [0, T ], (4.53)

where ρε is defined by (4.50) and

p̃ε(t) := e
− t
βε g̃0

ε with g̃0
ε :=

∫ 0

−∞

1

βε
e
τ
βε div(Beu0(τ))dτ =

∫ 0

−b

1

βε
e
τ
βε div(Beu0(τ))dτ.

Let qε := gε−g+div(Beu0)−(ρε∗div(Beu0))−pε+p̃ε. By (4.53) the function ūε := uε−u0

satisfies (4.12) with hε = −ε2ü0, `ε = qε, v
0
ε = uε,in(0)− u0(0), and v1

ε = u̇ε,in(0)− u̇0(0).

Since g ∈ W 1,1(−∞, T ;V ′0) and g = 0 on (−∞,−b], thanks to Lemma 4.2.4 we obtain
u0 ∈ W 1,1(−∞, T ;V ) and therefore div(Beu0) ∈ W 1,1(−∞, T ;V ′0). Then the properties of
convolutions imply

ρε ∗ div(Beu0)
W 1,1(−∞,T ;V ′0)
−−−−−−−−−−→

ε→0+
div(Beu0). (4.54)

As we have already observed, by the compatibility condition (4.38) we have u0 = u0,in on
[−a, 0], hence

‖g̃0
ε − g0

ε‖V ′0 ≤
∫ −a
−∞

1

βε
e
τ
βε ‖ div(B(euε,in(τ))‖V ′0dτ +

∫ −a
−b

1

βε
e
τ
βε ‖div(B(eu0(τ))‖V ′0dτ

+ ‖ div(B(euε,in − eu0,in))‖L∞(−a,0;V ′0).

Thanks to (H3) we obtain g̃0
ε − g0

ε → 0 strongly in V ′0 as ε→ 0+. Hence

p̃ε − pε
W 1,1(0,T ;V ′0)
−−−−−−−−→

ε→0+
0. (4.55)

By (H1), (4.54), and (4.55) we have

qε
W 1,1(0,T ;V ′0)
−−−−−−−−→

ε→0+
0. (4.56)

Since u0(0) = u0,in(0), (H3) gives

uε,in(0)− u0(0)
V−−−−→

ε→0+
0 and ε(u̇ε,in(0)− u̇0(0))

H−−−−→
ε→0+

0. (4.57)

By using Lemma 4.2.8 we get

ε2‖ ˙̄uε‖2L∞(0,T ;H) + ‖ūε‖2L∞(0,T ;V )

≤ CE
(
ε2‖u̇ε,in(0)− u̇0(0)‖2 + ‖uε,in(0)− u0(0)‖2V + ε2‖ü0‖2L1(0,T ;H) + ‖qε‖2W 1,1(0,T ;V ′0)

)
,

therefore thanks to (4.56) and (4.57) we obtain the conclusion.

In the proof of Theorems 4.3.1, 4.5.2, and 4.5.4 we shall use the following density result.

Lemma 4.3.3. Let X,Y be two Hilbert spaces such that X ↪→ Y continuously, with X dense
in Y . Then for every m,n ∈ N with m ≤ n, and p ∈ [1, 2] the space Hn(0, T ;X) is dense in
Wm,p(0, T ;Y ).
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Proof. Since every simple function with values in Y can be approximated by simple functions
with values in X, it is easy to see that L2(0, T ;X) is dense in Lp(0, T ;Y ).

To prove the result for m = 1 we fix u ∈ W 1,p(0, T ;Y ). By the density of L2(0, T ;X)
in Lp(0, T ;Y ) we can find a sequence {ψk}k ⊂ L2(0, T ;X) such that ψk → u̇ strongly in
Lp(0, T ;Y ) as k → +∞. By the density of X in Y there exists {u0

k}k ⊂ X such that
u0
k → u(0) strongly in Y as k → +∞. Now we define

uk(t) :=

∫ t

0
ψk(τ)dτ + u0

k.

It is easy to see that {uk}k ⊂ H1(0, T ;X) and uk → u strongly in W 1,p(0, T ;Y ) as k → +∞.
Arguing by induction we can prove that for every integer m ≥ 0 the space Hm(0, T ;X)

is dense in Wm,p(0, T ;Y ). Since Hn(0, T ;X) is dense in Hm(0, T ;X), the conclusion follows.

We are now in position to deduce Theorem 4.3.1 from Lemma 4.3.2 by means of an
approximation argument.

Proof of Theorem 4.3.1. Thanks to Lemma 4.2.9 we can suppose z = 0 and zε = 0 for every
ε > 0. We fix δ > 0. By Lemma 4.3.3 there exists a function ψ ∈ H2(0, T ;V ′0) such that

‖ψ − g‖W 1,1(0,T ;V ′0) < δ. (4.58)

By (H1) there exists a positive number ε0 = ε0(δ) such that

‖ψ − gε‖W 1,1(0,T ;V ′0) < δ for every ε ∈ (0, ε0). (4.59)

Let pε be defined by (4.11). Since uε is the solution to (4.8) with fε = 0 and zε = 0,
thanks to Remark 4.1.3 it solves (4.12) with hε = 0, `ε = gε − pε, v

0
ε = uε,in(0), and

v1
ε = u̇ε,in(0). Moreover, let ũε be solution to (4.12) with hε = 0, `ε = ψ − pε, v0

ε = uε,in(0),
and v1

ε = u̇ε,in(0), and let ũ0 be the solution to (4.37) with h = 0 and ` = ψ. Thanks to
Remark 4.1.3 the function ũε is the solution to (4.8) with fε = 0, gε = ψ, and zε = 0, hence
by Lemma 4.3.2 we have

ũε
L∞(0,T ;V )−−−−−−−→
ε→0+

ũ0 and ε ˙̃uε
L∞(0,T ;H)−−−−−−−→
ε→0+

0. (4.60)

We now consider the functions ū0 := ũ0 − u0 and ūε := ũε − uε. Since ū0 is the solution
to (4.37), with h = 0 and ` = ψ − g, by the Lax-Milgram Lemma we get

‖ū0‖L∞(0,T ;V ) ≤
C2
P+1
cA
‖ψ − g‖L∞(0,T ;V ′0) ≤

C2
P+1
cA

(1 + 1
T )‖ψ − g‖W 1,1(0,T ;V ′0). (4.61)

Moreover, since ūε is the solution to (4.12), with hε = 0, `ε = ψ − gε, v0
ε = 0, and v1

ε = 0,
thanks to Lemma 4.2.8 we get

ε2‖ ˙̄uε‖2L∞(0,T ;H) + ‖ūε‖2L∞(0,T ;V ) ≤ CE‖ψ − gε‖
2
W 1,1(0,T ;V ′0). (4.62)

By using (4.58), (4.59), (4.61), and (4.62), we can find a positive constant C = C(A,B,Ω, T )
such that

ε‖ ˙̄uε‖L∞(0,T ;H) + ‖ūε‖L∞(0,T ;V ) + ‖ū0‖L∞(0,T ;V ) ≤ Cδ for every ε ∈ (0, ε0). (4.63)

Since

‖uε − u0‖L∞(0,T ;V ) ≤ ‖ūε‖L∞(0,T ;V ) + ‖ũε − ũ0‖L∞(0,T ;V ) + ‖ū0‖L∞(0,T ;V ),

ε‖u̇ε‖L∞(0,T ;H) ≤ ε‖ ˙̄uε‖L∞(0,T ;H) + ε‖ ˙̃uε‖L∞(0,T ;H),

by (4.60) and (4.63) we have

lim sup
ε→0+

‖uε − u0‖L∞(0,T ;V ) ≤ Cδ and lim sup
ε→0+

‖εu̇ε‖L∞(0,T ;H) ≤ Cδ.

The conclusion follows from the arbitrariness of δ > 0.
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4.4 Use of the Laplace Transform

In this section we shall use the Laplace Transform to prepare the proof of the convergence,
as ε→ 0+, of the solution to the problem

vε ∈ V0, (4.64a)

ε2v̈ε(t)− div((A + B)evε(t)) +

∫ t

0

1

βε
e
− t−τ

βε div(Bevε(τ))dτ = hε(t)

for a.e. t ∈ [0, T ], (4.64b)

vε(0) = 0 in H and v̇ε(0) = 0 in V ′0 , (4.64c)

to the solution v0 to the problem{
v0(t) ∈ V0 for a.e. t ∈ [0, T ],

−div(Aev0(t)) = h(t) for a.e. t ∈ [0, T ],
(4.65)

when {hε}ε ⊂ L2(0, T ;H), h ∈ L2(0, T ;H), and

hε
L2(0,T ;H)−−−−−−→
ε→0+

h, (4.66)

This partial result will be the starting point for the proof of the convergence in L2(0, T ;V )
under the general assumptions of Theorem 4.2.6.

4.4.1 The Laplace Transform for functions with values in Hilbert spaces

Given a complex Hilbert space X, let r ∈ L1
loc(0,+∞;X) be a function such that∫ +∞

0
e−αt‖r(t)‖X dt < +∞ for every α > 0, (4.67)

and let C+ := {s ∈ C : <(s) > 0}. The Laplace Transform of r is the function r̂ : C+ → X
defined by

r̂(s) :=

∫ +∞

0
e−str(t)dt for every s ∈ C+. (4.68)

Besides r̂, we shall also use the notation L(r), which is sometimes written as Lt(r(t)), with
dummy variable t. In the particular case r ∈ L∞(0,+∞;X) we have

‖r̂(s)‖X ≤
1

s1
‖r‖L∞(0,+∞;X) for every s = s1 + is2 ∈ C+, with s1, s2 ∈ R.

There is a close connection between the Laplace Transform and the Fourier Transform,
defined for every ρ ∈ L1(R;X) as the function F(ρ) ∈ L∞(R;X) given by

F(ρ)(ξ) =

∫ +∞

−∞
e−iξtρ(t)dt for every ξ ∈ R. (4.69)

For F(ρ) we use also the notation Ft(ρ(t)) with dummy variable t. For the main properties
of the Fourier and Laplace Transforms of functions with values in Hilbert spaces we refer to
[3].

We extend the function r satisfying (4.67) by setting r(t) = 0 for every t < 0. By (4.68)
and (4.69) we have

Lt(r(t))(s) = Ft(e−s1tr(t))(s2) for every s = s1 + is2 ∈ C+, with s1, s2 ∈ R.

We remark that the Laplace Transform commutes with linear transformations, as shown
in the following proposition (see, for instance [3, Proposition 1.6.2]).
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Proposition 4.4.1. Let X and Y be two complex Hilbert spaces, let r ∈ L1
loc(0,+∞;X),

and let T be a continuous linear operator from X to Y . Then T ◦ r ∈ L1
loc(0,+∞;Y ). If in

addition, r satisfies (4.67), then the same property holds also for T ◦ r, with X replaced by
Y , and L(T ◦ r)(s) = (T ◦ r̂)(s) for every s ∈ C+.

Now we consider the Inverse Laplace Transform. Let R : C+ → X be a function. Suppose
that there exists r ∈ L1

loc(0,+∞;X) such that (4.67) holds and L(r)(s) = R(s) for every
s ∈ C+. In this case we say that r is the Inverse Laplace Transform of R, and we use the
notation r = L−1(R) or r = L−1

s (R(s)) with dummy variable s. It can be proven that r
is uniquely determined up to a negligible set (see [3, Theorem 1.7.3]). Moreover, r can be
obtained by the Bromwich Integral Formula:

r(t) = L−1(R)(t) =
es1t

2π
lim

k→+∞

∫ k

−k
eis2tR(s1 + is2)ds2, (4.70)

where s1 is an arbitrary positive number. Clearly (4.70) can be expressed in terms of the
Inverse Fourier Transform, namely

r(t) = L−1
s (R(s))(t) = es1tF−1

s2 (R(s1 + is2))(t), (4.71)

where F−1
s2 (R(s1 + is2)) denotes the Inverse Fourier Transform with respect to the variable

s2.
To use the Laplace Transform, we extend our problems from the interval [0, T ] to [0,+∞).

To do this, we extend the functions hε and h, introduced in (4.66), by setting them equal
to zero in (T,+∞), and we consider the solution to (4.64) in [0,+∞), which we still denote
vε. Moreover, we consider the solution to (4.65) in [0,+∞), which we still denote v0. Notice
that, thanks to the choice of the extension we have

hε
L2(0,+∞;H)−−−−−−−−→

ε→0+
h.

By Proposition 4.2.8 and by using the equality hε = 0 on (T,+∞), we get

vε ∈ L∞(0,+∞;V0) and v̇ε ∈ L∞(0,+∞;H). (4.72)

Since h ∈ L2(0, T ;H) and h = 0 on (T,+∞), by means of standard estimates for the solution
to (4.65) we obtain

v0 ∈ L2(0,+∞;V0) and v0 = 0 on (T,+∞). (4.73)

From (4.3), (4.64), and (4.72) we can deduce

v̈ε ∈ L2(0, T ;V ′0) ∩ L∞(T,+∞;V ′0). (4.74)

To study our problem by means of the Laplace Transform we introduce the complexifica-
tion of the Hilbert spaces H, V0, and V ′0 defined by

Ĥ := L2(Ω;Cd), V̂0 := H1(Ω;Cd), V̂ ′0 := H−1(Ω;Cd).

The symbols (·, ·) and ‖ · ‖ denote the hermitian product and the norm in Ĥ or in other
complex L2 spaces. For every s ∈ C+ the Laplace Transforms ĥε(s) and ĥ(s) of hε and h in
Ĥ are well defined. Thanks to (4.72) and (4.73) the Laplace Transforms v̂ε(s) and v̂0(s) in
V̂0 are well defined for every s ∈ C+. By (4.74) the Laplace Transform ˆ̈vε of v̈ε is well defined
for every s ∈ C+. Using (4.72) we can integrate by parts two times in the integral which
defines ˆ̈vε and, since vε(0) = 0 and v̇ε(0) = 0, we obtain

ˆ̈vε(s) = s2v̂ε(s) for every s ∈ C+. (4.75)
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By considering the operators SA, SB : V̂0 → V̂ ′0 defined by

SA(ψ) := −div(Aeψ) and SB(ψ) := −div(Beψ),

we can rephrase (4.64) and (4.65) as equalities of elements of V̂ ′0 :

ε2v̈ε(t) = SB

(∫ t

0

1

βε
e
− t−τ

βε vε(τ)dτ
)
− (SA + SB)(vε(t)) + hε(t) for a.e. t ∈ [0,+∞), (4.76)

SA(v0(t)) = h(t) for a.e. t ∈ [0,+∞). (4.77)

Now we want to consider the Laplace Transforms, in the sense of V̂ ′0 , of both sides of
these equations. By Proposition 4.4.1 we can say

L(SA(vε)) = SA(v̂ε), L(SB(vε)) = SB(v̂ε), L(SA(v0)) = SA(v̂0), (4.78)

where v̂ε and v̂0 are the Laplace Transforms of vε and v0, respectively, in the sense of V̂0.
Moreover, since we have

sup
t∈[0,+∞)

∥∥∥∫ t

0

1

βε
e
− t−τ

βε vε(τ)dτ
∥∥∥
V0
≤ ‖vε‖L∞(0,+∞;V0),

this integral admits Laplace Transform in the sense of V̂0, which for every s ∈ C+ satisfies

Lt
(∫ t

0

1

βε
e
− t−τ

βε vε(τ)dτ
)

(s) =
1

βεs+ 1
v̂ε(s).

Hence, by using Proposition 4.4.1 again, we obtain

Lt
(
SB

(∫ t

0

1

βε
e
− t−τ

βε vε(τ)dτ
))

(s) =
1

βεs+ 1
SB(v̂ε(s)). (4.79)

4.4.2 Properties of the Laplace Transform of the solutions

Thanks to (4.75), (4.78), and (4.79) we can apply the Laplace Transform to both sides of
(4.76) and (4.77) to deduce the following equalities in V̂ ′0 :

ε2s2v̂ε(s)− div((A + B)ev̂ε(s)) +
1

βεs+ 1
div(Bev̂ε(s)) = ĥε(s) for every s ∈ C+, (4.80)

− div(Aev̂0(s)) = ĥ(s) for every s ∈ C+. (4.81)

Our purpose is to prove that for every s1 > 0 we have∫ +∞

−∞
‖v̂ε(s1 + is2)− v̂0(s1 + is2)‖2

V̂0
ds2 −−−−→

ε→0+
0. (4.82)

To prove (4.82) we need two lemmas. In the first one we deduce from (4.80) an estimate
for v̂ε(s), which is used in the second lemma to prove a convergence result for v̂ε(s).

Lemma 4.4.2. For every s ∈ C+ there exists a positive constant M(s) such that

‖v̂ε(s)‖V̂0 ≤M(s)‖ĥε(s)‖ for every ε ∈ (0, 1). (4.83)
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Proof. We fix ε ∈ (0, 1) and for every s ∈ C+ we define the operator Sε(s) : V̂0 → V̂ ′0 in the
following way:

Sε(s)(ψ) := ε2s2ψ − div((A + B)eψ) +
1

βεs+ 1
div(Beψ) for every ψ ∈ V̂0.

Since Sε(s)(v̂ε(s)) = ĥε(s) by (4.80), the Lax-Milgram Lemma, together with the Korn-
Poincaré Inequality (4.2), implies (4.83) if we can show that for every s ∈ C+ there exists a
positive constant K(s), independent of ε, such that

|〈Sε(s)(ψ), ψ〉| ≥ cAK(s)‖eψ‖2 for every ψ ∈ V̂0, (4.84)

where

|〈Sε(s)(ψ), ψ〉| = |(βε
3s3 + ε2s2)‖ψ‖2 + βεs((A + B)eψ, eψ) + (Aeψ, eψ)|

|βεs+ 1|
.

We can suppose ψ ∈ V̂0 \ {0}, otherwise the inequality is trivially satisfied, and we set

a :=
(Aeψ, eψ)

‖ψ‖2
and b :=

((A + B)eψ, eψ)

‖ψ‖2
,

which satisfy, thanks to the Korn-Poincaré Inequality (4.2) and to (4.3)–(4.5), the following
relations

a ≥ cA‖eψ‖2

‖ψ‖2
≥ cA
C2
P

= : a0, b ≥ (cA + cB)‖eψ‖2

‖ψ‖2
≥ cA + cB

C2
P

=: b0,

a ≤ c0a ≤ b ≤ c1a,

(4.85)

where c0 := 1 + cB
CA

and c1 := 1 + CB
cA

. Therefore, to prove (4.84) it is enough to obtain∣∣∣∣βε3s3 + ε2s2 + βbεs+ a

βεs+ 1

∣∣∣∣ ≥ K(s) a for every s ∈ C+. (4.86)

For simplicity of notation we set z = εs and we consider two cases.
Case b > 2

3β2 . In this situation, thanks to (4.150) we know that the polynomial βz3 + z2 +
βbz+a has one real root z0 and two complex and conjugate ones w and w̄. Therefore, thanks
to Lemmas 4.7.1 and 4.7.2, we can write∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =

∣∣∣∣β(z − z0)(z − w)(z − w̄)

βz + 1

∣∣∣∣ ≥ ∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ |<(w)||=(w)|

=

∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣ |<(w)|
√

3|<(w)|2 +
2

β
<(w) + b ≥

∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣α√b− 1

3β2

≥
∣∣∣∣β(z − z0)

βz + 1

∣∣∣∣α
√
b

2
≥ α√

3

∣∣∣∣ z

βz + 1

∣∣∣∣ , (4.87)

where in the last inequality we used z0 < 0.
If a ≤ 2|z|2, then |z| ≥ a

2|z| and, thanks to (4.87), we deduce∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ α

2
√

3

a

|z(βz + 1)|
. (4.88)

For a > 2|z|2 we have

1

a

∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ =

∣∣∣∣z2

a
+

βbz + a

a(βz + 1)

∣∣∣∣ ≥ ∣∣∣∣ βbz + a

a(βz + 1)

∣∣∣∣− 1

2
,
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and, by writing z = x+ iy, we obtain∣∣∣∣ βbz + a

a(βz + 1)

∣∣∣∣ =

∣∣∣∣ βbx+ a+ iβby

βax+ a+ iβay

∣∣∣∣ =

√
(βbx+ a)2 + β2b2y2

(βax+ a)2 + β2a2y2
≥ 1,

which implies ∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ a

2
. (4.89)

By (4.88) and (4.89) in the case b > 2
3β2 we conclude∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ min
{1

2
,
α

2
√

3

1

|z(βz + 1)|

}
a. (4.90)

Case b0 ≤ b ≤ 2
3β2 . In this case, thanks to (4.85), we have a0 ≤ a ≤ 2

3β2 . We define

R :=

√
2(2 + c1)

3β2
.

Then for z ∈ C+, with |z| > R, we get∣∣∣∣z2

a
+

βbz + a

a(βz + 1)

∣∣∣∣ ≥ 3β2|z|2

2
− b

a

∣∣∣∣ βz

βz + 1

∣∣∣∣− 1

|βz + 1|
≥ 2 + c1 − c1 − 1 = 1, (4.91)

where we used the inequalities |βz| ≤ |βz + 1| and 1 ≤ |βz + 1|.
To deal with the case z ∈ C+, with |z| ≤ R, we define

γ := min

{∣∣∣∣βz3 + z2 + βbz + a

a(βz + 1)

∣∣∣∣ : <(z) ≥ 0, |z| ≤ R, b0 ≤ b ≤
2

3β2
, a0 ≤ a ≤

2

3β2

}
,

and we claim γ > 0. Indeed the function under examination is continuous with respect to
(z, a, b), and by Lemma 4.7.1 it does not vanish in the compact set considered in the minimum
problem. By using also (4.91) we conclude that for b0 ≤ b ≤ 2

3β2 we have∣∣∣∣βz3 + z2 + βbz + a

βz + 1

∣∣∣∣ ≥ min{γ, 1}a. (4.92)

for every z ∈ C+ and every a satisfying (4.85). Since ε ∈ (0, 1) we have

1

|εs(βεs+ 1)|
≥ 1

|s(βs+ 1)|
,

therefore, by setting

K(s) := min
{1

2
,
α

2
√

3

1

|s(βs+ 1)|
, γ
}
,

from (4.90) and (4.92) we obtain (4.86), which concludes the proof.

4.4.3 Convergence of the Laplace Transform of the solutions

We begin by proving the pointwise convergence.

Lemma 4.4.3. For every s ∈ C+ we have

v̂ε(s)
V̂0−−−−→

ε→0+
v̂0(s).
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Proof. Thanks to (4.66) and to the Hölder Inequality for every s ∈ C+ we get

‖ĥε(s)− ĥ(s)‖ ≤
∫ +∞

0
e−<(s)t‖hε(t)− h(t)‖dt ≤ 1√

2<(s)
‖hε − h‖L2(0,T ;H) −−−−→

ε→0+
0. (4.93)

Consequently, thanks to Lemma 4.4.2, for every s ∈ C+ there exist two constants M̄(s) > 0
and ε(s) ∈ (0, 1) such that

‖v̂ε(s)‖V̂0 ≤ M̄(s) for every ε ∈ (0, ε(s)). (4.94)

By (4.94) we can say that for every s ∈ C+ there exist a sequence εj −→ 0+ and v∗(s) ∈ V̂0

such that

v̂εj (s)
V̂0−−−−⇀

j→+∞
v∗(s). (4.95)

Thanks to (4.4) and (4.95) for every ψ ∈ V̂0 we deduce

((A + B)ev̂εj (s), eψ)−−−−→
j→+∞

((A + B)ev∗(s), eψ), |ε2
js

2(v̂εj (s), ψ)| ≤ ε2
j |s|2M̄(s)‖ψ‖−−−−→

j→+∞
0,∣∣∣ 1

βεjs+ 1
(Bev̂εj (s), eψ)− (Bev∗(s), eψ)

∣∣∣
≤
∣∣(B(ev̂εj (s)− ev∗(s)), eψ)

∣∣+
βεj |s|
|βεjs+ 1|

|(Bev̂εj (s), eψ)|

≤
∣∣(ev̂εj (s)− ev∗(s),Beψ)

∣∣+ βεj |s|CBM̄(s)‖eψ‖ −−−−→
j→+∞

0.

Therefore by (4.93) we have {
v∗(s) ∈ V̂0,

−div(Aev∗(s)) = ĥ(s).
(4.96)

Since, by (4.81), v̂0(s) is a solution to (4.96), by uniqueness we have v∗(s) = v̂0(s). Moreover,
since the limit does not depend on the subsequence, the whole sequence satisfies

v̂ε(s)
V̂0−−−−⇀

ε→0+
v̂0(s) for every s ∈ C+. (4.97)

To prove the strong convergence we use v̂ε(s) and v̂0(s) as test function in (4.80) and
(4.81), respectively. By subtracting the two equalities, we obtain

(Aev̂ε(s), ev̂ε(s))− (Aev̂0(s), ev̂0(s))

= (ĥε(s), v̂ε(s))− (ĥ(s), v̂0(s))− ε2s2‖v̂ε(s)‖2 −
βεs

βεs+ 1
(Bev̂ε(s), ev̂ε(s)),

from which we deduce

|(Aev̂ε(s), ev̂ε(s))− (Aev̂0(s), ev̂0(s))|
≤ |(ĥε(s), v̂ε(s))− (ĥ(s), v̂0(s))|+ ε2|s|2‖v̂ε(s)‖2 + βε|s|CB‖ev̂ε(s)‖2.

By using again (4.93), (4.94), and (4.97), we can deduce

lim
ε→0+

(Aev̂ε(s), ev̂ε(s)) = (Aev̂0(s), ev̂0(s)) for every s ∈ C+. (4.98)

Thanks to the coerciveness assumption (4.5), the conclusion follows from the weak conver-
gence (4.97) together with (4.98).
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Now we are in position to prove the following result about the convergence in the space
L2 on the lines {s1 + is2 : s2 ∈ R}.

Proposition 4.4.4. The functions v̂ε and v̂0 satisfy (4.82).

Proof. As before, we set

a :=
(Aev̂ε(s), ev̂ε(s))
‖v̂ε(s)‖2

and b :=
((A + B)ev̂ε(s), ev̂ε(s))

‖v̂ε(s)‖2
, (4.99)

and we observe that (4.85) holds. For every s ∈ C+, by using v̂ε(s) as test function in (4.80)
we obtain

1

βεs+ 1

(
βε3s3 + ε2s2 + βbεs+ a

)
‖v̂ε(s)‖2 = (ĥε(s), v̂ε(s)). (4.100)

Therefore, thanks to (4.87), Lemma 4.7.1, and (4.92) we can deduce∣∣∣∣βε3s3 + ε2s2 + βbεs+ a

βεs+ 1

∣∣∣∣ ≥ ∣∣∣∣β(εs− z0)

βεs+ 1

∣∣∣∣α
√
b

2
≥ β |z0|α

√
a

2
≥ βα2

√
2

√
a for b >

2

3β2
,∣∣∣∣βε3s3 + ε2s2 + βbεs+ a

βεs+ 1

∣∣∣∣ ≥ min{γ, 1}a ≥ min{γ, 1}
√
a0

√
a for b ≤ 2

3β2
,

where in the first line we used the inequality |z0(βεs+ 1)| ≤ |εs− z0| for every s ∈ C+, which
follows from the condition z0 < 0.

As a consequence of these inequalities and of (4.100) there exists a positive constant
C = C(α, β, γ, a0) such that

‖v̂ε(s)‖2 =

∣∣∣∣ βεs+ 1

βε3s3 + ε2s2 + βbεs+ a

∣∣∣∣ |(ĥε(s), v̂ε(s))| ≤ C√
a
‖ĥε(s)‖‖v̂ε(s)‖ for every s ∈ C+.

Therefore, by using (4.99) and the coerciveness assumption (4.5), we can write

√
cA‖ev̂ε(s)‖ ≤

√
(Aev̂ε(s), ev̂ε(s)) ≤ C‖ĥε(s)‖,

from which, recalling (4.2), we deduce

‖v̂ε(s)‖V̂0 ≤ (CP + 1)
C
√
cA
‖ĥε(s)‖ for every s ∈ C+. (4.101)

By extending the function hε to (−∞, 0) with value 0, we can write

ĥε(s) =

∫ +∞

0
e−sthε(t)dt =

∫ +∞

−∞
e−sthε(t)dt = Ft(e−s1thε(t))(s2).

Since for every s = s1 + is2 ∈ C+ the function t 7→ e−s1thε(t) belongs to L2(R;H), by the
properties of the Fourier Transform we deduce that s2 7→ ĥε(s1 + is2) belongs to L2(R; Ĥ)
for every ε > 0. Moreover, by using (4.66) and the Plancherel Theorem, we can write∫ +∞

−∞
‖ĥε(s1 + is2)− ĥ(s1 + is2)‖2ds2 =

∫ +∞

−∞
‖Ft(e−s1t(hε(t)− h(t)))(s2)‖2ds2

=

∫ +∞

−∞
‖e−s1t(hε(t)− h(t))‖2 dt ≤

∫ T

0
‖hε(t)− h(t)‖2 dt −−−−→

ε→0+
0. (4.102)

Since v̂ε(s)→ v̂0(s) strongly in V̂0 by Lemma 4.4.3 and ĥε(s)→ ĥ(s) strongly in Ĥ by (4.93),
thanks to (4.101) and (4.102) we can apply the Generalized Dominated Convergence Theorem
to get the conclusion.
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4.5 L2 convergence

In this section we shall prove (4.39) and (4.40) under the assumptions of Theorems 4.2.6 and
4.2.7. We begin by proving the following partial result.

Proposition 4.5.1. Let {hε}ε ⊂ L2(0, T ;H) and h ∈ L2(0, T ;H) be such that (4.66) holds.
Let vε and v0 be the solutions to problems (4.64) and (4.65). Then

vε
L2(0,T ;V )−−−−−−→
ε→0+

v0.

Proof. By the Plancherel Theorem we deduce from (4.71) and Proposition 4.4.4 that for every
s1 > 0 there exists a positive constant C = C(s1, T ) such that

‖vε − v0‖2L2(0,T ;V ) =

∫ T

0
‖vε(t)− v0(t)‖2V dt =

∫ T

0
‖L−1(v̂ε − v̂0)(t)‖2V dt

≤ C(s1, T )

∫ +∞

−∞
‖F−1

s2 (v̂ε(s1 + is2)− v̂0(s1 + is2))(t)‖2V dt

= C(s1, T )

∫ +∞

−∞
‖v̂ε(s1 + is2)− v̂0(s1 + is2)‖2

V̂0
ds2 −−−−→

ε→0+
0,

which concludes the proof.

Theorem 4.5.2. Let us assume (H1), (H2), and (4.43). Let uε be the solution to the
viscoelastic dynamic system (4.9), with ϕε = fε and γε = gε, and let u0 be the solution to the
stationary problem (4.36). Then (4.39) holds.

Proof. Thanks to Lemma 4.2.10 it is enough to prove the theorem in the case z = 0 and
zε = 0 for every ε > 0. We divide the proof into two steps.

Step 1. The case u1
ε = 0. We reduce the problem to the case of homogeneous initial

conditions by considering the functions

vε(t) := uε(t)− u0
ε and v0(t) := u0(t)− u0 for a.e. t ∈ [0, T ]. (4.103)

Let us define

qε(t) := gε(t) + div(Aeu0
ε) + e

− t
βε div(Beu0

ε) for every t ∈ [0, T ], (4.104)

q(t) := g(t) + div(Aeu0) for every t ∈ [0, T ]. (4.105)

Since u1
ε = 0, it is easy to see that vε satisfies (4.12) with hε = fε, `ε = qε, v

0
ε = 0, and

v1
ε = 0, while v0 satisfies (4.37) with h = f and ` = q. By (4.43) and (4.103), to prove (4.39)

it is enough to show that

vε
L2(0,T ;V )−−−−−−→
ε→0+

v0 (4.106)

In order to apply Proposition 4.5.1, we approximate the forcing terms of the problems for
vε and v0 by means of functions in H1(0, T ;H) and we consider the corresponding solutions ṽε
and ṽ0, for which Proposition 4.5.1 yields ṽε → ṽ0 strongly in L2(0, T ;V ) as ε→ 0+. Finally
we show that ‖ṽε − vε‖L2(0,T ;V ) and ‖ṽ0 − v0‖L2(0,T ;V ) are small uniformly with respect to ε,
and this leads to the proof of (4.106).

Let us fix δ > 0. Thanks to the density of H in V ′0 and to Lemma 4.3.2 we can find
ψ ∈ H1(0, T ;H) and h0

A, h
0
B ∈ H such that

‖h0
A − div(Aeu0)‖V ′0 < δ, ‖h0

B − div(Beu0)‖V ′0 < δ,

‖ψ − g‖W 1,1(0,T ;V ′0) < δ.
(4.107)
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Thanks to (H1) and (4.43) there exist ε0 = ε0(δ) ∈ (0, 1
β ) such that for every ε ∈ (0, ε0)

‖h0
A − div(Aeu0

ε)‖V ′0 < δ, ‖h0
B − div(Beu0

ε)‖V ′0 < δ,

‖ψ − gε‖W 1,1(0,T ;V ′0) < δ.
(4.108)

Let ϕε, ϕ : [0, T ]→ H be defined by

ϕε(t) := ψ(t) + h0
A + e

− t
βεh0

B and ϕ(t) := ψ(t) + h0
A for every t ∈ [0, T ]. (4.109)

By (4.104), (4.105), (4.107), (4.108), and (4.109) for every ε ∈ (0, ε0) we obtain

‖ϕε − qε‖W 1,1(0,T ;V ′0) ≤ ‖ψ − gε‖W 1,1(0,T ;V ′0) + T‖h0
A − div(Aeu0

ε)‖V ′0
+ (βε+ 1)‖h0

B − div(Beu0
ε)‖V ′0 ≤ (3 + T )δ, (4.110)

‖ϕ− q‖L∞(0,T ;V ′0) ≤ (1 + 1
T )‖ψ − g‖W 1,1(0,T ;V ′0) (4.111)

+ ‖h0
A − div(Aeu0

ε)‖V ′0 ≤ (2 + 1
T )δ. (4.112)

Since t 7→ e
− t
βεψ0

B converges to 0 strongly in L2(0, T ;H) as ε→ 0+, by (4.109) we have

ϕε
L2(0,T ;H)−−−−−−→
ε→0+

ϕ. (4.113)

Let ṽε be the solution to (4.64) with hε = fε+ϕε and let ṽ0 be the solution to (4.65) with
h = f + ϕ. By (H1) and (4.113) we have

fε + ϕε
L2(0,T ;H)−−−−−−→
ε→0+

f + ϕ,

hence Proposition 4.5.1 yields

ṽε
L2(0,T ;V )−−−−−−→
ε→0+

ṽ0. (4.114)

To estimate the difference ṽε−vε we observe that it solves (4.12) with hε = 0, `ε = ϕε−qε,
v0
ε = 0, and v1

ε = 0. Therefore, by Lemma 4.2.8 we have

‖ṽε − vε‖L2(0,T ;V ) ≤
√
CET‖ϕε − qε‖W 1,1(0,T ;V ′0). (4.115)

To estimate the difference ṽ0 − v0 we observe that it solves (4.37) with h = 0 and ` = ϕ− q.
Therefore by the Lax-Milgram Lemma we obtain

‖ṽ0 − v0‖L2(0,T ;V ) ≤
√
T (C2

P+1)
cA

‖ϕ− q‖L∞(0,T ;V ′0). (4.116)

By (4.110), (4.112), (4.115), and (4.116) there exists a positive constant C = C(A,B,Ω, T )
such that

‖ṽε − vε‖L2(0,T ;V ) + ‖ṽ0 − v0‖L2(0,T ;V ) ≤ Cδ,

hence

‖vε − v0‖L2(0,T ;V ) ≤ ‖vε − ṽε‖L2(0,T ;V ) + ‖ṽε − ṽ0‖L2(0,T ;V ) + ‖ṽ0 − v0‖L2(0,T ;V )

≤ ‖ṽε − ṽ0‖L2(0,T ;V ) + Cδ.

This inequality, together with (4.114), gives

lim sup
ε→0+

‖vε − v0‖L2(0,T ;V ) ≤ Cδ.



Chapter 4. Quasistatic limit of a dynamic viscoelastic model with memory 121

By the arbitrariness of δ > 0 we obtain (4.106), which concludes the proof of Step 1.

Step 2. The general case. Let ũε be the solution to (4.12) with hε = fε, `ε = gε, v
0
ε = u0

ε,
and v1

ε = 0. By Step 1

ũε
L2(0,T ;V )−−−−−−→
ε→0+

u0. (4.117)

The function uε− ũε is the solution to (4.12) with all data equal to 0 except v1
ε , which is now

equal to u1
ε. Therefore, Lemma 4.2.8 and (4.43) yield

‖uε − ũε‖L∞(0,T ;V ) ≤
√
CEε‖u1

ε‖ −−−−→
ε→0+

0,

which, together with (4.117), gives (4.39).

In the following theorem, under the assumptions of Theorem 4.2.7 we deduce (4.40) from
(4.39).

Theorem 4.5.3. Let us assume (H1), (H2), and (4.43). Let uε be the solution to the
viscoelastic dynamic system (4.9), with ϕε = fε and γε = gε, and let u0 be the solution to the
stationary problem (4.36). Then (4.40) holds.

Proof. Thanks to Lemma 4.2.10 we can suppose z = 0 and zε = 0 for every ε > 0. It is
convenient to extend the data of our problem to the interval [0, 2T ] by setting

fε(t) := 0, f(t) := 0, gε(t) := gε(T ), g(t) := g(T ) for every t ∈ (T, 2T ].

Since (H1) holds, it is clear that {fε}ε ⊂ L2(0, 2T ;H), {gε}ε ∈ H1(0, 2T ;V ′0),

fε
L2(0,2T ;H)−−−−−−−→
ε→0+

f and gε
W 1,1(0,2T ;V ′0)
−−−−−−−−−→

ε→0+
g. (4.118)

Moreover, the solution to (4.9) on [0, 2T ] with the extended data is an extension of uε, which
is still denoted by uε. Similarly, the solution to (4.36) on [0, 2T ] is still denoted by u0. Since
(4.118) holds, Theorem 4.5.2 gives

uε
L2(0,2T ;V )−−−−−−−→
ε→0+

u0. (4.119)

We further extend uε to R by setting uε(t) = 0 for every t ∈ R \ [0, 2T ], and we define

wε(t) :=

∫ t

0

1

βε
e
− t−τ

βε euε(τ)dτ = (ρε ∗ euε)(t) for every t ∈ R,

where ρε is as in (4.50). By the properties of convolutions and (4.119) we get

euε − wε
L2(R;H)−−−−−→
ε→0+

0. (4.120)

Thanks to (4.119) and (4.120), by using (4.9) and (4.36) we obtain

ε2üε
L2(0,2T ;V ′0)
−−−−−−−→

ε→0+
0. (4.121)

Since

ε2u̇ε(t) = ε2u1
ε + ε2

∫ t

0
üε(τ)dτ for every t ∈ [0, 2T ],

(4.43) and (4.121) imply

ε2u̇ε
L2(0,2T ;V ′0)
−−−−−−−→

ε→0+
0. (4.122)
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By (4.119) and (4.122) there exists a sequence εj −→ 0+ such that for a.e. t ∈ [0, 2T ] we have

uεj (t)
V−−−−→

j→+∞
u0(t) and ε2

j u̇εj (t)
V ′0−−−−→

j→+∞
0. (4.123)

We choose T0 ∈ (T, 2T ) such that (4.123) holds at t = T0. This implies

ε2
j (u̇εj (T0), uεj (T0)) = 〈ε2

j u̇εj (T0), uεj (T0)〉 −−−−→
j→+∞

0. (4.124)

Since zε = 0 for a.e. t ∈ [0, T0] we can use uε(t) ∈ V0 as test function in (4.9). Then we
integrate by parts in time on the interval (0, T0) to obtain

−ε2
j

∫ T0

0
‖u̇εj (t)‖2dt+

∫ T0

0
(Aeuεj (t), euεj (t))dt+

∫ T0

0
(B(euεj (t)− wεj (t)), euεj (t))dt

=

∫ T0

0
(fεj (t), uεj (t))dt+

∫ T0

0
〈gεj (t), uεj (t)〉dt− ε2

j (u̇εj (T0), uεj (T0)) + ε2
j (u

0
εj , u

1
εj ).

Thanks to (4.36), (4.43), (4.118), (4.119), (4.120), and (4.124) the first term on the left-hand
side of the previous equation tends to 0 as j → +∞. Since T0 > T we have

ε2
j

∫ T

0
‖u̇εj (t)‖2dt −−−−→

j→+∞
0.

By the arbitrariness of the sequence {εj}j we have

ε2

∫ T

0
‖u̇ε(t)‖2dt −−−−→

ε→0+
0,

which concludes the proof.

We now use Theorems 4.5.2 and 4.5.3 to obtain (4.39) and (4.40) under the assumptions
of Theorem 4.2.6.

Theorem 4.5.4. Let us assume (H1)–(H3). Let uε be the solution to the viscoelastic dynamic
system (4.8) and let u0 be the solution to the stationary problem (4.36). Then (4.39) and
(4.40) hold.

Proof. Thanks to Lemma 4.2.9 we can suppose z = 0 and zε = 0 for every ε > 0. Let pε be
defined by (4.11). Since zε = 0, by Remark 4.1.3 the function uε solves (4.12) with hε = fε,
`ε = gε − pε, v0

ε = uε,in(0), and v1
ε = u̇ε,in(0). To obtain (4.39) and (4.40) we cannot apply

Theorems 4.5.2 and 4.5.3 directly, because {pε}ε does not converge to 0 in W 1,1(0, T ;V ′0) as
ε→ 0+ and, in general, pε /∈ L2(0, T ;H).

To overcome this difficulty we construct a family {qε}ε ⊂ H1(0, T ;H) such that the norm
‖qε − pε‖W 1,1(0,T ;V ′0) is uniformly small and qε → 0 strongly in L2(0, T ;H) as ε→ 0+. Then
we can apply Theorems 4.5.2 and 4.5.3 to the solutions vε to (4.12) with pε replaced by qε,
obtaining that vε → u0 strongly in L2(0, T ;V ) and εv̇ε → 0 strongly in L2(0, T ;H). Finally,
we show that ‖vε − uε‖L2(0,T ;V ) and ε‖v̇ε − u̇ε‖L2(0,T ;H) are small uniformly with respect to
ε, and this leads to the proof of (4.39) and (4.40).

To construct qε we consider g0
ε introduced in (4.11) and we define

g̃0
ε :=

∫ 0

−∞

1

βε
e
τ
βε div(Beu0,in(τ))dτ = (ρε ∗ div(Beu0,in))(0),

where ρε is defined by (4.50). By (H3) we get div(Beu0,in) ∈ C0((−∞, 0];V ′0), hence the
properties of convolutions imply

g̃0
ε

V ′0−−−−→
ε→0+

g0 := div(Beu0,in(0)). (4.125)
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Since

‖g0
ε − g̃0

ε‖V ′0 ≤
∫ −a
−∞

1

βε
e
τ
βε ‖ div(B(euε,in(τ))‖V ′0dτ

+

∫ −a
−∞

1

βε
e
τ
βε ‖ div(B(eu0,in(τ))‖V ′0dτ

+ ‖div(B(euε,in − eu0,in))‖L∞(−a,0;V ′0),

thanks to (H3) we have g0
ε − g̃0

ε → 0 strongly in V ′0 as ε→ 0+, hence (4.125) implies

g0
ε

V ′0−−−−→
ε→0+

g0. (4.126)

Let us fix δ > 0. By the density of H in V ′0 we can find h0 ∈ H such that ‖h0−g0‖V ′0 < δ.

By (4.126) there exists ε0 = ε0(δ) ∈ (0, 1
β ) such that

‖h0 − g0
ε‖V ′0 < δ for every ε ∈ (0, ε0). (4.127)

Let qε ∈ H1(0, T ;H) be defined by qε(t) := e
− t
βεh0 for every t ∈ [0, T ]. Then

qε
L2(0,T ;H)−−−−−−→
ε→0+

0. (4.128)

Since pε(t) = e
− t
βε g0

ε , by (4.127) we have also

‖qε − pε‖W 1,1(0,T ;V ′0) ≤ (βε+ 1)‖h0 − g0
ε‖V ′0 ≤ 2δ for every ε ∈ (0, ε0). (4.129)

Let vε be the solution to (4.12) with hε = fε−qε, `ε = gε, v
0
ε = uε,in(0), and v1

ε = u̇ε,in(0).
By (H1) and (4.128) we have

fε − qε
L2(0,T ;H)−−−−−−→
ε→0+

f and gε
W 1,1(0,T ;V ′0)
−−−−−−−−→

ε→0+
g.

By (H3) we have

uε,in(0)
V−−−−→

ε→0+
u0,in(0) and εu̇ε,in(0)

H−−−−→
ε→0+

0.

Therefore we can apply Theorems 4.5.2 and 4.5.3 to obtain

vε
L2(0,T ;V )−−−−−−→
ε→0+

u0 and εv̇ε
L2(0,T ;H)−−−−−−→
ε→0+

0. (4.130)

To estimate the difference vε−uε we observe that it solves (4.12) with hε = 0, `ε = pε−qε,
v0
ε = 0, and v1

ε = 0. Therefore, by Lemma 4.2.8 and (4.129) we have

ε2‖v̇ε − u̇ε‖2L2(0,T ;H) + ‖vε − uε‖2L2(0,T ;V ) ≤ CE‖qε − pε‖
2
W 1,1(0,T ;V ′0) ≤ 4CEδ

2. (4.131)

Since by (4.131)

‖uε − u0‖L2(0,T ;V ) ≤ ‖uε − vε‖L2(0,T ;V ) + ‖vε − u0‖L2(0,T ;V ) ≤ ‖vε − u0‖L2(0,T ;V ) + 2
√
CEδ,

ε‖u̇ε‖L2(0,T ;H) ≤ ε‖u̇ε − v̇ε‖L2(0,T ;H) + ε‖v̇ε‖L2(0,T ;H) ≤ ε‖v̇ε‖L2(0,T ;H) + 2
√
CEδ,

thanks to (4.130) we have

lim sup
ε→0+

‖uε − u0‖L2(0,T ;V ) ≤ 2
√
CEδ and lim sup

ε→0+
ε‖u̇ε‖L2(0,T ;H) ≤ 2

√
CEδ.

By the arbitrariness of δ > 0 we obtain (4.39) and (4.40), which concludes the proof.
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4.6 The local uniform convergence

In this section we shall prove (4.41) under the assumptions of Theorems 4.2.6 and 4.2.7. The
proof is based on the following lemma.

Lemma 4.6.1. Let {`ε}ε ⊂ H1(0, T ;V ′0) and ` ∈W 1,1(0, T ;V ′0) be such that

`ε
W 1,1(η,T ;V ′0)
−−−−−−−−→

ε→0+
` for every η ∈ (0, T ). (4.132)

Let vε be a solution to the viscoelastic dynamic system (4.12) with hε = 0 and arbitrary
initial data. Moreover, let v0 be the solution to the stationary problem (4.37) with h = 0. We
assume that

vε
L2(0,T ;V )−−−−−−→
ε→0+

v0, and εv̇ε
L2(0,T ;H)−−−−−−→
ε→0+

0. (4.133)

Then

vε
L∞(η,T ;V )−−−−−−−→
ε→0+

v0 and εv̇ε
L∞(η,T ;H)−−−−−−−→
ε→0+

0 for every η ∈ (0, T ). (4.134)

Proof. We divide the proof into two steps.

Step 1. Let us assume `ε = ` ∈ H2(0, T ;V ′0) for every ε > 0. By Lemma 4.2.4 (with
z = 0) we have v0 ∈ H2(0, T ;V ), hence recalling (4.37) we get

ε2v̈0(t)− div((A + B)ev0(t)) +

∫ t

0

1

βε
e
− t−τ

βε div(Bev0(τ))dτ

= ε2v̈0(t) + `(t)− div(Bev0(t)) +

∫ t

0

1

βε
e
− t−τ

βε div(Bev0(τ)) for a.e. t ∈ [0, T ]. (4.135)

Now we define v̄ε := vε − v0 and observe that by (4.133) we have

v̄ε
L2(0,T ;V )−−−−−−→
ε→0+

0 and ε ˙̄vε
L2(0,T ;H)−−−−−−→
ε→0+

0. (4.136)

Let us consider

qε(t) := div(Bev0(t))−
∫ t

0

1

βε
e
− t−τ

βε div(Bev0(τ))dτ.

Since vε satisfies (4.12) with hε = 0, by (4.135) the function v̄ε satisfies (4.12) with hε = −ε2v̈0

and `ε = qε. After two integrations by parts in time we deduce∫ t

0

1

βε
e
− t−τ

βε div(Bev0(τ))dτ = div(Bev0(t))− e
− t
βε div(Bev0(0))− βεdiv(Bev̇0(t))

+ βεe
− t
βε div(Bev̇0(0)) + βε

∫ t

0
e
− t−τ

βε div(Bev̈0(τ))dτ,

hence

qε
W 1,1(η,T ;V ′0)
−−−−−−−−→

ε→0+
0 for every η ∈ (0, T ). (4.137)

Now we fix δ ∈ (0, T ), and we consider η ∈ (0, δ) and ζ ∈ (η, δ). We define the family of
functions {w̄ε}ε ⊂ H1(0, T ;H) by

w̄ε(t) :=

∫ t

0

1

βε
e
− t−τ

βε ev̄ε(τ)dτ = (ρε ∗ ev̄ε)(t) for every t ∈ [0, T ],

where ρε is defined by (4.50) and v̄ε is extended to R by setting v̄ε(t) = 0 on R \ [0, T ]. By
properties of convolutions we have

ev̄ε − w̄ε
L2(0,T ;H)−−−−−−→
ε→0+

0. (4.138)
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By the energy-dissipation balance (4.24) of Proposition 4.1.7, for every t ∈ [η, T ] and
s ∈ (η, ζ) we can write

ε2

2
‖ ˙̄vε(t)‖2 +

1

2
(Aev̄ε(t), ev̄ε(t)) +

1

2
(B(ev̄ε(t)− w̄ε(t), ev̄ε(t)− w̄ε(t))

+ βε

∫ t

s
(B ˙̄wε(τ), ˙̄wε(τ))dτ =

ε2

2
‖ ˙̄vε(s)‖2 +

1

2
(Aev̄ε(s), ev̄ε(s))

+
1

2
(B(ev̄ε(s)− w̄ε(s), ev̄ε(s)− w̄ε(s)) + Wε(t, s), (4.139)

where the work is defined by

Wε(t, s) = 〈qε(t), v̄ε(t)〉 − 〈qε(s), v̄ε(s)〉 −
∫ t

s
〈q̇ε(τ), v̄ε(τ)〉dτ − ε

∫ t

s
(v̈0(τ), ε ˙̄vε(τ))dτ.

Now we take the mean value with respect to s of all terms of (4.139) on (η, ζ), and we pass
to the supremum with respect to t on [η, T ]. Thanks to (4.2) and (4.5) we deduce

ε2

2
‖ ˙̄vε‖2L∞(η,T ;H) +

cA
2(C2

P + 1)
‖v̄ε‖2L∞(η,T ;V ) ≤

ε2

2
−
∫ ζ

η
‖ ˙̄vε(s)‖2ds+

CA
2
−
∫ ζ

η
‖v̄ε(s)‖2V ds

+
CB
2
−
∫ ζ

η
‖ev̄ε(s)− w̄ε(s)‖2ds+−

∫ ζ

η
sup
t∈[η,T ]

|Wε(t, s)|ds. (4.140)

Notice that for every s ∈ (η, ζ) we have

sup
t∈[η,T ]

|Wε(t, s)| ≤
(
3 + 2

T

)
‖qε‖W 1,1(η,T ;V ′0)‖v̄ε‖L∞(η,T ;V ) + ε‖v̈0‖L1(η,T ;H)‖ε ˙̄vε‖L∞(η,T ;H),

hence thanks to the Young Inequality and (4.140) there exists a positive constant C =
C(A,B,Ω, T ) such that

ε2‖ ˙̄vε‖2L∞(η,T ;H) + ‖v̄ε‖2L∞(η,T ;V ) ≤ C
(
ε2−
∫ ζ

η
‖ ˙̄vε(s)‖2ds+−

∫ ζ

η
‖v̄ε(s)‖2V ds

+−
∫ ζ

η
‖ev̄ε(s)− w̄ε(s)‖2ds+ ‖qε‖2W 1,1(η,T ;V ′0) + ε2‖v̈0‖2L1(η,T ;H)

)
. (4.141)

By passing to the limit in (4.141) as ε → 0+, thanks to (4.136), (4.137), and (4.138) we
obtain

ε‖v̇ε − v̇0‖L∞(η,T ;H) + ‖vε − v0‖L∞(η,T ;V ) = ε‖ ˙̄vε‖L∞(η,T ;H) + ‖v̄ε‖L∞(η,T ;V ) −−−−→
ε→0+

0,

which concludes the proof of (4.134) in the case ` ∈ H2(0, T ;V ′0).

Step 2. In the general case ` ∈W 1,1(0, T ;V ′0) we use an approximation argument. Given
δ > 0, by Lemma 4.3.3 there exists a function ψ ∈ H2(0, T ;H) such that

‖ψ − `‖W 1,1(0,T ;V ′0) < δ. (4.142)

Thanks to (4.132) for every σ ∈ (0, T ) there exists a positive number ε0 = ε0(δ, σ) such that

‖ψ − `ε‖W 1,1(σ,T ;V ′0) < δ for every ε ∈ (0, ε0). (4.143)

Let ṽε be the solution to (4.12) in the interval [σ, T ] with hε = 0, `ε = ψ, ṽε(σ) = vε(σ), and
˙̃vε(σ) = v̇ε(σ), and let ṽ0 be the solution to (4.37) in the interval [0, T ] with h = 0 and ` = ψ.
By applying Step 1 in the interval [σ, T ] we obtain

ṽε
L∞(η,T ;V )−−−−−−−→
ε→0+

ṽ0 and ε ˙̃vε
L∞(η,T ;H)−−−−−−−→
ε→0+

0 for every η ∈ (σ, T ). (4.144)
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We set v̄0 := ṽ0 − v0 and v̄ε := ṽε − vε. We observe that v̄0 is the solution to (4.37) with
h = 0 and ` replaced by ψ − `, hence by the Lax-Milgram Lemma we get

‖v̄0‖L∞(0,T ;V ) ≤
C2
P+1
cA
‖ψ − `‖L∞(0,T ;V ′0) ≤

C2
P+1
cA

(1 + 1
T )‖ψ − `‖W 1,1(0,T ;V ′0). (4.145)

Moreover, v̄ε is the solution to (4.12) in the interval [σ, T ] with hε = 0, `ε replaced by ψ− `ε,
and homogeneous initial conditions. Thanks to Lemma 4.2.8 we obtain

ε‖ ˙̄vε‖2L∞(σ,T ;H) + ‖v̄ε‖2L∞(σ,T ;V ) ≤ CE‖ψ − `ε‖
2
W 1,1(σ,T ;V ′0). (4.146)

By combining (4.142), (4.143), (4.145), and (4.146), we can find a positive constant C =
C(A,B,Ω, T ) such that

ε‖ ˙̄vε‖L∞(σ,T ;H) + ‖v̄ε‖L∞(σ,T ;V ) + ‖v̄0‖L∞(σ,T ;V ) ≤ Cδ. (4.147)

Since for every η ∈ (σ, T ) we have

‖vε − v0‖L∞(η,T ;V ) ≤ ‖v̄ε‖L∞(η,T ;V ) + ‖ṽε − ṽ0‖L∞(η,T ;V ) + ‖v̄0‖L∞(η,T ;V ),

ε‖v̇ε‖L∞(η,T ;H) ≤ ε‖ ˙̄vε‖L∞(η,T ;H) + ε‖ ˙̃vε‖L∞(η,T ;H),

thanks to (4.144) and (4.147) we obtain

lim sup
ε→0+

‖vε − v0‖L∞(η,T ;V ) ≤ Cδ and lim sup
ε→0+

‖εv̇ε‖L∞(η,T ;H) ≤ Cδ,

for every η ∈ (σ, T ). By the arbitrariness of δ > 0 and σ > 0 we conclude.

Now we are in position to prove (4.41).

Theorem 4.6.2. Let us assume (H1), (H2), (4.43), and fε = 0 for every ε > 0. Let uε be
the solution to the viscoelastic dynamic system (4.9), with ϕε = 0 and γε = gε, and let u0 be
the solution to the stationary problem (4.36), with f = 0. Then (4.41) holds.

Proof. By Theorems 4.5.2 and 4.5.3 we obtain (4.39) and (4.40). Since gε → g strongly in
W 1,1(0, T ;V ′0) as ε→ 0+ by (H1) and fε = 0, we can apply Lemma 4.6.1 to conclude.

Theorem 4.6.3. Let us assume (H1)–(H3) and fε = 0 for every ε > 0. Let uε be the solution
to the viscoelastic dynamic system (4.8) and let u0 be the solution to the stationary problem
(4.36), with f = 0. Then (4.41) holds.

Proof. Thanks to Lemma 4.2.9 we can suppose z = 0 and zε = 0 for every ε > 0. By Theorem
4.5.4 we obtain (4.39) and (4.40). Since uε is a solution to (4.8) with fε = 0, by Remark 4.1.3
it solves (4.12) with hε = 0 and `ε = gε − pε, where pε is defined by (4.11). Since

gε − pε
W 1,1(η,T ;V ′0)
−−−−−−−−→

ε→0+
g for every η ∈ (0, T ),

we can apply Lemma 4.6.1 to conclude.

Finally we can prove Theorems 4.2.6 and 4.2.7.

Proof of Theorem 4.2.6. It is enough to combine Theorems 4.3.1, 4.5.4, and 4.6.3.

Proof of Theorem 4.2.7. It is enough to combine Theorems 4.5.2, 4.5.3, and 4.6.2.
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4.7 Appendix

Throughout this section we fix a0 > 0, b0 > 0, and c1 ≥ c0 > 1. For every a, b with

c0a ≤ b ≤ c1a, b ≥ b0, a ≥ a0, (4.148)

we consider the polynomial p(z) := βz3 + z2 + βbz + a depending on the complex variable z.
The following result about the roots of this polynomial is used in the proof of Lemma 4.4.2
and Proposition 4.4.4.

Lemma 4.7.1. There exists a positive constant α = α(β, a0, b0, c0, c1) such that, for every
a, b ∈ R satisfying (4.148), the roots of the polynomial p have real parts in the interval
(− 1

β ,−α).

Proof. Let us set z := x+ iy with x, y ∈ R. Then p(z) = 0 if and only if{
βx3 + x2 + βbx− (3βx+ 1)y2 + a = 0,

y(−βy2 + 3βx2 + 2x+ βb) = 0,

from which we derive {
q(x) := βx3 + x2 + βbx+ a = 0,

y = 0,
(4.149)

{
r(x) := 8βx3 + 8x2 + 2

(
1
β + βb

)
x+ b− a = 0,

y2 = 3x2 + 2
βx+ b.

(4.150)

By recalling a > 0 and b− a ≥ (c0− 1)a > 0, for every x ≥ 0 we have q(x) > 0 and r(x) > 0,
and so the real part of the roots cannot be positive or zero. Moreover, since for every x ≤ − 1

β

we have βx3 + x2 ≤ 0, we obtain

q(x) ≤ −b+ a ≤ (1− c0)a < 0 and r(x) ≤ b− a− 2
(

1
β2 + b

)
= −b− a− 2

β2 < 0,

which imply that the real part of the roots does not belong to (−∞,− 1
β ]. Therefore, by

calling z1, z2, z3 ∈ C the three roots of the polynomial p, we can say

<(zi) ∈ (− 1
β , 0) for i = 1, 2, 3. (4.151)

Case 1: there is only one real root. In this case by (4.150) there exists a unique
x1 ∈ (− 1

β , 0) which satisfies r(x1) = 0 and 3x2
1 + 2

βx1 + b > 0. Indeed by setting y1 :=√
3x2

1 + 2
βx1 + b we obtain that x1 + iy1 and x1 − iy1 are two distinct non-real roots of p.

Since

r(− 1
2β ) = − 1

β2 + 2
β2 − 1

β2 − b+ b− a = −a < 0,

r(− β(b−a)
2(bβ2+1)

) = β2(b−a)2((a+b)β2+2)
(bβ2+1)3

> 0,

then x1 ∈ (− 1
2β ,−

β(b−a)
2(bβ2+1)

). Moreover

q(− 1
β ) = − 1

β2 + 1
β2 − b+ a = −b+ a < 0,

q(− a
βb) = − a3

b3β2 + a2

b2β2 − a+ a = a2(b−a)
b3β2 > 0,
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hence there exists x0 ∈ (− 1
β ,−

a
βb) such that q(x0) = 0. As a consequence of this, (x0, 0)

satisfies (4.149), which implies that x0 is the real root of p, hence we have

<(zi) ∈ (− 1

β
,max{− a

βb
,− β(b− a)

2 (bβ2 + 1)
}).

Thanks to (4.148) we can say − a
βb ≤ −

1
c1β

and − β(b−a)
2(bβ2+1)

≤ β(1−c0)a
2(c1aβ2+1)

≤ β(1−c0)a0
2(c1a0β2+1)

, where

in the last inequality we use the decreasing property of the function a 7→ β(1−c0)a
2(c1aβ2+1)

. This

implies
<(zi) ∈ (− 1

β ,max{− 1
c1β
, β(1−c0)a0

2(c1a0β2+1)
}) for i = 1, 2, 3. (4.152)

Case 2: there are only real roots. In this case we have b ≤ 1
3β2 , otherwise q′(x) > 0 for

every x ∈ R, which forces p to have also non-real roots. Thanks to (4.148) we have also
a < b ≤ 1

3β2 . By setting b̃0 := 1−
√

1− 3b0β2, we can write

−b̃0a0β ≥ −b̃0aβ ≥ −(1−
√

1− 3bβ2)aβ >
−1+
√

1−3bβ2

3β > − 1
β ,

which implies
q′(x) > 0 for every x ∈ [−b̃0a0β,+∞). (4.153)

Since

q(−b̃0a0β) ≥ β2b̃20a
2
0(1− β2b̃0a0) + a0(1− β2b̃0b) > a0(1 + β2b̃20a0)(1− β2b̃0b) > 0,

thanks to (4.148), (4.151), and (4.153) we get

<(zi) ∈ (− 1
β ,−b̃0a0β), for i = 1, 2, 3. (4.154)

By combining (4.152) and (4.154), we obtain the conclusion with

α := min{b̃0a0β,
1

c1β
,
β(c0 − 1)a0

2 (c1a0β2 + 1)
}.

The following easy estimate is used in the proof of Lemma 4.4.2.

Lemma 4.7.2. For every z, w ∈ C with <(z) > 0 and <(w) < 0 the following inequality
holds:

|(z − w)(z − w̄)| ≥ |<(w)||=(w)|.

Proof. Without loss of generality we can suppose =(w) > 0, otherwise we exchange the role
of w with w̄. If =(z) > 0, then

|z − w| ≥ |<(z − w)| = |<(z) + <(−w)| = <(z) + <(−w) ≥ |<(w)|,
|z − w̄| ≥ |=(z − w̄)| = |=(z) + =(w)| = =(z) + =(w) ≥ |=(w)|,

which give the conclusion in this case. If =(z) < 0, then

|z − w| ≥ |=(z − w)| = | − =(−z)−=(w)| = =(−z) + =(w) ≥ |=(w)|,
|z − w̄| ≥ |<(z − w̄)| = |<(z) + <(−w)| = <(z) + <(−w) ≥ |<(w)|,

which conclude the proof.
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Springer Berlin Heidelberg, 1961.

[34] J.L. Lions and E. Magenes: Non-Homogeneous Boundary-Value Problems and Ap-
plications. Vol. 1 181, Springer-Verlag, 1972.

[35] F. Mainardi: Fractional calculus and waves in linear viscoelasticity. Imperial College
Press, London, 2010.

[36] N.F. Mott: Brittle fracture in mild steel plates, Engineering 165 (1948), 16–18.

[37] L. Nardini: A note on the convergence of singularly perturbed second order potential-
type equations, J. Dynam. Differential Equations 29 (2017), 783–707.
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