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Introduction

This thesis is devoted to the study of some dynamic viscoelastic models in domains with
prescribed growing cracks. From the mathematical point of view, the study of these models,
with prescribed growing cracks, is the first step to the study of Fracture Mechanics in which
the evolution of the crack is unknown (see for example [6, 13, 16, 38, 48]).

Let T and d be a positive real number and a natural number. Let @ C R? be an
open bounded set with Lipschitz boundary, which represents the reference configuration of
the viscoelastic material, and I' C Q a (d — 1)-dimensional closed set, which describes the
prescribed path of the crack. We consider {I'; }4¢[o,7] a family of closed subsets of I' increasing
in time with respect to the inclusion, which represents the evolution of the crack, and finally
let u(t): Q\ Ty — R be the displacement. In this setting, the displacement u solves the
following system out of the crack

i(t) — div(e(t) = f(t)  inQ\Ty, tel0,T] (1)

with some prescribed boundary and initial conditions. Here f is the loading term and o is
the stress tensor, which in our models can linearly depend on both the strain eu := M
and its first derivative in time e.

Some materials, or materials under some conditions, exhibit a time-dependent response to
a given stress or strain, and this can be caused by a change in the properties of the material
and by viscosity. In the literature we can find two different classes of viscoelastic materials:
materials with short memory and materials with long memory. The term short memory refers
to a material in which the state of the stress at the instant ¢ only depends on the strain at
that instant, and in the first chapter we analyze a local model in time whose stress-strain
dependence is the following

o(t) := Aeu(t) + U2 (t)Beu(t) in Q\Iy, tel0,T], (2)

where W is a suitable function, A and B are the elastic and the viscous tensors. On the
contrary, the term long memory refers to a material in which the state of the stress at the
instant ¢ depends also on the past history of the strain up to time ¢, and in the other chapters
of the thesis we deal with non-local models in time whose stress-strain dependences are the
following

o(t) == (A+B)eu(t) — /too ;etﬁTBeu(T)dT in Q\Iy, te(—o00,T], (3)
o(t) := Aeu(t) + (?t/o F(t — 7)(eu(r) — eu(0))dr in Q\ Iy, tel0,T], (4)

where 1
F(t) :== p(t)B, p(t) := T = a) te[0,1], (5)

I' is Euler’s Gamma Function, 5 > 0, and « € (0, 1).
The contents of the thesis are organized into four chapters.

vii



viii Introduction

Chapter 1: A dynamic model for viscoelastic materials with growing cracks

In the theory of Dynamic Fracture, the deformation of an elastic material evolves according
to the elastodynamics system, while the evolution of the crack follows Griffith’s dynamic
criterion, see [36]. This principle, originally formulated in [27] for the quasistatic setting,
states that there is an exact balance between the energy released during the evolution and
the energy used to increase the crack, which is postulated to be proportional to the area
increment of the crack itself.

The elastodynamics system leads to (1) with o(t) = Aeu(t). In this case, Griffith’s
dynamic criterion reads

E(t) +HIH T, \ To) = £(0) + work of external forces,

where £(t) is the total energy at time ¢, given by the sum of the kinetic and the elastic energy,
and H%! is the (d — 1)-dimensional Hausdorff measure.

When we want to take into account the viscoelastic properties of the material, Kelvin-
Voigt’s model is the most common local model in time. If no crack is present, this leads to
the damped system

i(t) — div(Aeu(t)) — div(Beu(t)) = f(t) inQ, tel0,T). (6)

As it is well-known, the solutions to (6) satisfy the energy-dissipation balance
t
E(t) + / / Beu(r, x) - eu(r,x) de dr = £(0) + work of external forces. (7)
0 JQ
When we consider a crack in a viscoelastic material, Griffith’s dynamic criterion becomes
t
E(t) +HIHT \ To) —I—/ / Beu (T, z) - et(r, z) dedr = £(0) + work of external forces. (8)
0 Jo

For a prescribed crack evolution, this model was already considered by [13] in the antiplane
case, and more in general by [48] for the vector-valued case. As proved in the quoted papers,
the solutions to (6) on a domain with a prescribed time-dependent crack, i.e., with € replaced
by Q \ Iy, satisfy (7) for every time. This equality implies that (8) cannot be satisfied
unless I'y = Iy for every t. This phenomenon was already well-known in Mechanics as the
Viscoelastic Paradox, see for instance [47, Chapter 7].

To overcome this problem, in [7] which is a joint work with M. Caponi, we modify Kelvin-
Voigt’s model by considering a possibly degenerate viscosity term depending on ¢ and z.
More precisely, we study system (1) with the stress-strain dependence (2), i.e.

i(t) — div(Aeu(t)) — div(P2()Bea(t)) = f(t) i Q\Ty, ¢e[0,T]. (9)

On the function ¥ we only require some regularity assumptions (see (1.7)); a particularly
interesting case is when W(t) assumes the value zero on some points of 2, which means that
the material is purely elastic in such a zone.

The main result of this chapter is Theorem 1.2.1, in which we show the existence of a
weak solution to (9). To this aim, we first perform a time discretization in the same spirit
of [13], and then we pass to the limit as the time step goes to zero by relying on energy
estimates; as a byproduct, we obtain the energy-dissipation inequality (1.39). By using the
change of variables method implemented in [16, 38], we also prove a uniqueness result, but
only in dimension d = 2 and when ¥(¢) vanishes on a neighborhood of the tip of I';.

We complete our work by providing an example in d = 2 of a weak solution to (9) for
which the fracture can grow while balancing the energy. More precisely, when the crack I'y
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moves with constant speed along the x;-axis and W(t) is zero in a neighborhood of the crack
tip, we construct a function u which solves (9) and satisfies

t
E(t) + (T4 \ To) + / / ¥ (r, 2) *Bei(r, 2) - ei(r, ) dz dr
0 Jo
= £(0) + work of external forces. (10)

Notice that this is the natural extension of Griffith’s dynamic criterion (8) to this setting.

Chapter 2: A dynamic model with memory for viscoelasticity in domains
with time-dependent cracks

In this chapter we study the dynamic evolution of viscoelastic materials with long memory in
domains with prescribed growing cracks. When no crack is present, important contributions
in the theory of linear viscoelasticity are due to such scientists as Maxwell, Kelvin, and Voigt.
Boltzmann was the first to develop a three-dimensional theory of isotropic viscoelasticity in
[5], and later Volterra in [49] obtained similar results for anisotropic solids.

As you can find in [24] and [25], in the case of viscoelastic materials with long memory
the general stress-strain dependence is the following

o(t) := G(0)Vu(t) + /_t G(t — 7)Vu(r)dr inQ, te(—o0,T],

for a suitable choice of the memory kernel GG, and with some prescribed boundary and initial
conditions. In particular, in the case of Maxwell’s model the kernel G has an exponential form
(see for example [47]), hence the displacement u satisfies (1) with the stress-strain dependence
(3), i.e.

i(t) — div((A + B)eu(t)) + /t ;e_tl; div(Beu(r))dr = £(t) inQ, tel0,7], (11)

— 00

where § > 0 is a material constant, and £(t) is the external loading term at time ¢. As in
[12, 24], we suppose that the past history of the displacement up to time 0 is already known,
hence we have the following boundary and initial conditions

u(t) = z(t) on 99, tel0,7T], (12)
u(t) = upmp(t)  inQ, te(—o0,0], (13)

where z and wu;, are prescribed functions, the latter representing the history of the displace-
ment for ¢t < 0.

In this chapter, we consider Maxwell’s model in the context of fractures and when the
crack evolution t — T'; is prescribed. In this case, the displacement u satisfies (11) on the
cracked domains Q \ T';. Thanks to (13) it is convenient to write system (11) as

t—

ii(t) — div((A + B)eu(t)) + /O ;e_ﬁT div(Beu(r))dr

e

={(t) — /0 ;e_tg div(Bew;, (7))dr in Q\I'y, te€[0,7]. (14)

The main results of this chapter are Theorems 2.2.1 and 2.3.3, in which we prove, by two
different methods, the existence of a solution to (14).

The first method, considered in Theorem 2.2.1, is based on a generalization of Lax-
Milgram’s Theorem ([33, Chapter 3, Theorem 1.1]). We follow the lines of the proof of
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Theorem 2.1 in [11]. In doing so, the main difficulty is given by the fact that the set Q\ I',
where the system (14) holds, depends on time. This requires the introduction of suitable
function spaces used to adapt the proof in [11].

The second method, provided by Theorem 2.3.3, is based on a time discretization scheme
that yields a solution which, in addition, satisfies the energy-dissipation inequality (2.132).
This procedure, adopted in [13] for the wave equation in a time-dependent domain, consists
of the following steps: time discretization, construction of an approximate solution, discrete
energy estimates, and passage to the limit.

The main difficulty in applying this procedure, in the same way it was done in [13], is
the identification of the term in the energy-dissipation inequality which corresponds to the
non-local in time viscous term fot %efTT]B%eu(T)dT appearing in (14).

0

To fix this issue, given w” we introduce the auxiliary variable

—T t —T
w(t) == wde™ B —i—/ Bef%eu(T)dT in Q\I'y, te]0,T],
0

and we transform our system (14) into an equivalent coupled system (see Definition 2.3.1)
of two equations in the two variables u and w, without long memory terms, which has to
be solved on the time-dependent domain 2\ T';. The advantage of this strategy lies in the
fact that we transform a non-local model (the system in the variable u) into a local one (the
coupled system in the two variables u and w).

We discretize the time interval [0,7] by using the time step 7, := % To define the
approximate solution (uy,,wy,) at time (k+1)7,, we solve an incremental problem (see (2.94))
depending on the values of (up,w,) at times (k — 1)7,, and k7,. Since the new system has
a natural notion of energy, we also obtain a discrete energy estimate for (uy,,w,). Then,
we extend (up,wy,) to the whole interval [0, 7] by a suitable interpolation, and by using the
energy estimates together with a compactness result we pass to the limit, along a subsequence
of (upn,wy). It is now possible to prove that the limit of this subsequence of (uy,,w,) is
a solution to the coupled system, which is equivalent to our viscoelastic dynamic system
(14). As a byproduct, from the discrete energy estimates we obtain the energy-dissipation
inequality (2.132).

Chapter 3: An existence result for the fractional Kelvin-Voigt’s model on
time-dependent cracked domains

This chapter deals with the mathematical analysis of the dynamics of a different kind of
viscoelastic materials in the presence of external forces and time-dependent cracks.

In the classical theory of linear viscoelasticity, the constitutive stress-strain dependence
of the so called Kelvin-Voigt’s model is given by

o(t) = Aeu(t) + Beu(t) in Q\ Iy, tel0,T]. (15)

The local model associated to (15) has already been widely studied and we can find several
existence results in the literature; we refer to [6, 7, 13, 16, 38, 48] for existence and uniqueness
results in the pure elastodynamics case (B = 0) and in the classic Kelvin-Voigt’s one.

In recent years, materials whose constitutive equations can be described by non-local
models are of increasing interest. For solid viscoelastic materials, some experiments are
particularly in agreement with models using fractional derivative, see for example [22, 23, 46,
50] and the references therein.

In this chapter, which contains the results of [8] obtained in collaboration with M. Caponi,
we focus on the fractional Kelvin-Voigt’s model, i.e. we consider the following constitutive
stress-strain dependence

o(t) = Aeu(t) + BD{ eu(t) in Q\Iy, tel0,T],
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where Dy* denotes a fractional derivative of order o € (0,1). In the literature we can find
several definitions for the fractional derivative of a function g: (a,b) — R; here we focus on
the most used ones which are Riemann-Liouville’s derivative of order a at starting point a

oy L od [t og(n)
DE0) = g ),

and Caputo’s derivative of order « at starting point a

PSR S O
Do) = e | e i

where I' denotes Euler’s Gamma function. Notice that in order to define Caputo’s derivative
the function g must be differentiable, while this is not necessary for Riemann-Liouville’s
derivative. Given g € AC([a,b]), and t € (a,b) we have the following relation between
Riemann-Liouville’s and Caputo’s derivatives (see, e.g., [28]):

1 9(a)
I'(l—a)(t—a)>

L
"aDig(t) = GDRg(t) + (16)
In particular, when g(a) = 0, these two notions coincide. For more properties regarding these
two fractional derivatives, we refer for example to [9, 35, 41, 43] and the references therein.
In this chapter we use Caputo’s derivative, which means we consider the dynamic system

i(t) — div(Aeu(t)) — div(BCDeu(t)) = f(t)  in Q\Ty, tel0,T]. (17)

One of the qualities of this definition for the fractional derivative is that the initial conditions
can be imposed in the classical sense, see for example [35, 41]. The choice of 0 as a starting
point is due to the fact that we want to couple the dynamic system with the initial conditions
at time t = 0.

Dealing with (17) is very difficult, since in the definition of D% eu(t) we need that eu is
differentiable, which is a very strong request. Hence, we rephrase Caputo’s derivative in a
more suitable way. Thanks to (16) for g € AC([0,T]) we can write

t
SD59(0) = Fr—mr | ey — a0 ar (18)
This formulation of Caputo’s derivative is well-posed in the distributional sense also when
the function ¢ is only integrable. We point out that formula (18) can be found in the recent
literature on fractional derivatives, where it is used to define the notion of weak Caputo’s
derivative for less regular functions, see for example [21, 32].

Thanks to formula (18), we can write system (17) in a weaker form (see Definition 3.1.2)
as (1) with the stress-strain dependence (4), i.e.

ii(t) — div (Aeu(tﬂ—% /O F(t—7)(eu(r) —eu(0))dr) = /(1) i Q\Ly, ¢€[0.7), (19)

where F is defined by (5). Notice that the scalar function p appearing in F is positive,
decreasing, and convex on (0,00). Moreover, p € L'(0,7T) for every T > 0, but it is not
bounded on (0, 7). In particular, we cannot compute the derivative in front of the convolution
integral in (19).

In the literature we can find several existence and uniqueness results for fractional type
systems related to (19), but only when  is a smooth domain without cracks. For example
in [10] the authors studied an integral version of (19) with eu replaced by Vu, and in [4, 29, 40]
other fractional viscoelastic models are considered and the existence of solutions is obtained
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via Laplace’s transform. In the case of prescribed fracture there are no existence results for
the problem (19), since most of the previous techniques fail because the set Q\ T’y is irregular
and time-dependent.

To prove the existence of a solution to (19) we proceed into two steps, taking inspiration
from [10]. First we consider a regularized version of (19), where we replace the kernel F by a
regular kernel G € C?([0,T]). Then we prove the existence of a solution to the more regular
system

ii(t) — div (Aeu(t)—i—% /O G(t—)(eu(r) —eu(0))dr) = f(t) i Q\Ly, e [0,T], (20)

and we show that this solution satisfies a uniform bound depending on the L'-norm of G.
Finally, we consider a sequence of regular tensors G° converging to IF in L' and we take the
solutions to (20) with G := G°. By a compactness argument, we show that the sequence u®
converge to a function u* which solves (19). Moreover, we prove that this solution satisfies
an energy-dissipation inequality. We conclude this chapter by showing that, when the crack
is not moving, the fractional Kelvin-Voigt’s system (19) admits a unique solution.

Chapter 4: Quasistatic limit of a dynamic viscoelastic model with memory

In this chapter we consider a domain without cracks and we study a different problem for the
viscoelastic model with memory (11)-(13) of Chapter 2: the quasistatic limit. The results of
this chapter are obtained in collaboration with Prof. G. Dal Maso, see [18].

The quasistatic limit of the solutions to problem (11)-(13) means the limit of these so-
lutions when the rate of change of the data tends to zero. More precisely, given a small
parameter € > 0, we consider the solution u® of (11)—(13) corresponding to ¢(et), z(et), and
uin(et). To study the asymptotic behaviour of u¢ as e — 0% it is convenient to introduce the
rescaled solution uc(t) := u®(t/e), which turns out to be the solution of the system

t
1 _t=x
52115(25)—div((A—i—IB%)euE(t))—l—/ %e 5 div(Beu(7))dr = £(t) inQ, tel0,7], (21)
with boundary and initial conditions (12) and (13).
Under different assumptions on £(t), z(t), and w;,(t) we prove (Theorems 4.2.6 and 4.2.7)
that u.(t) converges, as € — 07, to the solution ug(t) of the stationary problem

— div(Aeup(t)) = £(t) inQ, tel0,7], (22)

with boundary condition (12).
By using just the energy-dissipation inequality, it is not difficult to prove a similar result
for the Kelvin-Voigt model, in which the viscosity term

t
_ div(Beu(t)) + / L5 div(Beu(r))dr (23)
—o0
is replaced by — div(Be(¢)). On the other hand, in the case of the equation of elastodynamics
without damping terms, i.e., when B = 0, by using the Fourier decomposition with respect to
the eigenfunctions of the operator — div(Aeu), we can easily see that the convergence of u. to
ug does not hold in general. The purpose of this paper is to prove that the non-local damping
term (23) is enough to obtain the convergence of the solutions of the evolution problems to
the solution of the stationary problem.
Our result can be considered in the framework of the study of the quasistatic limits,
i.e. the convergence of the solutions to second order evolution equations with rescaled times
towards the solutions to the corresponding stationary equations. Similar problems in finite
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dimension have been studied in [26, 1, 37, 45]. A special case involving the wave equations
on time-dependent intervals in dimension one has been studied in [31, 42]. The main novelty
of our problem is the the non-local form of the damping term, given by (23).

The main tools to prove our results are two different estimates (Lemmas 4.2.8 and 4.4.2),
related to the energy-dissipation balance (4.24) and to the elliptic system (4.80) obtained
from (21) via Laplace Transform. After a precise statement of all assumptions, more details
on the line of proof will be given after Theorem 4.2.7.
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Notation

Basic notation. The space of m x d matrices with real entries is denoted by R™*¢ and in

the case m = d, the subspace of symmetric matrices is denoted by ngxn‘f. We denote by AT
the transpose of A € R¥4 and by A%Y™ the symmetric part, namely A%Y™ := %(A + AT,
we use Id to denote the identity matrix in R%*?. The Euclidian scalar product in R? is
denoted by - and the corresponding Euclidian norm by |- |; the same notation is used also for
R™*4 We denote by a ® b € R¥*9 the tensor product between two vectors a,b € R%, and by
a®be R‘si;n‘i the symmetrized tensor product, namely the symmetric part of a ® b.

The d-dimensional Lebesgue measure in R? is denoted by £%, and the (d — 1)-dimensional
Hausdorff measure by H%~!. Given a bounded open set § with Lipschitz boundary, we denote
by v the outer unit normal vector to 02, which is defined H% !-a.e. on the boundary. We use
B,.(z) to denote the ball of radius r and center x in R?, namely B, (z) = {y € R? : |y—2| < r},
and id to denote the identity function in R?, possibly restricted to a subset.

The partial derivatives with respect to the variable x; are denoted by 0; or 0,,. Given
a function u: R? — R™, we denote its Jacobian matrix by Vu, whose components are
(Vu)ij = Oju; for i = 1,...,m and j = 1,...,d. When u: R? — RY we use eu to de-
note its symmetrized gradient, namely eu := %(Vu +vuT). Given u: R? = R, we use Au to
denote its Laplacian, which is defined as Au := Zle d?u. For a tensor field 7T': R% — R™x4,
by divT we mean its divergence with respect to rows, namely (divT); = Z?:l 0,T;; for
1=1,...,m.

Function spaces. Given two metric spaces X and Y, we use C°(X;Y) and Lip(X;Y) to
denote, respectively, the space of continuous and Lipschitz functions from X to Y. Given
an open set Q C R?, we denote by C¥(Q;R™) the space of R"™-valued functions with & con-
tinuous derivatives; we use C¥(Q; R™) and C*1(£2; R™) to denote, respectively, the subspace
of functions with compact support in €2, and of functions whose k-derivatives are Lipschitz.
For every 1 < p < oo we denote by LP(£2;R™) the Lebesgue space of p-th power integrable
functions, and by W*P(Q; R™) the Sobolev space of functions with k derivatives; for p = 2
we set HF(Q;R™) := WH2(Q; R™), and for m = 1 we omit R™ in the previous spaces. The
boundary values of a Sobolev function are always intended in the sense of traces. The scalar
product in L*(Q;R™) is denoted by (-,-)12() and the norm in LP(;R™) by || - [|1r); a

similar notation is valid for the Sobolev spaces. For simplicity, we use || - ||z (q) to denote
also the supremum norm of continuous and bounded functions.
The norm of a generic Banach space X is denoted by || - || x; when X is a Hilbert space,

we use (-,+)x to denote its scalar product. We denote by X’ the dual of X, and by (-,)x
the duality product between X’ and X. Given two Banach spaces X; and X», the space of
linear and continuous maps from X; to Xo is denoted by £ (X7; X2); given A € £ (X1; X2)
and u € X1, we write Au € X5 to denote the image of u under A.

Given an open interval (a,b) C R and 1 < p < oo, we denote by LP(a,b; X) the space
of LP functions from (a,b) to X; we use W¥*?(a,b; X) and H*(a,b; X) (for p = 2) to denote
the Sobolev space of functions from (a,b) to X with k derivatives. Given u € WP (a,b; X),
we denote by @ € LP(a,b; X) its derivative in the sense distributions. The set of functions
from [a,b] to X with k continuous derivatives is denoted by C*([a, b]; X); we use C¥(a, b; X)
to denote the subspace of functions with compact support in (a,b). The space of absolutely
continuous functions from [a,b] to X is denoted by AC([a,b]; X); we use C9([a,b]; X) to
denote the set of weakly continuous functions from [a, b] to X, namely

C0 ([a,b]; X) = {u: [a,b] = X : t + (2/,u(t))xs is continuous in [a,b] for every 2’ € X'}.

When dealing with an element u € H'(a,b; X) we always assume u to be the continuous
representative of its class. In particular, it makes sense to consider the pointwise value u(t)
for every t € [a, b].






Chapter 1

A dynamic model for viscoelastic
materials with growing cracks

The chapter is organized as follows. In Section 1.1 we fix the notation adopted throughout the
chapter, we list the main assumptions on the family of cracks {I't};c[o,7] and on the function
¥, and we specify the notion of solution to (9). In Section 1.2 we state our main existence
result (Theorem 1.2.1), which is obtained by means of a time discretization scheme. We
conclude the proof of Theorem 1.2.1 in Section 1.3, where we show the validity of the initial
conditions (1.16) and the energy-dissipation inequality (1.39). Section 1.4 deals with the
uniqueness problem. Under stronger regularity assumptions on the cracks sets, in Theorem
1.4.5 we prove the uniqueness, but only when the space dimension is d = 2. To this aim, we
assume also that the function W is zero in a neighborhood of the crack-tip. We conclude with
Section 1.5, where, in dimension d = 2 and for an antiplane evolution, we show an example
of a moving crack which satisfies the dynamic energy-dissipation balance (10).

The results presented here are obtained in collaboration with M. Caponi and are contained
in the published paper [7].

1.1 Preliminary results

Let T be a positive real number and let § C R? be a bounded open set with Lipschitz
boundary. Let Op{2 be a (possibly empty) Borel subset of 92 and let On€) be its complement.
We assume the following hypotheses on the geometry of the cracks:

(E1) T' C Qs a closed set with £4(T") = 0 and H*1(I' N 9Q) = 0;

(E2) for every = € I' there exists an open neighborhood U of x in RY such that (U N Q) \ T
is the union of two disjoint open sets U' and U~ with Lipschitz boundary:;

(E3) {T't}iepo,r) is a family of closed subsets of T' satisfying I's C I'; for every 0 < s <t < T.

Thanks (E1)-(E3) the space L%(Q\I's; R™) coincides with L?(€2;R™) for every ¢ € [0,T] and
m € N. In particular, we can extend a function u € L*(Q\T't; R™) to a function in L?(2; R™)
by setting v = 0 on I';. Moreover, the trace of u € H*(Q2\ T') is well defined on 0. Indeed,
we may find a finite number of open sets with Lipschitz boundary U; C Q\ T, j =1,...m,
such that 0Q\ (I'N9N) C UTL,0U;. Since HIH T N ON) = 0, there exists a constant C' > 0,
depending only on 2 and I, such that

lullz2(a0) < Cllullgr@\ry for every u € HY(Q\T;RY). (1.1)

Similarly, we can find a finite number of open sets U; C Q\ T, j = 1,...m, with Lipschitz
boundary, such that Q\I' = UJL,U;. By using second Korn’s inequality in each Uj (see, e.g.,

3
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[39, Theorem 2.4]) and taking the sum over j we can find a constant Cx, depending only on
Q and I', such that

HVUH%?(Q;RdXd) < CK (HU’HiQ(QJRd) + HeuHiZ(Q7Rg;7;il)> for every u € HI(Q \ F;Rd)v (12)

where eu is the symmetric part of Vu, i.e., eu = %(Vu + VuT).
For every t € [0,T] we define

Vi :={ue L} (Q\T;RY) : eu € LE(Q\ Ty; RO,

sym

Notice that in the definition of V; we are considering only the distributional gradient of u in
Q\T'; and not the one in . The set V; is a Hilbert space with respect to the following norm

lullvi := (l[ul® + lleu]®)2  for every u € V;.

To simplify our exposition, for every m € N we set H := L?(Q;R™) and Hy := L?(OnQ; R™);
we always identify the dual of H by H itself and L%(0, T; L?(£;R™)) by L?((0,T) x £;R™).

Thanks to (1.2), the space V; coincides with the usual Sobolev space H'(Q2\ T'y; R?).
Therefore, by (1.1), it makes sense to consider for every ¢ € [0, T] the set

VP :={u€V;:u=0ondpQ},

which is a Hilbert space with respect to ||-||y;. Moreover, by combining (1.2) with (1.1), we
derive also the existence of a constant Cy. > 0 such that

llullzy < Cillully  for every uw e V. (1.3)

Let AB: Q —» & (ngxrg; ngﬁg) be the elastic and viscosity tensors, which are fourth-order
tensors such that
AB € L®(Q; L (R RIXdY), (1.4)

symo —Ssym

and which satisfy for a.e. x € {2 the following properties:

A@)e & =6 A@)&, B@)& & =6 B@)&  forevery &,& € REE (1.5)
cal€)? < A(x)e-€ < Culel?, ealé]? <B(x)€ - € < Cplé]*  for every ¢ € REXS (1.6)

sym>

for some positive constants cy, cg, Ca, and Cp independent of x. Let ¥: (0,7) x Q@ — R be
a function satisfying

U e L™((0,T) xQ), V¥eL®(0,T)x QRY. (1.7)

Given f € L*(0,T;H), z € H?>(0,T; H) N H'(0,T; V), N € H'(0,T; Hy), u® € Vy with

u® — 2(0) € VP, and u! € H, we want to find a solution to the viscoelastic dynamic system

ii(t) — div(Aeu(t)) — div(P2(H)Bea(t)) = f(t) in Q\ Ty, t € (0,T), (1.8)

satisfying the following boundary and initial conditions

u(t) = z(t) on dpQ, t € (0,7), (1.9)
(Aeu(t) + W2(t)Beu(t))r = N(t) on N, t € (0,7), (1.10)
(Aeu(t) + T2 (t)Beu(t))v = 0 onTy, te(0,T), (1.11)
u(0) =", 0(0) = u! (1.12)

As usual, the Neumann boundary conditions are only formal, and their meaning will be
specified in Definition 1.1.4.
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Throughout the chapter we always assume that the family {I';},c[o 1) satisfies (E1)-(E3),
as well as A, B, U, f, z, N, u%, and u' the previous hypotheses. Let us define the following
functional spaces:

Vi={pe L*0,T;V): ¢ e L*0,T;H),p(t) € V; for a.e. t € (0,T)},
yb.— {peV:pt) e VtD for a.e. t € (0,7},
W:={ueV:UuecL*0,T;V),U(t)u(t) € V; for a.e. t € (0,T)}.

Remark 1.1.1. In the classical viscoelastic case, namely when W is identically equal to 1, the
solution u to system (1.8) has derivative u(t) € V; for a.e. t € (0,T) with et € L?(0,T; H).
For a generic ¥ we expect to have Wetw, € L?(0,T; H). Therefore W is the natural setting
where looking for a solution to (1.8). Indeed, from a distributional point of view we have
U(t)eu(t) = e(U(t)u(t)) — VE() ©u(t) in D'(Q\ Ty RED) for ae. t € (0,7),

sym
and e(¥1), VU ©u € L?(0,T; H) if u € W, thanks to (1.7).

Remark 1.1.2. The set W coincides with the space of functions u € H'(0,T; H) such that
u(t) € V4 and U(t)u(t) € V; for a.e. t € (0,T), and satisfying

T
/0 ()|, + [ ()a(t)|2,dt < co. (1.13)

This is a consequence of the strong measurability of the maps ¢ — u(t) and t — W(t)u(t)
from (0,7 into V, which gives that (1.13) is well defined and u, ¥ € L?(0,T;V). To prove
the strong measurability of these two maps, it is enough to observe that V is a separable
Hilbert space and that the maps ¢ — 4(t) and ¢ — ¥(¢)u(t) from (0,7") into V' are weakly
measurable. Indeed, for every ¢ € C°(Q2\ I'r) the maps

t— eu(t,z)p(r)dr = —/ u(t,z) © Vo(x)dz,
\I'p O\I'r

t— e(U(t,x)u(t, x))p(x)dr = —/ U(t, z)u(t,x) © Vo(x)dz
O\l O\I'r

are measurable from (0,7 into R, and C2°(Q\ I'7) is dense in L?(12).

Lemma 1.1.3. The spaces V and W are Hilbert spaces with respect to the following norms:

1
lelly = (lela o) + 1el3eorm ) for every o €V,
1

ety = (el + 1932 0.2,0) for every u € W.

Moreover, VP is a closed subspace of V.

Proof. 1t is clear that ||-||y and ||-|[y» are norms on V and W induced by scalar products. We
just have to check the completeness of such spaces with respect to these norms.

Let {¢r}r C V be a Cauchy sequence. Then, {¢x}r and {p}r are Cauchy sequences,
respectively, in L2(0,7;V) and L?(0,T; H), which are complete Hilbert spaces. Thus there
exists ¢ € L2(0,T;V) with ¢ € L?(0,T; H) such that o5, — ¢ in L2(0,T;V) and ¢ — ¢ in
L?(0,T; H). In particular there exists a subsequence {¢y, }; such that ¢y, (t) = ¢(t) in V for
a.e. t € (0,T). Since ¢y, (t) € V; for a.e. t € (0,T) we deduce that p(t) € V; for a.e. t € (0,7T).
Hence ¢ € V and ¢, — ¢ in V. With a similar argument, we can prove that VP c V is a
closed subspace.
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Let us now consider a Cauchy sequence {uy}r C W. We have that {uy}, and {Wuy}x
are Cauchy sequences, respectively, in V and L?(0,T; V), which are complete Hilbert spaces.
Thus there exist two functions v € V and w € L?*(0,T;V) such that uxy — u in V and
Wiy, — w in L2(0,T;V). Since @y, — @ in L2(0,T; H) and ¥ € L>¥((0,T) x ), we also
have that Wi — W4 in L?(0,T; H), which gives that w = Wu. Finally let us prove that
U(t)u(t) € V; for a.e. t € (0,T). By the fact that Wiy — Wi in L2(0,7T;V), there exists
a subsequence {Wiy; }; such that W(t)iy, (t) — ¥(t)u(t) in V for ae. t € (0,7). Since
U(t)ug,(t) € V; for ae. t € (0,T) we deduce that ¥(t)u(t) € V; for a.e. t € (0,7). Hence
uw € W and up, — v in W. ]

We are now in position to define a weak solution to (1.8)—(1.11).

Definition 1.1.4 (Weak solution). We say that u € W is a weak solution to system (1.8)
with boundary conditions (1.9)-(1.11) if u — z € VP and

T T T
- / (alt), p(8))dt + / (Acu(t), ep(t))dt + / (Be(W()a(t)), U (t)ep(t))dt
0 0 0

. (1.14)

T T
- / (BYY(1) @ at), U(t)ep(t))dt — / (F(8), ()t + / (N (1), (1))
0 0 0

for every ¢ € VP such that ¢(0) = p(T) = 0.

Notice that the Neumann boundary conditions (1.10) and (1.11) can be obtained from
(1.14), by using integration by parts in space, only when wu(¢) and T’y are sufficiently regular.

Remark 1.1.5. If 4 is regular enough (for example @ € L%(0,T;V) with u(t) € V; for a.e.
t €(0,T)), then we have Veu = e(V1) — V¥ ® 4. Therefore (1.14) is coherent with the strong
formulation (1.8). In particular, for a function u € W we can define

Vet == e(Vu) — VU © 0 e L2(0,T; H), (1.15)

so that equation (1.14) can be rephrased as
T T T
- [ e+ [ heutn) o+ [ @@, voepn)d
0 0 0

T T
= [0 e+ [ N0, o0)myde
0 0

for every ¢ € VP such that ¢(0) = p(T) = 0.

Definition 1.1.6 (Initial conditions). We say that u € W satisfies the initial conditions
(1.12) if

h
lim 1/ (lu(t) — w|I%, + lla(t) — a*[2)dt = 0. (1.16)
0

1.2 Existence

We now state our main existence result, whose proof will be given at the end of Section 1.3.

Theorem 1.2.1. There exists a weak solution u € W to (1.8)—(1.11) satisfying the initial
conditions u(0) = u® and 0(0) = u' in the sense of (1.16). Moreover u € Cy([0,T]; V),
u € Cy([0,T); H)NH0,T; (ViP)), and

lim u(t) =u® in V, lim a(t) =u' in H.
t—0+ t—0+t
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To prove the existence of a weak solution to (1.8)—(1.11), we use a time discretization
scheme in the same spirit of [13]. Let us fix n € N and set

T
Tn = —, U% = UO, U;l = ’LLO—Tnul.
n
We define
vE=vD, NF .= N(kr,) 2= (k) for k=0,...,n,
kT, kT k k—1
" " Ny — N,
b ::][ f(s)ds, wk ::][ U(s)ds, ONF:=—" " fork=1,...,n,
(k—1)7n (k—1)7n Tn
k_ Jk—1 § k 5 k—1
620 == 2(0), o2k = M, 622k = Pn = %n g k= L,...,n,
Tn Tn
For every k =1,...,n let uf € V, with uf — 2 € V¥ be the solution to

(6%ul v) + (Aeul, ev) + (BUEesul Wrev) = (fF,v) + (NF,v)g, for every v € VF (1.17)
where

— Suf — suk-1
(5uﬁ::M for k=0,...,n, 52uﬁ::M fork=1,...,n.
Tn Tn

The existence of a unique solution u¥ to (1.17) is an easy application of Lax-Milgram’s
theorem.

Remark 1.2.2. Since duf € Vik—1)r,» then Ukesul = e(WEuk) — VUE © | so that the

n’
discrete equation (1.17) is coherent with the weak formulation given in (1.14).

In the next lemma, we show a uniform estimate for the family {uf}?_, with respect to
n € N that will be used later to pass to the limit in the discrete equation (1.17).

Lemma 1.2.3. There exists a constant C' > 0, independent of n € N, such that
max [|6ul|| + max [leul|| + Y 7| Thedus, ||* < C. (1.18)
i=1,..,n i=1,..,n i1
Proof. We fix n € N. To simplify the notation we set
a(u,v) == (Aeu,ev), bF(u,v) := (BUFeu, UFev) for every u,v € V.
By taking as test function v = 7, (6uk — §zF) € V¥ in (1.17), for k = 1,...,n we obtain
6upll® — (Bup™", dup) + alury, uy) — aluy, upy ™) + by (Suy;, duyy) = 7 Ly,

where
Ly, o= (f}, upy — 823) + (Ny7, 0uly = 625) iy + (8%uly, 6wyy) + aluly, 6z)) + b (duly, 62)).
Thanks to the following identities
k2 bt s kv Licgne  Locgiqie e g
I6ub? — (Gul ™, 5uk) = S Ioub2 = 2 l6ub |2 + 2 o%ul |,

1 1 2
a(uf uf) — afuf,ub™) = Sa(uh, uh) - Sa(ul ™ wi) + Za(oul, oub),
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and by omitting the terms with 72, which are non negative, we derive

Lok Lo ke Lok ky Lokl ke kis ko sk k
§||6un‘|2 - 5”51/’77, 1”2 2a(un’un) a(un lvun 1) + Tnbn(éunv(sun) < TnLn'
We fix i € {1,...,n} and sum over & = 1,...,i7 to obtain the following discrete energy
inequality
1, ., .
§H5uﬁl||2 + a ul, ul) + ZTnbk (6uk, our) < & + ZTanL, (1.19)

where & := 3[lu!|® + (Aeu®, eu’). Let us now estimate the right-hand side in (1.19) from

above. By (1.3) and (1.4) we have

1. 1<
frlfa 5“2 - 522) < ||f||%2(o,T;H) + §||z||%2(O,T;H) + ) ZTnHCSUﬁH%{, (1.20)
k=1
< Oy O
ZTn U 52 7||ZH%2(O,T;VO) + 9 ZTnHG’leP, (1.21)
k=1
i k sk 1 Ci.

D TN, 20 )y < SINIZ2 0z + S 1212 0,200 (1.22)

k=1

For the other term involving N,’f, we perform the following discrete integration by parts

ZTN Nk 6“’ (erw :1) Hy — (N(0)7UO)HN - ZTN 5N7]§7 fz 1)HN' (1‘23)

Hence for every € € (0, 1), by using (1.3) and Young’s inequality, we get

ZTn Nk 5u

; 1 : k k—
sl 7y + %\INH%N(O,T;HN) FINO) a1l + D Tl NN ey 71,
k=1

(1.24)

<

| ™

<Ce+ ” I+ G an\lunllv, (1.25)

where C; is a positive constant depending on €. Thanks to Jensen’s inequality we can write

l 2 l
l l j l j
[unlf < lleus | + (IIuol + Zm!léuﬁlll) < leup | + 2[[w®|* + 2T ) |67,
j=1 j=1

so that (1.24) can be further estimated as

N(5u

2 1
i (Heum? ol + 2TZTn\rau%\\2)

=1

C2 b .
+-2N <|yeui§||2 +2]|u’|? + QTZTnH(Su%HQ) (1.26)

2 °

eC? ; .
+ S e |2+ C 7 7 (115ub I + leub|?)
k=1

<C.
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for some positive constants C. and C, with C. depending on e. Similarly to (1.23), we can
say

Zrn (8%uk, 62F) = (6ul, 6wl — (6ul, 6w?) Zm k=1 520k), (1.27)

from which we deduce that for every € > 0

Z Tn( 52uk (5z

%
< 18w 8z ]| + et 120+ mulloun = [116%24]
k=1

1 e , 1< B 1
< %Ilf%H2 + §II5UMI2 + [lut [ 12(0)]| + 52%\\5%’2 "2+ 52%\\522’5\\2
k=1 k=1

€ 2y 2
<Cety (|6ul || + anuéunu (1.28)

where C. is a positive constant depending on €. We estimate from above the last term in
right-hand side of (1.19) in the following way

D mbh (Sl 028) < (B (Sl 0ul)) (0 (028, 528)) 8

) Iy (1.29)
1 o 1 .

< 5 - mubh(Guf, 6uf) + S IBlso P12l 20 7,00

By considering (1.19)—(1.29) and using (1.6) we obtain

l—¢ iz, ca—eCh o 1 i ks, k sk A . k2 k2
(S5 I8P + A= feun P 4 5 D7 b 0wk, 0uk) < Ce Y (0012 + lew )
k=1 k=1

for two positive constants C. and C, with C. depending on €. We choose € < %min {1, g—%}
tr
to derive the following estimate
Locvio L e L ks b ok i k2 k2
IO+ Flleut P + 5 7 mbh(ouk, 6ub) < €+ Co Y m (Il + lew ), (1.30)
= k=1
where C; and Cy are two positive constants depending only on «°, u', f, N, and z. Thanks

to a discrete version of Gronwall’s lemma (see, e.g., [2, Lemma 3.2.4]) we deduce the existence
of a constant C'5 > 0, independent of ¢ and n, such that

|6ul, || + |Jeul || < C3  for every i =1,...,n and for every n € N.

By combining this last estimate with (1.30) and (1.6) we finally get (1.18) and we conclude.
O

We now want to pass to the limit into the discrete equation (1.17) to obtain a weak
solution to (1.8)—(1.11). We start by defining the following approximating sequences of our
limit solution

Un(t) = uk + (t — kr,)ouf  fort € [(k — )7, k) and k =1,...,n,
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k fort € (k—1)7p,kmy] and k=1,...,n, u(0) =ud,
u, () = ub~1 fort € [(k— 1)1y, k) and k=1,...,n, u,(T)=u,.

Moreover, we consider also the sequences

T (t) = 0uk + (t — kry)0%uf  fort € [(k — )7, k) and k =1,...,n,
b (t) = ouk for t € (k— 1)1, k] and k=1,...,n, 4} (0) = sud
i, (t) = dul~! fort € [(k—1)mp, k) and k=1,...,n, u,(T)=9¢

which approximate the first time derivative of the solution. Notice that u, € H(0,T; H)
with 4, (t) = duf = @t (t) for t € ((k — 1)1, k1) and k = 1,...,n. Let us approximate ¥
and z by

U (t) = Uk, Zh(t) = 2k te((k—1)m, k], k=1,...,n,

U (t) = wk=L, 2o () == 21 te k=D, k), k=1,...,n

Lemma 1.2.4. There exists a function v € W, with v — z € VP, such that, up to a not
relabeled subsequence

1 . 2 . 2 .
" H (O,T,H) u, ;Il: L (O,T,V) u, a;ib: L (OanH) ’ (131)
n—00 n—00 n—r00
2 . 2 .
vt ot LT Gy o, e(wEat) 0T gy, (1.32)

Proof. Thanks to Lemma 1.2.3 the sequences {u,}, C H*(0,T; H) N L>(0,T;V), {ut}, C
L>®(0,T;V), and {@F}, C L>®(0,T; H) are uniformly bounded. By Banach-Alaoglu’s the-
orem there exist v € H'(0,7;H) and v € L%(0,T;V) such that, up to a not relabeled
subsequence

L2(0,T3V) . L2(0T5H) . 4+ L20,T;V)
n ———— U, n—1u, U, ————V
n—oo n—oo n—oo

Since there exists a constant C' > 0 such that

|t — U;{HL‘”(O,T;H) <Cry ——0,
n—oo

we can conclude that u = v. Moreover, given that u, (t) = ut(t —7,) for t € (m,,7T),
i (t) = 1y (t) for a.e. t € (0,T), and @, (t) = u,} (t — 7,) for t € (1,,,T), we deduce

_ L*0TyV) _4 L?(0,T;H)

n ? n
n—o0 n—o0

By (1.18) we derive that the sequences {e(¥,} 4, )}, € L%(0,T; H) and {VV,} 0 at}, C
L?(0,T; H) are uniformly bounded. Indeed there exists a constant C' > 0 independent of n
such that

kTn

n
IV © a2 0z = Z / ) IV © oub|t < [[VU2 S mlloub]|? < C.
—D7n k=1

kTn
(@t a0 a0 2oa0) = Z/ (U oub)||2dt = ZTnH\Dkeéu VO o sk
k=1

< 227n||\1'k65un\|2 + QZTRHV\PI“ o k|2 < C.
k=1 k=1
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Therefore, there exists wy,wy € L?(0,T; H) such that, up to a further not relabeled subse-
quence

~+ L*(0,T;H) .\ L2(0,T;H)
VU ol 2wy, e(UFal) S s,
n—oo n—oo

We want to identify the limit functions w; and wy. Consider ¢ € L?(0,T; H), then

T T T T
1 1
/ (V‘PinLZ,sO)dt=2/ (ﬁ27¢V\I’$)dt+2/ (ﬂﬁvtpTV‘I’I)dtZ/ (@}, ™Vt
0 0 0 0

L2(0,T;H L2(0,T;H
where @™ := WFQ“’T. Since LOTH, o and VAR LT, @Y™V W by dominated
n—oo o0
convergence theorem, we obtain
T T T
/ (VU oa, o)dt —— [ (1, V" V¥)dt = / (VU O 1, p)dt,

and so w1 = V¥ ® 4. Moreover for ¢ € L?(0,T; H) we have

T

T T T
/ (Wit ¢)dt = / (@, o)At —— [ (i, Ug)dt = / (Wi, ¢)dt,
0 0 0

n—o0 0

L2(0,T;H) 2(0,T;H)

, L
@ and ¥ ¢

2 .
LOTH), U4, from which e(0;}a;)
n—0o0
wy = e(V4). In particular we have W € L?(0,T;V). By arguing in a similar way we also
obtain

thanks to @, U, again implied by dominated convergence

e(Va), that gives

_ D/(0,T;H
theorem. Therefore W;Fa,! DOTH),
— 00

L2(0,T;H) L2%(0,T;H)
—_ N _ N\

Vv, ©a,

n n

n—00 Ve o, e(¥,i,) n—0co

e(Va).
Let us check that uw € W. To this aim, let us consider the following set
U:={veL*0,T;V):vt) €V for ae. t € (0,T)}  L*(0,T;V).

We have that U is a (strong) closed convex subset of L?(0,T;V), and so by Hahn-Banach
Theorem the set U is weakly closed. Notice that {u,, }n,{¥, @, }»n C U, indeed

u, () =ufl e Vik—1)r, C V2 fort € [(k—1)mp, km), k=1,...,n,

U, ()i, (t) = Ui tour ™ € Vig_yy,, C Vi fort € [(k—1)m, k), k=1,...,n.

n

L2(0,73V) _ - L*o1yV)
wand ¥V u, ——
n—oo n—0o0

that u — z € VP we observe

Since u,, W1, we conclude that u, Uu € U. Finally, to show

u, (t) — 2z, (1) =ub L =L e VEL c VP fort € [(k— D)rn k), k=1,...,n.

n

Therefore {u;, — 2, }n C {v € L2(0,T;V) : v(t) € V;P for a.e. t € (0,T)}, which is a (strong)
L2(0,T3V)

closed convex subset of L?(0,T;V), and so it is weakly closed. Since u,, u and
n—oo
2 .
- LOTW), z, we get that u(t) —z(t) € V;? for a.e. t € (0, T), which implies u—z € VP. O
n—oo

We now use Lemma 1.2.4 to pass to the limit in the discrete equation (1.17).

Lemma 1.2.5. The limit function u € W of Lemma 1.2.4 is a weak solution to (1.8)—(1.11).
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Proof. We only need to prove that u € W satisfies (1.14). We fix n € N, ¢ € CL(0,T;V)
such that ¢(t) € V;P for every t € (0,T), and we consider

on — o~
oF = p(kr,) fork=0,...,n, 6pF =" T _ fork=1,...,n
Tn

and the approximating sequences
o (t) == oF, G (t) == sk te((k— D, kmp],k=1,...,n

If we use Tngpf’; € V,f as test function in (1.17), after summing over k = 1,...,n, we get

n n n
> (%, @) + D T (Aews epn) + D (B eduy, Vrep))
k=1 k=1

h=1 (1.33)

n

_ZTn a(pn ZTH(NZ:?SOZ)HN

k=1

By these identities

n T
an (FPu o) = = Ym0l 0ek) = - [ (o). o7 0)at
k=1 0

from (1.33) we deduce

T T T
- / (i, 3t / (Aeuy, e )dt — / BYY) 0 @b, et )dt
0 0 0

T / (Be(T; i), et )dt = / (fFe)dt + / (N, o) mydt.  (1.34)

Thanks to (1.31), (1.32), and the following convergences

L2(0,T3V) L2(0,T;H) L2(0,T;H) L2(0,T;Hy)
—+ Ly ~4+ sty . + sty + Ly
o o0 P b S — o Ny ————

n—00 n—oo n—oo

N,

we can pass to the limit in (1.34), and we get that uw € W satisfies (1.14) for every ¢ €
CY(0,T;V) such that o(t) € V,P for every t € (0,T). Finally, by using a density argument
(see [17, Remark 2.9]), we conclude that v € W is a weak solution to (1.8)—(1.11). O

1.3 Initial conditions and Energy-Dissipation Inequality

To complete our existence result, it remains to prove that the function u € W given by
Lemma 1.2.5 satisfies the initial conditions (1.12) in the sense of (1.16). Let us start by
showing that the second distributional derivative i belongs to L2(0, T; (V)'). If we consider
the discrete equation (1.17), for every v € V° € V¥, with |jv||y, < 1, we have

(8208, 0)| <Calleut ]| + [Bllocl oo [ LEesut ]| + £ + Cor |NE| 1y

Therefore, taking the supremum over v € Vi with |[v||y, < 1, we obtain the existence of a
positive constant C' such that

k k
6% G0y < C(lleunl® + [ W5edun |l + 1 fall* + N3 7y )-

If we multiply this inequality by 7,, and we sum over k =1,...,n, we get

ZTanzuZH?VOD)/ (1.35)
k=1
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n n
< (X mllasl? + 3 rulWheduk P + 1AWy + IV ooy ). (136)
k=1 k=1

Thanks to (1.35) and Lemma 1.2.3 we conclude that

n
ZT”H(;QUEH(QVOD)’ <C for every n €N,
k=1

for a positive constant C independent on n € N. In particular the sequence {u,}, C
HY(0,T; (V%)) is uniformly bounded (notice that iy, (t) = 6%uk for t € ((k — 1), k7p)
and k = 1,...,n). Hence, up to extract a further (not relabeled) subsequence from the one
of Lemma 1.2.4, we get
i SLOTCN, (1.37)
n—oo
and by using the following estimate

ltn = iy || 20,2y < Tallitnll 2o 2vpyy < CTn —— 0

we conclude that wg = 1.
Let us recall the following result, whose proof can be found for example in [20].

Lemma 1.3.1. Let X,Y be two reflexive Banach spaces such that X — Y continuously.
Then
L¥(0,T5.X) N CR([0,T1:Y) = Cy([0, T]; X).

Since H(0,T; (V%)) = C°([0,T), (V{”)'), by using Lemmas 1.2.4 and 1.3.1 we get that
our weak solution v € W satisfies

we CO0,T;V), weCl(0,T];H), ie L*0,T;(VL)).

By (1.31) and (1.37) we hence obtain

D/
un(t) s u(t), @n(t) S it) for every t € [0,7), (1.38)

so that u(0) = u° and 7(0) = u!, since u, (0) = u° and 7, (0) = u'.
To prove that

o1 .
IM1hA (lu(t) = w13, + () — ut|3) dt = 0
we will actually show

lim u(t) =« in V, lim a(t) =u' in H.
t—0+ t—0t

This is a consequence of following energy-dissipation inequality which holds for the weak
solution u € W of Lemma 1.2.5. Let us define the total energy as

1 1
E(t) = 5Hu(t)HQ + 5 (Beu(t), eu(t)) ¢ €0, 7).
Notice that &(t) is well defined for every ¢ € [0,T] since u € CO([0,T]; V), @ € CY([0,T); H),
and that &(0) = £||u'(|? + §(Aeu®, eu’). By defining

D) = /O (BU(r)ei(r), U(r)eu(r))dr for every t € [0,T]

we have the following theorem.
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Theorem 1.3.2. The weak solution uw € W to (1.8)—(1.11), given by Lemma 1.2.5, satisfies
for every t € [0,T] the following energy-dissipation inequality

Et)+2(t) < E(0) + Hiar(t), (1.39)

where Weu is the function defined in (1.15) and #iot(t) is the total work on the solution u at
time t € [0, T, which is given by

Wtot(t):/o [(f(7), i(7) = 2(7)) + (Aeu(r), e2()) + (BY(7)ed(r), ¥(7)ez(T))] dT
- /O (a(r), £(7))dr + ((t), (1)) — (u*, £(0))

t
- /O (N(7),u(r) = 2(7)) e dr + (N (1), u(t) = 2(8)) iy — (N(0),u” = 2(0)) sy -
(1.40)
Remark 1.3.3. From the classical point of view, the total work on the solution u at time

t € [0,T] is given by
%ot(t) = Wload(t) + Wbdry(t)’ (141)

where #544(t) is the work on the solution u at time ¢ € [0, 7] due to the loading term, which
is defined as

Wioaalt) = /0 (f(r). ir))dr,

and #hary(t) is the work on the solution w at time ¢ € [0,7] due to the varying boundary
conditions, which one expects to be equal to

Wi (1) = /0 (N(7), () dr + /0 (Aeu(r) + T3 ()Bei(r))v, £(r)) iy dr,

being Hp := L*(0p$; R?). Unfortunately, Wyary(t) is not well defined under our assumptions
on u. Notice that when ¥ = 1 on a neighborhood U of the closure of Oyx{2, then every
weak solution u to (1.8)—(1.11) satisfies u € H'(0,T; H'(Q N U) \ T;R?)), which gives that
u € H*(0,T; Hy) by our assumptions on I'. Hence the first term of #54,,(t) makes sense and
satisfies

t t

/0 (N (1), a(7)) iy dr = (N (1), u(t)) ry — (N(0),u(0)) /0 (N (1), u(T)) ydr.
The term involving the Dirichlet datum z is more difficult to handle since the trace of (Aeu+
U2Beu)r on dpS is not well defined even when ¥ = 1 on a neighborhood of the closure of
OpS). If we assume that v € H'(0,T; H2(Q \ T;RY)) N H?(0,T; L2(Q;RY)) and that T is a
smooth manifold, then we can integrate by part equation (1.14) to deduce that u satisfies

(1.8). In this case, (Aeu + V2Beu)v € L?(0,T; Hp) and by using (1.8), together with the
divergence theorem and the integration by parts formula, we deduce

/0 (Aeu(r) + W2(r)Bei(r) ), £(r)) p dr
— /0 [(diV(Aeu(T) + \IIQ(T)IBeu(T)), 2(1)) + (Aeu(r), eé’(T))] dr
+ / [(V2()Bei(r), e3(r)) — (N(r), (1)), ] dr
0
= /0 [(ii(7), 2(7)) = (f(7), 2(7)) + (Aeu(r) + ¥*(1)Beu(r), e2(7)) — (N (7), 2(7)) my ] d7
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= /0 [(Aeu(), e2(7)) + (BY(7)ei(r), ¥(T)ez(r)) — (f(7), 2(7))] d7
+/0 (N(7), 2(7)) g 7 — (N (1), 2(t) 11y, + (N(0), 2(0)) ry

t
—/0 (a(r), £(7))dr + (a(t), (1)) — (u', 2(0))

Hence, the definition of total work given in (1.40) is coherent with the classical one (1.41).

Notice that if u is the solution to (1.8)—(1.11) given by Lemma 1.2.5, then (1.40) is well

defined for every t € [0,7], since N € C°([0,T]; Hy), 2 € C°([0,T); H), u € C([0,T); V),
and @ € CY([0,T]; H). In particular, the function ¢ — #;(t) from [0, 7] to R is continuous.

Proof. Fixed t € (0,T], for every n € N there exists a unique j € {1,...,n} such that
t € ((j — 1)1, jmn). After setting ¢,, := j7,, we can rewrite (1.19) as

ST + 5 (Aewf (), et (1)
+ / n(IBB\I/;LF (T)ew,! (1), Ut (r)ew,t (1))dr < E(0) + #,F (1), (1.42)
0

WE(t) = /0 " [(AGUI(T), ez (1)) + (B\I/j;(T)eﬂ;;(T), \I/;L(T)eE:{(T))] dr

[ ) = )+ @ 0.5 0) + (V0,8 7) = 5 ()]

Thanks to (1.18), we have

o (£) =t ()] = Nl + (¢ — )00, — | < |G| < Crn ——0,
iin(t) = ()12, = 150, + (¢ = G7)6%u, — |y, < 72110208 2, < O —— 0.

The last convergences and (1.38) imply

o H Ry
wf(t) (), ) <l (),

and since ||u (¢)||v + ||a,t ()] < C for every n € N, we get

ul(t) —L— (), b —2— ). (1.43)

n—o0 n—o0

By the lower semicontinuity properties of v |[v||? and v > (Aev, ev), we conclude

Ja(t) |2 < limn [ (6) (1.4
(Aeu(t),eu(t)) < Iinn_l}oréf(Aeux(t), eu (t)). (1.45)

Thanks to Lemma 1.2.4 and (1.15), we obtain

2 .
Vreat = e(Urah) - v o LT (@i - v o4 = e,
n—o0
so that

/(IBB\II(T)ea(T),\I/(T)eu(T))dTSliminf/ (B (7)ew) (1), Ul (T)ew) (1))dr
0 0

n—oo
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tn
< lim inf / (B} (7)et,s (1), Ui (r)eq, (7)dr,  (1.46)
n—,oo 0

since t < t,, and v — fg Bu(7),v(7))dr is a non negative quadratic form on L?(0,T; H). Let

< 7),0(7)
us study the right-hand side of (1.42). Given that we have

L2(0,T;H) 5 . L%2(0,T;H) . .
+ + + it
Otnf X[Ot]f Uy — 2y oo u—z,

we can deduce

[ e - e — [ - (1.47)

In a similar way, we can prove
/On(Aeu:{( ), ez (T ))dTm ; (Aeu(r),ez(7))dr, (1.48)
t (1.49)

/0 n(B\I/:{(T)ezl:{(T), U (r)ez! (7))dr — ; (B (7)eu(r), ¥(T)ez(r))dr,

since the following convergences hold
L?(0,T;H
Aeuf LOTH), Aeu,

~+ L2(0,T;H)
X[0,tn]€%n —> X[0,t]€Z e
2
X0, Vot €20 M Xjo. ez, Utent 0T oy,
n—oo

It remains to study the behaviour as n — oo of the terms

[zt oo - 2o
0 0

Thanks to formula (1.27) we have

/ (i (r), 5 (1)) dr = (@ (1), 5 (1) — (ul, 2(0)) / (i (7), 2 (r))dr.
0 0

By arguing as before we hence deduce

1 — tﬂT Z(7))dr .
ut, £(0)) /0<<>,<>>d, (1.50)

n—o0

/0 (lin(r), 5 (1)) dr —— (u(t), 2(8)) — (

thanks to (1.43) and by these convergences

L2(0,T;H) . ~_ L*0,T;H)
X[0,tn]%n oo X[0,4]%> Up 300 U,
() —2((J = D ™ —
Iz50) - 20l = | I s < ety - s0lar 0
Tn _] Tn

Notice that in the last convergence we used the continuity of z from [0,7] in H. Similarly

we have

/O "(NF(r), @t (7) = 5T dr
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so that we get

A?Mﬂm@v>~w»mw

n—oo

—— (N(t),u(t) = 2(t) 1y — (N(0),u” = 2(0))my — /0 (N(7),u(r) = 2(r)ydr (1.51)

thanks to (1.43), the continuity of s — N(s) in Hy, and the fact that

- L*(0,T;HN) . _ _ L*0,T;Hy)
—> J— —_— N p— .
X[0,t] N S X[0,44V, Up = 2p oo U—z

By combining (1.44)—(1.51), we deduce the energy-dissipation inequality (1.39) for every
€ (0,T]. Finally, for t = 0 the inequality trivially holds since u(0) = u° and @(0) = w!. O

We now are in position to prove the validity of the initial conditions.
Lemma 1.3.4. The weak solution u € W to (1.8)—~(1.11) of Lemma 1.2.5 satisfies

lim u(t) =u® in V, lim a(t) =u' in H. (1.52)

t—0+ t—0+
In particular v satisfies the initial conditions (1.12) in the sense of (1.16).

Proof. By sending t — 07 into the energy-dissipation inequality (1.39) and using that u €
C9([0,T); V), u € CO([0,T]; H), and the lower semicontinuity of the real valued functions

tes |u(t)]]? t e (Aeu(t), eu(t)),

we deduce
&(0) = 1||u1H2 + }(Aeuo eu’) < 1[hm inf|]%(t)||* 4 lim inf(Aeu(t) eu(t))}
2 2 ’ 2 t—0+ ’
1
< liminf [—||11(t)|]2 (Aeu( ), eul(t ))} = lim inf &(1) < limsup (1) < £(0),
t—0+ L2 t—0+

since the right-hand side of (1.39) is continuous in ¢, u(0) = u", and (0) = u'. Therefore
there exists lim; ,o+ &(t) = &(0). Moreover, we have

£(0)

IA

1 1
3 largégfﬂu(t)HQ t3 lilgéilf(Aeu(t), eu(t))

IA

1 1
~limsup||a(t)||* 4 = lim inf(Aeu(t), eu(t))
2 t—0+ 2 t—0+

< timsup [ (O] + 5 (Aeu(r), eu(t))] = £(0),

t—0t

which gives
lim ||a(t)|]? = ||lu']?.
: 0+H @l [’

Similarly we can dedeuce

Finally, since we have

t—0t ’ t—0t

we deduce (1.52). In particular the functions w: [0,7] — V and @: [0,7] — H are continuous
at t = 0, which implies (1.16). O
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We can finally prove Theorem 1.2.1.
Proof of Theorem 1.2.1. It is enough to combine Lemmas 1.2.5 and 1.3.4. O

Remark 1.3.5. We have proved Theorem 1.2.1 for the d-dimensional linear elastic case,
namely when the displacement w is a vector-valued function. The same result is true with
identical proofs in the antiplane case, that is when the displacement u is a scalar function
and satisfies (9).

1.4 Uniqueness

In this section we investigate the uniqueness properties of system (1.8) with boundary and
initial conditions (1.9)—(1.12). To this aim, we need to assume stronger regularity assumptions
on the crack sets {Ft}te[();r] and on the function ¥. Moreover, we have to restrict our problem
to the dimensional case d = 2, since in our proof we need to construct a suitable family of
diffeomorphisms which maps the time-dependent crack I'y into a fixed set, and this can be
explicitly done only for d = 2 (see [16, Example 2.14]).

We proceed in two steps; first, in Lemma 1.4.2 we prove a uniqueness result in every
dimension d, but when the cracks are not increasing, that is I'yr = I'g. Next, in Theorem
1.4.5 we combine Lemma 1.4.2 with the finite speed of propagation theorem of [15] and the
uniqueness result of [17] to derive the uniqueness of a weak solution to (1.8)—(1.12) in the
case d = 2.

Let us start with the following lemma, whose proof is similar to that one of [17, Proposition
2.10].

Lemma 1.4.1. Let u € W be a weak solution to (1.8)—(1.11) satisfying the initial condition
w(0) = 0 in the following sense

N Y LTI
lim — [ [a(t)]|*dt = 0.
h Jo

h—0t

Then u satisfies
T T T
- / (alt), p(8))dt + / (Aeu(t), ep(t))dt + / (BU(1)eit), U(t)ep(t))dt
0 0 0
T T
- / (F(8), ()t + / (N (8), () 1y dt
0 0

for every ¢ € VP such that p(T) = 0, where Weu is the function defined in (1.15).

Proof. We fix ¢ € VP with o(T) = 0 and for every € > 0 we define the following function

We have that . € VP and ¢.(0) = p.(T) = 0, so we can use ¢, as test function in (1.14).
By proceeding as in [17, Proposition 2.10] we obtain

. T . . T . .
Jim [ = [ o, ¢onr
T T
lim [ (Aeu(t), ep.())dt = /0 (Acu(t), eo(t))dt,

e—=0t Jo
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T T
im [ (1), pe(t)dt = / (). o(t))dt.

e—=0t Jo

It remains to consider the terms involving B and N. We have
T
/0 (B (t)ei(t), ¥ (t)ew-(t))dt
€ t T
= /0 (BY(t)eu(t), E\I/(t)ecp(t))dt +/ (B (t)eu(t), U(t)ep(t))dt,
T € t ) T
| 0o = [ 0. Ze@mat+ [ N0 o)t

hence by the dominated convergence theorem we get

T T
/ (B (t)ei(t), U(t)ep(t))dt — [ (BE(t)eu(t), U(t)ep(t))dt,

e—=0t Jo
T

T
/ WO eyt 5 J (VO 2yl

e—=0t Jo

| [ @u@eit). Le@epn)a] < [Blulvle [ 10@eilepld —o.
0 0 e—0
| [ v et < [ IN@ iy le@®llngdt —> o
0 € 0 e—0

By combining together all the previous convergences we get the thesis. O

We now state the uniqueness result in the case of a fixed domain, that is 'y = I'g. We
follow the same ideas of [30], and we need to assume

U € Lip([0,7] x Q), V¥ e L®((0,T) x Q;R?), (1.53)
while on I'y we do not require any further hypotheses.

Lemma 1.4.2 (Uniqueness in a fixed domain). Assume (1.53) and 't = T'g. Then the
viscoelastic dynamic system (1.8) with boundary and initial conditions (1.9)—(1.12) (the latter
in the sense of (1.16)) has a unique weak solution.

Proof. Let ui,us € W be two weak solutions to (1.8)—(1.11) with initial conditions (1.12).
The function u := u; — ug satisfies

1 h
o [ (IR + 1Py o, (154)

hence by Lemma 1.4.1 it solves
T T T
- / (a(t), (1))t + / (Acu(t), ep(t))dt + / (BU()ei(t), U(t)ep(t))dt =0 (1.55)
0 0 0
for every ¢ € VP such that ¢(T) = 0. We fix s € (0, 7] and consider the function

. — [Fu(r)dr t €0, s],
pall) = {0 telsT)

Since s € VP and ¢4(T) = 0, we can use it as test function in (1.55) to obtain

- /S(u(t),u(t))dt + /S(Aecps(t),egps(t))dt + /S(IB\I/(t)eu(t), U(t)eps(t))dt = 0.
0 0 0
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In particular we deduce

=5 [ SR [ Shen o, ot [ BE@e). vtep o) =0,

which implies

1 1 s .
I + 5(Ahep 0).con(0) = [ BUEean), Yep)dt,  (156)
since u(0) = 0 = p(s). From the distributional point of view the following equality holds
d .
&(\Peu) = Weu + Weu € L*(0,T; H), (1.57)

indeed, for all v € C2°(0,T"; H) we have
T d T .
| G @ene. otnar == [ weute). o) ar
T
__ /0 (e(U(B)u(t)) — VI(E) & ult), b(¢)) dt
T T
_ /0 (e(T(Oult)) + e(T()a(t)), v(t))dt — /O (V) © ult) + V() © alt), v(t))dt
T T
- / (B (t)eut), v(t))dt + / (W(t)ei(t), v(t))dt.
0 0

In particular Weu € H(0,T; H) C C°([0,T], H), so that by (1.54)

1 h 1 h
2 _ 2 . 2
OO = fim & [ 1w@euolPa < € Jim & [ ute) e =0
which yields ¥(0)eu(0) = 0. Thanks to (1.57) and to property Wu € H'(0,T; H), we deduce

d . .
T (BWeu, Veps) = (BYeu, Veps) + (BPet, Vepy) + (BPeu, Vep,) + (BPeu, Peps)
= 2(BWeu, Wep,) + (BUeu, Vep,) + (BPeu, Pep,),

and by integrating on [0, s|] we get

| ®e@ei), voeaw) = [ LEVO0, B0
0 0

-/ [BU(ea(t), Tt)epa(t) + 2BY (t)eu(t), B (t)eps(t))]dt

< (BY(s)eu(s), U(s)eps(s)) — (BY(0)eu(0), ¥(0)eps(0)) — /0 (BY(t)eps(t), ¥ (t)eps(t))dt
+ /O ) [2(153\1/@)%(7:), U (t)eu(t))? (BE(t)eps(t), \ir(t)e%(t))%] dt
< [ [BUO0. o) + @), Uien 1) - BUO. 0. 0 0)]d
T 112 s e 2
< Bl 1 | lecn(olat

since epy(s) = 0 = ¥ (0)eu(0) and eps = eu in (0, s). By combining the previous inequality
with (1.56) and using the coercivity of the tensor A, we derive

ca 1 1 1 . s
5 le@s ()7 + Sllu(s)* < 5 (Aeps(0), e05(0)) + 5 lus)]* < HIBHOOH‘PHEO/O legs (1)) *dt.
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Let us set £(t) == fot u(7)dr, then

les ()17 = lle&(s)II%,  llews(®)II* = lle€(t) — e€ ()] < 2lle&@®)]* + 2lle&(s)],

from which we deduce
CA 1 s
gllef(S)H2 + §HU(8)II2 < C/O le&(t)|IPdt + Csleg(s)]|?, (1.58)

where C' := 2||B||oo||¥||%,. Therefore, if we set s = for all s < sy we obtain

4C’
Llecs)? < (G = Cs)leete) < € [ fesoa

By Gronwall’s lemma the last inequality implies e£(s) = 0 for all s < sg. Hence, thanks to
(1.58) we get ||u(s)]|? < 0 for all s < sg, which yields u(s) = 0 for all s < sq. Since sy depends
only on A, B, and ¥, we can repeat this argument starting from sy, and with a finite number
of steps we obtain v = 0 on [0, 7. O

In order to prove our uniqueness result in the case of a moving crack we need two auxiliary
results, which are [14, Theorem 6.1] and [17, Theorem 4.3]. For the sake of the readers, we
rewrite below the statements without proof.

The first one ([14, Theorem 6.1]) is a generalization of the well-known result of finite
speed of propagation for the wave equation. Given an open bounded set U C RY, we define
by OrU the Lipschitz part of the boundary QU, which is the collection of points z € JU for
which there exist an orthogonal coordinate system y1,...,¥y4, a neighborhood V' of x of the
form A x I, with A open in R~ and I open interval in R, and a Lipschitz function g: A — I,
such that VNU := {(y1,...,94) €V 1 ya < 9(y1,-.-,Y4-1)}. Moreover, given a Borel set
S C 9rU, we define

Hs(U;RY) := {u e H(U;RY) :u=0o0n S}.
Notice that Hg(U;R?) is a Hilbert space, and we denote its dual by Hg'(U;R).

Theorem 1.4.3 (Finite speed of propagation). Let U C R? be an open bounded set and let
OrU be the Lipschitz part of OU. Let Sy and S1 be two Borel sets with Sy C S1 C OrL,U, and
let A: U — L (RIX4RIXD) pe o fourth-order tensor satisfying (1.4)~(1.6). Let

syms “Esym
u € L*(0,T; H§, (U; RY)) 0 H'(0, T; L*(U; RY)) N H?(0, T; Hg ' (U; RY))
be a solution to
(1(t), ¢>H§11(U;Rd) + (Aeu(t), ew)LQ(U;Rgﬁ) =0 for everyy € Hél (U;R%),

with initial conditions u(0) = 0 and w(0) = 0 in the sense of L*(U;R?) and HSTII(U;]R”Z),
respectively. Then

uw(t) =0 a.e in U :={z €U :dist(x, 5 \ So) >t/ ||Allc}
for every t € [0,T].
Proof. See [14, Theorem 6.1]. O

The second one ([17, Theorem 4.3]) is a uniqueness result for the weak solutions of the
wave equation in a moving domain. Let H be a separable Hilbert space, and let {V}}te 0,7
be a family of separable Hilbert spaces with the following properties:



22 1.4. Uniqueness

(i) for every t € [0,T] the space V; is contained and dense in H with continuous embedding;

(ii) for every s,t € [0,T], with s < t, V, C V; and the Hilbert space structure on Vj is the
one induced by V;.

Let a: V x V — R be a bilinear symmetric form satisfying the following conditions:

(7i7) there exists My such that

la(u,v)| < Mol|ully[lv]ly  for every u,v € V;

(tv) there exist A\g > 0 and vy € R such that

a(u,u) > Ao|lu

%/ - I/()”UH% for every u € V.

Assume that

(U1) for every t € [0,T] there exists a continuous and linear bijective operator Q;: Vi — Vo,
with continuous inverse R;: Vo — V;

(U2) Qo and Ry are the identity maps on Vp;

(U3) there exists a constant M; independent of ¢ such that

1Qeull 5 < Milul|y  for every u € Vi, ||Reully < Millul|y  for every u € Vj,
IQeully, < Millully, for every u € Vi, ||Ruully, < Miflullg, for every u € V.

Since V; is dense in H , (U3) implies that R; and @ can be extended to continuous linear
operators from H into itself, still denoted by Q); and R;. We also require

(U4) fpr every v € Vp the function ¢ — Ryv from [0, 7] into H has a derivative, denoted by
Ryv;

(U5) there exists n € (0,1) such that

1B:Qevll, < Mo(L —m)|Jull},  for every v e Vi;

(U6) there exists a constant My such that

Qv — Qsvl| g < Mal|vlly, (t —s) for every 0 <s <t <T and every v € Vs;

(UT) for very t € [0,T) and for every v € V, there exists an element of H, denoted by Q;v,

such that
1; Qt+hU — Qv
im /="

= QtU in H.
h—0+ h

For every ¢ € [0, T, define
(t): Vo x Vo = R as a(t)(u,v) := a(Ryu, Ry) for u,v € Vj,
t): Vox Vo = R as B(t)(u,v) := (Reu, Ryw) for u,v € Vj,

.‘7
Y(t): Vo x H—=TR as v(t)(u,v) := (Ryu, Ryv) for u € Vg and v € H,
6(t): Hx H—TR as 6(t)(u,v) := (Ryu, Rw) — (u,v) for u,v € H.

A

Q

™

We assume that there exists a constant M3 such that
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(U8) the maps t — a(t)(u,v), t — B(t)(u,v), t = v(t)(u,v), and t — §(t)(u, v) are Lipschitz
continuous and for a.e. t € (0,7") their derivatives satisfy
[ (t) (u, v)| < Mlfull g olly,  for u,v € Vh,
lﬁ(t)(u,v)l < M|lullg, llvlly,  for u,v e Vb,
(

u,v)| < Ms|lully, lv]l 5 for ue Vo andve H,

)
(u.0)] < Myllul o]l for w,v € H.

Theorem 1.4.4 (Uniqueness for the wave equation). Assume that H, {‘A/;t}te[o,T]; and a
satisfy (i)—(iv) and that (U1)-(U8) hold. Given u® € Vi, u* € H, and f € L*(0,T; H), there
exists a unique solution

weV:={peL?0,T;V):qec L*0,T;H),u(t) € V; for a.e. t € (0,T)}

to the wave equation

T T T .
- / (at), () e + / alu(t), p(t))dt = / (F(8),0(8) gt for every o €V,
0 0 0

satisfying the initial conditions u(0) = u® and u(0) = u' in the sense that

oLt .
lim h/o (JJu(t) — UOH%G + ||u(t) — ulﬂg)dt =0.

h—0+
Proof. See [17, Theorem 4.3]. O

We now are in position to prove the uniqueness theorem in the case of a moving domain.
We consider the dimensional case d = 2, and we require the following assumptions:

(H1) there exists a C*! simple curve I' C Q C R?, parametrized by arc-length ~: [0, 4] — Q,
such that T'N 92 = v(0) U~(¢) and Q \ T is the union of two disjoint open sets with
Lipschitz boundary;

(H2) there exists a non decreasing function s: [0,T] — (0,¢) of class C1! such that I'; =

([0, s(D)));

(H3) [5(1)]? < G-, where ¢y is the ellipticity constant of A and Ck is the constant that
appears in Korn’s inequality in (1.2).

Notice that hypotheses (H1) and (H2) imply (E1)-(E3). We also assume that U satisfies
(1.53) and there exists a constant £ > 0 such that for every ¢ € [0, 7]

U(t,x) =0 foreveryx € {yec Q:ly—(s(t))] < e} (1.59)

Theorem 1.4.5. Assume d =2 and (H1)-(H3), (1.53), and (1.59). Then the system (1.8)
with boundary conditions (1.9)—(1.11) has a unique weak solution u € W which satisfies
u(0) = u® and (0) = u' in the sense of (1.16).

Proof. As before let uy,us € W be two weak solutions to (1.8)—(1.11) with initial conditions
(1.12). Then u := u; — ug satisfies (1.54) and (1.55) for every ¢ € VP such that ¢(T) = 0.
Let us define

to :=sup{t € [0,T] : u(s) = 0 for every s € [0, ]},

and assume by contradiction that to < 7. Consider first the case in which ¢y > 0. By (H1),
(H2), (1.53), and (1.59) we can find two open sets A; and Ay, with 47 CC Ay CC £, and a



24 1.4. Uniqueness

number § > 0 such that for every ¢ € [to—d, %o+ 0] we have y(s(t)) € A1, Y(¢,z) = 0 for every
x € Ay, and (Ay\ A1)\ T is the union of two disjoint open sets with Lipschitz boundary. Let
us define

Vii={uec H((A2\ A1) \Ty_5;R?) :u=0o0n dA; UDAs}, H':=L*(Ay\ A1;R?).

Since every function in V' can be extended to a function in V " 5> by classical results for

linear hyperbolic equations (se, e.g., [20]), we deduce i € L2(tg — 6, to + 6; (V')') and that
satisfies for a.e. t € (tg — ,tp + 9)

(i(t), 8) g1y + (Aeu(t),ed) g1 =0 for every ¢ € V.

Moreover, we have u(ty) = 0 as element of H' and a(to) = 0 as element of (V') since
u(t) =0 in [to — 6, t0), u € CO([to — 0, t0]; HY), and @ € CO([tg — 6, to); (V1)'). We are now in
position to apply the result of finite speed of propagation of Theorem 1.4.3. This theorem
ensures the existence of a third open set Az, with A1 CC Az CC As, such that, up to choose
a smaller d§, we have u(t) = 0 on dA3 for every t € [to,to + J], and both (2 \ A3) \ T" and
A3 \ T are union of two disjoint open sets with Lipschitz boundary.

In Q\ Az the function u solves

to+0 to+0
/ / u(t,x) - o(t, x dxdt—i—/ A(z)eu(t,z) - ep(t, z)dxdt
to Q\A3 to— ) Q\A‘;

to+0
/ / U(t, x)eu(t,x) - U(t, z)ep(t,x)dzdt = 0
to— Q\ A3

for every ¢ € L2(tg — 8, to+0; V2) N H (tg — 6, to + 6; H?) such that p(tg —8) = p(tg+6) = 0,
where

V2 i={uec HY((Q\ A3)\Ty_5;R?) :u=00n dpQUAIA3}, H?:= L*(Q\ A3;R?).

Since u(t) = 0 on IpQ U QA3 for every t € [tg — 0,19 + ¢] and u(to — ) = u(to —J) = 0 in
the sense of (1.16) (recall that w = 0 in [tg — J,%9)), we can apply Lemma 1.4.2 to deduce
u(t) =0in Q\ As for every t € [ty — 0,t0 + 9.

On the other hand in As, by setting

V3 i={uec HY(A3\T;R?) :u=0o0n dAs}, H?:=L?(A3;R?),
we get that the function u solves
to+o to+o
/ / (t,z) - ¢(t,x)dzdt + / A(x)eu(t,z) - ep(t,z)dxdt = 0
to As to—9d As

for every ¢ € L*(ty — 6,t0 + 0; Vt3 5) N H(to — 8,to + 8; H?) such that o(t) € V2 for ae.
t € (to—9d,to+0) and p(tg —9) = (to +6) = 0. Here we would like to apply the uniqueness
result of Theorem 1.4.4 for the spaces {V;e Helto—s,to+s) and H3, endowed with the usual
norms, and for the bilinear form

a(u,v) := / A(z)eu(z) - ev(z)dz for every u,v € Vt§+6'
Az
As show in [16, Example 2.14] we can construct two maps ®, A € OV ([tg— 6, to+ ] x Az; R?)

such that for every t € [0, T] the function ®(¢,-): A3 — A3 is a diffeomorfism of As in itself
with inverse A(t,-): Az — Az. Moreover, ®(0,y) =y for every y € A3, ®(t,T'NA3) =N A3
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and ®(t,Ty,_s N Az) =Ty N Az for every t € [tg — &, to + d]. For every t € [to — 6, to + d], the
maps (Quu)(y) := u(®(t,y)), u € V> and y € Az, and (Rw)(z) := v(A(t,z)), v € Vt‘fgﬂ; and
x € As, provide a family of linear and continuous operators which satisfy the assumptions
(U1)—(U8) of Theorem 1.4.4 (see [17, Example 4.2]). The only condition to check is (U5).
The bilinear form a satisfies the following ellipticity condition

ca .
a(u,u) > CA”euHiqAB;Rg;%) > CAfHUH%}{sM - CAHUH?EIJ for every u € V;t%—i-da (1.60)
: e o

where C is the constant in Korn’s inequality in th’) 45> hamely
9022 agmonn) < Crcllull3agagme) + leula g2z for every ue Vi,
Notice that for ¢ € [tg — 0,19 + 0]
(Rw)(x) = Vo(A(t,z))A(t,z) for ae. z € As,

from which we obtain
| BQuul%, < /A Vu(@)2[d(t, Adt, 2))|2de.
3

Hence, have to show the property

|B(t,y)|? < é—A for every t € [to — 6,t9 + d] and y € As.
K

This is ensured by (H3). Indeed, as explained in [16, Example 3.1], we can construct the
maps ® and A in such a way that

. CA
d(t,y)|> < =,
Bty < -
since |$(t)|> < ¢~ Moreover, every function in Vti 4s can be extended to a function in
HY(Q\ T;RY). Hence, for Korn’s inequality in V;% 45> We can use the same constant Cx of

HY(Q\T;R%). This allows us to apply Theorem 1.4.4, which implies u(t) = 0 in A3 for every
t € [to,to + 0]. In the case tg = 0, it is enough to argue as before in [0, d], by exploiting
(1.54). Therefore u(t) = 0 in Q for every t € [to, to + J], which contradicts the maximality of
to. Hence to = T, that yields u(t) = 0 in Q for every t € [0,T]. O

Remark 1.4.6. Also Theorem 1.4.5 is true in the antiplane case, with essentially the same
proof. Notice that, when the displacement is scalar, we do not need to use Korn’s inequality
in (1.60) to get the coercivity in Vt?) 4o of the bilinear form a defined before. Therefore, in
this case in (H3) it is enough to assume |$(¢)|?> < ca.

1.5 A moving crack satisfying Griffith’s Dynamic Energy-Dis-
sipation Balance

We conclude this chapter with an example of a moving crack {I';}co,7] and weak solution
to (1.8)—(1.12) which satisfy the energy-dissipation balance of Griffith’s dynamic criterion,
as happens in [14] for the purely elastic case. In dimension d = 2 we consider an antiplane
evolution, which means that the displacement u is scalar, and we take Q := {x € R? : |z| <
R}, with R > 0. We fix a constant 0 < ¢ < 1 such that ¢T' < R, and we set

Iy :={(0,0) € Q:0 < ct}.
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Let us define the following function
S(x1,x9) == Im(vVa1 +ixry) € R*\{(0,0):0 <0},

where I'm denotes the imaginary part of a complex number. Notice that the function previ-
ously defined satisfies S € HY(Q\ Tg) \ H2(2\ I'p), and it is a weak solution to

AS=0 in Q\ Iy,
VS -v=0305=0 only.

Let us consider the function

(t,) 2 S( xr1 —ct
u(t,z) == —= , T
VTo\V1 = 2 2
and let z(t) be its restriction to 9€2. Since u(t) has a singularity only at the crack tip (ct,0),
the function z(t) can be seen as the trace on 92 of a function belonging to H?(0,T; L?(2)) N
HY0,T; HY(Q\ T'p)), still denoted by z(¢). It is easy to see that u solves the wave equation

) te0,T],z € Q\Iy

u(t) — Au(t) =0 in Q\ Tyt e (0,7T),
with boundary conditions
u(t) = z(t) on 0, t € (0,7,
g:j(t) =Vu(t)-v=00nTy, t e (0,7),

and initial data

uo(;z;l,xg) = \/27?5(\/%,332) € Hl(Q\FO),
ul(g;h;@) = —\377_ \/lc—jals(\/%’:la) € LQ(Q).

Let us consider a function ¥ which satisfies the regularity assumptions (1.53) and condi-
tion (1.59), namely

U(t)=0 on B.(t):={z €R?: |z — (ct,0)| < e} for every t € [0, T],

with 0 < ¢ < R — ¢T'. In this case u is a weak solution, in the sense of Definition 1.1.4, to
the damped wave equation

i(t) — Au(t) — div(V23(t)Va(t)) = f(t) in € Q\Ty,te (0,7),
with forcing term f given by
fi=—div(¥?Va) = -V - 20V — U2A4 € L*(0,T; L*(Q)),
and boundary and initial conditions
u(t) = 2(t) on 09, t € (0,7),
%(t) - \I’Q(t)%(t) =0 onTy, te(0,7),
u(0) = u®,  w(0) =u.

Notice that for the homogeneous Neumann boundary conditions on I'; we used %(t) =
Va(t) - v = dru(t) = 0 on I'y. By the uniqueness result proved in the previous section, the
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function u coincides with that one found in Theorem 1.2.1. Thanks to the computations done
in [14, Section 4], we know that u satisfies for every ¢ € [0, T] the following energy-dissipation
balance for the undamped equation, where ct coincides with the length of T'; \ I'g

1. 1
5”“@)”%2(9) + QHV“(t)HQLQ(Q;R?) +ot

ou

1,. 1 ! :
= 51O sy + 5 IVuO Exaz + | (Gor)ronydr. (16D

Moreover, we have

t

t ou ) t ) . .
| G N semar = [ (Fulr), Vi aanar - [ Dt
+ (u(t), 2(1)) L2(q) — (@(0), 2(0)) L2(0)-
For every ¢ € [0,T] we compute
() ilt) — 2(8)) g2y = — / div[U2(t, 2)Vi(t, )] (it 7) — 5(t, 2))de
@B
_ / div[2 (¢, 2)Va(t, o) (it 7) — 2(t )]z
@B\

+/ U2(t, 2)Va(t, z) - (Va(t,z) — Vi(t, z))dz.
(\Be()\I't

If we denote by ¥ (t) and 2%(t) the traces of @(t) and 2(t) on I'y from above and by 4°(t)
and Z°(t) the trace from below, thanks to the divergence theorem we have

/ div[®?(t, 2)Va(t, ) (a(t, z) — (¢, z))]dx
(Q\Be(t)\I't

o . . ol . .
= /agz \IIQ(t,:c)a(t, z)(u(t,z) — 2(t, x))dx + /BBE(t) \IIQ(t,x)g(t,x)(u(t, x) — (¢, z))dx

- / W2(t, 2)0908 (¢, 2) (08 (¢, 7) — 29 (t, 2))dH (x)
(@\BL()T

+ / W2(t, 2)090° (8, 2) (05 (8, 7) — 29 (1, 2))dH () = O,
(@\B.()T

since u(t) = z(t) on 9Q, ¥(t) = 0 on IB:(t), and dau(t) = 0 on I';. Therefore for every
t €10,T] we get

(f(8),0(t) = () r2(0) = WO Va1 Z20pe) — (T(OVE(E), UEVE(E) 2 (0m2).  (1.63)

By combining (1.61)—(1.63) we deduce that wu satisfies for every ¢ € [0,T] the following
Griffith’s energy-dissipation balance for the viscoelastic dynamic equation

1. 1 ! .

5”“@)”%2(9) + i”vu(t)H%Q(Q;RQ) +/ 19 (7)Va(T) |72 (0 m2ydT + ct
o 1 (1.64)

= 5’\11(0)”%2(9) + iuvu(O)H%Q(Q;RQ) + Wiot (),

where in this case the total work takes the form

Wiot (1) ¢:/0 [(F(7),0(7) = 2(7)) p2(e) + (U(T)V(T), U(T) V(7)) 2 (02| dT
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- /0 (), (7)) 2y — (Va(r), VE()) L2gaumey] d
+ (a(t), 2(t)) r2(0) — (@(0), 2(0)) £2(0)-

Notice that equality (1.64) gives (10). This show that in this model Griffith’s dynamic energy-
dissipation balance can be satisfied by a moving crack, in contrast with the case ¥ = 1, which
always leads to (7).



Chapter 2

A dynamic model with memory for
viscoelasticity in domains with
time-dependent cracks

The chapter is organized as follows. In Section 1.2 we fix the notation adopted throughout the
chapter. In Section 2.1 we list the standard assumptions on the family of cracks {I';}+c[o,77,
we state the evolution problem in the general case, and we specify the notion of solution to
the problem. In Section 2.2 and 2.3 we deal with the existence of a solution to the viscoelastic
dynamic model; in particular in Section 2.2, we provide a solution by means of a generalization
of Lax-Milgram’s theorem by Lions. After that, in Section 2.3, as previously anticipated, we
define a coupled system equivalent to our viscoelastic dynamic system. In particular, in
Subsection 2.3.1 we implement the time discretization method on such a system, and we
conclude with Subsection 2.3.2 by showing the validity of the energy-dissipation inequality,
and of the initial conditions.
The results presented here are contained in [44].

2.1 Formulation of the evolution problem, notion of solution

Let T be a positive real number and d € N. Let @ C R? be a bounded open set (which
represents the reference configuration of the body) with Lipschitz boundary. Let 0pQ be
a (possibly empty) Borel subset of 92, on which we prescribe the Dirichlet condition, and
let On€) be its complement, on which we give the Neumann condition. Let I' C Q be the
prescribed crack path. We assume the following hypotheses on the geometry of the cracks:

(E1) T is a closed set with £4(T") = 0 and H*1(T' N 99) = 0;

(E2) for every z € T' there exists an open neighborhood U of  in R? such that (U N Q) \ T’
is the union of two disjoint open sets U' and U~ with Lipschitz boundary:;

(E3) {T't}te(—oo, is a family of closed subsets of I' satisfying I's C Ty for every —oo < s <
t<T.

Notice that the set I'; represents the crack at time t. Thanks to (E1)—(E3) the space L?(2\
I'y; RY) coincides with L2(Q;R?) for every ¢t € (—oo, T]. In particular, we can extend a function
u € L2(Q\Ty; RY) to a function in L2(£2; RY) by setting u = 0 on I';. Since H¥~1(I'NIN) =0
the trace of u € H'(Q\ I';R?) is well defined on 99Q. Indeed, we may find a finite number
of open sets with Lipschitz boundary U; € Q\ T, j = 1,...k, such that 0Q\T' C Ug?:l(?Uj.
There exists a positive constant C', depending only on €2 and I', such that

[ullL2p0ray < Cllullgro\ryrey  for every u € HY(Q\T;RY). (2.1)

29
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Similarly, we can find a finite number of open sets V; C Q\T', j = 1,...1, with Lipschitz
boundary, such that Q\ T' = Uélej. By using the second Korn’s inequality in each Vj
(see, e.g., [39, Theorem 2.4]) and taking the sum over j we can find a positive constant Cf,
depending only on 2 and I', such that

IVl qpaxay < Cr (lull7zopa) + HeUHiz(Q;Rgm)) for every u € H'(Q\T;R?).  (2.2)

For convenience we set for every m € N the space H := L?(£2;R™) and we always identify
the dual of H with H itself. Moreover, let HY := L?(On;R?) and HP := L?(0pQ;RY); the
symbols (+,-) and || - || denote the scalar product and the norm in H Moreover, we define the
following spaces

Vi=H(Q\T;RY  and Vi := H(Q\T;;RY)  for every t € (—oo,T].

Notice that in the definition of V; and V', we are considering only the distributional gradient
of win @\ I'; and in Q \ T, respectively, and not the one in Q. By means of (2.2), we shall
use on the set V; (and also on the set V') the equivalent norm

lullvi == (lul® + lleu]?)?  for every u € Vi.
Furthermore, by (2.1), we can consider for every t € (—oo, T the set
VP :={ueV;:u=0ondpQ},

which is a closed subspace of V;.
We assume that the elasticity and viscosity tensors A and B satisfy the following assump-
tions:

AB e L®(Q; (R4 RIX)) (2.3)

sym» —Ssym

and for a.e. z € Q

A(z)6r - & =& - A(w)&e, B(x)&1 - &2 = &1 - B(z)&2 for every &1,& € Riyxd,  (2.4)
calé? < A@)¢- € < Culel®, calél” <B(x)§- € < Calg|* for every £ € RET, (2.5)

for some positive constants ca, cg, Ca, and Cp independent of z, and the dot denotes the
Euclidean scalar product of matrices.
Let 8 a positive real number. We want to study the following viscoelastic dynamic system
t
1 _t=x
i(t) —div((A—}—IB%)eu(t))—l—/ Be 5 div(Beu(r))dr = f(t) in Q\ I, t € (—o00,T), (2.6)

—00

together with the boundary conditions

u(t) = z(t) on 0pQ), te€ (—o0,T), (2.7)
[(A + B) eu(t) — /t Ee_t%Beu(T)dT} v = N(t) on InQ, te (—o0,T), (2.8)
{(A + B) eu(t) — /t ;e_t_ﬁT]B%eu(T)dT} v=20 on I'y, t € (—o0,T), (2.9)

where the data satisfy
(D1) f € L, ((—o0; T]; H);

loc

(D2) N € L2 ((—oo; T]; HN) such that N € L2 ((—o0;T]; HN);

loc loc
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(D3) z € L2 ((—00; T); V) such that 2 € L} ((—oo; T); V), 2 € L2 ((—o0; T); H), and z(t) €
V; for every t € (—o0,T].

Notice that in (2.6)—(2.9) the explicit dependence on z is omitted to enlighten notation.
As usual, the Neumann boundary conditions are only formal, and their meaning will be

specified in Definition 2.1.1. To this aim, we define Vj,.(—00,T') as the space of all function
u € L} ((—o00,T); V) such that u € L} ((—o0, T); H), u(t) € V, for a.e. t € (—o0,T), and

T t
/ ef |leu(t)]|dt < 4o0. (2.10)

Now we are in position to explain in which sense we mean that u € Vjy(—00,T) is a
solution to the viscoelastic dynamic system (2.6)—(2.9). Roughly speaking, we multiply (2.6)
by a test function, we integrate by parts in time and in space, and taking into account
(2.7)—(2.9) we obtain the following definition.

Definition 2.1.1 (Weak solution). We say that u € Vj,.(—00,T) is a weak solution to system
(2.6) with boundary conditions (2.7)-(2.9) if u(t) — z(t) € V,” for a.e. t € (—00,T), and

T T
—/ (a(t),o(t ))dt—l—/_ ((A +B)eu(t),ev(t))dt
= T T
/ / 1 N ]Beu( ) ev(t))det:/ (f(t),v(t))dt+/ (N(t),v(t)) gndt

—00 —00
for every v € C2°(—o0,T; V) such that v(t) € V,P for every t € (—o0,T).
Now, let us consider a,b € [0,T] such that a < b. We define the spaces

V(a,b) := {u € L*(a,b; V) N H'(a,b; H) : u(t) € V; for a.e. t € (a,b)},
VP(a,b) := {v € V(a,b) : v(t) € VP for a.e. t € (a,b)},
DP(a,b) == {v € CZ(a,b; V) : v(t) € VP for every t € [a, b]},

and we have the following lemma.

Lemma 2.1.2. The space V(a,b) is a Hilbert space with respect to the following norm

1
lellviap = (H‘P”%?(a,b;\/) + ”95\\%2(@,1;;1{)) *peV(ab).

Moreover, VP (a,b) is a closed subspace of V(a,b), and DP(a,b) is a dense subset of the space
of functions belonging to VP (a,b) which vanish on a and b.

Proof. Tt is clear that ||-||y (4 ) is @ norm induced by a scalar product on the set V(a,b). We just
have to check the completeness of this space with respect to this norm. Let {¢x}r C V(a,b)
be a Cauchy sequence. Then, {¢x}r and {(;}s are Cauchy sequences in L?(a,b; V) and
L?(a,b; H), respectively, which are complete Hilbert spaces. Thus, there exists ¢ € L?(a,b; V)
with ¢ € L?(a,b; H) such that ¢ — ¢ in L?(a,b; V) and ¢ — ¢ in L?(a, b; H). In particular
there exists a subsequence {(py; }; such that ¢y (t) — ¢(t) in V for a.e. t € (a,b). Since
ok, (t) € Vi for ae. t € (a,b) we deduce that ¢(t) € V; for a.e. t € (a,b). Hence p € V(a,b)
and o — ¢ in V(a,b). With a similar argument, we can prove that V" (a,b) C V(a,b) is a
closed subspace. For the proof of the last statement we refer to [17, Lemma 2.8]. Ul
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Now, suppose we know the past history of the system up to time 0. In particular, let
Uin € Viee(—00,0) be a weak solution to (2.6)—(2.9) on the interval (—o0,0) in the sense of
Definition 2.1.1, in such a way that 0 is a Lebesgue’s point for both u;, and ;,. This implies
that there exist u® € Vo, with u® — 2(0) € VP, and u! € H such that

10 (R
fim 5 [ () Rt =0, tim [ () - ol Pt =0,

h—0+

From this assumption, by defining

1 _t 0 T
Fy(t) := Be 8 / ef Beu;, (7)dT,
—0o0

we can reformulate (2.6)—(2.9) on the interval [0, 7] in the following way: for every t € [0, 7]

i(t) — div((A + B)eu(t)) + /0 ;e 5 div(Beu(r))dr = f(t) — div Fp(t), in Q\ Ty, (2.11)

with boundary and initial conditions

u(t) = z(t) on dpQ, (2.12)

{(A + B) eu(t / ! IB%eu )dT] v=N(t)+ Fo(t)r on ONQ2 (2.13)
0

[(A+B)cu(t) - /0 ;e F Beu(r)dr|v = Fy(t)v on Ty, (2.14)

u(0) = u®,  w(0) =u'. (2.15)

Thanks to (D1)-(D3) and (2.10) (on the interval (—oo,0]), we have f € L2(0,T;H),
Fy € C>=([0,T); H), N € H'(0,T; HY), and z € H?(0,T; H)N H*(0,T; V) with 2(t) € V; for
every t € [0, 7).

More in general, given F' € H'(0,7T; H) we will study the following viscoelastic dynamic
system: for every ¢ € [0, 7]

t—7

i(t) — div((A + B)eu(t)) + /0 ;e_ﬂ div(Beu(r))dr = f(t) — div F(¢), in Q\Ty, (2.16)

with boundary and initial conditions

u(t) = z(t) on 0p{Y, (2.17)

[(A + B) eu(t) — /t ;e_t_ﬁTBeU(T)dT} v=F(tv on 0N, (2.18)
Ot 1 _t=—r

[(A + B) eu(t) /0 Be_ B Beu(T)dT} v=F(tv on I'y, (2.19)

u(0) = u®,  w(0) = u. (2.20)

Notice that system (2.11)-(2.15) is a particular case of system (2.16)—(2.20). As we
have already specified for system (2.6)—(2.9), also for (2.16)—(2.20) the Neumann boundary
conditions are only formal, and their meaning is clarified by the following definition.

Definition 2.1.3. We say that v € V(0,T") is a weak solution to the viscoelastic dynamic
system (2.16)—(2.20) on the interval [0, T] if u — z € VP(0,T),

T ) ) T t 1 _t—r
- /0 (a(t), o(8))dt + /0 (s + Bleu(t) - /0 So T Beu(r)dr,co(t))de
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T T
- /0 (F(1), v(t))dt + /0 (F(t), ev(t))dt (2.21)
for every v € DP(0,T), and
Tim [lu(t) — ) =0, lim () — w!l|py = 0. (2.22)

Remark 2.1.4. From Lemma 2.1.2, if a function u € V(0,7T) satisfies (2.21) for every v €
DP(0,T), then it satisfies the same equality for every v € VP (0, T') such that v(0) = v(T") = 0.

2.2 Existence by using Dafermos’ method

In this section we present an existence result which is to be considered in the framework of
functional analysis; in particular it derives from an idea of C. Dafermos (see [11]) based on
a generalization of Lax-Milgram’s Theorem by J.L. Lions (see [33]). We start by stating the
main result of this section.

Theorem 2.2.1. There exists a weak solution u € V(0,T) to the viscoelastic dynamic system
(2.16)—(2.20) on the interval [0,T) in the sense of Definition 2.1.3. Moreover, there exists a
positive constant C = C(T, A, B, B) such that

lullvo,ry < C (1fllz20.r:my + I F N 0.0y + 2l 2oy + N2l ar o,y + 16y + [ut]]) -
(2.23)

Remark 2.2.2. Without loss of generality we may assume that the Dirichlet datum and the
initial displacement are identically equal to zero. Indeed, the function w is a weak solution
to the viscoelastic dynamic system (2.16)—(2.20) according to Definition 2.1.3 if and only if
the function u*, defined by u*(t) := u(t) — u® + z(0) — z(t), satisfies

T . T
- [ e [ (s B, cot)ar
0 0
T tl i . B T . T .
- [ [ 5T @ @ evpanat = [ v [ e

0

for every ¢ € DP(0,T), and

. % . . .k 1 _
Jim ()] =0, Tim () - wdlpy =0,

where f*:= f — %, ul := u' — 2(0), and for every t € [0, 7]

F*(t) := F(t) + /O ;e_t_ﬂTIBez(T)dT — (A +B)ez(t) — (A + e 7B)(eu® — e2(0)).

Moreover, if u* satisfies for some positive constants C* the following estimate

1u* v,y < C* (1 2y + I1E e o,y + ) (2.24)

then u satisfies (2.23). Indeed, since

15 20,50y < Wfllz20,1my + 12 2200,7:m)

and for some positive constants C' = C(T, A, B, 3) we have

1
N 22 1l _=r
1F o rim < IFlmrm + (145 )| / e Bea(r)dr|
B 0o B L

2(0,T:H)
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23

+ 3 Cellzll20,mvy + (Ca + Co) 2] 10,70
+ (Ca + ||e_§||H1(0,T)CB)(||UOHV + [[2(0)[v)
< CUIF g o..m) + 120,007 + Iullv),
from (2.24) we deduce
. 1
lullyo.r) < lulvor + T2’ lv + [12(0)lv) + llzllvo,r
< C (1201 + 1F N o,y + 1EN 220,10y + 1215 0,00y + 1Py + [[ut])

where C'= C(T,A,B, ) is a positive constant.

Based on Remark 2.2.2, we now assume that the Dirichlet datum and the initial displace-
ment are identically equal to zero. To prove the theorem in this case, we first prove that our
weak formulation (2.21) with initial conditions (2.22) is equivalent to another one, which we
call Dafermos’ Equality. After that, by means of a Lions’ theorem we prove that there exists
an element which satisfies this equality. Namely, by defining for every a,b € [0,T] such that
a < b the space

&5 (a,b) :={p € C®([a,b]; V) : p(a) = 0, ¢(t) € V;" for every t € [a,b]},
we can state the following equivalence result.

Proposition 2.2.3. Suppose that there exists u € VP(0,T) which satisfies the initial condi-
tion u(0) = 0 in the sense of (2.22), and such that Dafermos’ Equality holds:

T T
|t ewnaet [ =10, 20) = (b + Breut). e )]
T tl t—r ) _ L.
+ [ [ ST Beulr).ep)ardt = T p(0)
T
= [ =D + (PU)epat for cvery o€ EFO.T). (225)

Then u satisfies (2.21), u(0) = 0 and (0) coincides with u' in (V). Moreover, if u €
VP(0,T) is a weak solution in the sense of Definition 2.1.3, then it satisfies (2.25).

At this point, we state and prove some lemmas and propositions needed for the proof
of Proposition 2.2.3. In particular, in the following lemma, we highlight a useful relation
between DP(0,T) and £P(0,T).

Lemma 2.2.4. For every v € DP(0,T) the function defined by

el = [ Har

is well defined and satisfies p, € EY(0,T).

Proof. Firstly, we can notice that ¢, is well defined because v is a function with compact
support, hence it vanishes in a neighborhood of T. Moreover, ¢,(0) = 0 by definition and
©p € C*([0,T]; V) because it is a primitive of a function with the same regularity. Now, we

can observe that v(r) € V.2 c V,P for every 7 < t, therefore we have :(f% c VP for every

7 < t, and by the properties of Bochner’s integral we get o, (t) € V;P. O
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In the next proposition we show that the distributional second derivative in time of a
weak solution is an element of the space L?(0,T; (V”)"). Therefore, such a solution has an
initial velocity in the space (V).

Proposition 2.2.5. Let u € VP(0,T) be a function which satisfies (2.21). Then the distri-
butional derivative of 1 belongs to the space L*(0,T; (V{)').

Proof. Let A € L%(0,T; (V")) be defined in the following way: for a.e. t € (0,7) and for
every v € VP

(A(t),v) == —((A +B)eu(t), ev) / (Beu( ),ev)dr + (f(t),v) + (F(t),ev) (2.26)

where (-, -) represents the duality product between (Vi) and ViP.

Let us consider a test function ¢ € C°(0,T), then for every v € Vi’ the function t(t) :=
©(t)v belongs to the space C2°(0,T;Vp), and consequently ¢ € DP(0,T). Now we multiply
both sides of (2.26) by ¢(t) and we integrate it on (0,7"). Thanks to (2.21) we can write

T
/0 (A(t),v)p(t)dt = — A+ B)eu(t), e(t) dt—l—/ / =e IBeu (1), ey(t))drdt
_|_

/0 ((A+B)
/0 (F(1), ()t + /0 (F(t), e (t))dt = / (a(t), v)p(t)dt,

0
which implies

T T
(/0 At)p(t)dt,v) = <—/0 u(t)p(t)dt, v) for every v € V¥,

Hence, we get

T T
/ A(t)p(t)dt = —/ u(t)p(t)de for every ¢ € C2°(0,T)
0 0
as elements of (VOD )’, which concludes the proof. O

Remark 2.2.6. Proposition 2.2.5 implies that & € H'(0,T;(V{")"), hence it admits a con-
tinuous representative. Therefore, we can say that there exists (0) € (V") such that

In the next proposition we show how the weak formulation (2.21) changes if we use test

functions which do not vanish at zero. In particular, we use the notation 7(T") to refer to the
family of open neighborhoods of T', and we consider the following spaces

LipP(0,T) := {4 € Lip([0,T); V) : 4(t) € V;P for every t € [0,T7]},
£ip(j)?T(0,T) = {y € LipP(0,T) : 31, € n(T), s.t. %(t) =0 for every t € I, U{0}},
LipR(0,T) :={¥ € LipP(0,T) : ¥(T) = 0}.

Proposition 2.2.7. Let u € VP(0,T) be a function which satisfies (2.21) for every ¢ €
ﬁipgT(O,T). Then u satisfies the equality

—/OT(u(t),\i/(t))dt—i—/O (A + B)eu(t), eW(t))dt — / /e (Beu(r), e¥(t))drdt

=/0 (f(t), Wit >>dt+/0< (1), W (£))dt + (i(0), L (0)),
(2.28)

for every U € Lip?(0,T).
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Proof. Let us consider ¥ € LipZ(0,T) and define for every ¢ € (0, %) the function

2(0)

€ [0,¢€]
. \Il(t—a) € e, T — 2¢]
velt) = (-t + L )\IJ(T—35) €T —2,T —¢
0 €T —eT).

It is easy to see that . € EipgT(O,T), and by using 1. as test function in (2.21) we get
I. + 1" + JI" = 0, where the three terms I, I”", and JI" are defined in the following way:

T—2e T—2e
L -:_/ (a(t), \I/(t—e))dt—ir/ (A + B)eu(t), eT(t — 2))dt

£

/T 25/ —e ]B%eu (1),e¥(t —e))drdt

T—2¢ T—2¢
/ (f(t),\l/(te))dt/ (F(t),e¥(t —e))dt,

.- _]g (a(t), @ (0))dt +][ (A + B)eu(t), teB(0))dt

t 1 5 €
]é /0 5o T Beulr). v ()drdr - ]g (F(t), 10 (0))dt — ]é (F(t), tew(0))dt,

and

T—e T—e
Jm :][ (a(t), U(T — 3¢))dt +][ (A + Beu(t), (=t + T — €)el(T — 3¢))dt
T—2¢

T—2¢
][ / ]B%eu (1), (=t +T —¢)e¥(T — 3¢))drdt
—][ (F(1), (—t + T — ) U(T — 3¢))dt —][T_E(F(t), (—t 4T — £)eWw(T — 32))dt.
T—2¢ T—2¢

Let us study the convergence of I, I, and J™ as ¢ — 0T. First of all, we notice that from
the definition of 1. and the Lipschitz continuity of ¥ we have

5 2 T—2¢
e = W20y = /0 “0(0) - w()|| at+ / W (t — &) — w(t)|3dt
€
T—e
t T —¢ 2
! U(T — 3¢) — (¢ H dt
+/T_26 ( € + € ) ( 2 ®) v
€ t2 € T—2¢
§2\\IJ(0)H%,/ 52cht+2/ y\If(t)\%,dtJr/ L[t — e —t%dt
0 0 €

T—e T—e
t T —e\2
+2||@<T35>u2v/ (-2+—=5) dt+2/ MOl
T—2¢ € T—2¢

4 >
< gl VB ry +2 [ 10O
0

T—e¢
4 2/ 1) [2dt + L2X(T = 32) — 0. (2.29)

T—2¢ e—0t

From (2.3), (2.29), and to the absolute continuity of Lebesgue’s integral, we have

T—2¢ T
‘/ ((A—i—IBS)eu(t),e\I/(t—e))dt—/O (A + B)eu(t), eU(t))dt
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€ T
< \/0 ((A—i—B)eu(t),e\Il(t))dt‘—k‘/T 25((A+B)eu(t),ellf(t))dt’

T—2e
+/ ((A—l—B)eu(t),e\I/(t—e)—e\P(t))dt’
e T
<@+ Co)| [ IO Iw@lvae+ [ futollv v ) lva]
+ (Ca+ Co) [lull 2o )l = Wl 20,10y | —= 0. (2:30)
In the same way we can prove that
T—2e
/ /0 T (Beu(r), Wt — ))drdt —— / /O 5 (Beu(r), eU(t))drdt, (2.31)
T—2e
/ 0.9 -t — [ (@, v, (232)
/ ' 2E(F(t), eU(t - ))dt — T(F(t), W (t))dt. (2.33)
€ e—=0t Jo

Notice that, by virtue of the continuity of the translation operator in L?, and again by the
absolute continuity of Lebesgue’s integral, we can write

T—2e

. T .
(u(t),\ll(t—s))dt—/o (u(t),\p(t))dt)

< ‘/:(a(t),\il(t))dt‘ 4

g
< /0 (I @)l + [lal 2.2 1 (- =€) = ¥ C)ll2(0.7:)

T ), (- o) — dt‘+‘/T 2 ))di

1O r— (234)

T—2¢
Taking into account (2.30)—(2.34) we conclude that

T ) T
I, —— — (u( )s ())dt+/0 (A4 B)eu(t),e¥(t))dt

e—0t
T T
/ / 5 (Beu(r), eW(1))drdt — / RO / (F (1), eW(1))dt.
0 0 0

Now we analyze the limit of I™ as e — 0". By (2.27) we obtain

e—0t

]f(u(t),w(o»dt - <]lsu<t>dt,w<o>> - <][€u<t>dt, T(0)) —> ((0), ¥(0).  (235)
0 0 0
Moreover

%E«A+B>eu<t>,tew<o>>dt] < (Ca+ CB)H‘I’(O)HV]éEt||u(t)Hvdt

1
< (Ca + W eor) (5 ) *lullpz vy —— 0. (2.36)

3 e—0t

In the same way, we can prove that

]l / 5 (Beu(r), tew(0))drdt —— 0, (2.37)

e—0t
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} o, —o. (239
} @ ev@pa —o, (2.3
0 e—0t

hence, by (2.35)—(2.39) we obtain I" 7 —(u(0), ¥(0)).
e—

Finally, we study the behaviour of J™ as e — 0". Since ¥(T') = 0, we can write

£

(T — 3¢))dt

u(t), ¥
1 . 1

< [l 20,0, m) 1W(T = 3¢) — W(T)|| < 3Lw||tll r2¢0,7; )62 0t 0. (2.40)
E2

Moreover

‘][T_e((A +B)eu(t), (—t + T — £)eW(T — 36))dt‘

T—2¢
T—e T—e
<Cut CIUT -3 ([ (@ ollu®llvar+ [ fute)lvat)
T—2¢ T—2¢
7\ 1
< (Ca + C) 1Y o< (0,1v) ((g) + 1)52 [ull z20.7v) — 0 (2.41)
By following the same strategy used in (2.41), we can prove that
][ / Beu (1), (=t +T —¢)e¥ (T — 3¢))drdt —0, 0, (2.42)
e—0
][ (F(8), (~t+ T — &) W(T — 3¢))dt — 0, (2.43)
T—2¢ e—0t
T—e
][ (F(t), (=t + T — £)eW(T — 3¢))dt —— 0. (2.44)
T—2¢ e—0*

Thanks to (2.40)—(2.44) we can say that J™ — 0 as e — 07, and this concludes the proof. [

We are now in position to prove the equivalence result between the viscoelastic dynamic
system (2.16)—(2.20) and Dafermos’ Equality (2.25), stated in Proposition 2.2.3.

Proof of Proposition 2.2.3. Let u € VP(0,T) be a function with u(0) = 0, and which satisfies
(2.25). Let us consider v € DP(0,T). By Lemma 2.2.4, the function defined by

pult) = /0 ;(_T)Tdf (2.45)

is well defined and belongs to the space £(0,7T). By taking ¢, as a test function in (2.25)
we obtain

T

T
- /0 (t), polt) + (t — T)Bo(t))dt + /0 (A + B)eu(t), e((t — T)y (1)))dt
T 3 t—T
_ / / ;e_5IBBeu(T)dT,e((t—T)cpv(t)))dt
0 0
T T
- / (F(8), (¢ — T)pu(t))dt + / (F (1), e((t — T)o(t)))dt, (2.46)

0 0
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since ¢, (0) = v_(—g) = 0. Notice that v(t) = (t — T)¢,(t) and consequently v(t) = oy (t) + (t —
T)@y(t), by the definition of ¢, itself. This, together with (2.46), allows us to conclude that
u € VP(0,T) satisfies (2.21) for every v € DP(0,T).

Now we prove that u! coincides with (0). Since the function u satisfies (2.21) for every
v € DP(0,T), in particular, from Remark 2.1.4, it satisfies the same equality for every
v € Eipé?T(O,T). Thanks to Proposition 2.2.7, the function u satisfies (2.28) for every

v € Lip2(0,T), and therefore, by defining
Er(0,T) :=4{v e C(0,T);V) : 3L, € n(T), s.t. v(t) =0 for every t € I,},
it satisfies (2.28) for every function in the space
ER0,T) := {v € &(0,T) : v(t) € VP for every t € [0, T]}.

Moreover, if we define ¢, as in (2.45) we have ¢, € E(0,T), and we can use it as a test
function in (2.25) to deduce

T T T oty .
_/0 (u(t),v(t))dt—i—/o ((A—HB)eu(t),ev(t))dt—/o /oﬁe 5 (Beu(r), ev(t))drdt
T T
:/0 (f(t),v(t))dt—k/o (F(t), ev(t))dt + (u',v(0)). (2.47)

By taking the difference between (2.28) and (2.47) we get (u! — 1(0),v(0)) = 0 for every
v € ER(0,T). Since for every v € Vi there exists a function v € £F(0,7) such that
v(0) = v, we can obtain that (u! —(0),v) = 0 for every v € VP, and so u! — 1(0) = 0 as
element of (V?)'. This proves the first part of the proposition.

Vice versa, let u € VP(0,T) be a weak solution in the sense of Definition 2.1.3. Therefore,
u satisfies (2.21) for every v € DP(0,T), and as we have already shown before, u satisfies
(2.28), with u! in place of 7(0), for every function v € Lip2(0,T). Let us consider ¢ €
EP(0,T), then vy,(t) = (t — T)p(t) € LipF(0,T), and so it can be used as a test function
in (2.28). By noticing that v,(t) = ¢(t) + (t — T)¢(t) and v,(0) = —TH(0) we obtain the
thesis. O

In view of the previous proposition, it will be enough to prove the existence of a solution
to Dafermos’ Equality (2.25). In particular, we shall prove the existence of tg € (0, 7] and of
a function u € VP(0,ty) such that u(0) = 0, and which satisfies Dafermos’ Equality on the
interval [0,to]. In order to do this, we use an abstract result due to Lions (see [33, Chapter 3,
Theorem 1.1 and Remark 1.2]). We first introduce the necessary setting. Let X be a Hilbert
space and Y C X be a linear subspace, endowed with the scalar product (-,-)y which makes
it a pre-Hilbert space. Suppose that the inclusion of Y in X is a continuous map, i.e., there
exists a positive constant C' such that

llullx < Cl|lully for every u € Y. (2.48)
Let us consider a bilinear form B : X x Y — R such that

B(,¢): X - R is a linear continuous function on X for every p € Y, (2.49)
B(p,¢) > allgl|} for every p € Y, for some positive constant a. (2.50)

Now, we can state the aforementioned existence theorem.

Theorem 2.2.8 (J.L. Lions). Suppose that hypotheses (2.48)—(2.50) are satisfied, and let
L:Y — R be a linear continuous map. Then there exists u € X such that

B(u,¢) = L(p) for every p € Y.
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Moreover, the solution u satisfies

fullx < < sup{1L (o) : lelly = 1. (251)
After defining for every a,b € [0,T] with a < b the space
VP (a,b) := {u € VP(a,b) : u(a) = 0},
we can state the following proposition.

Proposition 2.2.9. There exists tg € (0,T] and a function u € VP (0,t0) which satisfies
Dafermos’ Equality (2.25) on the interval [0,tg] for every ¢ € EP(0,t0). Moreover, there
exists a positive constant Cy = Co(tg, A) such that

ullvo,0) < Co (IFIlz20,10:) + I a1 0,105y + ) - (2.52)

Proof. We fix to € (0,T] such that

1 : 1

to=1  otherwise.

For simplicity of notation, we denote the spaces Vé) (0,t0) and 5&7 (0, %) with the symbols V,
and &, respectively. On the space V;, we take the usual scalar product, instead on the space
&, we consider the following one

(9, 0)ey, = /O 0[(¢(t)7 p(t)) + (6(1), (1)) v]dt + to(¢(0), £(0))  for every ¢, ¢ € &,

and we denote by || - [|¢,, the norm associated.
Let us consider the bilinear form B : V;, x &, — R defined by

B(u, ) ::/00[(u(t),¢(t))+ (£ = to) (u(t), ¢(t))ldt
0 o e ,
—/0 (t—tg)((A—}-IB%)eu(t)—/O Ee 8 Beu(r)dr, ep(t))dt,

and the linear operator L : &, — R represented by
L) = to(ul £(0) = [ 6= o) (). o)t
+ /0 0(t — 1) (E(t), e(t))dt + /0 O(F(t), ep(t))dt.

Notice that, from these definitions, Dafermos’ Equality (2.25) on the interval [0, o] can be
rephrased as follows
B(u,¢) = L(p) for every ¢ € &,.

Now we are in the framework of Theorem 2.2.8, and we want to show that (2.49) and (2.50)
are satisfied. Foremost, we prove the existence of a positive constant « such that

B(p,p) 2 allplz,  forevery ¢ € &

By definition we have

B(e, ¢) =/0OHW)H?+(t—to)(¢(t),¢(t))]dt
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- /0 't~ 10) [((A + Blep(t), (1)) — /0 5T Beplr), cp(t)ar]at. (251)

Now we define

t—7 _t—7

b1 _ix . 1 ¢ tr
— : i — e B .
W(t) : /0 Be 5 ep(T)dr hence we have (t) ﬁego(t) /0 626 ep(T)dT;

then (2.54) can be reworded as

B(p,¢) = 00||¢(t)||2+(t—to)[(¢(t),¢(t))—((AHB)ew(t)’6¢(t))+(153¢(t)76¢(t))]dt- (2.55)

Thanks to the chain rule and to the symmetry property (2.4), we can write

1d

SR = (G0,6(0), 5 (At Blep(t) ep(t)) = (A +Bleg(t), ep(t),

%(Bdf(t)a ep(t)) = (B(t), ep()) + (Bi(t), ep(t)).

By substituting this information in (2.55), we get after some integration by parts

to

Blee) = [P+ 5 [ =) glewla = [ = )i, o)

+ [ =) Bt — 5 [ =t T+ Bt o)

to to
- t§0||¢(o)\|2 + ;/0 ||¢(t)||2dt+;/0 (A +B)ep(t), ep(t))dt

to to .
- / (B(t), ex(t))dt — / (t — to) (Bu(t), ewo(t))dt
0 0

to to
= Dl + 5 /0 ORI /0 (A + Bew(t), ep(t))dt

to . . to . to
- [t - ) EBd. b0 - [ - 0)BI0.00) - [ B, env)
0 0 0

= PP+ [ leolPat+ g [ hepte).ept)ar

+;/O(B(esﬁ(t)—¢(t))7e<ﬁ(t)—@D(t))dt—k/O(to—t)(ﬁlﬁ%wt),@z}(t))dt. (2.56)
0 0

From the coerciveness in (2.5) and to the definition of the V-norm, we have
(Aep(t),ep(t)) = callp)l} — callp)l]*  for every t € [0, T). (2.57)
Moreover, since , .
o0 =2+ [ s(rar= [ plria,
inequality (2.57) implies

1

3 eeo.cownin = F [elfa -0 [Tieora s

By (2.56), (2.58), and in view of the choice done in (2.53), we can deduce

1-—

cato [, ey [P0 L.
| venpar % [T e > Jmin{neatiolR,

to, .
Blp.o) > 2e0) + 1
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which corresponds to the hypothesis (2.50), with
T .
a= min{1l,ca}. (2.59)

We now show the validity of assumption (2.49). We have to prove that for every ¢ € &,
the functional B(-, ) is continuous on Vy,, and that L : &, — R is a linear continuous
operator on the space &,. To this aim, we fix ¢ € &, and we consider {uy}; C V4, such that

Vi

Up — U.
k—o00
Therefore
L2(0,to;V . . . L2(0,to;H
Uy, ::uk—uMO and Uy ::uk—uuo.
k—o0 k—o0

By using Cauchy-Schwarz’s inequality we get
to . to .
BRI < [ 102N +10 [ 1G0. 20)ar

to to t 1 —r
+t / (A + B)eUk (1), ep(£))dt + o / / 5o 7 IBeUi(r), ep(t)
0 0 0
<Nkl 2(0,t0: 1) 191 L2 (0,803 11) + t0(Ca 4+ CB) Ukl 220,05 1211 22 (0,801
: } to,, [0 [ -
+ ol Ol €2 ) + 53 C /0 /0 (U(r), ep()drdt.  (2.60)

Notice that
to t

/ / (€U (r), e (t))|drdt
0 0

to t 2 %
<l ([ ([ 106 var) at)* < tollelzz a1Vl 0

whence, by considering (2.60), we can say that there exist two positive constants Cy =
Cl ((p,to) and CQ = CQ(A,B,tQ,,B, (p) such that
|B(Us, )| < CullUkll 20 20;) + C2 Ul 2 (0,80,v) ——— O-

k—o0

Now it remains to show that L is a continuous operator on &, and since it is linear it is
enough to show its boundedness. Let ¢ € &, then

L < | [ [~ 10000 60) - (¢ = )P ep0) = (P ec0)] at] + 10l 10)].
(2.61)

In particular there exists a positive constant C' = C(f, F, ty) such that
to .
[ 1= ) (0.0 = (PO (8 (2 = t0) (0. et

to . 1
< toll fllz20.t0;0) 191 20,00510) + (/0 1 = to) E'(2) +F(t)!!2dt> el
1
< toll Fll 2 (o.0:0) 10 ll ey + 22 max{to, HIE g1 o0 llller, < Clielle, (2:62)

Moreover, we have

_1 1
tollu' [0} < tollu'llty * I elle,, = g llu'llelle,- (2.63)
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By applying Theorem 2.2.8 with X = V,, and Y = &, we have the existence of a solution
to (2.25) on the interval [0, to].

Furthermore, we can use (2.51) and (2.59), and by means of (2.61)—(2.63) we obtain (2.52)
with

1
maX{Z% max{to, 1},15 }
Co:=

smin{l,cy}
O

Remark 2.2.10. At this point, from Remark 2.2.2, Propositions 2.2.3 and 2.2.9, we can find
a weak solution to the viscoelastic dynamic system (2.16)—(2.20) on the interval [0, to].

Now we want to show that it is possible to find a weak solution on the whole interval
[0,T]. Let b,c € [to,T) be two real numbers such that b < ¢, then we can state the following
lemma.

Lemma 2.2.11. Let u € VP(0,b) be a function which satisfies (2.21) on the interval [0,b],
then the following equality holds

b . b
(u(b),w(b»—/o (ﬁ(t),w(t))dwr/o (A + B)eu(t), eys(t))dt
b t 1 _t—r b b

- [ ] 3T meutrevoparar = [ o vwpt [P o

for every v € VP(0,b) such that 1(0) = 0.
Moreover, if u € VP(b,¢) is a function which satisfies (2.21) on the interval [b,c|, then
the following equality holds

Cc

~ a(B), (b)) — /b ), b(e)de + /b (A + B)eu(t), e¥(t))dt
c t 1 -7 c
. /b /b 5¢ 7 (Beu(r), cw())drdt = / (D), U ())dt + /b (F(t),e¥(1)dt,  (2.65)

b
for every ¥ € VP (b, ¢) such that ¥(c) = 0.

Proof. We begin by proving (2.64). We consider 1 € VP(0,b) such that ¢(0) = 0, and we
define for € € (0,b) the function

() tel0,b—e¢
ve(t) = {b;w(t) telb—e,bl.

Since 1. € VP(0,b) and 1. (0) = 1 (b) = 0, we can use it as a test function in (2.21) to obtain
I. + J. = K., where

b—e . b )
L= /0 (at), (1)) dt + ]{ (alt), (t))dt

—&

b—e t 1 s
+/0 ((A+B)eu(t)—/0 Be 5 Beu(r)dr, el(t))dt,

b _ . b L
= —]és(b—t)(u(t),w(t))dt—i— ]é (b— t)((A + B)eu(t) — /O o 7 Beu(r)dr. v ()

—&

b—e b
K. = /0 <f<t>,w<t>>dt+]{ (b— D (1), p(t))dt

—E&
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b—e b
+ /0 (F(t),e(t))dt +]£_€(b —t)(F(t), exp(t))dt.

Thanks to the absolute continuity of Lebesgue’s integral and to Remark 2.2.6 we get

b ' b
L—— — [ ), db))de + /0 (A + B)eu(t), ew(t))dt

e—0t 0

bt s
_/ / ;e_ﬁ(Beu(T)dT,BLZ)(t))dt—F<'[L(b)a¢(b)>v
0 0
b

b
Jo——0, Ko —— [ (F). ()t + /O (F (1), en(t))dt,

e—0t e—=0t Jo

which concludes the proof of (2.64).
To prove (2.65), it is enough to consider for € € (0, ¢ — b) the function

w.(1) = Eby(t) telbb+e]
R R0 tebted

where U € VP (b, ¢) such that ¥(c) = 0, and to repeat similar argument before performed. [

Taking into account the previous lemma we can state and prove the following proposition.

Proposition 2.2.12. Let @ € VP (0,b) be a weak solution to the viscoelastic dynamic system
(2.16)~(2.20) in the sense of Definition 2.1.5 on the interval [0,b] which satisfies for some
positive constants C' the following estimate

lallvios) < C (F |20y + I1F N o.pery + Il ) - (2.66)

Then, for every | > 1 there exists ¢ € (b,b+ tTO] such that we can extend 4 to a function
u € VP(0,¢) which is a weak solution on the interval [0,c]. Moreover u satisfies for some
positive constants C' the following estimate

lullvioe < C (IFll20,em) + 1 0.0 + 1u'll) (2.67)

Proof. We divide the proof into two steps. In the first one, we show how to extend the

solution. After this, in the second step, we prove (2.67). We firstly choose be (b — ;—f;, b) in

such a way that
e i(b) € V and

R b
I < £, laola (2.68)

3
e bisa Lebesgue’s point for u, that is
bte

lim a(t) — a(b)||dt = 0, (2.69)

e—=0t1Jp
and u(b) € H satisfies

b
I <, )P (2.70)

21
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Notice that (2.68)—(2.70) are possible because @ € V(0,b).
Step 1. Since @ is a weak solution on the interval [0, b], then

b b bt o
—/0 (6(t), (1)) dt +/0 (8 -+ BJei(0). o)at - | /0 So T (Bea(r), ev(t))drde
-/ (o), o)t + / (F (), enlt))dt,
for every v € VP(0,b) such that v(0) = v(b) = 0, and moreover @ satisfies

lim [Ja(t)]] =0 and lim ||a(t) — U1H(VOD)/ =0. (2.71)

t—0t t—0t

We define the function G € H*(b,b+ + % H) in the following way

b
1 _t=r
G(t) == F(t) —|—/ Ce'F Bea(7)dr.
o B
Since tTO < to, 11((;) eV, and &(3) € H, we can apply Remark 2.2.2, Propositions 2.2.3 and

2.2.9 on the interval [b, b + 0] to find a function u € VP (b, b+ L) which satisfies, for every
ve VP(b,b+ ) such that v(b) = v(b+ %) =0, the following equality

b+20 b+20
—/ (u(t), o(t ))dt+/ ((A 4+ B)eu(t), ev(t))dt
b

b+ b+t0 b+10
/ / Beu (1), ev(t))drdt :/ (f(t),v(t))dt —i—[ (G(t),ev(t))dt,
b b b
and also the following limits
im la() — (B =0, tim (o) — (0} |y =0 (2.72)
t—bt —bt

Notice that the initial data @(b) and @(b) are well defined because @ € C°([0,b); H) and
i e CO((0, B; (VP)).

Now we define the function

? (2.73)

+4),
and we claim that it is a weak solution on the interval [0, b+ ], Notice that, since b>b—1

then b+ > b. To prove this, let us fix ¢ € DP(0,b+ ). Clearly ¢» € VP(0,b) and 1(0) = 0
and since 4 is a weak solution on [0, 13], we can use (2.64) of Lemma 2.2.11 to get

. ~ ~ l; . B
((b), () - / (at), (1)) dt + / (A + B)eu(t), e(t))dt

b b
//e (Beu(r )dT,mp(t))dt:/o(f(t),¢(t))dt+/0(F(t),e¢(t))dt. (2.74)

Moreover, ¢ € VP (b, b+ o) and (b + L) =0, and since @ is a weak solution on b, b+ + L],
by (2.65) of Lemma 2.2.11 we obtain

;i

. . b+t ) b+
— (b, () - /b (alt), (e))dt + /b (A + Beu(t), e (1))t
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b+ b+t b+t
/ / 5 (Beu(r)dr, e (t))dt = / (F(8), (1))t + / (G(1), (b)) dt
b b b

that is

to
1

o b+ . b+0
~ (ii(b). v b»—/ (@)Dt + [ (A o+ Bleu(t) ev()ar
- bt bt
/ / L =5 Beu(r)dr, e(t))dt = /b (F(), (8))dt + /b (F(£), exp(t))dt
(2.75)
From (2.69) and (2.72), by summing (2.74) and (2.75), we obtain the following equality

b+ . b2
—/ <m>w»a+A (A + B)eu(t), e(t))dt

b+ b+ b+
/ / 5 (Beu(r), ew(t))drdt = / (F(), () dt + / (F(t), ew(t))dt
" " " (2.76)

By setting ¢ := b + tTO we have that the function u defined in (2.73) is a weak solution to
the viscoelastic dynamic system (2.16)—(2.20) in the sense of Definition 2.1.3 on the interval
[0, ], since it satisfies (2.71) and (2.76).

Step 2. Now, we want to prove (2.67). We can write

llldo.) = 103,05 + 113 5.0y < N800 + 11235, (277)

Notice that @ — @(b) € VP (b, ¢) is a function which satisfies Dafermos’ Equality (2.25) on the
interval [b, ¢] with the right-hand side equal to
t7

m@@%ﬂ@)—é?r%wﬁﬂﬂ@&n+ﬂﬂw—A%@) T Bea(b), ep(t)) ] dt,

for every o € &P (l;, ¢). Therefore, by following the estimates in (2.61)—(2.63), we can apply
(2.51) of Theorem 2.2.8, with X = VP(b,c) and Y = P (b, ¢), to obtain the existence of a
positive constant K = K (tg, A) such that
. . b .-
1 = @Oy < KLy + G — Aci(h) — ¢ Beilb)l g rp) + NGB (278)

Now notice that

1
Gy < 1Pl + Co (2 /ﬁQ 2 ar) il oy
Ch
<Nl + 2 (14 )nuHVOb (2.79)

and
lAei(h) + e 5 Be(h)l a5 ) < [CA( z )é + CIB%HG_%HHl(B,C)] I (d) v
< [en(%) "+ cs(D)! (1 D) Jialy. )

Taking into account the information provided by (2.68)—(2.70), we can use estimates (2.78)-
(2.80) to deduce the existence of a positive constant C' = C/(to, 1, A, B, ) such that

lallygie < C(N N ooy + 1 i sty + i) (2.81)

y (2.66), (2.77), and (2.81) we obtain the final estimate (2.67). O
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Now we are in position to prove the main theorem of this section.

Proof of Theorem 2.2.1. Let us consider ug € V”(0,ty) a weak solution to the viscoelastic
dynamic system (2.16)—(2.20) in the sense of Definition 2.1.3 on the interval [0, o], whose
existence is guaranteed by Remark 2.2.10. Moreover, ug satisfies (2.52). By applying a finite
number of times Proposition 2.2.12 with [ = 1 we can extend ug to @ € VP (0,b) which is a
weak solution on the interval [0, b], where T — b < to. Now we select b € (T' — tg,b) in such
a way (2.68)—(2.70) are satisfied on the interval [T' — to,b]. By choosing [ = % > 1, since

b+ L = T, thanks to Proposition 2.2.12 we can extend @ to a function u € VP(0,T) which
is a weak solution to the viscoelastic dynamic system (2.16)—(2.20) on the interval [0,7]].
Moreover u satisfies (2.67) on [0, T]. Finally, by applying Remark 2.2.2 we get the thesis. [

2.3 Existence: A coupled system equivalent to the viscoelastic
dynamic system

In this section, we illustrate a second method to find solutions to the viscoelastic dynamic
system (2.16)—(2.20) according to Definition 2.1.3. This method is based on a minimizing
movement approach deriving from the theory of gradient flows, and it is a classical tool used
to prove the existence of solutions in the context of fractures, see, e.g., [7], [13], [17]. By
means of this method, we are also able to provide an energy-dissipation inequality satisfied
by the solution, and consequently, thanks to this inequality, we prove that such a solution
satisfies the initial conditions (2.20) in a stronger sense than the one stated in (2.22).
To this aim, let us define the following coupled system

{u(t) —div(Aeu(t)) — div(B(eu(t) —w(t))) = f(t) —divG(t) in Q\Ty, t e (0,T), (2.82)

Bu(t) + w(t) = eu(t)

with the following boundary and initial conditions
u(t) = z(t) on dpQ, te (0,7), (2.83)
[Aeu(t) + B(eu(t) — w(t))v = G(t)v on InQ, te (0,7), (2.84)
[Aeu(t) + B(eu(t) — w(t))y = G(t)v on I', te(0,7), (2.85)
u(0) =u®,  w(0)=w @0)=ul, (2.86)

where w® € H and G(t) := F(t) — e FBw. Also in this case, the strong formulation of the
coupled system (2.82)—(2.86) is only formal. By setting

V:.=Vv(0,7), VvP.=vP,1), DP:=DP0,1),
we give the following definition.

Definition 2.3.1. We say that (u,w) € V x HY(0,T; H) is a weak solution to the coupled
system (2.82)—(2.86) if the following conditions hold:

e u—2z¢c VP and
T T T
- / (a(t), p(t))dt + / (Acu(t), ep(t))dt + / (B(eu(t) — w(t)), ep(t))dt
0 0 0

T T T,
- / (1), o(t))dt + / (F(t), ep(t))dt - / e B (Bu®, e (1)),
" ’ ’ (2.87)

for every ¢ € DP;
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e fora.e. te (0,7)

{ Bib(t) +w(t) = eu(t) (2.88)

w(0) = w
where the equalities are to be understood in the sense of the Hilbert space H;
e the initial conditions (2.22) are satisfied.
The following result proves that the new problem is equivalent to the first one.

Theorem 2.3.2. The viscoelastic dynamic system (2.16)—(2.20) is equivalent to the coupled
system (2.82)—(2.86).

Proof. Let us consider a weak solution (u,w) € Vx H(0,T; H) to the coupled system (2.82)—
(2.86) according to Definition 2.3.1. In view of the theory of ordinary differential equations
valued in Hilbert spaces, by (2.88) we can write

t

t
t _t 1 =
w(t) = wle S e / Eeﬁ eu(r)dr for every ¢ € [0,T]. (2.89)
0

Moreover, by definition u—z € VP and (2.87) holds for every ¢ € DP. By substituting (2.89)
in (2.87) we obtain

T ) ) T t 1 t—r

- /0 (a(t), p(1))dt + /0 (A + Beu(t) — /0 o T Beu(r)dr e ()

—/Teé(zaawo eo(t))dt = /T(f(t) <p(t))dt+/T(F(t) ego(t))dt—/Te/i'(IB%wO eo(t))dt.
0 ’ 0 ’ 0 ’ 0 ’

Therefore, since, again by definition, (2.22) holds, u is a weak solution to the viscoelastic
dynamic system (2.16)—(2.20) in the sense of Definition 2.1.3.

Vice versa, if we consider a solution u € V to the viscoelastic dynamic system (2.16)—
(2.20), then u — 2z € VP and

T T
- / (at), (8))dt + / (A + B)eu(t), ep(t))dt
0 0

t—7

T t 1 _t—r T T
- /0 /0 5o (Beulr), ep(t)drdt = /0 (F(8), o(t))dt + /0 (F(1), ep(t))dt,  (2.90)

for every ¢ € DP. Let w® € H and let w be the function defined in (2.89). It is easy to see
that w € H(0,T; H) and by summing to both hand sides of (2.90) the term

T t
- / e~ 5 (Bu®, ep(t))dt,
0

we get (2.87). This, together with (2.22), shows that (u,w) € V x H'(0,T; H) is a weak
solution to the coupled system (2.82)—(2.86) in the sense of Definition 2.3.1. The proof is
then complete. O

Now we are in position to state the main result of this section.

Theorem 2.3.3. There exists a weak solution (u,w) € Vx HY(0,T; H) to the coupled system
(2.82)~(2.86). Moreover, we have u € C9([0,T]; V), u € C([0,T); H)NH(0,T; (VL)) and

lim w(t) =u® inV and lim u(t) =u' in H.

The proof of this result will be given at the end of this section.
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2.3.1 Discretization in time

In this subsection we prove Theorem 2.3.3 by means of a time discretization scheme in the
same spirit of [13].
Let us fix n € N and set

T -
Tn = ud =, =1’ - rul, (2.91)
wd) =w’, F):=F(0), h:=Bu’
We define
V.= Vklzn, 2= 2(kr) for k=0,...,n,
k k —Eno 00 ok e
E} :=F(kty,), h,:=e¢ 7 Bw", f) ::][ f(r)ydr fork=1,...,n.
(k=1)mn
For k = 1,...,n let (u¥,w*) be the minimizer in V¥ x H of the functional
1 k=1 k22 1 1
(u, w) HﬁHu —2u, Fu, |+ i(Aeu, eu) + i(lﬁé(eu —w),eu — w)
n
B - -
t+ 5 Blw —wp ™), w—wn™h) = (f,u) = (Fy = hy, eu). (2.92)

n

Using the coerciveness (2.5), it is easy to see that the functional in (2.92) is convex and
bounded from below by

1 1 1 9 9 k
i {52 Co 2 Cs8 p(lully + ) = €,
for a suitable positive constant CX¥. The existence of a minimizer then follows from the
lower semicontinuity of the functional with respect to the strong (and hence to the weak)
convergence in V¥ x H.

To simplify the exposition, for £k =0, ...,n we define

ko ok—1 ks k—1
Suk = Un = Un  and Sl = M (2.93)
Tn Tn
The Euler equation for (2.92) gives
(8%uy,, @) + (Aeuy, ep) + (Bleuy; — wyy), ep — )
+ BBy, ) = (fr, 0) + (Ey,ep) — (hy, ep), (2.94)

for every (¢,v) € V¥ x H, where dwF is defined for every k = 1,...,n as in (2.93), and
sul = u! by (2.91). Notice that by choosing as a test function the pair (¢,0) with ¢ € V¥,
we get

(52u7lfu 90) + ((A + B)euﬁ - Ewln67 6(,0) = (fr’:? 90) + (Fﬁv 690) - (h712> 690)7

which is a discrete-in-time approximation of (2.87). On the other hand, if we use as a test
function in (2.94) the pair (0,%) with ¢» € H, we have
(Bowy, + 1wy, — ey, 1) = 0,

thus Bowk + wk — euf = 0 (as element of H), which is an approximation in time of (2.88).
In the next lemma we show an estimate for the family {(u%,w¥)}%_,, which is uniform
with respect to n, and it will be used later to pass to the limit in the discrete equation (2.94).
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Lemma 2.3.4. There exists a positive constant C, independent of n, such that
n
max [|0u, || + max [leu), || + max [[wh ||+ 7w ||* < C. (2.95)
1=1,..,n i=1,..,n i=1,..,n Py
Proof. To simplify our computations, we define the following two bilinear symmetric forms

a:(VxH)x(VxH)—=R b:HxH—R

al(,w), (9, 9)) = (Aew,eg) + (Blew —w), e — ¥), b, ) i= A(Bw, ).
Thanks to (2.5) we have that a((y,¥), (¢, %)) > 0 and b(, 1) > 0 for every ¢ € V and ¢ € H.
Now we set wk := (uf, wk) for k = 0,...,n, and we take (¢, ) = 7, (6uk —02E, swk) e VEx H
as a test function in (2.94), where 620 := 2(0) and 62% is defined as in (2.93). Therefore, we

obtain

16w 1 — (dup™", 6ur) — 7 (8%uy, 625) + alwy, wy) — a(wyt,wy) — Taalwy, (02, 0))

+ (6w, Swy) = T (f), Sul — 025) + T (E), edul, — ed2)) — mu(hl, eduy — e62)).  (2.96)
By means of the following identities
I — (oul 6uk) = Lokl — Dpou 1+ T2 otk
a(wh, Wk — a(wF Wwh) = Za(wk, wk) - 1a(wffl,wk*l) + Tja(éwﬁ, Swh),

from (2.96) we infer
1 k2 1 k—12 1 k k k—1 k-1 k k k
5”6,”’71” - §||5un || + §a’(wn7wn) - 7a(wn y W ) + Tnb(éwnv 5wn) < Tan’ (297)

where

Wy = (f}, 8ufy — 623) + (EY, eduy, — edz))
— (hy, edup, — e625) + (5%uy, 625) + a(wy, (525, 0)).

We fix i € {1,...,n} and we sum in (2.97) over k = 1,...,% to obtain the following discrete
energy inequality

1 1 i i
§H<su;|12 + Halwn,w,) + > mb(Swh, dwh) < &+ W, (2.98)
k=1 k=1

where

1 1 1
8o = gl + 5 (Aend, en®) + 5 (Blen” — '), eu® — u?).

Let us now estimate the right-hand side of (2.98) from above. We can write
i 1 1 d
| S sk suk = 65| < B0 + 1200 + 5 D Tallouk ]2 (2.99)
k=1 k=1

1 _2kmn 1
\k§1j 028 < 5 Do B+ g 3l

T 1,
< SIBu®l* + Sl121 20 7,)- (2.100)
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1 1
>l ezt < 3 2ol 5 S mledl
k=1 k=
U L A =E -~ (2.101)

C?
‘Zm (328,0))] < Azmueunw Bzmueu—wnu2+zmue6znu2

(G2 CR) Zm[ueunu%ueu whI2] + 12122020

\V] \

k=1
(2.102)
Notice that the following discrete integrations by parts hold
Zrn S2uk 52F) = (6ul, 62L) — (6ul, 629) Zm k=1 5228, (2.103)
ZTn hE eduf) = (bl eul) — (hY, eul) — ZTn(éhﬁ, eul™1b), (2.104)
Z Ta(FF edul) = (FE, eul) — (F°, eu® Z Tn(6FF euf™h). (2.105)
where 6hE, SEF and 622F are defined as in (2.93). By (2.103) and
i i—1 i
Yo malldun P =) mllunl? < Tljut |+ malldup]l?, (2.106)
k=1 k=0 =

we can write for every €1 > 0

’ZTn (52uk 52

1 ; €1 ; . : _
2 s—lézl> + 5!!5%!!2 + [l ZO) 4+ mallduy 116725

.. €1 ; 1 :
< oy + 1 0oy + 10U I2 + 5 7 ok, (2107)

where C¢, is a positive constant depending on ;. Thanks to (2.104) and to (2.106) (applied
to euf~! in place of 5u 1Y we have for every 3 > 0

1 . £9 : ! _
’ZTn hyy, eduyy)| < @thlﬁ + 5H€UH|2 + [lea® | [Bw°l| + > mallohs [[[leus |
k=1

1 02 2, 2
<Cep + %HEUJ | + eup || + ZTnlleunH (2.108)
where (., is a positive constant depending on 3. Moreover, notice that

%
= a4,
k=1

hence by means of the discrete Holder’s inequality

) ) 1
lill < 37 ralldul | + 1l < T3 (3 mallowfl?)* + ]l (2.109)
k=1 k=1



52 2.3. Existence: A coupled system equivalent to the viscoelastic dynamic system

By (2.105), (2.106) (applied again to euf~! in place of Juf=1), and (2.109) we get for every
e3 >0

7
€3 i _
\Zm F,edub)] < o IFIP + Zledt + [FO)llea] + 3 mllsF et
k=1
<o+ e |2+ 2 E)2 +1 ZZ:T et |12 (2.110)
> Lgg 2 n 92 L2(0,T;H) 2 n nil > ’
k=1

where (., is a positive constant depending on 3.

Now we consider (2.98)-(2.110). By choosing &1 = %, €2 = €3 = % and using (2.4) and

(2.5) we obtain the existence of two positive constants Cy and Co such that

1 . CA . CB . ) ¢
SIS + e 2+ e, — whl + fes 3 mllul?
k=1

) k
<O+CY T [Hauw +llen]? + fleut — wk |2 + anuawﬁluﬂ. (2.111)
k=1 =

By defining
7
al, = [|6uf 1> + llewp |1* + lleus, — wh||* + ) mll 6w,
k=1
from (2.111) we can derive
E<Cr+Cy) ak,
k=1

for two positive constants C; and Cy. Taking into account a discrete version of Gronwall’s
lemma (see, e.g., [2, Lemma 3.2.4]) we deduce that a!, is bounded by a positive constant C*
independent of ¢ and n; i.e.,

i
(|0 |12 + [leud ||* + [leus, — wh||® + ZTnHéw,’;HQ <C* foreveryi=1,...,nand n € N.
k=1

Therefore

i
l|6ul || + |Jewd, ||* + [Jwh||? + ZTnH5waH2 <3C* foreveryi=1,...,nand n €N,
k=1

and this concludes the proof. O

We now want to pass to the limit into the discrete equation (2.94) to obtain a solution
to the coupled system (2.82)—(2.86) according to Definition 2.3.1. We start by defining the
following interpolation sequences of our limit solution

Un(t) = uf + (t — kr,)ouf  fort € [(k— 1)1y, k) and k=1,....n,

k fort € (k—Dmp, krp] and k=1,...,n, ! (0)=1u’
u, () = ub~1 fort € [(k—1)mp, k) and k=1,...,n, u,

and the same approximations wy,, w,", w, for the function w. Moreover, we consider also the
sequences

T (t) = 0ul + (t — kry)0%uf  fort € [(k — )7, k) and k =1,...,n,

n
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al(t) = ouk for t € (k— 1)7p, k) and k=1,...,n, 4,5 (0) = dud,
i, (t) = dub! fort € [(k— 1)1y, km) and k=1,...,n, au,(T) = du,,

which approximate the first time derivative of u. By using this notation, we can state the
following convergence lemma.

Lemma 2.3.5. There exists (u,w) € V x H(0,T; H), with u — z € VP, such that, up to a
not relabeled subsequence

H'(0,T;H) + L*(0T3V) _ L*(0,T3H)

n n—oo ’ n n—oo ’ n n—oo ’ (2112)
HY(0,T;H L2(0,T;H

n%(”)w, w,f;”)w (2.113)
n—oo n—oo

Proof. Thanks to Lemma 2.3.4 the sequences

{ux}n € L®(0,T;V), {wE}, © L=(0,T; H),
{a@y }n © L(0, T H),

are uniformly bounded. Indeed, by means of (2.95) and (2.109) there exists a positive constant
C such that ||ul ||y < C for every n € N and i = 1,..,n, and therefore

|tnllpooo,rvy < max sup | (1= k+tr, ) uk + (k—tr) ) ul™y < 2C.
k=L ge[(k—1)7n k7a]

By Banach-Alaoglu’s Theorem there exist some functions
we HY0,T;H), we HY 0,T;H), v €L*0,T;V), wye L*0,T;H)

such that, up to a not relabeled subsequence

L2(0,T;V . L%2(0,T;H) . L2(0,T;V
n gu, n gu, TR gvlv (2.114)
n—00 n—00 n—00
L%2(0,T;H . L%2(0,T;H) . L2(0,T;H
Wy, LT, w, Uy, LOTH), w, w,t LOTH), V3. (2.115)
n—o0 n—0o0 n—oo

Since there exists a positive constant C' such that
Hun — u:HL"O(O,T;H) < CTn E— 0, Hwn — w,f”Loo(O’T;H) < CTn E— O, (2116)
n—o0 n—oo

by using (2.114), (2.115) and triangle inequality, we can conclude that u = v; and w = vs.
Moreover, given that

u, (t) = urf(t —Tn), w,, (t) = w:{(t — 1) forte (m,T),
a, (1) =} (t —7), for t € (1, T),
Wr(t) = un(t), for a.e. t € (0,7),

with (2.116) and the continuity of the translations in L? we deduce that

_ L*(0,T3V) -4 L%20,T;H) . _ L3*(0,T;H)
—_—Uu u —_— U w —_—w

n ? n ’ n
n—o0 n—o0 n—oo

Now let us check that v € V. To this aim, we define the following sets

Vi={uec L*0,T;V):u(t) € V; forae. te (0,T)} C L*(0,T;V),
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VP ={ueV:ut) e VP forae. t € (0,T)} C L*(0,T; V).

Notice that V is a (strong) closed convex subset of L?(0,T;V), and so by Hahn-Banach
Theorem the set V is weakly closed. In the same way we can prove that VP is also a weakly
closed set. Notice that {u, }, C V, indeed

u (t) = uk1 € Vik—iyr, C Vi fort € [(k— 1), km), k=1,...,n

L%(0,T;V) L2%(0,T;H)
_ N\ —_ N

u, we conclude that u € V. Moreover i} w and so u €

n—oo n—o0

L?(0,T; H), from which we have u € V. Finally, to show that u — z € VP we observe that

Since u,,

u, (t) — 2z, (1) = ub L — AL e VEL c VP fort € [(k— D k), k=1,...,n

n

therefore {u, — 2}, € VP. Since

n
n—oo

_ L%2(0,1;V)
—_ N\ u

_ LA(0,T3V)
A

n Z?

n—oo

we get u — z € VP, This concludes the proof. O

With the next lemma we show that the limit identified by Lemma 2.3.5 is actually a weak
solution to the coupled system (2.82)—(2.86).

Lemma 2.3.6. The limit pair (u,w) € V x HY(0,T; H) of Lemma 2.3.5 satisfies (2.87) and
(2.88).

Proof. We fix n € N and the functions ¢ € DP and ¢ € C(0,T; H). We consider the
following piecewise-constant approximating sequences

(pfl = (k) ¢fL = z/J(an) for k=0,...,n
E k-1
&pfl::M ok = w” 4 fork=1,....n
Tn Tn
and the approximating sequences
o (t) == oF, Gh(t) = sk te((k—Dmp,kr), k=1,...,n,
() ==k, O (t) = ok te (k=D km], k=1,...,n.

If we use 7,(¢F,0) € V¥ x H as a test function in (2.94), after summing over k = 1,...,n, we
get

n
ZTn 62 k790n +ZTn A+E) Bwﬁ,e(pf)
k=1 k=1
n n n
k=1 k=1 k=1
Since ¥ = ¢ = 0 we obtain
n n n—1 n—1

ZTn 52 k?@n Z(éuﬁv(pﬁ) - (5ui€z_1

k=1 k=

- _ Z 5un7 5¢k+1

,_.
e
I

o
e
I

o



Chapter 2. A dynamic model with memory for viscoelasticity in domains with
time-dependent cracks 55

and from (2.117) we deduce

T T

- /0 (i (8), 2 (1))dt + /0 (A -+ B)eu? (t) — Buit (1), e (1))dt
T T T

— / (£ (), o (£)dt + / (FF (), et (£))dt — / (hE (), et (B)dt. (2.118)
0 0 0

Thanks to (2.112), (2.113), and to the convergences

1+ L*0,T;V) -1 L*(0,T;H)
n ? n
n—oo n—0o0

we can pass to the limit in (2.118), and we get that u € V satisfies (2.87) for every function
¢ € DP.
If we use 7,(0,9F) € V¥ x H as a test function in (2.94), we have

(Bowp, + wy, = e, ¥n) = 0,
which corresponds to
(B, (t) +w)i () —ewt (), () =0 te((k— D, k], k=1,...,n.
Therefore, for every (a,b) C (0,7), from (2.112) and (2.113), we can write
b b
0= lim { (Bun(t)+w!(t) —eul(t), ;] (t))dt :][ (Buw(t) +w(t) —eu(t),(t))dt. (2.119)

n—oo a

Now we pass to the limit in (2.119) as @ — b and we obtain
(Bw(b) + w(b) — eu(b), (b)) =0  for every b € [0,T].
Given that, fixed b € (0,7 for every p € H there exists ¢p(t) :== (t+1—b)p € H'(0,T; H)

such that ¢ (b) = p, we can say that for a.e. t € (0,T") we have fuw(t)+w(t)—eu(t) =0in H.

Finally, since w,(0) = w", taking into account (2.113) we can conclude that w(0) = w®. [

It remains to show that the limit previously found assumes the initial data in the sense
of (2.22). Before doing this, let us recall the following result, whose proof can be found for
example in [20].

Lemma 2.3.7. Let X,Y be reflexive Banach spaces such that X — Y continuously. Then
L0, T X) N Cy((0, T1;Y) = Cyy([0, TT; X).

Proposition 2.3.8. The limit pair (u,w) € V x HY(0,T;H) of Lemma 2.3.5 is a weak
solution to the coupled system (2.82)—(2.86). Moreover, u € C2([0,T); V), u € CY([0,T); H)
and it admits a distributional derivative in the space L*(0,T; (VL)').

Proof. From the discrete equation (2.94) we deduce
|(8%up, )| < Calleus || + Crlleus; — will + BCellowp || + 5]+ 1EF] + I ],

for every (¢,¢) € V¥ x H C V¥ x H such that ||(p,%)|lvxmg < 1. Therefore, taking the
supremum over (p, 1) € V¥ x H with [|(¢,9)||vxx < 1, we obtain the existence of a positive
constant C’ such that

k k k k k k k k
16%un oy < C'(leunl® + leuy — will? + [10wn 1 + LI + IE 17 + 125 ).
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By multiplying this inequality by 7,, and then by summing over k =1,...,n, we get
n n n n
Sl b1y < C( S mlentlP + 3 mllent — wblP + 3 mllsuk]? +C"), (2120)
k=1 k=1 k=1 k=1

where
C"i= M zeoiziamy + IFNz2(0 romny + TIBw .

Thanks to (2.120) and Lemma 2.3.4 we conclude that there exists a positive constant C,
which does not depend on n, such that

;Tan’;H?VOD), <C. (2.121)

In particular {@,}, C H'(0,T; (VL)) is uniformly bounded (notice that u,(t) = §%uk for
t € (k—1)m,kr,) and k = 1,...,n). Hence, up to extracting a further (not relabeled)
subsequence from the one of Lemma 2.3.5, we have

HY(0,T;(VP)
iy O, (2.122)

n—oo

and by using the following estimate

_ ~ 42 2
i = @t | Z2 Py < CTn =2 0,

we conclude that v = 4.
Since H'(0,T; (VL)) — C°([0,T], (V{)"), by using Lemma 2.3.5 and Lemma 2.3.7 we
deduce that the limit pair (u,w) € V x H(0,T; H) satisfies

uwe CY0,T;V) and ue CY([0,T]; H).

By (2.112) and (2.122) we then obtain

H ~ (VOD), .
up (t) — u(t) and y(t) —_ u(t) for every t € [0, T, (2.123)

so that u(0) = u® and 4(0) = u!, since u,(0) = u® and @, (0) = u'. By Lemma 2.3.6 we get
the thesis. 0

2.3.2 Energy Estimate

In this subsection, we prove an energy-dissipation inequality which holds for the weak solution
(u,w) € V x HY(0,T; H) to the coupled system (2.82)-(2.86), provided by Lemma 2.3.5.
Thanks to this, we are able to show the validity of the initial conditions in a stronger sense.
The energy-dissipation inequality give us a relation among the mechanical energy defined by
the sum of kinetic and elastic energy, the dissipation and the total work exerted by external
forces and by the boundary conditions. Therefore, let us define the total energy as

Suno(t) = SO + § (Aeu(t), eu(t)) + 5 (Bleult) — w(e)),eult) —w(®)).  (2.124)

Notice that &, (t) is well defined for every time ¢t € [0,7] since u € CO([0,T];V), @ €
C9([0,T); H) and w € C°([0,T]; H), and that

1 1 1
Euw(0) = §Hu1H2 + i(Aeuo, eu®) + g(B(euO —w?), eul — w0).
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The dissipation, on the interval [0, ¢], is defined by

Duw(t) :=,8/0 (Bair(7), w(7))drT, (2.125)

and the total work is given by

Wiar(t) : = /Ot[(fﬁ), () = 4(r)) + (A + Bleu(r) — Bu(r), e2(r))]dr
- /Ot(F(T), eu(r) — ez(7))dr + (F(t), eu(t) — ez(t)) — (F(0), eu® — ez(0))
- /Ot(u(f), E(m)dr + (alt), £()) — (u', £(0))

—i—/o [e_%(BwO, ez(1)) — ;e_E(BwO, eu(T))] dr — e_%(BwO, eu(t)) + (Bw?, eu?).
(2.126)

Remark 2.3.9. From the classical point of view, the total work on the solution (u,w) at
time ¢ € [0, 7] is given by
WC(t) = Wload(t) + ,Wbdry(t)a (2127)

where #,q4(t) is the work on the solution at time ¢ € [0,7] due to the loading term, which
is defined as

Wioad(t) = /0 (f(r),a(r))dr +/0 (div(e7%Bw0 — F(71)),a(r))dr, (2.128)

and #pary(t) is the work on the solution at time ¢t € [0,7] due to the varying boundary
conditions, which one expects to be equal to

t . t .
Wodry(t) : = /0 ((Fy(7) —e_EIB%wg_)Z/,u(T))Lz(FT)dT —}—/0 ((F_(7) —e_EIB%wO_)V,u(T))LQ(FT)dT

t . t
+ / ((F(r) — e_ﬂﬁ%wo)v, u(T))gndr + / (((A+B)eu(r) — Bw(r))v, 2(1)) godr,
0 0

where F, (t), wQ and F_(t), w® are the traces of F(t) and w", respectively, from above and
below on I';.

Unfortunately, #oqq(t) and #pary(t) are not well defined under our assumptions on u, F,
and w®. However, if we suppose more regularity, i.e. u € H'(0,T; H?(Q\I';RY))NH?(0,T; H),
w e H'(0,T; HH(Q\ T;RE)), F e HY(0,T; HH(Q \ T;R%X)), w® € Vg, and that T is a

smooth manifold, then we can deduce from (2.87), (2.88), and (2.22) that the pair (u,w)
satisfies

(2.129)

i(t) — div(Aeu(t)) — div(B(eu(t) —w(t))) = f(t) + g(t) in Q\Ty, te(0,7),
Pu(t) +w(t) —eu(t) =0

with boundary and initial conditions

u(t) = z(t) on 9pQ), te (0,7),
[(A+ Beu(t) — Bw(®)]y = [F(t) — e 5 Bulv on aNQ, te(0,7),
[(A+ B)euy (t) — Buy ()]v = [Fy(t) —e #Bul]y  onTy,  te(0,T),
[(A+Bleu_(t) — Bu_ (v = [F_(t) —e #Bu’]y  onTy,  te(0,T),
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uw(0) =u", w(0)=w" w0) =1l

where g(t) := div(efélB%wO — F(t)).
In this case, ((A + B)eu — w)v € L?(0,T; HP) and by using (2.129), together with the
divergence theorem and the integration by parts formula, we deduce

/ (A +B)eu(r) — Bw(r))v, 2(7)) yodr = / ((A 4+ B)eu(r) — Bw(r),ez(r))dr
0 0

—~

+ /Ot [(iv((A +B)eu(r) — Bu(r)), 2(7)) + (¢ FBu® — F(r))v, ()] dr
(5 Buw? — Fy(r)v, (7)) paqr,) + (¢ 5Bu — F (7)), 2(7)) e | dr

= [ [((a+B)eu(r) - Bu(r), ex(r)) + (e FBu® — F(7))v, () v dr

*[((). (7)) — (7). 2(0) + (div F(r), (7)) — 5 (div(Bu?), ()] ar

(e 5Bl — Fy(r)v, () paqry) + (¢ FBu — F (7)), 2(7) e, | dr

= [ (& +Bjeu(r) = Bu(r),ex(r) + (¢ FBul — F(r))v, ()] dr

t(ﬂ(T), E(m)dr + (at), (1) — (u', £(0))

t

[((e—%mawg — FL (1), 1)) 2 + (¢ FBw?. — F_ (7)), z(T))LQ(FT)] dr. (2.130)

0

/Ot

+/0 [—(f(T), 2(1)) + (div F(1), 2(1)) — e_%(div(IB%wO)7 Z(T))} dr
<,

From (2.130) and the definition of %44y, we have
Whany () = /0 t (A + B)eu(r) — Bu(r), e2(r)) + (F(7) = ¢ 5Bu)w, i(7) — (7)) v | dr
+ /Ot [ (f(7), (7)) + (div(F(r) — e 5 Bu®), 2(r))]dr
- /Ot(u(f), E(m)dr = (u!, 2(0)) + (a(t), (1)

+ / (Fy(r) — e FBu ), il(r) — £()) ooy
0

+/ (F_(7) — e B Buw® v, i(7) — £(7)) p2(r,) AT (2.131)
0

Taking into account (2.128) and (2.131), the classical work (2.127) can be written as
Po)= [ 106)r) = 27) + (A -+ Bea(r) ~ Bu(r) ezl an
- [ (), enar + 0,20 - o, 200)
+ [ ()~ TR i) — 2 i

+/0 (F_(7) — e FBuw® v, i(7) — £(7)) 20,y d7
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:/0 [(f(7), (7)) = 2(7)) + ((A + B)eu(r) — Bw(r), e2(7))] dr + (u(t), 2(t))
t 7) — e FBuC, en(r) — ex(1)) — (u(r), 3(r r— (u', 2
+/0[<F<> TBu’, ci(r) - ¢(r)) — (i), £(r))| dr — (u', £(0))
:/0 [(f(T),zl(T)—Z(T))+((A+B)eu(7‘)—IB%w(T),ez'(T))—I—e_%(BwO,ez'(T)) dr
—/0 (a(7), £(7))dr + (a(t), £(t)) — (u', 2(0))
- /0 (F(7), eu(r) — ez(7))dr 4+ (F(t), eu(t) — ez(t)) — (F(0), eu® — ez(0))

_ /t ;e_g(]ﬁéwo, eu(r))dr + (Buw’, eu’) — e_%(IB%wO, eu(t)).

Therefore, the definition of total work given in (2.126) is coherent with the classical one
(2.127).

Now we are in position to prove the energy-dissipation inequality before mentioned. For
t
convenience of notation we set h(t) := e #Bw.

Theorem 2.3.10. The weak solution (u,w) € V x HY(0,T; H) to the coupled system (2.82)—
(2.86), given by Lemma 2.5.5, satisfies for every t € [0,T] the following energy-dissipation
mnequality

éau,w (t) + -@u,w (t) < gu,w(o) + %ot(t)7 (2'132)

where &y, Duw, and Wior are defined in (2.124), (2.125), and (2.126), respectively.

Proof. Fixed t € (0,T], for every n € N there exists a unique j € {1,...,n} such that
t € ((j —1)7n, j7n). In particular, denoting by [x] the superior integer part of the number z,
it reads as
After setting t,, := j7,, we can rewrite (2.98) as follows
Loz 1 + + 1 + + + +
i @I + 5 (Aeuy (£), eur (1) + 5 (Bleug, (1) — wy (1)), euy (t) — wy (1))
in
48 [ Bin(r).in()dr < 00)+ #1(0), (2:133)
0
where
tn .
() 2/ [(fd (7)s 8y (7) = 27 (7)) + (B, (7), ety (1) — e27(7)) + (Un(7), 25 (7))]dT
0
tn
+ / [((A+ Beu,, (1) — Bwy (1), €2, (1)) — (h{ (), ety (1) — e, (7))] d7.
0
Thanks to (2.95) and (2.121), we have

lwn(t) = wif (I = llw), + (¢ = jra)dw), — w)|* < 7llow)||* < Cr —— 0,
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lun (t) = w ()] = [l + (= j7)00), — u) | < Tallduf || < O —— 0,

Vi (t) = 58 ()2 = 10, + (8 = G7)6%, — 6|y, < 7210020 20, < O ——5 0.

1 =1n

The last convergences and (2.123) imply

+ H + H ~4 (VOD)/ .
uf () T, wi) Lw), ape S ),

and since ||} (t)|lv + ||} (t)|] < C for every n € N, we get

ul (t) # u(t),  wi(t) ﬁ wlt), @) % a(t). (2.134)

By (2.134) and the lower semicontinuity property of the maps v — |[v|?, v = (Av,v), and
— (Bv,v), we conclude

la(®)]* < liminf [|a;} ()], (2.135)
(Aeu(t), eu(t)) < I%Igicgf(Aeu,f(t), eu, (1)), (2.136)
(B(eu(t) — w(t)), eu(t) — w(t)) < liminf(B(ew, (t) — wy (1)), ey (£) — wy (1), (2.137)

Moreover, from Lemma 2.3.5, and in particular by (2.113) we get

n—oo

t t
/ (Buw(7),w(r))dr < lim inf/ (B, (1), iy (7))dT
0 0

tn
§liminf/0 (B, (1), Wy (7))dT, (2.138)

n—oo

since t < t,, and v — fg(BU(T), v(7))dT is a non negative quadratic form on L?(0,T; H).
Now, we study the right-hand side of (2.133). Since we have

2(0,T;H) . -+ L%0,T;H) . .
X[Otn]fn n—>X[0t]f and uz—z;[ wu—z,
we deduce that
tn ¢
J A g O B IR CRE)
0 n—oe Jo
In a similar way, since the following convergences hold
-+ L2%(0,T;H) . L2%(0,T;H)
X[0,tn]€*n R X[0,t]€%) h+ ﬁ h,
2 .
(A + B)eu — Bw; @ (A + B)eu — Bw,
we obtain
tn t
/ (hi (1), ezl (1))dr — (h(7),ez(7))dr (2.140)
0 n—oe Jo

/0 n((A +B)ew! (1) — Bw/ (1), ez (7))dr —— [ (A +B)eu(r) — Bw(r), e2(7))dr.

n—oo 0
(2.141)

By means of the discrete integration by parts formulas (2.103)—(2.105) we can write

/ (i), 25 ()T = (b (8, 25 (1) — (ul, 2(0)) — / " (7). a(r))dr,
0 0
(2.142)
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/0 (i (r), et (r)dr = (eui (1), b (1)) — (en®, h(0)) — /0 (it (7). eus (r))dr,
(2.143)

/0 "B (1), et () — o5 (r)dr = (B (1), ew (t) — e (1)) — (F(0), eu® — e2(0))
- /0 "(BF (), e (7) — ez (1))dr.

(2.144)

Notice that the following convergences hold

'n - _1 n 97
Iz50) = s = [V s < [T - solar o
Tn ] 1)777,
,m _t
I = Bl = [BuClle™F — 75| < ZBuPlle — gr) < 52|usaw°urn—>o

Iz (8) = 2()|lv = |2(i70) — 2(O)[lv < (70 — t)§H2HL2 0.1;v) < 7'7% 121 220,750y —0

1
IES(8) = F@)| = 1FGim) — FE) < G — 021 F | 2z < 7 1l 2o —=0

L2(0,T;H) L2(0,T;H) .
X[0,tn] 0 —> X[0,61%:  X[o, tn]hf{ R X0,
_ L2 0,T;V L2(0,T;H
Hza [Otn]F ¥>X[Ot]F
n—oo

By means of these convergences, (2.134), and Lemma 2.3.5, we can argue as before to deduce
from (2.142)—(2.144) that

n—oo

| o) 50— (0. 2600) — (h20) = [ (i), ), (2145)
0 0

et or s 0. ulv) = (1(0).en) = [ (i), eutr)ar
(2.146)

_/o (F(T)’eu(’?‘) —ez(7))dr. (2.147)

By combining (2.133) and (2.135)—(2.147) we obtain the energy-dissipation inequality
(2.132) for t € (0,T]. Finally, for t = 0 the inequality trivially holds since u(0) = u® and
w(0) = ul. O

Remark 2.3.11. Thanks to the last theorem and to the equivalence between the viscoelastic
dynamic system (2.16)—(2.20) and the coupled system (2.82)—(2.86), we can derive an energy-
dissipation inequality for a weak solution to our viscoelastic dynamic system. As can be seen
from (2.87) and the proof of Theorem 2.3.2 it is not restrictive to assume w® = 0.

Let (u,w) be the weak solution to the coupled system (2.82)—(2.86) provided by Lemma
2.3.5. Then, it satisfies the energy-dissipation inequality (2.132). Moreover, from Theorem
2.3.2 the function u is a solution to the viscoelastic dynamic system (2.16)—(2.20) in the sense
of Definition 2.1.3. Therefore, by substituting (2.89) in (2.132) we get for the conservative
part

Sua(t) = ()| + 3 (Aeu(t), eu(t) + 3 (Bleut) — w(t)), eut) — w(t))
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= é”u(t)”2 ((A—HEB)@U( ), eu(t)) —/ ;e_H(Beu(T),eu(t))dT

252/ / —5T Beu(r), eu(r))drdr (2.148)

and for the dissipation

t

@uyw(t):/o (IB%w(T),eu(T)—w(T))dT:/ (Bw(T),eu(T))dT—/O (Buw(7),w(r))dr

0

= ;/t EGU(T) - /T ;ewlﬁ%eu(r)dr, eu(7’)>d7' - %(Bw(t),w(t))

=3 / (Beu(r), eu(r))dr — 52 / / 5 (Beu(r), eu(r))drdr

242 / / (r),eu(r))drdr.  (2.149)

By substituting the same information in the total work, we obtain

Hialt) = [ [(F7)07) = 200) + (A + Bheu(r),ex(r) - [ 5™ (Beutr). ex(r))arar
- /0 (F(T), eu(r) — ez(7))dr 4 (F(t), eu(t) — ez(t)) — (F(0), eu’ — ez(0))
- /0 (a(7), 2(7))dr + (4(t), 2(t)) — (ut, 2(0)). (2.150)

After defining the elastic energy as
((A+B)eu(t), eu(t))

1
a5
1 _t=r

/5 5 (Beu(r),e dT+2ﬂ2//

and the dissipative term

1

5/ (Beu(r), eu(r))dr — ﬂQ// Beu (r), eu(r))drdr
252/ / (r), eu(r))drdr,

taking into account (2.148), (2.149), and (2.150) we can rephrase the energy-dissipation
inequality (2.132) as

£(t) = S lio)P +

(r), eu(r))drdr,

Et)+2(t) < E(0) + Hior(t),
where the total work #;,; now depends just on the function wu.

Finally, in view of Theorem 2.3.10 we are ready to show that our weak solution satisfies
the initial conditions in a stronger sense than the one stated in (2.22), that is the content of
the following lemma.

Lemma 2.3.12. The weak solution (u,w) € V x HY(0,T; H) to the coupled system (2.82)-
(2.86), provided by Lemma 2.3.5, satisfies the initial conditions in the following sense:

lim w(t) =u® inV, lim a(t) =u' in H, lim w(t)=w® in H. (2.151)

t—0+ t—0+ t—0+



Chapter 2. A dynamic model with memory for viscoelasticity in domains with
time-dependent cracks 63

Proof. Since u € CY([0,T); V), © € CO([0,T); H), w € C°([0,T]; H), from the lower semicon-
tinuity of the real valued functions

t— Hu(t)HQ, t— (Aeu(t),eu(t)), t— (Bleu(t) —w(t)),eu(t) —w(t)),

we can let t — 07 into the energy-dissipation inequality (2.132) to deduce that

1 1 1
Euw(0) = 5||ulH2 + i(AeuO, eu®) + i(IBﬂ(euo —w?), eu® — w?)

~—

< % {htrgéilfHu(t)HQ + litrgggf(Aeu(t), eu(t)) + liminf(B(eu(t) — w(t)), eu(t) — w(t))}

t—0t

< timinf [ ()| + 5 (Aeu(t), eu(t) + 5(Bleu(t) — w(t)), eult) — ()]
= liminf &, ,,(t) < limsup &, (t) < &,w(0). (2.152)

t—0t t—0+

Notice that the last inequality in (2.152) holds because the right-hand side of (2.132) is

continuous in ¢, and u(0) = u°, @(0) = w', and w(0) = w". Therefore, there exists

limy g+ &yw(t) = &uw(0). Moreover, we have
r(0) < : Timinfl[a(t)|? + * lim inf [(heu(t), eu(t)) + (Bleu(t) — w(t)), cu(t) — w())]
’ 2 t—o0t 2 t—0+

< %lim sup|la(t)]|? + %lim inf [(Aeu(t), eu(t)) + (Bleu(t) — w(t)), eu(t) — w(t))]

t—0+ t—0
< limsup %Hu(t)HQ + %(Aeu(t), eu(t)) + %(B(eu(t) —w(t)), eu(t) —w(®)] = &,.(0)
t—0+

which gives
lim ||a(t)]]? = |lut|?.
. 0+H @ [’

In a similar way, we can also show that

tlinoi(Aeu(t), eu(t)) = (Aeu®, eu?).

Finally, since we have

u(t LN ul, eu(t A eu’
t—0+t t—0+t
and v € C°([0,T]; H), we deduce (2.151). In particular the functions u: [0,7] — V and
4: [0,7] — H are continuous at t = 0. O

We can finally prove the main theorem of Section 2.3.
Proof of Theorem 2.3.3. It is enough to combine Proposition 2.3.8 and Lemma 2.3.12. O

Remark 2.3.13. We have proved Theorem 2.3.3 for the d-dimensional linear viscoelastic
case, namely when the displacement u is a vector-valued function. The same result is true
with identical proof in the antiplane case, that is when the displacement u is a scalar function
and satisfies (9).






Chapter 3

An existence result for the
fractional Kelvin-Voigt’s model on
time-dependent cracked domains

The chapter is organized as follows. In Section 3.1 we fix the notation and the framework of
our problem. Moreover, we give the notion of solution to the fractional Kelvin-Voigt’s system
involving Caputo’s derivative (19) and we state our main existence result (see Theorem 3.1.4).
Section 3.2 deals with the regularized system (20). First, by a time-discretization procedure
in Theorem 3.2.13 we prove the existence of a solution to (20). Then, in Lemma 3.2.14
we derive the uniform energy estimate which depends on the L'-norm of G. In Section 3.3
we consider Kelvin-Voigt’s system (19): we prove the existence of a generalized solution to
system (19) and in Theorem 3.3.2 we show that such a solution satisfies an energy-dissipation
inequality. Finally, in Section 3.4 we prove that, for a not moving crack, the solution to (19)
is unique.

The results presented here are obtained in collaboration with M. Caponi and are contained
in the published paper [8].

3.1 Framework of the problem

Let T be a positive real number and let § C R? be a bounded open set with Lipschitz
boundary. Let Op{2 be a (possibly empty) Borel subset of 92 and let On€) be its complement.
Throughout the chapter we assume the following hypotheses on the geometry of the cracks:

(H1) T C Q is a closed set with £4(T') = 0 and H4 (T N o) = 0;

(H2) for every x € T there exists an open neighborhood U of x in RY such that (UNQ)\ T
is the union of two disjoint open sets UT and U~ with Lipschitz boundary;

(H3) {T't}efo,r is an increasing family in time of closed subsets of I, i.e. T's C Ty for every
0<s<t<T.

Thanks (H1)-(H3) the space L?(2\ I'y; R™) coincides with L?(Q; R™) for every t € [0, 7]
and m € N. In particular, we can extend a function u € L?(Q \ I';; R™) to a function in
L?(£2;R™) by setting u = 0 on I';. To simplify our exposition, for every m € N we define the
spaces H := L2(Q;R™), Hy := L*(On:;R™) and Hp := L%(0pQ;R™); we always identify
the dual of H by H itself, and L?((0,T) x €;R™) by the space L?(0,T; H). We define

Vi := HY{(Q\T;;RY)  for every t € [0,T].

65
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Notice that in the definition of V; we are considering only the distributional gradient of u in
Q\ Ty and not the one in . By (H2) we can find a finite number of open sets U; C Q\ T,
j = 1,...m, with Lipschitz boundary, such that Q\ I' = UjL,Uj. By using second Korn’s
inequality in each U; (see, e.g., [39, Theorem 2.4]) and taking the sum over j we can find a
constant Cg, depending only on €2 and I, such that

[Vull> < Cr (JJul|® + [leu||?)  for every u € H'(Q\ T;R?),

where eu is the symmetric part of Vu. Therefore, we can use on the space V; the equivalent
norm X
lullvi := (lull® + lleu|®)2  for every u € V;.

Furthermore, the trace of u € H'(Q\ I';R?) is well defined on 0f. Indeed, we may find
a finite number of open sets with Lipschitz boundary V;, € Q\ T, k& = 1,...1, such that
I\ (T'NIN) C UL_,0Vi. Since H Y N ON) = 0, there exists a constant C, depending
only on ) and I', such that

|ullz2oamey < Cllulli@rrey  for every w € H'(Q\ T;RY).
Hence, we can consider the set
VP :={ueV,:u=0o0ndpQ} foreveryte[0,T],
which is a closed subspace of V;. Moreover, there exists a positive constant Cy, such that
lullizy < Corllully for every u € V.

Now, we define the following sets of functions

Co :={u e C0,T);V) :ue C°0,T); H), u(t) € V; for every t € [0,T]},

Cl:={pecCH0,T;V): ¢(t) € VP for every t € [0,T]},
in which we develop our theory. Moreover, we consider the Banach space

B i I( Ly (RIS RE),

where £sym(R§an‘fb, Rg;,g) represents the space of symmetric tensor fields, i.e. the collections

of linear and continuous maps A: ngxn% — Rg;,f,f satisfying

A& & =& A& for every &,& € REXE.
We consider a tensor A € B such that
cal€? < A(z)E- € < Culé]? for every € € RY and ace. z € Q, (3.1)

where ¢y and Cy are to positive constants independent of x.
We assume that the Dirichlet datum z, the Neumann datum N, the forcing term f, the
initial displacement 1, and the initial velocity u' satisfy

ze W20, T; V), (3.2)
N e whl0,T;Hy), feL*0,T;H), (3.3)
u® € Vo with u® — 2(0) € V¥, ' e H. (3.4)

Moreover, let us take a time-dependent tensor F: (0,7y) — B, where Ty := T + §p with
dp > 0, satisfying

F € C?(0,Ty; B) N LY(0, Ty; B), (3.5)
F(t,z)¢-£>0 for every € € R, t € (0,Tp), and a.e. x € Q, (3.6)
F(t,z)¢-£<0 for every € € R, t € (0,Tp), and a.e. x € Q, (3.7)
F(t, )¢ - € >0 for every ¢ € R%, ¢t € (0,Tp), and a.e. z € Q. (3.8)
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Remark 3.1.1. The tensor F may be not defined at ¢ = 0 and unbounded on (0,7p). In
the case of (5), the function F associated to the fractional Kelvin-Voigt’s model involving
Caputo’s derivative, satisfies (3.5)—(3.8) provided that B € B is non-negative, that is

B(z)¢-£ >0 for every £ € R and a.e. 2 € Q.
Since in our existence result we first regularize the tensor F by means of translations (see
Section 3.3) we need that F is defined also on the right of 7'. This is not a problem, because

our standard example for F, which is (5), is defined on the whole (0, c0).

In this chapter we want to study the following problem

(1) — div(Aeu(t)) — div (% JER(E = 7)(eu(r) — eUO)dT) = f(t) inQ\Ty, te(0,T),
u(t) = z(t) on 0pQ), te€(0,7),
Aeu(t)v + (& [FF(t — 7)(eu(r) — eu®)dr ) v = N(t) on dyQ, te (0,7),
Aeu(tyy + (& fot F(t — 7)(eu(r) — eu®)dr ) v =0 on Iy, te(0,7),
w(0) =u®,  w(0) = ul in Q\ Ty.

We give the following notion of solution to system (3.9):
Definition 3.1.2 (Generalized solution). Assume (3.2)—(3.8). A function u € C,, is a gen-

eralized solution to system (3.9) if u(t) — z(t) € V,P for every t € [0,T], u(0) = u° in Vj,
w(0) = u! in H, and for every ¢ € C} the following equality holds

T T T t
— U ’ eu e — — ) (eu(r) — eu?). e¢ T
/0 (alt), p(8))dt + /0 (eu(t), ep(t))dt /0 /0 (F(t — 7)(eu(r) — en?), e(t))drds
T T
— / (F(8), (8))dt + / (N (), (t)) . (3.10)
0 0

Remark 3.1.3. The Neumann conditions appearing in (3.9) are only formal; they are used
to pass from the strong formulation in (3.9) to the weak one (3.10).

The main existence result of this chapter is the following theorem:

Theorem 3.1.4. Assume (3.2)—(3.8). Then there exists a generalized solution u € Cy, to
system (3.9).

The proof of this theorem requires several preliminary results. First, in the next section,
we prove the existence of a generalized solution when the tensor F is replaced by a tensor
G € C%([0,T); B). Then, we show that such a solution satisfies an energy estimate, which
depends via G only by its L'-norm. In Section 3.3 we combine these two results to prove
Theorem 3.1.4.

3.2 The regularized model

In this section we deal with a regularized version of the system (3.9), where the tensor F is
replaced by a tensor G which is bounded at t = 0. More precisely, we consider the following
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System
i(t) — div(Aeu(t)) — div (% JEGt =) (eu(r) - euo)d7> = f(t) mQ\Ty, te(0,T),
u(t) = z(t) on Opf2, € (0,7),
Aeu(t)y + ( 5 fo (t —7)(eu(r) — eu®)dT ) v = N(t) on ONQ2, t€(0,7),
Aeu(t)v+ ( § fo (t —7)(eu(r) — eu®)dr ) v =0 on Ty, 0,7),
uw(0) =u?,  0(0) =ut in Q\ o,
(3.11)
and we assume that G: [0,7] — B satisfies
G € C*([0,T]; B), (3.12)
G(t,z)¢-£>0 for every € € R, t € [0,T], and a.e. z € Q, (3.13)
G(t,z)E-£<0 for every &€ € R, ¢ € [0,T], and a.e. z € €, (3.14)
G(t,z)-€>0 for every ¢ € R, ¢t € [0,T], and a.e. z € (. (3.15)

As before, on N, u°, u', and A we assume (3.3)—(3.1), while for the Dirichlet datum z we
can require the Weaker assumptlon

2z e W2H0,T; H) n W10, T; V). (3.16)
The notion of generalized solution to (3.11) is the same as before.

Definition 3.2.1 (Generalized solution). Assume (3.3)—(3.1) and (3.12)—(3.16). A function
u € Cy is a generalized solution to system (3.11) if u(t) — z(t) € V;* for every t € [0,T],
u(0) = u’ in Vg, 4(0) = u! in H, and for every ¢ € C! the following equality holds

T T T t
— U ’ eu e — — 7)(eu(T —euO ey T
/0 (at), (8))dt + /0 (Acu(t), ep(t))dt /0 /0 (G(t — 7)(eu(r) — eu?), ep(t))drds
T T
- / (F(8), ()t + / (N (), (8)) pry . (3.17)
0 0

Since the time-dependent tensor G is well defined in ¢ = 0, we can give another notion of
solution. In particular, the convolution integral is now differentiable, and we can write

(;.it/o G(t —7)(eu(r) — euo)dT = G(0)(eu(t) — euo) _|_/0 G(t — 7)(eu(r) — €u0)d7'.

Definition 3.2.2 (Weak solution). Assume (3.3)—(3.1) and (3.12)—(3.16). A function u € Cy,
is a weak solution to system (3.11) if u(t) — z(t) € V,P for every t € [0,T], u(0) = u° in Vp,
w(0) = u! in H, and for every ¢ € C} the following equality holds

T T T
- / (alt), p(8))dt + / (Acu(t), ep(t))dt + / (G(0) (eu(t) — eu®), ep(t))dt
0 0 0
T t T T
g — T)\eu\T —BUO & T = .
4 /0 /O (Gt — 7)(eu(r) — eu®), ep(t))drdt /0 (F(8), (8))dt + /0 <N<t>,so<t>>HN(dt |
3.18

In this framework the two previous definitions are equivalent.

Proposition 3.2.3. Assume (3.3)—(3.1) and (3.12)—(3.16). Then u € Cy, is a generalized
solution to (3.11) if and only if u is a weak solution.
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Proof. We only need to prove that (3.18) is equivalent to (3.17). This is true if and only if
the function u € C,, satisfies for every ¢ € C! the following equality

T T rt |
J, (@t~ eptonae [ [ (G0 reutr) = en), ety
0 0 0
T rt
= /0 /O (G(t — 7)(eu(r) — eu®), ep(t))drdt.  (3.19)

Let us consider for ¢ € [0,T] the function

p(t) :== /0 (G(t — 7)(eu(T) — euo), ep(t))dr.

We claim that p € Lip([0, 7). Indeed, for every s,t € [0,T] with s < ¢t we have

(5) = p(0)] < | [ (©(t = Peutr) - end).eptt)ar
/O (©(s — 7)(eu(r) — en?), e(t) — epl(s))dr]

+| /OS«G@ 1) = Gls = 7){eu(r) - eu”), ep(t))dr |

_l’_

Since
[ (@ = eu(r) = eu), eptein] < 26 = Glenqoays Ieelicooaym vl o
| ®s = m)eutr) ) eptt) — eple)a]

< 2(t = $)|Gllco(o,m;m) lledll oo,y Tl eul Lo o,7; 1)
[ (@ (=76 = M)eutr) - eu?),ct)ar]

< 2(t — 9)|IGll ooy, leell ooy mTleull Lo o7

we deduce that p € Lip([0,7]). In particular, there exists p(t) for a.e. t € (0,7). Given
t € (0,7) and h > 0 we can write

p(t+h) —p(t) /Ot(G(t-i-h—T) —-G(t—-1)

h B 5 (eu(r) — eu’), ep(t + h))dr

t+h
-1-][ (G(t+h —71)(eu(r) — euo), ep(t+ h))dr
t

t t+h)—ep(t
+/ (G(t — 7)(eu(r) — eu’), eplt + })L il ))dT.
0
Let us compute these three limits separately. We claim that for a.e. ¢t € (0,7) we have
t+h
hlir& (G(t + h —7)(eu(r) — eu?), ep(t + h))dr = (G(0)(eu(t) — eu’), ep(t)).
—0tJy

Indeed, by the Lebesgue’s differentiation theorem, for a.e. t € (0,7") we get
t+h
‘][ (G(t 4+ h — 7)(eu(r) — eu®), ep(t + h))dr — (G(0)(eu(t) — eul), ep(t))
t

t+h
< !G(O)HBHw(t)H]{ lew(t) — eu(r)]|dr



70 3.2. The regularized model

t+h
+ IG(0)|| Bllew(t + h) — ew(t)H]{ leu(r) — eu®||dr
t+h
T llew(t + h)H][ IG(t + b — 7) — GO)| 5 ]leu(r) — el |dr —> 0.
t h—0t

Moreover, for every t € (0,7') we have

¢ —7)— -7
hlirg+ ; Glt+n f)L Gt )(BU(T) —eu), ep(t + h))dr

t
B /o (G(t — 7)(eu(r) — eu®), ep(t))dr

ep(t+h) — eqt), Glt+h- })L —CU=) () — en %Zf% Gt — ) (eu() — eu®),

Finally, for every ¢t € (0,7") we get

t

) ep(t+ h) —ep(t)
hlﬂ%i ; (G(t — 7)(eu(r) — eu?), 3

)dr = /0 (G(t — 7)(eu(T) — euo), ep(t))dr

because
ep(t+h)—ept) H
h h—0+

Therefore, by the identity

and the previous computations we deduce (3.19). O

In the particular case in which the tensor G appearing in (3.11) is the one associated to
the Standard viscoelastic model, i.e.

1 ¢
G(t) = Be 5B fort e [0,T]
with 8 > 0 and B € B non-negative tensor, then the existence of weak solutions (and so
generalized solutions) was proved in [44]. Here we adapt the techniques of [44] to a general
tensor G satisfying (3.12)—(3.15).

3.2.1 Existence and Energy-Dissipation Inequality

In this subsection we prove the existence of a generalized solution to system (3.11), by means
of a time discretization scheme in the same spirit of [13]. Moreover, we show that such a
solution satisfies the energy-dissipation inequality (3.49).

We fix n € N and we set

T _ .
Tni=—, udi=wul u ti=wd — 7t 620 = 2(0), 6GY :=o.

Let us define for j =0,...,n

V7"Z = V]QVU ZZL = z(an), G‘Z‘L = G(]Tn),
and for j =1,...,n
j j*l J j*l j ]'71 ] jil
bod i T g O 0E ey Gn=Cn g 0Gn = 0Ga

Tn Tn Tn Tn
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Regarding the forcing term and the Neumann datum we pose

N/ = N(j7,) for j=0,...,n,
) ITn . Nj o Nj—l
13 :—][ f(r)ydr, 6N .=-"" " forj=1,...,n.
(j=1)7n Tn
For every j = 1,...,n let us consider the unique uﬁl € V with u% — z% € V,{ , which satisfies

(6%, v) + (Aeud , ev) + (G2 (ewd, — eu), ev)
J
+ TG (eufy — eu’).ev) = () + (V) (3:20)

k=1
for every v € V], where
. .- . -
i uh—ud , o j . Oup —dup .
ou) ;= ——— forj=0,...,n, 0u),:=—"— forj=1,...,n.
Tn Tn

The existence and uniqueness of ul is a consequence of Lax-Milgram’s lemma. Notice that
equation (3.20) is a sort of discrete version of (3.18), which we already know that is equivalent
to (3.17). 4

We now use equation (3.20) to derive an energy estimate for the family {u7}}_;, which
is uniform with respect to n € N.

Lemma 3.2.4. Assume (3.3)—(3.1) and (3.12)—(3.16). Then there exists a constant C, in-
dependent of n € N, such that

max ||§ud| + max |leul]| < C. (3.21)
= n j= n

=U,..., =U,...y

Proof. First, since

Jj—1 J
GI ' = G) =) 710G =) 7, 0GIF forj=1,...,n,
k=0 k=1

we have for j = 1,...,n that

J J
GO (eul, — eu®) + ZTn&G{l_k(eufl —eu’) = G (ewd, — eu®) + Z T20GIF (eul — eud).
k=1 k=1
Therefore, equation (3.20) can be written as
(6%, v) 4 (Aewl , ev) 4+ (G (eud — eu), ev)
J
+ > mu(6GF (ews; — eud,), ev) = (£, 0) + (N, v)

k=1

for every v € V. We fix i € {1,...,n}. By taking v := Tn(éu?I — 62%) € VJ and summing
over j =1,...,1, we get the following identity

Z T (02ud, Sud)) + Z To(Aew! , edul) + Z Tu(GI7 (eud — eu®), edu)
j=1 j=1 j=1

i i
+ Z Z T2(0GI 7 (euf — eud), edul) = Z Tl (3.22)
j=1 k=1 j=1
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where

L, = (f7, 0u), — 02}) + (N}, 0uf, — 62) ) iy, + (6%, 03)
J
+ (Aewl, e622) + (G4 (eud, — eu®), edzl) + Z Tn(0GI7F (el — eud), ed2)).
k=1
By using the identity
2 Lo 1po 1 2 d
la|* —a-b= Z|a|” — Z|b|" + s]a — b]° for every a,b e R
2 2 2
we deduce
2§ 5] 2 iosd-1y_ L2 Lyc a0 1 opc 5o
T (8%, Oun) = (10w || = (0un, 0un™") = Sll0wn || = 110w |I” + Sl 6%ug |17
Therefore

, . 1 , 1 . 1 ,
> a0, 8u) = 5 SNl - 5 D0w P+ 5 S ot
j=1 j=1 j=1 =1

1. 1 1< .
ZyWMF—ﬂMW+§2)ﬂf%W- (3.23)
j=1

Similarly, we have

‘ . 4 1 | 1 . .
Z Tn(Aeul , edul)) = §(Aeuﬁl, eu,,) — §(Aeu0, eu’) + 3 Z m2(Aedul , edul). (3.24)
j=1 J=1

Moreover, we can write

(G (eud — eu®), edul) = (GI7 Y (eud, — eu), eud, — eu®) — (GI 7 (ew), — eu®), eud ! — eu?)

1 . .
= (G (eud — eu®), eud, — eu®) —

5 (GI (ew! ! — eu®), eud ! — eu?)

N N =

?"(G%_leéuzl, edud)

1, .. . . 1 . . )
= 5(@%(&4 —eu®), eud — eu®) — §(Gﬁ_l(euﬁl—1 —eu?),eud — eu?)

_|_

1 o , 1 , , .
— iTn(éG%(eu% —eu?), eu) — eu®) + 57}%(@%_165“7]17 eduy,).

As consequence of this we obtain

Z (G (eud — eu®), edud)
j=1

1. 4 1 . .
=3 Z(G%(GU% —eu?), eud — eu’) — 5 Z(Giﬁl(euifl —eu?),eud b — eu)
=1 =1

1 . , , 1¢ ; i j
— 5 2 l0G (eu, — eu”), eul, — eu®) + 5 3 TA(CY edu, edu)
j=1 Jj=1

1, : 1< . S
= i(Gg(eu; —eu), eul, — eu®) + 5 Z T2(GI esud , edul)
j=1

1< . A
—5 Z T (6GI (en), — eu), eud, — eu?)
j=1
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Finally, let us consider the term
Z ZT (6GI K (eul — eud), edud) = ZZ 2(5GI 7 (euk — eud), edud).
j=1 k=1 k=1 j=k

We can write

Z 260G (euf —eud), edul) = =Y 7, (6GI K (eud — eul), eud — eul 1)

Jj=k

%
= - Z Tn(6GH (e, — eub), eul, — eul) + > 7, (3G (euf, — eul), eud ™" — eul)

=k =k
L d
=—3 ZTn(éGf[k(euﬁL —euf), eud — eul ZTn 0GIF(eud ™! — eul), eud ™t — eul)
j=k J k

- % Z 3 (0GIFedul , edul)

1 . : .
=—3 ZTn((stka(eu% —euf) eud — eul Z’Tn (6GI K (ewl ™t — eul), eud ™t — eul)
j=k ] k
1< : : : 1< , , ,
+ 5 Z 262G R (eud, — eul), eud — eul) — 3 Z T3 (6GI*edul | edul)
=k =k
1
52 (8°GI* (eud — eul), eud — euk) — 727 (6GI~Fedul | edul)
=k
1 , . )
- 5%(5@?’““(61& —euk) eul — eul)

because dG2 = 0. Therefore, we deduce

ZZT (6GI K (eul — eud), edud)

j=1k=1
. 1 o . . .
= Z ZT (82°GI M (eud — eul), eu) — euk) — 5 Z Z 2 (0GIFedul , edul)
2z 1j=k k=1 j=Fk
i
- = Z (G (eul, — euk), eul — eul)
k=1
1 . . 1 nd . , .
=3 Z T2(2GI T (ewd, — eul), eud — eul) 5 ZTg(dG%*keéu%, edul,)
j=1k=1 j=1 k=1
~3 Tn(6GEI T (eul, — eud), eul, — eud). (3.25)

By combining together (3.22)—(3.25), we obtain for ¢« = 1,...,n the following discrete
energy equality

1 1, . . .
7H(5 L2+ Aeu ceul) + i(Gg(eu; —eu®), eul, — eu)



74 3.2. The regularized model

%

1
ZTn (6GET (el — eul), eut — eul) — = ZT'” (6G7 (eu), — eu), eud — eu?)
J 1 J 1
1=
+3 ZT (82GI* (eud — eul), eud — eut (Z |62 HQ—i—Z (Aedul , edul) )
7j=1k=1
2”< (GIedud, edul) ZZ (6GI*edud | edu! )>
7j=1 7=1 k=1

1 1 L
- 5|]u1\|2 + §(Aeu0, eu?) + ZTnL{l.

J=1

By our assumptions on G we deduce for a.e. z €  and every ¢ € R? that

GL(x)¢-€>0 J=0,...

0GI (z)¢ - € = " G(r, )€ - €dr <0 j=1,...
(G=1)7n

82Gl (x)E - € = o ’ G(r,z)€ - &drdr > 0 j=2,...

(G-1)mnd7—Tn

Hence, thanks to (3.26), for every i = 1,...,n we can write

1 1, 1 1 : .
§H5u;||2 + E(Aeu;, eu,,) < 5”“1”2 + i(Aeuo, eu’) + E L.
i=1

Let us estimate the right-hand side in (3.27) from above. We set

K, := max ||6u||, FE,:= max |eul]|.
=0 =0

=Y,..,n —Yse

Therefore, we have the following bounds

]Zm £ 0u)| < VTl 20,11 Ko
‘ZTn 7,620 < 2o 2l 2.1y

%
> malheud, ed2)| < Callezlp o rim Bu,

i
|3 (G e, — eu®), e824)| < 201Gl qo,ry ) el 0,111 B
Notice that the following discrete integrations by parts hold

ZTn 62ul 020) = (6ul,62L) — (6ul,620) — ZTn(éu,jfl, 6229),
j=1

ZTn N] 5“‘7 (N;L’ %) Hy — n’ n ZTH 6N"7717u‘77’l 1 Hy>

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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ZTn (N7,620) iy = (N2, 20 gy — (ND, 29) Zm ONJ, 20"V (3.34)

By means of (3.32) we can write

‘Z (6%ud | 827)

i
0zl + 16udll620]l + >~ malldud (16725

=1
< QlIlleogo,rymy + 120,78 K- (3.35)

Moreover, thanks to
v < |+ En < D7 mlloud | + 10|+ En < THn+ Bo+ )] for i =0,...,n (3.36)
7j=1
and to (3.33) we obtain
)Zm (N3 0| < I sl s+ N 08y + D 7l OV e
j=1

< CorlIN oo, rystn) (Ll + 1w 1v) + Cor Y 7allSNG Ly e~ v
j=1
< Cir (2HNHCO([07T}§HN) + HNHLl(O,T;HN))(En + TK, + ||«°]]). (3.37)

Similarly, by (3.34) we obtain

|3 (V82| < Cor CUN Ieoqorymy) + IN oz Zlcoqomvey: — (3:38)
j=1

Finally, we have

‘ZZT 6GIF(euf —eud), edz)) ZZTQ||5GJ Fliglleut — eud ||| szl ||

=1 k=1 =1 k=1
< 2T||Gl|coor1.8) €2l 11 (0.7 1) En- (3.39)

By considering (3.27)—(3.39) and using (3.1), we obtain the existence of a positive constant
Cy = C1(z, N, f,u°, A, G) such that

16wy |1” + eallews, | < [lut||? + Callew®||* + Cr (1 + Ky + En)  fori=1,....n.

In particular, since the right-hand side is independent of i, u0 = «° and 6u’ = u!, there
exists another constant Cy = Ca(z, N, f,u%,u', A, G) for which we have

bi —i—Eﬁ <Cy(l+ K, + E,) foreverynecN.

This implies the existence of a constant C = C(z, N, f,u’,u', A, G) independent of n € N
such that

|6ul || + |levd || < Kn + E, <C for every j=1,...,nand n € N,

which gives (3.21). O
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A first consequence of Lemma 3.2.4 is the following uniform estimate on the family
{62%u, [y

Corollary 3.2.5. Assume (3.3)~(3.1) and (3.12)~(3.16). Then there exists a constant C,
independent of n € N, such that

> Tnua%g;uﬁvo,)), <C. (3.40)
Jj=1

Proof. Thanks to equation (3.20) and to Lemma 3.2.4, for every j =1,...,n and v € VP C
Vil with |Jv]ly, <1 we have

|(6%ud,, v)] < C(Ca + 2lIG | coo.11;8) + 2T NGl coqo.1:)) + £l + CorllN llcogo, ) -
By taking the supremum over v € Vi with ||v|y, < 1 we obtain
. . 2
0% G0y < 3C*(Ca+ 201Gl oo,y + 2T |Gl cogo,7:))
+3[1 £ + BCEIN 120 0.1 )
We multiply this inequality by 7, and we sum over j = 1,...,n to get (3.40). O

We now want to pass to the limit into equation (3.20) to obtain a generalized solution to
system (3.11). Let us recall the following result, whose proof can be found for example in
[19].

Lemma 3.2.6. Let X,Y be two reflexive Banach spaces such that X — Y continuously.
Then
L¥(0,T5.X) N Cu([0,T1:Y) = Cy([0,T]; X).

Let us define the following sequences of functions which are an approximation of the
generalized solution:

Un(t) = ul, + (t —ir,)0ul,  fort € [(i — 1)7p,im,) and i = 1,...,n,
wl(t) = ul, fort € (i — D)1, imp) and i =1,...,n, u'(0) =1,
u (t) = ul! fort € [(i — 1)mp,im,) and i =1,...,n, u,(T)=u,.

Moreover, we consider also the sequences

T (t) = 6ul, + (t — iTp)0%u!,  for t € [(i — 1)7p,47,) and i = 1,...,n,
at(t) = oul, fort € ((i — 1)7n, ity and i =1,...,n, @ (0) = dul,
i, (t) = dui? fort € [(i — 1), i) and i =1,...,n, @, (T) = du",

which approximate the first time derivative of the generalized solution. In a similar way,
we define also i, N, Nf, 2% 2, zF GF, G,, G}. Thanks to the uniform estimates of

noy “n>
Lemma 3.2.4 we derive the following compactness result:

Lemma 3.2.7. Assume (3.3)—(3.1) and (3.12)—(3.16). There exists a function u € Cy N
H2(0,T; (VP)') such that, up to a not relabeled subsequence

HY(0,T:H L®(0,T;V) « _ HY0,T;(VP)Y) . -+ L®(0,T;H) . .
Up HOTH), - 20TV e, Uy ———2 2, A LZOTH ¢ (3.41)
’ n ’ ) n )

and for every t € [0,T]

wEt) —L (), at ) ). (3.42)
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Proof. Thanks to Lemma 3.2.4 and the estimate (3.40), the sequences

{un}n C L0, T;V)NHY0,T; H),  {in}n C L(0,T; H) N HY (0, T; (VP)),
{uf}t, C L0, T; V), (i), © L0, T; H),
are uniformly bounded with respect to n € N. By Banach-Alaoglu’s theorem and Lemma

3.2.6 there exist two functions u € C9([0,T);V) N HY(0,T;H) and v € C([0,T]; H) N
HY(0,T; (VP)"), such that, up to a not relabeled subsequence

HY(0,T;H) L>®(0,T;V) « _ HYO,T;(VP)Y) _ L>®(0,T;H) .
Uy ————— U, Uy ——————— U, Uy —————————— UV, Uy ————— V. (3.43)
n—0o0 n—oo n—o0 n—oo

Thanks to (3.40) we get
: ~ 112 =2
||un - un||L2(O,T;(VOD)’) < CTn m} 07
therefore we deduce that v = %. Moreover, by using (3.21) and (3.40) we have
Hui - un”Lw(O,T;H) <Cm m 0, ||ﬂ’7iz - ﬂnH%Q(QT;(VOD)’) < C’Tﬁ — 0.

n—oo

We combine the previous convergences with (3.43) to derive

L L®(0TV) . 4 L®(0TH) & .
u, ———— U, U, ———— U.
n—o0 n—oo

By (3.43) for every t € [0,T] we have

un(t) = u(t),  dn(t) —— a(t).

Again, thanks to (3.21) and (3.40), for every t € [0,T] we get
luz @)l < €, luz (t) = un(®)]| < O —— 0,
o s St - 2 ~
[TEO1 <O a0 — a0y < Cra ——0,
which imply (3.42). Finally, observe that for every ¢ € [0, 7]

up(t) € Ve, up (£) —— u(t)

n—o0
Therefore, u(t) € V; for every t € [0, T] since V; is a closed subspace of V. Hence, u € C,,. O

Let us check that the limit function u defined before satisfies the boundary and initial
conditions.

Corollary 3.2.8. Assume (3.3)—=(3.1) and (3.12)—(3.16). Then the function uw € C, of
Lemma 8.2.7 satisfies for every t € [0,T] the condition u(t) — z(t) € V;P, and it assumes
the initial conditions u(0) = u® in Vo and 4(0) = u! in H.

Proof. By (3.41) we have

0 __ |4 1~ H .
u’ = up(0) —_ u(0), u- = Up(0) — 4(0).

Hence, u € C, satisfies u(0) = u® in Vg and 4(0) = u! in H. Moreover, since z € C°([0,T]; Vo)
and thanks to (3.42), we have for every ¢ € [0, 7]

up () = 2 (8) € VP, (8) — 2 (1) —— u(t) — 2(t).

n—oo

Thus, u(t) — 2(t) € V,P for every t € [0, T] because V,” is a closed subspace of V. O
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Lemma 3.2.9. Assume (3.3)-(3.1) and (3.12)—(3.16). Then the function u € Cy, of Lemma
3.2.7 is a generalized solution to system (3.11).

Proof. We only need to prove that the function u € C,, satisfies (3.17). We fix n € N and a
function ¢ € C!. Let us consider

J j—1
©On — Pn
Tn

@l = () for j=0,...,n, Sl = forj=1,...,n,

and, as we did before for the family {uf,}" "_;, we define the approximating sequences {¢;} }

and {@; },. If we use 7,0 € Vil as a test function in (3.20), after summing over j = 1,...,n,
we get

n
Zm (6%, 20) + Zrn Aew,, eph) + Y Ta(GY (ew, — eu®), ep))

Jj=1

noj
—}—ZZT,,% (6GI—F( eu —eu?), ep?) ZTn (f2, ) —l—ZTn ooy, (3.44)

7j=1 k=1

By means of a time discrete integration by parts we obtain

n n T
Z Tn(62uzw QD%) == Z Tn(éuiLfl? 590{1) == / (@, (), @I (t))dt,
j=1 0

j=1

and since 6GY = 0 and ¢ = ¢ = 0 we get

n j
> nlGplew, —ew®)epl) + 3 Y TG (ew; — en), eg],)

j=1 j=1k=1
n—1 J
= — ZT,% GJ k eu —eu ) e5<,07+1)
=1 k=1
T—Tn prtn
= [ @t = new (1) — ) ¢+ )t
0 0
where t,, = [% T, for t € (0,T) and [z] is the superior integer part of the number x.
Thanks to (3.44) we deduce
T—7n tn
- / (@, (t), §,r(t))dt — / / ) (eu (1) — eu®), ep, (t 4 7,))drdt
0

+ /0 (Aew (), e (1))dt / (1) o (1)dt + /OT<NJ<t>,¢z<t>>Hth- (3.45)

We use (3.41) and the following convergences

L2(0,T;V) . L2(0,T;H) . L2(0,T;H) L2(0,T;Hy)
;7,’— —> Y ;JL_ —> Y f+ —> f7 N+ —N> N?
n—oo n—oo n—oo n—oo

to derive

T T
/0 (G (0, G ()t —— [ (alt), $(0))dt,

n—oo 0

T
/0 (At (1), et (1) dt —— [ (Aeu(t), ep(t))dt,

n—oo 0
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T
/O (£, o )t —— [ (F(), o(t))dt,

n—oo 0

T T
/0 (N (1), gt (Ot —— [ (N(1), o(6)) syl

n—oo 0
Moreover, for every fixed t € (0,T)

_ ~ L? 0,T;H .
X (X041 ()G (b — Je@ih (¢ + 1) 2T v ()Xo (VG (E — Jep(t),  (3.46)

n—oo

which together with (3.41) gives
tn
Yo (0) / (G (tn — )t (7) — eu®), e (t + a))dr
0

— Xo,7(%) /0 (G(t — 7)(eu(T) — euo), ep(t))dr.  (3.47)

n—o0

By (3.21) for every t € (0,T) we deduce

tn
Xor—ra® [ (G5t = 7)(eut (7) = en). el ¢+ m))dr
< 2T(|G||cojo,y;8)Clle@ll oo, ) - (3.48)

Therefore, we can use the dominated convergence theorem to pass to the limit in the double
integral of (3.45), and we obtain that u satisfies (3.17) for every function ¢ € C}. O

Now we want to deduce an energy-dissipation inequality for the generalized solution u €
Cy of Lemma 3.2.7. Let us define for every ¢ € [0, 7] the total energy &(t) and the dissipation
D(t) as
1
E(t) == ~||lu)|® + = (Aeu(t), eu(t)) + §(G(t)(eu(t) —eu), eu(t) — eu?)

-3 /0 (Gt — 7)(eut) — eu(r)). eu(t) — cu(r))dr,

D(t) = —2/0 (G(7)(eu(r) — eu®), eu(r) — eul)dr
+ ;/0 /OT(G(T —r)(eu(r) — eu(r)), eu(r) — eu(r))drdr.

Notice that &(t) is well defined for every time ¢ € [0,7] since u € C2([0,T];V) and @ €
CY([0,T); H). Moreover, by the initial conditions we have

1 1
E(0) = S llu'll* + 5 (Aeu®, eu?).
Proposition 3.2.10. Assume (3.3)~(3.1) and (3.12)—(3.16). Then the generalized solution
u € Cy to system (3.11) of Lemma 3.2.7 satisfies for every t € [0,T] the following energy-

dissipation inequality
&(t) + 2(t) < £(0) + Hior (1), (3.49)

where the total work is defined as

Wit (1) :=/0 [(f(r), a(T) = 2(7)) + (Aeu(r), ez(T))ldT
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- /0 (N(r), ulr) — 2(r)) sy dr + (N(E), u(t) — () — (N(0), 0 — 2(0))
- /0 (i), 5(r))dr + (i(t), £(8) — (u, 2(0))
t —eud), ez(7))dr t T'T—r eu(r) —eu(t)),ez(7))drdr.
+/0<G<r><eu<r> ), ex(r)d +/O/O<G< )(eu(r) — eu(r)), <>>?d)
3.50

Proof. Fixed t € (0,7] and n € N there exists a unique ¢ = i(n) € {1,..., n} such that
t € ((i = 1)y, ity). In particular, i(n) = [%1 After setting t, := i1, and using that
6GY = 0, we rewrite (3.26) as

) 4 5 (e (1), euf (1)) + 5 (G (0)(ews (1) — e, eurf (1) — en)

% / n(@+(t —7)(eut (t) — el (7)), eu,t (t) — ewt (7))dr

/t / Gl — )eut () — eut (1), ew () — et (1) drdr

- /0 (G+( )(eu, () —eu?), eul (1) — eu Ndr < = Hu % + ;(Aeuo,euo) + Wi(t),
(3.51)

\V]

where 7, := LL—‘ Tn for 7 € (7, t,), and the approximate total work ¥, *(¢) is given by

WH(t) = /0 ()G () = BHE) + (N, G (1) — 5H ) iy + (7). 5 ()T
+ /0 "[(Ceur (), e2F (7)) + (G (7)(ewt (7) — en®), et (r))]dr
e G (7, — r)(eut (1) — eul (7). ezH (7))drdr
+//0 (@5 (7 — ) (et (r) — ewt (7)), e5F (r))drdr.

By (3.1), (3.13), and (3.42) we derive

Ja(e)? < lim nf (1) (3.52)
(Aeu(t),eu(t)) < linrr_1>i£f(Aeu,f(t), eu, (1)), (3.53)
(G(t)(eu(t) — eu?), eu(t) — eu’) < 1inni>ioréf(((}(t)(eurf(t) —eu®), eu (t) — eu). (3.54)

Moreover, the estimate (3.21) imply

[(G(#) = G (D) (ew) () — eu®), euy (1) — ew®)| < 4C?(|G oo,y 70 —— 0,

n
which together with inequality (3.54) gives

(G(t)(eu(t) — eu?), eu(t) — eu®) < liminf(G(t)(eu, (t) — eu®), eu (t) — eud). (3.55)

By (3.14) and (3.42), for every 7 € (0,t) we have
(=G (t — 7)(eu(t) — eu(r)), eu(t) — eu(r))

< liminf(=G(t — 7)(eu} (t) — eu) (1)), eu? (t) — ew,} (7)).

n—0o0
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Moreover

tn—Tn+Tn

1GH (b — 7) — G(t— 7)1 < ][

th—Tn

IG(r) — G(t — 7)||pdr — 0

because t, — 7, — t — 7. Hence, we can argue as before to deduce

(=G(t — 7)(eu(t) — eu(T)), eu(t) — eu(r))
< lminf(—=Gf (t, — 7)(ew,! (1) — ewst (7)), eu) (1) — ew! (7).

n—oo

In particular, we can use Fatou’s lemma and the fact that ¢t < t,, to obtain

/0 (—G(t —7)(eu(t) — eu(r)), eu(t) — eu(r))dr

< lim inf /0 (=G (b — ) (et (1) — ewt (7)), eut (t) — euf (7))dr.

n—o0

By arguing in a similar way, we can derive

/0 (—G(T)(eu(T) —eu?), eu(r) — eul)dr

tn
< lirginf/ (=G (7)(ew] (1) — eu), eu; (1) — eul)dr.
n—oo 0
Let us consider the double integral in the left-hand side. We fix 7 € (0,¢) and by (3.15)
for every r € (0,7) we have

(G(T —r)(eu(r) — eu(r)), eu(r) — eu(r))

< lim inf(G(r — ) (eus () — euf (1)), ewf (r) — et (1)),

Moreover, for a.e. r € (0,7, — 7,) by defining r,, := {%—‘ T, we deduce

Tn—Tn+Tn A

[Gatra =) =B =nllz<f T f 166) - G - )ladodr — 0.

Tn—Tn A—Tp,

Therefore, for a.e. r € (0,7) we get

(G(T —r)(eu(t) — eu(r)), eu(r) — eu(r))

< M inf (G (7 — ) (e, (1) — euy (1)), euy (1) — euyy (1),

since r € (0,7, — 7,) for n large enough. If we apply again Fatou’s lemma we conclude

/OT(G(T —r)(eu(r) — eu(r)), eu(r) — eu(r))dr

< limin /O (G — (et (r) — eu (), eut (7) — eud (r))dr.

n—oo

By (3.21) we get

/_T (G — r)(ew (7) = ew (1), ewt (1) — e (r))dr

n—Tn

< 4C?|Glleoo;ry8) (T = Ta + ) —— 0,
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from which we derive
/OT(@(T —7r)(eu(r) — eu(r)), eu(r) — eu(r))dr

< liminf / T G — ) et (7) — eu (1), ewt (7) — eu ()dr

n—oo

Since this is true for every 7 € (0,t), arguing as before we obtain

/ /T(G(T —r)(eu(r) — eu(r)), eu(r) — eu(r))drdr
0o Jo

< liminf n/Tn " @ —7)(eu (1) —eut (1)), ewt (1) — ew,}t (r))drdr.

n—o0

Let us study the right-hand side of (3.51). Given that

0,T;H . - L20,T;H) .
X[0,tn] S %X[m]ﬂ uyp — % iﬁoo ) -z,
0,T;H L®(0,T5V) «
X[0,tx)Gn €2 MX[O 1Gez, ut %u,
we can deduce
tn ¢
[t - o — [ (i - 20 (3.56)
tn t
/ (Aew! (1),ez!(1))dr — (Aeu(T),ez(r))dr, (3.57)
0 n—=oe Jo

/0 n(G; (7)(eu}t (1) — eu), ez (1))dr —— | (G(7)(eu(r) — eu®), ez())dr. (3.58)

n—oo 0

By using the same argumentations of (3.46)—(3.48), together with the dominate convergence
theorem, we can write

[T @ e ) = et o)zt rardn
S / / (1 —r)(eu(r) — eu(r)),ez(r))drdr. (3.59)
Thanks to the discrete integration by parts formulas (3.32)—(3.34) we have
| .z ) = @05 0) - (0l 20) - [ (@ () e
0 0

/0 (N () (1) = 5 ) T = (N (1), (1) = 5 (6, — (V(0), 0 — 2(0))

By arguing as before we deduce

| 20— (), 2(0) - (e 200) - / (i), £(r))dr, (3.60)
0 0

n—oo

/0 "(NF(r), 5 (7) — 5 (7)) mydr
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—— (N(t),u(t) = () 1y — (N(0),u” = 2(0))my — /O (N(7),u(r) = 2(7))mydr, (3.61)

n—oo

thanks to Lemma 3.2.7 and to the following convergences:

tn
5O 201 < £ 10 - 0lar =0

I = 20ty < Corv/Falll200m:) 2

tn .
INF () = Ny < / O P r—

and
L'(0,T:H) . __ L>(0,T3H) «
Z z u, —————— U
X[0,tn]%n 00 X[0,t]%> n 00 ’
~ . LY(0,T;Hy) : L®(0,T;V) .
+ T3 Hy - - T B
X[O,tn}Nn o0 X[O,t]Na Unp, “n oo U —z.

By combining (3.51) with (3.52)—(3.61) we deduce the energy-dissipation inequality (3.49)
for every t € (0,T)]. Finally, for t = 0 the inequality trivially holds since u(0) = u° in V; and
w(0) =u! in H. O

Remark 3.2.11. From the classical point of view, the total work on the solution w at time
t € [0,T) is given by
WS () = Wioaa(t) + Whary (L), (3.62)

where #5q4(t) is the work on the solution u at time ¢ € [0, 7] due to the loading term, which
is defined as

Wioaalt) = /0 (f(r). ir))dr,

and #hary(t) is the work on the solution v at time ¢ € [0,7] due to the varying boundary
conditions, which one expects to be equal to

Wooy (1) = /O (N(r), (7)) s dr + /0 (Aeu(r)w, (7)) dr

+ /Ot (Ci /OT G(r —r)(eu(r) — euo)dr> v, 4(7))updr

Unfortunately, #44ry(t) is not well defined under our assumptions on w. In particular, the
term involving the Dirichlet datum z is difficult to handle since the trace of the function
Aeu(T)v + - (fo (t —r)eu(r)dr) v on 9pQ is not well defined. If we assume that u €
L2(o T; H2(Q\ T;RY) N H2(0,T; L2(2\ T;RY)) and that T is a smooth manifold, then the
first term of #4q,y(t) makes sense and satisfies

/0 (N (7), (7)) rdr = (N (), u()) 1y, — (N(0), u(0)) sy — / (N (), u(r)) sy
Moreover, we have

i ’ T—7T eur—euo T = SUT—EUO T.T—T GUT—GUO T

= | 6 = nteutr) - ey = GO)eu(r) — en) + [ E(r = r)(eutr) —en)a

= G(7)(eu(r) — euo) + /OT G(T —7r)(eu(r) — eu(r))dr,
(3.63)
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therefore (% Jo G(r —r)(eu(r) — eu®)dr) v € L*(0,T; Hp). By using (3.11), together with
the divergence theorem and the integration by parts formula, we derive

t d T )
/O(Aeu(T)y+<(iT/o G(T—T)(eu(T)—€u0)dT‘>U,Z(7'))HDdT
= t eu(T i ’ 7 —r)(eu(r) — eu®)dr, ez(7))dr
= [theutr)+ - [ 6lr = n)(entr) — en)arex(r))a

+ /0 [(div (Aeu(T)—l—diT /0 G(r = r)(eu(r) — eu)dr), (7)) = (N(7), £(7)) sy |dr
= t eu(T i ’ 7 —r)(eu(r) — eu®)dr, ez(7))dr
= [theutr)+ - [ 6lr = r)(entr) — enharex(r)a

+ [ 60 = 1) 20) = (V(0). )y Jar
= t i ’ 7 —r)(eu(r) — eu®)dr, ez(1)) — T),2(T T
= [ [tteutry+ - [ 6t = nitentr) — eharexr)) = (5(0). ()]

+ [ @) )y = (V0. )y + (V0 20y

t
- /0 (a(r), 2(r)dr + (at), 5(8)) — (!, 2(0)). (3.64)

Therefore, by (3.63) and (3.64) we deduce the definition of total work given in (3.50) is
coherent with the classical one (3.62).

We conclude this subsection by showing that the generalized solution of Lemma 3.2.7
satisfies the initial conditions in a stronger sense than the ones stated in Definition 3.1.2.

Lemma 3.2.12. Assume (3.3)—(3.1) and (3.12)—~(3.16). Then the generalized solution u € Cy,
to system (3.11) of Lemma 3.2.7 satisfies

lim u(t) =« inV, lim a(t)=u' in H. (3.65)
t—0+ t—0+

In particular, the functions w: [0,T] — V and u: [0,T] — H are continuous at t = 0.

Proof. The proof is the same of Lemma (1.3.4) O

By combining the previous results together we obtain the following existence result for
the system (3.11).

Theorem 3.2.13. Assume (3.3)~(3.1) and (3.12)—~(3.16). Then there exists a generalized
solution u € Cy, to system (3.11). Moreover, we have u € H?(0,T; (VL)) and it satisfies the
energy-dissipation inequality (3.49) and

lim u(t) =u® inV, lim a(t)=u' in H.
t—0+ t—0+

Proof. 1t is enough to combine Lemma 3.2.7, Corollary 3.2.8, Lemma 3.2.9, Proposition
3.2.10, and Lemma 3.2.12. O
3.2.2 Uniform energy estimates

In this subsection we show that, under the stronger assumption (3.2) on z, the generalized
solution to (3.11) of Theorem 3.2.13 satisfies some uniform estimates which depends on G
only via |G| z1(0,7,5)-
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Lemma 3.2.14. Assume (3.2)-(3.1) and (3.12)—(3.15). Let u be the generalized solution to
system (3.11) of Theorem 3.2.13. Then the following estimate holds

la(t)]| + [leu(t)|| < M for every t € [0,T], (3.66)
where M = M(z, N, f,u®, u', A, HGHLl(O,T;B)) is a positive constant.
Proof. We define

K= sup [la@t)| = [ldllzor.m), E:= sup [eu(t)|| = |leul|peo,rm)-
te[0,T te[0,T

Notice that K and E are well-posed since u € C9([0,T];V) and @ € C9([0,7]; H). Let us
estimate the total work #;(t) in (3.49) by means of K and E. Since

u@®)|ly < ||u°|| + TK + E  for every t € [0,T],

we have

‘/ d7’<\FHfHL2 0,71 1%

| [we, <r>>HNdT]scﬁnNan@,T;HN) (1) + TK + E)
(

(N(t),u(t) iy | < CorllNllcoqoymy) (100 + TK + E)
|(N(O),UO)HN| < Ct?"HNHCO([O,T];HN) (HUOH +TK + E) 5

t
‘/ (F(r), 2(r))dr| < VT fll2rm Il eoorm.
‘/ ayd7| < Col [Nl coo,m;m30) 12 21 0,130

| [ heutn. x| < Calelln o

| / ), 2()dr| < I2l s an K-

(a(t), 2] < [I2llcoo,rym K
I( 5 2(0))] < 12l eogo,rymn K-

It remains to study the last two terms, which are
t t T
/ (G(1)(eu(r) — euo), ez(r))dr + / / (G(1 —r)(eu(r) — eu(r)), ez(r))drdr
0 0 Jo
t t T
_ / (G(0)(eu(r) — eud), e3(r))dr + / / (G(r = r)(eu(r) — ), ex(r))drdr.
0 0 Jo
Since z € W21(0,T; Vj), arguing as in Proposition 3.2.3 we can deduce that the function
t
p(t) :== / (G(t — 7)(eu(T) — euo), ez(t))dr
0

is absolutely continuous on [0, 7]. In particular
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which gives
t eu(r) — eu), ez(7))dr t T.T—’r‘ eu(r) —eu(r)),ez(r))drdr
| @@entr) —e)extmnar+ [ [ (@t = rfentr) - eutr)).extr)ara
= — ) (eu(r) — eu®), ez T — 7 — ) (eu(r) — eu®), e3(7))drdr. .
= [ @=rentn) e extinar - [ [ "Gt =r)(eutr) - en).exrarar. @07

Hence, we deduce

‘/ (eu(t) — eu®), ez(7))dr +/ / (1 —r)(eu(r) — eu(r)), ez(7))drdr
< 2(llezllcoqo,m;my + €2l ro,r;m) G L1 0,18y E-
Therefore, since
£0) < 2+ 2 feu?,
by (3.49) we deduce the following estimate
|a(t)||? + calleu(t)]|® < Co+ C1LK + CoE  for every t € [0,T],
where
Co=Co(z, N, f,u’u',A), C1=Ci(f,zN), Cy=Caz,N,A|G|107.5)
In particular, being the right-hand side independent of ¢ € [0, 7], we conclude
K% + cp,F* < 2Cy + 2C1 K + 2C,F  for every t € [0, 7).

This implies the existence of a constant M = M (Cy, Cy,Cs) for which (3.66) is satisfied. [

Remark 3.2.15. By the previous estimate, we can easily derive a uniform bound also for
@ in HY(0,T;(V{")"), which unfortunately depends on G via ||G(0)||z. Indeed, let us as-
sume that z, N, f, u°, u!, A, and G satisfy (3.2)—(3.1) and (3.12)—(3.15) and let u be the
generalized solution of Theorem 3.2.13. Thanks to (3.49) and (3.66) there exists a constant
M = M(z,N, f,u’, ut, A, |G|l L1 (0;7;3)) such that for every ¢ € [0, 7]

||eu(t)||2+(G(t)(eu(t)—eu0),eu(t)—eu0)+/0 (=G (t—7)(eu(t)—eu(r)), eu(t)—eu(r))dr < M.

By equation (3.17) it is easy to see that w € H'(0,T;(Vy?)) and that i satisfies for a.e.
t € (0,T) and for every v € V¥

[(@(t), v) vy
< Cylleu®)|||lev] + V(G — eu), eu(t) — eu)/(G(t)ev, ev)

\// G(t — 7)(eu(t) — eu(r)), eu(t) — eu(r dT\// G(t — 7)ev,ev)dr

H 1@l + 1N Oy 0]l 2y

Hence, we derive

|<t'l(t),v>(V0D)/]2 < 5CiM||ev||* + 5M (G(t)ev, ev) + 5M/ G(t —7)ev, ev)dr

+ 5[ F O llvl® + 5CEIN O lIz v,
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= 5CEM|lev]® + 5M(G(0)ev, ev) + 5|| £ ()| [|v]|* + 5CEIN () 171y 11T
which gives
Hu||%2(07T;(VOD)/) < 5CEMT +5MT|G(0)|5 + 5”f”%2(0,T;H) + 5Ct2r”N||%2(O,T;HN)'

Therefore the bounds on ii depends on ||G(0)||p even when z € W21(0,T; Vp).

As explained in the previous remark, we cannot deduce a uniform bound for % in the
space H'(0,T; (V{?)") depending on G only via its L'-norm. On the other hand, the bound
on u in H(0,T; (V")) is useful if we want to prove the existence of a generalized solution u*
to the fractional Kelvin-Voigt’s system (3.9), especially to show that @* € C9([0,T]; H). To
overcome this problem, we introduce another function that is related to @ and for which is
possible to derive a uniform bound. Let us consider the auxiliary function «: [0,T] — (V®)’
defined for every v € V” and t € [0,T] as

(a(t),v)ypy = (i(t),v) —i—/o (G(t — 7)(eu(r) — eu®), ev)dr.

Notice that a € C9([0,T7]; (V)'). Indeed, given t* € [0, T] and

{tx}x C [0,T] such that ¢, —— ¥,

k—o0

we have for every v € VOD the following convergence

(@) ) py = (0. 0) + [ (Gt = m)leu(r) = eu)ev)dr

— (u(t"),v) —|—/0 (G(t* — 7)(eu(r) — eu®), ev)dr = (a(t*), v>(VOD),,

k—o0

since

aty) —— (),
/0 k(G(tk — 7)(eu(r) — eu®), ev)dr —— (G(t* — 7)(eu(r) — eu), ev)dr.

k—o0 0

The second convergence is true because
ty
/ (G(ty, — 7)(eu(r) — eu®), ev)dr
0

= / (eu(t) — eu®, G(t), — 7)ev)dr — / (eu(t) — eu®,G(ty — T)ev)dr.
0

123

Clearly

LY(0,t*;H)
_—

G(tx, — -)ev G(t" —-)ev

k—o0
while eu € L*>(0,t*; H). Therefore
t*

/0 (eu(t) — eu®, G(t, — 7)ev)dr —— (eu(r) — eu®, G(t* — T)ev)dr

k—o00 0

= /0 (G(t* — 7)(eu(r) — eu?), ev)dr.
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Moreover

t—t*

‘/ eu(r) — eu®, G(ty, — 7)ev dT‘ < 2M||ev”‘/ |G(7)||pdT| —— 0.
k—o00
For this function « is possible to find a uniform bound in H*(0, T; (VOD )’) which depends
on ||GHL1(D,T;B)-

Corollary 3.2.16. Assume (3.2)~(3.1) and (3.12)~(3.15). Then a € HY(0,T; (V) and
there exists a constant M = M (z, N, f,u®, u', A, |G| 11 (0,7;B)) such that

||a||H1(0,T;(VOD)') <M. (3.68)
Proof. First, by Lemma 3.2.14 we have
Ha(t)||(VOD), < M +2||G|z10,7;m)) for every t € [0,T].

Moreover, by the definition of generalized solution, we deduce that for every ¢ € CL(0,T)
and v € VOD it holds

T
- /0 (alt), ) oy (1)l
T T T
. / (Acu(t), co)(t)dt + / (F(), o) ()dt + / (N(),0) sy o (8)dt
0 0 0

This gives that there exists & € L2?(0,T;(ViP)’) such that for every v € V¥ and for a.e.
t € (0,T) we have

(c(t), v)py = —(Aeu(t), ev) + (f(1),v) + (N (), v)my-
In particular, o € C°([0, T; (V")) and
HdH%Z(O,T;(VOD)’) < 3CJ§M2T + 3Hf||%2(0,T;H) + SCETHN”%?(O,T;HN)?

which gives (3.68). O

3.3 The fractional Kelvin-Voigt’s model

In this section we prove the existence of a generalized solution to (3.9) for a tensor F which
is not necessary bounded at ¢ = 0, as it happens in (5). Here, we assume that our data
2, N, f,u®,u', A, and F satisfy the conditions (3.2)-(3.8). To prove the existence of a gener-
alized solution to (3.9) under these assumptions, we first regularize F by a parameter £ > 0
and we consider system (3.11) associated to this regularization. Then, we take the solution
uf given by Theorem 3.2.13 and thanks to Lemma 3.2.14 and Corollary 3.2.16 we obtain a
generalized solution to (3.9).
Let us regularize F by defining

G°(t):=F(t+e) forte[0,T]and e € (0,d).

Clearly G¢ satisfies (3.12)-(3.15). Moreover, we have G° — F in L'(0,T;B) since F €
L(0,Tp; B). For every fixed ¢ € (0,80) we can consider the generalized solution u to system
(3.11) with G replaced by G* of Theorem 3.2.13. By Lemma 3.2.14 and Corollary 3.2.16 we
deduce the following compactness result:
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Lemma 3.3.1. Assume (3.2)—(3.8). For every € € (0,d0) let u® be the generalized solution
associated to system (3.11) with G replaced by G* given by Theorem 3.2.13. Then there exists
a function u* € Cy, and a subsequence of €, not relabeled, such that

L2(0,T;v) L2(0,T;H) .,

ue ZOTY e ZOTH (3.69)
e—=0t+ e—0t+
and for every t € [0,T]
4 . H .
S st (1), () — it (e). 3.70
w0 Lt (), ) i) (3.70)

Moreover, u*(0) = u® in Vg, 4*(0) = u! in H, and u*(t) — 2(t) € V;¥ for every t € [0, T].
Proof. Thanks to Lemma 3.2.14 we deduce
|a® ()| + |leu®(t)|| < M for every ¢ € [0,T] and ¢ € (0, ),

with a constant M independent of ¢ since ||G*||11(0,7.8) < [|Fll11(0,7;3)- Hence, by Banach-
Alaoglu’s theorem and Lemma 3.2.6 there exists

u* € C([0,T]; V) n Whee(0,T; H)
and a not relabeled subsequence of € such that

2 . 2 .
LOTY), u*, A LOTH), w*, o ut(t) SN u*(t) for every t € [0,T]. (3.71)

e—0t e—0t e—0t

uE

In particular, we deduce that u*(0) = u® in Vo, u*(t) € V; and u*(t) — z(t) € V;P for every
te€0,7).
It remains to show that u* € C ([0, T]; H), 4*(0) = u! in H, and that for every t € [0, 7]

To this aim we consider the auxiliary function defined at the end of the previous section.
More precisely, for every ¢ € (0,489) let a®: [0,T] — (Vi)' be defined for every v € V¥ and
te€]0,7T] as

t
<O£6(t),U>(VOD)/ = (uf(t),v) +/ (G (t — 7)(eus (1) — eu), ev)dr.
0
In view of Corollary 3.2.16, we have
”aaqu(O,T;(VOD)’) < M for every € (0, (50),

with M independent of ¢ > 0 being 1G* N1 o8y < IIFllL1(0,m;3)- Hence, up to extract a
further subsequence, there exists a* € H'(0,T; (V")) such that

1 (v Dy Dy
s LOTOG)), a”, a(t) W), a*(t) for every t € [0, 7). (3.72)
e—0t e—07t

In particular, since a®(0) = u! in (V) we conclude that a*(0) = u! in (V). For every
v € VP and for a.e. t € (0,T) we claim that

t

(a*(t), U>(VOD)/ = (4*(t),v) —I—/O (F(t — 7)(eu* (1) — eu), ev)dr.
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Indeed, for every ¢ € C°(0,T;V?) we have
T T T t
| ety = [t [ [ @ =t n) - ) eptarar

T T pt
— [ (u"(t),e(t))dt + /0 /0 (F(t — 7)(eu*(1) — eu?), ep(t))drdt.

e—=0t Jo

Notice that this convergence is true thanks to (3.71) and

1 .
Go(t— 1) LO5B), F(t — ),
e—0t
which gives
T T
| e —— [ @ em
0 e—=0T 0

/0 (G*(t — 7)(eu®(T) — eu), ep(t))dr —— [ (F(t — 7)(eu™(1) — euo), ep(t))dr.

e—=0t Jo

Hence by the dominated convergence theorem we have
T ot
/ / (G (t — 7)(eu (1) — eu), e(t))drdt
o Jo
T ot
— / / (F(t — 7)(eu () — eu®), ep(t))drdt.
o Jo

e—0t

Therefore, for a.e. t € (0,T) we deduce for every v € V¥ that

(u*(t),'L))(VOD), = (a*(t),v) = <a*(t),v>(vop), - /0 (F(t — 7)(ew* (1) — eu®), ev)dr.

Notice the function on the right-hand side is well defined in (Vi?)' for every ¢t € [0, T].
Therefore, we can extend u* to a function defined in the whole interval [0,7] with values
in (VP)". In particular, we deduce w* € C9([0,77]; (V?)'), arguing in a similar way as we
did in the previous section for , and thanks to the fact that @*(0) = a*(0) = u* in (V).
Therefore, since u* € C9([0,T); (VL)) N L>®(0,T; H) we derive that u* € CO([0,7T]; H)
(thanks to Lemma 3.2.6), and that %*(0) = u! in H. Finally, we have

V")

s (t) u*(t) for every t € [0,T] (3.73)

e—0t

by definition of @* and by (3.71) and (3.72). The convergence (3.73) combined with
| (t)]| < M for every t € [0,T],
give us the last convergence required. O

We can now prove the main existence result of Theorem 3.1.4 for the fractional Kelvin-
Voigt’s system involving Caputo’s derivative.

Proof of Theorem 3.1.4. It is enough to show that the function u* given by Lemma 3.3.1 is
a generalized solution to (3.9). To this aim, it remains to prove that u* satisfies (3.10). For
every ¢ € C! we know that the function u® € C, satisfy for every e € (0,dp) the following
equality

T T T t
— us ; eut e — St — 1) (e (1) — eu), e T
/0 (6 (2), (1))t + /0 (Aew (1), ep(t))dt /0 /0 (G (t — 7)(eu () — eu?), ep(t))drdt
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T T
—/0 (f(t),¢(t))dt+/0 (N(t), 0(t)) iy dt.

Let us pass to the limit as e — 0". Clearly, by (3.69) we have

T T
/0 (@), p())dt —— [ (i (), p(t))dt,

. e—0t OT
/0 (e (0. ()t —— [ (e (0) ottt

It remains to study the behaviour as e — 07 of

T
/ / (G (t — 7)(er () — en?), ep(1))drt.
o Jo
We define for every e € (0,d¢) the function
vE(t) = /0 (G(t —7) = F(t — 7)) (e (1) — eu®)dr for t € [0,T).

y (3.66) for every ¢ € [0, 7] it holds
@l < 16 = Fllpo,r:) llew” — ew|l oo oim) < 2MG* = Fll 1o 1. (3.74)

with M independent of € being ||G*||1(0,7,5) < |F||11(0,1;5)- Notice that

//Gft—T (euf () — end), e(t))drdt
:/0( (1), e () dt+// (t — 7)(eus (7) — eu), ep())drdt,

and thanks to (3.74) and to the fact that G° — F in L'(0,7T; B) as ¢ — 07, we get

T
| / gl < [ IOl < 216 = Flls o lelosomim —2 O

e—0t

On the other hand, since 7 — fTT F(t — 7)ep(t)dt belongs to L>°(0,T; H), we can write

T t
/ / (F(t — 7)(eus(r) — end), ep(t))drdt
0 0

T T T T
_ / (euf(7) — en® / Bt~ T)ep(B)itidr —— [ (e () - ea’, / F(t — r)eg(t)dt)dr
e— 0 T
/ / (t — 1) (eu* (1) — eu?), ep(t))drdt.
As a consequence, u* is a generalized solution to system (3.9). O

We conclude this section by showing that for the fractional Kelvin-Voigt’s model, the
generalized solution u* € C,, to (3.9) found before satisfies an energy-dissipation inequality.
As before, for t € (0,T] we define the functions &*(t) and 2*(t) as

1(Aeu* (t), eu*(t))dt + L

&) = 5l @I + (
1

- 2/0 (F(t — 7)(eu”(t) — eu™ (1)), eu™(t) — euw*(7))dr,

F(t)(eu*(t) — eu®), eu*(t) — eu?)
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7= _/0 (F(7)(eu* () — eu®), eu* (1) — eu®)dr
2 [ [ e ) - )0 o) — e (e

Notice that the integrals in &* and Z* are well-posed, eventually with values co. Furthermore,
we define the total work #;%,(t) for ¢t € [0,T] as

Wiot(t) : = /t[(f(f) W*(r) = £(7)) + (Aeu™ (1), e2(t)) + (F(t — 7)(eu*(r) — eu’), ez(t))]dr
/ / (7 — 1) (eu*(r) — eu®), e3(r))drdr
—/0 N(7),w(7) = 2(7)) Eydr + (N (1), u*(8) = 2(t)) iy — (N(0),u” = 2(0)) ary
- /0 (@ (), 5(7)dr + (6 (8), £(8)) — (uh, 2(0)). (3.75)

We point out the total work #;%, is continuous in [0, 7] and that the definition given in (3.75)
is coherent with the one of (3.50) thanks to identity (3.67).

Theorem 3.3.2. Assume (3.2)-(3.8). Then the generalized solution u* € C,, to system (3.9)
of Theorem 3.1.4 satisfies for every t € (0,T] the following energy-dissipation inequality

1
~(Aeu®, eu®) + #5,(t). (3.76)

1
£(0)+ 7)< 5P+

In particular, &*(t) and 2*(t) are finite for every t € (0,T].

Proof. Let us fix t € (0,T]. For every ¢ € (0,00) let u® € Cy, be the generalized solution to
system (3.11) with G replaced by G° given by Lemma 3.3.1. Thanks to Proposition 3.2.10
we know that the function u® satisfies the energy-dissipation inequality (3.49) and we can
rewrite the total work (3.50) as in (3.75) since z € W21(0,7T;Vp) (as suggested by formula
(3.67)). The convergences (3.70) of Lemma 3.3.1, and the lower semicontinuous property of
the maps v +— ||v]|?, w +— (Aw,w) (by (3.1)), and w — (F(t)w,w) (by (3.6)), imply

i ()2 < limint i< (1) |2 (3.77)
(Aeu*(t),eu*(t)) < li;l_l)égrlf(AeuE (t),eu(t)), (3.78)
(F(t)(eu*(t) — eu®), eu*(t) — eu®) < lisrg(ijrif(F(t)(eue(t) —eu®), euf (t) — eud). (3.79)

Moreover, by (3.5) we have

[(F(t) — G=(1))(eu® (t) — eu?), eus (t) — eu’)| < |F(t) — G*(t)|| plleus(t) — eu?|?
< AMP|[F(t) —F(t+ )|z —— 0,

being M independent of €. Hence (3.79) reads as

(F(t)(eu*(t) — eu®), eu*(t) — eu®) < liminf(G®(t)(eus(t) — eu®), eu (t) — eu?). (3.80)

e—0t

Similarly, by (3.5), (3.7), and (3.70), for every 7 € (0,t) we have

(—F(t —7)(eu*(t) — eu” (7)), eu*(t) — eu™(7))



Chapter 3. The fractional Kelvin-Voigt’s model on time-dependent cracked domains 93

< liminf(=G*(t — 7)(eus(t) — eu (7)), eus (t) — eu(7)).

e—0t

In particular, we can use Fatou’s lemma to obtain
t
/ (=F(t — 7)(eu*(t) — eu™ (1)), eu”(t) — eu™(7))dr
0
t
< lim inf/ (=F(t — 7)(eu®(t) — eu® (7)), eu(t) — eu(7))dr.
e—=0t Jo

By arguing in a similar way, we can derive

/(—F(T)(eu*(T)—euo),eu*(T)—euo)dTSliminf/ (=G*(7)(eus (1) — eu®), eu (1) — eu®)dr.
0 0

e—0t

For the term involving F, we argue as we already did for F and by using two times Fatou’s
lemma we get

// (1 —r)(ew* (1) — eu*(r)), eu* (1) — euw*(r))drdr
< liminf/ / (G5 (1 — ) (ew® (1) — eu®(r)), eus (1) — eus(r))drdr.

e—0t

It remains to study the right-hand side of (3.49) with the formulation of the total work
as in (3.75). Thanks to Lemma 3.3.1 and the fact that G — F in L'(0,T; B) we deduce

[ u@.ienar — [, (3:81)
/(AeuE(T),CZ(T))dT—+> (Aeu™(1),ez())dr, (3.82)
0 e—0 0

/0 (GE(t — 7)(eus (1) — eu®), e3(1))dr —— [ (F(t — 7)(eu*(7) — eu®), ez(7))dr, (3.83)

e—=0t Jo

(@(t),2(t)) — [ (@°(7), 2(r))dr —— (@7 (1), () — | (a"(7),Z(7))dr,  (3.84)
0 0

e—0t
(N (t), u*(t)) Ey —/0 (N (), (T sy dT —— (N (£), w"(8)) iy —/0 (N(7),u* (7)) iy dr.
(3.85)

It remains to study the term

/ot /OT(G€<T —r)(ew (r) — eu’), e(7))drdr.

For a.e. 7 € (0,t) we have

T

/OT(GE(T —r)(eu(r) — euo), ez(r))dr —— (F(r —r)(eu*(r) — euo), ez(r))dr

e=0t Jo

‘ /OT(GE(T — ) (eus(r) — eu®), e3(r))dr

< 2M|[F g1 0,10 leZ(7)| € L1(0,2),

with M independent of €. By the dominated convergence theorem we conclude

/Ot/OT(Ga(T—r)(eua(r)—euO),e:z'( drdTm// eu* () — eud), e3(7))drdr.
(3.86)

By combining (3.77)—(3.86) we deduce the energy-dissipation inequality (3.76) for every t €
(0,T]. O
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Remark 3.3.3. Although we do not have any information about L!-integrability of F and
F in t = 0, for the generalized solution u* of Theorem 3.1.4 we obtain that the energy terms
&* and Z* are finite.

Corollary 3.3.4. Assume (3.2)—(3.8). Then the generalized solution u* € C,, to system (3.9)
of Theorem 3.1.4 satisfies

1 1
Hm &*(t) = S |lu'l]® + = (Aeu?, eu). :
t_l}r())rgrg(t) 2||u [ +2( eu’,eu’) (3.87)

In particular, (3.76) holds true also int =0 and

lim ||u*(t) —u’|ly =0, lim [|a*(t) —u']| = 0.
Tim (1)~ 0l =0, lim (1) — o'

Proof. By (3.76) for every t € (0,T] we have

1 1 1 1
Sl @I + S (hend, en) < 67(6) < S ul]? + 5 (hen, en) + #72y(0).

Since u* € CY([0,T]; V) and @* € CY([0,T]; H) we get

1
(Aeu®, eu®) < liminf &*(t) < limsup &*(t) < §Hu1||2 + = (Aeu®, eu).

1 1 1
St PP+ 5 5
2 2 t—07F t—0+ 2

Therefore, we get (3.87). As consequence of this, we derive

lim (@8[] = u']?,  lim (Aeu*(t),eu*(t) = (Aeu, eu?),
t—0+ t—0t

and this conclude the proof. O

For the fractional Kelvin-Voigt’s model (3.9) we expect to have uniqueness of the solution,
as it happens in [13, 48] for the classic Kelvin-Voigt’s one. Unfortunately, the technique used
in the cited papers cannot be applied here, and we are able to prove it only when the crack
is not moving (see Section 3.4). We point out that the uniqueness of the solution is still an
open problem even for the pure elastic case (B = 0), unless the family of cracks is sufficiently
regular (see [6, 16]).

Moreover, according the theory of dynamic fracture, we do not expect to have the equality
in (3.76). Indeed, we should add also the energy used to the increasing crack, which is
postulated to be proportional to the area increment of the crack itself, in line with Griffith’s
criterion [27]. More precisely, we would like to have

1 1
EX(t) + 2*(t) + HIH (T \ Tp) = 5Hul||2 + i(Aeuo, eu®) + #5(t) fort € [0,T]. (3.88)

However, with our approach we are not able to show the previous identity, which again is
unknown even in the pure elastic case. We underline that there are no results regarding the
validity of (3.88) for the fractional Kelvin-Voigt’s model (3.9) even when the crack is not
moving.

3.4 Uniqueness for a not moving crack

Let us consider the case of a domain with a fixed crack, i.e. 'y = Ty (possibly 't = ). In
this case we can show that the generalized solution to (3.9) is unique. As we explained in the
introduction, uniqueness results for fractional type systems can be found in the literature,
but they are proved only for regular sets ) (without cracks) and in particular cases (for F
given by (5) or when eu is replaced by Vu).
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The proof of the uniqueness is based on a particular energy estimate which holds for the
primitive of a generalized solution. To this aim, we need to estimate

/ot /OT(F (7 —r)eu(r), eu(r))drdr

and we start with the following identity which is true for a regular tensor K (see also [51,
Lemma 2.1]).

Lemma 3.4.1. Let K € CY([0,T]; B) and v € L*(0,T;Vy). Then, for everyt € [0,T)
t d T
/0 (dT/O K(7 — r)ev(r)dr, ev(r))dr
= ;/0 (K(t — 1)ev(r),ev(r))dT + ;/0 (K(7)ev(r), ev(r))dr

1 [t [
_ 2/0 /0 (K(r — r)(ev(r) — ev(r)), ev(r) — ev(r))drdr. (3.89)

Proof. Let us fix t € [0,T] and let us analyze the right hand-side of (3.89). We have
1 t T .
- 2/ / (K(7 —r)(ev(T) — ev(r)),ev(r) — ev(r))drdr
0o Jo

_ /0 t /0 "K(r —r)ev(r),ev(T))drdT—% /0 t /0 (R (r — rYev(r), ev(r))drdr

_% /O t /0 "(R(r - r)ev(r), ev(r))drdr. (3.90)
Notice that
— / / (t —r)ev(r),ev(r))drdr (3.91)
__/ (/ K( T—T’)d?") ev(7), ev(r))drdr
-1 /0 {(K(r)ev(r), ev(r))dr + : /0 (K (0)eu(r), ev(r)dr, (3.92)

and that for a.e. 7 € (0,¢)

% T(K(T —r)ev(r), ev(r))dr = (K(0)ev(r), ev(T)) + /T(K(T —r)ev(r), ev(r))dr,
0 0
from which we deduce

1

- 2/ (K(t — 7)ev(r), ev(r))dT (3.93)

:_/ dT/ (7 — r)ev(r), ev(r))drdr

:_2/0 (K(0)ev(), ev( dT—/ / (r = PYev(r),eo(r))drdr.  (3.94)

By (3.90)—(3.93) we can say

1/t
_ 2/0 /0 (K(r —r)(ev(r) — ev(r)), ev(r) — ev(r))drdr
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_ /O t /O "R (7 — r)eu(r), ev(r))drdr + /0 (K(0)ev(r), ev(r))dr

_ ;/0 (K(r)ev(r),ev(r))dr — ;/0 (K(t = 7)ev(r), ev(r))dr,

and thanks to the following relation
d T T .
/ K(7 — r)ev(r)dr = K(0)ev(r) +/ K(7 — r)ev(r)dr for a.e. 7 € (0,t),
T Jo 0

we can conclude the proof. O

Lemma 3.4.2. Let F be satisfying (3.5)~(3.8) and u € C2([0,T]; Vo). Then for every t €
[0,T7] it holds

t T
/ / (F(r — r)eu(r), eu(r))drdr > 0. (3.95)
o Jo
Proof. First, we fix £ € (0,00) and we consider for every t € [0,7] the following regularized

kernel
G*(t) :==F(t +¢).

Moreover, we fix ¢ € [0,T] and we define for every 7 € [0, ] a primitive of u in the following
way

Clearly G* € C?([0,T); B) and after an integration by parts, since ev(t) = 0, we obtain
/ /T(GE(T —r)eu(r), eu(r))drdr
0 Jo
= /0 /0 (G*(1 — r)eu(r),ev(r))drdr
_/0 (G*(0)ev(r), ev(r))dr —/ / (G*(1 — r)eu(r),ev(r))drdr
(GE( )ev / / (GE(1 — r)eu(r), ev(r))drdr.

Moreover, we have

e — reu(r r:i T'ET—revr r—G(r)ev
/OG(T Jeu(r)d dT/OG( Jev(r)dr — G*(r)ev(0).

Therefore, by (3.89) we can write

// (G*(1 — r)eu(r), ev(r))drdr

/(dT/ GE(T—T)GU( )dT—GE( ) (0),6U(T))d7-

— ;/0 (Gﬁ(t—T)ev(T),ev(T))dT+;/0 (GE(T)eU(T)7€U(T))dT
1 [t -

- 2/0 /0 G*(r —r)(ev(r) — ev(r)), ev(r) — ev(r))drdr

— /0 (GE(1)ev(0), ev(r))dr,
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which implies
t T
/ / (G (1 — r)eu(r), eu(r))drdr
0 JO

1. b
= 5(@ (0)ev(0), ev(0)) Jr/o (G*(7)ev(0), ev())dr

1

-3 | @ = nevm.eotmnar = 5 [ (@ en(r).entr)ar

/ / (G (1 — 1) (ev(r) — ev(r)), ev(r) — ev(r))drdr

(G*(0)ew(0), ev(0)) + 3 /0 (G2 (7)ev(0), ev(0))dr

— 1/ (Gs(t —7)ev(T),ev(r))dT

/ / (GE(1 — 7)(ev(1) — ev(r)), ev(r) — ev(r))drdr
= 5((@5(75)611(0), ev(0)) — ;/0 (GE(t — 1)ev(T), ev(r))dr
1 t T s
+ 2/0 /0 G*(1 —r)(ev(r) — ev(r)), ev(r) — ev(r))drdr > 0.

By sending ¢ — 0" we conclude. O

We can now state our uniqueness result.

Theorem 3.4.3. Assume (3.2)~(3.8) and I'r = I'g. Then there exists at most one generalized
solution to system (3.9).

Proof. Let uy,us € Cy be two generalized solutions to (3.9). Then w := u; — ug satisfies
equality (3.10) with 2 = N = f = «° = u! = 0. Consider the function 8: [0,7] — (V°)’
defined for every 7 € [0,T] as

(B(7), v)py = (W(T),v) + /OT(Ceu(r),ev)dr + /OT(IB‘(T —r)eu(r), ev)dr

for every v € ViP. Clearly 8 € C9([0,T); (V{")"), B(0) = 0 since @(0) = 0 in (V;”)’, and by
(3.10) we derive

T
/ (B(1), v>(VOD),¢(T)dT =0 for every v € V¥ and ¢ € C1(0,7T).
0

Therefore 3 is constant in [0, 7], which gives 3(7) = 0 in (V”)’ for every = € [0, 7], namely
for every v € V¥ and 7 € [0, T] we have

(a(r),v) + /OT((CGU(T), ev)dr + /OT(F(T —r)eu(r),ev)dr = 0.

In particular, for every ¢ € [0, 7] we deduce

/( dT—I—// (Ceu(r), eu(r drdT—l—// (1 —r)eu(r),eu(r))drdr = 0.

Hence, by (3.95) we conclude

%Hu(t)”2 + ;(A(/Ot eu(v-)dv-),/ot eu(t)dr) <0 for every t € [0,T].

Therefore, since both terms are non-negative, we get that u(t) = 0 for every ¢ € [0, T]. O






Chapter 4

Quasistatic limit of a dynamic
viscoelastic model with memory

The chapter is organized as follows. In Section 4.1 we fix the notation adopted throughout
the chapter and we prove some properties of the solutions to (21) such as the energy balance
(4.24) of Proposition 4.1.7. In Section 4.2 we state our main results (Theorems 4.2.6 and
4.2.7). In Section 4.3, under the assumption of the compatibility condition (4.38), we prove
the uniform convergence of Theorem 4.2.6 of the solutions of dynamic evolution problem (21)
to the solution of stationary problem (22) by means of energy estimate (4.44) of Lemma 4.2.8,
derived by energy balance (4.24). In Section 4.4 we recall the main properties of the Laplace
Transform and of the Inverse Laplace Transform for functions with values in Hilbert spaces.
In particular, in Subsection 4.4.1 we develop the Laplace Transform tools, consequently in
Subsection 4.4.2 we study the equation satisfied by the Laplace Transforms of the solutions to
(21) and (22) (see (4.80) and (4.81)), and finally in Subsection 4.4.3 we prove the convergence
in L? of the solutions of (4.80) to the solution of (4.81). Thanks to the theory developed in
Section 4.4 and to energy inequality (4.44) of Lemma 4.2.8, under general assumptions, we
prove in Section 4.5 and 4.6 the convergence in L? and the local uniform convergence of the
solution of dynamic evolution problem (21) to the solution of stationary problem (22).

The results presented here are obtained in collaboration with Prof. G. Dal Maso and are
contained in [18].

4.1 Hypotheses and statement of the problem

Let d be a positive integer and let @ C R? be a bounded open set with Lipschitz boundary.
We use standard notation for Lebesgue and Sobolev spaces. For convenience we set for every
m € N the space H := L?(Q;R™) and we always identify the dual of H with H itself.
Moreover, we define

V= HY%:RY), Vo= HY}(GRY), Vy:=H YQRY).

The symbols (-, ) and || - || denote the scalar product and the norm in H. The duality product
between Vj and Vp is denoted by (-,-). Given u € V we denote with ew its strain, which is
defined as the symmetric part of the gradient.

Under these assumptions, the Second Korn Inequality (see, e.g., [39, Theorem 2.4]) states
that there exists a positive constant Cx = Ck(2) such that

[Vul| < Cr (|Jul* + HeuHQ)l/2 for every u € V. (4.1)
Moreover, there exists a positive constant Cp = Cp(2) such that the following Korn-Poincaré
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Inequality holds (see, e.g., [39, Theorem 2.7)):
lul| < Cp|leul| for every u € Vj. (4.2)
Thanks to (4.1) we can use on the space V' the equivalent norm
lullv = (Jull® + [leu]*)'/? for every u € V.

Let Z(RLX: RIX4) be the space of all linear operators from RZ*? into itself. We assume

symy “Esym sym
that the elasticity and viscosity tensors A and B satisfy the following assumptions:

A B e L®(Q; Z (R4, RIXdY), (4.3)

sym» Ssym
and for a.e. x € Q
A(z)ér - &o = & - Ax)&, B(2)&1 - & = &1 - B(x)&2 for every &1, & € R (4.4)
cal? S A@)E-E < CuléP,  clé]? <B(x)€- € < Cale]*>  for every & € R4 (4.5)

where cp, cg, Ca, and Cp are positive constants independent of x, and the dot denotes the
Euclidean scalar product of matrices.

Let us fix T' > 0 and 8 > 0. To give a precise meaning to the notion of solution to problem
(12)—(21) we introduce the function spaces

V= L*0,T;V)n H'0,T; H) N H*(0,T;V{)
Vo := L*(0,T; Vo) N HY(0,T; H) N H?*(0,T; Vy),
Viee := L} (=00, T; V) N HL, .(—00, T; H) N HE (=00, T; V).

Remark 4.1.1. By the Sobolev Embedding Theorem, if u € V (resp. u € Vj,.), then
we CU[0,T); H)NCY([0,T];Vg)  (resp. u € C°((—o0, T); H) N C (=00, T); V).
We study problem (12)—(21) with ¢, z, and u;, depending on €. Let us consider € > 0 and
f- € L*(0,T; H), g.<€ H 0, T;V]), 2z € H*0,T;H)NH (0,T;V), (4.6)
Ug in € CO((—00,T); H) N C*((—o00,T); V{) such that
Ue,in(0) €V, uein(0) — 2:(0) € Vo,  1.n(0) € H,

01 z q (4.7)
/ G lucin(T) vy < +ox.

—0oQ
The notion of solution to (12)—(21) is made precise by the following definition.

Definition 4.1.2. We say that u. is a solution to the viscoelastic dynamic system (12)—(21),
with forcing term ¢ = f. + g., boundary condition z., and initial condition w. ;p, if

Ue € Vipe and ue — 2z €V, (4.8a)

act) ~ (A + Bleuc) + [ oo™ div(Bens(r))dr = ) + 50

—00

for a.e. t € [0,T7, (4.8b)

U (t) = uein(t) for every t € (—o0,0]. (4.8¢)
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In the next remark we shall see that (4.8) can be reduced to the following problem starting
from O:

u: €Y and u. — z. € WV, (4.9a)

e2ii.(t) — div((A + B)eu.(t / e div(Beu(7))dT = e (t) + 7=(t)
for a.e. t € [0,T7, (4.9b)
u-(0) =ulin H and u.(0) =l in V], (4.9¢)

with ¢, € L*(0,T; H), v € HY(0,T; V{), v € V, u? — 2.(0) € Vp, ul € H.

Remark 4.1.3. It is easy to see that u. is a solution according to Definition 4.1.2 if and
only if its restriction to [0, 77, still denoted by wu., solves (4.9) with

0 = fey Ve =Ge —De, Ug = us,in(o)a U; = us,in(o)a (4-10)
where 0
t 1 =
pe(t) :=e 7 =g with ¢° :—/ B—eﬁs div(Beue i (7))dT. (4.11)
€

—0o0
To solve problem (4.9) it is enough to study the corresponding problem with homogeneous
boundary condition:
ve € W, (4.12a)

e2ii.(t) — div((A + B)eva(t)) + /0 Blgetai div(Bevs (r))dr = he(t) + £.(1)

for a.e. t € 0,77, (4.12b)
v:(0) =22 in H and .(0) = v} in V{, (4.12¢)

with
h. € L*(0,T; H), (.€ HY(0,T;Vy), eV, nolel (4.13)

Remark 4.1.4. The function u. is a solution to (4.9) if and only if v, = u. — 2. solves (4.12)
with

he(t) = @e(t) — €25.(t), Le(t) = ve(t) + div((A + B)ez(t / i div(Bez.(7))dr,
v =ud — 2.(0), wvl=ul-:.(0), (4.14)

Therefore, existence and uniqueness for (4.12) imply existence and uniqueness for (4.9).

Remark 4.1.5. In [11] problem (4.12) has been studied with initial conditions taken in the
sense of interpolation spaces. Given two Hilbert spaces X and Y, the symbol [ X, Y]y denotes
the interpolation space between X and Y of exponent § € (0,1). Thanks to [34, Theorem
3.1] we have the following inclusions:

1

L2(0,T; Vo) N HY(0,T; H)  C°([0, T); Vi),
_1

L*(0,T; H) N H*(0,T;Vy) € C°([0,T}; V, 2),

1 1
where Vi? := [V, H]1 and V, ? := [H, V{j]1. Consequently

1 1
2 2

1 _1
Vo € C°([0,T); V2) n CH([0,T); Vy 2).

Therefore, the initial conditions in (4.12) are satisfied also in the stronger sense

1

v:(0) =02 in V2 and 9.(0) = v} in V.

=

(4.15)
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The following proposition provides the main properties of the solutions. We recall that,
if X is a Banach space, C9([0,T]; X) denotes the space of all weakly continuous functions
from [0, 7] to X, namely, the vector space of all functions w: [0,7] — X such that for every
2’ € X' the function ¢ — (2’ u(t)) is continuous from [0, T] to R.

Proposition 4.1.6. Givene > 0, assume (4.6) and (4.7). Then there ezists a unique solution
ue to the viscoelastic dynamic system (4.8). Moreover, it satisfies

u. € C°([0,T); V)nC*([0,T); H). (4.16)

Proof. By Remarks 4.1.3 and 4.1.4 it is enough to prove the theorem for (4.12). Existence
and uniqueness are proved in [11], taking into account Remark 4.1.5 about the equivalence
between the initial conditions in the sense of (4.12) and (4.15).

After an integration by parts with respect to time, it easy to see that the weak formulation
(4.12) is equivalent to the following one:

. - T B T tie_t_
; /0 (00 (8), (1))t + /0 (A + B)eve(1), e (1)) dt /0 /066

5 (Bev:(T), ep(t))drdt

T T
- /0 (he(t), o (1))dt + /O (0(8), p(D)dt for every o € C2(0,T; V). (4.17)

In [44], in a more general context, it has been proved that if v, satisfies (4.17) and the initial
conditions in the sense of (4.12), then it satisfies also

ve € C2([0,T];V) and . € CO([0,T]; H), (4.18)
. o 0 o . . . 1
Jm Jloe(t) —velly =0 and - lim loc(t) — vl = 0.

We fix s € [0,7). We want to prove

lim+ |ve(t) —ve(s)||lvy =0 and hm [|0:(t) — ve(s)]] = 0. (4.19)

t—s t—st

Thanks to the theory developed in [11] there exists a unique 9. € L?(s,T; Vo) N H (s, T; H) N
H?(s,T;V{) such that

20, (t) — div((A + B)ed.(t / i div(Bed(7))dr

= he(t) + £(t) — / Eefw div(Beve(7))dr for a.e. t € [s,T], (4.20)
0
lim ||o-(t) —ve(s)| =0 and lim ||o.(¢) — Ve (s)[lyy = 0. (4.21)
t—st t—st

By the results in [44] the function 0. satisfies also

lim [[5.(6) — v.(s)ly = 0 and  lim [[#.(£) — 6. (s)]| = 0. (4.22)
t—sst t—sst

Since clearly v, satisfies (4.20) and (4.21), by uniqueness we have v0.(t) = v.(t) for every
t € [s,T]. In particular, from (4.22) we deduce that (4.19) holds.

To complete the proof we need the following proposition about the energy-dissipation
balance, where #.(t) represents the work done in the interval [0, ¢].
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Proposition 4.1.7. Given € > 0, we assume (4.13). Let v. be the solution to (4.12) and let
we: [0,T] — H be defined by

we(t) := e P ; ;Eeﬁfsevg(r)dr for every t € [0,T]. (4.23)
Then w. € HY(0,T; H) and the following energy-dissipation balance holds for everyt € [0,T):
g2 o 1 1
eI + 1 (e (1), eve() + L (Blen (1) (1)) ev.(1) — we(1)
e [ (B ()T = Sl + S(A+ B o) +4400), (420
where

t t
Het): = [ (el )dr = [ (lr)oe(m)ar + (600, 6(0) = (6(0).),
Proof. 1t is convenient to extend the data of our problem to the interval [0,27] by setting
he(t) :=0 and /(. (t):={(T) foreveryte (T,2T).

It is clear that he € L?(0,2T; H) and ¢. € H'(0,27T;V{). By uniqueness of the solution to
(4.12), the solution on [0,27] is an extension of v, still denoted by v.. We also consider the
extension of w, on [0,27] defined by (4.23).

Since ev. € L%(0,2T; H), it follows from (4.23) that w. € H'(0,2T; H), and

Bee(t) = eve(t) — w(t) for a.e. t € [0,2T). (4.25)
Thanks to (4.19) in [0,27] and (4.25) there exists a representative of w. such that

lim . (t) —we(s)|| =0 for every s € [0,2T). (4.26)

t—st

Moreover, since v, satisfies (4.12) in [0, 27, we have
£20.(t) — div(Aev. (1)) — div(B(eve (t) — we(t))) = he(t) + £o(t) for a.e. t € [0,2T]. (4.27)

Multiplying (4.25) and (4.27) by ¥ € H and ¢ € Vj, respectively, and then integrating over
Q) and adding the results, we get

(e (t), ) + (Aeve(t), ep) + (Bleve(t) — we(t)), ep — )

+ Be(Buc(t),v) = (he(t), ©) + (Le(t), ) for ae. t €[0,2T]. (4.28)
Given a function r from [0,27] into a Banach space X, for every n > 0 we define the
sum and the difference functions or,§"r: [0,2T — n] — X by or(t) := r(t +n) + r(t)
and 0"r(t) := r(t +n) — r(t). For a.e. t € [0,2T — n] we have o"v.(t),"v.(t) € Vy and
o"w.(t),0"we(t) € H. For ae. t € [0,2T — n] we use (4.28) first at time ¢ and then at
time t 4+ n, with ¢ = 0"v.(t) and ¥ := §Tw.(t). By summing the two expressions and then

integrating in time on the interval [0,t] we get

/ 2K, (7) + Ay (7) + By (7) + eDy(7)]dr = / W, (r)dr, (4.29)
0 0
where for a.e. 7 € [0,27 — 1)

K,)(7) := (0"0:(7), 6"ve (7)),
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(1) := (Ao"eve(T),0"evs (1)),

By (1) := (B(0"eve (1) — 0"we (7)), 0"ev (1) — 6"we(T)),
(1) := BB o"be(7), 6w (7)),

Wiy(7) := (0"he(7),0"0e(7)) + (0(T), 60 (7).

An integration by parts in time gives
/0 K, (r)dr = (6"0-(t), 8"0-(t)) — (6"0=(0), 6™v(0)) — /0 (00 (), 8" (7))dT
t+n n t t
= oo (t), ve(7))dT — a":(0), v (7))dT — Ve(T 2dr 1')57'27
= [ e - [N mar - [+ miFar+ [P
t+n n
:/t [(0%5(75),@8(7))—Hi)e(T)IIQ]dT—/O [(0"5(0), b=(7)) — [[0=(7)[I*] d7. (4.30)

Moreover
t t+
/O Ay(r /t " (hev.(r), eve(r))dr — /O " (hevo(r), evo(r))dr, (4.31)
/t B o B
[ Byryar = [ @Beon(r) = walr)) evelr) - walrdr
- / (B(eve(r) — we(r)), eve(r) — we(r))dr, (4.32)
/0 Dy (1 dT—B/ / (B o™i (7), we(s))dsdr, (4.33)

t T+n
/Wn dT—// (c"he(T), V(s deT—// 7))dsdr
0

+/t (0. (7), v5(7+77)>d7'—/ (0"0.(F), v (r))dr.  (4.34)

0
We now divide by n all terms of (4.30)—(4.34). Observing that

L2(0,T:H
o1, LOTH,

[
/

thanks to (4.19) in [0,27) and (4.26), we can pass to the limit as 7 — 07, and from (4.29)
we obtain that (4.24) is satisfied for every ¢ € [0, T7. O

2he,

n—0+

T+n
][ Ue(s)ds — 1}5(7)‘ dr —— 0,

n—0+
T+, .
le(s)ds — £ d — 0,
[ s i) o

Proof of Proposition 4.1.6 (Continuation). Now we want to prove (4.16). By using (4.24),
for every t € [0, T] we can write

62 2
TN + (A + Blewa(), eve(t) = S22 + (A + Byeol, o) + #2(t)

—%(Bws(t),ws(t))+(Eevs(t),ws(t))—66 [ i) o @)
0

Let W.: [0,7] — [0, +00) be defined by

g2 9 1
Ve(t) := S0 + 5 ((A + Beve(t), eve(t));
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since w. € C°([0,T); H), thanks to (4.18) and (4.35) we have ¥. € C°([0,T)).
Now we fix ¢t € [0,7]. Given a sequence {t;}, C [0,7] such that t;, — t as k — 400, we
define

2
S 1= S ia(tr) = 5o+ (A + B)(eve(ti) — eve(r)), eve(ti) — eve(r).

By elementary computations we have
e = We(ty) + V(1) — 2(0=(tr), 0=(£)) — ((A + B)evs(tx), eve(1)),
therefore, by (4.2) and (4.5) there exists a positive constant C' = C(A, B, Q) such that
2]l (tr) — ()17 + lloe(tr) — v=()]7
< C(\Dg(tk) + U (1) — e2(0e(tr), 0= (1)) — (A + B)eva (), evg(t)))
The right-hand side of the previous inequality tends to 0 as k — 400 because of (4.18) and
the continuity of ¥.. Since z. € C°([0,T]; V), by (4.6), and u. = v-+ 2., we obtain (4.16). [
4.2 Statement of the main results

In this section we present the main results about the convergence, as ¢ — 07, of the solutions
ue. We assume the following hypotheses on the dependence on ¢ > 0 of our data:

(H1) {fe}e € L*(0,T; H), f € L*(0,T; H), {ge}e C H'(0,T;Vy), g € WHH0, T3 Vp),

L2%(0,T;H) whi0,15Vy))
Je f, and g ———g;
e—0t+ e—0t+

(H2) {z.}. c H?(0,T; H)N H'(0,T;V), z € W2Y0,T; H) nWH1(0,T;V), and

W21(0,T;H)NnW11(0,T;V)

Ze Z3
e—0t

(H3) {ucinte C C%(=00,0];V) N CH((—00,0]; H), upin € CV((—00,0];V), and there exist
a > 0 such that

CO([—a,05;V) . C°([—a,0];H)
Ugin ———— UQ,in, ElUejp —— 0,
e—0t e—0t
—-a 1 I .
—eBe |ug in(7)||lydT —— 0 —efe ||lug in(7)||[ydT —— 0.
| heanmivar —o0 [ F ualver —

Remark 4.2.1. Let u! = uc ,(0), ul = 4. (0), and u® = ug ;,,(0). Hypothesis (H3) implies

14 H
uw) —— u® and eul —— 0.
e—0t e—0t

Our purpose is to show that the solutions u. converge, as ¢ — 07, to the solution ug of
the stationary problem (22) with boundary condition (12). The notion of solution to this
problem is the usual one:

{uo(t)GV, up(t) = z(t) € Vo, for ae. t €[0,7], (4.36)

—div(Aeug(t)) = f(t) + g(t) for a.e. t € [0,T7.



106 4.2. Statement of the main results

Remark 4.2.2. The existence and uniqueness of a solution ug to (4.36) follows easily from
the Lax-Milgram Lemma. Since f + g € L*(0,T;V{), the estimate for the solution implies
also ug € L2(0,T;V).

We shall sometimes use the corresponding problem with homogeneous boundary condi-
tions:

{vo(t) eW for a.e. t € [0,T7, (4.37)

—div(Aevy(t)) = h(t) + £(t) for a.e. t € [0,T7,
with h € L2(0,T; H) and ¢ € H'(0,T; V{).

Remark 4.2.3. The function ug is a solution to (4.36) if and only if vg = ug — 2 is a solution
to (4.37) with

h(t) = f(t) and £(t) = g(t) + div(Aez(t)).
The following lemma will be used to prove the regularity with respect to time of the
solution to (4.36).

Lemma 4.2.4. Let m € N and p € [1,+00). If f =0, g € W™P(0,T;V]), and z €
W™P(0,T;V), then the solution ug to problem (4.36) satisfies ug € W™P(0,T;V).

Proof. By Remark 4.2.3 it is enough to consider the case z = 0. Let R : Vj — V{ be the
resolvent operator defined as follows:

B v € Vo,
R)=¢ = {—div(Aegp) = 1.

Since ug(t) = R(g(t)), the conclusion follows from the continuity of the linear operator R. [

Remark 4.2.5. In the case f = 0, since g € WH1(0,7;Vy) and z € WH(0,T; V), we can
apply Lemma 4.2.4 to obtain that the solution ug to (4.36) belongs to W1(0,T; V), hence
ug € C°([0,T]; V).

In the final statement of the next theorem, besides (H1)-(H3) we assume f; = 0 and the
following compatibility condition: there exists an extension of g (still denoted by g) such that

ge Whl(—a,T;Vy) and — div(Aeui(t)) = g(t) fort € [—a,0]. (4.38)

The meaning of (4.38) is that w;,(t) is in equilibrium with external loads for ¢t € [—a,0]. This
condition must be required if we want to obtain uniform convergence of u. to ug also near
t=0.

We are now in position to state the main results of this chapter.

Theorem 4.2.6. Let us assume (H1)-(H3). Let uc be the solution to the viscoelastic dynamic
system (4.8) and let ug be the solution to the stationary problem (4.36). Then

L%(0,T;V)

u& uo; (4.39)
e—0t
2 .

e, L0, o (4.40)
e—0t

If, in addition, fo =0 for every e > 0, then

Ue Lrm V), up and et SUEAIN for every n € (0,T). (4.41)
e—0+ e—0+

If f- =0 for every e > 0 and the compatibility condition (4.38) holds, then we have also

L>(0,T5V) .
U ——— ug  and €l
e—0t e—0t

LEOTH), (4.42)
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In the case of solutions to problems (4.9) we have the following results, assuming that

0_Y .40 and cul 0. (4.43)

e—0t e—0t

Theorem 4.2.7. Let us assume (H1), (H2), and (4.43). Let uc be the solution to the
viscoelastic dynamic system (4.9), with e = fe and v = ge, and let ugy be the solution to the
stationary problem (4.36). Then (4.39) and (4.40) hold. Moreover, if fo =0 for every e > 0,
then (4.41) holds.

Theorems 4.2.6 and 4.2.7 will be proved in several steps. First, we prove (4.42) when
f- = 0 and the compatibility condition (4.38) holds (Theorem 4.3.1). For g € H2(0,T;Vy)
the proof is based on the estimate in Lemma 4.2.8 below, which is derived from the energy-
dissipation balance (4.24). The general case is obtained by an approximation argument based
on the same estimate.

Next, we prove that (4.39) holds for the solution to (4.9) if 7. = v =0, z. = 0, u? = 0,
and u! = 0 (Proposition 4.5.1). The proof is obtained by means of a careful estimate of the
solutions to the elliptic system (4.80) obtained from (4.12) via Laplace Transform (Section
4.4). Under the general assumptions (H1), (H2), and (4.43) the same result is deduced from
the previous one by an approximation argument based again on Lemma 4.2.8 below.

Then, (4.40) is obtained from (4.39) using a suitable test function in (4.9) (Theorem 4.5.3).
A further approximation argument gives (4.39) and (4.40) under the assumptions (H1), (H2),
and (H3) (Theorem 4.5.4).

Finally, if f; = 0, we obtain (4.41) from (4.39) and (4.40) (Lemma 4.6.1), concluding the
proof of Theorems 4.2.6 and 4.2.7.

The following lemma, derived from the energy-dissipation balance (4.24), will be fre-
quently used to approximate the solution to (4.12) by means of solutions corresponding to
more regular data.

Lemma 4.2.8. Given e > 0, . € L?(0,T; H), {- € H*(0,T;Vy), v € Vo, and v} € H, let
ve be the solution to (4.12) with he = ep.. Then there exists

52”®8”%°°(0,T;H) + HUEH%OO(O,T;V)

< Co(0H? + 1021 + lleel 2oz + Wellinorap).  (444)
a positive constant Cp = Cg(A,B,Q,T), independent of €, such that

Proof. By the energy-dissipation balance (4.24) proved in Proposition 4.1.7 and by (4.2) and
(4.5) there exists a positive constant C' = C'(A, B, 2) such that

-2 + le=(t) [ < C(20l2 + |2l + #2(t)) for every t € [0,T),  (4.45)

where the work is now defined by

%w:%m%@wwwmﬁ—éwmmwmw+4wmmmvmr (4.46)

Let K. := el|0c(t)|| oo (0,r;m) and Ee := ||ve(t)| Lo (0,7;1), Which are finite by (4.16). Thanks
to (4.45) and (4.46) for every t € [0, T] we get

e|[oe (B)II* + llv= () 5

< Ol + 1021 + (3+ 2)elwr a0z Be + el orien K-
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By passing to the supremum with respect to ¢ and using the Young Inequality we can find a
positive constant Crp = Cg(A,B,Q2,T) such that

K2+ B2 < Cp (0l + 1021 + leel3s o rany + W lnnorragy )
which concludes the proof. O

In the proof of Theorem 4.2.6 we shall use the following lemma, which ensure that it is
enough to consider the case z. =0 and z = 0.

Lemma 4.2.9. If Theorem 4.2.6 holds when z. = 0 for every e > 0, then it holds for arbitrary
{z:}e and z satisfying (H2).

Proof. It is not restrictive to assume div(Bez.(0)) = div(Bez(0)) = 0. Indeed, if this is not
the case, we can consider the solutions 20 and 2" to the stationary problems

Ze € %a FANS ‘/07
and
—div(Bez?) = div(Bez.(0)), — div(Bez?) = div(Bez(0)),

and we can replace z:(t) and z(t) by Z.(t) := z.(t) + 20 and Z(t) := 2(t) + 2°. It is clear that
div(Bez.(0)) = div(Bez(0)) = 0 and that problems (4.8) and (4.36) do not change passing
from z. and z to Z. and Z, respectively.

Let 9,1 [0,T] — V{ be the functions defined by

0 if £ € (—00,0), 0 it t € (—00,0),
Pe(t) := ¢ div(Bez(t)) ift € (0,71, P(t) :=  div(Bez(t)) ift e [0,T], (4.47)
div(Bez.(T)) ift € (T,+o0), div(Bez(T)) ift e (T,+0).

Since div(Bez:(0)) = dlv(]B%ez(O)) =0, zz2 € HY(0,T;V), and z € WH(0,T;V), we have
Ve € HL (R; V{) and ¢ € Wl '(R; V). Moreover, thanks to (H2) we have

wh (R Vi)

e —E—"5 9. (4.48)

e—0t

Since u, is the solution to (4.8), by Remark 4.1.3 it solves (4.9) with 7. = g. —p- and initial
conditions defined by (4.10), where p. is defined by (4.11). By Remark 4.1.4 the function
Ve = Ue — 2 18 the solution to (4.12) with

he(t) = fo(t) — Eze

4.49
Le(t) = ge(t) — pe(t)+ div((A 4+ B)ez.(t / b div(Bez(7))dT, (4.49)

and initial conditions v and v! defined by (4.14). We define the family of convolution kernels
{p:}c C Lt (R) by

pelt) i LeF it e [0,+00), (4.50)
= o if ¢ € (—00,0), '

and notice that, by (4.47), the integral in (4.49) coincides with (p: * ¥)(t), hence
le(t) = ge(t) — pe(t) + div(Aezo(t)) + Ve (t) — (pe x ) (t) for every t € [0,T].

By Remark 4.2.3 the function vy = up — z is the solution to (4.37) with h = f and
¢ = g+ div(Aez). By the definition of v, and vg it is clear that to prove the theorem it is
enough to show that the conclusions of Theorem 4.2.6 holds for v. and vg. To this aim, we
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introduce the solution 9. to (4.12) with he = f., e = g- — pe + div(Aez.), and v, v} defined
by (4.14). Then the function v, := v. — 0. satisfies (4.12) with h. = —e2%., f. = ). — p. * e,
and homogeneous initial conditions. By Lemma 4.2.8 we can write

2l e 07510y + 10 W 020y S C (e s o2,m) + e = pe % Yelaoiragy ) (451)
By (4.48) and by classical results on convolutions we obtain

wi(0,1;vy)
—_—
e—0t

e — pe * e 0.

Since {2.}. is bounded in L'(0,T; H) by (H2), from (4.51) we deduce

L°(0,T;V)

ve — 5. 2OV 0 and e(o. — 6.) 20T, ) (4.52)
e—0t e—0t

By Remark 4.1.3 the function 0. is the solution to (4.8) with g. replaced by g. +div(Aez.)
and z; = 0. Thanks to (H1) and (H2) we have

WH1(0,75Vy)

ge + diV(A@Zs) g+ diV(Aez).

e—07t

Since by hypothesis, Theorem 4.2.6 holds in the case of homogeneous boundary condition,
its conclusions are valid for 0. and vy. Thanks to (4.52) the same results hold for v. and vy.
This concludes the proof. ]

In a similar way we can prove the following result.

Lemma 4.2.10. If Theorem 4.2.7 holds when z. = 0 for every € > 0, then it holds for
arbitrary {z:}- and z satisfying (H2).

4.3 The uniform convergence

In this section we shall prove (4.42) of Theorem 4.2.6 under the compatibility condition (4.38).

Theorem 4.3.1. Let us assume (H1)-(H3), the compatibility condition (4.38), and f- =0
for every e > 0. Let u. be the solution to the viscoelastic dynamic system (4.8) and let uy be
the solution to the stationary problem (4.36), with f = 0. Then (4.42) holds.

To prove the theorem we need the following lemma, which gives the result when ¢ is more
regular.

Lemma 4.3.2. Under the assumptions of Theorem 4.3.1, if g € H?(0,T;V{), then (4.42)
holds.

Proof. Thanks to Lemma 4.2.9 we can suppose z = 0 and z. = 0 for every € > 0. Let p. be
defined by (4.10). Since w,. is the solution to (4.8), thanks to Remark 4.1.3 it solves (4.12)
with he = 0, e = gc — pe, V0 = Ue,in(0), and vl = Ue,in(0). We fix b > a > 0 and we extend
the function g in (4.38) to (—oo,T) in such a way g € Whl(—o0, T; V{) and g(t) = 0 for every
t € (—oo, —b]. Since z = 0 we can extend ug by solving the following problem:

uo(t) € Vo for every t € (—o0,T],
—div(Aeug(t)) = g(t) for every t € (—o0, T].

We observe that up = 0 on (—oo, —b] and ug = ug i, on [—a, 0] by the compatibility condition
(4.38).
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Assume g € H*(0,T;V{). By Lemma 4.2.4 (with 2 = 0) we have ug € H2(0,T;V), hence
by (4.36) we get

2iio(t) — div((A + B)eug(t / ~ e div(Beug(7))dr
= 2iig(t) + g(t) — div(Beug(t)) + (pe * div(Beug))(t) — po(t) for a.e. t € [0,T], (4.53)

where p, is defined by (4.50) and

it O 1 L 01 -
Pe(t) :=e B gg with f]g = / ﬁ—eﬁf div(Beug(7))dr = / §eﬁ5 div(Beug(7))dr.
—b

—o D

Let g := g- —g+div(Beug) — (pe *div(Beug)) —p: +p-. By (4.53) the function @, := u: —ug
satisfies (4.12) with he = —&2iig, le = qe, V0 = Ue,in(0) — up(0), and vl = Ue,in(0) — U0 (0).

Since g € Whl(—00,T;V{) and g = 0 on (—o0, —b], thanks to Lemma 4.2.4 we obtain
ug € Whl(—oo,T;V) and therefore div(Beug) € Wi(—oo,T;V]). Then the properties of
convolutions imply

W1 (=00, T;Vy)
e

pe x div(Beug) div(Beuo). (4.54)

e—0t

As we have already observed, by the compatibility condition (4.38) we have uy = ugn on
[—a, 0], hence

- L 1
188 — o8l < / S v (Beuen(r)) g + / e div(B(eun(r) gdr

—0o0

+ || div(B(eue,in — euoin)) | (—a,0:v7)-

Thanks to (H3) we obtain 32 — g — 0 strongly in Vj as ¢ — 0. Hence

5 WL(0,T;VY)
Pe —pe ————= 0. (4.55)
e—0t
By (H1), (4.54), and (4.55) we have
1,1 Vi
g LOT, (4.56)
e—0t
Since u((0) = uo,in(0), (H3) gives
Uein(0) = up(0) —— 0 and  &(ite.in(0) — 110(0)) —2— 0. (4.57)
e—0t e—0t

By using Lemma 4.2.8 we get

EQHaEH%OO(O,T;H) + HEEH%OO(O,T;V)

<Cg (52“@5,m(0) — g (0)[|* + [|uz,in (0) — uo(O) I + €210l 71 o 7,41y + HQEHIQ/VM(O,T;VO’))’
therefore thanks to (4.56) and (4.57) we obtain the conclusion. O

In the proof of Theorems 4.3.1, 4.5.2, and 4.5.4 we shall use the following density result.

Lemma 4.3.3. Let X, Y be two Hilbert spaces such that X — Y continuously, with X dense
in'Y. Then for every m,n € N with m <n, and p € [1,2] the space H"(0,T;X) is dense in
wmP(0,T;Y).
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Proof. Since every simple function with values in Y can be approximated by simple functions
with values in X it is easy to see that L?(0,T; X) is dense in LP(0,T;Y).

To prove the result for m = 1 we fix u € WP(0,T;Y). By the density of L?(0,T;X)
in LP(0,T;Y) we can find a sequence {3} C L?(0,T;X) such that ¢ — % strongly in
LP(0,T;Y) as k — 4o00. By the density of X in Y there exists {u)}; C X such that

ul — u(0) strongly in Y as k — +00. Now we define

ug(t) == /0 Yr(T)dT + ul.

It is easy to see that {ug}r C H'(0,T; X) and ug — u strongly in WHP(0,T;Y) as k — +oo.
Arguing by induction we can prove that for every integer m > 0 the space H™(0,T; X)

is dense in W™P(0,T;Y"). Since H"(0,T; X) is dense in H™(0,T; X ), the conclusion follows.
O

We are now in position to deduce Theorem 4.3.1 from Lemma 4.3.2 by means of an
approximation argument.

Proof of Theorem 4.3.1. Thanks to Lemma 4.2.9 we can suppose z = 0 and z. = 0 for every
e > 0. We fix § > 0. By Lemma 4.3.3 there exists a function ¢» € H2(0,T; V{) such that

1Y = gllwraorvy <6 (4.58)
By (H1) there exists a positive number £y = £¢(d) such that
1Y — gellwrarvyy <6 for every e € (0, o). (4.59)

Let p. be defined by (4.11). Since u. is the solution to (4.8) with f. = 0 and z. = 0,
thanks to Remark 4.1.3 it solves (4.12) with h. = 0, £ = g. — pe, 0 = Ue,in(0), and
vl = 1 n(0). Moreover, let @. be solution to (4.12) with he = 0, £z = 1 — pe, V0 = ue in(0),
and v} = 1., (0), and let iy be the solution to (4.37) with h = 0 and ¢ = . Thanks to
Remark 4.1.3 the function @, is the solution to (4.8) with f. =0, g. = ¢, and 2. = 0, hence

by Lemma 4.3.2 we have

L>(0,T;V) . .
U ——— Uy and U,
e—0t e—0t

L=O1H), (4.60)

We now consider the functions @y := g — ug and 4. := U — u.. Since g is the solution
to (4.37), with h = 0 and ¢ = ¢ — g, by the Lax-Milgram Lemma we get

1+ P = glwraorvy- (4.61)

Moreover, since i is the solution to (4.12), with h. = 0, £- = ¥ — g., v? = 0, and v} = 0,
thanks to Lemma 4.2.8 we get

2
C2+1
CA

2
C2+41
CA

[%ol| oo 0,751y < [ = gll Lo,y <

52”&5”%00(0,”[;1{) + HaEH%w(O,T;V) < Cglly - gsHIQ/Vlyl(o,T;VO’)' (4.62)

By using (4.58), (4.59), (4.61), and (4.62), we can find a positive constant C' = C(A, B, Q,T)
such that

EHﬁEHLOO(O,T;H) =+ Hag”Loo(O,T;v) -+ ||,L_L0HL°°(O,T;V) S C(S fOI‘ every € S (0,50). (463)
Since
|ue — ol oo 0,7:v) < el oo 0,750y + [1ite — Gol| Loo 0,751y + [|Uoll oo 0,751y
elltel Loo 0,1y < €l Loo 0,10y + €llte || oo (0,70
by (4.60) and (4.63) we have

limsup |[ue — uol| oo,y < CO and  limsup ||ete| oo 0,7,y < C6.
e—07t e—0

The conclusion follows from the arbitrariness of § > 0. O]
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4.4 Use of the Laplace Transform

In this section we shall use the Laplace Transform to prepare the proof of the convergence,
as € — 07, of the solution to the problem

ve € Vo, (4.64a)
2. . t 1 _t=r .
e“v.(t) — div((A + B)eve(t)) + / @e e div(Beve (7))dT = he(t)
0
for a.e. t € [0,T7, (4.64Db)
v(0)=0 inH and 9.(0)=0 inVy, (4.64c)
to the solution vy to the problem
vo(t) € Vo for a.e. t € [0,T], (4.65)
—div(Aevy(t)) = h(t) for a.e. t € [0,T7,

when {h.}. C L*(0,T; H), h € L*(0,T; H), and

L2(0,T;H)
4

he h, (4.66)

e—0t

This partial result will be the starting point for the proof of the convergence in L2(0,T; V)
under the general assumptions of Theorem 4.2.6.

4.4.1 The Laplace Transform for functions with values in Hilbert spaces

Given a complex Hilbert space X, let » € L} (0, +00; X) be a function such that

loc

+oo
/ e |7 (t)||x dt < 400 for every a > 0, (4.67)
0

and let C; := {s € C: R(s) > 0}. The Laplace Transform of r is the function 7 : Cy — X
defined by

+oo
7(s) := / e Str(t)dt for every s € C,. (4.68)
0

Besides 7, we shall also use the notation £(r), which is sometimes written as L:(r(t)), with
dummy variable ¢. In the particular case r € L*(0,+00; X) we have

. 1 . .
I7(s)|lx < S—HrHLoo(O,JrOO;X) for every s = s1 +isp € C,, with s1,s2 € R.
1

There is a close connection between the Laplace Transform and the Fourier Transform,
defined for every p € L!(R; X) as the function F(p) € L>°(R; X) given by

F(p)(&) = /+oo e ®p(t)dt for every £ € R. (4.69)

—0oQ
For F(p) we use also the notation F;(p(t)) with dummy variable ¢. For the main properties
of the Fourier and Laplace Transforms of functions with values in Hilbert spaces we refer to
[3].
We extend the function r satisfying (4.67) by setting r(¢) = 0 for every ¢ < 0. By (4.68)
and (4.69) we have

Li(r(t))(s) = Fy(e 5t (t))(s2) for every s = s1 +isy € Cy, with 51,59 € R.

We remark that the Laplace Transform commutes with linear transformations, as shown
in the following proposition (see, for instance [3, Proposition 1.6.2]).
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Proposition 4.4.1. Let X and Y be two complexr Hilbert spaces, let v € LZIOC(O,—FOO;X),
and let T be a continuous linear operator from X toY. Then T or € LZOC(O, +o0;Y). Ifin

addition, r satisfies (4.67), then the same property holds also for T o r, with X replaced by
Y, and L(T or)(s) = (T o7)(s) for every s € C,.

Now we consider the Inverse Laplace Transform. Let R : C; — X be a function. Suppose
that there exists r € L},.(0,+00; X) such that (4.67) holds and L(r)(s) = R(s) for every
s € C4. In this case we say that r is the Inverse Laplace Transform of R, and we use the
notation r = L71(R) or r = L;1(R(s)) with dummy variable s. It can be proven that r
is uniquely determined up to a negligible set (see [3, Theorem 1.7.3]). Moreover, r can be
obtained by the Bromwich Integral Formula:

eslt

k
lim eis?tR $1 + is9)dss, 4.70
where s; is an arbitrary positive number. Clearly (4.70) can be expressed in terms of the
Inverse Fourier Transform, namely

r(t) = L R(s))(t) = e F L (R(s1 +is2)) (1), (4.71)

where .7-"5_21(R(81 + is2)) denotes the Inverse Fourier Transform with respect to the variable
59.

To use the Laplace Transform, we extend our problems from the interval [0, T'] to [0, +00).
To do this, we extend the functions h. and h, introduced in (4.66), by setting them equal
to zero in (T, 400), and we consider the solution to (4.64) in [0, +00), which we still denote
ve. Moreover, we consider the solution to (4.65) in [0, +00), which we still denote vy. Notice
that, thanks to the choice of the extension we have

L2(0,400;H)
SRR LN

he h.

e—0t

By Proposition 4.2.8 and by using the equality h. = 0 on (T, 4+00), we get
ve € L>(0,400;Vp) and 0. € L>(0,4o00; H). (4.72)

Since h € L?(0,T; H) and h = 0 on (T, 4+00), by means of standard estimates for the solution
0 (4.65) we obtain

vg € L2(0,400; Vo) and vo=0 on (T, +o0). (4.73)
From (4.3), (4.64), and (4.72) we can deduce
. € L*(0,T;Vy) N L®(T, 400; VJ). (4.74)

To study our problem by means of the Laplace Transform we introduce the complexifica-
tion of the Hilbert spaces H, Vp, and Vj defined by

H:= L(Q;CY), Vo = HY(Q;CY), VO/ = HHQ;CY.

The symbols (-,-) and || - || denote the hermitian product and the norm in H or in other
complex L? spaces. For every s € C, the Laplace Transforms h.(s) and h(s) of h. and h in
H are well defined. Thanks to (4.72) and (4.73) the Laplace Transforms 9.(s) and 9o(s) in
Vo are well defined for every s € C,.. By (4.74) the Laplace Transform o, of @, is well defined
for every s € C,. Using (4.72) we can integrate by parts two times in the integral which
defines 9. and, since v-(0) = 0 and 9.(0) = 0, we obtain

e (s) = s20.(s) for every s € Cy. (4.75)
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By considering the operators Sy, Sp : Vo — VO’ defined by
Sa(¥) := —div(Aey) and Sp(¢) := — div(Bev),

we can rephrase (4.64) and (4.65) as equalities of elements of V{:

26 (1) = S / 2 F v (r)dr) — (Sh + Sa)(ve(1)) + he(t) for ane. t € [0, +o0), (476)

Sa(vo(t)) = h(t) for a.e. t € [0, +00). (4.77)

Now we want to consider the Laplace Transforms, in the sense of VO’, of both sides of
these equations. By Proposition 4.4.1 we can say

L(Sa(ve)) = Sa(0e),  L(SB(ve)) = SB(0e),  L(Sa(vo)) = Sa(to), (4.78)

where 0. and 9y are the Laplace Transforms of v. and v, respectively, in the sense of V4.
Moreover, since we have

o || [ e F e < el e
te€[0,400) o

this integral admits Laplace Transform in the sense of Vo, which for every s € C, satisfies

Et /e 5 (T )df)() 658“ Be(s).

Hence, by using Proposition 4.4.1 again, we obtain

Ly SB / e ue(r )dT))(s): ﬁgslﬂsB(@a(s)). (4.79)

4.4.2 Properties of the Laplace Transform of the solutions

Thanks to (4.75), (4.78), and (4.79) we can apply the Laplace Transform to both sides of
(4.76) and (4.77) to deduce the following equalities in Vj:

div(Bede(s)) = he(s) for every s € Co, (4.80)

e25%0.(s) — div((A + B)ed.(s)) + Ges T 1

— div(Aetp(s)) = h(s) for every s € C. (4.81)

Our purpose is to prove that for every s; > 0 we have

400
/ |0c (81 + is2) — vo(s1 + 7/82)||%/ dsg —— 0. (4.82)
0 e—07T

—00

To prove (4.82) we need two lemmas. In the first one we deduce from (4.80) an estimate
for v.(s), which is used in the second lemma to prove a convergence result for v.(s).

Lemma 4.4.2. For every s € Cy there exists a positive constant M(s) such that

[0(s)ly, < M(s)||he(s)|| for every e € (0,1). (4.83)
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Proof. We fix € € (0,1) and for every s € C, we define the operator S:(s): Vo — V{ in the
following way:

S.(s)(¥) = e25% — div((A + B)er)) + div(Bev) for every 1 € V.

1
Bes + 1

Since S.(s)(0(s)) = he(s) by (4.80), the Lax-Milgram Lemma, together with the Korn-
Poincaré Inequality (4.2), implies (4.83) if we can show that for every s € C, there exists a
positive constant K (s), independent of &, such that

[(S=(5) (), )| = eaK (s)]|ews||*  for every v € V, (4.84)

where

(B’ + 25 |[Y1* + Bes((A + B)ew, ) + (Aey, ed))|

[(Se(8) (), )| = |Bes + 1]

We can suppose 1 € Vj \ {0}, otherwise the inequality is trivially satisfied, and we set

(A, er)) (A + B)e, e3h)
=21 d b:=
I o

which satisfy, thanks to the Korn-Poincaré Inequality (4.2) and to (4.3)—(4.5), the following
relations

. callevl® _ e _
I [ e

2
aop, b> (cn +CB)2H6¢H > A —ZCB =: by,
1l C% (4.85)
a<cpa<b<ca,

where ¢g :=1+ & and ¢; :=1 + . Therefore, to prove (4.84) it is enough to obtain

> K(s)a forevery s € Cy. (4.86)

Be3s3 + €252 + Pbes +a
Bes+1

For simplicity of notation we set z = es and we consider two cases.
Case b > # In this situation, thanks to (4.150) we know that the polynomial 823 + 22 +
Bbz+ a has one real root zy and two complex and conjugate ones w and w. Therefore, thanks
to Lemmas 4.7.1 and 4.7.2, we can write

23+ 22 4+ Bbz+a _ Bz —z0)(z —w)(z —w 6 (w)]|S(w)|
Bz+1 Bz+1 ﬂz+1
B(z — 20) ‘6 1
=|—7" 3|1R(w)|? + §R - —
S IR 3R + 7
B(z — zo) b « z
> |— - > — 4.87
=| Bz+1 |"V2= 3 |Bz+1| (4.87)
where in the last inequality we used zy < 0.
If a < 2|z|?, then |z| > 2‘ ; and, thanks to (4.87), we deduce
B23 4+ 22+ Bbz+a > Q a . (4.88)
Bz+1 2v3 2(Bz + 1)
For a > 2|z|? we have
1 B22 + 22 + Bbz +a B Bbz +a 1
a pz+1 a(fz+1) a(fz+1)| 2




116 4.4. Use of the Laplace Transform

and, by writing z = x + iy, we obtain

Bbz+a | |Bbxr+a+ifby| | (Bbx+ a)?+ F2b%y? -
a(Bz+1)| |Bax+a+iBay| \ (Bax +a)? + B2a2y? ~
which implies
3.2
Bz° + 2°+ pbz +a Zg. (4.89)
Bz+1 2
By (4.88) and (4.89) in the case b > % we conclude
Bz3 + 22+ Bbz+a . {1 « 1 }
> min 4 =, a. 4.90
’ Bz +1 - 27 24/312(Bz + 1) (4.90)
Case bg < b < # In this case, thanks to (4.85), we have ap < a < # We define
2(2+c1)
R:= ——.
332
Then for z € C,, with |z| > R, we get
22 pbz+a 38222 b| Bz
— > - — — >2 —c—1=1 4.91
a  aBzt1)| T 2 aﬁz—Fl’ B-y1 - taa o (49

where we used the inequalities |8z| < |8z + 1] and 1 < |8z + 1].
To deal with the case z € C4, with |z] < R, we define

o min{ Bz3 + 2% + Bbz +a
7= a(Bz +1)

2 2
:%(2)20) ‘Z|§Ra bﬂgbgﬁa aoﬁaﬁw}a

and we claim v > 0. Indeed the function under examination is continuous with respect to
(z,a,b), and by Lemma 4.7.1 it does not vanish in the compact set considered in the minimum

problem. By using also (4.91) we conclude that for by < b < # we have
3 2 b
pz +;z——ii_—§ zra > min{y, 1}a. (4.92)

for every z € C and every a satisfying (4.85). Since € € (0,1) we have

1 1
les(Bes + 1)| : |s(Bs+1)|

therefore, by setting

1 « 1
K(s) := min{f, , },
() 27 2\/31s(Bs +1)| 7
from (4.90) and (4.92) we obtain (4.86), which concludes the proof. O

4.4.3 Convergence of the Laplace Transform of the solutions

We begin by proving the pointwise convergence.

Lemma 4.4.3. For every s € C4 we have

Bo(5) —2s o (s).
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Proof. Thanks to (4.66) and to the Holder Inequality for every s € C; we get

A~ ~ +Oo
i) = bl < [ e ha(e) o) ot < e = bll20.z.an) —o72 0 (493)

2R(s)

Consequently, thanks to Lemma 4.4.2, for every s € C, there exist two constants M (s) > 0
and &(s) € (0, 1) such that

[0 ()3, < M(s) for every e € (0,e(s)). (4.94)

By (4.94) we can say that for every s € C there exist a sequence £; — 0" and v*(s) € V)
such that

O, (5) —2 0% (s). (4.95)
J—+o00

Thanks to (4.4) and (4.95) for every ¢ € Vy we deduce

(A +B)ete, (s), ey)) —— (A +B)ev™(s), ev)), [efs?(0c;(s),v)| < ]s[*M(s) ||| pavynal

Jj—+oo
(B, (5), ) — (Bev” (s), )|

0 —ev*(s)),e M ede.(s), e
< [(B(ete (5) = e0*(5). )] + Tl (B (5).cv)

< |(et; () — ev”(s), Bew)| + Bels|CaM (s) e ]| = O-

Therefore by (4.93) we have

{”*(S) € W, (4.96)

—div(Aev*(s)) = h(s).

Since, by (4.81), 99 (s) is a solution to (4.96), by uniqueness we have v*(s) = 9y(s). Moreover,
since the limit does not depend on the subsequence, the whole sequence satisfies

0e(8) SN vo(s) for every s € C,. (4.97)
e—0t
To prove the strong convergence we use 7-(s) and 0p(s) as test function in (4.80) and

(4.81), respectively. By subtracting the two equalities, we obtain
(Aeve(s), evte(s)) — (Aevg(s), etp(s))

= (he(s), :(5)) = ((s), 5n(s)) — 2% 0. (s)]? =~

Bes+1

(Beve(s), ete(s)),
from which we deduce
|(Aetc(s), ete(s)) — (Aety(s), evo(s))]
< [(he(s), 0(5)) — (A(s), Do(s))| + 2|50 (s)[|* + Be|s|Crllede(s)]|*.
By using again (4.93), (4.94), and (4.97), we can deduce

lim (Aet.(s),ev:(s)) = (Aetg(s), etg(s)) for every s € Cy. (4.98)

e—0t

Thanks to the coerciveness assumption (4.5), the conclusion follows from the weak conver-
gence (4.97) together with (4.98). O
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Now we are in position to prove the following result about the convergence in the space
L? on the lines {s; +isg : 53 € R}.

Proposition 4.4.4. The functions 0. and 0o satisfy (4.82).
Proof. As before, we set

o (Aed.(s), eve(s)) and b ((A + B)eve(s), et(s))

1< (s)11? 19 ()12 ’

and we observe that (4.85) holds. For every s € C,, by using 0.(s) as test function in (4.80)
we obtain

(4.99)

Bes + 1 (ﬂa?’s?’ + £%s% + PBbes + a) 16(5)[|? = (he(s), 9<(s)). (4.100)

Therefore, thanks to (4.87), Lemma 4.7.1, and (4.92) we can deduce

Beds® + e2s? + Bbes +a 5 \/E fo”
= for b
Bes+ 1 653—1—1 « z Blzol e 2_\@\/& . >3627
3.3 2.2 b 2
= +;€Z :f e > min{vy, 1}a > min{y, 1}/apva for b < 332

where in the first line we used the inequality |zo(8es+1)| < |es — 2o for every s € C4, which
follows from the condition zg < 0.

As a consequence of these inequalities and of (4.100) there exists a positive constant
C =C(a, B,7,a0) such that

N 2 Bes+ 1
[0 = | 331752
Bedsd 4+ 252 4+ Pbes + a

(he(s), 32(D] < o) l0e(s)]  for every s € C.

Therefore, by using (4.99) and the coerciveness assumption (4.5), we can write

Venlled: ()]l < V/(Aete(s), ed-(s)) < Cllha(s)])

from which, recalling (4.2), we deduce

N C
19=(s)]lg, < (Cp+ 1)\/767A||h5(5)|| for every s € C,. (4.101)
By extending the function h. to (—o0,0) with value 0, we can write
R +oo +oo
he(s) = / e " he(t)dt = / e he(t)dt = Fy(e™* " he(t))(s2).
0 —00

Since for every s = s1 + sy € C; the function ¢ + e~'h_(t) belongs to L*(R; H), by the
properties of the Fourier Transform we deduce that sy — he(s1 + is) belongs to L2(R; H)
for every e > 0. Moreover, by using (4.66) and the Plancherel Theorem, we can write

+oo R +oo
[ Wua+wﬁ—Ma+mm%@=[_uﬂ@ﬂﬂmm—hm»@nﬁw
= —+o00 O;
=[_\wﬂ%mwhwm%usA Ihele) = ROt —— 0. (1102)

Since 0 (s) — Bo(s) strongly in Vo by Lemma 4.4.3 and h,(s) — h(s) strongly in H by (4.93),
thanks to (4.101) and (4.102) we can apply the Generalized Dominated Convergence Theorem
to get the conclusion. O
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4.5 L? convergence

In this section we shall prove (4.39) and (4.40) under the assumptions of Theorems 4.2.6 and
4.2.7. We begin by proving the following partial result.

Proposition 4.5.1. Let {h.}. C L?(0,T;H) and h € L*(0,T; H) be such that (4.66) holds.
Let v. and vy be the solutions to problems (4.64) and (4.65). Then
L2(0,T;V)
Ve ———% 1.
e—0t
Proof. By the Plancherel Theorem we deduce from (4.71) and Proposition 4.4.4 that for every
s1 > 0 there exists a positive constant C' = C(s1,T') such that

T T
Joe = volltsurwy = [ oe®) = w0l at = [ 167 @ = d0) )1}

+oo
< 0(81,T)/ 175" (0= (51 + dis2) — do(s1 + is2)) (£) [t

+o0
_ C(sl,T)/ 9231 + is2) — (51 + isa)|[3, dss —— 0,
e—0t

which concludes the proof. O

Theorem 4.5.2. Let us assume (H1), (H2), and (4.43). Let u. be the solution to the
viscoelastic dynamic system (4.9), with . = f- and v= = g-, and let ug be the solution to the
stationary problem (4.36). Then (4.39) holds.

Proof. Thanks to Lemma 4.2.10 it is enough to prove the theorem in the case z = 0 and
ze = 0 for every € > 0. We divide the proof into two steps.

Step 1. The case ul = 0. We reduce the problem to the case of homogeneous initial
conditions by considering the functions

Ve (1) := ue(t) — ul and vo(t) = uo(t) — u’ for a.e. t € [0, 7. (4.103)
Let us define

4= (t) == ge(t) + div(Aeu?) + = div(Beu?) for every t € [0,T7, (4.104)
q(t) == g(t) + div(Aeu®) for every t € [0,T]. (4.105)

Since ul = 0, it is easy to see that v. satisfies (4.12) with h. = f., £- = ¢, v? = 0, and
v} = 0, while vy satisfies (4.37) with h = f and £ = q. By (4.43) and (4.103), to prove (4.39)

it is enough to show that

2 .
ve L0V (4.106)

e—0t

In order to apply Proposition 4.5.1, we approximate the forcing terms of the problems for
v and vg by means of functions in H'(0,T’; H) and we consider the corresponding solutions o,
and 7, for which Proposition 4.5.1 yields @ — @ strongly in L?(0,7;V) as ¢ — 07. Finally
we show that [|Te — ve||12(0,7;,v) and [|To — vol|L2(0,7;v) are small uniformly with respect to ¢,
and this leads to the proof of (4.106).

Let us fix 6 > 0. Thanks to the density of H in V{ and to Lemma 4.3.2 we can find
¢ € HY(0,T; H) and kY, hY € H such that

1h3 — div(Aeu®)|lyy <6, by — div(Beu”)[|yy <6, (4.107)
1Y = gllwrr oy <9
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L) such that for every € € (0, o)

Thanks to (H1) and (4.43) there exist £9 = £9(d) € (0, 3

Ihy — div(Aeud)lvy <8, ||hg — div(Beul)|ly; <4, (4.108)
% = gellwrroryvy) <6 .
Let g, p: [0,T] — H be defined by
@ (t) == (t) + h} + eféh% and  @(t) := (t) + hY for every t € [0,T]. (4.109)
By (4.104), (4.105), (4.107), (4.108), and (4.109) for every ¢ € (0,g9) we obtain
lle — anlel(O,T;VO’) <|lv- gs”WLl(o,T;VO') + THhOA - diV(Aeug)HVO’
+ (B + 1)||hg — div(Bewd)[lys < (3+1T)9, (4.110)
lo = dallpeoorvy < (1 + v — 9lwraorv (4.111)
(4.112)

g < (24 7)6.

+ ||} — div(Aeu?)

Since t — e_ézﬂ% converges to 0 strongly in L2(0,7T; H) as € — 07, by (4.109) we have

2 .
L7(0.T:H) (4.113)

ve e—0t
Let 0. be the solution to (4.64) with h. = f. +¢. and let 9y be the solution to (4.65) with

h = f+ . By (H1) and (4.113) we have
L2(0,T;H
Je + e g [+

e—0t

(4.114)

hence Proposition 4.5.1 yields
L2(0,T;V) .
%

Q.

Ve
e—0t

To estimate the difference . —v. we observe that it solves (4.12) with h. = 0, £ = ¢ —q¢,

v? = 0, and v} = 0. Therefore, by Lemma 4.2.8 we have
|0 — UEHLQ(O,T;V) < VCET||p: — QE||W1’1(0,T;VO’)~ (4.115)
To estimate the difference 9y — vy we observe that it solves (4.37) with h =0 and £ = ¢ — q.

Therefore by the Lax-Milgram Lemma we obtain
~ VT (C3+1
90 = vollz20.1v) < %H@ — dllzeo0.1v7)- (4.116)

By (4.110), (4.112), (4.115), and (4.116) there exists a positive constant C = C'(A,B,Q, T

such that
19e = vellL2(0,1v) + 1P0 — voll 20,7y < €6,
hence
[ve = vollz2(0,3v) < Ve = PellL2(0,1v) + 19 — Dol 20,10 + B0 — voll 20,751y
< |[%e — Boll 20,1y + CO.

This inequality, together with (4.114), gives

limsup [Jve — vollp2(0,7;v) < C6.
e—0t
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By the arbitrariness of 6 > 0 we obtain (4.106), which concludes the proof of Step 1.

Step 2. The general case. Let @i be the solution to (4.12) with h. = f., €. = ge, v = u?,
and v! = 0. By Step 1
L2%(0,T;V
e LTV, . (4.117)
e—0+
The function ue — i is the solution to (4.12) with all data equal to 0 except v}, which is now

equal to ul. Therefore, Lemma 4.2.8 and (4.43) yield

l[te — @ic| oo 0,7y < v/ Cellul]| —— 0,
e—0t

which, together with (4.117), gives (4.39). O

In the following theorem, under the assumptions of Theorem 4.2.7 we deduce (4.40) from
(4.39).

Theorem 4.5.3. Let us assume (H1), (H2), and (4.43). Let u. be the solution to the
viscoelastic dynamic system (4.9), with . = fe and v = ge, and let ugy be the solution to the
stationary problem (4.36). Then (4.40) holds.

Proof. Thanks to Lemma 4.2.10 we can suppose z = 0 and z. = 0 for every ¢ > 0. It is
convenient to extend the data of our problem to the interval [0, 27 by setting

(B) =0, f():=0, gu(t) = g:(T), alt) = g(T) for every t € (T, 2],
Since (H1) holds, it is clear that {f.}. € L*(0,2T; H), {g-} € H(0,2T;V{),

L2(0,2T;H) Wb1(0,2T;V)
——5f and g ——>
e—0Tt e—0t

Je (4.118)

Moreover, the solution to (4.9) on [0, 27" with the extended data is an extension of u., which
is still denoted by u.. Similarly, the solution to (4.36) on [0, 277 is still denoted by ug. Since
(4.118) holds, Theorem 4.5.2 gives
2 .
G LON (4.119)

e—0t

We further extend u. to R by setting u.(t) = 0 for every ¢ € R\ [0, 27, and we define
/ e eus(T7)dT = (pe * eue)(t) for every t € R,

where p. is as in (4.50). By the properties of convolutions and (4.119) we get

2 .
eup — w, D, (4.120)

e—0t
Thanks to (4.119) and (4.120), by using (4.9) and (4.36) we obtain

L2(0,2T;V]
2, OO, (4.121)

e—0t

Since .
2. (t) = *ul + ¢ / tie(T)dr  for every t € [0,2T],
0

(4.43) and (4.121) imply
L2(0,2T;Vy
e2q, 02V, (4.122)

e—0t
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By (4.119) and (4.122) there exists a sequence £; — 0" such that for a.e. ¢ € [0,27] we have

Vl
ue; (1) —— ug(t) and e, (t) —°—s 0. (4.123)
j—+oo J—+oo

We choose Ty € (T,2T") such that (4.123) holds at ¢t = Tp. This implies

&5 (tie; (1), ue, (To)) = (51, (Th), ue, (Tp)) —— 0. (4.124)
J—+0o0
Since z. = 0 for a.e. t € [0,Tp] we can use u-(t) € Vp as test function in (4.9). Then we
integrate by parts in time on the interval (0,7j) to obtain

T To To
_gj/o [|e, (t)]] dt+/0 (Aeugj(t),eugj(t))dt—i—/o (B(eue, (t) — we; (1)), eue, (t))dt

To To
- /0 (fo, (), e, (1)t + /O (e, (1), e (£))dt — £2(i, (To), e, (Ty)) + 22, ).

Thanks to (4.36), (4.43), (4.118), (4.119), (4.120), and (4.124) the first term on the left-hand
side of the previous equation tends to 0 as j — 400. Since Ty > T we have

T
52./ i, ()| 2dt — 0.
0

J j—+oo

By the arbitrariness of the sequence {¢;}; we have

T
52/ ||e (£)]|2dt — 0,
0 e—0t
which concludes the proof. O

We now use Theorems 4.5.2 and 4.5.3 to obtain (4.39) and (4.40) under the assumptions
of Theorem 4.2.6.

Theorem 4.5.4. Let us assume (H1)-(H3). Let u. be the solution to the viscoelastic dynamic
system (4.8) and let ug be the solution to the stationary problem (4.36). Then (4.39) and
(4.40) hold.

Proof. Thanks to Lemma 4.2.9 we can suppose z = 0 and z. = 0 for every ¢ > 0. Let p. be
defined by (4.11). Since z. = 0, by Remark 4.1.3 the function wu. solves (4.12) with h. = f,
le = g — pe, V0 = U in(0), and v} = 1e 4, (0). To obtain (4.39) and (4.40) we cannot apply
Theorems 4.5.2 and 4.5.3 directly, because {p.}. does not converge to 0 in WH1(0,T;Vy) as
e — 0% and, in general, p. ¢ L?(0,T; H).

To overcome this difficulty we construct a family {q.}. € H'(0,T; H) such that the norm
e = pellwrao,r,v;) is uniformly small and g — 0 strongly in L?*(0,T;H) as ¢ — 0*. Then
we can apply Theorems 4.5.2 and 4.5.3 to the solutions v, to (4.12) with p. replaced by ¢,
obtaining that v. — wug strongly in L?(0,T;V) and 9. — 0 strongly in L?(0,7; H). Finally,
we show that |[ve — ue||z2¢0,7,v) and €||ve — tie || £2(0, 1) are small uniformly with respect to
e, and this leads to the proof of (4.39) and (4.40).

To construct g. we consider g° introduced in (4.11) and we define

0
_ 1 - .
3= / —ePe div(Beug,in(7))dT = (pe * div(Beug in))(0),
—oo BE
where p. is defined by (4.50). By (H3) we get div(Beug ) € C°((—o0,0];Vy), hence the
properties of convolutions imply

V/
32 —2— g% := div(Beug i (0)). (4.125)
e—07t
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Since
0_ -0 LI
lgs — gzl S/ %eﬁs||d1V(IB%(eug7m(T))HVO/dT
1 =
—i—/oo ﬁeﬁf||div(IB§(eu07m(T))HVO/dT

+ [ div(B(eue,in — euo,in)) || Lo (—a,0,)

thanks to (H3) we have g2 — g — 0 strongly in V{ as ¢ — 0T, hence (4.125) implies

Vl
@ —2— 40 (4.126)
e—0t

Let us fix § > 0. By the density of H in V{j we can find h° € H such that ||h° —gOHVOI < 0.
By (4.126) there exists g9 = €0(6) € (0, %) such that
|h° — gg||vo/ <0 for every € € (0,e9). (4.127)
Let g. € H'(0,T; H) be defined by ¢.(t) := e P R0 for every t € [0,T]. Then

2 .
g —O0, (4.128)

e—0+t
Since pe(t) = e_&gg, by (4.127) we have also
lg — pellwraorvy) < (Be + 1)||R° — QSHVO’ <26 for every ¢ € (0,e0). (4.129)

Let v. be the solution to (4.12) with he = f. — gz, le = g, v = ucin(0), and v} = 1. 3, (0).
By (H1) and (4.128) we have

L2(0,T;H Wh(0,T3Vy)
fe—qe LT, f and go ——
e—0t e—0t
By (H3) we have
\% . H
Usﬂ'n(O) —_— uO,in(O) and 6u5,m(0) — 0.
e—0t+ e—0t
Therefore we can apply Theorems 4.5.2 and 4.5.3 to obtain
L2(0,T;V . L*(0,T;H
Vg & ug and 0. (0.T:H) 0. (4.130)
e—0t e—0t

To estimate the difference v, —u. we observe that it solves (4.12) with h. = 0, {. = p. —q.,
v? =0, and v} = 0. Therefore, by Lemma 4.2.8 and (4.129) we have

52”{}5 - uEH%Q(O,T;H) + ||U5 - ua”%ﬁ(o/fﬂ/) S CE”qE - paHIZ/Vl,l(O’T;VO/) S 4CE62 (4131)
Since by (4.131)
lue = wollz2(0,1v) < llue — vellz207v) + llve — woll20,mv) < llve — wollr2(0,mv) + 2V CEY,
elltel|z20.1m) < €lltte = VellL20,1m) + EllVell 207,01y < €llVel|z20.1m) + 2V CES,

thanks to (4.130) we have

limsup [lus — uol[z2(0,7,v) < 2/ CEd  and  limsupe||ie|| 220,75 < 2V CES.

e—0t e—0t

By the arbitrariness of 6 > 0 we obtain (4.39) and (4.40), which concludes the proof. O
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4.6 The local uniform convergence

In this section we shall prove (4.41) under the assumptions of Theorems 4.2.6 and 4.2.7. The
proof is based on the following lemma.

Lemma 4.6.1. Let {¢.}. C HY(0,T;V]) and £ € WH1(0,T;Vy) be such that

Whl(n,T;v§
IR ANy, for every n € (0,T). (4.132)
e—=0t+
Let ve be a solution to the wviscoelastic dynamic system (4.12) with he = 0 and arbitrary

initial data. Moreover, let vy be the solution to the stationary problem (4.37) with h = 0. We
assume that

L2 , ;V . L2 s ;H
v ZOT o and o, 20T, o (4.133)
e—0+ e—07t
Then
v L (n,T;V) vo and ev. 4>(H’T H) 0 for everyn € (0,T). (4.134)
e—0+ e—0t

Proof. We divide the proof into two steps.

Step 1. Let us assume {. = ¢ € H?(0,T;Vy) for every ¢ > 0. By Lemma 4.2.4 (with
z = 0) we have vg € H?(0,T;V), hence recalling (4.37) we get

g (t) — div((A + B)evo(t / e div(Bewvg(7))dr

= %o (t) + £(t) — div(Bevo(t / e div(Bevg(7)) for a.e. t € [0,T]. (4.135)

Now we define . := v. — vy and observe that by (4.133) we have

_ L2(0,TV) -
Ve —=> 0 and ev;
e—0t e—0t

2 .
LOTI, (4.136)

Let us consider

qe(t) := div(Bevo(t / e div(Bevo(7))dr.
Since v, satisfies (4.12) with h. = 0, by (4.135) the function 9. satisfies (4.12) with h. = —&2ij
and /. = qg.. After two integrations by parts in time we deduce

t geetﬁ; div(Bevo(7))dr = div(Bevy(t)) — o B div(Bevo(0)) — Be div(Bevy(t))
0

t —r
+ ,3€e7ﬁ div(Bevy(0)) + 55/ e div(Beto(7))dr,
0

hence .
WL (n,T5Vy
e WOV, o o every n € (0,7). (4.137)

e—0t

Now we fix § € (0,T"), and we consider n € (0,6) and ¢ € (1,0). We define the family of
functions {w.}. C H'(0,T; H) by

/ e et (T)dT = (pe x €v:)(t) for every t € [0,T],

where p, is defined by (4.50) and v, is extended to R by setting v.(t) =0 on R\ [0,7]. B
properties of convolutions we have

2 .
et — w, 2OTH, (4.138)

e—0t
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By the energy-dissipation balance (4.24) of Proposition 4.1.7, for every t € [n,T] and
s € (n,¢) we can write

E NI + 2 (At (0), emu(®) + (Bleta(t) — u(¢), eBa(t) — ()
5 Vg 5 eve(t), et 5 ev, we (1), eve We

t 2
+ 82 [ (Bilr),bu(r)dr = S + 5 (heie(s),e0u()

+ %(B(eﬁg(s) — we(s), eve(s) — we(s)) + #e(t, s), (4.139)

where the work is defined by

t t
%(t,S)=<qs(t),77s(t)>—<qs(8),175(5)>—/ <QE(T),775(T)>dT—5/ (tio(7), eve(7))dr.

Now we take the mean value with respect to s of all terms of (4.139) on (7, (), and we pass
to the supremum with respect to ¢ on [, T]. Thanks to (4.2) and (4.5) we deduce

2 2 ¢ ¢
3 . 2 CA _ 2 g . 2 CA _ 2
5 10ellzo0 i) +72(0123+1)”U6”L°°(n,T;V) < 2]{7 [[ve(s)l d8+2]£ [0:(s)|lvds
¢

@ ¢

3

et (s) — we(s)||*ds —l—][ sup |#:(t,s)|ds. (4.140)

n n teMn,T]

Notice that for every s € (n,() we have

S[UIC)Z“] ’W&(tv S)‘ < (3 + %) HQEHWIJ(T],T;VO’)||1_}E||L°°(777T;V) + 6||1.}0HLl(77,T;H)Hgée”LOO(n,T;H)a
ten,

hence thanks to the Young Inequality and (4.140) there exists a positive constant C' =
C(A,B,Q,T) such that

) ¢ . <
e2||vg|%oo<n,T;H)+||1veu%oo<n,T;v>so(sQf loe(s)|%ds + ][ o (s) [ ds
n n

¢
+][ ||€55(S) - U_JE(S)HZdS + ||q5||12/V1,1(n,T;V6) + €2Hi}0”%1(n,T;H)) . (4141)
n

By passing to the limit in (4.141) as e — 01, thanks to (4.136), (4.137), and (4.138) we
obtain

elloe = ol oo (nsm) + Ve = vollzoo vy = €llVell oo () + 10| 2o () o 0,

which concludes the proof of (4.134) in the case £ € H%(0,T;Vy).

Step 2. In the general case £ € W1(0, T} Vj) we use an approximation argument. Given
§ > 0, by Lemma 4.3.3 there exists a function ¢ € H?(0,T; H) such that

”@Z) - £||W171(0,T;V0/) < 5 (4142)

Thanks to (4.132) for every o € (0,7 there exists a positive number g9 = ¢(9, o) such that

[t = Lellwra vy <6 for every e € (0, ¢). (4.143)

Let 0. be the solution to (4.12) in the interval [, T'] with h. = 0, ¢. = ¥, 0.(0) = v-(0), and

Ue(0) = 0-(0), and let ¥y be the solution to (4.37) in the interval [0, 7] with A = 0 and ¢ = .
By applying Step 1 in the interval [0, T] we obtain

Ve LZO V), oo and 0. LZOTH, for every n € (o,T). (4.144)

e—0t e—0t
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We set vy := 09 — vp and U, := 0. — ve. We observe that 0g is the solution to (4.37) with
h = 0 and £ replaced by 1 — £, hence by the Lax-Milgram Lemma we get

_ C%+1 C%+1
10l e 0,750y < =Bl — Ll Lo,y < “5= (1 + PIIY = Lllwrr o,z (4.145)

Moreover, v is the solution to (4.12) in the interval [0, T] with he = 0, £, replaced by ¢ — £,
and homogeneous initial conditions. Thanks to Lemma 4.2.8 we obtain

E”é5|’%w(U,T;H) + ||®5H%°°(U,T7V) S CE’W - ESHIQ/VIJ(U,T;VO/)' (4146)

By combining (4.142), (4.143), (4.145), and (4.146), we can find a positive constant C' =
C(A,B,Q,T) such that

el|ve | Lo (o,1:m) + Vel Lo (o.13v) + 100l Lo (0,77) < €6 (4.147)
Since for every n € (0,T) we have
[ve = voll oo (n,r5vy < el oo tn,rsvy + 10 — Dol| Loo (1) + [P0l Loo (n, 1)
EH,[}EHLOO(U,T;H) < EH’L;)EHLOO(?],T;H) + €||'DEHL°°(77,T;H)7

thanks to (4.144) and (4.147) we obtain

limsup [[ve — vollpeo(y,rvy) < C6 and  limsup |[edel| oo (1) < C6,
e—0t e—0

for every n € (0,T). By the arbitrariness of 6 > 0 and ¢ > 0 we conclude. O

Now we are in position to prove (4.41).

Theorem 4.6.2. Let us assume (H1), (H2), (4.43), and f- = 0 for every e > 0. Let u. be
the solution to the viscoelastic dynamic system (4.9), with o =0 and v = g, and let uy be
the solution to the stationary problem (4.36), with f = 0. Then (4.41) holds.

Proof. By Theorems 4.5.2 and 4.5.3 we obtain (4.39) and (4.40). Since g. — g strongly in
WLH0,T;Vy) as e — 0F by (H1) and f. = 0, we can apply Lemma 4.6.1 to conclude. O

Theorem 4.6.3. Let us assume (H1)-(H3) and f- = 0 for everye > 0. Let u. be the solution
to the viscoelastic dynamic system (4.8) and let ug be the solution to the stationary problem
(4.36), with f =0. Then (4.41) holds.

Proof. Thanks to Lemma 4.2.9 we can suppose z = 0 and z. = 0 for every € > 0. By Theorem
4.5.4 we obtain (4.39) and (4.40). Since u,. is a solution to (4.8) with f. = 0, by Remark 4.1.3
it solves (4.12) with he = 0 and ¢, = g. — p., where p. is defined by (4.11). Since

Wht(n,T3Vy)
ge —pe ——— g forevery n € (0,T),
e—0t
we can apply Lemma 4.6.1 to conclude. 0

Finally we can prove Theorems 4.2.6 and 4.2.7.
Proof of Theorem 4.2.6. It is enough to combine Theorems 4.3.1, 4.5.4, and 4.6.3. O

Proof of Theorem 4.2.7. It is enough to combine Theorems 4.5.2, 4.5.3, and 4.6.2. 0
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4.7 Appendix

Throughout this section we fix ag > 0, bg > 0, and ¢; > ¢g > 1. For every a,b with
coa < b < ca, b > by, a > ag, (4.148)

we consider the polynomial p(z) := 323 + 22 + bz + a depending on the complex variable z.
The following result about the roots of this polynomial is used in the proof of Lemma 4.4.2
and Proposition 4.4.4.

Lemma 4.7.1. There exists a positive constant a = «(f3, ag, by, co, c1) such that, for every
a,b € R satisfying (4.148), the roots of the polynomial p have real parts in the interval

(—%,—a).

Proof. Let us set z := z + iy with z,y € R. Then p(z) = 0 if and only if

B3 + 22 + Bbr — (3Bx + 1)y* +a =0,
y(—=By* + 3Bz + 2z + ) = 0,

from which we derive

q(x) == Ba® + 2% + pbr +a = 0, (4.149)
y =0, '
._ 3 2 1 —a=
r(z) == 882 + 822 + 2(6 + ,Bb)x tb—a=0, (1.150)
y2:3x2+%x+b.

By recalling a > 0 and b —a > (¢o — 1)a > 0, for every x > 0 we have ¢(x) > 0 and r(z) > 0,
and so the real part of the roots cannot be positive or zero. Moreover, since for every x < —%
we have fz3 + 22 < 0, we obtain

g(z) < =b+a<(l—cp)a<0 and r(x)gb—a—2(%+b):—b—a—%<0,

which imply that the real part of the roots does not belong to (—oo, —%] Therefore, by
calling z1, 29, z3 € C the three roots of the polynomial p, we can say

R(zi) € (—5,0) fori=1,2,3. (4.151)

Case 1: there is only one real root. In this case by (4.150) there exists a unique
xr € (—%,0) which satisfies 7(z1) = 0 and 32? + %1‘1 +b > 0. Indeed by setting y; :=

,/33:% + %:1:1 + b we obtain that z1 + 7y; and x1 — iy are two distinct non-real roots of p.

Since

r(—%):—%+%—é—b+b—a:—a<0,

r(— B(b—a) ) B2 (b=a)?((a+b)5°+2)
2(bB241) (bB2+1)3

>0,

b—
then 1 € (—ﬁ, —Q?b(ﬂgﬂ)

). Moreover
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hence there exists 2y € (—%, —45) such that g(zo) = 0. As a consequence of this, (zo,0)
satisfies (4.149), which implies that x is the real root of p, hence we have

1 a B(b—a)
Thanks to (4.148) we can say —g < —ﬁ and —2(517(;;2) < Q(Bc(lla_ﬁ‘;oﬁ) < 2?5115;,%02)13)’ where

in the last inequality we use the decreasing property of the function a — %. This

implies

R(z) € (—F, max{— L, Jo—9)401) fori=1,2,3. (4.152)
1
352
every © € R, which forces p to have also non-real roots. Thanks to (4.148) we have also

a<b< ﬁ By setting by := 1 — 1/1 — 3by/32, we can write

Case 2: there are only real roots. In this case we have b < otherwise ¢/(z) > 0 for

~boaoB > ~boaB > —(1— /T 3bf2)af > ~ VI 1

which implies ~
¢ (z) >0 for every z € [—bpap3, +0). (4.153)

Since
q(—boaoB) > B*bgag(1 — B*boao) + ao(1 — B2bob) > ao(1 + B*bgao) (1 — B%bob) > 0,
thanks to (4.148), (4.151), and (4.153) we get
R(zi) € (—3, —boagf), fori=1,2,3. (4.154)
By combining (4.152) and (4.154), we obtain the conclusion with

1 Bleo—1)ag

182 (crapB? + 1)}'

o := min{bgaof3,

The following easy estimate is used in the proof of Lemma 4.4.2.

Lemma 4.7.2. For every z,w € C with R(z) > 0 and R(w) < 0 the following inequality
holds:
[(z —w)(z = @) = [R(w)[[S(w)]-

Proof. Without loss of generality we can suppose &(w) > 0, otherwise we exchange the role
of w with w. If ¥(z) > 0, then

|2 —w| > [R(z —w)

|z —w| > |¥(z — w)

[z —w[ > [3(z —w)| = | = 3(=2) = J(w)| = I(~2) + I(w)
|z — | > |R(z — w)| = |R(2) + R(—w)| = R(2) + R(—w

which conclude the proof. O
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