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Notations

• Rd: Euclidean space of dimension d;

• de: Euclidean distance on Rd;

• L d: d-dimensional Lebesgue measure;

• B(X): Borel sets of a topological space X;

• M (Rd): locally finite signed measure;

• M +(Rd): locally finite non negative measure;

• P(X): non negative Borel probability measure on a topological space X;

• P2(X): non negative Borel probability measure with finite second moment on a metric
space (X, d);

• C0
c (Rd): the space of continuous functions with compact support;

• C∞c (Rd): the space of C∞ functions on Rd with compact support;

• C([0, 1],X): the set of continuous curves with values in X;

• Lip(X): the space of Lipschitz functions f : X→ R;

• Lipb(X): the space of Lipschitz and bounded functions f : X→ R;

• Lipbs(X): the space of Lipschitz and bounded functions f : X→ R;

• lipf : the slope of f ;

• lipaf : the asymptotic Lipschitz constant of f ;

• Lip(f): the Lipschitz constant of f ;

• Lp(m) = Lp(X) = Lp(X,m): the Lebesgue space of p-integrable functions for p ∈ [1,+∞)
defined on (X,m);

• L∞(m) = L∞(X) = L∞(X,m): the space of essentially-bounded functions defined on (X,m);

• Lploc([0, 1]×X), with p ∈ [1,∞]: the space of functions that are in Lp(B) for every bounded
set B ⊆ [0, 1]×X;
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• L0(m) = L0(X) = L0(X,m): the vector space of m-measurable functions, up to quotient m
a.e.;

• supp(f): support of a funtion f ∈ L0(X);

• χA: indicator function on the set A;

• M : Hardy-Littlewood maximal operator;

• Mλ: local Hardy-Littlewood maximal operator for some 0 < λ < +∞;

• ht: heat flow at time t > 0;

• (TE): short-hand notation to denote the transport equation;

• (CE): short-hand notation to denote the continuity equation;

• M2
k: model space of curvature K, i.e. 2-dimensional Riemannian manifold with constant

sectional curvature equal to K;

• Secx: sectional curvature of a smooth Riemannian manifold (M, g) at the point x;

• wN : Lebesgue measure of the ball of radius 1 in RN ;

• vK,N (r): model space with parameters K and N , i.e. Riemannian manifold with constant
Ricci curvature K and dimension N .
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Introduction

0.1 Non smooth spaces and parallel transport

The aim of my PhD thesis is to build parallel transport in the class of non collapsed RCD(K,N)
spaces. Parallel transport is a widely used concept in Riemannian geometry. It can be stated as
follows. Given a smooth Riemannian manifold and a smooth curve on it, we consider a vector
belonging to the tangent space at the initial point of the curve. Then a parallel transport is
a smooth vector field along the curve with vanishing covariant derivative at every time. The
existence of such a vector field can be obtained by writing the condition of being a parallel
transport in local coordinates and solving (locally) an ODE in Rd by taking into account the
existence and uniqueness results given by the Cauchy-Lipschitz theory.
Uniqueness of parallel transport instead is a consequence of the uniqueness of the solution of the
mentioned ODE in coordinates. Moreover, it is also a byproduct of the Leibniz formula, that we
now describe.
We consider a smooth Riemannian manifold (M, g) and we denote by TxM the tangent space at
a point x ∈M . Given a smooth curve γ : [0, 1]→M and two smooth vector fields along the curve
[0, 1] 3 t 7→ Vt,Wt ∈ TγtM , we have that [0, 1] 3 t 7→ g(Vt,Wt) ∈ R belongs to C1([0, 1]) and

d

dt
g(Vt,Wt) = g(∇γ̇tVt,Wt) + g(Vt,∇γ̇tWt) for every t ∈ [0, 1].

Uniqueness can be retrieved as follows: consider two parallel transports [0, 1] 3 t 7→ V 1
t , V

2
t ∈

TγtM of V̄ along γ. Then, thanks to the Leibniz formula, we have that the function [0, 1] 3 t 7→
|V 1
t − V 2

t |2 ∈ R belongs to C1([0, 1]) and

d

dt
|V 1
t − V 2

t |2 = 2g(∇γ̇tV 1
t −∇γ̇tV 2

t , V
1
t − V 2

t ) = 0 for every t ∈ [0, 1].

Since |V 1
0 − V 2

0 | = 0, we get that V 1
t = V 2

t for every t ∈ [0, 1].

We are interested in the study of such properties when the underlying space is not anymore
a smooth Riemannian manifold. When considering more general underlying spaces, the study of
parallel transport encounters several difficulties. We have to take into account the regularity of
functions and of vector fields (that are expected to have a lower regularity of ’one degree’ with
respect to functions) at our disposal and formulate a definition of parallel transport which is
independent of solving an ODE in local coordinates. Before outlining the content of the thesis,
let us mention two non smooth settings on which the problem is studied.

i) the Wasserstein space (P2(M),W2), that is a metric space defined in the following way.
We consider a smooth Riemannian manifold (M, g), we denote by P(M) the set of Borel
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probability measures defined over M , we denote by dg and Volg respectively the geodesic
distance the volume measure induced by the metric and we define, given x0 ∈M ,

P2(M) :=
{
µ ∈P(M) :

∫
d2
g(x, x0) dVolg(x) < +∞

for some (and thus all) x0 ∈M
}
,

and

W 2
2 (µ, ν) := inf

{∫
d2
g(x, y) dγ(x, y) : γ ∈P(M ×M),

γ(A×X) = µ(A), γ(X×A) = ν(A) for A Borel.
}
.

This setting can be considered a generalization of smooth Riemannian manifolds; indeed,
M is isometrically embedded into P2(M) via the map x 7→ δx; moreover, after the work of
Otto in [85], (P2(M),W2) can be described as a sort of infinite dimensional Riemannian
manifold and that W2 can be interpreted as the geodesic distance induced by a suitably
defined metric.
For the construction in this setting we refer to [5] for the case of P2(Rd), to [52] for the
case of P2(M), where (M, g) is a Riemannian manifold and to [82] for an alternative
construction;

ii) the case of Alexandrov spaces, i.e. metric spaces having a lower bound on the sectional
curvature, the so-called CBB(K) space (which stands for curvature bounded from below
by K) whose systematic study has been initiated by Burago, Gromov and Perelman in
[30]. The definition of such spaces takes inspiration from the following theorem due to
Topogonov. We denote by Secx the sectional curvature of M at the point x and by M2

K the
2-dimensional Riemannian manifold with sectional curvature constantly equal to K. We
denote by dK the distance on the model space M2

K .

Theorem 0.1.1 (Topogonov). Let M be a smooth, complete and connected Riemannian
manifold and K ∈ R. The following are equivalent:

a) Secx(σ) ≥ K for every x ∈M and every 2-dimensional vector subspace σ ⊆ TxM ;

b) for every x, y, z ∈ M there is a minimal geodesic [0, 1] 3 t 7→ γt ∈ M with γ0 = y and
γ1 = z such that, provided that dg(x, y) + dg(y, z) + dg(x, z) ≤ 2 π√

K
in the case K > 0,

if we consider x′, y′, z′ ∈M2
K being such that

dg(x, y) = dK(x, y), dg(y, z) = dK(y, z), dg(x, z) = dK(x, z)

(that always exists under these assumptions), there exists a minimal geodesic [0, 1] 3
t 7→ γ̃t ∈M2

K such that γ̃0 = y′ and γ̃1 = z′

dg(γt, x) ≥ dK(γ̃t, x
′) for every t ∈ [0, 1].

Notice that condition b) can be stated without relying on the existence of a smooth Rie-
mannian metric, but just the concept of the distance. Therefore, this leads to the definition
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of CBB(K) space, namely a metric space that is complete, geodesic and for which condition
b) holds (obviously substituting the notion of geodesics with the one in Def. 1.1.3). For a
survey introducing this topic, see [29, Chapter 10] and [1].
The construction of parallel transport in this setting is due to Petrunin in [87].

Before explaining the approach we followed in [32] in the case of non-collapsed RCD(K,N)
spaces, we need an historical account of the theory of metric measure spaces with Riemannian
Ricci curvature bounded from below.

As done for the case of the Alexandrov spaces, i.e. for lower bounds on the sectional curvature,
there is a long story in defining what it means for a metric space to have a lower bound on the
Ricci curvature. Since the Ricci curvature deals with distortion of volumes (see e.g. [67]), the
right framework to look at in this case is that of metric measure spaces (X, d,m).

The first steps in this direction is through the works of Cheeger and Colding ([35], [36], [37],
[38]) on Gromov-Hausdorff limits of Riemannian manifolds. The key step in this direction is
the following consideration due to Gromov in [68]: fix N ∈ N, K ∈ R, D ∈ (0,+∞) and con-
sider AK,N,D the class of Riemannian manifolds with dimension bounded from above by N , Ricci
curvature bounded from below (in this sense of symmetric bilinear forms) by K and diameter
bounded from above by D. Then AK,N,D is precompact in the Gromov-Hausdorff topology. A
Ricci limit space is a limit of elements belonging to this class for some triple K,N,D.
One of the features of this theory is that it is extrinsic, meaning that the theory relies on the
existence of a smooth approximating sequence of Riemannian manifolds to deduce properties of
the Ricci limit space. We point out that a version of Cheeger-Gromoll splitting theorem ([39])
holds in this setting ([35]) and it is a crucial tool in order to study the structure theory of Ricci
limit spaces.

What was really missing at that stage was an intrinsic treatment of Ricci curvature of metric
measure spaces, i.e. a theory that does not rely on the approximation by a smooth sequence. The
first steps in this direction were done in the smooth category in [86], [41] and [97]; in these works,
optimal transportation is used to characterize the property of a Riemannian manifolds of having
Ricci curvature bounded from below by K (in the sense of bilinear form) and dimension bounded
from above by N in terms of convexity properties of entropy functionals along W2-geodesics.
For the adimensional case of the lower bound on K, the Shannon entropy functional is studied,
defined as:

Ent(ν|m) =

∫
X
ρ log(ρ) dm

if ν � m with ν = ρm and ρ log(ρ) is integrable with respect to m and +∞ otherwise. For the case
of characterizing both the lower bound by K on the Ricci curvature and the upper bound by N
on the dimension, other entropy functionals replace the Shannon’s one, like for instance the Rényi
entropy. These convexity properties do not involve the smooth structure and the Ricci tensor
and they can be formulated even in the metric setting, definining a notion of lower bound on the
Ricci curvature, thus leading to the definition of CD(K,∞) (for the case of Shannon entropy)
and of CD(K,N) spaces (for the case of Rényi one). The key results in this direction are due
to independent works of Lott and Villani ([83]) and Sturm ([94],[95]). One of the key properties
of this class of spaces is the compatibility with the case of (weighted) Riemmanian manifolds,
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the stability of the definition with respect to Gromov-Hausdorff convergence and the validity of
geometric inequalities, such as the Brunn-Minkowski inequality and the Bishop-Gromov mono-
tonicity formula. Bacher and Sturm introduced in [17] a weaker curvature dimension condition,
called the reduced curvature dimension condition, called CD∗(K,N), having better globalization
and tensorization properties.

The class of CD(K,N) spaces contains Finsler manifolds, namely manifolds whose norm on
the tangent space does not satisfy the parallelogram rule, i.e. it does not come from a scalar
product. Indeed, it is proved in the last theorem in [96] that (RN , ‖ · ‖,L N ), where ‖ · ‖ is any
norm on RN , is a CD(0, N) space. In this direction, it was not possible to extend to an intrinsic
setting theorems in differential geometry involving the Riemannian structure. Therefore, the
idea due to Ambrosio, Gigli and Savaré in [10] is to enforce the CD(K,∞) condition with the
linearity of the heat flow, thus ruling out Finsler structures. They introduced the so called class
of RCD(K,∞) spaces, showing in particular stability of the condition under Gromov-Hausdorff
convergence. In [54], Gigli proposed the definition of RCD(K,N) space enforcing the CD(K,N)
condition with infinitesimal Hilbertianity (similarly, we can define RCD∗(K,N) spaces), giving
a finite dimensional counterpart to the theory, strongly motivated by the proof the splitting
theorem in the setting of RCD(0, N) spaces by the same author in [53]. The splitting theorem,
that was already a key tool in the structure theory of Ricci limit spaces, motivates the definition
providing a tool in order to study the regularity of such class of spaces (see for instance [57]). It
has been proved in [33] that the definition of RCD(K,N) and RCD∗(K,N) spaces are equivalent
in the case in which the reference measure is finite. The bound from below on the curvature and
from above on the dimension in the smooth category can be also characterized by means of the
so called dimensional Bochner inequality. Consider a smooth Riemannian manifold (M, g) and
f ∈ C∞(M); then we have

∆

(
|∇f |2g

2

)
≥ g(∇f,∇∆f) +

(∆f)2

n
+ Ric(∇f,∇f).

A careful study of the heat flow that can be seen either as the gradient flow of the Dirichlet
energy in L2 or as the gradient flow of the Shannon entropy functional in the space (P2(X),W2)
(see [76]) provides a bridge between two ways of seeing the heat flow, as vertical displacement
in the first case and as horizontal one in the second one (see [51], [56], [9]). This leads in [11]
to the proof of the equivalence of the formulation of RCD(K,∞) space with convexity properties
of entropy functionals (connected to horizontal displacement) and with a distributional adimen-
sional Bochner inequality (connected to vertical displacement). The same equivalence with a
distributional dimensional Bochner inequality in the case of RCD(K,N) has been established in
[49] (and indipendently in [14]).

In the works of Cheeger and Colding on Ricci limit spaces ([36], [37], [38]), the class of non col-
lapsed Ricci limit spaces is presented. An intrinsic generalization of this class has been proposed
by De Philippis and Gigli in [45] (after [77]), namely the class of non collapsed RCD(K,N) spaces.

Having at our disposal second order calculus tools and in particular a notion of covariant
derivative, we can build parallel transport by borrowing and generalizing arguments coming from
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the smooth category. For what concerns our approach, it is important to identify three objects:
the object we want to transport, along what we perform the construction and the notion of
solution to the problem. We will present in the next section in details the case we studied in [32].

0.2 Major contributions

In this section, we describe the main contributions obtained in the works [32] and [31].

Parallel transport in non-collapsed RCD(K,N) spaces. We explain the strategy used in [32]
to build a theory of existence and uniqueness of parallel transport in the class of non-collapsed
RCD(K,N) spaces. By inspecting the regularity of the underlying space, we can quantify the reg-
ularity of objects at our disposal (functions, vector fields, tensors). In [55], Gigli developed a first
order differentiable structure of metric measure spaces, without further regularity assumptions.
Indeed, starting from the Sobolev space W 1,2(X), it is possible to discuss what a L2-integrable
1-form is and by duality what an L2-integrable vector field is. To speak about gradients of
Sobolev functions as single valued objects, a further regularity assumption on the underlying
space is needed, that is the so-called infinitesimally Hilbertianity. Roughly speaking, this prop-
erty amounts to require that the norm on cotangent objects (L2-integrable 1-forms) is induced
by a scalar product, thus asking a sort of Riemannian-like behaviour of (X, d,m). To discuss
about second order objects, namely Hessian of functions and differentiation of vector fields, it is
needed to ask that the underlying space satisfies a further regularity assumption, namely being an
RCD(K,∞) space, that gives extra regularity properties of the heat flow. In this class, it has been
shown in [55] that there is a well defined notion of covariant derivative: this should be intended
in an appropriate Sobolev sense, i.e. it is possible to define the concept of a vector field with
covariant derivative in L2. ’Covariant derivative’ and ’parallel transport’ are two extremely close
concepts, and thus it is natural to expect that the latter also exists in the same generality, pro-
vided one pays due attention to the way to formulate the concepts in relation with distributional
notions of covariant differentiation. An attempt in this direction has been made in [61]: there
the problem of parallel transport is formulated not along a single given curve - as it is customary
in the smooth setting - but rather along a test plan. A test plan is a probability measure on the
metric space of continuous curves with values in X, concentrated on ‘regular curves’ (the class
AC that will be presented later) and ‘well distributed’, in the sense that at every time the curves
do not superpose too much (see Definition 1.2.1). One of the successes of these objects is that
they can be used in duality with functions to define Sobolev functions over a metric measure
space, i.e. the class W 1,2(X, d,m) (see [9]).
The well-posedness of covariant differentiation on RCD(K,∞) spaces seems not sufficient to de-
rive well-posedness of parallel transport and the main result in [61] can be roughly summarized
as follows:

i) it makes sense to define what the ‘covariant differentiation along a Lipschitz test plan π’
of ‘smooth’ vector fields is; the condition to be Lipschitz can be interpreted by saying that
the speed of curves is essentially bounded in time and with respect to π;

ii) to such differentiation operator, one can associate the ‘W’ and ‘H’ Sobolev spaces W 1,2(π)
and H 1,2(π), defined respectively in duality or as closure of ‘smooth’ vector fields. In this
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generality, it is not known if the two spaces coincide (mainly due to the lack of a regularizing
operator), but still it is proved that

H 1,2(π) ⊆ W 1,2(π);

iii) in the Sobolev space H 1,2(π) uniqueness of parallel transport can be proved (but not
existence).

On top of these results, we shall see in Section 3.3 (taken from appendix A in [32]) that in W 1,2(π),
by a general argument based on approximation by viscosity, existence of parallel transport can
be established (but not uniqueness). It is therefore natural to look for some sort of intermediate
space between H 1,2(π) and W 1,2(π) where both existence and uniqueness of parallel transport
can be obtained.

We didn’t do that in the generality of RCD(K,∞) spaces nor for Lipschitz test plans. Instead,
we impose additional regularity on both the space and the test plan involved to get a better theory.
We shall in fact work with only certain types of test plans on the class of non-collapsed RCD(K,N)
spaces, obtaining

existence and uniqueness of parallel transport

in this setting. The actual statement of our main result requires a bit of terminology, so we
postpone it to the main discussion. In Section 5.5 we shall compare the construction of [32] to
those in [61] and prove that, in a very natural sense, the relevant space involved sits between
H 1,2(π) and W 1,2(π).

Let us give more details about our setting. Rather than investigating ’generic collections
of smooth curves’, as test plans can be thought of, we focus on flows of Sobolev vector fields,
which are in some sense the most regular vector fields at disposal in such a non smooth setting.
Specifically, in the setting of RCD(K,∞) spaces the concept of Regular Lagrangian Flow ([15], see
also [2], [47] for the Euclidean setting) provides a reasonable counterpart to the classical Cauchy–
Lipschitz theory and it gives meaning to the flow (F st ) (with initial time t and final time s) of a
family (bt) of Sobolev vector fields with uniformly bounded divergence (see Theorem 2.2.8 for the
precise statement). A non-trivial regularity result - established in [27] (see also [25]) - concerning
such flows in the finite-dimensional case is that they are uniformly Lusin–Lipschitz, i.e. there is a
Borel partition (Ei) of the space up to a m-negligible set such that the restriction of F t0 to Ei is
uniformly Lipschitz in t. Moreover, in the class of non-collapsed RCD spaces, sharper regularity
estimates with respect to time are available at a.e. point x, that in particular allow to say that
the norm of the differential of F st at the point x deviates from 1 with a term of order |s− t| (see
Proposition 4.1.1 for the precise statement). This key regularity property, obtained in the recent
[25], is needed if one wants to differentiate in time the differential of the flow and recover the
covariant derivative of the underlying vector field bt. In this direction, Chapter 2 aims at being
an informal introduction to the theory of wellposedness and regularity of such flows both in the
Euclidean and in the metric setting.

Consider for a moment a Riemannian manifold (M, g) and assume that (bt) is smooth. By
direct computation, if [0, 1]×M 3 (t, x) 7→ vt(x) ∈ TxM is smooth in t, x and defining the vector
field Vt := dF t0(vt) we can compute the covariant derivative along the curve t 7→ F t0(x) by

∇Ḟ t0(x)Vt(F
t
0(x)) = (dF t0(v̇t) +∇Vtbt)(F t0(x)).
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In the smooth setting a vector field t 7→ Vt ∈ TF t0(x)M is a parallel transport along t 7→ F t0(x) if

and only if for vt = dF 0
t (Vt) ∈ TxM we have

v̇t = −dF 0
t (∇dF t0(vt)bt), for every t. (1)

In other words, the quantity dF 0
t (∇dF t0(vt)bt) takes into account the time derivative of the distor-

tion given by the differential of the flow. The advantage of working with the vectors vt is that
they all belong to the same tangent space, so that it is clear what the derivative v̇t is and this
advantage is particularly felt in our nonsmooth setting, where it is less understood how to define
the covariant derivative of a vector field of the form t 7→ Vt ∈ TF t0(x)M .

Therefore, in the nonsmooth setting, we can measure the regularity of a vector fields along
a family of integral curves of a regular Lagrangian flows in terms of regularity at initial point
by means of the differential of the flow. We define Sobolev curves of vector fields with values in
the ’tangent’ at initial point and we call it W 1,2([0, 1], L0(TX)) (for (vt) belonging to this space,
it makes sense to define (v̇t)). Then, we define Sobolev vector fields along integral curves as
the image via the differential of the flow of the latter space. By analogy with the Riemannian
case, we can define the convective derivative of a vector field t 7→ Zt = dF t0(zt) with (zt) ∈
W 1,2([0, 1], L0(TX)) as

DtZt := dF t0(żt) +∇Ztbt.

Consistently with (1), a parallel transport is a vector field t 7→ Zt = dF t0(zt) with (zt) ∈
W 1,2([0, 1], L0(TX)) for which

DtZt = 0.

Using the strategy of solving an equivalent version of (1), we obtain the existence of a parallel
transport (see Theorem 5.4.4).

Then, it is natural to study the problems of uniqueness of parallel transport and of the
preservation of scalar products of vector fields along the transport. As we explained before, this
is connected to the validity of a Leibniz formula, which can be stated in our setting as follows
(see Theorem 5.3.4). Let t 7→ Vt = dF t0(vt), Zt = dF t0(zt) with (vt), (zt) ∈ W 1,2([0, 1], L0(TX)).
Then for m-a.e. x, the map t 7→ 〈Vt, Zt〉 ◦ F t0(x) belongs to W 1,2([0, 1]) and we have

d

dt

(
〈Vt, Zt〉 ◦ F t0(x)

)
= 〈DtVt, Zt〉 ◦ F t0(x) + 〈Vt, DtZt〉 ◦ F t0(x), L 1-a.e. t.

When trying to prove the Leibniz formula, very soon we encounter the need to compute, given
Vt = dF t0(vt), the derivative in time of df(Vt) ◦ F t0 = d(f ◦ F t0)(vt) for f sufficiently regular.
Therefore, a key step of our work is, given a sufficient regular f , showing t 7→ d(f ◦ F t0) is
differentiable at a.e. time and

d

dt
d(f ◦ F t0) = d(df(bt) ◦ F t0). (2)

To actually make this plan work, in particular to prove (2), a few non-trivial technical obsta-
cles have to be dealt with, in particular in relation with the need of interchanging differentiation
in time and differentiation of functions/vector fields. Usually, this sort of issues are managed
through closure properties of the differentiation operator considered in conjunction with Hille’s
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theorem about exchanging (Bochner) integration and a closed operator. We stick to the philos-
ophy of this general plan, although we need to revisit and adapt some crucial steps. Indeed, we
have to work in two directions:

A) definition of differential and the closure of such operator. We shall indeed need to work
with functions of the kind f ◦ F st for f ∈ W 1,2(X) and (F st ) Regular Lagrangian Flow as
discussed above. It is well known that one should not expect Sobolev regularity for this
kind of functions, but at least a notion of differentiation can naturally be given using the
Lusin–Lipschitz property of F st , that in turn ensures that also f ◦ F st is Lusin–Lipschitz.
The problem with the concept of differential defined by locality for Lusin–Lipschitz maps is
that it is by no means a closed operator. What we need to do to get closure is to properly
restrict the domain of the operator. The idea we use is inspired by the original work of
Haj lasz [70] about Sobolev maps in metric measure spaces and the estimates by Crippa–De
Lellis [43], revisited by Bruè–Semola [27]: for given φ ∈ L0(X) non-negative and R > 0,
we can quantify Lusin–Lipschitz regularity by considering the space Hφ,R(X) ⊂ L0(X) of
functions f ∈ L2(m) such that for some non-negative G ∈ L2(X) we have

|f(y)− f(x)| ≤ d(x, y)(G(x) +G(y))eφ(x)+φ(y)

for every x, y outside some negligible subset of X and whose mutual distance does not exceed
R. We shall denote by Aφ,R(f) ⊂ L2(X) the set of G’s as above and endow Hφ,R(X) with
the natural norm

‖f‖Hφ,R(X) : =
√
‖f‖2

L2(m)
+ inf
G∈Aφ,R(f)

‖G‖2
L2(m)

for every f ∈ Hφ,R(X)

(see Definition 4.3.1). It is clear that functions in Hφ,R(X) are Lusin–Lipschitz. More-
over, crucially, the differential restricted to bounded subsets of Hφ,R(X) is a closed operator
on L2 (see Proposition 4.3.5). Here the role of the estimates in [25] is to ensure that for
f ∈ W 1,2(X) the functions f ◦ F t0 are uniformly bounded in Hφ,R(X) for some properly
chosen φ, see Lemma 5.3.1;

B) formulation of Hille’s theorem and the underlying concept of integration. Due to the low
integrability properties of the differential of the flow, it is not natural to work with vector
fields in Lp for p ≥ 1, but rather it is better to deal with L0 vector fields. In turn, since
L0(TX) is not a Banach space (in fact, it is not even locally convex) we need to define what
the integral of a map t 7→ vt ∈ L0(TX) is, or more generally of a map t 7→ vt ∈ H with
H some L0-Hilbert module: we do this in Section 4.4 and the approach that we choose
might be described as a sort of ‘pointwise Pettis integral’. More in detail, we first declare
t 7→ ft ∈ L0(X) to be integrable provided so is the map t 7→ ft(x) ∈ R for m-a.e. x, and then
we say that t 7→ vt ∈ H is integrable provided so is the function t 7→ |vt| ∈ L0(X). In this
case, its integral can be defined noticing that for any z ∈H the function t 7→ 〈z, vt〉 ∈ L0(X)
is integrable and its integral depends L0-linearly and continuously on z, so that Riesz’s
theorem for L0-Hilbert modules gives the desired notion.
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To this concept of integration we need to attach a form of Hille’s theorem. Its standard proof
for closed operators L : E → F , with E,F Banach spaces, uses integration in the product
space and concludes using the fact that Bochner integral commutes with projections. In
turn, this latter property follows from the more general fact that Bochner integration com-
mutes with linear and continuous operators, a fact that trivially follows from the definition
of Bochner integral. This exact line of thought does not work in our setting, partly because
we cannot work with ‘pointwise integration’ as we are not assuming the closed operator
L to be L0-linear. Still, the general approach does, our idea being to first prove that our
notion of integration can be realized as limit of Riemann sums in analogy with a classical
statement by Hahn, so that its commutation with projections into factors can trivially be
established. To the best of our knowledge, previous results in this direction required the
additional assumptions on the operator L to be continuous, L0-linear, and with uniformly
bounded pointwise norm (see [50]).

It is worth to point out that our assumptions cover the case of geodesics in the following sense.
Let (µt) be a W2-geodesic so that µ0, µ1 have bounded supports and bounded densities. Also, let
ε ∈ (0, 1

2) and consider the restricted geodesic νt := µ(1−t)ε+t(1−ε). Then, there are vector fields
(bt) satisfying our regularity assumptions (see Proposition 4.1.1 for the precise set of these) such
that the associated flow (F st ) satisfy (F st )∗νt = νs for every t, s ∈ [0, 1]. Moreover, for ν0-a.e.
x ∈ X the curve t 7→ F t0(x) is a geodesic and the map F 1

0 is the only optimal map from ν0 to ν1.
The fact that these (bt) exist is a consequence of the abstract Lewy–Stampacchia inequality [58]
and the estimates in [55] (just let bt := ∇ηt with ηt obtained from Kantorovich potentials via the
double obstacle problem, see [58, Theorem 3.13]). In particular, considering the (only, by [15])
lifting π of (νt), we have that π = (F ·t )∗νt for every t ∈ [0, 1], where F ·t : X → C([0, 1],X) is the
map given by x 7→

(
s 7→ F st (x)

)
. Therefore our results can be read as existence and uniqueness

of parallel transport along π-a.e. geodesic. It is unclear to us whether the initial restriction from
(µt) to (νt) is truly necessary, but let us point out that it is well known in geometric analysis
and metric geometry that this sort of restriction of geodesics are much more regular than ‘full’
geodesics (see e.g. [40] and the already mentioned construction of parallel transport in item ii)
from [87]).

Let us notice that the class of non-collapsed RCD spaces contains that of finite dimensional
Alexandrov spaces with curvature bounded from below equipped with the appropriate Hausdorff
measure (by the results in [80], [88], [98]), thus our construction provides a notion of parallel
transport alternative to that in [87]. We obtain existence and uniqueness - in place of ‘only’
existence (plus a related second order differentiation formula that we do not explore) - at the
price of describing parallel transport not along a single geodesic, but rather along a.e. geodesic,
in a sense. It is certainly natural to try to compare the two notions, and while we expect them
to agree, we do not investigate in this direction.

Local convergence in measure of differentials of flows associated to Sobolev vector
fields. Let us conclude this introduction describing the content of the work in preparation [31].
The problem that we are going to present was motivated by the construction of a wellposed theory
of parallel transport in ncRCD(K,N) spaces. Our original approach was to proceed by density.
The reason is that, previously, we were able to prove the existence theorem of parallel transport
and the Leibniz formula in the case of flows associated to piecewise-in-time autonomous vector
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fields; then, the idea was to retrieve the mentioned results in the nonautonomous case for flows
associated to vector fields that are the closure in a suitable sense of piecewise-in-time autonomous
ones. Since existence theorem and the Leibniz formula rely on estimates on the differential of the
flow, it is natural to study the problem of stability of differential of flows of converging vector
fields; hence, we treat the problem in the Euclidean setting for Sobolev exponent p > 1 in [31].
However, we realized in [32] that a wellposed theory could be directly proved in the case of time
dependent vector fields, without relying on the aforementioned strategy.
Let us explain the problem. We consider a sequence of vector fields, equibounded in L∞t,x with

equibounded divergence in L1
tL
∞
x and assume that they converge to a limit one in L1

tW
1,p
x . We

further assume equibounds of the distributional derivatives of the sequence of vector fields in
L∞t L

p
x. We prove that the approximate gradients (a.e. defined for Lusin-Lipschitz maps) of the

associated flows converges locally in measure to the approximate gradient of the limit one (see
Theorem 6.0.1). The strategy used is based on the study of the linearized equation

∂t∇F t0(x) = Dbt(F
t
0(x))∇F t0(x), (3)

that is satisfied by reading (2) in the Euclidean case and Theorem 6.0.1 can be proved by taking
the limit in the distributional formulation of the linearized ODE. An important remark is due:
from hyphothesis of order one on the converging sequence of vector fields, namely the assumptions
that the limit vector field belongs to L1

tW
1,p
x , and convergence in L1

t,x (plus equibounds on the
vector fields and their divergence) the stability at order zero of flows, namely local convergence
in measure, can be proved (see [43, Theorem 2.9]). However, for the local convergence in measure
of the differentials of the flows, we don’t need any condition at second order neither on the
converging sequence nor on the limit vector field, thanks to the special form of (3). The validity
of an analogous statement of Theorem 6.0.1 in the RCD setting is yet to be understood.

0.3 Organization of the thesis

The thesis is organized as follows. Chapter 1 has the general goal of presenting the calculus
tools on metric measure spaces with the language of nonsmooth differential geometry developed
by Gigli. Section 1.1 contains general preliminaries of measure theory and analysis on metric
spaces. Then we present several calculus tools available at different hierarchies of regularity of
the underlying space. Therefore Section 1.2 develops first order calculus on metric measure spaces;
Section 1.3 contains definitions and some relevant properties for the scope of this manuscript of PI
spaces and RCD spaces; Section 1.4 presents test functions on RCD(K,∞) and the development
of second order calculus in this setting. Chapter 2 has the goal of summarizing in an informal way
the theory of flows associated to Sobolev vector fields, thus leading the reader to the key estimates
we use in [32]. In particular, Section 2.1 is a recap on the classical theory of flows of Lipschitz
vector fields, and the theory of flows of Sobolev vector fields according to the axiomatization
of Ambrosio (after DiPerna-Lions) and their regularity; Section 2.2 presents such a theory in
the context of RCD(K,∞) spaces and the regularity of flows associated to Sobolev vector fields
in the setting of RCD(K,N) spaces, plus the key refined estimates in the case of non-collapsed
RCD(K,N) spaces. Chapter 3.1 has the goal of presenting the functional spaces of [61] to speak
about vector fields along a test plan and existence and uniqueness of parallel transport respectively
in the class W and H is discussed. Chapters 4 and 5 both rely on the results of [32]. Chapter
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4 contains all the functional analytic tools needed to build our theory of wellposedness in the
non–collapsed setting. Chapter 5 contains the theory of existence and uniqueness (thanks to the
proof of a Leibniz formula) of parallel transport in the case of non–collapsed RCD(K,N) spaces.
In particular, Section 5.5 acts as a comparison with the novel theory with the functional spaces
of Chapter 3.1, showing that in a suitable sense our class of solutions fits in between the H and
W space. Chapter 6 relies on the results of the forthcoming work [31] and we present a stability
result in the Euclidean setting, under suitable convergence of the vector fields, for the gradients
of associated flows.
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Preliminaries
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Chapter 1

Calculus on metric measure spaces

1.1 General preliminaries

A metric measure space, mms in short, is a triple (X, d,m), such that (X, d) is a complete and
separable metric space, m is a nonnegative Borel measure (where Borel sets are the one induced
by the topology of d) that is finite on bounded sets. In particular, we denote by B(X) the set of
Borel subsets of X and by P(X) the set of nonnegative Borel probability measure on X.
Given two metric spaces (X, dX) and (Y, dY), a Borel map f : X → Y and µ ∈ P(X), we define
f∗µ ∈P(Y) as

f∗µ(E) := µ(f−1(E))

for every Borel set E and we call it the pushforward measure of µ via the map f .
Consider a metric measure space (X, d,mX) and a Borel map ϕ : X → Y. We say that ϕ is mX-
essentially invertible if there exists a Borel map ψ : Y → X such that ψ ◦ ϕ = IdX mX-a.e. and
ϕ ◦ ψ = IdY ϕ∗mX-a.e.. In this case, we call ψ a ϕ∗mX-essential inverse, which turns out to be
unique up to ϕ∗mX-negligible sets.
Given two metric spaces (X, dX) and (Y, dY), we denote by X×Y the cartesian product of X and
Y and when is not furtherly specified we give it the structure of a metric space with the following
distance

dX×Y((x, y), (x′, y′))2 := dX(x, x′)2 + dY(y, y′)2

for every x, x′ ∈ X and y, y′ ∈ Y. We define the projection maps π1 : X×Y → X as π1(x, y) = x
and π2 : X × Y → Y as π2(x, y) = y for every x ∈ X and y ∈ Y. They are both linear and
continuous, with the base space endowed with the topology induced by the distance dX×Y.

Given a complete metric space (X, d), we consider C([0, 1],X) the set of continuous curves
with values in X. It is a complete metric space when endowed with the sup norm. If (X, d) is
separable, then C([0, 1],X) is separable. We refer to an element γ : [0, 1] → X of this space as γ
or (γt). We define, for every t ∈ [0, 1], the continuous map

et : C([0, 1],X)→ X as et(γ) := γt

and we call it the evaluation map at time t.
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Definition 1.1.1 (Absolutely continuous curves). Given γ ∈ C([0, 1],X), we say that γ ∈
AC([0, 1],X) if there exists g ∈ L1(0, 1) such that for every s < t

d(γt, γs) ≤
∫ t

s
gr dr.

We will say without ambiguity that γ ∈ AC or γ is an AC curve. An important property of
AC curves is the following proposition.

Theorem 1.1.2 ([7, Theorem 1.1.2]). Consider γ : [0, 1]→ X. Then the limit

|γ̇t| := lim
s→t

d(γs, γt)

|t− s|

exists for L 1-a.e. t ∈ (0, 1). Moreover, the function (t 7→ |γ̇t|) ∈ L1(0, 1), it is admissible as g in
the definition of AC curves. It is minimal in the sense that given an admissible g |γ̇·| ≤ g in the
L 1-a.e. sense.

A particular class of AC curves is that of (constant speed) geodesics.

Definition 1.1.3 (d-geodesic). We say that γ : [0, 1] → X is a (constant speed minimizing) d-
geodesic if, for every t, s ∈ [0, 1], d(γt, γs) = |t− s|d(γ1, γ0).

We define some relevant weaker definitions of modulus of the gradient in the case of a Lipschitz
function f : X→ R. We denote by Lip(X) the space of real valued Lipschitz continuous functions
on (X, d) (usally there is no ambiguity about the distance), with Lipb(X) and Lipbs(X) respectively
the space of Lipschitz and bounded functions and Lipschitz functions with bounded support.
Given a Lipschitz function f : X→ R, we denote by Lip(f) its Lipschitz constant. Given f : X→
R Lipschitz, we define the slope of f as lipf : X→ [0,+∞) defined as

lipf(x) := lim
y→x

|f(y)− f(x)|
d(x, y)

We define the asymptotic Lipschitz constant as

lipaf(x) := lim
r→0

Lip(f |Br(x)
).

In the last two definitions lipf(x) = lipaf(x) := 0 if x is an isolated point.
We denote Lp(m) for p ∈ [1,+∞) the space of (m-a.e. equivalence class of ) p-integrable functions
and with L∞(m) the space of m-essentially bounded functions. We introduce here the vector
space

L0(m) := {Borel measurable functions f : X→ R finite m− a.e.} / ∼

where ∼ denotes the equivalence relation given by m-a.e. equality. L0(m) can be endowed by the
notion of local convergence in measure that can be metrized by the following distance. Consider
m′ ∈P(X) such that m′ � m� m′ and define dL0 : L0(m)× L0(m)→ [0,+∞) as

dL0(f, g) :=

∫
|f − g| ∧ 1 dm′
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We don’t keep track in the notation dL0 of the measure m′. It can be checked that dL0 satisfies
the axioms of a distance and that, endowed with this distance, L0(m) is a complete and separable
metric space. By explicit construction, it can be shown that such an m′ exists; for instance
consider m′ :=

∑∞
n=0 2−nm(Bn+1(o) \Bn(o))−1χBn+1(o)\Bn(o)m with the convention of neglecting

the term in the sum when m(Bn+1(o) \ Bn(o)) = 0 for some n; the choice of m′ satisfying the
previous condition is clearly not unique. We mention the following classical proposition.

Proposition 1.1.4. Consider f ∈ L0(m) and (fn) ⊆ L0(m). The following are equivalent:

i) dL0(fn, f)→ 0 as n→ +∞;

ii) given any subsequence (nm)m, there exists a further subsequence (nmk)k such that for m-a.e.
x ∈ X limk fnmk(x) = f(x);

iii) for every ε > 0 and E ⊆ X with m(E) <∞, m(E ∩ {|fn − f | > ε})→ 0 as n→ +∞;

iv) for every ε > 0, m′({|fn − f | > ε})→ 0 as n→ +∞.

The last proposition implies the following property: different choice of m′ may change the
distance dL0 , but not the topology it induces. Moreover, the metric space (L0(m), dL0) is complete
and separable. An important property that will be used in the following is that:

the inclusion Lp(m) ↪→ L0(m) is continuous for every p ∈ [1,∞]. (1.1)

1.2 First order calculus on metric measure spaces

We consider in this section (X, d,m) to be a metric measure space. The literature on definitions
of Sobolev functions on metric measure spaces is very broad, but it can summarized in at least
three schools:

1) the original definition due to Cheeger, based on a relaxation procedure in [34]; the definition
is reformulated in [9] in terms of slope of Lipschitz functions;

2) the definition due to Shanmugalingam (see [91]), based on p-modulus of curves (after being
introduced in [79]);

3) the definition due to Ambrosio, Gigli and Savaré based on the notion of minimal weak upper
gradient (see [9]).

Another distinct approach is the one due to Hailasz in [70], which provides a different notion with
respect to the others. In this thesis, we will use in Section 4.3 a weaker notion of this space, that
we call weighted Hailasz Sobolev space, which is inspired by the definition in [70]. We focus here
on 3). All the approaches aims at identifying a function that is the counterpart of the ’modulus
of distributional derivative’. All the notions of Sobolev spaces coincide and also all the functions
playing the role of ’modulus of distributional derivative’ (we refer to [91],[9] for the equivalence
between 1) and 2) and to [8] for the equivalence of the previous ones with 3)). We explain now
the approach in item 3), which is based on providing a nonsmooth counterpart to the fact that,
given f : Rd → R, |∇f | ≤ G everywhere if and only if for every smooth curve γ : [0, 1] → Rd we
have |f(γ1)− f(γ0)| ≤

∫ 1
0 G(γr)|γ̇r|dr.

We define the kinetic energy of a curve KE: C([0, 1],X)→ [0,+∞] as KE(γ) =
∫ 1

0 |γ̇t|
2 dt if γ is

5



an AC curve and +∞ otherwise. For what concerns this approach, we refer to [9, Section 5]. We
need the following definition.

Definition 1.2.1 (Test plan). We say that π ∈P(C([0, 1],X)) is a test plan if the following two
conditions hold:

i) there exists a constant C > 0 such that et∗π ≤ Cm for every t ∈ [0, 1]

ii)
∫

KE(γ) dπ(γ) < +∞.

Definition 1.2.2. We define the vector space S2(X, d,m) (S2(X) in short, if there is no ambigu-
ity) as the set of f ∈ L0(X) for which there exists G ∈ L2(m) such that∫

|f ◦ e1 − f ◦ e0|dπ ≤
∫ 1

0

∫
G(γt)|γ̇t| dπ(γ) dt

for any test plan π. In this case, we will say that G is a 2-weak upper gradient for f .

The set
Af := {G : G is a weak upper gradient for f}

is trivially convex and closed in the L2(m) topology, therefore it admits an element of minimal
L2(m)-norm, that we denote by |Df | and call the minimal weak upper gradient of f . It turns out
to be also minimal m-a.e. We define

W 1,2(X, d,m) := L2(m) ∩ S2(X, d,m).

We will write W 1,2(X) when there is no ambiguity on the distance d and m. It is obvious that
W 1,2(X) is a vector space and it is a Banach space when endowed with the norm

‖f‖2W 1,2(X) := ‖f‖2L2(m) + ‖|Df |‖2L2(m).

The Sobolev spaces inherites some calculus rules, which are mainly inequalities since the minimal
weak upper gradient estimates the modulus of the distributional derivative.
The following hold:

i) Locality: consider f, g ∈ S2(X). Then |Df | = |Dg| holds m-a.e. on {f = g};

ii) Chain rule: consider f ∈ S2(X) and a Borel set N ⊆ R with L 1(N) = 0. Then |Df | = 0
m-a.e. on f−1(N); if ϕ : R→ R is a Lipschitz function, then ϕ ◦ f ∈ S2(X) and |D(ϕ ◦ f)| =
|ϕ′| ◦ f |Df |, where |ϕ′| ◦ f is arbitrarily defined on f−1({t ∈ R : @ϕ′(t)});

iii) Leibniz rule: consider f, g ∈ S2(X) ∩ L∞(m). Then fg ∈ S2(X) ∩ L∞(m) and |D(fg)| ≤
|f | |Dg|+ |g| |Df | holds m-a.e.;

iv) Subadditivity: let f, g ∈ S2(X), then f + g ∈ S2(X) and |D(f + g)| ≤ |Df | + |Dg| holds
m-a.e.

Definition 1.2.3 (The space S2
loc(X, d,m)). We define S2

loc(X, d,m) as the set of functions f ∈
L0(X) such that for any bounded Borel set B ⊆ X there exists a function fB ∈ S2(X, d,m) such
that fB = f in the m-a.e. sense on B. For any f ∈ S2

loc(X, d,m), we define |Df | as

|Df | := |DfB| in the m-a.e. sense on B, for any fB as before.
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|Df | is well defined by the locality property of the minimal weak upper gradient. We define
W 1,2

loc (X, d,m) := L2
loc(m) ∩ S2

loc(X, d,m).
Motivated by this theory, it is possible to define the differential d as a linear operator d: S2(X)→
A and to find a right ambient space A in order to speak about covectors, endowed with a structure
that encodes all the properties we know about Sobolev functions on X, such as |Df |. For this
reason, the language of L2(m)-normed L∞(m)-modules came into play, developed in connection
with W 1,2(X) in [55].

Definition 1.2.4 (Lp(m)-normed L∞(m)-modules, [55, Definitions 1.2.1, 1.2.10]). Consider p ∈
[1,+∞]. A Lp(m)-normed L∞(m)-modules is a quadruplet (M , ‖ · ‖M , ·, | · |), where (M , ‖ · ‖M )
is a Banach space. The multiplication by L∞(m) functions L∞(m)×M →M (f, v)→ f · v is a
bilinear map, satisfying (fg) · v = f · (g · v) and 1 · v = v for every f, g ∈ L∞(m) and v ∈M (we
denote by 1 the function in L∞(m) identically equal to 1). The pointwise norm | · | : M → Lp(m)
satisfies |v| ≥ 0 m-a.e. for every v ∈M , |f · v| = |f | |v| m-a.e. for every f ∈ L∞(m) and v ∈M .
Moreover, ‖v‖pM =

∫
|v|p dm for every v ∈M .

We will say that v ∈M is 0 on the m-measurable set E if |v| = 0 m-a.e. on E. As mentioned
before, the connection with W 1,2(X) is expressed in the following proposition.

Theorem 1.2.5 ([55, Section 2.2.1]). Let (X, d,m) be a metric measure space. Then there exists a
unique couple (L2(T ∗X),d) where L2(T ∗X) is an L2(m)-normed L∞(m)-module and d: S2(X)→
L2(T ∗X) is a linear map such that the following holds:

i) |df | = |Df | holds m-a.e. for every f ∈ S2(X);

ii)
{∑n

i=1 χAidfi : Ai ∈ B(X), fi ∈ S2(X)
}

is dense in L2(T ∗X).

Uniqueness is intended up to unique isomorphism, i.e. given another couple (M, d̃) satisfying i)
and ii) there exists a module isomorphism Φ: L2(T ∗X)→M which preserves the pointwise norm
such that Φ ◦ d = d̃.

Let us comment the items in Theorem 1.2.5: item i) states the consistency of d with the notion
of minimal weak upper gradient and item ii) the fact that L2(T ∗X) is the ’smallest’ L2(m)-module
containing the differential of elements in S2(X). We call L2(T ∗X) the cotangent module associated
to (X, d,m) and d the differential.
Usually, we refer to property ii) by saying that L2(T ∗X) is generated by differentials of elements
in S2(X).
Important consequences of the definition of differential are two following three properties:

i) Locality: let f, g ∈ S2(X). Then df = dg on the set {f = g};

ii) Chain rule: consider f ∈ S2(X). Given a Borel set N ⊆ R such that L 1(N) = 0, df = 0 on
f−1(N); given I ⊆ R such that (f∗m)(R\ I) = 0 and ϕ : I → R is a Lipschitz function, then
ϕ ◦ f ∈ S2(X) and d(ϕ ◦ f) = ϕ′ ◦ f df . The expression ϕ′ ◦ f df is a well-defined element
of L2(T ∗X);

iii) Leibniz rule: given f, g ∈ L∞(m) ∩ S2(X, d,m) we have fg ∈ L∞(m) ∩ S2(X, d,m) and
d(fg) = gdf + fdg.
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To speak about L2-integrable vector fields, it is costumary to define the notion of dual module.

Definition 1.2.6 (Dual of an L2-module). Let M be an L2(m)-normed L∞(m)-module. Then
we define M ∗ as

M ∗ := {L : M → L1(m) such that L is linear and continuous.}

and we endow it with the following operations:

• (L+ L′)(v) := L(v) + L′(v) for every L,L′ ∈M ∗ and v ∈M ;

• (f · L)(v) := L(f · v) for every L ∈M ∗, v ∈M and f ∈ L∞(m);

• |L| := esssup
|v|≤1m−a.e.

L(v) for every L ∈M ∗;

• ‖L‖M ∗ := ‖|L|‖L2(m) for every L ∈M ∗.

Endowed with operations, M ∗ has the structure of a L2(m)-normed L∞(m)-module.

Definition 1.2.7. We define L2(TX) := (L2(T ∗X))∗ and we call it the tangent module.

It may happen that in some situation we don’t care about the integrability of a vector field
or we don’t have it at our disposal; for this reason, the following language turns out to be very
useful.

Definition 1.2.8 (L0(m)-normed L0(m)-modules). An L0(m)-normed L0(m)-module is a quadru-
plet (M , τ, ·, | · |), where (M , τ) is a topological vector space. M is a module over the commutative
ring L0(m), namely the operator · : L0(m)×M →M is bilinear, called the multiplication by L0(m)
functions satisfying (fg) · v = f · (g · v) and 1 · v = v for every f, g ∈ L0(m) and v ∈ M (we
denote by 1 the function in L0(m) identically equal to 1). The operator | · | : M → L0(m), called
pointwise norm, satisfies |v| ≥ 0 m-a.e. for every v ∈ M with equality if and only if v = 0 and
|v + w| ≤ |v|+ |w| m-a.e. for every v, w ∈M .
For some Borel probability measure m′ ∈P(X) such that m′ � m� m′ it holds that the distance
dM defined for v, w ∈M as

dM (v, w) :=

∫
|v − w| ∧ 1 dm′

is complete and induces the topology τ .

We need to fix some notations, that will be repeatedly used in this manuscript.

Definition 1.2.9 (Support). Given an L0(m)-normed L0(m)-module M , we define for v ∈ M
the support of v (and we denote it as supp(v)) as supp(v) := supp(|v|).

Similarly as for the case of L0(m) with Proposition 1.1.4, we have the following result in the
case of L0(m)-normed L0(m)-modules.

Proposition 1.2.10. Let (M , τ, ·, | · |) be an L0(m)-normed L0(m)-module. Consider v ∈M and
(vn) ⊆M . The following are equivalent:

i) dM (vn, v)→ 0 as n→ +∞;
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ii) for every ε > 0 and E ⊆ X with m(E) <∞, m(E ∩ {|vn − v| > ε})→ 0 as n→ +∞;

iii) for every ε > 0, m′({|vn − v| > ε})→ 0 as n→ +∞.

It is important to point out that, as a consequence of the last proposition, in particular of the
equivalence (i)-(iii) the choice of m′ affects only the value of dM , but not its completness nor the
fact that τ is the induced topology.
We want to recall now the notion of ’measurable sections of the tangent bundle’ or ’measurable
vector fields’.
In order to do so, it is important to understand two constructions in order to pass from an L2(m)-
normed L∞(m)-module to an L0(m)-normed L0(m)-module and viceversa.
The construction is similar to the case of functions. The Lebesgue spaces and the space L0(m)
are related in the following way. When considering L2(m), the space L0(m) can be seen as the
completion of L2(m) with respect to the distance dL0(m). On the other side, L2(m) is defined as
{f ∈ L0(m) : f ∈ L2(m)}.

The first link is given by the following proposition (see [55, Section 1.3]).

Proposition 1.2.11 (Restriction of an L0(m)-module). Let (M 0, τ, ·, | · |) be an L0(m)-normed
L0(m)-module. Then

M := {v ∈M 0 : |v| ∈ Lp(m)}

has the strcture of a Lp(m)-normed L∞(m)-module with ·, | · | inherited from M 0 and ‖ · ‖M :=
‖| · |‖Lp(m).

The following result is proved in [55, Section 1.3] and actually was the construction that
motivated the axiomation in Definition 1.2.8.

Proposition 1.2.12 (Completion of an L0(m)-normed module). Consider (M , ‖ · ‖M , ·, | · |) an
L2(m)-normed L∞(m)-module. Consider m′ ∈P(X) with m′ � m� m′ and define dM as above.
Then consider the completion M 0 of (M , ‖ · ‖M ) with respect to dL0 and τ the induced topology
of dM . Then (M 0, τ) has the structure of an L0(m)-normed L0(m)-module with the operator ·, | · |
extended from M to M 0.

Let us make a comment about the last statement in the proposition. The operator · : L∞(m)×
M → M can be extended to an operator · : L0(m) ×M 0 → M in the following way: given
f ∈ L0(m), v ∈ M 0, (fn)n ⊆ L2(m), (vn)n ⊆ M such that fn → f in L0(m) and vn → v in
(M 0, dM ), we have that fn ·vn is Caucy in with respect to dM with limit that we call f ·v ∈M 0.
It can be checked that · satisfies all the properties in Definition 1.2.8. We can argue similarly for
| · |.

Definition 1.2.13. We define L0(T ∗X) := L2(T ∗X)0 and L0(TX) := L2(TX)0 and we call them
respectively the measurable cotangent module and the measurable tangent module.
Morever, we define for p ∈ [1,+∞]

Lp(T ∗X) :=
{
v ∈ L0(T ∗X) : |v| ∈ Lp(m)

}
and Lp(TX) :=

{
v ∈ L0(TX) : |v| ∈ Lp(m)

}
.

Another construction on L0(m)-normed modules is localization.
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Definition 1.2.14 (Localization of a L0(m)-normed module). Let M 0 be a L0(m)-normed module
and consider E ⊆ X. Then

M 0
|E :=

{
χEv : v ∈M 0

}
⊆M 0.

It turns out that M 0|E is stable under all the module operations of M 0 and it is complete, thus

has the structure of a L0(m)-normed module.

Definition 1.2.15 (Dual of an L0(m)-normed module). Let M 0 be an L0(m)-normed L0(m)-
module. Then we define (M 0)∗ as

(M 0)∗ := {L : M 0 → L0(m) such that L is L0(m)-linear and continuous.}

and we endow it with the following operations:

• (L+ L′)(v) := L(v) + L′(v) for every L,L′ ∈ (M 0)∗ and v ∈M 0;

• (f · L)(v) := L(f · v) for every L ∈ (M 0)∗, v ∈M 0 and f ∈ L0(m);

• |L| := esssup
|v|≤1m−a.e.

L(v) for every L ∈ (M 0)∗.

Endowed with operations, (M 0)∗ has the structure of a L0(m)-normed L0(m)-module.

Remark 1.2.16. Fix an L2(m)-normed L∞(m)-module M . It can be checked that there is an iso-
morphism of modules which preserves the pointwise norm between the dual of its L0(m)-completion
(M 0)∗ and the completion of its dual (M ∗)0.

Still concerning the theory of normed modules, it is important to mention the class of Hilbert
modules.

Definition 1.2.17. Let (H , ‖ · ‖H , ·, | · |) be an L2(m)-normed L∞(m)-module. We say that H
is an Hilbert module if for every v, w ∈H

|v + w|2 + |v − w|2 = 2|v|2 + 2|w|2 m-a.e. (1.2)

The same definition holds for the case of L0(m)-normed L0(m)-modules.

The definition above is equivalent to say, in the case of L2(m)-modules, that (H , ‖ · ‖H ) is
an Hilbert space. This condition states that | · | is ’pointwisely induced by a scalar product’. In
particular, given an L2(m)-normed Hilbert module H , defining 〈·, ·〉 : H ×H → L1(m) as

〈v, w〉 :=
|v + w|2 − |v|2 − |w|2

2
for every v, w ∈H (1.3)

we have that it is L∞(m)-bilinear. When H is an L0(m)-normed Hilbert module, we have that
〈·, ·〉 : H ×H → L0(m) defined as in (1.3) is L0(m)-bilinear.
Both in the case of L2(m)-normed Hilbert modules and of L0(m)-normed Hilbert modules we
have that

〈v, v〉 = |v|2, |〈v, w〉| ≤ |v||w|, for every v, w ∈H . (1.4)
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Remark 1.2.18. It follows that an L2(m)-normed L∞(m)-module H is Hilbert if and only if its
L0-completion H 0 is. Moreover, it can be readily checked that the scalar product in (1.3) can
be extendend to a L0(m)-bilinear map on the L0-completion H 0, satisfying also (1.4). �

Another important property for both L2(m)-normed and L0(m)-normed Hilbert module is the
Riesz representation theorem.

Proposition 1.2.19 (Riesz theorem for L2(m)-normed Hilbert modules, [55, Theorem 1.2.24]).
Let H be a L2(m)-normed L∞(m)-module H . Then the map H 3 v 7→ Lv ∈H ∗, defined as

Lv(w) := 〈v, w〉 for every w ∈H

is an isomorphism of modules and is called Riesz isomorphism for L2(m)-normed modules.

Proposition 1.2.20 (Riesz theorem for L0(m)-normed Hilbert modules). Let H 0 be a L0(m)-
normed L0(m)-module H . Then the map H 0 3 v 7→ Lv ∈ (H 0)∗, defined as

Lv(w) := 〈v, w〉 for every w ∈H 0

is an isomorphism of modules and is called Riesz isomorphism for L0(m)-normed modules.

Proof. It is straightforward to check that v 7→ Lv is a L0(m)-linear isometry. It is enough to prove
surjectivity (the proof is taken from [18]). We consider L ∈ (H 0)∗ and we solve the problem of
finding v ∈H 0 such that

1

2
|v|2 − L(v) = essinfw∈H 0

1

2
|w|2 − L(w). (1.5)

We can choose a sequence (vn)n ⊆ H 0 such that 1
2 |vn|

2 − L(vn) ≥ 1
2 |vn+1|2 − L(vn+1) and such

that 1
2 |vn|

2 − L(vn)→ essinfw∈H 0
1
2 |w|

2 − L(w) m-a.e.. It can be checked that

1

4
|vn − vm|2 ≤

1

2
|vn|2 − L(vn) +

1

2
|vm|2 − L(vm)− 2essinfw∈H 0

1

2
|w|2 − L(w).

So (vn)n is Cauchy in H 0 and admits a limit v; by continuity of H 0 3 v 7→ 1
2 |v|

2−L(v) ∈ L0(m),
v solves (1.5). The strict subadditivity of | · |2 grants that the solution is unique. Consider v the
solution of (1.5): we have that, for every w ∈H 0 t ∈ R,

1

2
|v + tw|2 − L(v + tw) ≥ 1

2
|v|2 − L(v)

holds m-a.e.., which yields
1

2
t2|w|2 + t〈v, w〉 − tL(w) ≥ 0.

Dividing by t and taking the limit t ↘ 0 and t ↗ 0, we get that L(w) = 〈v, w〉 for every
w ∈H 0.

We recall the definition of the pullback of an L0(m)-normed module. The original construction
comes from [55] for the case of Lp(m)-normed L∞(m)-modules.
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Theorem 1.2.21 ([61, Theorem 2.7]). Let (X, dX,mX) and (Y, dY,mY) be two metric measure
spaces. Let ϕ : X → Y be a Borel map such that ϕ∗mX � mY. Let M 0 be an L0(mY)-normed
module. Then there exists a unique couple (N 0, T ) (up to unique module isomorphism preserving
the pointwise norm) such that N 0 is a L0(mX)-normed module and T : M 0 → N 0 is a linear
map such that

i) |T (v)| = |v| ◦ ϕ holds in the mX-a.e. sense, for every v ∈M 0;

ii) the set of elements of the form
∑n

i=1 χAiT (vi), with (Ai)i partition of X and v1, . . . , vn ∈M 0

is dense in N 0.

In this case, we denote the couple (N 0, T ) = (ϕ∗M 0, ϕ∗) and we call ϕ∗M 0 the pullback module
of M 0 via the map ϕ and ϕ∗ the pullback map.

We now turn to recall the definition of some differential operators that are needed in this
manuscript.

Definition 1.2.22 (Divergence, [55, Definition 2.3.11]). Consider p ∈ [1,+∞]. The space
D(divp) ⊆ L1(TX) is the set of all vector fields X ∈ L1(TX) for which there exists f ∈ Lp(m)
such that for every g ∈ Lipbs(X) ∫

fg dm = −
∫

dg(X) dm.

In this case, we call f (uniquely determined by the density of Lipbs(X) in Lp(m)) the divergence
of X and denote it by div(X).

As a consequence of Leibniz rule for differentials, we get that, given X ∈ Lp(TX) ∩D(divp)
and f ∈ L∞(m) ∩ S2(X) with |df | ∈ L∞(m) we have

fX ∈ D(divp) and div(fX) = df(X) + fdivX.

We say that, given f ∈ S2(X), an element L ∈ L2(TX) belongs to Grad(f) if

df(L) = |L|2 = |df |2 holds m-a.e.

In particular, when Grad(f) consists of only one element, we call it ∇f .
We say (X, d,m) is infinitesimally strictly convex if for every f ∈ S2(X) Grad(f) consists of

only one element.
An important definition which encodes the fact that the pointwise norm on elements of the

cotangent and tangent modules come from a scalar product is that of infinitesimally Hilbertian
metric measure spaces and the content of the next proposition.

Proposition 1.2.23 ([55, Proposition 4.22]). The following are equivalent:

i) W 1,2(X) is an Hilbert space;

ii) (X, d,m) is infinitesimally strictly convex and df(∇g) = dg(∇f), m-a.e.;

iii) L2(TX) and L2(T ∗X) are Hilbert modules;
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iv) (X, d,m) is infinitesimally strictly convex and ∇ : S2(X)→ L2(TX) is linear;

v) (X, d,m) is infinitesimally strictly convex and ∇ : S2(X) → L2(TX) satisfies the Leibniz
rule, i.e. ∇(fg) = g∇f + f∇g for f, g ∈ S2(X) ∩ L∞(m).

We say that (X, d,m) is infinitesimally Hilbertian if one (and thus all) of i)-v) hold.

From now on, we work in the following setting:

we assume that (X, d,m) is infinitesimally Hilbertian

We stress out that, in the case of infinitesimally Hilbertian metric measure spaces, (L2(TX),∇)
can be characterized as the only couple satisfying:

i) ∇ : S2(X)→ L2(TX) is linear and |∇f | = |Df | holds m-a.e.;

ii)
{∑n

i=1 χAi∇fi : Ai ∈ B(X), fi ∈ S2(X)
}

is dense in L2(TX).

As before, uniqueness is meant up to module isomorphism preserving the pointwise norm.

Remark 1.2.24. Notice that item i) and ii) are indeed the same properties satisfied by the
couple (L2(T ∗X),d)). This is not surprising compared with Theorem 1.2.5, because there is an
isomorphism of modules which preserves the pointwise norm between L2(T ∗X) and L2(TX).

�

We now define the Laplacian operator with range in L2(m) and in L2
loc(m) (in particular, for

the case of a general metric measure space and of the measure valued Laplacian, possibly not
single valued, we refer the reader to [54, Definition 4.4]).

Definition 1.2.25 (Laplacian in L2). Let (X, d,m) be an infinitesimally Hilbertian metric mea-
sure space. Given f ∈ W 1,2(X), we say that f ∈ D(∆) provided there exists g ∈ L2(m) such
that ∫

ghdm = −
∫
〈∇f,∇h〉dm (1.6)

for every h ∈W 1,2(X). The function g (uniquely determined by the density of W 1,2(X) in L2(m))
will be denoted by ∆f .

The infinitesimal Hilbertianity assumption, thanks to item iv) in Proposition 1.2.23 yields
indeed that ∆: D(∆) ⊆ L2(m)→ L2(m) is linear.
We introduce a weaker notion of Laplacian as an element in L2

loc(m).

Definition 1.2.26 (Laplacian in L2
loc). Let (X, d,m) be an infinitesimally Hilbertian metric mea-

sure space. Given f ∈ W 1,2
loc (X), we say that f ∈ Dloc(∆) provided there exists g ∈ L2

loc(m) such
that ∫

ghdm = −
∫
〈∇f,∇h〉dm (1.7)

for every h ∈ Lipbs(X). The function g, uniquely determined, is called the Laplacian of f and
denoted by ∆f .
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Notice that, given f ∈ D(∆), we have that f ∈ Dloc(∆) and ∆f coincides in the two def-
initions. In order to define the RCD(K,N) in a distributional way, it is important to produce
some ’regular’ functions. To this aim, the main tool in this setting that act as a regularization
operator on functions is the heat flow, formalized as gradient flow on Hilbert spaces, according
to the theory in [23],[78] (see also the monograph [24]). We need some preliminary definitions.
Consider an Hilbert space H and denote by 〈·, ·〉 and | · | respectively its scalar product and the
induced norm. Given a function E : H → [0,+∞], we denote by

Dom(E) := {x ∈ H : E(x) < +∞}.

In particular, if E is convex and lower semicontinuous, we define the subdifferential of E at the
point x ∈ H and we denote it by ∂−E(x) as the set

∂−E(x) := {v ∈ H : E(x) + 〈v, y − x〉 ≤ E(y) for every y ∈ H}.

Moreover, we define the slope of E as the functional |∂−E| : H → [0,+∞] given by

|∂−E(x)| :=

{
supy 6=x

(E(x)−E(y))+

|x−y| if x ∈ Dom(E)

+∞ otherwise.

Notice that |∂−E|(x) = 0 if and only if x is a minimum point of E. It can be proved that

|∂−E|(x) = min
v∈∂−E(x)

|v|. (1.8)

Theorem 1.2.27 (Gradient flow on Hilbert spaces). Let H be an Hilbert space and E : H →
[0,+∞] a convex and lower semicontinuous functional. Consider x ∈ Dom(E). Then there exists
a continuous curve [0,+∞) 3 t 7→ xt ∈ H such that x0 = x, is locally AC in (0,+∞) and satisfies
xt ∈ −∂−E(xt) for a.e. t ∈ [0,+∞). Such a curve is called the gradient flow of E starting from
x. Moreover:

i) given two gradient flows (xt) and (yt) starting respectively from x and y, we have

|xt − yt| ≤ |x− y| for every t ≥ 0.

Such a property is usually called contraction property and yields uniqueness of the gradient
flow from a fixed initial point;

ii) the maps t 7→ xt and t 7→ E(xt) are locally Lipschitz in (0,+∞);

iii) the maps t 7→ E(xt), |∂−E(xt)| are non increasing for t ∈ [0,+∞);

iv) given y ∈ H, we have that E(xt) + 〈x′t, xt − y〉 ≤ E(y) holds for a.e. t ∈ (0,+∞);

v) we have that − d
dtE(xt) = |ẋt|2 = |∂−E|2(xt) for a.e. t ∈ [0,+∞);

vi) Given y ∈ H and t ∈ [0,+∞), the following estimates hold:

E(xt) ≤ E(y) +
|x0 − y|2

2t
, |∂−E|2(xt) ≤ |∂−E|2(y) +

|x0 − y|2

t2
. (1.9)
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vii) fiven t > 0, limh↘0
xt+h−xt

h =: v, where v is the element of minimal norm in ∂−E(xt),
where for t = 0 holds if ∂−E(x0) 6= ∅.

We define the Cheeger energy functional Ch: L2(m)→ [0,+∞] as

Ch(f) :=

{
1
2

∫
|Df |2 dm if f ∈W 1,2(X),

+∞ otherwise.
(1.10)

Definition 1.2.28 (Heat flow). We define the heat flow (ht)t≥0 as the gradient flow in L2(m) of
the Dirichlet energy Ch.

Proposition 1.2.29. Let (X, d,m) be an infinitesimally Hilbertian metric measure space. Con-
sider Ch: L2(m) → [0,+∞] be defined as in (1.10). Then f ∈ W 1,2(X) belongs to D(∆) if and
only if ∂−Ch(f) 6= 0 and in this case ∂−Ch(f) = {−∆f}.

Thanks to the last proposition, Theorem 1.2.27 can be specified to the case of the Cheeger
energy in the setting of infinitesimally Hilbertian metric measure spaces, by saying that for every
f ∈ L2(m) there exists a curve [0,+∞) 3 t 7→ ft ∈ L2(m) such that

i) f0 = f ;

i) t 7→ ft belongs to C([0,+∞), L2(m)) and AC(K,L2(m)) for every compact interval K ⊆
(0,+∞);

ii) for a.e. t, ft ∈ D(∆) and ∂tf = ∆f , where the limit in ∂t is meant in the norm of L2(m).

In particular, item vi) in Theorem 1.2.27 can be read in the case of the heat flow for f, g ∈
W 1,2(X) as

‖|Dhtf |‖2L2(m) ≤ ‖|Dg|‖
2
L2(m) +

‖f − g‖2L2(m)

2t
,

‖∆htf‖2L2(m) ≤ ‖∆g‖
2
L2(m) +

‖f − g‖2L2(m)

t2
.

(1.11)

Some relevant properties of the heat flow are the following ones.

Proposition 1.2.30 ([60, Proposition 5.2.14]). Let f ∈ L2(m) be fixed. Then the following
properties hold:

i) weak maximum principle: assume that f ≤ c m-a.e. for c ∈ R. Then htf ≤ c m-a.e. for
every t > 0;

ii) consider p ∈ [1,+∞]. Then ‖htf‖Lp(m) ≤ ‖f‖Lp(m) for every t > 0.

The definition of RCD(K,N) space in Section 1.3 in terms of Bochner inequality is formulated
in a ’distributional’ way. We want to do some comment on how to obtain the function with the
needed regularity in the definition. We will have the following two classes:

A1 := {f ∈ D(∆), ∆f ∈W 1,2(X)},
A2 := {g ∈ D(∆) ∩ L∞(m)+, ∆g ∈ L∞(m)}.

(1.12)
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Notice that by the properties of the heat flow, {htf : f ∈ L2(m) for some t ≥ 0} ⊆ A1, giving
the information that A1 is not empty and contains ’a lot’ of elements. For A2, we need to
introduce the following object, the time regularized heat flow hϕ (see e.g. [55, Section 3.2]),
defined as follows: consider a non-negative ϕ ∈ C∞c (0,+∞) and f ∈ L2(m) ∩ L∞(m); we define
hϕf ∈ L2(m) ∩ L∞(m) as

hϕf :=

∫ +∞

0
hsf ϕ(s) ds. (1.13)

In particular, hϕf ∈ D(∆) and there exists C(ϕ) > 0 such that ‖∆hϕf‖L2(m) ≤ C(ϕ)‖f‖L2(m).
Moreover, using the fact that ∆: D(∆) ⊆ L2(m)→ L2(m) is a closed operator and Hille’s theorem,
we have that for f ∈ L2(m) ∩ L∞(m)

∆hϕf =

∫ ∞
0

∆hsf ϕ(s) ds =

∫ ∞
0

∂shsf ϕ(s) ds = −
∫ ∞

0
hsf ϕ

′(s) ds (1.14)

thus having that ∆hϕf ∈ L∞(m) and ‖∆hϕf‖L∞(m) ≤
∫∞

0 |ϕ
′(s)|ds‖f‖L∞(m). Moreover, as a

consequence of the definition of hϕ, both items in Proposition 1.2.30 and the linearity of the heat
flow, it follows that hϕf ≥ 0 whenevert f ≥ 0 and hϕf ∈ L∞(m).
Hence, collecting the previous results, we have that

{hϕf : f ∈ L2(m) ∩ L∞(m), f ≥ 0} ⊆ A2

showing as before that A2 is not empty and producing ’a lot’ of elements belonging to it.

1.3 Relevant properties of PI spaces and RCD spaces

Let (X, d,m) be a metric measure space. A very general theory that needs to be mentioned is
that of PI spaces, firstly introduced by Heinonen and Koskela in [72]. In order to formulate it,
we need the following definitions. We say that (X, d,m) is locally uniformly doubling if, for every
R > 0, there exists CR > 0 such that for every x ∈ X and r ≤ R we have

m(B2r(x)) ≤ CRm(Br(x)) (1.15)

We refer to CR as the doubling constant up to scale R.
An important consequence of the definition of the doubling assumption is that (X, d) is proper,
i.e. closed and bounded sets are compact.
It is a well known fact (see e.g. [73, Section 3.4]) that, if (X, d,m) is locally uniformly doubling,
Lebesgue differentiation theorem holds. As a direct consequence, given a Borel set E, almost
every point in E is a density point. Given f : X → R ∪ {±∞} Borel and x ∈ X we define the
approximate limsup of f at x as

ap - lim
y→x

f(y) := inf
{
λ ∈ R ∪ {±∞} : x is a density point of {f ≤ λ}

}
and analogously we define the approximate liminf ap - limy→x f(y). Then the approximate Lips-
chitz constant at x of a Borel function F : X→ Y with (Y, dY) metric space is defined as

ap -lipF (x) := ap - lim
y→x

dY(F (y), F (x))

d(y, x)
. (1.16)
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Finally, we recall that a Borel map F : X → Y is said Lusin–Lipschitz provided there exists a
sequence (Ei) of Borel sets in X such that m

(
X \

⋃
iEi
)

= 0 and F |Ei is Lipschitz for all i ∈ N.

We recall the definition of Hardy Littlewood maximal operator. Given f ∈ L1
loc(X,m) and

λ > 0, we define

Mλf(x) := sup
0<r<λ

1

m(Br(x))

∫
Br(x)

|f | dm. (1.17)

that we call the Hardy Littlewood maximal operator up to scale λ. When λ = +∞, we call it the
Hardy Littlewood maximal operator and denote it by M . Then on a locally uniformly doubling
space we have that: for every 1 < p ≤ ∞ and λ > 0 there exists a constant Cp,λ such that

‖Mλf‖Lp ≤ Cp,λ‖f‖Lp for every f ∈ Lp(X,m). (1.18)

See e.g. [73, Theorem 3.5.6] for a proof (notice that in such reference the measure is assumed to
be doubling, i.e. with the constant in (1.15) to be independent of both x and R, however as the
argument in the proof shows, since we are considering the restricted maximal function, this is not
really an issue).

We say that (X, d,m) satisfies a weak local (1-1) Poincaré inequality provided for every R > 0
there exists CP (R) > 0 and λ ≥ 1 such that for every f : X→ R Lipschitz, x ∈ X, 0 < r < R we
have

–

∫
Br(x)

|f − fBr(x)| dm ≤ CP r –

∫
Bλr(x)

lip(f) dm,

where fBr(x) := 1
m(Br(x))

∫
Br(x) f dm.

Definition 1.3.1 (PI space). We say that (X, d,m) is a PI space if it is locally uniformly doubling
and satisfies a weak local (1-1) Poincaré inequality.

For us, this class of spaces is relevant because the results in [34] apply and because RCD(K,N)
spaces are PI spaces. This a consequence of the fact that they are locally uniformly doubling (see
[95]) and satisfies a local Poincaré inequality (see [89]). Another relevant property of PI spaces
is that, as proven in [34], given f ∈W 1,2(X) ∩ Lip(X), we have

|Df | = lipf in the m-a.e. sense

(while the inequality ≤ holds in general metric measure spaces).

On PI spaces, the following maximal estimate holds (see [71, Theorem 3.2]): given f ∈
W 1,2(X), there exists a m-null set N such that

|f(x)− f(y)| ≤ C
(
M4R(|Df |)(x) +M4R(|Df |)(y)

)
d(x, y) ∀x, y ∈ X \N, d(x, y) ≤ R. (1.19)

In particular, notice that (1.19) can naturally be used in the Euclidean setting when (X, d,m) =
(Rd, de,L d).

We now recall the definition of RCD(K,∞) and of RCD(K,N) following the Eulerian charac-
terization by means of the Bochner inequality in [11].
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Definition 1.3.2 (RCD(K,∞) spaces). Let K ∈ R. Then a metric measure space (X, d,m) is a
RCD(K,∞) space provided the following conditions hold:

i) there exists C > 0 and a point x ∈ X such that m(Br(x)) ≤ CeCr2
;

ii) for every f ∈ W 1,2(X) with |Df | ∈ L∞(m), there exists a Lipschitz function f̃ which is a
representative of f and ‖|Df |‖L∞(m) = Lip(f̃);

iii) the space (X, d,m) is infinitesimally Hilbertian;

iv) for every f ∈ D(∆) and positive g ∈ D(∆) ∩ L∞(m) such that ∆f ∈ W 1,2(X) and ∆g ∈
L∞(m), it holds that

1

2

∫
|Df |2 ∆g dm ≥

∫ (
〈∇f,∇∆f〉+K|Df |2

)
g dm.

The condition iv) is a distributional-like version of Bochner inequality. Still following [11],
we have the following finite dimensional counterpart in terms of a distributional-like Bochner
inequality.

Definition 1.3.3. Let K ∈ R and N ∈ (1,∞). Then a metric measure space (X, d,m) is
a RCD(K,N) space if it is an RCD(K,∞) space and for every f ∈ D(∆) and positive g ∈
D(∆) ∩ L∞(m) such that ∆f ∈W 1,2(X) and ∆g ∈ L∞(m) the following holds:

1

2

∫
|Df |2 ∆g dm ≥

∫ (
(∆f)2

N
+ 〈∇f,∇∆f〉+K|Df |2

)
g dm.

Remark 1.3.4. We point out that the objects in (1.12) are the one needed in order to write down
the Bochner inequality in Definition 1.3.2 and 1.3.3; we refer to the discussion there explaining
how to produce objects in those class by means of the heat flow. �

In the class of RCD(K,N) spaces, the Bishop-Gromov monotonicity formula holds (actually it
holds in the more general class of CD(K,N) spaces, as proven in [95]). We denote by vK,N (r) the
volume of the ball of radius r in the Riemannian manifold of Ricci curvature K and dimension
N . Given (X, d,m) a RCD(K,N) space and a point x ∈ X, we have that the function

r 7→ m(Br(x))

vK,N (r)
is non increasing. (1.20)

For the proof, we refer to [96, Theorem 30.11]. Thanks to the monotonicity property of Bishop-
Gromov monotonicity formula (1.20), it makes sense to introduce the following definition.

Definition 1.3.5 (Bishop-Gromov density). Let K ∈ R and N ∈ [1,∞). Assume (X, d,m) is a
CD(K,N) space. Given x ∈ X, we define the Bishop-Gromov density at x as

θ(x) = lim
r→0

m(Br(x))

vK,N (r)
= sup

r>0

m(Br(x))

vK,N (r)

It follows from the definition of vK,N (r) that limr→0
vK,N (r)

wNrN
= 1, where wN is the Lebesgue measure

of the ball of radius 1 in RN ; therefore, θ(x) can be equivalently characterized as

θ(x) = lim
r→0

m(Br(x))

wNrN
.
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We point out that the function θ : X→ [0,+∞], being the supremum of a family of continuous

functions, namely x 7→ m(Br(x))
vK,N (r) , is lower semicontinuous.

The notion of non-collapsed RCD(K,N) spaces (ncRCD(K,N) spaces in short) has been intro-
duced in [45] (after [77]) as a synthetic counterpart of non-collapsed Ricci limit spaces studied in
[36],[37] and [38].

Definition 1.3.6 (Non-collapsed RCD(K,N) spaces). We say that an RCD(K,N) space (X, d,m)
is a non collapsed RCD(K,N) space (ncRCD(K,N) space in short) if m = H N .

In this setting, we have major information on the Bishop-Gromov density. Notice that, as
a general theorem about differentiation of measures (see e.g. [45, Lemma 2.11]), we have that

limr→0
H N (Br(x))
wNrN

≤ 1 for H N -a.e. x, which together with the lower semicontinuity of θ yields

that θ(x) ≤ 1 for every x ∈ X.

Definition 1.3.7 (Regular point). Let K ∈ R and N ∈ [1,∞). Assume (X, d,m) is a ncRCD(K,N)
space. We say that x ∈ X is a regular point if θ(x) = 1.

1.4 Heat flow, test functions and second order calculus on RCD(K,∞) spaces

Assume from now on that (X, d,m) is an RCD(K,∞) space. The heat flow sastisfies further
regularizing property in such a setting.

Proposition 1.4.1 (L∞ to Lipschitz regularization, [10, Theorem 6.8]). Let (X, d,m) be an
RCD(K,∞) space. Consider f ∈ L∞(m) and t > 0. Then |Dhtf | ∈ L∞(m) and

‖|Dhtf |‖L∞(m) ≤
C(K)√

t
‖f‖L∞(m) (1.21)

We point out that (1.21), the first in (1.11) with g = 0, together with Marcinkiewicz interpo-
lation theorem grants that, for every f ∈ Lp(m) with p ∈ [2,+∞], |Dhtf | ∈ Lp(m) and:

‖|Dhtf |‖Lp(m) ≤
C(K)√

t
‖f‖Lp(m).

Moreover, we can define (see [10], [6]) the dual semigroup h̄t : P2(X)→P2(X), defined by∫
X
f dh̄tµ :=

∫
X
htf dµ

for every µ ∈P2(X) and for every f ∈ Lipb(X). It can be proved that the image of the operator
indeed lies in P2(X) and that actually is contained in the set of absolutely continuous (with
respect to m) measures. Therefore, we define the heat kernel p : (0,+∞)× X× X→ [0,+∞) by
defining for every x ∈ X

pt(x, ·)m := h̄tδx.

In the case of RCD(K,N) spaces, Jiang, Li and Zhang in [75] (after the works of Sturm [92] and
[93]) proved the following bound: there exists Cp ≥ 1 and c ≥ 0 such that

1

Cpm(B√t(x))
exp

(
−d2(x, y)

3t
− ct

)
≤ pt(x, y) ≤ Cp

m(B√t(x))
exp

(
−d2(x, y)

5t
+ ct

)
(1.22)
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for any x, y ∈ X and for any t > 0. We point out that, in the case of RCD(0, N), it is possible to
take c = 0 in the estimate (1.22).

We introduce the notions of test functions, firstly introduced by Savaré in [90].

Test(X) := {f ∈ LIP(X) ∩ L∞(m) ∩D(∆) : ∆f ∈W 1,2(X) ∩ L∞(m)}.

We call elements belonging to this set test functions. Some important properties of this class are
the following ones:

i) Test(X) is dense in W 1,2(X) in the W 1,2(X) norm;

ii) Test(X) is an algebra;

iii) given f ∈ Test(X), |Df |2 ∈W 1,2(X) (see [90, Lemma 3.2]).

Notice that item i) implies the fact that test functions are ’a lot’. To produce them and also
to prove item i), we need to use time regularized heat flow hϕ, defined in (1.13), applied to a
function f ∈ L2(m)∩L∞(m). The main reson to use this operator is that it produces L∞ bound
on the Laplacian. The RCD assumption instead comes into play in the proof of item i) in the fact
that hϕf ∈ Lip(X) thanks to Proposition 1.4.1 and the definition of hϕ.
It will be very useful in our discussion to introduce the vector space of ’regular vector fields’, that
we call test vector fields. We define TestV(X) ⊆ L2(TX) as the vector space

TestV(X) :=

{
n∑
i=1

fi∇gi : fi, gi ∈ Test(X) for every i and n ∈ N

}
.

We recall the tensorization property of the tangent module. Given a metric measure space
(X, d,m). Let M , N be L2(m)–normed L∞(m)–modules. Then the product module M ×N has
a natural structure of L2(m)–normed L∞(m)–module when endowed with the pointwise norm

(v, w) := |v|2 + |w|2 m a.e. for every (v, w) ∈M ×N.

Let (X, dX,mX) and (Y, dY,mY) be metric measure spaces. The product space X × Y is always
implicitly endowed with the distance

dX×Y((x, y), (x′, y′)) := dX(x, x′)2 + dY(y, y′)2

for every (x, y), (x′, y′) ∈ X×Y and the product measure mX⊗mY. Let M be an L2(mX)–normed
L∞(mX)–module. Then the space L2(Y,M ) has a natural L2(mX⊗mY)–normed L∞(mX⊗mY)–
module structure: given any v, w ∈ L2(Y,M ) and f ∈ L∞(mX ⊗mY), we put

(v + w)(y) := v(y) + w(y) ∈M for mY-a.e. y ∈ Y,

(f · v)(y) := f(·, y) · v(y) for mY-a.e. y ∈ Y,

|v|(x, y) := |v(y)|(x) for mX ⊗mY-a.e. (x, y) ∈ X×Y.

We review here the tensorization properties of the Cheeger energy and derive the tensorization
properties of the tangent module. Let (X, dX,mX),(Y, dY,mY) be metric measure spaces. Given
f ∈ L2(mX ⊗mY), we define f(x) ∈ L2(mY) and f (y) ∈ L2(mX) as

f(x)(y) = f (y)(x) := f(x, y) for (mX ⊗mY)–a.e. (x, y) ∈ X×Y.
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Theorem 1.4.2 ([11, Theorem 5.1]). Let (X, dX,mX),(Y, dY,mY) be metric measure spaces. Con-
sider f ∈W 1,2(X×Y). Then

f(x) ∈W 1,2(Y) for mX-a.e. x ∈ X with

∫
|Df(x)|(y) d(mX ⊗mY)(x, y) <∞,

f (y) ∈W 1,2(X) for mY-a.e. y ∈ Y with

∫
|Df (y)|(x) d(mX ⊗mY)(x, y) <∞,

Moreover, it holds that
|Df(x)|2(y) + |Df (y)|2(x) = |Df |2(x, y).

As a consequence of the last proposition, we have the following theorem about the tensorization
of the tangent module.

Theorem 1.4.3 ([63, Theorem 3.13]). Let (X, dX,mX),(Y, dY,mY) be metric measure spaces.
Then the map

Φ: L2(T (X×Y))→ L2(X, L2(TY))× L2(Y, L2(TX))

defined for W 1,2(X×Y) as
Φ(df) := (x 7→ df(x), y 7→ df (y))

extends to an isomorphism L2(mX⊗mY)–normed L∞(mX⊗mY)-modules preserving the pointwise
norm.

To define what the Hessian of a function is, we need to recall here the objects needed in order
to speak about Hessf as a ’tensor of type (0, 2)’.
We outline here the construction of the tensor product of two Hilbert modules. Consider two
Hilbert L2(m)-normed L∞(m)-modules H1,H2.

We consider H1 ⊗Alg
L∞(m) H2 the tensor product between H1 and H2, consisting of formal finite

sums of objects of the kind w1 ⊗ w2 for w1 ∈ H1 and w2 ∈ H2, quotentied with respect to the
subspace generated by the elements of the form

(α1v1 + α2v2)⊗ w − α1(v1 ⊗ w)− α2(v2 ⊗ w),

v ⊗ (β1w1 + β2w2)− β1(v ⊗ w1)− β2(v ⊗ w2),

(fv)⊗ w − v ⊗ (fw).

for α1, α2, β1, β2 ∈ R, v1, v2, v ∈ H1, w,w1, w2 ∈ H2 and f ∈ L∞(m). We can endow it with the
structure of algebraic module over L∞(m) by means of the following pointwise operation: given
f ∈ L∞(m), w1 ∈H1 and w2 ∈H2 we have

f · (w1 ⊗ w2) := (fw1)⊗ w2 = w1 ⊗ (fw2).

We can endow H1⊗Alg
L∞(m) H2 with the operation : (H1⊗Alg

L∞(m) H2)2 3 (A,B)→ A : B ∈ L0(m),
defined as

(w1 ⊗ w2) : (w̃1 ⊗ w̃2) := 〈w1, w̃1〉 〈w2, w̃2〉 for every w1, w2, w̃1, w̃2 ∈ L2(T ∗X)

and extending it by bilinearity. The map is L∞(m)-bilinear. The poinwise norm on H1⊗Alg
L∞(m)H2

is defined for A ∈H1 ⊗Alg
L∞(m) H2 as |A| :=

√
A : A. Then H1 ⊗H2 is defined as the completion
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of {A ∈ H1 ⊗Alg
L∞(m) H2 : |A| ∈ L2(m)} with respect to the norm ‖A‖H1⊗H2 :=

√∫
|A|2 dm.

Therefore, constructed in this way, it is possible to check that (H1 ⊗H2, ·, | · |, ‖ · ‖H1⊗H2) has
the structure of a L2(m)-normed L∞(m)-module.
When we consider H 1 = H 2 = H , we denote the tensor product H ⊗H by H ⊗2.

We introduce the transpose operator and so also symmetric and antisymmetric tensors. Given
v, w ∈H , v ⊗ w ∈H ⊗Alg

L∞(m) H , we define the transpose (v ⊗ w)t ∈H ⊗Alg
L∞(m) H as

(v ⊗ w)t := w ⊗ v

and extending it by linearity. The map H ⊗Alg
L∞(m) H 3 A 7→ At ∈ H ⊗Alg

L∞(m) H is a linear

involution, preserving the pointwise norm, being such that (fA)t = fAt for every f ∈ L∞(m)

and A ∈ H ⊗Alg
L∞(m) H . In particular, it can be extended to a linear involution preserving the

pointwise norm and being such that (fA)t = fAt for every f ∈ L∞(m) and A ∈H ⊗2.

Definition 1.4.4. Given an Hilbert module H , a tensor A ∈H ⊗2 is called symmetric if At = A
and antisymmetric if At = −A.

Definition 1.4.5. We define L2(T ∗⊗2X) := L2(T ∗X) ⊗ L2(T ∗X) and L2(T⊗2X) := L2(TX) ⊗
L2(TX). Moreover, we denote with L0(T ∗⊗2X) and L0(T⊗2X) the completion with respect to the
distance dL0 respectively of L2(T ∗⊗2X) and L2(T⊗2X).

Since both L2(T ∗⊗2X) and L2(T⊗2X) are Hilbert modules, they are reflexive and canonically
isomorphic to their dual. We can identify one with the dual of the other, via the duality mapping:

(w1 ⊗ w2)(X1 ⊗X2) = w1(X1)w2(X2) m-a.e.

for w1⊗w2 ∈ L2(T ∗⊗2X) and X1⊗X2 ∈ L2(T⊗2X) and then extended to both spaces by linearity
and continuity. We can use the duality map together with the pointwise scalar product to build
the two isomorphisms

T [(S) := T : S, A# : T := A(T ),

for T, S ∈ L2(T⊗2X) and A ∈ L2(T ∗⊗2X).
The definition of Hessian as an element ’L2 integrable’ goes together with the definition of the
Sobolev space W 2,2(X). The content of what follows is mainly taken from [55, Section 3.3]. The
definition in the nonsmooth setting comes from the following computation in the Riemannian
case: consider a smooth Riemannian manifold (M, g) and f, g, h ∈ C∞(M); then we have

2Hess(f)(∇g,∇h) = 〈g,∇〈∇f,∇h〉〉+ 〈h,∇〈∇f,∇g〉〉 − 〈∇f,∇〈∇g,∇h〉〉.

Writing down ’distributionally’ the last identity gives rise to the definition of W 2,2(X).

Definition 1.4.6 (The space W 2,2(X)). The space W 2,2(X) ⊆ W 1,2(X) is the space of all func-
tions f ∈ W 1,2(X) for which there exists A ∈ L2(T ∗⊗2X) such that for every g1, g2, h ∈ Test(X)
the following holds

2

∫
hA(∇g1,∇g2) dm

= −
∫
〈∇f,∇g1〉div(h∇g2) + 〈∇f,∇g2〉div(h∇g1) + h〈∇f,∇〈∇g1,∇g2〉〉dm.
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In this case, Hess f := A and is called the Hessian of f . We endow the vector space with the
norm

‖f‖2W 2,2(X) := ‖f‖2L2(m) + ‖df‖2L2(m) + ‖Hess f‖2L2(m).

By the property that

finite sums of {h∇g1 ⊗∇g2 : h, g1, g2 ∈ Test(X)} are dense in L2(T⊗2X)

we have that element A defined as above is uniquely determined.

Remark 1.4.7. We point out that, to produce the last definition, all the elements tested against
f and its gradient needs to be L2 integrable; indeed it is straightfoward to check that, if g1, g2, h ∈
Test(X),

∇g1 div(h∇g2),∇g2 div(h∇g1), h∇〈∇g1,∇g2〉〉 ∈ L2(TX).

The last of the three terms belongs to L2(TX) thanks to item iii) in the properties of test functions,
that gives by polarization that, if f, g ∈ Test(X), 〈∇f,∇g〉 ∈ W 1,2(X), hence it makes sense to
compute ∇〈∇g1,∇g1〉 ∈ L2(TX). �

An important property of test functions is that [55, Theorem 3.3.8]

Test(X) ⊆W 2,2(X)

so it makes sense to compute the Hessian of a test function.
Some remarkable properties of the space W 2,2(X) are the following ones [55, Theorem 3.3.2,
Propositions 3.3.20, 3.3.21]:

i) W 2,2(X) is a separable Hilbert space;

ii) given f1, f2 ∈ Test(X), we have that

Hess (f1f2) = f2 Hess f1 + f1 Hess f2 + df1 ⊗ df2 + df2 ⊗ df1

as elements of L2(T ∗⊗2X);

iii) given f ∈ Test(X) and ϕ ∈ C1,1(R) with bounded first and second derivative, we have that
ϕ ◦ f ∈W 2,2(X) and

Hess (ϕ ◦ f) = ϕ′′ ◦ f df ⊗ df + ϕ′ ◦ f Hess f

as elements of L2(T ∗⊗2X).

With the definition of Hessian of a function in mind, we can differentiate vector field, thus defining
what the covariant derivative of a vector field is. Similarly as for the Hessian, the definition of
’covariant derivative’ that is L2-integrable is tightly linked to the definition of the functional space
W 1,2
C (TX).

Similarly as we did for the Hessian, we can introduce the covariant derivative of a vector field,
by making distributional-like the following smooth computation. We refer to [55, Section 3.4].
Consider a smooth Riemannian manifold (M, g), a smooth vector field X and h, g1, g2 ∈ C∞(M),
we have

h〈∇∇g1X,∇g2〉 = 〈∇〈X,∇g2〉,∇g1〉 −Hess g2(∇g1, X).
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Definition 1.4.8 (The space W 1,2
C (TX)). The Sobolev space W 1,2

C (TX) ⊆ L2(TX) is defined as
the space of all X ∈ L2(TX) for which there exists an element T ∈ L2(T⊗2X) such that for every
g1, g2, h ∈ Test(X) the following holds∫

hT : (∇g1 ⊗∇g2) dm = −
∫
〈X,∇g2〉 div(h∇g1) + hHess g2 (X,∇g1) dm.

In this case, we will call T the covariant derivative of X and will denote in ∇X. We endow
W 1,2
C (TX) with the norm ‖ · ‖

W 1,2
C (TX)

defined as follows:

‖X‖2
W 1,2
C (TX)

:= ‖X‖2L2(TX) + ‖∇X‖2L2(T⊗2X).

The element T ∈ L2(T⊗2X) is uniquely determined by the density of finite sums of elements
in {h∇g1 ⊗∇g2 : h, g1, g2 ∈ Test(X)} in L2(T⊗2X).

Remark 1.4.9. We point out that, to produce the last definition, as for the Hessian, all the
elements tested against X needs to be L2 integrable; indeed it is straightfoward to check that, if
g1, g2, h ∈ Test(X),

∇g2div(h∇g1) ∈ L2(TX), hHess g2(·,∇g1) ∈ L2(T ∗X).

�

Some remarkable properties of the space W 1,2
C (TX) are the following ones [55, Theorem 3.4.2]:

i) W 1,2
C (TX) is a separable Hilbert space;

ii) for f ∈W 2,2(X), we have ∇f ∈W 1,2
C (TX) with ∇(∇f) = (Hess f)#;

iii) TestV (X) ⊆W 1,2
C (TX) and given v =

∑n
i=1 fi∇gi for fi, gi ∈ Test(X)

∇v =

n∑
i=1

∇fi ⊗∇gi + fi(Hess gi)
#.

It can be readily checked that ∇v is well posed, i.e. depends only on v and not in the way it
is written. The following notation is very useful in the following manuscript, in analogy with
Riemannian geometry. Given X ∈ W 1,2

C (TX) and Z ∈ L0(TX), we denote by ∇ZX the element
in L0(TX) defined as:

〈∇ZX,Y 〉 := ∇X : (Z ⊗ Y ), m-a.e., for every Y ∈ L0(TX).

An important calculus rule is the following one, that is a suitable restatement of [55, Prop. 3.46].

Proposition 1.4.10. Let f ∈ Test(X) and Z ∈ L∞(m)∩W 1,2
C (TX). Then df(Z) ∈W 1,2(X) and

d(df(Z)) = Hess f(· ⊗ Z) +∇Z : (· ⊗ ∇f). (1.23)

When dealing with flow of nonsmooth vector field (see Section 2), to have a well-posedness
theory it is enough to have a control of the integrability of the symmetric part of the covariant
derivative and not of all of it. Therefore, we recall the definition of vector fields with symmetric
covariant derivative in L2, according to the axiomatization given in [27, Definition 1.18].
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Definition 1.4.11 (The space W 1,2
C,s(TX)). The Sobolev space W 1,2

C,s(TX) ⊆ L2(TX) is the space

of all elements X ∈ L2(TX) with divX ∈ L2(m) for which there exists S ∈ L2(T⊗2X) such that,
for every h, g1, g2 ∈ Test(X), the following holds∫

hS(∇g1,∇g2) dm

= −1

2

∫
〈X,∇g2〉 div(h∇g1) + 〈X,∇g1〉 div(h∇g2) + div(hX)〈∇g1,∇g2〉.

In this case, we will call S the symmetric covariant derivative of X and will denoted by ∇symX.

We endow the space W 1,2
C,s(TX) with the norm

‖X‖2
W 1,2
C,s(TX)

:= ‖X‖2L2(TX) + ‖∇symX‖2L2(T⊗2X.

Notice that ∇symX defined above is a symmetric tensor in the sense of Definition 1.4.4. It is
remarked in [27] that, from the definition, it follows that

X ∈W 1,2
C (TX) with divX ∈ L2(m)⇒ X ∈W 1,2

C,s(TX)

and ∇symX = 1
2(∇X + (∇X)t).
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Chapter 2

Flows associated to Sobolev vector
fields

We want to summarize in this section the developments of the theory of flows of nonsmooth vector
fields in the Euclidean space (in Section 2.1) and then in the case of nonsmooth underlying space
(in Section 2.2).
From now on, the setting is Rd and we consider a vector field b : [0, T ]× Rd → Rd. We write in
short bt(x) = b(t, x). Similarly for a function u : [0, T ]× Rd → R, we shall write ut(x) = u(t, x).
We don’t specify for the moment the regularity assumptions on the objects involved. We consider
two related problems:

• Lagrangian problem. Given x ∈ Rd, we consider γ : [0, T ]→ Rd such that{
γ̇t = bt(γt)

γ0 = x
(2.1)

• Eulerian problem. Given ρ̄ : Rd → R, we consider a function ρ : [0, T ] × Rd → Rd which
solves the continuity equation (denoted with short notation (CE)), namely{

∂tρt + div(btρt) = 0,

ρ0 = ρ̄
(2.2)

Another PDE related to the ODE problem is the transport equation (denoted with short
notation (TE)): given ū, a function u : [0, 1]×Rd → Rd which solves the transport equation,
i.e. that solves {

∂tut + bt · ∇ut = 0,

u0 = ū.

The two PDEs are related and in the case of divergence free vector fields the solutions of the two
PDEs coincide. The interpretation underlying the last two problems can be seen as follows:

• Lagrangian problem. The first problem aims at following the trajectories of a single
particle up to time t that moves according to the time dependent velocity field bt;
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• Eulerian problem. The second problem in the case of (CE) aims at considering an initial
distribution of pollutant ρ̄ in a liquid where ρ̄(x) stands for the density of pollutant at the
point x; then we let the pollutant evolving along a velocity field bt in the liquid and the
distribution of pollutant at freezed time t at the point x is ρt(x).

2.1 The Euclidean setting: wellposedness and regularity

We start considering the Lagrangian problem (2.1). Existence of solutions to this problem for
fixed initial data x can be proved under continuity assumptions on b, while uniqueness needs
some regularity assumptions at the first order of differentiability for b, known in literature as the
Cauchy-Lipschitz theory. This is the content of the following classical theorem.

Theorem 2.1.1. Let b : [0, 1]×Rd → Rd be a continuous a vector field. Assume that there exists
L > 0 such that

|b(t, x)− b(t, y)| ≤ L|x− y| for every t ∈ [0, 1], x, y ∈ Rd.

Then for every x ∈ Rd there exists a unique solution γ ∈ C1([0, 1]) of (2.1) starting from x.
Moreover, the following stability estimate holds: fixed t ∈ [0, 1]

the map x 7→ γx(t)

where γx(t) is the solution of (2.1) starting from x ∈ Rd at time t ∈ [0, 1] is Lipschitz.

Existence can be proved by means of Banach-Caccioppoli theorem, while uniqueness and
stability is a consequence of Gronwall lemma, as follows. Consider respectively a solution γx(·)
of (2.1) starting from x and another one γy(·) starting from y; then the map t 7→ |γx(t)− γy(t)|
is Lipschitz (since it is the composition of the Lipschitz function | · | with a C1 function), hence
a.e. differentiable, with derivative given by

∂t|γx(t)− γy(t)| ≤ |b(t, γx(t))− b(t, γy(t))| ≤ L|γx(t)− γy(t)| for a.e. t

Hence Gronwall lemma grants that

|γx(t)− γy(t)| ≤ eLt|x− y| for every t ∈ [0, 1]. (2.3)

This computation will be crucial when passing to the Sobolev setting in the Euclidean space (see
Proposition 2.1.16 below). Once we know the wellposedness theorem in the Lipschitz setting, it
will be convenient to bundle the trajectories together, defining the flow map X : [0, 1]×Rd → Rd,
where X(·, x) is the solution of (2.1) starting from x, hence having{

∂tX(t, x) = b(t,X(t, x)),

X(0, x) = x.
(2.4)

It is convenient to define X−1(t, ·) as the inverse of the map X(t, ·), i.e. as a map such that

X(t,X−1(t, x)) = X−1(t,X(t, x)) = x for every t, x.

Under the standing assumptions on b, X(t, ·) is a biLipschitz homeomorphism of Rd. If b ∈
C∞([0, 1]× Rd), then X belongs C∞([0, 1]× Rd) and so does its inverse.
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Remark 2.1.2. The uniqueness of solutions in C1([0, 1]) stems, with the same arguments of the
proof of Theorem 2.1.1, also from the assumptions that b(t, ·) is Lipschitz for a.e. t ∈ [0, 1] and∫ 1

0
Lip(bt) dt <∞.

In this case, the stability estimates holds with Lipschitz constant in (2.3) e
∫ t
0 Lip(bs) ds instead of

eLt. �

We consider now the Eulerian problem. Consider b verifying the hyphothesis of Theorem 2.1.1.
The Cauchy-Lipschitz theory of flows yields wellposedness of smooth solutions of the transport
and continuity equations together with a representation formula for both of them. We assume
that b ∈ C∞([0, 1]× Rd).
Wellposedness of smooth solutions of the transport equation follows by an application of the
theory of characteristic lines. Consider ū ∈ C∞(Rd). We consider the flow X defined as before.
For every solution u ∈ C∞([0, 1] × Rd) of the transport equation, we have that for every x,
t 7→ u(t,X(t, x)) is C1([0, 1]) and

d

dt
u(t,X(t, x)) = (∂tut)(X(t, x)) + (bt · ∇ut)(X(t, x)) = 0 (2.5)

for every t, thus having that, for every x ∈ Rd, u(t,X(t, x)) = ū(x). Therefore, the following
formula gives an expression of a solution of the transport equation in terms of the flow associated
to b:

u(t, x) := ū(X(t, ·)−1(x)) (2.6)

thus showing existence and uniqueness of solutions in C∞([0, 1] × Rd) to (TE) for a given ū ∈
C∞(Rd).
We now turn to the case of the continuity equation (2.2). We discuss wellposedness of solution
of (CE) in the class C∞([0, 1]× Rd). We fix ρ̄ ∈ C∞(Rd).
For this case, we can also derive an explicit formula for a solution of the continuity equation
in terms of the initial distribution ρ̄ and the flow map X, which is due to Liouville. We start
noticing that, for fixed x ∈ Rd, the map t 7→ det(∇xXt(x)) belongs to C1([0, 1]) and

d

dt
det(∇xXt(x)) = divbt(Xt(x)) det(∇xXt(x)) for every t.

using Gronwall’s lemma we get for every x and t ∈ [0, 1]:

e
−

∫ t
0 ‖divbs‖L∞(Rd)

ds ≤ det(∇xXt(x)) ≤ e
∫ t
0 ‖divbs‖L∞(Rd)

ds
. (2.7)

Therefore, it is easy to check that

∂t

(
ρ(t,Xt(x)) det(∇xXt(x))

)
= 0;

therefore, given a smooth solution ρ of (CE) the following formula holds for every (t, x) ∈ [0, 1]×Rd

ρ(t,X(t, x)) =
ρ̄(x)

det(∇xXt(x))
.
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We point out that the formula above is well defined as a consequence of the fact that Xt is a
diffeomorphism. A much more elegant and coincise way of writing down the solution can be
expressed via measure theory and the definition of pushforward. We have that the function ρ
defined as above is given by

ρtL
d := X(t, ·)∗(ρ0L

d).

The aim of this chapter is to go beyond the Cauchy-Lipschitz theory and study vector fields
with less regularity than the Lipschitz ones. When the vector field b does not have a Lipschitz
regularity in space uniformly in time or doesn’t satisfy the hyphothesis of Remark 2.1.2, we don’t
have in general uniqueness of solutions of the Lagrangian problem for fixed initial point. Let us
present this problem with the following famous textbook example. From now on, with a little
abuse of notations we denote the Lebesgue and Sobolev spaces of vector fields with Lp(Rd) and
W 1,p(Rd), as done for functions.

Example 2.1.3. A classical example of non uniqueness of integral curves in R is the following
one. Consider the (autonomous) vector b1(x) :=

√
x. In this case, fixed as initial point 0 we have

that the one parameter family of curves (γc)c∈R+

γc(t) :=

{
0 t ≤ c
1
4(t− c)2 t ≥ c

(2.8)

solves (2.1) with γc(0) = 0 and the choice of b as above.
In this case, the vector field is indeed not Lipschitz, but belongs to W 1,p

loc (R) for every 1 ≤ p < 2.

We are interested in the case in which b has Sobolev regularity in space. Apart from the
problem expressed in the above example, there is another (more technical) problem: we need to
find a notion of flow which is independent of the choice of the representative of the vector field.
Both problems together impose the necessity of a way of selecting integral curves of a vector
field, that leads to the following definition. Notice that we think b in the following definition as
a pointwise defined object.

Definition 2.1.4 (Regular Lagrangian flow). Let b : [0, 1]×Rd → Rd be Borel and in L1([0, 1], L2(Rd)).
Then we say that F : [0, 1] × Rd → Rd (we denote F (t, x) = Ft(x)) is a regular Lagrangian flow
associated to b provided it is Borel and

i) for every x ∈ Rd, the curve F·(x) is continuous and F0(x) = x;

ii) there exists C > 0 such that Ft∗L
d ≤ CL d for every t ∈ [0, 1];

iii) it solves the ODE: for a.e. x the curve t 7→ Ft(x) is absolutely continuous and

∂tFt(x) = bt(Ft(x)) for a.e. s.

Item ii) imposes that the trajectories do not overlap too much at any time t ∈ [0, 1]. The con-
stant C is usually called a compressibility constant of the flow. Consider b ∈ L1([0, 1], L2(Rd)) ⊆
L0(L d+1) and two Borel representatives b1 and b2 of b. In particular, it holds that

L d+1
({

(t, x) ∈ Rd+1 : b1(t, x) 6= b2(t, x)
})

= 0.
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Assume for a moment that a regular Lagrangian flow F associated to b1 exists; then F is also a
regular Lagrangian flow associated to b2. Moreover, if we consider a Borel F̃ : [0, 1] × Rd → Rd
such that F̃·(x) ∈ C0([0, 1],Rd) for every x and F̃·(x) = F·(x) for L d-a.e. x, then F̃ is a regular
Lagrangian flow associated to b1. In a reverse order to how we proceeded in the Lipschitz
setting, in the Sobolev one wellposedness of regular Lagrangian flows stems from wellposedness of
distributional solutions of the PDEs at the Eulerian level (transport and continuity equations) in
the class of non-negative bounded solutions. The technique, due to DiPerna and Lions in [47], is
to introduce the concept of renormalized solutions for which well posedness holds and then show
that all the nonnegative bounded solutions are renormalized. The notations are taken from [21].
We denote by M (Rd) the vector space of locally finite signed measure on Rd, normed with total
variant variation norm (possibly taking the value +∞). To avoid confusion, we denote with ∇x
the gradient operator defined in C∞([0, 1]× Rd) just with respect to the last d variables.

Definition 2.1.5 (Distributional solution of (CE)). Consider a Borel vector field b : [0, 1]×Rd →
Rd. A weakly Borel function [0, 1] 3 t 7→ µt ∈ M (Rd) such that btµt is a locally finite signed
measure is a distributional solution of (CE) associated to b with initial distribution µ̄ if∫ T

0

∫
[∂tϕ(t, x) + b(t, x) · ∇xϕ(t, x)] dµt dt+

∫
ϕ(0, x) dµ̄(x) = 0

for every ϕ ∈ C∞c ([0, 1)× Rd).

We denote the curve (t 7→ µt) sometimes with µ. We say that t 7→ µt is weak* continuous in
the sense of measures if for every f ∈ C0

c (Rd) t 7→
∫
f dµt is continuous. When µt = ρtL d for

every t with L∞(Rd), we recall that t 7→ µt is weak* continuous in L∞(Rd) if for every f ∈ L1(Rd)
t 7→

∫
f dµt is continuous. It is worth pointing out the regularity of the curve [0, 1] 3 t 7→ µt ∈

M (Rd) by knowing that is solves the continuity equation in the sense of Definition 2.1.5. Indeed,
we have the following results, whose proof can be found in [21, Proposition 1.7, 1.8]:

t 7→ µt solves (CE) and ess sup |µt|(Rd) <∞
⇒ ∃ t 7→ µ̃t such that µt = µ̃t for a.e. t, t 7→ µ̃t is weak* cont.in the sense of measures

and
t 7→ µt solves (CE) and µt = ρtL

d for a.e. t, ρ ∈ L∞([0, 1]× Rd)
⇒ ∃ t 7→ µ̃t = ρ̃t L

d such that ρ̃t ∈ L∞(Rd) for every t,

ρ̃t = ρt for a.e. t, t 7→ µ̃t is weak* continuous in L∞(Rd).

We formulate distributionally the transport equation with linear term:

∂tut + bt · ∇ut = ctut, u0 = ū.

The situation here is more delicate: since we are interested in u ∈ L∞([0, 1] × Rd), the term
b · ∇u is not in general a distribution. Nevertheless, in the case in which the distribution divb is
represented by a function in L1

loc([0, 1]× Rd), it makes sense to define the distribution b · ∇u as
follows: given ϕ ∈ C∞c ((0, 1)× Rd), we define 〈bt · ∇ut, ϕ〉 := −〈bt ut,∇ϕ〉 − 〈ut divbt, ϕ〉.
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Definition 2.1.6 (Distributional solution of (TE)). Assume that b ∈ L1
loc([0, 1] × Rd), divb ∈

L1
loc([0, 1] × Rd) and c ∈ L1

loc([0, 1] × Rd). Consider ū ∈ L∞loc(Rd). Then we say that u ∈
L∞loc([0, 1]× Rd) is a distributional solution to the (TE) if for every ϕ ∈ C1

c ([0, T )× Rd)∫ 1

0

∫
[u∂tϕ+ ubt · ∇xϕ+ udivbt ϕ+ ctutϕ] dx dt+

∫
ū(x)ϕ(0, x) dx = 0.

We have in the case of (TE) the following regularity of a distributional solution.

t 7→ ut solves (TE) and u ∈ L∞([0, 1]× Rd)
⇒ ∃ t 7→ ũt such that ũt ∈ L∞(Rd) for every t,

ut = ũt for a.e. t and is weak* continuous in L∞(Rd).

This formulation will include the case of the continuity equation when ct(x) = −divbt(x) ∈
L1

loc([0, 1]× Rd). Therefore, we study here only (TE) and retrieve the results for (CE) by means
of the choice of ct as above. Before discussing the wellposedness, we define the concept of renor-
malized solutions.

Definition 2.1.7 (Renormalized solution of (TE)). Let b ∈ L1
loc([0, 1] × Rd,Rd) be such that

divb ∈ L1
loc([0, 1] × Rd,Rd) and c ∈ L1

loc([0, 1] × Rd). We say that u ∈ L∞loc([0, 1] × Rd) is a
renormalized solution of (TE) with initial datum ū, if for every β ∈ C1(R), β(u) solves (TE)
with initial datum β(ū) in the sense of Definition 2.1.6.

The general philosophy of the concept of renormalized solutions is that, fixed ū and b belonging
to some vector space A , if all the solutions of (CE) in a vector space A are rernormalized, then,
if they exist, they are unique in A . Indeed, uniqueness of solutions of (TE) in A follows from
the fact that the transport equation is linear and the comparison principle holds for renormalized
solution, namely given two renormalized solutions to (TE) u1 and u2

u1
0 ≤ u2

0 ⇒ u1
t ≤ u2

t for every t ∈ [0, 1].

We can retrieve the same results for (CE), choosing ct = −divbt.

The wellposedness of solution to the transport equation with linear term consists of two
results:

i) the existence result can be easily achieved via the following technique for a given b ∈
L1([0, 1], Lp(Rd)), c ∈ L1([0, 1], L∞(Rd)), ū ∈ L∞(m): we fix a parameter ε > 0, we regular-
ize the vector field b, c and the initial datum ū with a mollifier of size ε ρε, by defining

bεt := bt ? ρε, cεt := ct ? ρε for every t,

ūε := ū ? ρε.

We call uε the solution of (TE) associated to bε (and associated flow to it Xε) and linear
term c with initial datum ū. For fixed ε > 0, it holds that for every x

d

dt
uε(t,Xε

t(x)) = (∂tu
ε + bε · ∇uε)(t,Xε

t(x)) = cε(t,Xε
t(x))uε(t,Xε

t(x)).
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Then, applying Gronwall lemma and using ‖ūε‖L∞ ≤ ‖ū‖L∞ , ‖cεt(Xε
t(·))‖L∞ ≤ ‖cεt‖L∞ ≤

‖ct‖L∞ for every t

|uε(t,Xε(t, x))| ≤ ‖ū‖L∞(m)e
∫ 1
0 ‖ct‖L∞(m) dt.

We retrieve L∞ bound on the approximate solutions uε; by weak*-compactness in L∞([0, 1]×
Rd), we pass to the limit in the distributional formulation, obtaining a solution to (TE);

ii) for uniqueness result, it is important to know some regularity properties about the dis-
tributional derivative Dbt for a.e. t (for the literature about it, far from being complete,
we refer to [47], [2], [22], [19]) and to the survey [4]. The case of our interest here is
that of Sobolev vector fields. Thus consider b ∈ L1([0, 1],W 1,p(Rd)) for some p ≥ 1 and
divb ∈ L1([0, 1], L∞(Rd)). What is proved in [47] is that all the solutions in L∞([0, 1]×Rd))
are renormalized. Therefore, this discussion can be read in a concise way in the following
theorem of uniqueness.

Theorem 2.1.8 (DiPerna-Lions, ’89). Let b ∈ L1([0, 1],W 1,p(Rd)), u0 ∈ L∞(Rd) with
p ≥ 1. Assume moreover that divb ∈ L1([0, 1], L∞(Rd)); then there exists a unique solution
u ∈ L∞([0, 1]× Rd) to (TE).

Remark 2.1.9. The last theorem holds in a larger class for the initial datum and the
solution. Given b ∈ L1([0, 1],W 1,p(Rd)), ū ∈ Lq(Rd) with 1

q + 1
p ≤ 1, uniqueness holds for

u ∈ L∞([0, 1], Lq(Rd)). �

The wellposedness of regular Lagrangian flows stems from the wellposedness of (non negative)
solutions in L∞([0, 1] × Rd) of the continuity equation (CE). To do so, as a connection between
the Eulerian and the Lagrangian theory, we have the following result due to Ambrosio in [2] that
acts as a probabilistic theory of characteristic lines. We recall that we denote with M +(Rd) the
set of non-negative, locally finite measure.

Theorem 2.1.10 (Ambrosio’s superposition principle). Consider a bounded, Borel b : [0, 1] ×
Rd → Rd and [0, 1] 3 t 7→ µt ∈ M +(Rd) a distributional solution of (CE) starting from µ̄ ∈
M +(Rd) in the sense of Definition 2.1.5. Then there exists a (weakly Borel) family {ηx}x∈Rd,
with ηx ∈P(C([0, 1],Rd)) such that e0∗ηx = δx and for every t ∈ [0, 1]

µt =

∫
Rd

(et∗ηx)dµ̄(x). (2.9)

Moreover, for µ̄-a.e. x, ηx is concentrated on absolutely continuous curve solving the ODE asso-
ciated to b, namely for µ̄-a.e. x∫

|γ(t)− x−
∫ t

0
b(s, γ(s)) ds| dηx(γ) = 0, for every t ∈ [0, T ].

The integral in (2.9) has to be intended in the sense of Appendix A.1 because since the family
{ηx}x is weakly Borel and, given t, et is continuous, then also {et∗ηx}x is also weakly Borel. The
following theorem transfers wellposedness of the continuity equation into wellposedness of regular
Lagrangian flows.
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Theorem 2.1.11 ([42, Proposition 6.4.3]). Consider a vector field b ∈ L∞([0, 1]×Rd). Assume
that, given µ̄ = ρ̄L with ρ̄ ∈ L∞(Rd), the solution to the (CE) in the class L∞([0, 1] × Rd)
is unique. Consider a (weakly Borel) family {ηx}x∈Rd with ηx ∈ P(C([0, 1],Rd)) concentrated
on absolutely continuous solutions of the ODE starting from x, for L d-a.e. x. Consider η :=∫
ηx dµ̄(x) and assume et∗η = ρ(t, ·)L d for ρ ∈ L∞([0, 1] × Rd). Then ηx is a Dirac mass for

L d-a.e. x ∈ Rd.

Let us outline the strategy for the proof of the theorem. Assuming that the conclusion of the
theorem is false, we can find C ∈ B(Rd) with µ̄(C) > 0, t̄ ∈ [0, 1], E,E′ ∈ B(Rd) with E∩E′ = ∅
such that for some M > 0 for every x ∈ C

0 < ηx({γ : γt̄ ∈ E}) ≤Mηx({γ : γt̄ ∈ E′}).

Starting from this observation, we can build two different non-negative solutions of the (CE) in
the class L∞([0, 1]× Rd) as follows. We define

η1 :=

∫
C
ηx|{γ:γt̄∈E}

dµ̄(x), η2 :=

∫
C
ηx|{γ:γt̄∈E′}

dµ̄(x).

Then we define the curve t 7→ µit := et∗η
i for i = 1, 2, that are both distributional solutions

to (CE). The crucial fact is that by the fact that E and E′ are disjoint we have µ1
t̄ ⊥ µ2

t̄ and
µ1

0 ≤ Mµ2
0. The conclusion follows by ’renormalizing’ the measure η2 in order to have, without

renaming the measures, µ1
0 = µ2

0 and still preserving orthogonality at time t̄. As a consequence
of this general theorem, we have the following corollary.

Proposition 2.1.12 ([42, Proposition 6.4.1]). Consider a vector field b ∈ L∞([0, 1]×Rd). Assume
that, given µ̄ = ρ̄L d with ρ̄ ∈ L∞(Rd), the solution to the (CE) in the class L∞([0, 1] × Rd)
is unique. Then the regular Lagrangian flow associated to b, if it exists, is unique. Assume
furthermore that the (CE) with initial datum µ̄ = L d has a non-negative solution in L∞([0, 1]×
Rd). Then we have existence of a regular Lagrangian flow associated to b.

Coupling the last general result with Theorem 2.1.8, we obtain the following.

Theorem 2.1.13 (Existence and uniqueness of regular Lagrangian flows for b ∈W 1,p). Consider
a vector field b ∈ L∞([0, 1]×Rd). Assume b ∈ L1([0, 1],W 1,p(Rd)), u0 ∈ L∞(Rd) with p ≥ 1 and
that divb ∈ L1([0, 1], L∞(Rd)). Then the regular Lagrangian flow F associated to b exists and is
unique. Uniqueness is meant in the following sense: consider two regular Lagrangian flows F 1

and F 2 associated to b. Then, for L d-a.e. x, F 1
· (x) = F 2

· (x) in C([0, 1],Rd).

Remark 2.1.14. It is convenient to define the flow starting from time t up to time s. We can
define F : [0, 1]2 × Rd → Rd as follows. We define F ·t : [t, 1]× Rd → Rd as

F st = F̄s−t,

where F̄ is the regular Lagrangian flow in the time interval [0, 1− t] associated to the vector field
b̄s := bs+t and we point out b̄ satisfies the hyphothesis of Theorem 2.1.13 yielding existence and
uniqueness of the flow. Similarly, we define F ·t : [0, t]× Rd → Rd as

F st = F̄t−s,

where F̄ is the regular Lagrangian flow in the time interval [0, t] associated to the vector field
b̄s := −bt−s. Similarly, Theorem 2.1.13 applies, since b̄ satisfies all the hyphothesis. �
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Therefore, existence and uniqueness of regular Lagrangian flows in Theorem 2.1.13 can be
proved according to the following axiomatization.

Definition 2.1.15 (Regular Lagrangian flow, axiomatization 2). Let b : [0, 1]×Rd → Rd be Borel
and in L1([0, 1], L2(Rd)). Then we say that F : [0, 1]2 × Rd → Rd is a regular Lagrangian flow
associated to b provided it is Borel and

i) for every x ∈ Rd and t ∈ [0, 1], the curve F ·t (x) is continuous and satisfies F tt (x) = x;

ii) there exists C > 0 such that for F st ∗L
d ≤ CL d for every t, s ∈ [0, 1];

iii) it solves the ODE: for every t, for a.e. x, the curve s 7→ F st (x) is absolutely continuous and

∂sF
s
t (x) = bs(F

s
t (x)) for a.e. s ∈ [0, 1].

The uniqueness statement is meant in this case by saing that, given two regular Lagrangian
flows F and F̃ associated to b satisfying the hyphothesis of Theorem 2.2.8, we have that for every
t ∈ [0, 1]

for L d-a.e. point x ∈ X it holds F̃ st (x) = F st (x) for every s ∈ [0, 1].

We now turn to the problem of regularity with respect to the initial condition of regular La-
grangian flows. As remarked before, in the Lipschitz setting, (2.3) grants that the maps Ft are
Lipschitz. In the case of Sobolev vector fields, this is not the case; however, we have that Ft
satisfies a Lusin Lipschitz property uniform in time, namely we can find a partition in Borel sets
(Ei)i which covers a.a. Rd such that Ft|Ei is Lipschitz for every t. The first result in this direction

is in [12], using the continuity equation in order to transfer the information at a Lagrangian
level. In [43], the authors provided a proof of Lusin Lipschitz regularity of flows by introducing a
functional directly at the Lagrangian level, measuring the incremental ratio of flow maps Ft; the
same technique grants stability estimates and wellposedness results of flows. We present here a
short proof of Lusin–Lipschitz regularity, presented in [26, Proposition 2.9].

Proposition 2.1.16. Consider b ∈ L1([0, 1],W 1,p(Rd)) for some p > 1, and F a regular La-
grangian flow associated to b with compressibility constant L. Then for every t ∈ [0, 1], there exists
a measurable function gt(x) : Rd → R ∪ {+∞} such that ‖gt‖Lp(Rd) ≤ C(p, d)L

∫ t
0 ‖∇bs‖Lp(Rd) ds

for every t ∈ [0, 1] and

e−gt(x)−gt(y) ≤ |F
s
t (x)− F st (y)|
|x− y|

≤ egt(x)+gt(y) for every x, y ∈ Rd, s ∈ [0, 1].

Proof. We considerN the null set in item iii) of Definition 2.1.15, ε > 0, x, y ∈ Rd\N and t ∈ [0, 1].
We have that s 7→ log(ε+ |F st (x)−F st (y)|) is absolutely continuous, hence a.e. differentiable and∣∣∣∣log

(
ε+ |F st (x)− F st (y)|

ε+ |x− y|

)∣∣∣∣ =

∣∣∣∣∫ s

t

d

dr
log (ε+ |F rt (x)− F rt (y)|) dr

∣∣∣∣
≤
∫ s

t

|br(F rt (x))− br(F rt (y))|
|F rt (x)− F rt (y)|

dr.
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Using the estimate for maximal functions in (1.19) (recalling MRf ≤Mf for every f ∈ L1
loc(Rd)),

and taking the limit as ε→ 0, we get∣∣∣∣log

(
|F st (x)− F st (y)|
|x− y|

)∣∣∣∣ ≤ Cd ∫ s

t
(M |∇br|)(F rt (x)) dr + Cd

∫ s

t
(M |∇br|)(F rt (y)) dr.

We set gt(x) := Cd
∫ 1

0 (M |∇bs|)(F st (x)) ds for x ∈ Rd \ N and +∞ otherwise. The fact that

‖gt‖Lp(Rd) ≤ C(p, d)L
∫ 1

0 ‖∇bs‖Lp(Rd) ds follows by applying the strong Lp−Lp estimate for p > 1
and item ii) in Definition 2.1.4.

The last statement provides a sort of quantitative Lusin-Lipschitz estimate. Indeed, the maps
(F st ) are uniformly Lipschitz with respect to s on the sublevels of the function gt.

2.2 The RCD setting: wellposedness and regularity

Let (X, d,m) be a RCD(K,∞) space. In this section, we discuss the wellposedness and the
regularity theory of flows of nonsmooth vector field in such a nonsmooth setting. A vector field
has to be interpreted in the sense of normed modules, as in Section 1. Since we don’t have at our
disposal Lipschitz vector fields in such a setting, the theory that we export from the Euclidean
space is the one of flows induced by Sobolev vector fields. The philosophy pursued in [15] is
the same of the one in the Euclidean setting. The arguments work in the context of theory of
Dirichlet forms and Γ-calculus; however, for this presentation, we tailor and discuss it in the case
of RCD(K,∞) spaces. In particular, as observed in [15] and using the notation of the authors,
we can use as the algebra of functions A the space Lipbs(X), which plays the role of the space
C∞c (Rd) in such a setting.

Definition 2.2.1 (Time dependent vector fields). Consider b : [0, 1]→ L2(TX) is a time depen-
dent vector field if, for every f ∈W 1,2(X), the map (t, x) 7→ bt · ∇f(x) is measurable with respect
to the product sigma-algebra L 1 ⊗B(X).

Definition 2.2.2 (Distributional formulation of (CE)). Given b a time dependent vector field
with |b| ∈ L1

loc([0, 1] × X). Consider ū ∈ L∞loc(m). Then we say that u ∈ L∞loc([0, 1] × X) is a
distributional solution to the (CE) if for every ϕ ∈ C1

c ([0, T )) and f ∈ Lipbs(X)∫ T

0

∫ [
ϕ′(t)utf + ϕ(t)(utbt · ∇f)

]
dmdt = ϕ(0)

∫
ūf dm. (2.10)

Remark 2.2.3. Given u that solves (CE) in the sense of Definition 2.2.2, we have that, for every
f ∈ Lipbs(X) (t 7→

∫
utf dm) ∈ W 1,1(0, 1), so it admits a representative in C([0, 1]), being such

that

lim
t→0

∫
utf dm =

∫
ūf dm.

�

For the meaning of the class Lp([0, 1],B) with B being a Banach space, we refer to Appendix
A.2; moreover, given b ∈ L1([0, 1], L2(TX)), we have that it is a time dependent vector field in
the sense given by Definition 2.2.1.
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Theorem 2.2.4 (Existence of solution to (CE), [16, Thm. 6.1]). Consider ū ∈ L∞(m) and a
time dependent vector field b with bounded support such that b ∈ L1([0, 1], L2(TX)) with divb ∈
L1([0, 1], L∞(m)). Then there exists a solution u ∈ L∞([0, 1] × X) to (CE), namely (2.10).
Moreover, it is possible to build u ≥ 0 in the case in which ū ≥ 0.

Let us sketch the proof of the theorem and let us highlight the main differences with the
Euclidean case. While in the Euclidean setting, we can mollify the vector field via convolution
and take into account the theory of characteristic lines in order to derive uniform estimates on
the approximations, here this is no more possible. Therefore, the strategy is to introduce a
regularizing term in the equation, namely we solve ’distributionally’

∂tu
σ
t + div(btu

σ
t ) = σ∆uσt , uσ0 = ū, (2.11)

by using a variant of Lax-Milgram’s lemma due to Lions, which is Lemma 3.3.1 in this manuscript
(indeed the proof of Theorem 3.3.3 follows the same argument). Then we get uniform bounds
(where uniform means in the parameter σ of the approximation) of the norms ‖uσ‖L∞([0,1]×X)

which allow to pass to the limit in the distributional formulation and to obtain a solution of
(2.10). As discussed before, the uniqueness of solutions to (CE) follows by assumptions at first
order of differentiability of b.

Theorem 2.2.5. Consider a time dependent vector field b such that |b| ∈ L∞([0, 1] × X) with
bounded support. Moreover, assume that b ∈ L1([0, 1],W 1,2

C,s(TX)) and divb ∈ L1([0, 1], L∞(m)).
Then, given ū ∈ L∞(m), there exists a unique solution to (CE) in u ∈ L∞([0, 1]×X).

Let us be informal about the proof of the result, the aim of the following discussion being
clearifying why we need some regularity on b. The philosophy also here is to show that, under
the standing assumptions on b, all the solutions in L∞([0, 1]×X) are renormalized, which means
that, ’distributionally’, solve

∂tβ(ut) + bt · ∇β(ut) = −utβ′(ut)divbt (2.12)

for every β ∈ C1(R). To do so, the strategy is to regularize the solution u by means of the
heat flow (ht)t≥0 (again the difference with the Euclidean setting is that the convolution is not
available); therefore, the curve t 7→ hαut =: uαt solves ’distributionally’ the following equation:

∂tu
α
t + div(btu

α
t ) = C α(bt, ut).

where for every f ∈ Lipbs(X) 〈C α(c, v), f〉 :=
∫

div(chαv)f − div(cv)hαf dm. Then we need to
pass the limit as α→ 0 in the following equation for β ∈ C1(R):

∂tβ(uαt ) + bt · ∇(β(uαt )) = −uαt β′(uαt )divbt + β′(uαt )C α(bt, ut).

The commutator C α(c, v) can be manipulated and expressed as follows:

〈C α(c, v), f〉 =

∫ α

0

∫
2〈Dsymc : ∇hsv ⊗∇hα−sf〉

+ divc (−hsv∆hα−sf + 〈∇hsv,∇hα−sf〉) dmdα.

Therefore, the standing assumptions on b and the L∞-Lip regularization in (1.21) (which holds in
RCD(K,∞) space) used on the first term yields that the commutator converges to zero, obtaining
a solution to (2.12). We introduce the concept of regular Lagrangian flows in such a nonsmooth
setting.
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Definition 2.2.6. Consider b ∈ L1([0, 1], L2(TX)). We say that F : [0, 1] × X → X is a regular
Lagrangian flow associated to b provided it is Borel and the following properties are verified:

i) For some C > 0 we have
(Ft)∗m ≤ Cm ∀t ∈ [0, 1].

ii) For every x ∈ X, t ∈ [0, 1] the curve [0, 1] 3 t 7→ Ft(x) ∈ X is continuous and satisfies
F0(x) = x.

iii) Given f ∈ W 1,2(X) and t ∈ [0, 1], one has that for m-a.e. x ∈ X the map [0, 1] 3 t 7→
(f ◦ Ft)(x) ∈ R belongs to W 1,1(0, 1) and satisfies

d

dt
(f ◦ Ft)(x) = df(bt)

(
Ft(x)

)
for L1-a.e. t ∈ [0, 1].

Notice that X in general is just a metric space, without any vector space structure, so we give
the definition of solving the ODE in item iii) in a weak way by postcomposition with Sobolev
functions. We turn the Lagrangian part of the problem. The authors in [15] developed therein a
superposition principle, which allows to turn from the Eulerian formulation into the Lagrangian
formulation, obtaining wellposedness at the Lagrangian level.

Theorem 2.2.7 (Superposition principle). Consider a time dependent vector field b such that
|b| ∈ L∞([0, 1] × X) and t 7→ ut is a nonnegative solution to (CE) (in the sense of Definition
2.2.2), starting from ū with ‖ut‖L1(m) = 1 for every t. Then there exists a (weakly Borel) family
{ηx}x∈X, with ηx ∈P(C([0, 1],X)) such that e0∗ηx = δx and for every t ∈ [0, 1]

µt =

∫
Rd

(et∗ηx)dµ(x).

Moreover, for ūm-a.e. x, ηx is concentrated on absolutely continuous curves solving the ODE
associated to b, namely for every f ∈ Test(X) for ūm-a.e. x∫ ∣∣∣∣f(γ(t))− f(x)−

∫ t

0
df(bs)(γ(s)) ds

∣∣∣∣ dηx(γ) = 0, for every t ∈ [0, T ].

With a similar argument as in the Euclidean setting, the following theorem about wellposed-
ness of Lagrangian flows in the setting of RCD spaces follows.

Theorem 2.2.8. Consider a time dependent vector field b with bounded support such that |b| ∈
L∞([0, 1] × X). Moreover, assume that b ∈ L1([0, 1],W 1,2

C,s(TX)) and divb ∈ L1([0, 1], L∞(m)).
Then there exists a unique regular Lagrangian flow (Ft) of b. Uniqueness has to be intended as:
if (F̃t) is another Regular Lagrangian Flow, then for every t ∈ [0, 1] we have that for m-a.e. point
x ∈ X it holds F̃t(x) = Ft(x) for every t ∈ [0, 1].

Notice that, as done in the Euclidean case, we can define the flow F ts starting from s ∈ [0, 1]
up to time t ∈ [0, 1]. The vector field b, suitably translated still satisfies the hyphothesis of
wellposedness of regular Lagrangian flows, therefore the same arguments of Remark 2.1.14 can
be repeated verbatim in this case. Therefore, existence and uniqueness in Theorem 2.2.8 may be
interpreted with the following axiomatization of regular Lagrangian flow.
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Definition 2.2.9 (Regular Lagrangian Flow, axiomatization 2). Let (X, d,m) be an RCD(K,∞)
space, for some K ∈ R and (bt) ∈ L1([0, 1], L2(TX)). Then F : [0, 1]2 × X → X is said to be a
Regular Lagrangian Flow for w provided it is Borel and the following properties are verified:

i) For some C > 0 we have
(F st )∗m ≤ Cm ∀t, s ∈ [0, 1]. (2.13)

ii) For every x ∈ X, t ∈ [0, 1] the curve [0, 1] 3 s 7→ F st (x) ∈ X is continuous and satisfies
F tt (x) = x.

iii) Given f ∈ W 1,2(X) and t ∈ [0, 1], one has that for m-a.e. x ∈ X the map [0, 1] 3 s 7→
(f ◦ F st )(x) ∈ R belongs to W 1,1(0, 1) and satisfies

d

ds
(f ◦ F st )(x) = df(bs)

(
F st (x)

)
for L1-a.e. s ∈ [0, 1]. (2.14)

We shall typically write (F st ) in place of F for Regular Lagrangian Flows.
The uniqueness statement is meant in this case by saing that, given two regular Lagrangian flows
F and F̃ associated to b satisfying the hyphothesis of Theorem 2.2.8, we have that for every
t ∈ [0, 1]

for m-a.e. point x ∈ X it holds F̃ st (x) = F st (x) for every s ∈ [0, 1].

The regularity theory in RCD(K,N) setting was studied by Bruè and Semola in [28] in the
case of compact N -Ahlfors regular metric measure spaces and then extended to the setting of
RCD(K,N) spaces in order to prove that the dimension of an RCD(K,N) space is constant in
a suitable sense in [27]. The last part of the discussion concerning the case of non-collapsed
RCD(K,N) comes from [25]. We point out that, as it will be clearer later, the estimates in the
collapsed setting are fundamental in order to obtain uniqueness of parallel transport and the
validity of a Leibniz formula.
The main idea in [27] is to try to reproduce the scheme of Crippa-DeLellis in [43] of differentiating
the distance of two different flow lines d(F st (x), F st (y)) with respect to s.
In the setting of metric measure spaces under integral assumptions on the vector fields, it is not
possible using the following computation to quantify the rate of change of d(F st (x), F st (y)) in
time. Let us be more specific in the case of a Riemannian manifold (M, g) and for simplicity
we assume that b ∈ L∞([0, 1] × M). It can be readily checked that this assumptions grants
in particular that the map s 7→ (F st (x), F st (y)) ∈ M ×M is Lipschitz for every x, y ∈ M \ N ,
where N is Volg–negiglible. Therefore, the map s 7→ d2

g(F
s
t (x), F st (y)) is Lipschitz, hence L 1-a.e.

differentiable, with derivative given by

d

ds
d2
g(F

s
t (x), F st (y)) = (∇d2

gF st (x)
· bs)(F st (y)) + (∇d2

gF st (y)
· bs)(F st (x)) for a.e. s.

We recall the following fact: if the function dgx is differentiable at y ∈ M , then there exists
a unique geodesic γ : [0, 1] → M such that γ0 = y and γ1 = x and γ′0 = −∇(dg

2
x/2)(y). We

interpolate the last term, by using the compatibility of the Riemannian metric with the Levi
Civita connection. Indeed, consider a smooth curve γ : [0, 1]→M and a vector field V ; we have

d

ds
〈γ̇s, V 〉γs = 〈∇γ̇s γ̇s, V 〉γs + 〈∇γ̇sV, γ̇s〉γs for every s ∈ [0, 1].
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Integrating the last formula in the case in which V = bt and γ is a geodesic such that γ0 = F st (x)
and γ1 = F st (y) we have

(∇(d2
gF st (x)

/2) · bs)(F st (y)) + (∇(d2
gF st (y)

/2) · bs)(F st (x)) = 〈γ̇1, bs〉γ1
− 〈γ̇0, bs〉γ0

=

∫ 1

0
∇bs(γ̇r, γ̇r)γr dr =

∫ 1

0
∇symbs(γ̇r, γ̇r)γr dr

where ∇symbt := ∇bt+(∇bt)T
2 . The problem here is that it is not known whether it is possible to

find a Borel function H for which we can estimate the last term as follows∫ 1

0
∇symbs(γ̇r, γ̇r)γr dr ≤

(
H(F t0(x)) +H(F t0(y))

)
d2
g(F

t
0(x), F t0(y))

thus providing by means of Gronwall lemma a quantitative Lusin-Lipschitz estimate as in Propo-
sition 2.1.16.

Coming back to the RCD setting, to solve the problem, we deal with another quasi-metric dG,
comparable to d and whose derivative involves the tensors above in integrated form with respect
to m. The quasi-metric is defined by noticing that in Rd (with d ≥ 3) the Green function of the
Laplacian has the form G(x, y) = cd d(x, y)2−d. Taking this into account, we can define the quasi-
metric dG(x, y) := 1

G(x,y) whenever x 6= y and 0 otherwise. Therefore, since we want to compute
the rate of change of dG along the flow lines, it is enough to do it before for the function G. When
differentiating the map s 7→ G(F st (x), F st (y)), we obtain the quantity bt · ∇Gx(y) + bt · ∇Gy(x),
that can be estimated formally (or distributionally in the Euclidean setting) using that, for every
x ∈ X, −∆Gx = δx, having:

bt · ∇Gx(y) + bt · ∇Gy(x) =

∫
bt · ∇Gx dδy(z) +

∫
bt · ∇Gy dδx(z)

= −
∫
bt · ∇Gx d∆Gy(z)−

∫
bt · ∇Gy d∆Gx(z)

= 2

∫
∇symbt(∇Gx,∇Gy) dm−

∫
divbt〈∇Gx,∇Gy〉 dm.

Provided the bound on ∇symb is of integral type with respect to m, the last estimate allows to
obtain a bound on bt ·∇Gx(y)+bt ·∇Gy(x). The last result is used together with the the following
formula: we have that there exists C > 0 such that, given a Borel function f : Rd → R,∫

f |∇Gx||∇Gy| dm ≤ CG(x, y) (Mf(x) +Mf(y))

where M is the Hardy-Littlewood maximal function. The last formula will be applied, for fixed
t ∈ [0, 1], to f = |∇symbt|.
We now underline which hyphothesis are needed on the base space X in order to perform the
above argument. We consider for a moment a complete Riemannian manifold (M, g) with Ricg ≥
0. Due to a characterization by Varopoulos (we refer for instance to [66, Corollary 9.9]), we
have that there exists a positive Green function of the Laplacian, namely a smooth function
G : M × M \ {(x, y) ∈ M × M : x = y} → (0,+∞) (we denote G(x, y) = Gx(y)) such that
−∆Gx = δx, if and only if for some (and thus all) x ∈M∫ ∞

1

s

Volg(Bs(x))
ds <∞.
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In this case, we say that (M, g) is non–parabolic. The idea is to work in the non smooth setting
under assumptions on the base space which ensures existence and finiteness properties of a positive
Green function.

Definition 2.2.10. We say that a metric measure space (X, d,m) is non–parabolic if for some
(and thus all) x ∈M ∫ ∞

1

s

m(Bs(x))
ds <∞.

We point out that the arguments here cover the case of negative K. The idea is to work in the
setting of RCD(K,N) spaces satisfying the following assumption, which implies non parabolicity of
the metric measure space. Then the final estimate (2.17) can be derived for a general RCD(K,N)
space using the calculus tools on tensor products of metric measure spaces, as it will be mentioned
in Remark 2.2.18.

Assumption 1. We assume that (X, d,m) is the tensor product between an RCD(K,N−3) space
for some K ∈ R and 4 < N < +∞ and the Euclidean factor (R3, de,L 3).

For the case of RCD(0, N) spaces satisfying Assumption 1, the authors in [27] used the Green
function of the Laplacian, defined as

G(x, y) :=

∫ ∞
0

pt(x, y) dt.

Since in this treatment, we want to directly review the case for general K, we point out that they
had to slightly change the definition, the reason being to compensate the term in the upperbound
of (1.22) of the form ect. Therefore, this leads to the definition

Ḡ(x, y) :=

∫ ∞
0

e−ct pt(x, y) dt, Ḡε(x, y) :=

∫ ∞
ε

e−ct pt(x, y) dt for ε > 0.

To stress the fact that one variable is freezed, we denote Ḡε(x, y) = Ḡεx(y) = Ḡεy(x) for ε > 0 and
Ḡ(x, y) = Ḡx(y) = Ḡy(x). Assumption 1 grants finiteness at every point, with the exception of
x, of the function Gx and of Ḡx. As mentioned before, we introduce the Green quasi-metric dḠ

dḠ(x, y) :=

{
1

Ḡ(x,y)
if x 6= y,

0 otherwise.

We introduce the function F : X× (0,+∞)→ (0,+∞) by F (x, r) :=
∫∞
r

s
m(Bs(x)) ds, useful in the

following computations. The function Ḡ formally solves the PDE ∆Ḡx = −δx+cḠx. An instance
of this fact can be seen in the following proposition (from [27, Lemma 2.5]).

Proposition 2.2.11. Let (X, d,m) be an RCD(K,N) space satisfying the Assumption 1. Then
the function Ḡεx defined as above belongs to Lipb(X) ∩Dloc(∆) and

∆Ḡεx = −e−cεpε(x, y) + cḠεx m− a.e.

Moreover, Ḡx ∈W 1,2
loc (X) and Ḡεx → Ḡx in W 1,2

loc (X).
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By using an approximation procedure based on the funciton Ḡεx, the following theorem holds.

Theorem 2.2.12 ([27, Proposition 2.27]). Let (X, d,m) be an RCD(K,N) space satisfying As-
sumption 1 and consider BR(p) ⊆ X. Then for any bounded b ∈ W 1,2

C,s(TX) such that divb ∈
L2(m), with support contained in BR(p), there exists a positive function h ∈ L2(BR(p),m) such
that

b · ∇Ḡx(y) + b · ∇Ḡy(x) ≤ Ḡ(x, y)(h(x) + h(y))

for m × m-a.e. (x, y) ∈ BR(p) × BR(p) and ‖h‖L2(BR(p),m) ≤ CV
(
‖∇symb‖L2(m) + ‖divb‖L2(m)

)
,

where CV = CV (BR(p)) > 0.

This result allows to estimate the difference of the Green function along flow maps.

Proposition 2.2.13. Let b be a time dependent vector field supported in BR(p) for some R > 0
and p ∈ X, such that |b| ∈ L∞([0, 1]×X), b ∈ L1([0, 1],W 1,2

C,s(TX)) and div b ∈ L1([0, 1], L∞(m)).
Then for every t, for m×m-a.e. (x, y) ∈ BR(p)×BR(p)

dḠ(F st (x), F st (y)) ≤ dḠ(x, y) e
∫ t∨s
t∧s hr(F

r
t (x)) dr+

∫ t∨s
t∧s hr(F

r
t (y)) dr for every s. (2.15)

Proof. We have that, for m×m-a.e. (x, y) ∈ BR(p)×BR(p) using Theorem 2.2.12 with bs for a.e.
s

d

ds
dḠ(F st (x), F st (y)) =

d

ds
Ḡ(F st (x), F st (y))−1

= −Ḡ(F st (x), F st (y))−2
(
bs · ∇ḠF st (x)(F

s
t (y)) + bs · ∇ḠF st (y)(F

s
t (x))

)
≤ Ḡ(F st (x), F st (y))−1(hs(F

s
t (x)) + hs(F

s
t (y)))

= dḠ(F st (x), F st (y))(hs(F
s
t (x)) + hs(F

s
t (y)))

where ht are the functions defined in Theorem 2.2.12 for fixed t. An application of Gronwall
lemma yields for m×m-a.e. (x, y) ∈ BR(p)×BR(p) for every s ∈ [t, 1]

dḠ(F st (x), F st (y)) ≤ dḠ(x, y) e
∫ s
t hr(F

r
t (x)) dr+

∫ s
t hr(F

r
t (y)) dr.

and similarly for s ∈ [0, t], concluding the proof.

To obtain a similar estimate for d, we need to compare the quasi-metric dḠ with d.

Proposition 2.2.14 ([27, Proposition 2.21]). Let (X, d,m) be an RCD(K,N) space satisfying
Assumption 1. Then, given BR(p) ⊆ X, there exists a constant C̄ = C̄(BR(p)) ≥ 1 such that for
any x, y ∈ BR(p)

1

C̄
Fx(d(x, y)) ≤ dḠ(x, y) ≤ C̄ Fx(d(x, y)).

Corollary 2.2.15. Let (X, d,m) be an RCD(K,N) space satisfying Assumption 1. Then, given
BR(p) ⊆ X, there exists a constant C1 = C1(BR(p)) ≥ 1 such that for any x, y ∈ BR(p)

1

C1
d(x, y) ≤ dḠ(x, y) ≤ C1 d(x, y). (2.16)
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Proof. Indeed, from Proposition 2.2.14, it is enough to find C2 = C2(BR(p)) > 0 such that
1
C2

d(x, y) ≤ Fx(d(x, y)) ≤ C2 d(x, y). The second inequality is a consequence of the fact that since

there exists C > 0 such that, for every x ∈ BR(p), m(Br(x)) ≥ Cr3. Hence
∫
d(x,y)

s
m(Bs(x)) ds ≤

C−1d(x, y) for every x, y ∈ BR(p). The first inequality is a consequence of Bishop-Gromov
inequality. We observe that d(x, y) ≤ 2R for every x, y ∈ BR(p). Moreover, since by Bishop-
Gromov inequality we have that, for every s ≥ 2R,

s

m(Bs(x))
≥ (2R)N

m(B2R(x)) sN−1

we can infer that∫ +∞

d(x,y)

s

m(Bs(x))
ds ≥

∫ +∞

2R

s

m(Bs(x))
ds ≥

∫ +∞

2R

(2R)N

m(B2R(x)) sN−1
ds ≥ (2R)

m(B2R(x))
d(x, y).

Corollary 2.2.16. Let (X, d,m) be an RCD(K,N) space satisfying Assumption 1. Let b be a
time dependent vector field supported in BR(p) for some R > 0 and p ∈ X, such that |b| ∈
L∞([0, 1]× X), b ∈ L1([0, 1],W 1,2

C,s(TX)) and div b ∈ L1([0, 1], L∞(m)). Then there exists C1 > 0
such that, for every t ∈ [0, 1], for m×m-a.e. (x, y) ∈ BR(p)×BR(p)

d(F st (x), F st (y)) ≤ C1d(x, y) e
∫ t∨s
t∧s hr(F

r
t (x)) dr+

∫ t∨s
t∧s hr(F

r
t (y)) dr for every s ∈ [0, 1]. (2.17)

Proof. An application of (2.16), together with (2.15) yields the conclusion.

We define the function h̄t(x) :=
∫ 1

0 hr(F
r
t (x)) dt. To turn this estimate into an estimate for

every x, y ∈ BR(p), we may proceed as in the next remark.

Remark 2.2.17. Let us comment how to obtain the result in (2.17) for every x, y ∈ BR(p).
Let us fix t ∈ [0, 1] and let C1 be the constant in Corollary 2.2.16. We call S := {x ∈ BR(p) :
d(F st (x), F st (y)) ≤ C1d(x, y) exp

(
h̄t(x) + h̄t(y)

)
for every s ∈ [0, 1] for m-a.e. y}. In particular,

it follows from (2.17) that m(BR(p)\S) = 0. For every x, y ∈ S, we have that, setting r̄ := d(x, y)

log

(
1 +

d(F st (x), F st (y))

d(x, y)

)
≤ –

∫
Br̄(x)∩Br̄(y)

log

(
1 +

d(F st (x), F st (z))

d(x, z)

)
dm(z)

+ –

∫
Br̄(x)∩Br̄(y)

log

(
1 +

d(F st (y), F st (z))

d(y, z)

)
dm(z).

It is enough to estimate the first term in the last expression, thus having

–

∫
Br̄(x)∩Br̄(y)

log

(
1 +

d(F st (x), F st (z))

d(x, z)

)
dm(z) ≤ log(1 + C2

1 ) + h̄t(x) + –

∫
Br̄(x)∩Br̄(y)

h̄t(z) dm(z)

≤ log(1 + C2
1 ) + h̄t(x) + CR –

∫
Br̄(x)

h̄t(z) dm(z)

where CR depends on the local doubling costant up to scale R. The second term can be estimated
accordingly. Therefore, we can define ḡt(x) := h̄t(x) + CRM2Rh̄t(x) for x ∈ S, ḡt(x) = +∞ for
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every x ∈ BR(p) \S and C2 = 1 +C2
1 . With this choice, we have for every x, y ∈ BR(p), for every

t, s ∈ [0, 1]
d(F st (x), F st (y)) ≤ C2d(x, y) eḡt(x)+ḡt(y). (2.18)

�

Remark 2.2.18. We remark that the estimate in (2.18) holds in the more general setting of
RCD(K,N) space, namely without Assumption 1. Consider an RCD(K,N) space and a time
dependent vector field b such that |b| ∈ L∞([0, 1] × X) supported in BR(p) and such that b ∈
L1([0, 1],W 1,2

C,s(TX)) and div b ∈ L1([0, 1], L∞(m)). We can define a metric measure space (X̄, d̄, m̄)

as follows: X̄ := X× R3,

d̄((x, x′), (y, y′))2 := d(x, y)2 + de(x
′, y′)2

for every x, y ∈ X and x′, y′ ∈ R3 and m̄ := m × R3. Then we can define a vector field b̄ on X̄
(which satisfyies Assumption 1), as follows. We consider the map

Φ: L2(T (X× R3))→ L2(X, L2(TR3))× L2(R3, L2(TX))

defined as in Theorem 1.4.3.
Then we consider ϕ ∈ C∞c (R3) such that ϕ = 1 on BR/2(0) and suppϕ ⊆ BR(0) and define

b̄t := Φ−1((0, (y 7→ ϕ(y) bt))) for a.e. t.

It is easy to check that b̄ is supported in B2R((p, 0)) and |b̄| ∈ L∞([0, 1] × X̄). Moreover, we
can check that (see [64]) div b̄ ∈ L1([0, 1], L∞(m̄)) and b̄ ∈ L1([0, 1],W 1,2

C,s(T X̄)). Therefore,

the estimates in (2.17) hold for the regular Lagrangian flow F̄ associated to b̄ for every (x, y) ∈
B2R((p, 0)); since, for every (x, c) ∈ X×R3 and t ∈ [0, 1], F ·t ((x, c)) lies in {(x, y) ∈ X×Rd : y = c},
we obtain the estimate (2.17) on X. �

We can collect the considerations in Corollary 2.2.16, Remarks 2.2.17 and 2.2.18 in the fol-
lowing theorem. We present here the result with more restrictive assumptions on b (the one used
in [32]) with respect to the presentation up to now.

Theorem 2.2.19. Let (X,d,m) be an RCD(K,N) space with K ∈ R, N < ∞, and (bt) ∈
L2([0, 1],W 1,2

C (TX)) be such that |bt|,div(bt) ∈ L∞([0, 1]×X) and for some x̄ ∈ X and R > 0 we
have supp(bt) ⊂ BR(x̄) for a.e. t ∈ [0, 1].

Then, for every t ∈ [0, 1], there exists a nonnegative function ḡt ∈ L2
loc(X,m) such that for

any s ∈ [0, 1] we have

d(F st (x), F st (y))

d(x, y)
≤ eḡt(x)+ḡt(y), ∀x, y ∈ X. (2.19)

We now briefly review what the main content of [25] is, where better estimates in the case
of non-collapsed RCD(K,N) spaces are retrieved. We recall that an RCD(K,N) space (X, d,m)
is said to be non collapsed (ncRCD(K,N) in short) if m = H N . The reason of restricting to
noncollapsed setting is that this class allow a comparison of the distance function and the Green
function introduced before at an infinitesimal scale, as stated in the following proposition. We
recall that, when dealing with the Green function and to have finite properties on it, we have to
consider Assumption 1.
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Proposition 2.2.20 ([25, Corollary 2.4]). Let (X, d,H N ) be an RCD(K,N) space satisfying
Assumption 1. Then for every x ∈ X we have

lim
y→x

d(x, y)N−2 Ḡ(x, y) =
1

θ(x)wNN(N − 2)
.

When using the last estimate we come up to the following computation. Fixed t ∈ [0, 1],
x ∈ X and a Borel set E of density one at x such that F st |E is Lipschitz for every s (that can be

found taking the sublevels of ḡt in Theorem 2.2.19) we have

lim sup
y∈E,y→x

dḠ(F st (x), F st (y))

dḠ(x, y)
=

(
lim sup
y∈E,y→x

d(F st (x), F st (y))

d(x, y)

)N−2
θ(F st (x))

θ(x)
.

To get rid of the term
θ(F st (x))
θ(x) , the authors in [25] proved that for H N -a.e. initial point x the

curve F ·t (x) passes through regular points for every s ∈ [t, 1]. Therefore, the last proposition,
suitably used in conjunction with (2.15) allows to obtain the following result.

We recall the definition of ap− lip in (1.16).

Theorem 2.2.21 ([25, Theorem 1.6]). Let (X, d,H N ) be an RCD(K,N) space.
Let b ∈ L2([0, 1],W 1,2

C,s(TX)), supported in BR(p) for some p ∈ X and R > 0. Assume that

|b| ∈ L∞([0, 1] × X) and div b ∈ L2([0, 1], L∞(m)). Then the regular Lagrangian flow (F ts)s,t
associated to b satisfies the following property. For every 0 ≤ s ≤ 1, for H N -a.e. x ∈ BR(p), for
any t ∈ [s, 1] F ts(x) is a regular point (see Definition 1.3.7) and

ap− lipF ts(x) ≤ e
∫ t
s gr(F

r
s (x)) dr

for H N -a.e. x, where g ∈ L2([0, 1], L2(m)) and gr is non negative for a.e. r.
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Chapter 3

Existence in W 1,2(π) and uniqueness
in H 1,2(π)

The goal of this chapter is to define in Section 3.1 the functional spaces of Sobolev vector fields
along a test plan. As for the theory of Sobolev functions in the Euclidean setting, building upon
’smooth objects’, two definitions of Sobolev vector fields along a test plan: the space W 1,2(π)
defined by integration by parts against ’smooth objects’ and the space H 1,2(π) as the closure of
’smooth objects’ with respect to the norm of W 1,2(π).
Then, we propose two notions of parallel transport, one in the class H 1,2(π) (in Section 3.2,
taken from [61]) and we prove uniqueness and one in the class W 1,2(π) and we prove existence
(in Section 3.3, taken from Appendix A in [32]).

3.1 Functional spaces of vector fields along a test plan

Let us assume that throughout all the following sections (X, d,m) is an RCD(K,∞) space. We
introduce here the right functional spaces in order to speak about vector fields along a test plan.
The aim of this section is twofold:

i) we review the theory of [61] in the case of L0-normed modules;

ii) we recast the theory built along general test plan in the case of test plan πµ = F ·0∗µ, where
F st is the regular Lagrangian flow associated to a vector field b and µ ∈P(X) with µ ≤ Cm.

We recall that the space VF(π) of vector fields along π has been defined in [61] as

VF(π) :=
∏
t∈[0,1]

e∗tL
0(TX)

(actually in [61] the pullbacks of L2(TX) are considered). Notice that the product of (vt) ∈ VF(π)
by a function in L0(π) can be defined componentwise and similarly for (vt), (zt) ∈ VF(π) the
function 〈(vt), (zt)〉 is defined as t 7→ 〈vt, zt〉 ∈ L0(π). We discuss the regularity of elements in
VF(π) with respect to time. We thus define the subspace TestVF(π) ⊆ VF(π) of test vector
fields along π as

TestVF(π) :=

{
t 7→

n∑
i=0

ϕi(t)χΓie
∗
t vi : n ∈ N, Γi ∈ B(C([0, 1],X))ϕi ∈ LIP([0, 1]), vi ∈ TestV(X)

}
.
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Definition 3.1.1 (Borel vector fields in VF(π)). An element (vt) of VF(π) is Borel provided
t 7→ 〈vt, zt〉 ∈ L0(π) is Borel for every (zt) ∈ TestVF(π).

It is not hard to check that for (vt) ∈ VF(π) Borel the map

[0, 1] 3 t 7→ ‖(vs)‖t := ‖vt‖e∗tL2(TX) = ‖|vt|‖L2(π) =

√∫
|vt|2 dπ ∈ [0,+∞]

is Borel. To see this, consider ϕn(y) = (y∧n)∨0 for y ∈ R, notice L0(π) 3 f 7→ Tn(f) ∈ [0,+∞) is
Borel where Tn(f) =

∫
ϕn(f)2 dπµ and that for every t e∗tL

0(TX) 3 v 7→
∫
|v|2 dπ = supn Tn(|v|).

Definition 3.1.2 (The space L 2(π)). We define L 2(π) ⊂ VF(π) as the space of those Borel
(vt)’s such that

‖(vt)‖2L 2(π) :=

∫ 1

0
‖(vs)‖2t dt <∞,

with the usual identification up to equality for a.e. t.

It can be checked that (L 2(πµ), ‖ · ‖L 2(πµ)) is an Hilbert space.

Definition 3.1.3 (The space C (π)). Let v ∈ VF(π). Then we say that v is a continuous vector
field provided

[0, 1] 3 t 7→
∫
〈vt,wt〉 dπ is continuous (3.1)

for every w ∈ TestVF(π) and

[0, 1] 3 t 7→ ‖vt‖e∗tL2(TX) is continuous. (3.2)

We denote the family of all continuous vector fields by C (π) and, for every v ∈ C (π), we put

‖v‖C (π) := max
t∈[0,1]

‖vt‖e∗tL2(TX).

It can be checked that (C (π), ‖ · ‖C (π)) is a Banach space (see [61, Proposition 3.12]). More-
over, given v ∈ C (π), we have that (see [61, Corollary 3.13]

the map [0, 1] 3 t 7→ |vt|2 ∈ L1(π) is continuous. (3.3)

In order to define the convective derivative as in [61], it is necessary the notion of speed of
a test plan, namely to overcome the fact that for a general test plan π the map et could be not
π-essentially injective. Therefore, we restrict to the following class, to tailor the discussion to the
relevant plans for the scope of the thesis.

Definition 3.1.4 (Test plan induced by a regular Lagrangian flow). Given π ∈P(C([0, 1],X)),
we say that it is a test plan induced by a regular Lagrangian flow if there exists b ∈ L2([0, 1], L2(TX))
with |b| ∈ L∞([0, 1]× X) for which there exists a regular Lagrangian flow F and µ ∈P(X) with
µ ≤ Cm such that

F ·0∗µ = π.

In this case, to shorten the notation, we say that π is a regular plan, µ is the initial distribution
of π and π is drifted by b.
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To stress the dependence on µ, we denote π by πµ. It is straightforward to check by the
properties of F st and the fact b ∈ L2([0, 1], L2(TX)) that πµ is a test plan. Let us fix one such
test plan πµ.

Definition 3.1.5 (Convective derivative along a test plan). We define the convective derivative
operator Dπµ : TestVF(πµ) → L 2(πµ) as follows: to the element v ∈ TestVF(πµ), of the form
vt = ϕ(t)χA e∗t v, for ϕ ∈ Lip([0, 1]), A ∈ B(C([0, 1],X)), v ∈ TestV(X), we associate the vector
field Dπµv ∈ L 2(πµ) given by

(Dπµv)
t

:= χA

(
ϕ′i(t) e∗t vi + ϕi(t) e∗t∇btv

)
for L1-a.e. t ∈ [0, 1]. (3.4)

and then extended by linearity. For the sake of simplicity, we will briefly write Dπµvt instead of
(Dπµv)

t
.

Remark 3.1.6. The hyphothesis |b| ∈ L∞([0, 1] × X) is related to the fact that, under this
assumption, (Dπµv) ∈ L 2(πµ).

We introduce two spaces of Sobolev vector fields along πµ, the W and the H space.

Definition 3.1.7 (The space W 1,2(πµ)). The space W 1,2(πµ) ⊂ L 2(πµ) is defined as the col-
lection of (vt)’s for which there is (v′t) such that∫ 1

0

∫
〈vt,Dtzt〉 dπµ dt = −

∫ 1

0

∫
〈v′t, zt〉 dπµ dt (3.5)

holds for any (zt) ∈ TestVF(πµ) with ‘compact support’, i.e. such that

zt = 0 for every t in a neighbourhood of 0 and 1. (3.6)

The vector field (v′t) is uniquely defined by the above, called convective derivative of (vt) along πµ
and denoted (Dtvt).

Then W 1,2(πµ) is endowed with the norm

‖(vt)‖2W 1,2 := ‖(vt)‖2L 2 + ‖(Dtvt)‖2L 2

and can - easily - be proved to be a Hilbert space.

It turns out that this latter definition of Dt is compatible with the previous one, i.e. TestVF(πµ) ⊆
W 1,2(πµ) and for a vector field in TestVF(πµ) the convective derivative defined by formula (3.4)
coincides with the one defined by (3.5). In particular, it makes sense to define H 1,2(πµ) as the
closure of TestVF(πµ) in W 1,2(πµ). By definition, it follows that (H 1,2(πµ), ‖ · ‖W 1,2(πµ)) is an
Hilbert space and

H 1,2(πµ) ⊆ W 1,2(πµ).

An important property of vector fields in H 1,2(πµ) is that they admit a continuous representative.

Theorem 3.1.8 ([61, Theorem 3.23]). The inclusion TestVF(πµ) ↪→ C (πµ) uniquely extends to
a linear continuous and injective operator ι : H 1,2(πµ)→ C (πµ).

Another crucial property of the space H 1,2(πµ) is the Leibniz rule.

Proposition 3.1.9 (Leibniz formula for Dπ). Let v ∈ W 1,2(πµ) and w ∈ H 1,2(πµ). Then the
function t 7→ 〈vt,wt〉 is in W 1,1([0, 1], L1(πµ)) and its derivative is given by

d

dt
〈vt,wt〉 = 〈Dπµvt,wt〉+ 〈vt,Dπµwt〉 for L1-a.e. t ∈ [0, 1].
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3.2 Uniqueness of parallel transport in H 1,2(π)

In this section, we review the results of [61, Section 4.1.1], in which uniqueness of parallel transport
in H 1,2(πµ), as a consequence of Proposition 3.1.9.
Again, we assume that π is a regular plan, in the sense of Definition 3.1.4, with initial distribution
µ and drifted by b. The map ι used in the following is the one introduced in Theorem 3.1.8.

Definition 3.2.1 (Parallel transport in H 1,2(πµ)). Let K ∈ R, (X, d,m) an RCD(K,∞) space
and π be a regular plan on X. A parallel transport along π starting from v̄ ∈ e∗0L

2(TX) is an
element v ∈H 1,2(π) such that Dπv = 0 and ι(v)0 = v̄.

The linearity of the requirement Dπv = 0 ensures that the set of parallel transports along π
is a vector space. From Proposition 3.1.9 we deduce the following simple but crucial result:

Proposition 3.2.2 (Norm preservation). Let v be a parallel transport along the regular plan π.
Then t 7→ |vt|2 ∈ L1(π) is constant.

Proof. We know from (3.3) that t 7→ |vt|2 ∈ L1(π) is continuous. Hence the choice w = v in
Proposition 3.1.9 tells that such map is absolutely continuous with derivative given by

d

dt
|vt|2 = 2〈Dπvt, vt〉 = 0, a.e. t.

This is sufficient to conclude.

Linearity and norm preservation imply uniqueness:

Corollary 3.2.3 (Uniqueness of parallel transport). Let π be a regular plan and v1, v2 two parallel
transports along it such that for some t0 ∈ [0, 1] it holds v1,t0 = v2,t0. Then v1 = v2. In particular,
there is at most one parallel transport along π starting from any v̄ ∈ e∗0L

2(TX).

Proof. Since Dπ(v1− v2) = Dπv1−Dπv2 = 0, we have that v1− v2 is a parallel transport and by
assumption we know that |v1,t0 − v2,t0 | = 0 π-a.e.. Thus Proposition 3.2.2 above grants that for
every t ∈ [0, 1] it holds |v1,t − v2,t| = 0 π-a.e., i.e. that v1,t = v2,t.

3.3 Existence of the parallel transport in W 1,2(π)

In this section, we show an existence result of the parallel transport of an initial vector field
along a regular plan in the class W 1,2(π). In particular, we can show, by an abstract argument
of functional analysis, that for a given initial vector field V̄ ∈ e∗0L

2(TX) we can find a Borel
vector field t → Vt along a regular plan π such that V ∈ W 1,2(π), (DπV )t = 0 for a.e. t, and
satisfies the initial condition in an appropriate sense. We use in this section a vanishing viscosity
approach: we approximate our problem with a sequence of problems that are coercive; on this
class of problems we can apply a variant of Lax–Milgram lemma; thanks to compactness, we can
pass to the limit and obtain a solution to our problem. More precisely, the form of Lax–Milgram
lemma is the following one (taken from [15]).
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Lemma 3.3.1 (Lions). Let E and H be a normed and a Hilbert space, respectively. Assume that
E is continuously embedded in H, with ‖v‖H ≤ ‖v‖E for every v ∈ E. Let B : H × E → R be
a bilinear form such that B(·, v) is continuous for every v ∈ E. If B is coercive, namely there
exists c > 0 such that B(v, v) ≥ c‖v‖2E for every v ∈ E, then for all l ∈ E′ there exists h ∈ H
such that

B(h, v) = l(v) for every v ∈ E

and

‖h‖H ≤
‖l‖E′
c

. (3.7)

We introduce the following class of approximations. For a given ε, we solve in a distributional
sense the partial differential equation:

(DπV )t = ε(−Vt + (D2
πV )t), (3.8)

looking for a solution in H 1,2(π).

Definition 3.3.2 (Parallel transport in W 1,2(π)). Let (X, d,m) be an RCD(K,∞) space and π
a regular plan on X. Given V̄ ∈ e∗0L

2(TX) we say that V ∈ W 1,2(π) is a parallel transport in
W 1,2(π) of V̄ along π if DπV = 0 and for every Z ∈ TestVF(π)

R(Z)0 =

∫
〈V̄ , Z0〉dπ, (3.9)

where we denote by t 7→ R(Z)t the absolutely continuous representative of t 7→
∫
〈Vt, Zt〉dπ.

Theorem 3.3.3 (Existence of PT in W 1,2(π)). Let (X, d,m) be an RCD(K,∞) space and π a
regular plan on X. Let V̄ ∈ e∗0L

2(TX) be given. Then there exists V ∈ W 1,2(π) that is a parallel
transport in W 1,2(π) of V̄ along π.

Proof. Fix ε ∈ (0, 1/2). Consider the Hilbert space H :=
(
H 1,2(π), ‖ · ‖H 1,2(π)

)
. Define also

E :=
{
Z ∈ TestVF(π)

∣∣ spt(Z) ⊆ [0, 1)
}
⊆H 1,2(π),

‖Z‖E :=
(
‖Z0‖2e∗0L2(TX) + ‖Z‖2H

)1/2
for every Z ∈ E.

Clearly, ‖Z‖H ≤ ‖Z‖E for every Z ∈ E. Now let us define B : H × E → R and ` : E → R as

B(V,Z) :=

∫ 1

0

∫
−〈Vt,DπZt〉+ ε 〈Vt, Zt〉+ ε 〈DπVt,DπZt〉 dπ dt,

`(Z) :=

∫
〈V̄ , Z0〉 dπ,

respectively. The map B is bilinear by construction. Moreover, for some constant C > 0 we
have that

∣∣B(V,Z)
∣∣ ≤ C ‖V ‖H ‖Z‖H for every V ∈ H and Z ∈ E, thus in particular B(·, Z) is

continuous for any Z ∈ E. The Leibniz rule grants that −2
∫ 1

0

∫
〈Zt,DπZt〉dπ dt =

∫
|Z0|2 dπ

holds for every Z ∈ E, whence coercivity of the map B follows: given any Z ∈ E, we have

B(Z,Z) =
1

2

∫
|Z0|2 dπ + ε

∫ 1

0

∫
|Zt|2 + |DπZt|2 dπ dt ≥ ε ‖Z‖2E .
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Furthermore, it holds that ` ∈ E′ and ‖`‖E′ ≤ ‖V̄ ‖e∗0L2(TX). Therefore, Lemma 3.3.1 yields the
existence of an element V ε ∈ H such that ‖V ε‖H ≤ ‖̄V ‖e∗0L2(TX)/ε and B(V ε, Z) = `(Z) for every
Z ∈ E, which explicitly reads as∫ 1

0

∫
−〈V ε

t ,DπZt〉+ ε 〈V ε
t , Zt〉+ ε 〈DπV ε

t ,DπZt〉 dπ dt =

∫
〈V̄ , Z0〉dπ (3.10)

for every Z ∈ E. Given any Z ∈ TestVF(π) and ϕ ∈ LIP([0, 1]) with spt(ϕ) ⊆ [0, 1), it holds
that t 7→ ϕ(t)Zt belongs to E and Dπ(ϕZ)t = ϕ′(t)Zt + ϕ(t) DπZt for a.e. t ∈ [0, 1]. Then

ϕ(0)

∫
〈V̄ , Z0〉dπ =

∫ 1

0
ϕ(t)

∫
−〈V ε

t ,DπZt〉+ ε 〈V ε
t , Zt〉+ ε 〈DπV ε

t ,DπZt〉 dπ dt

+

∫ 1

0
ϕ′(t)

∫
−〈V ε

t , Zt〉+ ε 〈DπV ε
t , Zt〉dπ dt.

(3.11)

Fix a Lebesgue point s ∈ (0, 1) of t 7→
∫
−〈V ε

t , Zt〉+ ε 〈DπV ε
t , Zt〉 dπ. Define ϕn as

ϕn(t) :=


1
−n(t− s) + 1
0

if t ∈ [0, s),
if t ∈ [s, s+ 1/n),
if t ∈ [s+ 1/n, 1],

for all n ∈ N, n > 1/(1 − s). Note that (ϕn)n ⊆ LIP([0, 1]) is a bounded sequence in L∞(0, 1),
spt(ϕn) ⊆ [0, 1) for all n, and ϕn → χ[0,s] pointwise as n→∞. Moreover, it holds that

∫ 1

0
ϕ′n(t)

∫
−〈V ε

t , Zt〉+ ε 〈DπV ε
t , Zt〉 dπ dt =n

∫ s+1/n

s

∫
〈V ε
t , Zt〉 − ε 〈DπV ε

t , Zt〉 dπ dt

→
∫
〈V ε
s , Zs〉 − ε 〈DπV ε

s , Zs〉 dπ as n→∞.

Therefore, by plugging ϕ = ϕn into (3.11) and letting n→∞, we deduce that∫
〈V̄ , Z0〉dπ =

∫ s

0

∫
−〈V ε

t ,DπZt〉+ ε 〈V ε
t , Zt〉+ ε 〈DπV ε

t ,DπZt〉 dπ dt

+

∫
〈V ε
s , Zs〉 − ε 〈DπV ε

s , Zs〉 dπ.
(3.12)

Given that V ε ∈H 1,2(π), we can find a sequence (Zn)n ⊆ TestVF(π) that W 1,2(π)-converges to
V ε. We start noticing that from Theorem 3.1.8 there exists a continuous injection i : H 1,2(π)→
C (π) such that ‖V ε − Zn‖C (π) ≤

√
2‖V ε − Zn‖W 1,2(π), which grants that

lim
n→∞

‖V ε
0 − Zn0 ‖e∗0L2(TX) = 0.

Therefore, it follows that

lim
n→∞

∫
〈V̄ , Zn0 〉dπ =

∫
〈V̄ , V ε

0 〉 dπ.
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By plugging Z = Zn into (3.12), letting n→∞, and using the Leibniz rule in H 1,2(π), we get∫
〈V̄ , V ε

0 〉 dπ =

∫ s

0

∫
−〈V ε

t ,DπV
ε
t 〉+ ε |V ε

t |2 + ε |DπV ε
t |2 dπ dt+

∫
|V ε
s |2 − ε 〈DπV ε

s , V
ε
s 〉dπ

≥
∫ s

0

∫
−〈V ε

t ,DπV
ε
t 〉dπ dt+

∫
|V ε
s |2 − ε 〈DπV ε

s , V
ε
s 〉 dπ

= −1

2

∫
|V ε
s |2 dπ +

1

2

∫
|V ε

0 |2 dπ +

∫
|V ε
s |2 − ε 〈DπV ε

s , V
ε
s 〉 dπ

=
1

2

∫
|V ε
s |2 dπ +

1

2

∫
|V ε

0 |2 dπ − ε 〈DπV ε
s , V

ε
s 〉dπ.

Since 1
2

∫
|V ε

0 |2 dπ −
∫
〈V̄ , V ε

0 〉dπ = 1
2

∫
|V̄ − V ε

0 |2 dπ − 1
2

∫
|V̄ |2 dπ, we can rewrite the former

expression as

1

2

∫
|V̄ − V ε

0 |2 dπ − 1

2

∫
|V̄ |2 dπ ≤ ε

∫
〈DπV ε

s , V
ε
s 〉 dπ −

1

2

∫
|V ε
s |2 dπ.

Therefore, we obtain that

1

2

∫
|V ε
s |2 dπ ≤ 1

2

∫
|V ε
s |2 dπ +

1

2

∫
|V̄ − V ε

0 |2 dπ ≤ 1

2

∫
|V̄ |2 dπ + ε

∫
〈DπV ε

s , V
ε
s 〉 dπ.

By integrating the above inequality over the interval [0, 1], multiplying by 2, and then applying

Young’s inequality ab ≤ εa2 + b2

4ε , we infer that

∫ 1

0

∫
|V ε
s |2 dπ ds ≤

∫
|V̄ |2 dπ + 2ε

∫ 1

0

∫
〈DπV ε

s , V
ε
s 〉dπ ds

≤
∫
|V̄ |2 dπ + 2ε2

∫ 1

0

∫
|DπV ε

s |2 dπ ds+
1

2

∫ 1

0

∫
|V ε
s |2 dπ ds,

whence accordingly 1
2

∫ 1
0

∫
|V ε
s |2 dπ ds ≤

∫
|V̄ |2 dπ + 2ε2

∫ 1
0

∫
|DπV ε

s |2 dπ ds ≤ 3 ‖V̄ ‖2e∗0L2(TX). Ob-

serve also that {εV ε}ε∈(0,1/2) is bounded in H. Therefore, there exist V ∈ L 2(π), W ∈ H, and
a sequence εn ↘ 0, such that V εn ⇀ V weakly in L 2(π) and εnV

εn ⇀ W weakly in H. In
particular, it must hold that W = 0. Hence, by letting n→∞ in the identity∫ 1

0

∫
−〈V εn

t ,DπZt〉+ 〈εnV εn
t , Zt〉+ 〈Dπ(εnV

εn)t,DπZt〉 dπ dt =

∫
〈V̄ , Z0〉 dπ,

which holds for every n ∈ N and Z ∈ TestVFc(π) by (3.10), we can finally conclude that∫ 1
0

∫
〈Vt,DπZt〉dπ dt = 0 is satisfied for every Z ∈ TestVFc(π). This grants that V ∈ W 1,2(π)

and DπV = 0. Finally, let us prove (3.9). Fix any Z ∈ TestVF(π) and denote by t 7→ R(Z)t
the absolutely continuous representative of t 7→

∫
〈Vt, Zt〉dπ (that belongs to W 1,1(0, 1)). Write

(3.12) with ε = εn, integrate over s ∈ [0, 1], and then let n → ∞: by exploiting the weak
convergence V εn ⇀ V in L 2(π) (and by using the dominated convergence theorem), we obtain
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that ∫
〈V̄ , Z0〉dπ = −

∫ 1

0

∫ s

0

∫
〈Vt,DπZt〉dπ dt ds+

∫ 1

0

∫
〈Vs, Zs〉 dπ ds

= −
∫ 1

0

∫ s

0

(
d

dt
R(Z)t

)
dt ds+

∫ 1

0
R(Z)s ds

= −
∫ 1

0
R(Z)s −R(Z)0 ds+

∫ 1

0
R(Z)s ds = R(Z)0,

where we applied the Leibniz rule with one vector field in H 1,2(π) and the other in W 1,2(π).
Hence, the statement is achieved.
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Chapter 4

Functional analytic tools

In this section, we outline all the functional analytic tools developed in [32] in order to build
the theory of existence and uniqueness of parallel transport along ’a.e. integral curve’ in non
collapsed RCD(K,N) spaces.

4.1 Useful properties of Lagrangian flows

We continue the discussion about RLF associated to a time dependent vector field b and their
properties. Notice that the uniqueness statement and the very definition of RLF, imply the
following group(oid) property:

for every t, s, r ∈ [0, 1] we have F sr ◦ F rt = F st m− a.e.. (4.1)

It can be proved that for m-a.e. x the metric speed of the curve s 7→ F st (x) is exactly |bs|(F st (x)),
in particular, we have the uniform Lipschitz estimate: for every t, s1, s2 ∈ [0, 1] we have

d(F s2t (x), F s1t (x)) ≤ |s2 − s1|‖|b|‖L∞([0,1]×X), m− a.e. x ∈ X. (4.2)

A consequence of the continuity of s 7→ F st (x) and of the bounded compression property (2.13)
is that

f ∈ Lp(X) ⇒ [0, 1]2 3 (t, s) 7→ f ◦ F st ∈ Lp(X) is continuous, ∀p ∈ [1,∞). (4.3)

Indeed, the bounded compression property gives the uniform estimate

‖f ◦ F st ‖
p
Lp ≤ C‖f‖

p
Lp ∀t, s ∈ [0, 1], (4.4)

and the continuity of s 7→ F st (x) ensures that for f Lipschitz with bounded support s 7→ f ◦F st ∈
Lp is continuous for every t ∈ [0, 1]. From the density of such Lipschitz functions in Lp and (4.4)
we deduce that s 7→ f ◦F st ∈ Lp is continuous for every t ∈ [0, 1] and f ∈ Lp(X). Now notice that

‖f ◦ F s′t′ − f ◦ F st ‖Lp ≤ ‖f ◦ F s
′
t′ − f ◦ F st′‖Lp + ‖f ◦ F st′ − f ◦ F st ‖Lp

(by (4.4), (4.1)) ≤ C
1
p ‖f ◦ F s′s − f‖Lp + ‖(f ◦ F st ) ◦ F tt′ − f ◦ F st ‖Lp

(by (4.4), (4.1)) ≤ C
1
p ‖f ◦ F s′s − f‖Lp + C

1
p ‖f ◦ F st − (f ◦ F st ) ◦ F t′t ‖Lp

57



so that the claim (4.3) follows from what already proved.
In a similar way, if for some bounded set B ⊂ X we have that supp(bt) ⊂ B for a.e. t we have

that
f ∈ L0(X) ⇒ [0, 1]2 3 (t, s) 7→ f ◦ F st ∈ L0(X) is continuous. (4.5)

Indeed, recall that the topology of L0(X) is metrized by the distance

dL0(f, g) :=

∫
1 ∧ |f − g| dm′,

where m′ is any Borel probability measure with m � m′ � m. We thus pick m′ so that m′|B =
cm|B for some c > 0 and notice that the assumption on wt ensures that F st is the identity outside

B for every t, s ∈ [0, 1]. Hence the bounded compression property gives (F st )∗m
′ ≤ Cm′ for any

t, s and therefore, in analogy with (4.4), we have

dL0(f◦F st , g◦F st ) =

∫
1∧|f−g|◦F st dm′ =

∫
1∧|f−g|d(F st )∗m

′ ≤ C
∫

1∧|f−g|dm′ = CdL0(f, g)

and the claim (4.5) follows along the same lines as (4.3).
From (4.3) for p = 2 and by integrating (2.14) we see that

f ◦ F s2t − f ◦ F
s1
t =

∫ s2

s1

df(br) ◦ F rt dr m− a.e., ∀f ∈W 1,2(X) (4.6)

for any t, s1, s2 ∈ [0, 1] with s1 < s2, where the integral is intended in the pointwise a.e. sense (or,
equivalently, in the Bochner sense). It is then also clear that for a.e. s ∈ [0, 1] we have

lim
h→0

f ◦ F s+ht − f ◦ F st
h

= df(bs) ◦ F st , m− a.e., ∀f ∈W 1,2(X), (4.7)

the limit being in L2(X) and by usual maximal-type arguments it is not hard to see that the
exceptional set of times may be chosen independent of f ∈ W 1,2(X) (see e.g. the arguments in
Proposition 5.3.2).

We now turn to the main regularity estimates on Regular Lagrangian Flows as established in
[25] (see also the earlier [27]). We recall the definition of ap− lip in (1.16). We summarize here
in a more compact way the main estimates we need, that we already presented in the discussion
of Section 2.2 (extracted mainly from [25, Theorem 1.6, Proposition 3.3]).

Proposition 4.1.1. Let (X, d,m) be a ncRCD(K,N) space with K ∈ R, N < ∞, and (bt) ∈
L2([0, 1],W 1,2

C (TX)) be such that |bt|, div(bt) ∈ L∞([0, 1]×X) and for some x̄ ∈ X and R > 0 we
have supp(bt) ⊂ BR(x̄) for a.e. t ∈ [0, 1].

Then there exists a nonnegative function (gt) ∈ L2([0, 1], L2(X,m)) such that for any t, s ∈
[0, 1] we have

ap -lipF st (x) ≤ e
∫ t∨s
t∧s gr(F

r
t (x)) dr m− a.e. x ∈ X (4.8)

and, for every t ∈ [0, 1], a nonnegative function ḡt ∈ L2
loc(X,m) such that for any s ∈ [0, 1] we

have
d(F st (x), F st (y))

d(x, y)
≤ eḡt(x)+ḡt(y), ∀x, y ∈ X. (4.9)
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Proof. The estimate (4.9) for t ≤ s is the content of [25, Proposition 3.3], the case t ≥ s then
also follows noticing that s 7→ F 1−s

t is the Regular Lagrangian Flow of (−bt).
We pass to (4.8) and notice that [25, Theorem 1.6] states that for t, s ∈ [0, 1], t ≤ s, for m-a.e.

x ∈ X we have

e−
∫ s
t gr(F

r
t (x)) dr ≤ ap - lim

y→x

d(F st (y), F st (x))

d(y, x)
≤ ap - lim

y→x

d(F st (y), F st (x))

d(y, x)
≤ e

∫ s
t gr(F

r
t (x)) dr, (4.10)

where the functions gr satisfy the bound ‖gr‖L2 ≤ C(K,N,R)(‖|∇br|‖L2 + ‖div(br)‖L∞) (thus
from the integrability assumptions on (bt) the integrability of (gt) as in the statement follows).
In particular, this gives (4.8) for t ≤ s. For the case t ≥ s we assume for the moment that for
m-a.e. x we can establish the ‘change of variable formula’ marked with a star in the following
computation

ap - lim
y→x

d(F ts(y), F ts(x))

d(y, x)

∗
= ap - lim

w→F ts (x)

d(w,F ts(x))

d(F st (w), x)
=

1

ap - limw→F ts (x)
d(F st (w),x)
d(w,F ts (x))

.

Then (4.10) (that we apply with t, s swapped) gives

ap - lim
w→F ts (x)

d(F st (w), x)

d(w,F ts(x))
≤ e

∫ t
s gr(F

r
s (x)) dr m− a.e. x.

Writing x = F st (z) and keeping in mind the bounded compression property (2.13) and the group
property (4.1) we deduce that

ap - lim
w→z

d(F st (w), F st (z))

d(w, z)
≤ e

∫ t
s gr(F

r
t (z)) dr m− a.e. z,

which is (4.8) in the case t ≥ s. Thus it remains to prove that the starred identity in the above
holds for m-a.e. x ∈ X. By the very definition of ap - lim, this will follow if we show that for
m-a.e. x ∈ X we have that: for any A ⊂ X Borel we have that F ts(x) is a Lebesgue point of
A if and only if x is a Lebesgue point of (F ts)

−1(A). Since (4.9) ensures that F st and F ts are
Lusin–Lipschitz, (4.1) that they are one the essential inverse of the other and recalling (2.13), the
conclusion follows from Lemma 4.1.2 below.

Lemma 4.1.2. Let (X, d,m) be a locally doubling space, T, S : X → X Borel maps, Lusin–
Lipschitz, such that T ◦ S = Id and S ◦ T = Id m-a.e. and finally so that T∗m ≤ Cm and
S∗m ≤ Cm for some C > 0.

Then for m-a.e. x ∈ X the following holds: for any A ⊂ X Borel we have that T (x) is a
Lebesgue point of A if and only if x is a Lebesgue point of T−1(A).

Proof. The assumptions about essential invertibility and bounded compression give the existence
of X1, X2 ⊂ X Borel of full measure such that T, S are invertible bijections from X1 to X2

and vice versa, respectively. Also, from the Lusin–Lipschitz regularity we see that m-a.a. X1

can be covered by a countable number of Borel sets B such that T |B is Lipschitz and S|T (B)

is also Lipschitz. Fix such B, let L be a bound on the Lipschitz constants of T |B and S|T (B)

and let B′ ⊂ B be the set of x’s such that x is a Lebesgue point of B and T (x) is a Lebesgue
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point of T (B) = S−1(B) ∩X2. Clearly, m(B \ B′) = 0, so the conclusion will follow if we show
that any x ∈ B′ satisfies the required conditions. Thus fix x ∈ B′, let A ⊂ X be Borel and
r ∈ (0, 1). Assume that x is a Lebesgue point of T−1(A). Since T |B is L-Lipschitz, we have that

T (Br/L(x) ∩B) ⊂ Br(T (x)) ∩ T (B) and therefore

m
(
Br(T (x))

)
≥ m

(
Br(T (x)) ∩ T (B)

)
≥ m

(
T (Br/L(x) ∩B)

)
= m

(
S−1(Br/L(x) ∩B)

)
= S∗m

(
Br/L(x) ∩B

)
≥ C−1m

(
Br/L(x) ∩B

)
≥ C−1D−(2 log2(L)+1)m

(
BrL(x) ∩B

)
,

(4.11)

where D is the local doubling constant at x and we used the bound S∗m ≥ C−1m (which follows
taking S∗ on both sides of T∗m ≤ Cm). On the other hand we have

m
(
Br(T (x)) \A

)
≤ m

(
Br(T (x)) \ (A ∩ T (B))

)
= m

(
Br(T (x)) \ T (B)

)
+ m|T (B)

(
Br(T (x)) \A

)
and since we assumed T (x) to be a Lebesgue point for T (B), when we divide the first addend in
the rightmost side by m(Br(T (x))) and let r ↓ 0 it converges to 0. For the other addend we have
the estimate

m|T (B)

(
Br(T (x)) \A

)
≤ C(T∗m)|T (B)

(
Br(T (x)) \A

)
= Cm

(
T−1

(
T (B) ∩Br(T (x))

)
\ T−1(A)

)
= Cm

(
S
(
T (B) ∩Br(T (x))

)
\ T−1(A)

)
≤ Cm

(
BLr(x) \ T−1(A)

)
.

Thus recalling (4.11) we get

lim
r↓0

m
(
Br(T (x)) \A

)
m
(
Br(T (x))

) ≤ C2D2 log2(L)+1 lim
r↓0

m
(
BLr(x) \ T−1(A)

)
m(BLr(x))

m(BLr(x))

m
(
BLr(x) ∩B

) = 0,

having used the assumption that x is a Lebesgue point of B and T−1(A). This proves that T (x)
is a Lebesgue point of A. The converse implication is proved analogously.

Remark 4.1.3. The results in [25] are based on the slightly less stringent assumption that there
is an L2 control over only the symmetric part of the covariant derivative. We phrased the result in
this weaker formulation because in any case we will need a control on the full covariant derivative
later on (when discussing the properties of the convective derivative introduced in Definition
5.2.5).

Notice also that in Proposition 4.1.1 one needs to assume L2 integrability in time, rather than
the L1 integrability which is sufficient in Theorem 2.2.8. We shall therefore make this assumption
throughout the manuscript. In any case, notice that by a simple reparametrization argument one
can always reduce to the case of vector fields bounded in W 1,2

C at the only price of reparametrizing
the flow in time. �

It is clear from (4.9) that

for any c > 0 and t ∈ [0, 1] the restriction of F st to {ḡt ≤ c} is Lipschitz, uniformly in s ∈ [0, 1].
(4.12)
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4.2 Differential of Lusin–Lipschitz maps

In this section, inspired by some discussions in [55], [59] we develop a language for the differential
of a Lusin–Lipschitz and invertible map ϕ : X → X such that ϕ∗m ≤ Cm for some C > 0. The
results will be applied to the flow maps (F st ).

We start noticing that if f : X→ R is Lusin–Lipschitz and (Ej) is a Borel partition of m-a.a.
X such that f |Ej is Lipschitz for every j, then the formula

df :=
∑
j∈N

χEjdgj , where gj ∈ LIP(X) is equal to f on Ej for every j

defines an element of L0(TX) that, by locality of the differential, is independent of the particular
functions gj and Borel sets Ej as above. We shall refer to df as the differential of f and notice
that this definition poses no ambiguity as, again by locality, for f Sobolev and Lusin–Lipschitz
the definition above produces the same differential of f as defined in [55].

We then notice the following simple lemma.

Lemma 4.2.1. Let (X, d,m) be locally uniformly doubling. Let (Y, dY) be a complete space and
ϕ : X → Y a Lusin–Lipschitz map. Let (Ei)i∈N be a Borel partition of X up to m-null sets such
that ϕ|Ei is a Lipschitz map for every i ∈ N. Then

ap -lipϕ =
∞∑
i=1

χEi lip(ϕ|Ei) m− a.e.. (4.13)

Proof. Let i ∈ N be fixed. Let x ∈ Ei be a density point of Ei; recall that m-a.e. point of Ei
has this property. As observed, e.g., in the paragraph following [65, Eq. (2.6)], the quantity
ap -lipϕ(x) is independent of the behaviour of ϕ outside Ei. Therefore, [65, Proposition 2.5]
grants that ap -lipϕ(x) = lip(ϕ|Ei)(x), whence (4.13) follows.

We come to the definition of differential of a Lusin–Lipschitz map. In what follows, it will be
useful to notice that if ϕ : X → Y is Lusin–Lipschitz with ϕ∗mX � mY and f : Y → R is also
Lusin–Lipschitz, then f ◦ ϕ : X→ R is Lusin–Lipschitz as well. Indeed, let (Fi) (resp. (Ej)) be a
Borel partition of mY-a.a. Y (resp. mX-a.a. X) such that f |Fi (resp. ϕ|Ej ) is Lipschitz for every i

(resp. j). Then since ϕ∗mX � mY, we have that (Ej ∩ϕ−1(Fi)) is a Borel partition of mX-a.a. X
such that f ◦ ϕ|Ej∩ϕ−1(Fi)

is Lipschitz for every i, j.

In particular, the right hand side in formula (4.14) below makes sense.

Theorem 4.2.2 (Differential of a Lusin–Lipschitz map). Let (X, dX,mX), (Y, dY,mY) be metric
measure spaces. Suppose (X, dX) is geodesic, mX is locally uniformly doubling, and (Y, dY,mY) is
a PI space. Let ϕ : X→ Y be an essentially invertible Lusin–Lipschitz map such that ϕ∗mX � mY

and ϕ−1
∗ mY � mX, where ϕ−1 is an essential inverse of ϕ (that is uniquely defined up to mY-

negligible sets).
Then there exists a unique linear and continuous operator dϕ : L0(TX)→ L0(TY) such that

df
(
dϕ(v)

)
◦ ϕ = d(f ◦ ϕ)(v) holds mX-a.e. on X, (4.14)

for every v ∈ L0(TX) and f : Y → R Lusin–Lipschitz.
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Moreover, it holds that∣∣dϕ(v)
∣∣ ◦ ϕ ≤ ap -lipϕ |v| mX-a.e. on X, for every v ∈ L0(TX). (4.15)

Proof. For f : Y → R Lusin–Lipschitz and v ∈ L0(TX) we define Tv(f) ∈ L0(TY) as

Tv(f) :=
(
d(f ◦ ϕ)(v)

)
◦ ϕ−1

(notice that d(f ◦ ϕ)(v) is in L0(X), so the above defines a function in L0(Y) thanks to the
assumption ϕ−1

∗ mY � mX). Notice that since, as previously remarked, f ◦ ϕ is Lusin–Lipschitz,
the right hand side of the above is well defined. We claim that for any Borel partition (Ej)j of
mX-a.a. X such that ϕ|Ej is Lipschitz for all j ∈ N we have

|Tv(f)| ≤
(
|v|
∑
j∈N

lip(ϕ|Ej )χEj
)
◦ ϕ−1|df | mX − a.e.. (4.16)

To see this we start noticing that |Tv(f)| ≤ |v| ◦ϕ−1|d(f ◦ϕ)| ◦ϕ−1, so the claim will follow if we
show that

|d(f ◦ ϕ)| ≤ |df | ◦ ϕ
(∑
j∈N

lip(ϕ|Ej )χEj
)
. (4.17)

To see this, let (Fi) be a Borel partition of mY-a.a. Y such that f |Fi is Lipschitz for every i and

recall that (Ej ∩ϕ−1(Fi)) is a Borel partition of mX-a.a. X such that f ◦ϕ|Ej∩ϕ−1(Fi)
is Lipschitz

for every i, j. For every i, j ∈ N let hi : Y → R be Lipschitz and equal to f on Fi and gi,j : X→ R
be Lipschitz and equal to f ◦ ϕ on Ej ∩ ϕ−1(Fi).

Note that since mX is locally doubling we have lip(gi,j) = lip(gi,j |Ej∩ϕ−1(Fi)
) mX-a.e. on

Ej ∩ ϕ−1(Fi) (see e.g. [65]) and since (Y, dY,mY) is PI we have lip(hi) = |dhi| mY-a.e. on Y (see
[34]). Then mX-a.e. on Ej ∩ ϕ−1(Fi) we have

|d(f ◦ ϕ)| = |dgi,j | ≤ lip(gi,j) = lip(gi,j |Ej∩ϕ−1(Fi)
) = lip

(
(f ◦ ϕ)|Ej∩ϕ−1(Fi)

)
≤ lip(ϕ|Ej∩ϕ−1(Fi)

)lip(f |ϕ(Ej∩ϕ−1(Fi))
) ◦ ϕ ≤ lip(ϕ|Ej )lip(f |Fi) ◦ ϕ

≤ lip(ϕ|Ej )lip(hi) ◦ ϕ = lip(ϕ|Ej )|dhi| ◦ ϕ = lip(ϕ|Ej )|df | ◦ ϕ

whence (4.17) - and thus also (4.16) - follows. From (4.16) and the linearity of Tv it follows that
if df = df ′ on some Borel set E ⊂ X, then Tv(f) = Tv(f

′) on E as well. Therefore the operator
Lv : {differentials of Lusin–Lipschitz functions on Y} → L0(Y) defined by

Lv(df) := Tv(f)

is well defined and satisfies Lv(χEdf) = χELv(df). Also, since (4.16) holds for any partition
(Ej) as above, from (4.13) we see that

|Lv(df)| ≤
(
|v| ap -lipϕ

)
◦ ϕ−1 |df |. (4.18)

Now notice that W 1,2(Y) is reflexive (see [34]), thus LIP(Y) ∩ W 1,2(Y) is strongly dense in
W 1,2(Y) (see [3]), therefore L0(T ∗Y) is generated by

{
df : f ∈ LIP(Y)

}
and so the set
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{differentials of Lusin–Lipschitz functions on Y} is dense in L0(T ∗Y). Also, from (4.18) it is
easy to see (see also the arguments in Section 5.1 that lead to (4.60)) that Lv is uniformly con-
tinuous, hence it can be uniquely extended to a continuous map, still denoted Lv, from L0(T ∗Y)
to L0(Y) and this extension satisfies

|Lv(ω)| ≤
(
|v| ap -lipϕ

)
◦ ϕ−1 |ω| mY − a.e., ∀ω ∈ L0(T ∗Y). (4.19)

It is clear from the previous considerations that Lv is also L0(Y)-linear, and thus an element
of L0(T ∗Y)∗. We denote by dϕ(v) the element of L0(TY) corresponding to Lv ∈ L0(T ∗Y)∗, by
applying Riesz representation theorem for L0(m)-normed modules (Proposition 1.2.20).

It is clear that the map L0(TX) 3 v 7→ dϕ(v) ∈ L0(TY) is linear and that this assignment is
the only one satisfying (4.14). Finally, (4.15) follows from (4.19).

The pointwise norm |dϕ| ∈ L0(X) of the differential dϕ introduced in Theorem 4.2.2 is defined
as follows:

|dϕ| := m− ess sup
v∈L0(TX):
|v|≤1 mX-a.e.

∣∣dϕ(v)
∣∣ ◦ ϕ. (4.20)

Proposition 4.2.3 (Basic properties of the differential). With the same assumptions on X,Y, ϕ
as in Theorem 4.2.2 the following holds.

We have
|dϕ| ≤ ap -lip ϕ mX − a.e. (4.21)

and for v ∈ L0(TX) the bound

|dϕ(v)| ◦ ϕ ≤ |dϕ||v| mX − a.e.. (4.22)

Moreover, for f : Y → R Lusin–Lipschitz, the function f ◦ϕ is also Lusin–Lipschitz and we have∣∣d(f ◦ ϕ)
∣∣ ≤ |df | ◦ ϕ |dϕ|, mX − a.e.. (4.23)

Also, for v ∈ L0(TX) and h ∈ L0(X) we have the identity

dϕ(hv) = h ◦ ϕ−1 dϕ(v). (4.24)

Finally, if (Z, dZ,mZ) is another PI space and ψ : Y → Z is Lusin–Lipschitz, essentially invertible
and such that ψ∗mY � mZ, ψ−1

∗ mZ � mY, then ψ ◦ ϕ : X → Z is Lusin–Lipschitz and satisfies
the identity

d(ψ ◦ ϕ) = dψ ◦ dϕ (4.25)

and the bound ∣∣d(ψ ◦ ϕ)
∣∣ ≤ |dψ| ◦ ϕ |dϕ| mX − a.e.. (4.26)

Proof. The bound (4.21) follows directly from the definition and the estimate (4.15), while (4.24)
is a direct consequence of the defining property (4.14). For (4.22) we put v′ := |v|−1v, where
|v|−1 is intended to be 0 on {v = 0}, notice that |v′| ≤ 1 mX-a.e. and v = |v|v′, thus taking (4.24)
into account we get

|dϕ(v)| ◦ ϕ =
∣∣dϕ(|v|v′)

∣∣ ◦ ϕ = |v| |dϕ(v′)| ◦ ϕ ≤ |v| |dϕ| mX − a.e.,
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having used the definition of |dϕ| in the last inequality.
To prove (4.23) we notice that the Lusin–Lipschitz regularity of f ◦ϕ has already been estab-

lished before Theorem 4.2.2, then for every v ∈ L0(TX) we have

|d(f ◦ ϕ)(v)| (4.14)
= |df(dϕ(v))| ◦ ϕ ≤ |df | ◦ ϕ|dϕ(v)| ◦ ϕ

(4.22)

≤ |df | ◦ ϕ |dϕ| |v|

and (4.23) follows from the arbitrariness of v.
For the last claim, we notice that the fact that ψ ◦ ϕ is Lusin–Lipschitz can be proved as we

did for the function f ◦ ϕ before Theorem 4.2.2. Now notice that for f : Z→ R Lusin–Lipschitz,
the maps f ◦ ψ and f ◦ ψ ◦ ϕ are Lusin–Lipschitz, therefore for any v ∈ L0(TX) we have

df(dψ(dϕ(v))) ◦ (ψ ◦ ϕ)
(4.14)

= d(f ◦ ψ)(dϕ(v)) ◦ ϕ (4.14)
= d(f ◦ ψ ◦ ϕ)(v).

According to Theorem 4.2.2, this is sufficient to prove (4.25). Finally, let v ∈ L0(TX) and notice
that

|d(ψ ◦ ϕ)(v)| ◦ ψ ◦ ϕ (4.25)
= |dψ(dϕ(v))| ◦ ψ ◦ ϕ

(4.22)

≤
(
|dψ||dϕ(v)|

)
◦ ϕ

(4.22)

≤ |dψ| ◦ ϕ|dϕ||v|,

thus (4.26) follows from the very definition (4.20).

Remark 4.2.4. In [55] the concept of differential for a map ϕ between metric measure spaces
has been introduced under the assumptions that ϕ is Lipschitz, essentially invertible and such
that ϕ∗mX ≤ CmY and ϕ−1

∗ mY ≤ CmX for some C > 0 (in fact, the existence of the inverse was
not really needed in [55], but in the general case one has to work with pullback modules). In this
case, dϕ : L2(TX)→ L2(TY) was defined as the only linear continuous operator such that

df
(
dϕ(v)

)
= d(f ◦ ϕ)(v) ◦ ϕ−1 mY-a.e., for every f ∈W 1,2(Y) and v ∈ L2(TX). (4.27)

Then under the assumptions of Theorem 4.2.2 it is clear that the above defines the same object
as the one given by (4.14). Indeed, from (4.27) and the fact that Lipschitz functions are locally
Sobolev we see that (4.14) holds for f Lipschitz, and then by locality for f Lusin–Lipschitz.
Conversely, once we know (4.14) we have that (4.27) holds at least for f Lipschitz, and the fact
that it holds for f Sobolev follows from the same density arguments used in proving Theorem
4.2.2.

Finally, the fact that under the current assumptions dϕ maps L2(TX) to L2(TY) follows from
the bound (4.15) and ϕ∗mX ≤ CmY. �

Notice that under the assumptions of Proposition 4.1.1, we know from (4.12) that F st is Lusin–
Lipschitz, from (4.1) that it is essentially invertible, so that keeping into account the bounded
compression property (2.13) we see by Theorem 4.2.2 that the differential dF st of F st is a well
defined map from L0(TX) into itself.

For us, the following estimate is of crucial importance:

Proposition 4.2.5. With the same assumptions and notation as in Proposition 4.1.1, we have

|dF st | ◦ F tt′ ≤ exp
(∫ t∨s

t∧s
gr ◦ F rt′ dr

)
, m− a.e. ∀t′, t, s ∈ [0, 1]. (4.28)
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Proof. We have

|dF st |(F tt′(x))
(4.15)

≤ (ap -lipF st )(F tt′(x))
(4.8)

≤ e
∫ t∨s
t∧s gr◦F

r
t dr(F tt′(x))

(4.1)
= e

∫ t∨s
t∧s gr(F

r
t′ (x)) dr

for m-a.e. x ∈ X, having used the fact that (F tt′)∗m � m to justify the precomposition with F tt′
in the above.

4.3 Weighted Haj lasz–Sobolev space

In [70], a notion of Sobolev function defined over a metric measure space (in fact the first one)
was studied. We study here, with a similar approach, a space of functions which satisfy a weaker
condition.

Definition 4.3.1 (The space Hφ,R(X)). Let (X, d,m) be a metric measure space, R > 0 and
φ ∈ L0(X) non-negative be fixed. Put for brevity Fφ(x, y) := eφ(x)+φ(y). Given any f ∈ L2(X),
we say that a function G ∈ L2(X), G ≥ 0 is admissible for f provided there exists a m-negligible
Borel set N ⊆ X such that∣∣f(x)− f(y)

∣∣ ≤ Fφ(x, y)
(
G(x) +G(y)

)
d(x, y) for every x, y ∈ X \N, d(x, y) ≤ R. (4.29)

We call Aφ,R(f) the family of all admissible functions for f . Then the space Hφ,R(X) is given by

Hφ,R(X) :=
{
f ∈ L2(X)

∣∣ Aφ,R(f) 6= ∅
}
.

We say that Hφ,R(X) is the φ-weighted Haj lasz–Sobolev space on X at scale R and we endow it
with the norm

‖f‖Hφ,R(X) :=
√
‖f‖2

L2 + inf
G∈Aφ,R(f)

‖G‖2
L2 for every f ∈ Hφ,R(X). (4.30)

Given any function f ∈ Hφ,R(X), it is easy to see that Aφ,R(f) is convex and closed in L2(X),
thus it admits a unique element of minimal L2-norm, that we call the optimal function for f .

Proposition 4.3.2. (Hφ,R(X), ‖ · ‖Hφ,R(X)) is a Banach space. Moreover, if fn ⇀ f , Gn ⇀ G in

L2(X) and Gn ∈ Aφ,R(fn) for every n ∈ N, then G ∈ Aφ,R(f). Finally, we have

fn
L2

⇀ f ⇒ ‖f‖Hφ,R(X) ≤ lim
n→∞

‖fn‖Hφ,R(X) (4.31)

(where as customary ‖f‖Hφ,R is set to be +∞ if f /∈ Hφ,R(X)).

Proof. The triangle inequality follows from the implication ‘F ∈ Aφ,R(f), G ∈ Aφ,R(g) imply
F +G ∈ Aφ,R(f + g)’, which is easy to prove. The other properties of the norm are trivial.

We turn to the second statement and start noticing that by Mazur’s lemma we can find, for ev-

ery n ∈ N, non-negative coefficients {αnk}
N(n)
k=n with

∑N(n)
k=n αnk = 1 such that f̃n :=

∑N(n)
k=n αnkfk →

f and G̃n :=
∑N(n)

k=n αnkGk → G strongly in L2(X). It is clear from our first claim that
∑N(n)

k=n αnkGk ∈
Aφ,R

(∑N(n)
k=n αnkfk

)
for all n ∈ N. Possibly taking a further subsequence, we also have that f̃n → f

and G̃n → G pointwise m-a.e. respectively, whence by letting n → ∞ for every x, y outside of a
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m-null set in the inequality
∣∣f̃n(x)− f̃n(y)

∣∣ ≤ Fφ(x, y)
(
G̃n(x)+G̃n(y)

)
d(x, y), we get G ∈ Aφ,R(f),

as claimed.
Now the L2-lower semicontinuity of the Hφ,R-norm stated in (4.31) is clear: we can assume

that the lim is a finite limit, then we pickGn ∈ Aφ,R(fn) such that ‖fn‖2L2+‖Gn‖2L2 ≤ ‖fn‖2Hφ,R+ 1
n

and observe that up to passing to a subsequence, we have Gn ⇀ G in L2 for some G ∈ L2. Then
(4.31) follows by what already proved.

Finally, the completeness of Hφ,R(X) is now a standard consequence of (4.31): let (fn) be
Hφ,R(X)-Cauchy and f its L2-limit (which exists because the Hφ,R-norm is bigger than the L2-
norm and L2(m) is complete). Then we have

lim
n→∞

‖f − fn‖Hφ,R(X)

(4.31)

≤ lim
n→∞

lim
m→∞

‖fm − fn‖Hφ,R(X) = 0,

where in the last step we used the fact that (fn) is Hφ,R(X)-Cauchy.

The following is easily verified:

Proposition 4.3.3. Every f ∈ Hφ,R(X) has the Lusin–Lipschitz property and

|df | ≤ 2e2φG m− a.e.. (4.32)

Proof. Let f ∈ Hφ,R(X) and G ∈ Aφ,R(f) be fixed. Pick any m-null set N satisfying (4.29).
Given any a, b ∈ Q ∩ (0,∞), we define Ea,b := {φ ≤ a} ∩ {G ≤ b} \N . Then from (4.29) we see
that ∣∣f(x)− f(y)

∣∣ ≤ 2be2ad(x, y) for every x, y ∈ Ea,b with d(x, y) ≤ R,

proving that f |Ea,b is locally Lipschitz and that |df | ≤ 2be2a m-a.e. on Ea,b. The conclusion

follows by the arbitrariness of a, b.

Remark 4.3.4 (Weighted normed modules). Fix a Radon measure µ on (X, d) such that µ� m.
Denote by πµ : L0(m) → L0(µ) the the canonical projection map sending the m-a.e. equivalence
class of a Borel function to its µ-a.e. equivalence class. Given a L0(m)-normed L0(m)-module
M 0, we define

M 0
µ := M 0/ ∼µ, where v ∼µ w if and only if πµ(|v − w|) = 0 holds µ-a.e. on X. (4.33)

The resulting set M 0
µ can be endowed with a natural structure of L0(µ)-normed L0(µ)-module.

Moreover, given a L2(m)-normed L∞(m)-module M , we define

Mµ :=
{
v ∈M 0

µ : |v| ∈ L2(µ)
}
,

where M 0 stands for the L0(m)-completion of M . The space Mµ inherits a natural structure of
L2(µ)-normed L∞(µ)-module. One can readily check that

M is Hilbert =⇒ Mµ is Hilbert. (4.34)

When M is the cotangent module L2(T ∗X), we write L2(T ∗X, µ) in place of L2(T ∗X)µ. �

The following technical proposition will be of crucial importance in the study of the regularity
properties of s 7→ f ◦ F st that will be performed in Section 5.3:
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Proposition 4.3.5 (Closure of d on bounded subsets of Hφ,R(X)). Let (X, d,m) be an infinitesi-
mally Hilbertian metric measure space, φ ∈ L0(X) non-negative, and R > 0. Let (fn)n ⊂ Hφ,R(X)
be a bounded sequence such that fn → f in L2(X) and dfn → ω in L0(T ∗X), for some f ∈ L2(X)
and ω ∈ L0(T ∗X) respectively.

Then f ∈ Hφ,R(X) and ω = df .

Proof. The fact that f ∈ Hφ,R(X) (with ‖f‖Hφ,R(X) ≤ limn ‖fn‖Hφ,R(X)) follows from Proposi-

tion 4.3.2. To prove that ω = df , we start picking (Gn)n in L2(X) such that Gn ∈ Aφ,R(fn)
and ‖fn‖2L2(X) + ‖Gn‖2L2(X) ≤ ‖fn‖

2
Hφ,R(X) + 1/n for every n ∈ N. Then up to a not relabeled

subsequence, we have that Gn ⇀ G weakly in L2(m), for some G ∈ L2(X). We apply Mazur’s

lemma once again to find, for every n ∈ N, non-negative coefficients {αnk}
N(n)
k=n with

∑N(n)
k=n αnk = 1

such that G̃n :=
∑N(n)

k=n αnkGk → G strongly in L2(X). Putting f̃n :=
∑N(n)

k=n αnkfk it is clear that

f̃n → f in L2(X) and G̃n ∈ Aφ,R(f̃n) for all n ∈ N. We claim that df̃n ⇀ ω in L2(T ∗X, m̃), where
m̃ := e−4φm. To see this observe that (4.32) tells that

‖df‖L2(T ∗X,m̃) ≤ 2‖G‖L2(X,m) if G ∈ Aφ,R(f).

Thus from our assumptions it follows that (dfn) is a bounded sequence in L2(T ∗X, m̃), hence up
to a non-relabeled subsequence it converges weakly in such space to some ω̃; here, we are using
the fact that L2(T ∗X, m̃) is Hilbert and thus reflexive, cf. (4.34).

Since we also have dfn → ω in L0(T ∗X) it is clear that ω̃ = ω, showing in particular that the
weak limit ω̃ does not depend on the subsequence chosen. To get the claim notice that since the
sequence (df̃n) is made of convex combinations of the dfn’s, we also have that

df̃n ⇀ ω in L2(T ∗X, m̃). (4.35)

Possibly taking a further subsequence, we also have that
∑∞

n=1 ‖G̃n+1 − G̃n‖L2(X) < ∞, whence

H := G̃1 +
∑∞

n=1 |G̃n+1 − G̃n| belongs to L2(X,m). Since clearly G̃n ≤ H m-a.e. for any n ∈ N,
we deduce that H ∈ Aφ,R(f̃n) for every n ∈ N and thus we can find a m-null Borel set N ⊂ X
such that∣∣f̃n(x)−f̃n(y)

∣∣ ≤ Fφ(x, y)
(
H(x)+H(y)

)
d(x, y) for all n ∈ N and x, y ∈ X\N, with d(x, y) ≤ R.

(4.36)
Let (xj) ⊂ X be countable and dense and for j, k ∈ N let

Ej,k :=
(
BR/2(xj) ∩ {H ≤ k} ∩ {φ ≤ k}

)
\N.

Fix j, k ∈ N and notice that the bound (4.36) ensures that the functions f̃n are uniformly Lipschitz

on the bounded set Ej,k. Therefore, we can find a sequence (gj,kn ) ⊂ LIP(X) made of functions with

uniformly bounded support such that gj,kn = f̃n|Ej,k for every n ∈ N, and supn Lip(gj,kn ) < +∞.

This grants that (gj,kn ) is bounded in W 1,2(X, d,m), so that (up to a not relabeled subsequence)

by the continuity of d : W 1,2(X) → L2(T ∗X,m) ↪→ L2(T ∗X, m̃) we have gj,kn ⇀ gj,k weakly in

L2(X,m) and dgj,kn ⇀ dgj,k weakly in L2(T ∗X, m̃), for some gj,k ∈ W 1,2(X, d,m). In particular,
χEj,kdgj,kn ⇀ χEj,kdgj,k weakly in L2(T ∗X, m̃) and since the construction ensures that gj,k = f

m-a.e. on Ej,k, we also know that dgj,k = df on Ej,k and, similarly, that dgj,kn = df̃n on Ej,k
for every n ∈ N. We thus proved that χEj,kdf̃n ⇀ χEj,kdf weakly in L2(T ∗X, m̃), which coupled
with (4.35) implies χEj,kdf = χEj,kω. Since the sets Ej,k cover m-a.a. X, by the arbitrariness of
j, k this is sufficient to conclude that df = ω, as desired.
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4.4 Integration of module-valued maps and related topics

The goal of this section is to study integration (and differentiation) of maps with values in a
Hilbert module H . We shall mostly apply this theory to the case H = L0(TX) in order to
study the module W 1,2

fix([0, 1], L0(TX)) (see Definition 5.2.4). From the conceptual point of view,
the most important result here is perhaps the Hille-like Theorem 4.4.9 below, that we will use
in conjunction with the closure result for the differential of functions in Hφ,R(X) in Proposition
4.3.5.

We shall work with maps on [0, 1] with values in Hilbert modules, but several parts of the
discussion below can be adapted to more general settings.

Before coming to general module-valued maps, we consider the case of maps taking values
into L0(X). Recall that the topology of L0(X) is metrized by the complete and separable distance

dL0(f, g) :=

∫
1 ∧ |f − g| dm′,

where m′ ∈P(X) is any Borel probability measure having the same negligible sets of m. Let us fix
such m′, and thus the distance dL0 : the actual choice of m′ does not matter, but in establishing
some inequalities it is useful to have it fixed (and for convenience we shall add some further
requirement to m′ in Section 5.1).

Definition 4.4.1 (Some spaces of functions). We shall consider:

i) For p ∈ [1,∞] the space Lp([0, 1], L0(X)) ⊂ L0([0, 1], L0(X)) is the collection of functions
(ft) such that for m-a.e. x the function t 7→ ft(x) is in Lp(0, 1).

ii) The space W 1,2([0, 1], L0(X)) ⊂ L0([0, 1], L0(X)) is the collection of functions (ft) such that
for m-a.e. x the function t 7→ ft(x) is in W 1,2(0, 1).

iii) The space AC2([0, 1], L0(X)) ⊂ C([0, 1], L0(X)) is the collection of functions (ft) such that
for m-a.e. x the function t 7→ ft(x) is in W 1,2(0, 1).

Remark 4.4.2 (Comments on the notation). The notation L0(X, Lp([0, 1])) and L0(X,W 1,2([0, 1]))
would be more in line, as opposed to Lp([0, 1], L0(X)) and W 1,2([0, 1], L0(X)), with the standard
notation for Banach-valued maps: our choice is motivated by convenience in dealing with module-
valued curves, where we will speak of Lp([0, 1],H ) and W 1,2([0, 1],H ).

Also, notice that the way we defined it makes AC2([0, 1], L0(X)) different from the usual space
of absolutely continuous curves with values in the metric space L0(X) (and the same holds for
the space AC2([0, 1],H ) defined below).

Finally, let us stress that by C([0, 1], L0(X)) (and C([0, 1],H ) below) we intend the standard
space of continuous curves from [0, 1] to L0(X) equipped with the usual ‘sup’ distance. In partic-
ular, C([0, 1], L0(X)) has nothing to do with Borel collections of continuous functions t 7→ ft(x)
and is not contained in L∞([0, 1], L0(X)). �

For (ft) ∈ L0([0, 1], L0(X)) and p ∈ [1,∞] we define (up to equality for m-a.e. x) the map

|(ft)|Lp(x) := ‖f·(x)‖Lp(0,1)
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and similarly
|(ft)|W 1,2(x) := ‖f·(x)‖W 1,2(0,1).

Then clearly Lp([0, 1], L0(X)) (resp. W 1,2([0, 1], L0(X))) is the subspace of L0([0, 1], L0(X)) made
of those functions for which |(ft)|Lp (resp. |(ft)|W 1,2) is finite m-a.e.. In particular, the distances

dLp
(
(ft), (gt)

)
:= dL0

(
|(ft − gt)|Lp , 0

)
and dW 1,2

(
(ft), (gt)

)
:= dL0

(
|(ft − gt)|W 1,2 , 0

)
are well defined on Lp([0, 1], L0(X)) and W 1,2([0, 1], L0(X)) respectively. It is then easy to see that
Lp([0, 1], L0(X)) andW 1,2([0, 1], L0(X)) are L0(X)-normed modules when equipped with the above
pointwise norms and with the product g(t 7→ ft) := (t 7→ gft). Here the only possibly non-trivial
claim is completeness: this follows from the completeness of L0([0, 1], L0(X)) ∼ L0([0, 1]×X) and
the lower semicontinuity of Lp/W 1,2-norms w.r.t. convergence a.e.. Indeed, the inequality∫∫ 1

0
|ft − gt|(x) ∧ 1 dt dm(x) =

∫
1 ∧

( ∫ 1

0
1 ∧ |ft − gt|(x) dt

)
dm(x) ≤

∫
1 ∧ |(ft − gt)|Lp dm

shows that if (fnt ) ⊂ Lp([0, 1], L0(X)) is dLp-Cauchy, then it is also Cauchy in L0([0, 1]× X) and
thus converges to some (ft) in such space. Thus some subsequence (fnkt ) converges (m×L1)-a.e.,
and thus for m-a.e. x ∈ X we have that fnkt (x) → ft(x) for a.e. t ∈ [0, 1]. Then Fatou’s theorem
implies that |(fm − f)|Lp ≤ limk |(fm − fnk)|Lp m-a.e. and thus

dLp
(
(ft), (f

m
t )
)

=

∫
1∧|(ft−fmt )|Lp dm ≤ lim

k→∞

∫
1∧|(fnkt −fmt )|Lp dm = lim

k→∞
dLp
(
(fnkt ), (fmt )

)
,

so that completeness follows letting m→∞ and recalling that (fnt ) is dLp-Cauchy. The argument
for W 1,2([0, 1], L0(X)) is analogous.

The space AC2([0, 1], L0(X)) is complete w.r.t. the distance

dAC2

(
(ft), (gt)

)
:= dW 1,2

(
(ft), (gt)

)
+ sup
t∈[0,1]

dL0(ft, gt),

as it is trivial to check. It is an algebraic module over L0(X) with respect to the operation
g(t 7→ ft) = t 7→ gft, but it does not have the structure of a normed L0(X) module. The same
holds for C([0, 1], L0(X)).

For (ft) ∈ L1([0, 1], L0(X)) and A ⊂ [0, 1] Borel, Fubini’s theorem ensures that the function( ∫
A
ft dt

)
(x) :=

∫
A
ft(x) dt

is a well-defined element of L0(X) and it is clear that∣∣ ∫
A
ft dt

∣∣ ≤ ∫
A
|ft| dt m− a.e..

In particular, for any (ft) ∈ L1([0, 1], L0(X)) and t, s ∈ [0, 1], t < s we have

∣∣ ∫ s

0
fr dr −

∫ t

0
fr dr

∣∣ ≤ ∫ s

t
|fr| dr, m− a.e.,
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showing that t 7→
∫ t

0 fr dr is continuous w.r.t. m-a.e. convergence and thus also w.r.t. L0(X)-
convergence.

Now notice that since the map assigning to a function in the classical space W 1,2(0, 1) its
distributional derivative in L2([0, 1]) is continuous, we have that for (ft) ∈ W 1,2([0, 1], L0(X))
the pointwisely defined distributional derivative, that we shall denote by (ḟt), is an element of
L2([0, 1], L0(X)). It is also clear by comparison with the classical case that

(ft) ∈W 1,2([0, 1], L0(X)) ⇔ ∃(gt) ∈ L2([0, 1], L0(X)) such that ∀h ∈ (0, 1) we have

ft+h − ft =

∫ t+h

t
gr dr for a.e. t ∈ [0, 1− h] and in this case ḟt = gt, a.e. t,

(4.37)

where the identity between functions are intended m-a.e.. Similarly, the continuity in t, s of∫ s
t gr dr gives

(ft) ∈ AC2([0, 1], L0(X)) ⇔ ∃(gt) ∈ L2([0, 1], L0(X)) such that

fs − ft =

∫ s

t
gr dr ∀t, s ∈ [0, 1], t < s and in this case ḟt = gt, a.e. t.

(4.38)

Also, still by looking at the classical one dimensional case, we have the following characterization
of functions in W 1,2([0, 1], L0(X)):

(ft) ∈W 1,2([0, 1], L0(X)) ⇔ ∃(gt) ∈ L2([0, 1], L0(X)) such that

|fs − ft| ≤
∫ s

t
gr dr for a.e. t, s ∈ [0, 1], t < s and in this case |ḟt| ≤ gt, a.e. t,

(4.39)

where again the inequalities between functions are intended m-a.e.. We also notice the existence
of a unique continuous representative of elements in W 1,2([0, 1], L0(X)):

for any (ft) ∈W 1,2([0, 1], L0(X)) there is a unique (f̄t) ∈ AC2([0, 1], L0(X))

such that ft = f̄t for a.e. t, m− a.e..
(4.40)

Indeed, uniqueness is clear. For existence, we simply pick for m-a.e. x the continuous represen-
tative f̄·(x) of f·(x) ∈ W 1,2(0, 1): the fact that x 7→ f̄t(x) is Borel can be proved by building
upon the fact that the map from W 1,2(0, 1) to C([0, 1]) sending a Sobolev function to its contin-
uous representative is continuous. Then it is clear that t 7→ f̄t ∈ L0(X) is continuous w.r.t. a.e.
convergence, and thus w.r.t. the L0-topology.

The existence of such representatives that are absolutely continuous for m-a.e. x can also be
used to prove that

(ft) ∈ AC2([0, 1], L0(X)) ⇒ lim
h→0

ft+h − ft
h

= ḟt, in L0(X), for a.e. t ∈ [0, 1]. (4.41)

Indeed, for f̄t as in the proof of (4.40), the differentiability of functions in AC2([0, 1],R) and Fu-

bini’s theorem ensure that
f̄t+h−f̄t

h → ḟt m-a.e. for a.e. t. Also, again Fubini’s theorem grants that
f̄t = ft m-a.e. for a.e. t, and since (ft), (f̄t) are both in C([0, 1], L0(X)) (the first by assumption,
the second because by construction it is continuous w.r.t. m-a.e. convergence), we deduce that
f̄t = ft m-a.e. for every t ∈ [0, 1], thus (4.41) follows.

We conclude the discussion about the space W 1,2([0, 1], L0(X)) with two simple results: the
first concerns stability property and the second is a sort of density criterion.
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Proposition 4.4.3. Let (fnt ) ∈W 1,2([0, 1], L0(X)), n ∈ N, be such that (fnt )→ (ft) and (ḟnt )→
(gt) in L0([0, 1], L0(X)) for some (ft), (gt) ∈ L0([0, 1], L0(X)). Assume that

lim
C→+∞

m(C) = 0, where m(C) := sup
n∈N

m′
(
{|(fnt )|W 1,2 ≥ C}

)
. (4.42)

Then (ft) ∈W 1,2([0, 1], L0(X)) and ḟt = gt m-a.e. for a.e. t.
Notice that in particular, condition (4.42) holds provided |(fnt )|W 1,2 ≤ gn m-a.e. for some

sequence (gn) having a limit in L0(X).

Proof. Up to pass to a non-relabeled subsequence we have that for m-a.e. x ∈ X the functions
t 7→ fnt (x), ḟnt (x) converge to t 7→ ft(x), gt(x) for a.e. t ∈ [0, 1]. By standard results about
Sobolev functions on (0, 1), to conclude that t 7→ ft(x) belongs to W 1,2(0, 1) with derivative
t 7→ gt(x) it is sufficient to prove that limn→∞ |(fnt )|W 1,2(x) < ∞. The fact that this holds
for m-a.e. x is a consequence of Borel–Cantelli’s lemma and the assumption (4.42). Indeed
limn→∞ |(fnt )|W 1,2(x) < C if and only if x ∈ ∩n∈N ∪i≥n {|(f it )|W 1,2 < C} and since the sequence
of sets n 7→ ∪i≥n{|(fnt )|W 1,2 < C} is decreasing we have

m′
( ⋂
n∈N

⋃
i≥n

{
|(f it )|W 1,2 < C

})
= inf

n∈N
m′
( ⋃
i≥n

{
|(f it )|W 1,2 < C

})
≥ inf

n∈N
m′
({
|(fnt )|W 1,2 < C

})
≥ 1−m(C).

Thus (4.42) ensures a.e. finiteness of the lim, as claimed.
For the last statement observe that condition (4.42) is satisfied by the sequence (gn) (rather

trivially by the definition of local convergence in measure and/or of distance dL0).

Proposition 4.4.4. Let A ⊂W 1,2([0, 1], L0(X)). Assume that A:

o) is a vector space,

i) is stable by the ‘restriction’ operation, i.e. (ft) ∈ A and E ⊂ X Borel imply that t 7→ χEft
is in A,

ii) is stable by multiplication by a C1 function, i.e. (ft) ∈ A and ϕ ∈ C1([0, 1]) imply that
t 7→ ϕ(t)ft is in A,

iii) is closed in the W 1,2([0, 1], L0(X))-topology,

iv) contains the constant functions, i.e. for any f ∈ L0(X) the map t 7→ f is in A.

Then A = W 1,2([0, 1], L0(X)).

Proof. Let (ϕn) ⊂ C1([0, 1]) be countable and dense in W 1,2(0, 1). Fix ε > 0 and let T :
W 1,2(0, 1) → W 1,2(0, 1) be the map sending f to ϕn, where n ∈ N is the least index j ∈ N
such that ‖f − ϕj‖W 1,2 ≤ ε. It is clear that T is well defined and Borel. Thus for (ft) ∈
W 1,2([0, 1], L0(X)) the curve t 7→ T (f)t defined by T (f)t(x) := T (f·(x))(t) is in W 1,2([0, 1], L0(X))
and, by construction, its dW 1,2-distance from (ft) is ≤ ε. As ε > 0 is arbitrary, by the closure
property (iii) to conclude it is sufficient to show that (T (f)t) ∈ A. To see this, for every n ∈ N
let En ⊂ X be the set of x’s such that T (f·)(x) = ϕn. Then we have T (f)t =

∑
n
χEnϕn(t)

(where the convergence of the partial sums is intended in the W 1,2([0, 1], L0(X))-topology) and
the properties (o), (i), (ii), (iv) trivially ensure that (T (f)t) ∈ A, as desired.
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We pass to the vector case. Fix a separable, Hilbertian L0-module H . Recall that the space
L0([0, 1],H ), that we shall sometimes abbreviate in L0

H , is the space of Borel maps from [0, 1]
to H identified up to equality for a.e. t. The space L0

H is complete w.r.t. the distance

dL0
H

(
(vt), (zt)

)
:=

∫ 1

0
1 ∧ dL0(|vt − zt|, 0) dt.

The space C([0, 1],H ) denotes, as usual, the space of continuous curves with values in H
equipped with the ‘sup’ distance.

We pass to the ‘vector versions’ of the spaces introduced in Definition 4.4.1:

Definition 4.4.5 (Some spaces of vectors). We shall denote by:

i) For p ∈ [1,∞] the space Lp([0, 1],H ) ⊂ L0([0, 1],H ), that we shall abbreviate in LpH , is
the collection of vector fields (vt) such that the quantity

|(vt)|LpH (x) := |(|vt|)|Lp(x) = ‖|v·|(x)‖Lp(0,1)

(which is well defined up to equality m-a.e.) is finite m-a.e..

ii) The space W 1,2([0, 1],H ) ⊂ L0([0, 1],H ) is the collection of vector fields (vt) for which
there is (v̇t) ∈ L2([0, 1],H ) such that for any z ∈ H the curve t 7→ 〈vt, z〉 belongs to
W 1,2([0, 1], L0(X)) with

∂t〈vt, z〉 = 〈v̇t, z〉 m− a.e., a.e. t.

For (vt) ∈W 1,2([0, 1],H ) we define

|(vt)|2W 1,2
H

:= |(vt)|2L2
H

+ |(v̇t)|2L2
H
∈ L0(X).

iii) The space AC2([0, 1],H ) ⊂ C([0, 1],H ) is the collection of vector fields (vt) for which there
is (v̇t) ∈ L2([0, 1],H ) such that for any z ∈H the curve t 7→ 〈vt, z〉 is in W 1,2([0, 1], L0(X))
(and thus in AC2([0, 1], L0(X))) with

∂t〈vt, z〉 = 〈v̇t, z〉 m− a.e., a.e. t.

The three spaces defined above are naturally endowed with the respective distances

dLpH

(
(vt), (zt)

)
:= dL0(|(vt − zt)|LpH , 0),

d
W 1,2

H

(
(vt), (zt)

)
:= dL0(|(vt − zt)|W 1,2

H
, 0),

dAC2
H

(
(vt), (zt)

)
:= dL0(|(vt − zt)|W 1,2

H
, 0) + sup

t∈[0,1]
dH (vt, zt).

These are complete distances, as can be seen arguing as for the respective spaces of functions (to
show that the derivative of the limit is the limit of the derivative in considering the spaces W 1,2

H
and AC2

H we use Proposition 4.4.3).

The spaces LpH ,W 1,2
H , AC2

H are also endowed with the product with L0(X) functions defined

as g(t 7→ vt) := (t 7→ gvt) and it is clear that LpH ,W 1,2
H are L0-normed modules.
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Let us turn to the definition of integral of a vector field (vt) in L1
H : for A ⊂ [0, 1] Borel we

want to define
∫
A vt dt as element of H . To this aim, notice that for any z ∈ H the function

〈z, vt〉 satisfies |〈z, vt〉| ≤ |z||vt| (m × L1)-a.e., thus for m-a.e. x ∈ X we have that t 7→ 〈z, vt〉(x)
is in L1(0, 1). Hence

∫
A 〈z, vt〉 dt is a well defined function in L0(X) and it is clear that the

assignment z 7→
∫
A 〈z, vt〉dt is linear and satisfies∣∣ ∫

A
〈z, vt〉 dt

∣∣ ≤ ∫
A
|〈z, vt〉|dt ≤ |z|

∫
A
|vt|dt ≤ |z||(vt)|L1

H
. (4.43)

This is sufficient to establish that H 3 z 7→
∫
A 〈z, vt〉dt ∈ L

0(X) is L0(X)-linear and continuous
and thus represented by - thanks to Riesz’s theorem for L0(m)-normed Hilbert modules (Propo-
sition 1.2.20)- an element of H that we shall denote by

∫
A vt dt. Notice that the bound (4.43)

gives ∣∣∣∣∫
A
vt dt

∣∣∣∣ ≤ ∫
A
|vt|dt, m− a.e.. (4.44)

This bound is sufficient to prove that

for (vt) ∈ L1
H the map t 7→

∫ t

0
vs ds ∈H is in C([0, 1],H ) (4.45)

(because |
∫ s

0 vr dr −
∫ t

0 vr dr| ≤
∫ s
t |vr|dr → 0 m-a.e. as s→ t).

Observe that a direct consequence of the definitions and of (4.37) is that for (vt) ∈W 1,2
H and

h ∈ (0, 1) it holds

vt+h − vt =

∫ t+h

t
v̇r dr, m− a.e., a.e. t ∈ [0, 1− h], (4.46)

and thus by (4.44) that |vt| ≤ |vs|+
∫ 1

0 |v̇r|dr is valid m-a.e. for a.e. t, s. Integrating this in s we
deduce that

|(vt)|L∞H ≤ |(vt)|L2
H

+ |(v̇t)|L1
H
≤
√

2|(vt)|W 1,2
H

m− a.e., (4.47)

showing in particular that W 1,2
H ⊂ L∞H . Notice that by Fubini’s theorem, an equivalent way of

stating this bound is by saying that for a.e. s ∈ [0, 1] we have |vs| ≤ 2|(vt)|W 1,2
H

m-a.e.. Now

observe that if (vt) ∈ AC2
H , from the continuity of the pointwise norm as map from H to L0(X)

we see that t 7→ |vt| ∈ L0(X) is continuous, and thus

(vt) ∈ AC2
H ⇒ |vt| ≤

√
2|(vs)|W 1,2

H
m− a.e., ∀t ∈ [0, 1]. (4.48)

Another direct consequence of the definitions and of (4.38) is

(vt) ∈ AC2([0, 1],H ) ⇔ ∃(zt) ∈ L2([0, 1],H ) such that

vs − vt =

∫ s

t
zr dr ∀t, s ∈ [0, 1], t < s and in this case v̇t = zt, m− a.e., a.e. t.

(4.49)

To further investigate the properties of W 1,2
H it will be convenient to notice the following fact

(reminiscent of the classical statement ‘weak convergence+convergence of norms ⇒ strong con-
vergence’):

〈vnt , z〉 → 〈vt, z〉, in L0([0, 1], L0(X)), ∀z ∈H
|(vnt )|L2

H
≤ |(vt)|L2

H
<∞, m− a.e.

}
⇒ (vnt )

L2
H→ (vt). (4.50)
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To see this, notice that for t 7→ zt ∈H piecewise constant, i.e. of the form zt =
∑N

i=1
χAi(t)z

i with
Ai ⊆ [0, 1] Borel and zi ∈H , the first in (4.50) easily gives 〈vnt , zt〉 → 〈vt, zt〉 in L0([0, 1], L0(X)).
Moreover, the second in (4.50) gives |〈vnt , zt〉|L2 ≤ |(vt)|L2

H
|(zt)|L∞H m-a.e. for every n ∈ N. Notice

that if fn(t)→ f(t) for a.e. t and supn ‖fn‖L2 <∞, then we have
∫ 1

0 f
n(t) dt→

∫ 1
0 f(t) dt: thanks

to the reflexivity of L2(0, 1), we have that (fn)n has a L2(0, 1)-weakly converging subsequence,
with limit g; the pointwise a.e. convergence fn → f ensures that g = f , thus the original
sequence converges to f weakly in L2(0, 1); in particular (by testing against the constant function
1 ∈ L2(0, 1)) we conclude that

∫ 1
0 f

n(t) dt→
∫ 1

0 f(t) dt, as desired.
Using this fact in conjunction with what already mentioned and recalling that a sequence

converges in L0 if and only if any subsequence has a further sub-subsequence converging a.e., we
deduce that

∫ 1
0 〈v

n
t , zt〉dt→

∫ 1
0 〈vt, zt〉 dt in L0(X). Hence

lim
n→∞

dL2
H

(
(vnt ), (zt)

)
= lim

n→∞
dL0

(√
|(vnt )|2

L2
H

+ |(zt)|2L2
H
− 2

∫ 1

0
〈vnt , zt〉dt, 0

)

≤ lim
n→∞

dL0

(√
|(vt)|2L2

H
+ |(zt)|2L2

H
− 2

∫ 1

0
〈vnt , zt〉 dt, 0

)

= dL0

(√
|(vt)|2L2

H
+ |(zt)|2L2

H
− 2

∫ 1

0
〈vt, zt〉dt, 0

)
= dL2

H

(
(vt), (zt)

)
.

Now notice that the set of (zt)’s considered is dense in L2
H (as it is easy to establish from the

definition), thus from

lim
n→∞

dL2
H

(
(vnt ), (vt)

)
≤ lim

n→∞
dL2

H

(
(vnt ), (zt)

)
+ dL2

H

(
(vt), (zt)

)
≤ 2dL2

H

(
(vt), (zt)

)
we conclude letting (zt)→ (vt) in L2

H .

Now let (vt) ∈ L2
H and for t, ε ∈ (0, 1) define vεt := ε−1

∫ t+ε
t vs ds, where vs is intended to be

0 if s > 1. We claim that

(vεt ) → (vt) in L2
H , as ε ↓ 0 (4.51)

and we shall prove this using (4.50). Let z ∈H and for m-a.e. x ∈ X apply Lebesgue’s theorem to
the L1(0, 1)-function t 7→ 〈z, vt〉(x) to conclude that for a.e. t we have 〈z, vεt 〉(x)→ 〈z, vt〉(x): this
proves the first condition in (4.50). The second follows from the inequality |vεt | ≤ ε−1

∫ t+ε
t |vs|ds

as it implies |(vεt )|L2
H
≤ |(vt)|L2

H
m-a.e. for every ε, so the conclusion follows from (4.50).

We also claim that

(vεt ) ∈W
1,2
H with v̇εt =

vt+ε − vt
ε

, a.e. t, (4.52)

where again vt+ε is intended to be 0 if t + ε > 1. To prove this, just notice that by the very
definition of W 1,2

H and of the corresponding notion of derivative, it is sufficient to consider the
scalar case H = L0(X). In turn, in this setting the conclusion is a direct consequence of the
analogous well-known result for real valued functions on [0, 1]. Notice that, in particular, from
(4.52) and (4.51) we deduce that

W 1,2
H is dense in L2

H . (4.53)
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Applying (4.51) to the derivative of a vector field in W 1,2
H by keeping (4.46) in mind we obtain

that
vt+h − vt

h
→ v̇t in L2

H as h→ 0, (4.54)

where
vt+h−vt

h is intended to be 0 if t+ h /∈ [0, 1].
A further consequence is that

(vt), (zt) ∈W 1,2
H (resp. AC2

H ) ⇒
(〈vt, zt〉) ∈W 1,2([0, 1], L0(X))

(resp. AC2([0, 1], L0(X)))

with d
dt〈vt, zt〉 = 〈v̇t, zt〉+ 〈vt, żt〉.

(4.55)

Indeed, the inequality∣∣〈vt+h, zt+h〉 − 〈vt, zt〉∣∣ ≤ ∣∣〈vt+h, zt+h − zt〉∣∣+
∣∣〈vt+h − vt, zt〉∣∣

(by (4.44), (4.46), (4.47)) ≤ |(vs)|L∞H

∫ t+h

t
|żr| dr + |(zs)|L∞H

∫ t+h

t
|v̇r|dr m− a.e.,

valid for every h ∈ (0, 1) and a.e. t ∈ [0, 1 − h], shows that (〈vt, zt〉) ∈ W 1,2([0, 1], L0(X)) (recall
(4.39)). Then letting h→ 0 in

〈vt+h, zt+h〉 − 〈vt, zt〉
h

= 〈vt, zt+h−zth 〉+ 〈vt+h−vth , zt〉+ h〈vt+h−vth ,
zt+h−zt

h 〉

and using (4.54) we see that the right-hand side goes to (〈v̇t, zt〉+ 〈vt, żt〉) in L0([0, 1], L0(X)). On
the other hand, applying (4.54) with H := L0(X) and (〈vt, zt〉) in place of (vt) we see that the
left-hand side converges to (∂t〈vt, zt〉) in L2([0, 1], L0(X)), thus also in L0([0, 1], L0(X)), so that
(4.55) is proved.

Arguing along the same lines one uses to prove that W 1,2(0, 1) ↪→ C([0, 1]), we can get
existence of continuous representatives of elements of W 1,2

H :

Proposition 4.4.6. Let (vt) ∈W 1,2
H . Then there is a unique (v̄t) ∈ C([0, 1],H ) with v̄t = vt for

a.e. t ∈ [0, 1].

Proof. For ε ∈ (0, 1) we define vεt := ε−1
∫ t+ε
t vs ds as before (here vs is intended to be 0 if s > 1).

Notice that

v̇εt
(4.52)

=
vt+ε − vt

ε

(4.46)
= ε−1

∫ t+ε

t
v̇s ds,

therefore by (4.51) we deduce that (vεt ), (v̇
ε
t ) converge to (vt), (v̇t) respectively in L2

H as ε ↓ 0. In

other words, (vεt )→ (vt) in W 1,2
H as ε ↓ 0.

Now we claim that for every ε ∈ (0, 1) the curve t 7→ vεt ∈ H is continuous. Indeed, for any
t, s ∈ [0, 1] with 0 ≤ s− t ≤ ε, it is clear that we have

|vεs − vεt | = ε−1
∣∣ ∫ s+ε

t+ε
vr dr +

∫ s

t
vr dr

∣∣ ≤ ε−1
( ∫ s+ε

t+ε
|vr| dr +

∫ s

t
|vr|dr

)
m− a.e.,

and that the right-hand side goes to 0 m-a.e. both as t ↑ s and as s ↓ t. Hence |vεs − vεt | → 0 in
the m-a.e. sense as s→ t, and thus a fortiori vεs → vεt in H .
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We now claim that the family of curves {(vεt )}ε∈(0,1) is Cauchy in C([0, 1],H ) as ε ↓ 0. Indeed,
for ε, η ∈ (0, 1) we have

sup
t∈[0,1]

dH (vεt , v
η
t ) = sup

t∈[0,1]
dL0(|vεt − v

η
t |, 0)

(4.48)

≤ dL0

(
|(vεt − v

η
t )|

W 1,2
H
, 0
)

= d
W 1,2

H

(
(vεt ), (v

η
t )
)
.

Since we proved that (vεt )
W 1,2

H→ (vt), we know that the right-hand side of the above goes to 0 as
ε, η ↓ 0, hence our claim is proved. Let (v̄t) be the limit of (vεt ) in C([0, 1],H ) as ε ↓ 0: since

we also know that (vεt )
L2

H→ (vt) and it is clear that C([0, 1],H ) continuously embeds in L2
H , we

conclude that (v̄t) and (vt) agree as elements of L2
H , i.e. that v̄t = vt for a.e. t, as desired.

We shall make use of the following simple density-like result:

Proposition 4.4.7. Let A ⊂W 1,2([0, 1],H ). Assume that A:

o) is a vector space,

i) is stable under ‘restriction’, i.e. if (vt) ∈ A and E ⊂ X is Borel, then t 7→ χEvt belongs to
A,

ii) is stable under multiplication by functions in C1([0, 1]), i.e. if (vt) ∈ A and ϕ ∈ C1([0, 1])
the map t 7→ ϕ(t)vt belongs to A,

iii) is closed in the W 1,2
H topology,

iv) contains the constant vector fields t 7→ v̄ for any given v̄ ∈H .

Then A = W 1,2([0, 1],H ).

Proof. Let (vt) ∈W 1,2
H be arbitrary, (en) ⊂H be a local Hilbert base (see [55, Theorem 1.4.11])

and for every N ∈ N let vNt :=
∑

n≤N 〈vt, en〉en and v̇Nt :=
∑

n≤N 〈v̇t, en〉en for a.e. t ∈ [0, 1].

By the properties of local Hilbert bases we have that |vNt | ≤ |vt| m-a.e. and vNt → vt in H as

N → ∞ for a.e. t and similarly for v̇Nt . By (4.50) this is sufficient to deduce that (vNt )
L2

H→ (vt)

and (v̇Nt )
L2

H→ (v̇t) as N →∞. Also, from the definition of W 1,2
H it is clear that (vNt ) ∈W 1,2

H with

derivative (v̇Nt ) for every N ∈ N, thus (vNt )
W 1,2

H→ (vt).
Therefore to conclude that (vt) ∈ A it is sufficient to prove that (vNt ) ∈ A for every N ∈ N.

Since we assumed A to be a vector space, to prove this it is sufficient to show that for any v ∈H ,
the collection of those (ft)’s in W 1,2

L0 such that t 7→ ftv is in A coincides with the whole W 1,2
L0 .

This is a direct consequence of Proposition 4.4.4 and our assumptions.

Our last goal for the section is the study of an analogue of Hille’s theorem in this context.
The classical proof of this fact for Bochner integral of Banach-valued maps uses the fact that
if vt belongs to some convex closed set for a.e. t, then so does its integral over [0, 1]. In our
setting, this is also true and the proof is based on the possibility of obtaining integration as limit
of properly chosen Riemann sums. For real valued functions on [0, 1], this last property is a
classical statement of Hahn [69] (see also [74]); the proof we give is closely related to the ones in
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[48, Theorem I-2.8] and [84, Lemma 4.4]. In the course of the proof we shall use properties like
additivity of the integral over disjoint sets and change-of-variable formulas that can be trivially
obtained from the very definition of integration.

Proposition 4.4.8. Let (vt) ∈ L1([0, 1],H ). Then for every sequence τk ↓ 0 there is a subse-
quence, not relabeled, such that for a.e. t ∈ [0, 1] we have

lim
k→∞

τk

[τ−1
k ]−1∑
i=0

vτk(t+i) =

∫ 1

0
vs ds in H ,

where [·] denotes the integer part.

In particular, if C ⊂H is convex and closed and vt ∈ C for a.e. t, then
∫ 1

0 vt dt ∈ C as well.

Proof. Fix a Borel representative of (vt) such that vt ∈ C for every t ∈ [0, 1] and notice that
1

[τ−1]

∑[τ−1]−1
i=0 vτ(t+i) is a convex combination of the vt’s, and thus belongs to C. Since τ [τ−1]→ 1

as τ ↓ 0, it is clear that the second statement is a consequence of the first one, so we focus on
this.

Put vt = 0 for t > 1 and notice that (4.45) gives that
∫ 1+τt
τt vs ds →

∫ 1
0 vs ds in H as τ ↓ 0

for every t ∈ [0, 1]. Thus to conclude it is sufficient to prove that

lim
τ↓0

∫ 1

0
dH (zτ,t, 0) dt = 0, where zτ,t := τ

[τ−1]−1∑
i=0

vτ(t+i) −
∫ 1+τt

τt
vs ds. (4.56)

To this aim we start claiming that

lim
τ↓0

∫ 1

0

∫ 1

0

∣∣vt − vt+τs∣∣ dt ds → 0, in L0(X) as τ ↓ 0. (4.57)

To prove this, we first notice that the truncations t 7→ χ{|vt|≤n}vt = ϕn(|vt|)vt, where ϕn : R→ R
is given by ϕn := χ[0,n], belong to L∞H ⊂ L2

H and trivially converge to (vt) in L1
H . Thus recalling

(4.53) we can find (wnt ) ⊂ W 1,2
H converging to (vt) in L1

H . Now for every n ∈ N put wnt = 0 for
t > 1 and notice that∫ 1

0

∫ 1

0

∣∣vt − vt+τs∣∣ dt ds ≤
∫ 1

0

∫ 1

0

∣∣wnt − wnt+τs∣∣ dt ds+

∫ 1

0

∫ 1

0

∣∣vt − wnt ∣∣+
∣∣vt+τs − wnt+τs∣∣ dt ds

≤
∫ 1

0

∫ 1

0

∫ t+τs

t
|ẇr|dr dtds︸ ︷︷ ︸

→0 m−a.e. as τ↓0

+2|(vt − wnt )|L1
H
.

Thus (4.57) follows by first letting τ ↓ 0 and then n → ∞ in the above (in fact the argument
easily gives that there is convergence m-a.e. in (4.57)).

77



Now recall that zτ,t is defined in (4.56) and notice that

∫ 1

0
|zτ,t| dt =

∫ 1

0

∣∣∣τ [τ−1]−1∑
i=0

(
vτ(t+i) − τ−1

∫ τ(t+i+1)

τ(t+i)
vs ds

)∣∣∣ dt
(
s = τ(t+ i+ s′)

)
=

∫ 1

0

∣∣∣τ [τ−1]−1∑
i=0

(
vτ(t+i) −

∫ 1

0
vτ(t+s′+i) ds′

)∣∣∣dt
(
by (4.44)

)
≤
∫ 1

0

∫ 1

0
τ

[τ−1]−1∑
i=0

∣∣vτ(t+i) − vτ(t+s′+i)

∣∣dt ds′

(
t′ = τ(t+ i)

)
=

∫ 1

0

∫ 1

0

∣∣vt′ − vt′+τs′∣∣ dt′ ds′ m− a.e..

(4.58)

Therefore∫ 1

0
dL0(|zτ,t|, 0) dt =

∫ 1

0

∫
1 ∧ |zτ,t| dm′ dt ≤

∫
1 ∧

(∫ 1

0
|zτ,t|dt

)
dm′

(4.57),(4.58)→ 0,

which is (4.56).

It is now easy to establish the desired version of Hille’s theorem:

Theorem 4.4.9 (A Hille-type result). Let H1,H2 be separable Hilbert L0(m)-modules, V ⊂H1

a vector subspace, ‖ · ‖V : V → R+ a norm on V and L : V → H2 a linear map. Let (vt) ∈
L1([0, 1],H1) and assume that:

i) vt ∈ V for a.e. t ∈ [0, 1] and t 7→ L(vt) is in L1([0, 1],H2),

ii) for any C > 0 the set Graph(L) ∩ ({v ∈ V : ‖v‖V ≤ C} ×H2) ⊂H1 ×H2 is closed,

iii)
∫ 1

0 ‖vt‖V dt <∞.

Then
∫ 1

0 vt dt ∈ V and L(
∫ 1

0 vt dt) =
∫ 1

0 L(vt) dt.

Proof. Start noticing that for any C > 0 we have

{t : ‖vt‖V ≤ C} =
{
t : (vt, L(vt)) ∈ Graph(L) ∩ ({v ∈ V : ‖v‖V ≤ C} ×H2)

}
,

thus from (ii) and the assumed Borel regularity of t 7→ vt, L(vt) we deduce that t 7→ ‖vt‖V is
Borel, hence assumption (iii) makes sense.

Let H := H1 ×H2 be equipped with the pointwise norm |(v, z)|2 := |v|2 + |z|2 m-a.e. for
every v ∈H1, z ∈H2. It is clear that H is a Hilbert L0(X)-normed module, when equipped with
the obvious distance and product with L0(X) functions defined componentwise. Also, directly by
definition of integral, testing with elements of the form (v, 0) and (0, z) we see that

∫ 1
0 (vt, zt) dt =

(
∫ 1

0 vt dt,
∫ 1

0 zt dt).
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Now observe that the assumptions (vt) ∈ L1
H1

and (L(vt)) ∈ L1
H2

together with the trivial

bound |(v, z)| ≤ |v|+ |z| show that t 7→ (vt, L(vt)) is in L1
H . We can therefore apply Proposition

4.4.8 above to t 7→ (vt, L(vt)) ∈H to find τk ↓ 0 so that for a.e. t ∈ [0, 1] we have

lim
k→∞

τk

[τ−1
k ]−1∑
i=0

(
vτk(t+i), L(vτk(t+i))

)
=
(∫ 1

0
vs ds,

∫ 1

0
L(vs) ds

)
in H . (4.59)

By the original result of Hahn (or, which is the same, by Proposition 4.4.8 with H := R, that is
a L0-normed module over a Dirac mass) we also know that for a.e. t ∈ [0, 1] we have

lim
k→∞

∥∥∥τk [τ−1
k ]−1∑
i=0

vτk(t+i)

∥∥∥
V
≤ lim

k→∞
τk

[τ−1
k ]−1∑
i=0

‖vτk(t+i)‖V =

∫ 1

0
‖vs‖V ds.

Hence there is t ∈ [0, 1] such that C := supk

∥∥∥τk∑[τ−1
k ]−1

i=0 vτk(t+i)

∥∥∥
V
<∞ and (4.59) holds. Thus

the argument of the limit in the left-hand side of (4.59) is in Graph(L) ∩ ({v ∈ V : ‖v‖V ≤
C} ×H2), and since by assumption this set is closed, it contains also the limit. In particular,
this means that the right-hand side is in Graph(L), which is the conclusion.

4.5 Linear and continuous operators on topological vector spaces

The topological vector spaces we are dealing with are metrized by translation invariant distances,
therefore linear and continuous operators are uniformly continuous. To see this, let d1, d2 be the
distances on two such spaces V1, V2 and T : V1 → V2 be the linear operator, then if d1(vn, zn)→ 0
we have d1(vn − zn, 0)→ 0 and thus d2(T (vn)− T (zn), 0) = d2(T (vn − zn), 0)→ 0 and therefore
d2(T (vn), T (zn))→ 0 (in fact this is not really due to distances, but to the fact that topological
vector spaces, much like topological groups, are uniform spaces).

This can be seen as a weaker counterpart to the fact that a linear operator between Banach
spaces is continuous if and only if it is Lipschitz.

We can apply this general principle to the product by a given function G ∈ L0(X), which is
a linear continuous map from L0(X) to itself, to deduce

dL0(Gf,Gg) ≤ Ω
(
dL0(f, g)

)
, ∀f, g ∈ L0(X). (4.60)

The same principle applied to the linear and continuous embedding of Lp(X) into L0(X) gives

dL0(f, g) ≤ Ω
(
‖f − g‖Lp

)
, ∀f, g ∈ Lp(X). (4.61)

Clearly, the map Ω appearing in the last inequality depends on the fixed function G and the
chosen exponent p, but since such dependence is not important in our discussion, to keep the
notation simpler we will not emphasize this fact. We shall often use the following simple lemma
in conjunction with the bound in (5.1) in the next section.
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Lemma 4.5.1. Let Gi ∈ L0(X), i ∈ I, be such that

lim
C→+∞

sup
i∈I

m′
(
{|Gi| ≥ C}

)
= 0. (4.62)

Then the operators L0(X) 3 f 7→ Gif ∈ L0(X) are uniformly continuous, i.e. for some modulus
of continuity Ω independent of i ∈ I we have

dL0(Gif,Gig) ≤ Ω
(
dL0(f, g)

)
, ∀f, g ∈ L0(X), i ∈ I. (4.63)

Proof. Fix ε ∈ (0, 1), let Cε > 1 be such that m′
(
{|Gi| ≥ Cε}

)
≤ ε for every i ∈ I and put

δ := ε2

Cε
. We shall prove that

dL0(f1, f2) ≤ δ ⇒ dL0(Gif1, Gif2) ≤ 3ε, ∀i ∈ I, (4.64)

that, by the arbitrariness of ε, gives the claim. Put for brevity f := |f1 − f2| and use Cavalieri’s
formula to get

δ ≥ dL0(f1, f2) =

∫ 1

0
m′({f > t}) dt ≥

∫ δ
ε

0
m′({f > t}) dt ≥ δ

εm
′({f > δ

ε

})
. (4.65)

On the other hand, the trivial bound∫ 1

0
m′({|Gi|f > t}) dt ≤ m′({|Gi|f > ε}) +

∫ ε

0
m′({|Gi|f > t}) dt ≤ m′({|Gi|f > ε}) + ε

and the inclusion {|Gi|f > ε} ⊂ {|Gi| > Cε} ∪ {f > ε
Cε
} give

dL0(Gif1, Gif2) =

∫ 1

0
m′({|Gi|f > t}) dt ≤ m′({|Gi| > Cε}) + m′({f > ε

Cε
}) + ε.

Since ε
Cε

= δ
ε , the choice of Cε and (4.65) give the claim (4.64) and thus (4.63).
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Chapter 5

An existence and uniqueness theory
in ncRCD(K,N) spaces

5.1 The setting

Let us fix once and for all the assumptions and the notations that we shall use in the next sections:
unless otherwise specified, our theorems will all be based on these:

- (X, d,m) is a ncRCD(K,N) space, K ∈ R, N ∈ N.

- (bt) ∈ L2([0, 1],W 1,2
C (TX)) is such that |bt|, |div(bt)| ∈ L∞([0, 1] × X) and for some x̄ ∈ X

and R > 0 we have supp(bt) ⊂ BR(x̄) for a.e. t ∈ [0, 1].

- (F st ) is the Regular Lagrangian Flow of (bt).

- (gt) ∈ L2([0, 1], L2(X)) is the function associated to (bt) as in Proposition 4.1.1.

- m′ is a Borel probability measure on X such that m � m′ � m and coinciding with cm on
BR(x̄) for some c > 0.

- The distance dL0 on the space L0(X) is given by

dL0(f, g) :=

∫
1 ∧ |f − g|dm′, ∀f, g ∈ L0(X).

Similarly the distance dL0(T ∗X) on L0(T ∗X) is defined as

dL0(T ∗X)(ω, η) :=

∫
1 ∧ |ω − η|dm′, ∀ω, η ∈ L0(T ∗X)

and analogously for the distance dL0(TX) on L0(TX).

- G is a non-negative function in L0(X) acting as ‘generic constant’. Its actual value may
change in the various instances where it appears, but it depends only on the structural data
(i.e. the space and the vector field (bt)), but not on the specific vector fields (vt), (Vt) we
shall work with later on.
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Occasionally, we will need to work with such ‘generic function’ depending on some additional
parameter (often a time variable). In this case we shall write Gi, i ∈ I, to emphasize such
dependence. In any case, whenever we do so we tacitly (or explicitly) assume that the Gi’s
are ‘uniformly small in L0’, i.e. it will always be intended that they satisfy

lim
C→+∞

sup
i∈I

m′
(
{|Gi| ≥ C}

)
= 0. (5.1)

- Ω : R+ → R+ is a generic modulus of continuity, i.e. a non-decreasing continuous function
such that Ω(z) ↓ 0 as z ↓ 0. Much like for the function G its actual value may change in
the various instances where it appears, but it depends only on the structural data of the
problem.

Notice that the choice of m′, the fact that the flow (F st ) has bounded compression, and the fact
that F st is the identity on the complement of supp(b), ensure that

(F st )∗m
′ ≤ Cm′, ∀t, s ∈ [0, 1], (5.2)

for some C > 0. In particular, this implies

C−1dL0(f, g) ≤ dL0(f ◦ F st , g ◦ F st ) ≤ CdL0(f, g), ∀t, s ∈ [0, 1], ∀f, g ∈ L0(X). (5.3)

We point out that the considerations and the statements of Section 4.5 apply.

It will be useful to notice that for (fs) ∈ L2([0, 1], L2(X)), from the bounded compression
property of the flow we deduce that (fs ◦ F st ) ∈ L2([0, 1], L2(X)) as well for any t ∈ [0, 1]. Thus
from Fubini’s theorem we deduce that

(fs) ∈ L2([0, 1], L2(X)) ⇒
∫ 1

0
|fr|2 ◦ F rt dr <∞, m− a.e., ∀t ∈ [0, 1]. (5.4)

In particular, applying this to fs := |∇bs| we deduce that∫ 1

0
|∇bt|2 ◦ F t0 dt ≤ G m− a.e., (5.5)

according to our convention on G described above. Similarly, from (5.4) applied to (gs), the
trivial inequality ea ≤ 1 + aeb valid for any 0 ≤ a ≤ b, and the estimate (4.28), we deduce the
key bound

|dF st | ◦ F tt′ ≤ 1 +Gt′

∫ t∨s

t∧s
gr ◦ F rt′ dr m− a.e., ∀t′, t, s ∈ [0, 1], (5.6)

where Gt′ := e
∫ 1
0 gr◦F

r
t′ dr. We claim that the functions Gt′ so defined satisfy the uniform bound

(5.1), so that our notation is justified according to what we declared at the beginning of the
section. To see this, notice that we have the uniform estimate∫ ∣∣∣ ∫ 1

0
gr ◦ F rt′ dr

∣∣∣2 dm ≤
∫ 1

0

∫
|gr|2 ◦ F rt′ dmdr

(2.13)

≤ C

∫∫ 1

0
|gr|2 dr dm, ∀t′ ∈ [0, 1],
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where C is the compressibility constant of F st ; thus Chebyshev’s inequality gives for every M > 0

m({Gt′ > M}) = m
({∣∣ ∫ 1

0
gr ◦ F rt′ dr

∣∣2 > | logM |2
})
≤
C
∫∫ 1

0 |gr|
2 dr dm

| logM |2
, ∀t′ ∈ [0, 1]

and by the absolute continuity of the integral it follows that

lim
M→+∞

sup
t′∈[0,1]

m′
(
{Gt′ ≥M}

)
= 0. (5.7)

Notice that (5.6) trivially implies the weaker, but still useful, bound

|dF st | ◦ F tt′ ≤ Gt′ m− a.e., ∀t′, t, s ∈ [0, 1], (5.8)

for some Gt′ ’s that still satisfy (5.1).

5.2 Time dependent vector fields at ‘fixed’ and ‘variable’ points

We have seen in Section 4.2 that for every t ∈ R the map F t0 admits a differential dF t0 : L0(TX)→
L0(TX). We now want to consider all these maps as t varies in [0, 1].

In dealing with composition with the flow maps, the following simple lemma will be useful:

Lemma 5.2.1. [0, 1]2 3 (t, s) 7→ fst ∈ L0(X) is continuous if and only if [0, 1]2 3 (t, s) 7→ f st ◦F st ∈
L0(X) is continuous.

Proof. Since (F st )−1 = F ts , it is sufficient to prove the ‘only if’. Thus suppose that t, s 7→ fst is
continuous in L0(X) and notice that

dL0

(
fs
′
t′ ◦ F s

′
t′ , f

s
t ◦ F st

)
≤ dL0

(
fs
′
t′ ◦ F s

′
t′ , f

s
t ◦ F s

′
t′
)

+ dL0

(
fst ◦ F s

′
t′ , f

s
t ◦ F st

)
≤ C dL0

(
f s
′
t′ , f

s
t

)
+ dL0

(
fst ◦ F s

′
t′ , f

s
t ◦ F st

)
having used the uniform bound (5.3). The conclusion follows recalling (4.5).

The regularity in time of dF st will be obtained by duality starting from the following result:

Lemma 5.2.2. Let f : X → R be Lusin–Lipschitz. Then [0, 1]2 3 (t, s) 7→ d(f ◦ F st ) ∈ L0(T ∗X)
is continuous.

Proof. We start claiming that for any f Lusin–Lipschitz we have

lim
s′→s

d(f ◦ F s′s )(v) = df(v) = lim
t′→t

d(f ◦ F tt′)(v), in L0(X), ∀v ∈ L0(TX), ∀t, s ∈ [0, 1]. (5.9)

We start with the first limit and notice that by definition of differential for Lusin–Lipschitz maps
we have d((χEf) ◦ F s′s ) = χE ◦ F s

′
s d(f ◦ F s′s ), thus taking into account (4.5) and using the fact

that the flow is the identity outside a bounded set, it is easy to see that the first in (5.9) will
follow in the general case if we prove it just for f Lipschitz. Thus let this be the case and
recall from (4.12) that there is a Borel partition (Ei) of m-a.a. X made of bounded sets such
that sups′∈[0,1] Lip(F s

′
s |Ei) < ∞ for every i ∈ N. Thus sups′∈[0,1] Lip((f ◦ F s′s )|Ei) < ∞ and by
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L0-linearity and continuity, the first in (5.9) will follow if we show that for any i ∈ N we have
χEid(f ◦ F s′s ) ⇀ df in the weak topology of L2(T ∗X) as s′ → s.

Let (s′n) ⊂ [0, 1] be converging to s and, for every n ∈ N∪ {∞}, let gn be uniformly Lipschitz

with uniformly bounded support such that gn|Ei = (f ◦ F s
′
n
s )|Ei (it is easy to see that they can

be found). Then (gn) is a bounded sequence in W 1,2(X), hence up to pass to a non-relabeled
subsequence we can assume that it weakly converges to some g ∈W 1,2(X). Clearly, g = f on Ei,
thus from the locality of the differential we see that

χEid(f ◦ F s′ns ) = χEidgn
L2(T ∗X)
⇀ χEidg = χEidf.

As this result does not depend on the subsequence chosen, the first in (5.9) follows.
We turn to the second and start noticing that arguing as for Lemma 5.2.1 above it is sufficient

to prove that

d(f ◦ F tt′)(v) ◦ F t′t → df(v) in L0(X), ∀v ∈ L0(TX), ∀t ∈ [0, 1]. (5.10)

Then taking into account the uniform bound

|d(f ◦ F tt′)(v) ◦ F t′t |
(4.23)

≤ |v| ◦ F t′t |df ||dF tt′ | ◦ F t
′
t

(5.8)

≤ Gt|v| ◦ F t
′
t |df |,

the fact that |v| ◦ F t′t → |v| in L0(X) as t′ → t (recall (4.5)), and the density of differentials of
Lusin–Lipschitz functions in L0(T ∗X) (already noticed in the proof of Theorem 4.2.2), we see
that to prove (5.10), and thus the second in (5.9), it is sufficient to prove that

〈d(f ◦ F tt′),dh〉 ◦ F t
′
t → 〈df,dh〉 in L0(X), ∀h : X→ R Lusin–Lipschitz, ∀t ∈ [0, 1]. (5.11)

Now we put for brevity ĝt
′
t :=

∫ t∧t′
t∨t′ gr ◦ F

r
t dr ∈ L0(X) and notice that, rather trivially, we have

lim
t′→t

ĝt
′
t = 0, in L0(X) (5.12)

(as for any sequence t′n → t we have m-a.e. convergence). The fact that (1 + a)−2 ≥ (1− a)2 for
any a ∈ R grants, together with (5.6), that

− |dF t′t |−2 ≤ −(1 +Gtĝ
t′
t )−2 ≤ −(1−Gtĝt

′
t )2. (5.13)

Also notice that (4.23) with f ◦ F tt′ in place of f and F t
′
t in place of ϕ gives |d(f ◦ F tt′)| ◦ F t

′
t ≥

|df ||dF t′t |−1. Similarly, one can show that |dh| ◦ F t′t ≥ |d(h ◦ F t′t )||dF t′t |−1. Using these bound in
conjunction with (4.23) gives

〈d(f ◦ F tt′),dh〉 ◦ F t
′
t = 1

2

[
|d(f ◦ F tt′ + h)|2 ◦ F t′t − (|d(f ◦ F tt′)|2 + |dh|2) ◦ F t′t

]
≤ 1

2

[
|d(f + h ◦ F t′t )|2 |dF tt′ |2 ◦ F t

′
t − |dF t

′
t |−2(|df |2 + |d(h ◦ F t′t )|2)

]
(by (5.6) and (5.13)) ≤ 1

2

[(
1 +Gtĝ

t′
t

)2|d(f + h ◦ F t′t )|2 − (1−Gtĝt
′
t )2(|df |2 + |d(h ◦ F t′t )|2)

]
=
(
1 +Gtĝ

t′
t

)2〈df, d(h ◦ F t′t )〉+ 2(|df |2 + |d(h ◦ F t′t )|2)Gtĝ
t′
t

≤
(
1 +Gtĝ

t′
t

)2〈df, d(h ◦ F t′t )〉+ 2(|df |2 + |dh|2 ◦ F t′t G2
t )Gtĝ

t′
t .
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Now notice that since we already proved the first in (5.9), as t′ → t we have that 〈df,d(h◦F t′t )〉 →
〈df, dh〉 in L0(X). Moreover, from (4.5), we have that |dh|2 ◦ F t′t → |dh|2 in L0(X) as t′ → t.
Thus taking (5.12) into account we just proved that(

〈d(f ◦ F tt′), dh〉 ◦ F t
′
t − 〈df, dh〉

)+ → 0 in L0(X).

A very similar argument gives that the negative part of the same quantity as above goes to 0 in
L0(X), hence the claim (5.11), and thus the second in (5.9), follows.

Now we claim that

lim
s′→s

d(f ◦ F s′s ) = df = lim
t′→t

d(f ◦ F tt′), in L0(T ∗X), ∀t, s ∈ [0, 1]. (5.14)

Indeed

|d(f ◦ F tt′)− df |2 ◦ F t′t ≤ |df |2|dF tt′ |2 ◦ F t
′
t + |df |2 ◦ F t′t − 2〈d(f ◦ F tt′),df〉 ◦ F t

′
t

(by (5.6)) ≤ |df |2
(
1 +Gt ĝ

t′
t

)2
+ |df |2 ◦ F t′t − 2〈d(f ◦ F tt′),df〉 ◦ F t

′
t

(by Lemma 5.2.1, (5.11), and (5.12)) → |df |2 + |df |2 − 2|df |2 = 0,

the convergence being in L0(X) as t′ → t. The second in (5.14) follows using again Lemma 5.2.1
to conclude that |d(f ◦ F tt′)− df |2 → 0 in L0(X). The first in (5.14) is proved analogously.

Now observe that from the group property (4.1) and the chain rule (4.25) we get

|d(f ◦ F s′t′ )− d(f ◦ F st )| ≤ |d(f ◦ F s′s ◦ F st′)− d(f ◦ F st′)|+ |d(f ◦ F st ◦ F tt′)− d(f ◦ F st )|

≤ |d(f ◦ F s′s )− df | ◦ F st′ |dF st′ |+ |d(f ◦ F st ◦ F tt′)− d(f ◦ F st )|

(by (5.8)) ≤ Gt′ |d(f ◦ F s′s )− df | ◦ F st′ + |d(f ◦ F st ◦ F tt′)− d(f ◦ F st )|.

Hence

dL0(T ∗X)(d(f ◦ F s′t′ ), d(f ◦ F st )) = dL0(|d(f ◦ F s′t′ )− d(f ◦ F st )|, 0)

≤ dL0(Gt′ |d(f ◦ F s′s )− df | ◦ F st′ , 0)

+ dL0(|d(f ◦ F st ◦ F tt′)− d(f ◦ F st )|, 0)

(by (5.7), Lemma 4.5.1 and (5.3)) ≤ Ω
(
dL0(|d(f ◦ F s′s )− df |, 0)

)
+ dL0(|d(f ◦ F st ◦ F tt′)− d(f ◦ F st )|, 0)

= Ω
(
dL0(T ∗X)(d(f ◦ F s′s ), df)

)
+ dL0(T ∗X)(d((f ◦ F st ) ◦ F tt′),d(f ◦ F st ))

and the conclusion follows from (5.14) and the fact that f ◦ F st is Lusin–Lipschitz.

We then have the following basic regularity result:

Proposition 5.2.3. Let (vt) ∈ C([0, 1], L0(TX)). Then t 7→ Vt := dF t0(vt) ∈ L0(TX) is also
continuous. Moreover, the assignment (vt) 7→ (Vt) from C([0, 1], L0(TX)) to itself is continuous,
invertible, with continuous inverse.

Similarly, if (vt) ∈ L0([0, 1], L0(TX)) the map t 7→ Vt := dF t0(vt) ∈ L0(TX) is an element of
L0([0, 1], L0(TX)) and the assignment (vt) 7→ (Vt) from L0([0, 1], L0(TX)) to itself is continuous,
invertible, with continuous inverse.
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Proof.
Step 1. We claim that

∀v ∈ L0(TX) the map [0, 1]2 3 (t, s) 7→ dF st (v) ∈ L0(TX) is continuous (5.15)

and we shall prove this by arguing as in Lemma 5.2.2 above. Fix v ∈ L0(TX). From Lemma 5.2.2
we see that for f Lusin–Lipschitz the map [0, 1]2 3 (t, s) 7→ d(f ◦ F st )(v) = df(dF st (v)) ◦ F st ∈
L0(X) is continuous. Taking into account Lemma 5.2.1 we deduce that also [0, 1]2 3 (t, s) 7→
df(dF st (v)) ∈ L0(X) is continuous. We now claim that

[0, 1]2 3 (t, s) 7→ 〈dF st (v), z〉 ∈ L0(X) is continuous for every z ∈ L0(TX) (5.16)

and since differentials of Lusin–Lipschitz maps are dense in L0(T ∗X), this follows by what already
established and the uniform estimate

dL0

(
〈dF st (v), z〉 , 〈dF st (v), z′〉

)
≤ dL0

(
|dF st (v)||z − z′|, 0

)
(by (4.22),(5.8)) ≤ dL0

(
Gt|v| ◦ F ts |z − z′|, 0

)
(by Lemma 4.5.1 and (5.7)) ≤ Ω

(
dL0

(
|v| ◦ F ts |z − z′|, 0

))
(by Lemma 4.5.1) ≤ Ω

(
dL0

(
|z − z′|, 0

))
,

valid for any t, s ∈ [0, 1] (the resulting modulus of continuity will depend on |v|, but this is not
an issue to get (5.16) - notice also that in applying Lemma 4.5.1 in the last step we used the fact
that {|v| ◦ F ts > c} = (F ts)

−1({|v| > c}) and (5.2)). Now we claim that

lim
s′→s

dF s
′
s (v) = lim

t′→t
dF tt′(v) = v in L0(TX). (5.17)

For t, t′ ∈ [0, 1] we put, as in Lemma 5.2.2 above, ĝt
′
t :=

∫ t∧t′
t∨t′ gr ◦ F

r
t dr ∈ L0(X) and recall that

(5.12) holds. Thus

|dF tt′(v)− v|2 ≤
(
|v| |dF tt′ |

)2 ◦ F t′t + |v|2 − 2〈v,dF tt′(v)〉

(by (5.6)) ≤ |v|2 ◦ F t′t (1 +Gtĝ
t′
t )2 + |v|2 − 2〈v,dF tt′(v)〉

(by Lemma 5.2.1 and (5.12), (5.16)) → |v|2 + |v|2 − 2|v|2 = 0.

This proves the second in (5.17). The first follows by similar arguments.
Now recall the chain rule (4.25) to get that

|dF s′t′ (v)− dF st (v)| ≤ |dF s′t (dF tt′(v)− v)|+ |dF s′s (dF st (v))− dF st (v)|

(by (4.22),(5.8)) ≤
(
Gt|dF tt′(v)− v|

)
◦ F ts′ + |dF s

′
s (dF st (v))− dF st (v)|.

Therefore

dL0(T ∗X)(dF
s′
t′ (v), dF st (v)) = dL0(|dF s′t′ (v)− dF st (v)|, 0) ≤ dL0

((
Gt|dF tt′(v)− v|

)
◦ F ts′ , 0

)
+ dL0

(
|dF s′s (dF st (v))− dF st (v)|, 0

)
(by (5.7), Lemma 4.5.1 and (5.3)) ≤ Ω

(
dL0(|dF tt′(v)− v|, 0)

)
+ dL0

(
|dF s′s (dF st (v))− dF st (v)|, 0

)
= Ω

(
dL0(TX)(dF

t
t′(v), v)

)
+ dL0(TX)

(
dF s

′
s (dF st (v)),dF st (v)

)
.
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Thus our claim (5.15) follows from (5.17).
Step 2. Let (vt) ∈ C([0, 1], L0(TX)) and notice that

|dF s0 (vs)− dF t0(vt)| ≤ |dF s0 (vs − vt)|+ |dF s0 (vt)− dF t0(vt)|
(by (5.8)) ≤ (G|vs − vt|) ◦ F 0

s + |dF s0 (vt)− dF t0(vt)|, m− a.e.

for every t, s ∈ [0, 1]. Thus, as before, (5.3), (4.60), and the continuity of (vt) yield (G|vs − vt|) ◦
F 0
s → 0 in L0(X) as s→ t, hence recalling (5.15) the continuity of t 7→ dF t0(vt) ∈ L0(TX) follows.

The continuity of the assignment (vt) 7→ (dF t0(vt)) will follow if we show that for some modulus
of continuity Ω we have

dL0(TX)

(
dF t0(v), dF t0(z)

)
≤ Ω

(
dL0(TX)(v, z)

)
, ∀t ∈ [0, 1], v, z ∈ L0(TX). (5.18)

To see this, notice that (5.3) and (5.8) give

dL0(TX)(dF
t
0(v), dF t0(z)) = dL0(|dF t0(v − z)|, 0) ≤ dL0((G|v − z|) ◦ F 0

t , 0)

(by (5.3),(4.60)) ≤ Ω
(
dL0(|v − z|, 0)

)
= Ω

(
dL0(TX)(v, z)

)
.

Observe now that the estimate (5.18) also tells that the map (vt) 7→ (dF t0(vt)) is uniformly con-
tinuous as a map from C([0, 1], L0(TX)) with the L0([0, 1], L0(TX))-topology to L0([0, 1], L0(TX)).
By the density of C([0, 1], L0(TX)) in L0([0, 1], L0(TX)) we deduce that (vt) 7→ (dF t0(vt)) can be
(uniquely) extended to a linear and continuous map from L0([0, 1], L0(TX)) to itself, and again
(5.18) also ensures that such extension is still given by (vt) 7→ (dF t0(vt)).

Using the result (5.15) obtained in Step 1, we can prove that (Vt) 7→ (dF 0
t (Vt)) has the same

continuity properties we established for (vt) 7→ (dF t0(vt)) and since these two maps are one the
inverse of the other (by the chain rule (4.25)), the proof is finished.

The source and target spaces of the map (vt) 7→ (dF t0(vt)), albeit formally equal, have different
roles in the theory and will be treated differently: we shall think at the source space as a family
of vector fields defined at fixed base points, i.e. (vt) in the source space will be thought of as a
collection of maps of the form t 7→ vt(x)“ ∈ TxX”. On the other hand, we shall think at elements
(Vt) of the target space as a family of vector fields defined along flow lines, i.e. (Vt) in the target
space will be thought of as a collection of maps of the form t 7→ Vt(F

t
0(x))“ ∈ TF t0(x)X”.

This distinction is particularly relevant in the case of the spaces L0 and to help keeping this
in mind we shall denote the source space as L0

fix([0, 1], L0(TX)) (in short L0
fix) and the target as

L0
var([0, 1], L0(TX)) (in short L0

var). The spaces L0
fix and L0

var are equipped with two different

structures as modules over L0(X):

for (vt) ∈ L0
fix and f ∈ L0(X) we define f(vt) ∈ L0

fix as t 7→ fvt (5.19)

and
for (Vt) ∈ L0

var and f ∈ L0(X) we define f × (Vt) ∈ L0
var as t 7→ f ◦ F 0

t Vt. (5.20)

Notice that by (4.24) we see that these two products are conjugated via dF (here intended as the
map sending t 7→ vt to t 7→ dF t0(vt)), i.e.

dF
(
f(vt)

)
= f × dF

(
(vt)

)
.
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Notice also that L0
fix and L0

var are not L0(X)-normed modules, as there is not really a L0(X)-

valued pointwise norm on them (they could be endowed with the structure of L0([0, 1]×X)-normed
modules, but we are not interested in doing this).

In what follows we shall typically use lowercase letters (vt) to denote an element of L0
fix and

uppercase ones (Vt) for elements of L0
var. Also, typically (vt) and (Vt) are related by

Vt = dF t0(vt) and equivalently vt = dF 0
t (Vt). (5.21)

We are now ready to discuss time integrability/regularity for vector fields in L0
fix and the

related concept of derivative in time. In fact, given the discussion made in Section 4.4, and in
particular Definition 4.4.5, the following definitions are quite natural:

Definition 5.2.4 (Some spaces of vectors at ‘fixed points’). We shall denote by

i) Lpfix([0, 1], L0(TX)) ⊂ L0
fix([0, 1], L0(TX)) (or simply Lpfix), p ∈ [1,∞], the space LpH for

H := L0(TX).

ii) W 1,2
fix([0, 1], L0(TX)) ⊂ L0

fix([0, 1], L0(TX)) (or simply W 1,2
fix) the space W 1,2

H for H :=

L0(TX).

iii) AC2
fix([0, 1], L0(TX)) ⊂ C([0, 1], L0(TX)) (or simply AC2

fix) the space AC2
H for H :=

L0(TX).

Recall from Section 4.4 that the elements (vt) of W 1,2
fix come with a natural notion of derivative

(v̇t) ∈ L2
fix, that the space Lpfix can be characterized as the subspace of L0

fix of those (vt)’s for
which the pointwise norm

|(vt)|Lpfix(x) := |(|vt|)|Lp(x) = ‖|v·|(x)‖Lp(0,1)

is finite m-a.e., and that W 1,2
fix comes with the pointwise norm

|(vt)|2W 1,2
fix

:= |(vt)|2L2
fix

+ |(v̇t)|2L2
fix
.

Also, Lpfix,W
1,2
fix, AC

2
fix are all complete w.r.t. the corresponding distances

dLpfix

(
(vt), (zt)

)
:= dL0(|(vt − zt)|Lpfix , 0),

d
W 1,2
fix

(
(vt), (zt)

)
:= dL0(|(vt − zt)|W 1,2

fix
, 0),

dAC2
fix

(
(vt), (zt)

)
:= dL0(|(vt − zt)|W 1,2

fix
, 0) + sup

t∈[0,1]
dL0(TX)(vt, zt).

Finally, it is clear that the product defined in (5.19) gives Lpfix,W
1,2
fix, AC

2
fix the structure of

module over L0(X) and that with the pointwise norms defined above the spaces Lpfix and W 1,2
fix

are L0(X)-normed modules.

We now turn to the corresponding notions for vector fields in L0
var. In order to justify the

definitions we are going to give in a moment, let us illustrate the situation in the case of a smooth
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manifold M and flow of a smooth vector field. In this case, a vector field (vt) ∈ L0
fix belongs to

Lpfix if and only if for a.e. x the curve t 7→ vt(x) ∈ TxM ∼ Rd is in Lp([0, 1],Rd). Equivalently,
this is the same as to ask that t 7→ |vt|(x) ∈ R is in Lp(0, 1).

Now, we have said that we want to think of elements (Vt) ∈ L0
var as collections of vector

fields defined along the flow lines, i.e. as the collection, for a.e. x ∈ M , of the vector fields
t 7→ Vt(F

t
0(x)) ∈ TF t0(x)M . Therefore, and by analogy with the ‘fixed’ case, their natural pointwise

Lp-norm should be given by the Lp norm of t 7→ |Vt|(Ft(x)).

For the case of Sobolev vector fields, the derivative v̇t(x), which is computed in the fixed tan-
gent space TxM , should be replaced by the covariant derivative of the vector field t 7→ Vt(F

t
0(x)) ∈

TFt(x)M along the curve t 7→ Ft(x). By direct computation, if (t, x) 7→ vt(x) is smooth in t, x and
Vt(x) := dF t0(vt)(x) it is not hard to check that such covariant derivative is given by

∇Ḟ t0(x)Vt(F
t
0(x)) = (dF t0(v̇t) +∇Vtbt)(F t0(x)).

Notice also that when dealing with vector fields defined on the whole manifold (rather than along
a single flow line) one typically speaks of ‘convective’ derivative, rather than ‘covariant’ one (think
e.g. to the setting of fluid dynamics).

We now turn to the actual definitions; the subsequent discussion will make clear the link with
what just said.

Definition 5.2.5 (Some spaces of vectors at ‘variable points’). We shall denote by

i) Lpvar([0, 1], L0(TX)) ⊂ L0
var([0, 1], L0(TX)) (or simply Lpvar), p ∈ [1,∞], the space of vector

fields (Vt) of the form Vt = dF t0(vt) for a.e. t for some (vt) ∈ Lpfix. We also define m-a.e.
the quantity

|(Vt)|Lpvar := ‖|Vt| ◦ F t0‖Lp(0,1).

ii) W 1,2
var([0, 1], L0(TX)) ⊂ L0

var([0, 1], L0(TX)) (or simply W 1,2
var) the space of vector fields (Vt)

of the form Vt = dF t0(vt) for a.e. t for some (vt) ∈ W 1,2
fix. In this case we also define the

convective derivative (DtVt) ∈ L0
var([0, 1], L0(TX)) as

DtVt := dF t0(v̇t) +∇Vtbt, a.e. t ∈ [0, 1]. (5.22)

Also, we consider the m-a.e. defined quantity

|(Vt)|2W 1,2
var

:= |(Vt)|2L2
var

+ |(DtVt)|2L2
var

=

∫ 1

0
|Vt|2 ◦ F t0 + |DtVt|2 ◦ F t0 dt.

iii) AC2
var([0, 1], L0(TX)) ⊂ C([0, 1], L0(TX)) (or simply AC2

var) the space of vector fields (Vt)
of the form Vt = dF t0(vt) for every t ∈ [0, 1] for some (vt) ∈ AC2

fix.

Notice that Proposition 5.2.3 above ensures that (DtVt) is indeed an element of L0
var([0, 1], L0(TX))

and that if (vt) ∈ AC2
fix ⊂ C([0, 1], L0(TX)), then t 7→ dF t0(vt) is also an element of C([0, 1], L0(TX)),

so that AC2
var is actually a subset of C([0, 1], L0(TX)). It is also clear that the spaces defined

above are vector spaces and that (Vt) 7→ (DtVt) is linear.
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Let us remark that by (4.22), (5.8) it follows that for any v ∈ L0(TX) and t ∈ [0, 1], putting
V := dF t0(v) ∈ L0(TX), so that v = dF 0

t (V ) by the group property (4.1) and the chain rule
(4.25), we have

|v| ≤ G|V | ◦ F t0 and |V | ◦ F t0 ≤ G|v| m− a.e., (5.23)

for some non-negative function G ∈ L0(X) depending only on X and (bt) (and in particular
independent of v, t). It follows that (Vt) ∈ L0

var belongs to Lpvar if and only if the quantity
|(Vt)|Lpvar is finite m-a.e.. Then arguing as in the ‘fixed’ case, it is easy to see that the distance

dLpvar
(
(Vt), (Zt)

)
:= dL0(|(Vt − Zt)|Lpvar , 0)

is lower semicontinuous w.r.t. L0
var-convergence and thus - by the completeness of L0

var - that it
is a complete distance on Lpvar. Alternatively, completeness of Lpvar can be established noticing
that for (vt) and (Vt) as in (5.21), the uniform bound (5.23) gives

|(vt)|Lpfix ≤ G|(Vt)|Lpvar and |(Vt)|Lpvar ≤ G|(vt)|Lpfix (5.24)

m-a.e.. Thus for (vt), (zt) ∈ Lpfix and the corresponding (Vt), (Zt) ∈ Lpvar as in (5.21) we have

dLpfix

(
(vt), (zt)

)
= dL0

(
|(vt − zt)|Lpfix , 0

)
(by (5.24)) ≤ dL0

(
G|(Vt − Zt)|Lpvar , 0

)
(by (4.60)) ≤ Ω

(
dL0

(
|(Vt − Zt)|Lpvar , 0

))
= Ω

(
dLpvar

(
(Vt), (Zt)

)) (5.25)

and analogously it holds dLpvar
(
(Vt), (Zt)

)
≤ Ω

(
dLpfix

(
(vt), (zt)

))
. This proves that (vnt ) ⊂ Lpfix is

Cauchy if and only if the corresponding sequence (V n
t ) ⊂ Lpvar is Cauchy, thus the completeness

of Lpvar follows from that of Lpfix.

Analogous considerations are in place for W 1,2
var, but are a bit harder to prove. The key point

is an analogue of (5.24) in the Sobolev case, which is established in the following lemma:

Lemma 5.2.6. Let (vt) ∈W 1,2
fix and (Vt) ∈W 1,2

var be as in (5.21). Then

|(Vt)|W 1,2
var
≤ G|(vt)|W 1,2

fix
and |(vt)|W 1,2

fix
≤ G|(Vt)|W 1,2

var
m− a.e. (5.26)

and
|(Vt)|L∞var ≤ G|(Vt)|W 1,2

var
m− a.e.. (5.27)

Proof. From the very definition (5.22) we see that m-a.e. and for a.e. t it holds

|DtVt|◦F t0
(5.8)

≤ G|v̇t|+ |∇bt|◦F t0|Vt|
(5.23)

≤ G
(
|v̇t|+ |∇bt|◦F t0|vt|)

(4.47)

≤ G(|v̇t|+ |∇bt|◦F t0|(vs)|W 1,2
fix

).

Squaring and integrating in t we obtain

|(DtVt)|2L2
var
≤ G

(
|(v̇t)|2L2

fix
+ |(vt)|2W 1,2

fix

|(|∇bt| ◦ F t0)|2L2

) (5.5)

≤ G|(vt)|2W 1,2
fix

,

so that the first in (5.26) follows taking also (5.24) into account.
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For the second in (5.26) we notice that (5.22) gives v̇t = dF 0
t (DtVt −∇Vtbt), thus

|v̇t|
(4.22)

≤
(
|dF 0

t |
(
|DtVt|+ |Vt| |∇bt|

))
◦ F t0

(5.8)

≤ G
(
|DtVt| ◦ F t0 + |Vt| ◦ F t0 |∇bt| ◦ F t0

)
(5.28)

m-a.e. for a.e. t ∈ [0, 1]. Integrating in t we deduce that m-a.e. we have

|(v̇t)|L1
fix
≤ G

(
|(DtVt)|L2

var
+ |(Vt)|L2

var
|(|∇bt| ◦ F t0)|L2

) (5.5)

≤ G|(Vt)|W 1,2
var
.

Using this bound in conjunction with the first inequality in (4.47) and (5.24) we obtain

|(Vt)|L∞var ≤ G|(vt)|L∞fix ≤ G
(
|(Vt)|L2

var
+ |(Vt)|W 1,2

var

)
≤ G|(Vt)|W 1,2

var
m− a.e.,

which is (5.27). Plugging this inequality in (5.28) we see that

|v̇t| ≤ G
(
|DtVt| ◦ F t0 + |(Vs)|W 1,2

var
|∇bt| ◦ F t0

)
m-a.e. for a.e. t ∈ [0, 1].

Squaring, integrating in t and recalling (5.5) we see that |(v̇t)|2L2
fix
≤ G|(Vt)|2W 1,2

var
holds m-a.e..

Then the second in (5.26) follows taking (5.24) into account.

This lemma ensures in particular that |(Vt)|W 1,2
var

<∞ m-a.e. for any (Vt) ∈ W 1,2
var. Hence the

following is a well defined distance on W 1,2
var:

d
W 1,2
var

(
(Vt), (Zt)

)
:= dL0(|(Vt − Zt)|W 1,2

var
, 0).

Then starting from (5.26), arguing as we did in (5.25) from (5.24), we see that for (vt), (zt) ∈W 1,2
fix

and the corresponding (Vt), (Zt) ∈W 1,2
var as in (5.21) we have

d
W 1,2
fix

(
(vt), (zt)

)
≤ Ω

(
d
W 1,2
var

(
(Vt), (Zt)

))
and d

W 1,2
var

(
(Vt), (Zt)

)
≤ Ω

(
d
W 1,2
fix

(
(vt), (zt)

))
.

Therefore, much like in the Lp case, (vnt ) ⊂ W 1,2
fix is Cauchy if and only if the corresponding

sequence (V n
t ) ⊂W 1,2

var is Cauchy. Hence completeness of W 1,2
var follows from that of W 1,2

fix.

It is then clear that AC2
var is also a complete space.

5.3 Calculus with the convective derivative

The main goal of this section is to establish appropriate calculus rules for the convective derivative
that mimic those available in the smooth setting.

In particular, we shall ultimately prove that for (Vt), (Wt) ∈ AC2
var we have

(
〈Vt,Wt〉 ◦ F t0

)
∈

AC2
L0(X) with derivative 〈DtVt,Wt〉 ◦ F t0 + 〈Vt, DtWt〉 ◦ F t0. This can be read as compatibility

with the metric of our convective/covariant derivative and will be crucial to obtain uniqueness of
parallel transport and preservation of norm.

The proof of this fact will be obtained following roughly the ideas in [44], but due to much
lower regularity we have at disposal now, things are now more involved. The idea is to establish
regularity for t 7→ 〈Vt,Wt〉 ◦ F t0 by duality, i.e. we first study the regularity of t 7→ d(f ◦ F t0)
(Proposition 5.3.2) and later that of t 7→ 〈Vt,Wt〉 ◦ F t0 (Theorem 5.3.4).

To pursue this program, and in particular in the first step, we shall use the closure of the
differential on bounded subsets of the Haj lasz–Sobolev space as discussed in Proposition 4.3.5.
In turn, this will be possible thanks to the following lemma:
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Lemma 5.3.1. Let ḡ := ḡ0 ∈ L2
loc(X) be given by Proposition 4.1.1 for t = 0, f ∈ W 1,2(X), and

R > 0. Then f ◦ F t0 ∈ Hḡ,R(X) for every t ∈ [0, 1] and there is C > 0 such that

‖f ◦ F t0‖Hḡ,R ≤ C‖f‖W 1,2 , ∀t ∈ [0, 1]. (5.29)

Proof. Since RCD(K,N) spaces are PI spaces, we know from (1.19) that for every R′ > 0 there
exists a m-negligible set N and C > 0 such that

|f(x)− f(y)| ≤ C
(
M4R′(|Df |)(x) +M4R′(|Df |)(y)

)
d(x, y) (5.30)

holds for every x, y ∈ X \N with d(x, y) ≤ R′.
Also, recalling (4.2) we see that possibly enlarging N , keeping it m-negligible, for L := ‖bt‖L∞t,x

we have
d(F t0(x), F t0(y)) ≤ d(x, y) + 2tL, ∀x, y ∈ X \N, ∀t ∈ [0, 1].

Put R′ := R + 2L and H := M4R′(|Df |) (notice that H ∈ L2(X,m) by (1.18)). Then for every
x, y ∈ X \ (F t0)−1(N) with d(x, y) ≤ R, from (5.30) and (4.9) we have that

|f(F t0(x))− f(F t0(y))| ≤ C
(
H(F t0(x)) +H(F t0(y))

)
d(F t0(x), F t0(y))

≤ C
(
H(F t0(x)) +H(F t0(y))

)
eḡ(x)+ḡ(y)d(x, y)

holds for any t ∈ [0, 1]. In other words, since (F t0)−1(N) is m-negligible, we proved that H ◦F t0 ∈
Aḡ,R(f). Then the conclusion follows recalling that since (F t0) has bounded compression, we have
that ‖H ◦ F t0‖L2 ≤ C ′‖H‖L2 for some C ′ > 0 and every t ∈ [0, 1].

We can now study the regularity of t 7→ d(f ◦ F t0):

Proposition 5.3.2. Let f ∈ Test(X). Then for every t ∈ [0, 1] the map s 7→ d(f ◦ F st ) is in
AC2([0, 1], L0(T ∗X)) and there is a Borel negligible set N ⊂ [0, 1], independent of f and t ∈ [0, 1],
such that for every s ∈ [0, 1] \N we have

lim
h→0

d(f ◦ F s+ht )− d(f ◦ F st )

h
= d(df(bt) ◦ F st ) in L0(T ∗X). (5.31)

Proof.
Step 1: basic integrability estimates. We know from Lemma 5.2.2 that s 7→ d(f ◦ F st ) ∈
L0(T ∗X) is continuous for any t ∈ [0, 1] and since df(b) ∈ W 1,2(X) for any b ∈ L∞(m) ∩
W 1,2
C (TX) (recall Prop. (1.4.10)), the same lemma ensures that for any such w we have that

s 7→ d(df(b) ◦ F st ) ∈ L0(T ∗X) is continuous. Then a simple approximation argument shows that
s 7→ d(df(bs) ◦ F st ) is Borel.

Now observe that the bound |df(bt)| ≤ ‖df‖L∞ |bt|, the assumption (bt) ∈ L2([0, 1], L2(TX))
and (5.4) ensure that s 7→ df(bs) ◦ F st is in L2([0, 1], L0(X)). Similarly, (4.23) and (5.8) give

|d(df(bs) ◦ F st )| ≤ Gt |d(df(bs))| ◦ F st
(1.23)

≤ Gt
(
|Hess(f)|‖bs‖L∞ + |∇bs||df |

)
◦ F st , (5.32)

m-a.e. for every t, s ∈ [0, 1].
It is clear from our assumptions on (bt) and f that s 7→ (|Hess(f)|‖bs‖L∞ + |∇bs||df |) is in
L2([0, 1], L2(X)), thus from (5.4) and the above we see that s 7→ d(df(bs)◦F st ) is in L2([0, 1], L0(T ∗X)).
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Step 2: Sobolev regularity and computation of the derivative. We now claim
that for any s1, s2 ∈ [0, 1], s1 < s2 we have

d(f ◦ F s2t )− d(f ◦ F s1t ) =

∫ s2

s1

d(df(br) ◦ F rt ) dr. (5.33)

Notice that by (4.38) this proves that s 7→ d(f ◦ F st ) is in AC2([0, 1], L0(T ∗X)) with derivative
given by d(df(bs) ◦ F st ). Recalling (4.6), we see that (5.33) above will follow if we show that for
any s1, s2 as before it holds

d
(∫ s2

s1

df(br) ◦ F rt dr
)

=

∫ s2

s1

d(df(br) ◦ F rt ) dr. (5.34)

To prove this latter identity we apply Theorem 4.4.9 with H1 := L0(X), H2 := L0(T ∗X), V :=
Hḡ,1(X) equipped with its norm as defined in (4.30) (here ḡ = ḡ0 is given by Proposition 4.1.1),
L := d, and vs := df(bs) ◦ F st . We already observed that (vs) ∈ L2([0, 1],H1) and (L(vs)) ∈
L2([0, 1],H2). Also, the trivial bound ‖df(bs)‖L2 ≤ ‖bs‖L∞s,x‖df‖L2 , the inequality

‖d(df(bs))‖L2 ≤ ‖bs‖L∞s,x‖Hess(f)‖L2 + ‖df‖L∞‖|∇bs|‖L2 ,

and again the assumption (bt) ∈ L2([0, 1],W 1,2
C (TX)) with |bt| ∈ L∞([0, 1] × X), give that s 7→

df(bs) is in L1([0, 1],W 1,2(X)). Therefore by Lemma 5.3.1 above we deduce that
∫ 1

0 ‖vs‖Hḡ,1 ds <
∞. Finally, Proposition 4.3.5 ensures that assumption (ii) in Theorem 4.4.9 is satisfied, thus we
can apply this proposition and deduce that (5.34), and thus (5.33), holds.

Now for f ∈ Test(X) and t ∈ [0, 1] let N(f, t) ⊂ [0, 1] be the set of s ∈ [0, 1] for which the
limiting relation

lim
h→0

d(f ◦ F s+ht )− d(f ◦ F st )

h
= d(df(bs) ◦ F st ), in L0(T ∗X)

does not hold. We claim that N(f, t) does not depend on t. To see this, let t, t′ ∈ [0, 1] and
observe that from the bound |d(g ◦ F t′t )| ≤ Gt|dg| ◦ F t

′
t (which follows from (5.8)) and Lemma

4.5.1 we deduce

dL0(|d(g ◦ F t′t )|, 0) ≤ Ω
(
dL0(|dg| ◦ F t′t , 0)

) (5.3)

≤ Ω
(
dL0(|dg|, 0)

)
.

Applying this to g :=
f◦F s+h

t′ −f◦F
s
t′−df(bs)◦F st′
h we deduce that N(f, t′) ⊃ N(f, t) and the claim

follows by the arbitrariness of t, t′.
We shall put N(f) := N(f, 0) = N(f, t) for any t ∈ [0, 1]. Notice that N(f) is a Borel

negligible subset of [0, 1] and that for every t /∈ N(f) we have t /∈ N(f, t) and thus (5.31) holds.
Step 3: the exceptional set can be chosen independent of f . To conclude it

is sufficient to prove that for some N ⊂ [0, 1] Borel and negligible we have N(f) ⊂ N for
every f ∈ Test(X). To this aim we employ a standard idea based on uniform continuity of
difference quotients; specifically, we start claiming that for a.e. t ∈ [0, 1] the linear operators
T st : Test(X)→ L0(T ∗X) defined as

T st (f) :=
1

|s− t|

∫ t∨s

t∧s
d(df(br) ◦ F r0 ) dr
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are uniformly continuous in s ∈ [0, 1] \ {t} if we equip Test(X) with the W 2,2-norm. To see this
notice that

|T st (f)| ≤ 1

|s− t|

∫ t∨s

t∧s
|d(df(br) ◦ F r0 )| dr

(by (5.32)) ≤ G 1

|s− t|

∫ t∨s

t∧s

(
|Hess(f)|‖br‖L∞ + |∇br||df |

)
◦ F r0 dr m− a.e.

(5.35)

and that

dL0

( 1

|s− t|

∫ t∨s

t∧s

(
|Hess(f)|‖br‖L∞ + |∇br||df |

)
◦ F r0 dr, 0

)
≤ dL0

(‖br‖L∞r,x
|s− t|

∫ t∨s

t∧s
|Hess(f)| ◦ F r0 dr, 0

)
+ dL0

( 1

|s− t|

∫ t∨s

t∧s

(
|∇br||df |

)
◦ F r0 dr, 0

)
∗
≤ Ω

(∥∥∥‖br‖L∞r,x|s− t|

∫ t∨s

t∧s
|Hess(f)| ◦ F r0 dr

∥∥∥
L2

+
∥∥∥ 1

|s− t|

∫ t∨s

t∧s

(
|∇br||df |

)
◦ F r0 dr

∥∥∥
L1

)
∗∗
≤ Ω

(‖br‖L∞r,x
|s− t|

∫ t∨s

t∧s

∥∥|Hess(f)|
∥∥
L2 dr +

1

|s− t|

∫ t∨s

t∧s

∥∥|∇br||df |∥∥L1 dr
)

≤ Ω
(
‖br‖L∞r,x‖|Hess(f)|‖L2 + ‖|df |‖L2

√
1

|s− t|

∫ t∨s

t∧s
‖|∇br|‖2L2 dr

)
,

having used (4.61) in ∗ and (4.4) in ∗∗.
Now observe that since by assumption we have that t 7→ ‖|∇bt|‖L2 is in L2(0, 1), the Hardy–

Littlewood maximal inequality grants that M(t) := sups 6=t

√
1
|s−t|

∫ t∨s
t∧s ‖|∇br|‖

2
L2 dr <∞ for a.e.

t, therefore for f, f ′ ∈ Test(X), putting for brevity g := f − f ′ the above gives

dL0(T ∗X)(T
s
t (f), T st (f ′)) = dL0(|T st (g)|, 0)

(by (5.35)) ≤ dL0

(
G

1

|s− t|

∫ t∨s

t∧s

(
|Hess(g)|‖br‖L∞ + |∇br||dg|

)
◦ F r0 dr, 0

)
(by (4.60)) ≤ Ω

(
dL0

( 1

|s− t|

∫ t∨s

t∧s

(
|Hess(g)|‖br‖L∞ + |∇br||dg|

)
◦ F r0 dr, 0

))
≤ Ω

(
‖br‖L∞r,x‖|Hess(g)|‖L2 + ‖|dg|‖L2M(t)

)
≤ Ω

((
M(t) + 1

)
‖f − f ′‖W 2,2

)
,

(5.36)

proving the desired uniform continuity for a.e. t ∈ [0, 1]. Similarly, for f, f ′ ∈ Test(X) and
t ∈ [0, 1] such that wt ∈ L∞ ∩W 1,2

C (TX), starting from

|d(df(bt) ◦ F t0)− d(df ′(bt) ◦ F t0)| = |d(d(f − f ′)(bt) ◦ F t0)|
≤ G

(
|Hess(f − f ′)|‖bt‖L∞ + |∇bt| |d(f − f ′)|

)
,

and arguing as in (5.36), we get

dL0(T ∗X)

(
d(df(bt) ◦ F t0),d(df ′(bt) ◦ F t0)

)
≤ Ω

((
‖bt‖L∞ + ‖bt‖W 1,2

C

)
‖f − f ′‖W 2,2

)
. (5.37)

94



Now let (fn) ⊂ Test(X) be dense in Test(X) with respect to the separable norm of W 2,2(X).
Define N ⊂ [0, 1] as

N :=
⋃
n

N(fn) ∪
{
t : M(t) = +∞ or wt /∈ L∞ ∩W 1,2

C (TX)
}

and notice that it is Borel and negligible. Let t /∈ N , f ∈ Test(X) and notice that (5.36) and
(5.37) ensure that for any n ∈ N we have

dL0(T ∗X)

(
T st (f),d(df(bt) ◦ F t0)

)
≤ Ω

((
M(t) + 1 + ‖bt‖L∞ + ‖bt‖W 1,2

C

)
‖f − fn‖W 2,2

)
+ dL0(T ∗X)

(
T st (fn), d(dfn(bt) ◦ F t0)

)
,

thus letting first s→ t and then taking the infimum over n ∈ N we conclude that

lim
s→t

T st (f) = d(df(bt) ◦ F t0), in L0(T ∗X).

By the definition of T st (f) and (5.33), this proves that t /∈ N(f, t) = N(f), i.e. concludes the
proof.

Before coming to the main result of the section, we need the following statement about equi-
continuity of quadratic forms on L0(TX):

Proposition 5.3.3. Let Bi : L0(TX)2 → L0(X) be a family of L0(X)-bilinear, symmetric, and
continuous maps indexed by i ∈ I, and let Qi : L0(TX)→ L0(X) be the associated quadratic forms,
i.e. Qi(v) := Bi(v, v). Let (Gi)i∈I ⊂ L0(X) be a family of non-negative functions satisfying (4.62)
and assume that

|Qi(v)| ≤ Gi|v|2, m− a.e., ∀v ∈ L0(TX), ∀i ∈ I.
Then the Qi’s are locally equicontinuous, i.e.

lim
v′
L0
→v

sup
i∈I

dL0(Qi(v
′), Qi(v)) = 0, ∀v ∈ L0(TX).

Proof. Let B̃i(v, z) := Bi(v, z) +Gi〈v, z〉 and Q̃i(v) := B̃i(v, v). Then

0 ≤ Q̃i(v, v) ≤ 2Gi|v|2, m− a.e., ∀v ∈ L0(TX), ∀i ∈ I.

By the pointwise Cauchy–Schwarz inequality (that is easily seen to hold also in this setting), we
deduce |Bi(v, z)| ≤

√
Qi(v)Qi(z) m-a.e. for every v, z ∈ L0(TX) and i ∈ I. Thus for arbitrary

v, v′ ∈ L0(TX), putting z := v′ − v we have

|Qi(v′)−Qi(v)| = |Qi(z) + 2Bi(z, v)| ≤ 2Gi(|z|2 + |z||v|), m− a.e., ∀i ∈ I

and therefore, recalling that we are in a position to apply Lemma 4.5.1, we get

dL0(Qi(v
′), Qi(v)) ≤ dL0

(
2Gi(|z|2 + |z||v|)

) (4.63)

≤ Ω
(
dL0

(
|z|2 + |z||v|

))
.

To conclude, notice that 1 ∧ |z|2 ≤ 1 ∧ |z| and thus

dL0

(
|z|2 + |z||v|, 0

)
≤ dL0(|z|2, 0) + dL0(|z||v|, 0) ≤ dL0(|z|, 0) + Ω(dL0(|z|, 0)) = Ω(dL0(TX)(v

′, v)),

where the Ω appearing here depends on v (it is the one in (4.60) for G := |v|), but does not
depend on v′, z, i. The conclusion follows.
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Theorem 5.3.4. Let (Vt), (Zt) ∈ W 1,2
var([0, 1], L0(TX)). Then t 7→ 〈Vt, Zt〉 ◦ F t0 belongs to

W 1,2([0, 1], L0(X)) and for a.e. t ∈ [0, 1] we have

d

dt

(
〈Vt, Zt〉 ◦ F t0

)
= 〈DtVt, Zt〉 ◦ F t0 + 〈Vt, DtZt〉 ◦ F t0, m− a.e.. (5.38)

If moreover (Vt), (Zt) ∈ AC2
var([0, 1], L0(TX)), then t 7→ 〈Vt, Zt〉◦F t0 belongs to AC2([0, 1], L0(X)).

Proof.
Step 1: structure of the proof. The case of absolutely continuous vector fields follows
from the Sobolev one provided we show that for (Vt), (Zt) ∈ C([0, 1], L0(TX)) the map t 7→
〈Vt, Zt〉 ◦ F t0 ∈ L0(X) is continuous. This follows noticing that, rather trivially, the map t 7→
〈Vt, Zt〉 ∈ L0(X) is continuous, then recalling Lemma 5.2.1. We thus focus on the Sobolev case.

For (zt) ∈W 1,2
fix denote by A(zt) ⊂W

1,2
fix the collection of those (vt)’s for which the conclusion

of the theorem holds for Vt := dF t0(vt) and Zt := dF t0(zt). Our goal is to prove that A(zt) = W 1,2
fix

for any (zt) ∈W 1,2
fix and we shall do so by applying Proposition 4.4.7.

It is clear that A(zt) is a vector space, i.e. (o) holds, and - recalling (4.24) - that the ‘restriction’
property (i) holds as well. Also, by direct computation we can verify that (ii) holds. We pass

to the stability property (iii), thus let (vnt )
W 1,2
fix→ (v∞t ), and assume that the conclusion of the

theorem holds for n <∞ and the choices Vt = V n
t := dF t0(vnt ) and Zt := dF t0(zt). Our goal is to

prove that the conclusion also holds for Vt = V∞t := dF t0(v∞t ).
Since (vnt )→ (v∞t ) and (v̇nt )→ (v̇∞t ) in L2

fix ↪→ L0
fix, Proposition 5.2.3 and the very definition

(5.22) tell that (V n
t )→ (V∞t ) and (DtV

n
t )→ (DtV

∞
t ) in L0

var. It follows that

〈V n
t , Zt〉 ◦ F t0 → 〈V∞t , Zt〉 ◦ F t0

〈DtV
n
t , Zt〉 ◦ F t0 + 〈V n

t , DtZt〉 ◦ F t0 → 〈DtV
∞
t , Zt〉 ◦ F t0 + 〈V∞t , DtZt〉 ◦ F t0

(5.39)

in L0([0, 1], L0(X)). Now notice that

|(〈V n
t , Zt〉 ◦ F t0)|L2 ≤ |(V n

t )|L2
var
|(Zt)|L∞var

(5.27)

≤ G|(V n
t )|

W 1,2
var
|(Zt)|W 1,2

var
, m− a.e.

and

|(〈DtV
n
t , Zt〉 ◦ F t0 + 〈V n

t , DtZt〉 ◦ F t0)|L2 ≤ |(DtV
n
t )|L2

var
|(Zt)|L∞var + |(V n

t )|L∞var |(DtZt)|L2
var

(by (5.27)) ≤ G|(V n
t )|

W 1,2
var
|(Zt)|W 1,2

var
, m− a.e.,

i.e., recalling also (5.26), we have

|(〈V n
t , Zt〉 ◦ F t0)|W 1,2 ≤ G|(vnt )|

W 1,2
fix
|(Zt)|W 1,2

var
, m− a.e..

Since |(vnt )|
W 1,2
fix
→ |(v∞t )|

W 1,2
fix

(as a simple consequence of (vnt )
W 1,2
fix→ (v∞t )), thanks to Proposition

4.4.3 the conclusion follows from this latter estimate and (5.39).
It remains to prove that A(zt) has property (iv) in Proposition 4.4.7. Suppose that we know

that this is the case for (zt) constant. Then the argument above shows that for (zt) constant we
have A(zt) = W 1,2

fix. Therefore - by the symmetry in (Vt), (Zt) of the statement - we know that for
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(zt) ∈W 1,2
fix arbitrary, the set A(zt) contains the constant vector fields. Hence again the argument

above shows that A(zt) = W 1,2
fix, which is the conclusion.

We thus showed that it is sufficient to prove that for v, z ∈ L0(TX), the conclusion of the
theorem holds for Vt := dF t0(v) and Zt := dF t0(z). By polarization, it is actually sufficient to
consider the case v = z.

Step 2: key point. To conclude the proof we need to prove that for v ∈ L0(TX), putting
Vt := dF t0(v) we have that t 7→ |Vt|2 ◦ F t0 is in W 1,2([0, 1], L0(X)) and for a.e. t ∈ [0, 1] we have

d

dt
1
2 |Vt|

2 ◦ F t0 = 〈Vt, DtVt〉 ◦ F t0, m− a.e.. (5.40)

Step 2a: Sobolev regularity. For the Sobolev regularity we start recalling from (5.24)
that |(Vt)|L∞var < ∞ m-a.e. and that the group property (4.1) and the chain rule (4.25) give
Vs = dF st (Vt) for any t, s ∈ [0, 1]. Then for any t, s ∈ [0, 1] we have

|Vs|2 ◦ F s0 − |Vt|2 ◦ F t0 = (|Vs| ◦ F s0 + |Vt| ◦ F t0)(|Vs| ◦ F s0 − |Vt| ◦ F t0)

≤ 2|(Vr)|L∞var
(
|dF st (Vt)| ◦ F s0 − |Vt| ◦ F t0

)
(by (4.22), (5.6)) ≤ 2|(Vr)|2L∞varG

∫ t∨s

t∧s
gr ◦ F r0 dr

m-a.e.. Swapping the roles of t, s and recalling (5.24) we get

∣∣|Vs|2 ◦ F s0 − |Vt|2 ◦ F t0∣∣ ≤ |v|2G ∫ s

t
gr ◦ F r0 dr, m− a.e., ∀t, s ∈ [0, 1], t ≤ s. (5.41)

Since (t 7→ gt ◦ F t0) ∈ L2([0, 1], L0(X)) as a consequence of the fact that (gt) ∈ L2([0, 1], L0(X))
(by Proposition 4.1.1) and (5.4), this last estimate, thanks to the characterization in (4.39), is
sufficient to deduce that t 7→ |Vt|2 ◦ F t0 is in W 1,2([0, 1], L0(X)).

Now recall that (4.41) gives that
|Vt+h|2◦F t+h0 −|Vt|2◦F t0

h → d
dt(|Vt|

2 ◦ F t0) in L0(X) as h → 0 for
a.e. t ∈ [0, 1]. Therefore to conclude that (5.40) holds it is sufficient to prove that for a.e. t ∈ [0, 1]
we have

lim
h↓0

dL0

(( |Vt+h|2 ◦ F t+h0 − |Vt|2 ◦ F t0
2h

− 〈DtVt, Vt〉 ◦ F t0
)−
, 0
)

= 0,

lim
h↑0

dL0

(( |Vt+h|2 ◦ F t+h0 − |Vt|2 ◦ F t0
2h

− 〈DtVt, Vt〉 ◦ F t0
)+
, 0
)

= 0,

(5.42)

as these would imply that for a.e. t we have dL0

((
d
dt(

1
2 |Vt|

2 ◦ F t0)− 〈DtVt, Vt〉 ◦ F t0
)∓
, 0
)

= 0, i.e.

that d
dt(

1
2 |Vt|

2 ◦ F t0) = 〈DtVt, Vt〉 ◦ F t0.

Now define

Qst (v) :=
|dF st (v)|2 ◦ F st − |v|2

2(s− t)

and observe that the identity Vs = dF st (Vt) that we already noticed gives Qst (Vt) =
|Vs|2◦F st −|Vt|2

2(s−t) .

Moreover, since DtVt = ∇Vtbt by the very definition (5.22) of convective derivative, we have
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〈DtVt, Vt〉 = 〈∇bt, Vt ⊗ Vt〉. Therefore recalling also (5.3), the claim (5.42) will follow if we show
that for a.e. t ∈ [0, 1] we have that for any v ∈ L0(TX) it holds

lim
s↑t

dL0

((
Qst (v)− 〈∇bt, v ⊗ v〉

)+
, 0
)

= 0 = lim
s↓t

dL0

((
Qst (v)− 〈∇bt, v ⊗ v〉

)−
, 0
)
. (5.43)

Step 2b: convergence properties on a dense set. Let N ⊂ [0, 1] be the Borel negligible
set given by Proposition 5.3.2 and up to enlarge it, by keeping it negligible, assume that it
contains the exceptional set of s’s for which (4.7) does not hold. We claim that there is a dense
set D ⊂ L0(TX) for which the claim (5.43) holds for any v ∈ D and t ∈ [0, 1] \N .

Fix t ∈ [0, 1] \N and let v = ∇f for f ∈ Test(X). Then, since for any s ∈ [0, 1] we have

1
2 |dF

s
t (∇f)|2 ◦ F st ≥ df(dF st (∇f)) ◦ F st − 1

2 |df |
2 ◦ F st , m− a.e.

with equality for s = t, we deduce that

Qst (∇f) ≥ df(dF st (∇f)) ◦ F st − |df |2

s− t
−

1
2 |df |

2 ◦ F st − 1
2 |df |

2

s− t︸ ︷︷ ︸
=:RHS(s)

, m− a.e. for s > t,

with opposite inequality for s < t. Using the identity df(dF st (∇f)) ◦ F st = d(f ◦ F st )(∇f) and
Proposition 5.3.2 to handle the first addend, and (4.7) and the fact that |df |2 ∈W 1,2(X) for the
second, we see that

lim
s→t

RHS(s) = d(df(bt))(∇f)− d(1
2 |df |

2)(bt) = 〈∇bt,∇f ⊗∇f〉, in L0(X).

Thus from the trivial implication a ≥ b⇒ (a− c)− ≤ |b− c| valid for real numbers a, b, c, we get

lim
s↓t

dL0

((
Qst (v)− 〈∇bt, v ⊗ v〉

)−
, 0
)
≤ lim

s↓t
dL0

(∣∣RHS(s)− 〈∇bt, v ⊗ v〉
∣∣, 0) = 0,

which is the second in (5.43). The first follows from the same arguments starting from the
implication a ≤ b⇒ (a− c)+ ≤ |b− c|.

Now observe that if (Ei) is a finite Borel partition of X and (vi) ⊂ L0(TX), for v :=
∑

i
χEivi

we have Qst (v) =
∑

i
χEiQ

s
t (vi) (recall (4.24)). Similarly, 〈∇bt, v ⊗ v〉 =

∑
i
χEi〈∇bt, vi ⊗ vi〉.

Thus if vi = ∇fi for fi ∈ Test(X) and every i, using what already established we get

lim
s↓t

dL0

((
Qst (v)− 〈∇bt, v ⊗ v〉

)−
, 0
)

= lim
s↓t

dL0

(∑
i

χEi
(
Qst (∇fi)− 〈∇bt,∇fi ⊗∇fi〉

)−
, 0
)

≤
∑
i

lim
s↓t

dL0

(
χEi
(
Qst (∇fi)− 〈∇bt,∇fi ⊗∇fi〉

)−
, 0
)

≤
∑
i

lim
s↓t

dL0

((
Qst (∇fi)− 〈∇bt,∇fi ⊗∇fi〉

)−
, 0
)

= 0,

which is the second in (5.43). The first follows along similar lines.
In summary, we proved that (5.43) holds for any v in the dense set D ⊂ L0(TX) made of

those vectors of the form v :=
∑

i
χEi∇fi, where the sum is finite and Ei, fi are as above.

Step 2c: equicontinuity and conclusion. Put for brevity

Q̃st (v) := Qst (v)− 〈∇bt, v ⊗ v〉 ∀v ∈ L0(TX), t, s ∈ [0, 1], t 6= s.
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We claim that for a.e. t ∈ [0, 1] we have that for any given v ∈ L0(TX) the Q̃st ’s are equicontinuous
at v, i.e. that

lim
v′
L0
→v

sup
s∈[0,1]\{t}

dL0

(
Q̃st (v

′), Q̃st (v)
)

= 0, (5.44)

and to prove this we are going to apply Proposition 5.3.3 above. Start observing that arguing as
for (5.41) we get

|Qst (v)| ≤ |v|2Gt
∫ t∨s

t∧s
gr ◦ F rt dr, m− a.e., ∀t, s ∈ [0, 1], s 6= t, v ∈ L0(TX), (5.45)

then notice that for any s ∈ [0, 1] \ {t}, Q̃st is a quadratic form induced by a bilinear form that
we shall denote by Bs

t : L0(TX)2 → L0(X). By (4.24) we see that Bs
t is L0(X)-bilinear and (5.45)

tells that

|Q̃st (v)| ≤ |∇bt||v|2 +Gt|v|2
1

|s− t|

∫ s∨t

s∧t
gr ◦ F rt dr︸ ︷︷ ︸

=:ĝst

, m−a.e., ∀t, s ∈ [0, 1], s 6= t, v ∈ L0(TX).

(5.46)
Now put

M(t) := sup
s∈[0,1]\{t}

1

|s− t|

∫ s∨t

s∧t
‖g2
r‖2L2 dr

and notice that since
∫ 1

0 ‖g
2
r‖2L2 dr < ∞ (by Proposition 4.1.1), the Hardy–Littlewood maximal

inequality ensures that M(t) <∞ for a.e. t ∈ [0, 1]. Then for every s ∈ [0, 1] \ {t} we have

‖ĝst ‖2L2 ≤
1

|s− t|

∫ s∨t

s∧t

∫
g2
r ◦ F rt dmdr

(2.13)

≤ C

|s− t|

∫ s∨t

s∧t

∫
g2
r dmdr ≤ CM(t), (5.47)

thus Chebyshev’s inequality gives the uniform control

m({|ĝst | ≥ c}) = m({|ĝst |2 ≥ c2}) ≤
‖ĝst ‖2L2

c2
≤ CM(t)

c2
∀s ∈ [0, 1] \ {t}. (5.48)

Now notice that the set N ′ := N ∪ {t : M(t) =∞} ∪ {t : bt /∈W 1,2
C (TX)} is Borel and negligible

and fix t ∈ [0, 1] \N ′. From (5.48), m′ � m, and the absolute continuity of the integral, we see
that the functions Gst := |∇bt|+Gtĝ

s
t , parametrized by s ∈ [0, 1] \ {t}, satisfy (4.62) (with i = s).

Thus the claim (5.44) follows from Proposition 5.3.3 and the bound (5.46).

Now let v ∈ L0(TX) be arbitrary and v′ ∈ D. Using the trivial bound a− ≤ b− + |a− b| valid
for any a, b ∈ R, we get

lim
s↓t

dL0

(
(Q̃st (v))−, 0

)
≤ lim

s↓t
dL0

(
(Q̃st (v

′))−, 0
)

+ lim
s↓t

dL0

(
|Q̃st (v)− Q̃st (v′)|, 0

)
(by Step 2b and v′ ∈ D) ≤ sup

s∈[0,1]\{t}
dL0

(
Q̃st (v), Q̃st (v

′)
)
.

Taking the limit as v′ → v, v′ ∈ D and using (5.44), we get the second in (5.43). The first is
proved analogously, by exploiting the fact that, for every a, b ∈ R, a+ ≤ b+ + |a− b|.
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Remark 5.3.5. In the last step of the proof we showed that the functions ĝst defined in (5.46)
satisfy the bound (5.47). Although not needed for our purposes, it is worth to point out that in
fact the stronger estimate∫∫ 1

0
H2
t dt dm ≤ C

∫∫ 1

0
g2
t dt dm for Ht := sup

s 6=t
ĝst , (5.49)

holds, for some universal constant C depending only on the constant in (2.13). Indeed, putting
H ′t := sups 6=t ĝ

s
t ◦F t0 = Ht◦F t0, from (2.13) we have

∫∫ 1
0 H

2
t dt dm ≤ C

∫∫ 1
0 H

′2
t dt dm. Now observe

that the Hardy–Littlewood maximal inequality gives∫ 1

0
H ′2t dt =

∫ 1

0

∣∣∣ sup
s 6=t

1

|s− t|

∫ s∨t

s∧t
gr ◦ F r0 dr

∣∣∣2 dt ≤ C
∫ 1

0
g2
t ◦ F t0 dt

so that the claim follows by integration in m and using again (2.13). �

5.4 Existence and uniqueness of Parallel Transport

We introduce the notion of parallel transport for what concerns our setting.

Definition 5.4.1 (Parallel Transport). A Parallel Transport along the flow (F st ) of the vector
field (bt) is a vector field (Vt) ∈ AC2

var([0, 1], L0(TX)) such that

DtVt = 0, m− a.e., for a.e. t ∈ [0, 1].

We say that the Parallel Transport (Vt) starts from V̄ ∈ L0(TX) provided V0 = V̄ .

The linearity of the condition of being a Parallel Transport together with the Leibniz rule
(5.38) easily gives:

Proposition 5.4.2 (Uniqueness and preservation of norm). Let (Vt) be a Parallel Transport.
Then the map t 7→ |Vt| ◦ F t0 ∈ L0(X) is constant.

Moreover, for any V̄ ∈ L0(TX) there exists at most one Parallel Transport starting from V̄ .

Proof. By Theorem 5.3.4, if (Vt) is a Parallel Transport then t 7→ |Vt|2 ◦ F t0 ∈ L0(X) is in
AC2([0, 1], L0(X)) with null derivative. By (4.38) such map is constant.

Now let (V 1
t ), (V 2

t ) be two Parallel Transports starting from V̄ . Then t 7→ Vt := V 1
t − V 2

t is a
Parallel Transport starting from 0. By what already proved we deduce that |Vt| ◦ F t0 = |V0| = 0
m-a.e. for every t ∈ [0, 1], i.e. V 1

t = V 2
t for every t ∈ [0, 1], as claimed.

We turn to the problem of existence, that will be addressed by transforming it into an appro-
priate ODE-like problem in L2

fix. Let us fix some terminology. A family (`t)t∈[0,1] of L0-linear and

continuous maps from L0(TX) into itself is said Borel provided t 7→ `t(vt) is in L0
fix([0, 1], L0(TX))

for any (vt) ∈ L0
fix([0, 1], L0(TX)) (arguing as in the proof of Proposition 5.2.3 this is equivalent

to asking that t 7→ `t(v) is in L0
fix([0, 1], L0(TX)) for any v ∈ L0(TX)). Recalling that for any

L0-linear and continuous map ` : L0(TX) → L0(TX) we have |`| = supn `(vn) m-a.e. for an ap-
propriate choice of the countable set {vn}n∈N ⊂ L0(TX), if (`t) is a Borel family then the map
t 7→ |`t| ∈ L0(X) is also Borel.
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Assume now that the Borel family (`t) satisfies∫ 1

0
|`t|2 dt <∞, m− a.e. (5.50)

and notice that in this case for any (vt) ∈ L2
fix([0, 1], L0(TX)) we have

∫ 1

0
|`t(vt)|dt ≤

∫ 1

0
|`t| |vt| dt ≤ |(vt)|L2

fix

√∫ 1

0
|`t|2 dt m− a.e. (5.51)

and thus (`t(vt)) ∈ L1
fix. Hence, recalling the concept of integral of elements in L1

fix discussed in
Section 4.4, for any t ∈ [0, 1] we can define

Lt((vr)) :=

∫ t

0
`r(vr) dr ∈ L0(TX) (5.52)

and it is clear that Lt : L2
fix → L0(TX) is L0(X)-linear and continuous. We shall write Lt :=∫ t

0 `r dr for the operator defined by the above formula. Notice that from

|Ls((vr))− Lt((vr))| =
∣∣ ∫ s

t
`r(vr) dr

∣∣ ≤ ∫ s

t
|`r(vr)|dr m− a.e.

it follows that t 7→ Lt((vr)) ∈ L0(TX) is continuous w.r.t. the L0(TX)-topology.
We call L : L2

fix → C([0, 1], L0(TX)) ⊂ L0
fix the resulting map, i.e.

L((vr))t := Lt((vr)), ∀t ∈ [0, 1]. (5.53)

Notice that (5.51) ensures that L((vr)) ∈ L∞fix ⊂ L2
fix for any (vt) ∈ L2

fix. Below, to simplify the
notation, we shall write L(v) in place of L((vt)), as well as Lt(v) in place of Lt((vr)).

Proposition 5.4.3. Let `t : L0(TX) → L0(TX) be a Borel family of L0-linear and contin-
uous maps from L0(TX) into itself satisfying (5.50) and define L : L2

fix([0, 1], L0(TX)) →
L2
fix([0, 1], L0(TX)) as in (5.53), (5.52). Then:

i) for every (zt) ∈ L2
fix([0, 1], L0(TX)) there is a unique (vt) ∈ L2

fix([0, 1], L0(TX)) such that

vt = Lt(v) + zt, a.e. t, m− a.e.. (5.54)

ii) if (zt) ∈ AC2
fix([0, 1], L0(TX)), then the unique (vt) ∈ L2

fix([0, 1], L0(TX)) solving (5.54)

admits a continuous representative in AC2
fix([0, 1], L0(TX)) for which (5.54) holds for every

t ∈ [0, 1] and moreover {
v̇t = `t(vt) + żt, a.e. t,
v0 = z0.

(5.55)

Proof.
(i) For (vt) ∈ L2

fix and s ∈ [0, 1] we shall define |(vt)|L2
fix([0,s]) ∈ L0(X) as

|(vt)|2L2
fix([0,s]) :=

∫ s

0
|vr|2 dr,
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so that |(vt)|L2
fix([0,1]) = |(vt)|L2

fix
. We claim that for every n ∈ N and (vt) ∈ L2

fix we have

|Ln(v)|2L2
fix([0,t]) ≤

tnḠn

n!
|(vt)|2L2

fix([0,t]), (5.56)

where Ḡ :=
∫ 1

0 |lt|
2 dt. The case n = 0 is obvious. Assume we proved the claim for n and let us

prove it for n+ 1. We have

|Ln+1(v)|2L2
fix([0,t]) =

∫ t

0
|Ls(Ln(v))|2 ds =

∫ t

0

∣∣ ∫ s

0
`r(L

n(v)r) dr
∣∣2 ds

≤
∫ t

0

( ∫ s

0
|`r|2 dr

)
|Ln(v)|2L2

fix([0,s]) ds

∗
≤ Ḡn+1

n!

∫ t

0
sn|(vt)|2L2

fix([0,s]) ds

≤ tn+1Ḡn+1

(n+ 1)!
|(vt)|2L2

fix([0,t]),

where in the starred inequality we used (5.50) and the induction assumption. From (5.56) it
follows that

∑
n |Ln(v)|L2

fix
< ∞ m-a.e., hence the series

∑
n∈N L

n(v) is a well defined element

of L2
fix (meaning that the partial sums form a Cauchy sequence in L2

fix). It is clear that the
operator (vt) 7→

∑
n∈N L

n(v) is the inverse of Id− L, indeed

(Id− L)
∑
n∈N

Ln(v) = lim
N

(Id− L)
N∑
n=0

Ln(v) = lim
N
v − LN+1(v) = v

and similarly
∑

n∈N L
n((Id − L)(v)) = v. Thus (vt) ∈ L2

fix solves (5.54) if and only if v =∑
n∈N L

n(z), proving existence and uniqueness.
(ii) By (4.49) we know that L(v) ∈ AC2

fix for any (vt) ∈ L2
fix, thus if (zt) ∈ AC2

fix as well, we

have that the right-hand side of (5.54) is in AC2
fix. By the previous step, such right-hand side

is the required representative of (vt) in AC2
fix for which (5.54) holds for every t ∈ [0, 1]. Then

(5.55) follows from the identity Lt(v) + zt = z0 +
∫ t

0 `s(vs) + żs ds (recall (4.46)) and the general
property (4.49).

Theorem 5.4.4 (Existence and uniqueness of Parallel Transport). Let V̄ ∈ L0(TX) and (Zt) ∈
L2
var. Then there is a unique (Vt) ∈ AC2

var such that{
DtVt = Zt a.e. t ∈ [0, 1],
V0 = V̄ .

(5.57)

In particular, there is a unique Parallel Transport (Vt) starting from V̄ .

Proof. Recalling the definition of AC2
var([0, 1], L0(TX)) and that of convective derivative, we see

that (Vt) satisfies (5.57) if and only if for vt := dF 0
t (Vt) we have (vt) ∈ AC2

fix([0, 1], L0(TX)) with{
v̇t = dF 0

t (Zt −∇dF t0(vt)bt) a.e. t ∈ [0, 1],

v0 = V̄ .
(5.58)
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Thus for a.e. t ∈ [0, 1] we define `t : L0(TX)→ L0(TX) as

`t(v) := −dF 0
t (∇dF t0(v)bt)

and notice that the bound

|`t(v)|
(4.22)

≤
(
|dF 0

t | |∇dF t0(v)bt|
)
◦ F t0 ≤

(
|dF 0

t | |dF t0(v)| |∇bt|
)
◦ F t0

(4.22),(5.8)

≤ G|v| |∇bt| ◦ F t0,

valid m-a.e. for every v ∈ L0(TX), yields |`t| ≤ G|∇bt| ◦ F t0, so that (5.5) ensures that the bound
(5.50) holds. Also, we put

zt := V̄ +

∫ t

0
dF 0

r (Zr) dr.

Notice that the bound |dF 0
t (Zt)| ≤ (|dF 0

t | |Zt|) ◦F t0 ≤ G|Zt| ◦F t0 (having used (5.8)) ensures that
the definition is well-posed. It is then clear from (4.49) that (zt) ∈ AC2

fix.
We can therefore apply (ii) of Proposition 5.4.3 above with this choice of (`t) and (zt): we thus

obtain the existence of (vt) ∈ AC2
fix([0, 1], L0(TX)) satisfying (5.58), so that t 7→ Vt := dF t0(vt) is

the only solution of (5.57), as desired.

5.5 W 1,2
var([0, 1], L

0(TX)) as intermediate space between H 1,2(π) and W 1,2(π)

In this section we compare the main definitions given in this manuscript with those provided
in the earlier paper [61]: we shall prove that in a very natural sense - see (5.67) below - the
space W 1,2

var([0, 1], L0(TX)) lies between the spaces H 1,2(π) and W 1,2(π) for relevant π’s. For
this reason, we refer the reader to the definitions given in Section 3.1.

Let us fix now a regular plan πµ with initial distribution µ (associated to b). The situation
is different now: from the uniqueness of Regular Lagrangian Flows it easily follows that et is
πµ-essentially injective for any t ∈ [0, 1], the left inverse being F ·0 ◦ F 0

t . It is clear that for any
t ∈ [0, 1] we have

(F ·0 ◦ F 0
t ) ◦ et = IdC([0,1],X) πµ − a.e.,

et ◦ (F ·0 ◦ F 0
t ) = IdX (et)∗πµ − a.e..

(5.59)

Now notice that since (et)∗πµ � m, we have a well-defined pullback map e∗t : L0(TX) →
e∗tL

0(TX); we shall often denote this map Ψt rather than e∗t , i.e.

Ψt : L0(TX) → e∗tL
0(TX)

V 7→ e∗t (V ).

Similarly, defining up to m-negligible sets the Borel set At := {d(et)∗πµ
dm > 0}, we have that

(F ·0 ◦ F 0
t )∗m|At � (F ·0 ◦ F 0

t )∗(et)∗πµ = πµ and therefore we have a natural pullback map (F ·0 ◦
F 0
t )∗ : e∗tL

0(TX) → M , where for brevity we denoted by M the L0(X,m|At)-normed module

(F ·0 ◦ F 0
t )∗e∗tL

0(TX,πµ). Then from (5.59) and the functoriality of the pullback we see that M
can, and will, be canonically identified with the restriction L0(TX)|At of L0(TX) to the set At. In

turn, such restriction can naturally be seen as the subset of L0(TX) made of vector fields which
are m-a.e. 0 on the complement of At: we shall denote by M 3 v 7→ χAtv ∈ L0(TX) the inclusion
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map of M in L0(TX) (a similar construction can be made using the ‘extension’ functor defined
in [62]). In summary, we have a natural map Φt from the L0(πµ)-normed module e∗tL

0(TX) to
the L0(m)-normed module L0(TX) defined as

Φt : e∗tL
0(TX) → L0(TX)
v 7→ χAt(F

·
0 ◦ F 0

t )∗(v).

From (5.59) and the functoriality of the pullback we see that

Ψt(Φt(v)) = v, ∀v ∈ e∗tL
0(TX),

Φt(Ψt(V )) = χAtV, ∀V ∈ L0(TX).
(5.60)

The maps Ψt,Φt naturally induce maps Ψ,Φ by acting componentwise:

Ψ :
∏
t∈[0,1] L

0(TX) → VF(πµ) Φ : VF(πµ) →
∏
t∈[0,1] L

0(TX)

(t 7→ Vt) 7→ (t 7→ Ψt(Vt)), (t 7→ vt) 7→ (t 7→ Φt(vt)).

We have already noticed that VF(πµ) comes with a natural structure of module over L0(πµ) (but
not of L0(πµ)-normed module) given by componentwise product. We also define a structure of
L0(X) module on

∏
t∈[0,1] L

0(TX) by putting, in analogy with (5.20):

f × (Vt) := (f ◦ F 0
t Vt) ∀f ∈ L0(X), (Vt) ∈

∏
t∈[0,1]

L0(TX).

These two module structures are related, indeed for f, (Vt) as above, the identity F 0
t ◦ et = e0

valid πµ-a.e. gives
e∗t (f ◦ F 0

t Vt) = f ◦ F 0
t ◦ et e∗t (Vt) = f ◦ e0 e∗t (Vt)

and therefore
Ψ(f × (Vt)) = f ◦ e0 Ψ(V·). (5.61)

A Borel time regularity of VF(πµ) is expressed in terms of Definition 3.1.1. The time regularity∏
t∈[0,1] L

0(TX) can easily be defined using the fact that
∏
t∈[0,1] L

0(TX) is the set of maps from

[0, 1] to L0(TX).
We define the set TestΠ ⊆

∏
t∈[0,1] L

0(TX) as the vector space

TestΠ :=

{
t 7→

n∑
i=1

χAi × (ϕi(t)Vi) for n ∈ N, Ai ∈ B(X), Vi ∈ TestV(X), ϕi ∈ Lip([0, 1])

}
.

Now notice that for Γ ⊂ C([0, 1],X) Borel, the set Γ0 := (F ·0)−1(Γ) ⊂ X satisfies χΓ0 ◦ e0 = χΓ

πµ-a.e., therefore (5.61) gives
Ψ
(
χΓ0 × (Vt)

)
= χΓ Ψ(V·) (5.62)

and thus
TestVF(πµ) = Ψ

(
TestΠ

)
.

Notice that arguing as in Proposition 5.2.3 it is easy to check that (Vt) ∈
∏
t∈[0,1] L

0(TX) is

Borel (as a map from [0, 1] to L0(TX)) if and only if t 7→ 〈Vt, Zt〉 ∈ L0(X) is Borel for every
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(Zt) ∈ TestΠ. Then keeping in mind the simple identity 〈Ψt(V ),Ψt(Z)〉 = 〈V,Z〉 ◦ F t0 ◦ e0 valid
πµ-a.e. for every V,Z ∈ L0(TX) and the fact that e0 is πµ-essentially injective, it is easy to see
that (vt) ∈ VF(πµ) is Borel (in the sense of Def. 3.1.1) if and only if it is of the form Ψ(V·) for
some (Vt) ∈

∏
t∈[0,1] L

0(TX) Borel.

Having in mind the definition of L 2(πµ), it is then clear that

L 2(πµ) = Ψ
({

(Vt) ∈ L0
var :

∫∫ 1

0
|Vt|2 ◦ F t0 dtdµ =

∫ 1

0

∫
|Vt|2 ◦ et dπµ dt <∞

})
.

To define the spaces W 1,2(πµ),H 1,2(πµ), we first described differentiation of test vector fields
along πµ, by means of the operator D (see (3.4)). We do the same with TestΠ. We start defining
D̃t : TestΠ→ L0

var as the linear extension of

D̃t(χA × (ϕ(t)V )) := χA × (ϕ′(t)V + ϕ(t)∇btV ), a.e. t ∈ [0, 1], (5.63)

for A ⊂ X Borel, ϕ ∈ LIP([0, 1]), and V ∈ TestV(X), and thus having for the convective derivative
Dt : TestVF(πµ)→ L 2(πµ) that

DtΨ(V·) := Ψ(D̃tV·) ∀(Vt) ∈ TestΠ. (5.64)

An important property of vector fields in H 1,2(πµ) is that they admit a continuous represen-
tative. Another way to phrase this property is by saying that

for every (vt) ∈H 1,2(πµ) there is a unique (ṽt) ∈ VF(πµ)

with vt = ṽt for a.e. t such that Φ(ṽ·) is in C([0, 1], L0(TX))
(5.65)

(from Proposition 5.2.3 it is easy to see that the statement [61, Theorem 3.23] implies this
property). In what follows we shall systematically identify elements of H 1,2(πµ) with their
continuous representatives. Another crucial property of elements of H 1,2(πµ) is the absolute
continuity of the norms:

(vt) ∈H 1,2(πµ) ⇒ (t 7→ |vt|2) ∈ AC2([0, 1], L0(πµ)) with
d

dt
|vt|2 = 2〈vt,Dtvt〉, a.e. t.

(5.66)

As mentioned, our goal in this section is to prove that the space W 1,2
var is ‘intermediate’

between H 1,2(πµ) and W 1,2(πµ). To make this statement rigorous we should actually consider

Ψ(W 1,2
var) and enforce L2-integrability of both the vector field into consideration and its convective

derivative. We are therefore led to define the ‘intermediate’ space

Interm(πµ) :=
{

Ψ(V·) : (Vt) ∈W 1,2
var and Ψ(V·),Ψ(D·V·) ∈ L 2(πµ)

}
,

so that the main result of the section can be stated as

H 1,2(πµ) ⊂ Interm(πµ) ⊂ W 1,2(πµ) (5.67)

with compatible convective derivatives, see Proposition 5.5.3 below for the precise statement. It
is worth to point out that once these inclusions are proved, from the completeness of W 1,2

var it is
not hard to prove that Interm(πµ) equipped with the W 1,2(πµ)-norm is a Hilbert space.

The proof of (5.67) is based on the following lemma:
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Lemma 5.5.1. Let (Vt) ∈ W 1,2
var([0, 1], L0(TX)) and f ∈ Test(X). Then t 7→ df(Vt) ◦ F t0 belongs

to W 1,2([0, 1], L0(X)) and

d

dt

(
df(Vt) ◦ F t0

)
= df(DtVt) ◦ F t0 + Hessf(Vt, bt) ◦ F t0, a.e. t, m− a.e.. (5.68)

If moreover (Vt) ∈ AC2
var([0, 1], L0(TX)), then we also have that t 7→ df(Vt) ◦ F t0 belongs to

AC2([0, 1], L0(X)).

Proof. It is clear that for (Vt) ∈ C([0, 1], L0(TX)) the map t 7→ df(Vt) ∈ L0(X) is continuous,
so that by Lemma 5.2.1 also t 7→ df(Vt) ◦ F t0 is continuous. Thus the statement for absolutely
continuous vector fields follows from the Sobolev case and in what follows we focus on the latter.

Let A ⊂ W 1,2
fix([0, 1], L0(TX)) be the collection of vector fields (vt) for which the conclusion

holds for Vt := dF t0(vt). We shall prove that A has the properties (o), · · · , (iv) in Proposition
4.4.7, so that such proposition gives the conclusion.

By the linearity in (Vt) of the claim and of dF t0, it is clear that A is a vector space, i.e. (o)
holds. (i) follows from property (4.24) of the differential dF t0 and (ii) by direct computation
based on the identity Dt(ϕ(t)Vt) = ϕ′(t)Vt + ϕ(t)DtVt, which in turn is a direct consequence of
the definition.

For (iii), let (vnt ) ⊂ A be W 1,2
fix-converging to some (v∞t ) ∈ W 1,2

fix([0, 1], L0(TX)). Put V n
t :=

dF t0(vnt ) for every n ∈ N and t ∈ [0, 1]. We want to prove that V∞t := dF t0(v∞t ) satisfies the
conclusions in the statement. Since (vnt ) → (v∞t ) and (v̇nt ) → (v̇∞t ) in L2

fix([0, 1], L0(TX)) ↪→
L0
fix([0, 1], L0(TX)), Proposition 5.2.3 and the very definition (5.22) tell that (V n

t )→ (V∞t ) and

(DtV
n
t )→ (DtV

∞
t ) in L0

var([0, 1], L0(TX)). It follows that

df(V n
t ) ◦ F t0 → df(V∞t ) ◦ F t0

df(DtV
n
t ) ◦ F t0 + Hessf(V n

t , bt) ◦ F t0 → df(DtV
∞
t ) ◦ F t0 + Hessf(V∞t , bt) ◦ F t0

in L0([0, 1], L0(X)). Since (5.68) holds for (V n
t ) and |(vnt )|

W 1,2
fix
→ |(v∞t )|

W 1,2
fix

in L0(X), by Propo-

sition 4.4.3 the claim will be proved if we show that

|(df(V n
t ) ◦ F t0)|W 1,2 ≤ G|(vnt )|

W 1,2
fix
, m− a.e. (5.69)

for every n ∈ N for some G ∈ L0(X) possibly depending also on f . Since |df | ∈ L∞(X) we have

|df(V n
t ) ◦ F t0|L2 ≤ C|(V n

t )|L2
var

(5.24)

≤ G|(vnt )|L2
fix
, m− a.e.

and since also |bt| ∈ L∞(X× [0, 1]) we also have

|df(DtV
n
t ) ◦ F t0 + Hessf(V n

t , bt) ◦ F t0|L2 ≤ C|(DtV
n
t )|L2

var
+ C|(V n

t )|L∞var |(|Hessf | ◦ F t0)|L2

(by (5.27), (5.26)) ≤ G|(vnt )|
W 1,2
fix

(1 + |(|Hessf | ◦ F t0)|L2)

(by (5.4) for |Hessf | ∈ L2(X)) ≤ G|(vnt )|
W 1,2
fix
, m− a.e..

The claim (5.69) follows.
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To prove (iv) we use Proposition 5.3.2: let v̄ ∈ L0(TX) and put Vt := dF t0(v̄) for t ∈
[0, 1]. Then it is clear from Proposition 5.3.2 that t 7→ df(Vt) ◦ F t0 = d(f ◦ F t0)(v̄) belongs to
W 1,2([0, 1], L0(X)) with

d

dt
(df(Vt) ◦ F t0) = d(df(bt) ◦ F t0)(v̄) = d(df(bt))(Vt) ◦ F t0 =

(
Hessf(Vt, bt) + df(DtVt)

)
◦ F t0,

for a.e. t, having used the definition of Dt in the last step. This proves (iv) and gives the
conclusion.

From this lemma and the language recalled in this section we easily obtain the following:

Corollary 5.5.2. Let (zt) ∈ H 1,2(πµ) and (Vt) ∈ W 1,2
var. Put vt := Ψt(Vt). Then t 7→ 〈zt, vt〉 ∈

L0(πµ) belongs to W 1,2([0, 1], L0(πµ)) with

d

dt
〈zt, vt〉 = 〈Dtzt, vt〉+ 〈zt,Ψt(DtVt)〉, πµ − a.e., a.e. t ∈ [0, 1].

If (zt) is identified with its continuous representative and (Vt) ∈ AC2
var, then t 7→ 〈zt, vt〉 ∈ L0(πµ)

belongs to AC2([0, 1], L0(πµ)).

Proof.
Step 0. We prove the last statement assuming the first claim. Notice that

〈zt,Ψt(Vt)〉
(5.60)

= 〈Ψt(Φt(zt)),Ψt(Vt)〉 = 〈Φt(zt), Vt〉 ◦ et = 〈Φt(zt), Vt〉 ◦ F t0 ◦ e0 πµ − a.e..

Hence if (zt) is continuous (recall (5.65)) and so is (Vt), Lemma 5.2.1 ensures that t 7→ 〈Φt(zt), Vt〉◦
F t0 ∈ L0(X) is continuous, thus the above shows that so is t 7→ 〈zt, vt〉 ∈ L0(πµ).
Step 1. We assume that (zt) ∈ TestVF(πµ), say (zt) = Ψ(Z·) for (Zt) :=

∑n
i=0

χAi×(ϕi(t)gi∇fi) ∈
TestΠ, with Ai Borel, ϕi Lipschitz and fi, gi ∈ Test(X). Notice that by the very definition (5.20)
we have

〈Zt, V 〉 ◦ F t0 =
n∑
i=0

χAiϕi(t) gi ◦ F t0 〈∇fi, V 〉 ◦ F t0, ∀t ∈ [0, 1], V ∈ L0(TX). (5.70)

Noticing that (t 7→ gi ◦F t0) ∈W 1,2([0, 1], L0(X)) with derivative d
dtgi ◦F

t
0 = dgi(wt)◦F t0 and using

Lemma 5.5.1 above, it follows, by the very definition of W 1,2([0, 1], L0(X)), that t 7→ 〈Zt, Vt〉◦F t0 ∈
L0(X) is in W 1,2([0, 1], L0(X)) with

d

dt
〈Zt, Vt〉 ◦ F t0 =

n∑
i=0

χAi

(
ϕi(t) gi (〈∇fi, DtVt〉+ Hessfi(Vt, wt))

+ ϕ′i(t) gi 〈∇fi, Vt〉+ ϕi(t)dgi(wt)〈∇fi, Vt〉
)
◦ F t0

(by (5.63)) = 〈Zt, DtVt〉 ◦ F t0 + 〈D̃tZt, Vt〉 ◦ F t0

and thus (recall also (4.37)) for (L1)2-a.e. t, s ∈ [0, 1] with t < s we have

〈Zs, Vs〉 ◦ F s0 − 〈Zt, Vt〉 ◦ F t0 =

∫ s

t
〈Zr, DrVr〉 ◦ F r0 + 〈D̃rZr, Vr〉 ◦ F r0 dr, m− a.e.. (5.71)
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Now observe that pre-composing the defining identity |Ψt(V )| = |V | ◦ et valid πµ-a.e. by F ·0 and
using the second in (5.59) we get

|Ψt(V )| ◦ F ·0 = |V | ◦ F t0, m− a.e. on A0, ∀V ∈ L0(TX) (5.72)

(recall that At := {d(et)∗πµ
dm > 0}). We thus multiply (5.71) by χA0 and pre-compose it by e0, then

use (5.72) and the first in (5.59) for t = 0 and observe that χA0 ◦ e0 = 1 πµ-a.e. to get that for
(L1)2-a.e. t, s ∈ [0, 1] with t < s we have

〈zs, vs〉 − 〈zt, vt〉 =

∫ s

t
〈zr,Ψr(DrVr)〉+ 〈Drzr, vr〉 dr, πµ − a.e., (5.73)

having recalled (5.64). By (4.39), this proves our claim in the case (zt) ∈ TestVF(πµ).
Step 2. For the general case, we start claiming that for (zt) ∈H 1,2(πµ) we have

|(zt)|L∞ ≤ 2
(
|(zt)|L2 + |(Dtzt)|L2

)
, (5.74)

where here and below we adopt the notation | · |Lp introduced in Section 4.4, referring this time
to the space L0(πµ) in place of L0(m). Indeed, from (5.66) we see that | d

dt |zt|
2| ≤ |zt|2 + |Dtzt|2

for a.e. t and thus after integration we obtain

|zt|2 ≤ |zs|2 +

∫ t∨s

t∧s
|zr|2 + |Drzr|2 dr ≤ |zs|2 +

∫ 1

0
|zr|2 + |Drzr|2 dr πµ − a.e.,

for (L1)2-a.e. t, s ∈ [0, 1]. Integrating in s we deduce (5.74).
We shall use (5.74) in conjunction with Proposition 4.4.3 to conclude. Thus let (zt) ∈

H 1,2(πµ) and (znt ) ⊂ TestVF(πµ) be W 1,2(πµ)-converging to it. From the definition of W 1,2(πµ)-
norm it is clear that

〈znt , vt〉 → 〈zt, vt〉
〈znt ,Ψt(DtVt)〉+ 〈Dtznt , vt〉 → 〈zt,Ψt(DtVt)〉+ 〈Dtzt, vt〉

in L0([0, 1], L0(πµ)) and that

|(znt )|L2 → |(zt)|L2 , |(Dtznt )|L2 → |(Dtzt)|L2

in L0(πµ). Also, from the definition of Ψ we have that |(Ψ(V·))|Lp = |(Vt)|Lpvar ◦ e0, thus

|〈znt , vt〉|L2 ≤ |(znt )|L2 |(vt)|L∞ = |(znt )|L2 |(Vt)|L∞var ◦ e0

(by (5.27)) ≤ G|(znt )|L2 |(Vt)|W 1,2
var
◦ e0,

and

|〈znt ,Ψt(DtVt)〉+ 〈Dtznt , vt〉|L2 ≤ |(znt )|L∞ |(Ψt(DtVt))|L2 + |(Dtznt )|L2 |(vt)|L∞
(by (5.27)) ≤ G |(Vt)|W 1,2

var
◦ e0

(
|(znt )|L2 + |(Dtznt )|L2

)
.

Hence Proposition 4.4.3 gives the conclusion.

The main result of the section can now be proved rather easily:
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Proposition 5.5.3. The inclusions in (5.67) hold and the underlying notions of convective
derivatives agree, i.e. for (Vt) ∈ W 1,2

var such that v· := Ψ(V·) ∈ L 2(πµ) we have Ψt(DtVt) = Dtvt
for a.e. t ∈ [0, 1].

Proof.
Step 1. We prove the second inclusion in (5.67) and the identification of convective derivatives.
Let (vt) ∈ Interm(πµ), say (vt) = Ψ(V·) for (Vt) ∈ W 1,2

var. Also, let (zt) ∈ TestVF(πµ) be
with compact support in time in the sense of (3.6). Then from Corollary 5.5.2 above, since
TestVF(πµ) ⊆H 1,2(πµ), we obtain that∫ 1

0
〈zr,Ψr(DrVr)〉+ 〈Drzr, vr〉dr = 0 πµ − a.e..

The integrability assumptions coming from the hypothesis Ψ(V·) ∈ Interm(πµ) and (zt) ∈
TestVF(πµ) ensure that the left-hand side of the above is in L1(πµ), thus upon integration we see
that (3.5) holds with v′t = Ψt(DtVt) for a.e. t ∈ [0, 1]. By the arbitrariness of (zt) ∈ TestVF(πµ),
this is the claim.
Step 2. We prove the first inclusion in (5.67). Let (zt) ∈ H 1,2(πµ) be identified with its
continuous representative as in (5.65). Put Zt := Φt(Dtzt) and V̄ := Φ0(z0) and notice that the
identity |Φt(z)| = χAt |z| ◦ F ·0 ◦ F 0

t gives |Φt(z)| ◦ F t0 = χA0 |z| ◦ F ·0, which in turn implies, thanks
to (Dtzt) ∈ L 2(πµ), that (Zt) ∈ L2

var.
By Theorem 5.4.4 there is (a unique) (Vt) ∈ AC2

var satisfying (5.57) with these choices of
(Zt), V̄ . To conclude the proof it is therefore sufficient to show that Ψt(Vt) = zt for every t ∈ [0, 1].
Notice that the identity |Ψt(V )| = |V | ◦ et gives that t 7→ |Ψt(Vt)|2 is in AC2([0, 1], L0(πµ)) with
1
2

d
dt |Ψt(Vt)|2 = 〈Ψt(Vt),Ψt(DtVt)〉. Thus taking into account (5.66), Corollary 5.5.2, and Theorem

5.3.4, we see that t 7→ |zt − Ψt(Vt)|2 = |zt|2 + |Ψt(Vt)|2 − 2〈zt,Ψt(Vt)〉 is in AC2([0, 1], L0(πµ))
with derivative given by

1
2

d

dt
|zt −Ψt(Vt)|2 = 〈zt,Dtzt〉+ 〈Ψt(Vt),Ψt(DtVt)〉 − 〈zt,Ψt(DtVt)〉 − 〈Dtzt,Ψt(Vt)〉 = 0, a.e. t

having used the fact that Ψt(DtVt) = Ψt(Φt(Dtzt)) = Dtzt. Since Ψ0(V0) = Ψ0(Φ0(z0)) = z0, the
conclusion follows.
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Chapter 6

Local convergence in measure of
gradients of flows associated to
Sobolev vector fields

The main content of this chapter, that will be a part of a forthcoming work with N. Gigli, is to
show the following theorem in the Euclidean setting.

Theorem 6.0.1. Let p > 1 and bn, b : [0, T ] × Rd → Rd be such that there exists C0 > 0 such
that ‖bn‖L∞([0,T ]×Rd) ≤ C0, for every M > 0 there exists CM > 0 such that

sup
n

(
esssupt∈[0,T ]‖Dxb

n
t ‖Lp(BM (0))

)
≤ CM .

Assume bn → b in L1([0, T ],W 1,p
loc (Rd)) and supn

∫ T
0 ‖divbnt ‖L∞(Rd) dt <∞. Consider the associ-

ated regular Lagrangian flows Fnts and F ts . Then there exists a subsequence such that

∇Fnts → ∇F ts locally in measure. (6.1)

We want to compare the assumptions on the Sobolev regularity of vector fields which ensure
local convergence in measure of the associated flows with the ones ensuring (6.1). Under the
assumptions that the limit vector field belongs to L1

tW
1,p
x and the sequence converges in L1

t,x,
plus L∞t,x equibounds on the sequence and L1

tL
∞
x equibounds on the divergence, the stability at

order zero of flows, namely local convergence in measure, can be proved (see e.g. [43, Theorem
2.9]). For the local convergence in measure of the differentials of the flows, we don’t need any
condition at second order neither on the converging sequence nor on the limit vector field, by
taking advantage of to the fact the gradient of the flow satisfies a linearized ODE; however, we
assume stronger conditions at the first order, namely convergence of the sequence of vector fields
to the limit one in L1

tW
1,p
x and it turns out to be necessary.

The reason for which we got interested in such a problem is that we originally proved the theorem
of existence and uniqueness of parallel transport in ncRCD(K,N) spaces (Theorem 5.4.4) along
flows of an autonomous Sobolev vector field; moreover, the same trivially holds for flows of
piecewise-in-time autonomous vector fields. Then our goal was to study time dependent vector
fields as limits of piecewise-in-time autonomous ones. For this reason, our strategy was based
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on the understanding of an analogue of (6.1) in the nonsmooth setting. Later, we realized that
existence and uniqueness could be proved directly in the case of time dependent vector fields
satisfying the conditions at the beginning of Section 5.1.
The presentation is organized as follows. We recall in Section 6.1 in which sense a regular
Lagrangian flow is differentiable with respect to the initial conditions and solve the linearized
ODE

∂t∇F ts(x) = Dbt(F
t
s(x))∇F ts(x).

We provide in Section 6.2 a counterexample in which (6.1) does not hold. In this example, we con-
sider in R a sequence of vector fields (vn) for which supn

(
‖vn‖L∞([0,T ]×R) + ‖∂xvnt ‖L∞([0,T ]×R)

)
<

∞, vn → v ∈ L1([0, T ], Lploc(R)) for every p ∈ [1,+∞], but it is not true that ∂xv
n → ∂xv ∈

L1([0, T ], L1
loc(R)). Then, in Section 6.2.1, we exploit that ∇F ts(x) solves the linearized ODE in

order to pass to pass to the limit along a sequence of vector fields and prove the stability result
in Theorem 6.0.1.

6.1 The ODE solved by ∇F t
s(x)

We explain in this section in which sense a weak notion of the gradient of the flow map solves for
fixed x the linearized ODE

∂s∇F st (x) = Dbs(F
s
t (x))∇F st (x). (6.2)

The idea is to tailor Proposition 5.3.2 in the Euclidean setting; however, the last proposition is
proved under the assumptions that (bt) ∈ L2([0, 1],W 1,2

C (TX)), |bt|, |div(bt)| ∈ L∞([0, 1]×X) and
for some x̄ ∈ X and R > 0 we have supp(bt) ⊂ BR(x̄) for a.e. t ∈ [0, 1]. To this aim, we prove
that the following version of Proposition 5.3.2 holds in the setting of ncRCD(K,N) spaces with
more natural assumptions on the vector fields, the same under which Theorem 6.0.1 holds. The
results will be used later in the Euclidean setting.

Proposition 6.1.1. Let (X, d,m) be a ncRCD(K,N) space. Let F st be the regular Lagrangian flow
associated to (bt) ∈ L1([0, T ],W 1,2

C (TX)) such that div(bt) ∈ L1([0, T ], L∞(m)), |bt| ∈ L∞([0, T ]×
X). Then for every f ∈ Test(X) and t ∈ [0, T ], the map s 7→ d(f ◦F st ) is in AC2([0, T ], L0(T ∗X))
and we have

lim
h→0

d(f ◦ F s+ht )− d(f ◦ F st )

h
= d(df(bs) ◦ F st ) in L0(T ∗X) for a.e. s. (6.3)

Proof. Step 1: assume that b has bounded support, namely for some x̄ ∈ X and R > 0 supp(bt) ⊆
BR(x̄) for a.e. t ∈ [0, T ]. We define

G(t) := ‖divbt‖L∞(m) + ‖bt‖W 1,2
C (TX)

and h(s) :=
∫ s

0 ε+G(r) dr, where h : [0, 1]→ [0, Tε], where Tε = ε+
∫ 1

0 G(r) dr for some ε > 0. h
is strictly increasing and absolutely continuous, with inverse g. We have that

g′(t) =
1

h′(g(t))
=

1

ε+G(g(t))
for a.e. t ∈ [0, Tε].

Therefore, g′G ◦ g ∈ L∞([0, Tε]). We define vt := bg(t) g
′(t) for a.e. t ∈ [0, Tε]. We check that v

satisfies all the hyphothesis of Proposition 5.3.2. We check that |vt| ∈ L∞([0, T ] × X). We call
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for simplicity a(t) := ‖bt‖L∞(m). We check ‖a ◦ g‖L∞([0,Tε]) ≤ ‖a‖L∞([0,T ]). Indeed, this follows
from the fact that for every M > 0 for which L 1({a > M}) = 0 the change of variable

0 =

∫
{a>M}

1 dt =

∫
g−1({a>M})

g′(t) dt

and the fact that g′ > 0 for a.e. t yield L 1({g−1({a > M})}) = 0. Therefore, ‖vt‖L∞(m) =

‖bg(t)‖L∞(m) |g′(t)| ≤ 1
ε‖bg(t)‖L∞(m) ≤ 1

ε‖v‖L∞([0,Tε]×X) for a.e. t. Similarly, it can be readily

checked that supp(vt) ⊂ BR(x̄) for a.e. t ∈ [0, Tε]. Moreover, (vt) ∈ L2([0, Tε],W
1,2
C (TX)) and

|div(vt)| ∈ L∞([0, Tε] × X), as a consequence of the fact that ‖divvt‖L∞(m) + ‖vt‖W 1,2
C (TX)

=

g′(t)G(g(t)) ∈ L∞([0, Tε]). Let F̄ be the regular Lagrangian flows associated to v. Therefore,
Proposition 5.3.2 applies, having that there exists a m-negligible N0 ⊆ [0, Tε] such that, for every
t ∈ [0, Tε] and s ∈ [0, Tε] \N0 and f ∈ Test(X), we have

lim
h→0

d(f ◦ F̄ s+ht )− d(f ◦ F̄ st )

h
= d(df(vs) ◦ F̄ st ) in L0(T ∗X). (6.4)

Let F the regular Lagrangian flows associated to b and by its very definition, for every t ∈ [0, T ]
we have that for every t ∈ [0, T ], m-a.e.

∂sf ◦ F g(s)g(t) = df(bg(s)) ◦ F
g(s)
g(t) g

′(s) = df(vs) ◦ F g(s)g(t) for a.e. s ∈ [0, Tε].

By uniqueness of regular Lagrangian flow associated to v it follows that (the other properties are
trivially verified)

F̄ st = F
g(s)
g(t) for every t, s ∈ [0, Tε].

We define N1 := N0 ∪ {g is not differentiable or g′ = 0} and L 1(N1) = 0. Therefore, from (6.4)
and the last consideration for every s ∈ [0, T ] \N1

lim
h→0

d(f ◦ F g(s)+hg(t) )− d(f ◦ F g(s)g(t) )

h
=

1

g′(s)
lim
h→0

d(f ◦ F g(s+h)
g(t) )− d(f ◦ F g(s)g(t) )

h

= d(df(bg(s)) ◦ F
g(s)
g(t) ) in L0(T ∗X).

Using that g is bijective and that L 1(g(N1)) ≤ 1
εL

1(N1) being g 1/ε-Lipschitz, we get (6.3) for
every s ∈ [0, T ] \N with N = g(N1).
Step 2: we prove that (6.3) holds withouth assumption on boundedness of the support of b. We
fix o ∈ X, R > 0 and we call M := ‖b‖L∞t,x . We consider ϕ ∈ Lipbs(X) such that ϕ = 1 on

BR+M (o) and ϕ ≤ 1, define b̄t = ϕ bt for a.e. t and call it its associated regular Lagrangian flow
F̄ . Notice that F st (x) ∈ BR+M (o) for every t, s for every x ∈ BR(o), whence F̄ st = F st on BR(o).
By locality of the differential of Lusin-Lipschitz maps and the fact that ϕ ◦ F̄ st = 1 on BR(o), it
follows that

d(f ◦ F st ) = d(f ◦ F̄ st ) on BR(o),

d(df(b̄s) ◦ F̄ st ) = d(ϕ ◦ F̄ st df(bs) ◦ F̄ st ) = d(df(bs) ◦ F̄ st ) = d(df(bs) ◦ F st ) on BR(o).
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The previous considerations and Step 1 gives that for every s1, s2 with s1 < s2 we have

χBR(o)d(f ◦ F s2t )− χBR(o)d(f ◦ F s1t ) = χBR(o)d(f ◦ F̄ s2t )− χBR(o)d(f ◦ F̄ s1t )

= χBR(o)

∫ s2

s1

d(df(b̄r) ◦ F̄ rt ) dr = χBR(o)

∫ s2

s1

d(df(br) ◦ F rt ) dr

thus having that by arbitrariness of R that for every s1, s2 with s1 < s2 we have

d(f ◦ F s2t )− d(f ◦ F s1t ) =

∫ s2

s1

d(df(br) ◦ F rt ) dr

whence s 7→ d(f ◦ F st ) belongs to AC2([0, T ], L0(T ∗X)) and (6.3) holds.

We recall the notion of approximate differentiability (from [43, Appendix B]).

Definition 6.1.2 (Approximate gradient). We say that a Borel map f : Rd → Rk is approximately
differentiable at the point x if there exists a map f̃ , differentiable in the classical sense at x, such
that f̃(x) = f(x) and such that {y : f̃(y) = f(y)} has density 1 at x. Moreover, we denote by
∇af(x) = ∇f̃(x) and we call it the approximate gradient at the point x.

Remark 6.1.3. We recall that, if f : Rd → Rk has the Lusin-Lispchitz property, then it is
approximately differentiable at L d–a.e. x ∈ Rd.

The connection between the differential df and the approximate gradient ∇af is given the
following proposition. We denote, for every i, by πi the coordinate maps πi(x) : = xi and we
recall that {dπi}i is a local base of L0(T ∗Rd).

Lemma 6.1.4. The linear map Φ: L0(T ∗Rd) → L0(Rd,Rd) defined for v =
∑d

i=1 a
idπi ∈

L0(T ∗Rd) with ai ∈ L0(Rd) for every i as

Φ(v) = (a1, . . . , ad) (6.5)

is an isomorphism of L0(Rd)-modules which preserves the pointwise norm. Moreover, it holds
that, given a Lusin-Lipschitz function f ,

Φ(df) = ∇af. (6.6)

Proof. The claim that Φ is an isomorphism of L0(Rd)-normed modules which preserves the point-
wise norm is proved straightforwardly, noticing the fact that 〈dπi,dπj〉 = δi,j a.e. on Rd.
It remains to prove (6.6). We claim that it holds for f Lipschitz. By definition of Φ, it follows
that Φ(dπi) = ei = ∇πi for every i. By linearity of both members, given g(x) = c · x, we
have that Φ(dg) = c = ∇g. Consider an enumeration {ci} of Qd. We fix ε > 0 and we define
Ei : = {x : f is differentiable at x and |∇f(x) − ci| < ε} for every i ∈ N. By Rademacher theo-
rem, we have that (Ei)i is a partition of a.a. Rd. We fix one such index i. We define h(x) = ci ·x,
we have that |∇(f − h)(x)| < ε for every x ∈ Ei. Moreover, in every point of differentiability
of f (hence also of f − h), it holds that lip(f − h)(x) = |∇(f − h)(x)|, which together with the
fact that |d(f − h)| ≤ lip(f − h) holds a.e. on Ei yields that |d(f − h)| < r a.e. on Ei. By the
triangular inequality, we have

|Φ(df)−∇f | ≤ |Φ(d(f − h))|+ |Φ(dh)−∇h|+ |∇(f − h)| holds m-a.e. on Ei,
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hence we notice that the second term is zero and that Φ preserves the pointwise norm. Therefore,
this gives that |Φ(df) − ∇f | ≤ 2ε on Ei. By repeating the argument for every i, we get that
|Φ(df)−∇f | ≤ 2ε a.e. on Rd. By the arbitrariness of ε, we prove the claim.
Given a Lusin-Lipschitz f , consider an a.a. partition of X on which f |Ai is Lispchitz and, for every

i, f i ∈ Lip(Rd) such that f = f i on Ai. By the definition of df , the L0(X)-linearity of Φ and the
fact it preserves the pointwise norm, we get that Φ(df) = Φ(

∑∞
i=1 χAidf

i) =
∑∞

i=1 χAiΦ(df i) =∑∞
i=1 χAi∇f i holds a.e.. To conclude, we notice that for every x ∈ Ai which is a differentiability

point of f i and a density point for Ai it holds that ∇f i(x) = ∇af(x).

Due to consistency of notation, we denote ∇a = ∇.

Proposition 6.1.5. Let (bt) ∈ L1([0, T ],W 1,2(Rd)) be such that div b ∈ L1([0, T ], L∞(Rd)),
|bt| ∈ L∞([0, T ]×Rd) and (F st ) the associated regular Lagrangian flow. Then for every t ∈ [0, T ],
for m-a.e. x the map (s 7→ ∇F st (x)) ∈W 1,1([0, T ],Rd×d) and

∂s∇F st (x) = Dbs(F
s
t (x))∇F st (x).

Proof. We call (F st (x))i the i-th component of F st (x). We fix t ∈ [0, T ]. We apply Proposition
6.1.1 in (Rd, de,L d) as follows. We fix i and R > 0 and we call M := ‖b‖L∞t,x . We consider

f ∈ C∞c (Rd) such that f(x) = xi on BR+TM (0). We recall that, by definition of d, for Lusin
Lipschitz g and Borel E it holds that χEdg = d(χEg). Applying Proposition 6.1.1 and the last
consideration, we have that for a.e. s ∈ [0, T ]

χBR(0) lim
h→0

d((F s+ht )i)− d(F st )i)

h
= lim

h→0

d(χBR(0) (F s+ht )i)− d(χBR(0) (F st )i)

h

= lim
h→0

d(χBR(0) f ◦ F s+ht )− d(χBR(0) f ◦ F st )

h

= χBR(0) lim
h→0

d(f ◦ F s+ht )− d(f ◦ F st )

h
= χBR(0)d(df(bs) ◦ F st )

= d(χBR(0) df(bs) ◦ F st ) = d(χBR(0) b
i
s ◦ F st ) = χBR(0) d(bis ◦ F st ).

the limit intended in L0(T ∗Rd). By arbitrariness of R and repeating the argument for every i, we
have that there exists a negligible set N ⊆ [0, T ] such that, for every i = 1, . . . , d and for every
s ∈ [0, T ] \N

lim
h→0

d((F s+ht )i)− d(F st )i)

h
= d(bis ◦ F st ). (6.7)

We apply Lemma 6.1.4 to (6.7), thus having that [0, T ] 3 s 7→ ∇(F st )i ∈ L0(Rd,Rd) belongs to
AC2([0, T ], L0(Rd,Rd)) and for every s ∈ [0, T ] \N

lim
h→0

∇((F s+ht )i)−∇((F st )i)

h
= ∇(bis ◦ F st )

the limit intended in L0(Rd,Rd). Collecting the results for every i we get

∂s∇F st = lim
h→0

∇F s+ht −∇F st
h

= ∇(bs ◦ F st ) = Dbs ◦ F st ∇F st ,
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the limit intended in L0(Rd,Rd×d). Since (s 7→ ∇(F st )i) ∈ AC2([0, T ], L0(Rd,Rd)), there exists
(s 7→ v̇s) ∈ L2([0, T ], L0(Rd,Rd)) such that for every z ∈ L0(Rd,Rd) we have that for m-a.e. x the
map (s 7→ 〈∇(F st )i, z〉(x)) ∈W 1,2([0, T ]) and

∂s〈∇(F st )i, z〉(x) = 〈v̇s, z〉(x).

It can be readily checked that v̇s = Dbis(F
s
t (·))∇F st . Considering z = ek for every k in the last

equality we obtain that for m-a.e. x the map (s 7→ ∇(F st )i(x)) ∈W 1,2([0, T ],Rd) and

∂s∇(F st )i(x) = Dbis(F
s
t (x))∇F st .

Putting all together, we get that, for fixed t ∈ [0, T ], for m-a.e. x the map (s 7→ ∇F st (x)) is in
W 1,2([0, T ],Rd×d) and

∂s∇F st (x) = Dbs(F
s
t (x))∇F st (x).

Remark 6.1.6. We point out that the conclusion of Proposition 6.1.5 is already known in lit-
erature and can be derived at least in the following two ways under the same assumptions on
b:

i) the first proof can be derived combining the following results. Le Bris and Lions treated in
[81] the vector field in R2d Bt(x, h) := (bt(x), Dbt(x)h), proving existence and uniqueness
of regular Lagrangian flows (notice that B does not satisfy the hypthesis of DiPerna-Lions
theory). By looking at the last d components of the regular Lagrangian flows W (t, x, h),
we have that for L 2d-a.e. (x, h)

∂tW (t, x, h) = Dbt(F
t
0(x))W (t, x, h) for a.e. t, W (0, x, h) = h.

They also proved that W (t, x, h) is the differential in measure of the flow F t0(x) (in the sense
of [13]); moreover, in [13] it is proved that W (t, x, h) = W̄ (t, x)h, where W̄ : [0, T ]× Rd →
Rd×d. By linearity in h it is easy to obtain the last equation for L d-a.e. x, for every h. To
conclude, the Lusin–Lipschitz property for p > 1 grants that for every t, s ∈ [0, T ] F ts is L d

a.e. approximate differentiable (see [43]), with approximate gradient ∇F t0(·) equal L d-a.e.
to W̄ (t, ·) (see [13, Theorem 4.2]);

ii) a direct proof in [20, Section 2.1], later extended in the same work to the more general class
of nearly incompressible BV vector fields.

6.2 Local convergence in measure of approximate gradients

We start providing an example in which we don’t have the desired convergence of gradients of
the flow maps. As mentioned before, we build in R a sequence of vector fields (vn) for which
supn

(
‖vn‖L∞([0,T ]×R) + ‖∂xvnt ‖L∞([0,T ]×R)

)
< ∞, vn → v ∈ L1([0, T ], Lploc(R)) for every p ∈

[1,+∞], but it is not true that ∂xv
n → ∂xv ∈ L1([0, T ], L1

loc(R)). Before introducing it, we need
to recall a weak notion of convergence of vector fields we will use.

116



Definition 6.2.1. Let (bn) ⊆ L1([0, T ], L1
loc(Rd)), n ∈ N ∪ {∞}. We say that bn → b∞ weakly

in time and (locally) strongly in space provided for any ϕ ∈ Cc(R) we have bϕn → bϕ∞ strongly in
L1([0, T ], L1

loc(Rd)), where we put

bϕn,t :=

∫
R
ϕ(t− s)bn,s ds ∀t ∈ [0, T ], n ∈ N ∪ {∞},

and it is intended that bn,s = 0 for s /∈ [0, T ].

Example 6.2.2. We define for every n the following flow maps, given T ≤ 1
2 , for t < T :

Xn(t, x) = x+ thn(x) for x ∈ R

where hn(x) := h(nx)
n and

h(x) :=

{
x− 2j x ∈ [2j, 2j + 1],

2j − x x ∈ [2j − 1, 2j].
(6.8)

By a straightforward computation we can rewrite the flow maps as

Xn(t, x) :=

{
x+ t(2j

n − x) x ∈ [2j
n −

1
n ,

2j
n ],

x+ t(x− 2j
n ) x ∈ [2j

n ,
2j
n + 1

n ].

and their inverse maps Y n(t, x), i.e. such that Y n(t,Xn(t, x)) = x

Y n(t, x) :=

{
x

1+t + t
1+t

2j
n x ∈ [2j

n ,
2j
n + (1 + t) 1

n ],
x

1−t −
t

1−t
2j
n x ∈ [2(j−1)

n + (1 + t) 1
n ,

2j
n ].

We define vnt (x) := ∂tX
n(t, Y n(t, x)) = hn(Y n(t, x)). We have that |vnt |(x) = 1

n |h|(nY
n(t, x)),

hence:

‖vnt (x)‖C0([0,T ]×R) ≤
1

n
.

Therefore, vnt (x) converges to zero uniformly in [0, T ]×R and strongly in L1([0, T ]×K) for every
compact set K ⊂ R. Moreover, we compute for fixed t ∈ [0, T ]:

|∂xvnt |(x) = |∂xhn|(Y n(t, x))|∂xY n(t, x)|.

Therefore, since |∂xY n(t, x)| ≤ 1
1−T , we have that for L 1-a.e. x, |∂xvnt |(x) ≤ 1

1−T ; therefore vnt
is Lipschitz with Lip(vnt ) ≤ 1

1−T , which yields

sup
n

sup
t∈[0,T ]

Lip(vnt ) ≤ 1

1− T
.

This grants that Xn(t, x) is the classical flow map given by bundling the trajectories (unique by
the Cauchy Lipschitz theory) associated to the vector field vnt ; in particular, it is also the regular
Lagrangian flow associated to vnt . We claim that ∂xv

n
t does not converge weakly in time and

strongly in space to 0. To do so, it is enough to find ϕ ∈ Cc(R) such that:∫ T

0

∫
[0,1]

∣∣∣∣∫
R
ϕ(t− s)∂xvns (x) ds

∣∣∣∣ dx dt (6.9)
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doesn’t converge to zero. Indeed, consider a positive function ϕ ∈ C∞c (R) with
∫
ϕ = 1 and

suppϕ ⊂ Bε(0). We recall that ∂xv
n
s (x) = h′(nY n(s, x))∂xY

n(s, x). We can explicitily compute

∂xv
n
t (x) :=

{
1

1+t x ∈ [2j
n ,

2j
n + (1 + t) 1

n ],
1
t−1 x ∈ [2(j−1)

n + (1 + t) 1
n ,

2j
n ].

We define Kn := ∪m[2m
n ,

2m
n + 1

n ]. We have:

1

1

T

1

n

2

n

3

n
Kn

Figure 6.1: The function ∂xv
n
t (x) is constant in x for fixed t on the grey and white zones.

∫ T−ε

ε

∫
Kn∩[0,1]

∣∣∣∣∫
R
ϕ(t− s)∂xvns (x) ds

∣∣∣∣ dx dt =

∫ T−ε

ε

∫
Kn∩[0,1]

∣∣∣∣∫
R
ϕ(t− s) 1

1 + s
ds

∣∣∣∣ dx dt

≥ 1

1 + T
|Kn ∩ [0, 1]|(T − 2ε).

yielding the conclusion, since |Kn ∩ [0, 1]| = C > 0, with C independent of n. Moreover, we
define X(t, x) = x which is the classical flow associated to vt(x) := 0. It is straightforward to
check that for every t Xn(t, ·)→ X(t, ·) in L0(L 1), while it is not true that ∂xX

n(t, ·)→ ∂xX(t, ·)
in L0(L 1). Indeed, take µ ∈P(R) such that µ ≤ L 1 � µ; we have that:∫

|∂xXn(t, ·)− ∂xX(t, ·)| ∧ 1 dµ =

∫
|th′(nx)| ∧ 1 dµ(x) = t

which doesn’t converge to zero as n→ 0.

6.2.1 Proof of the main theorem

This section is devoted to the proof of Theorem 6.0.1. Before doing that, we introduce some
notations and preliminary lemmas. We define B(t, s, x) := Dbt(F

t
s(x)). Given x, we consider an

absolutely continuous matrix-valued curve [0, T ] 3 t 7→ A(t, s, x) ∈ Rd×d such that{
d
dtA(t, s, x) = B(t, s, x)A(t, s, x) for L 1-a.e. t,

A(s, s, x) = x
(6.10)

and we consider accordingly, for every n, given x, an absolutely continuous matrix-valued curve
[0, T ] 3 t 7→ An(t, s, x) ∈ Rd×d such that (6.10) is solved with Bn(t, s, x) := Dbnt (Fnts(x)). We
have, that, for fixed n, one solution of the problem (6.10) is given by t 7→ ∇Fnts(x), and we prove
that for a.e x this is the only one. We need the following lemma.
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Lemma 6.2.3. Let b a bounded vector field such that Dxb ∈ L1
loc([0, T ] × Rd) for which there

exists a regular Lagrangian flow F ts(x); in particular, we denote by L > 0 the constant such that
F ts∗L

d ≤ LL d. Then there exists a measurable set N̄ ⊆ Rd such that L d(N̄) = 0 and for every
x ∈ Rd \ N̄ ∫ T

0
|Dxb(t, F

t
s(x))| dt <∞. (6.11)

Proof. Fix M ∈ N. We compute∫
BM (0)

∫ T

0
|Dxb(t, F

t
s(x))| dt dx =

∫ T

0

∫
BM (0)

|Dxb(t, F
t
s(x))| dx dt

≤
∫ T

0

∫
|Dxb(t, x)| dF ts∗

(
χBM (0)L

d
)
≤ L

∫ T

0

∫
F ts (BM (0))

|Dxb(t, x)| dx

≤ L
∫ T

0

∫
BM+T‖b‖L∞t,x

(0)
|Dxb(t, x)| dx.

This gives in particular that for L d-a.e. x ∈ BM (0) (6.16) holds. By doing it for every M ∈ N
we conclude.

We will use from now on the notation N̄ for the set given by Lemma 6.2.3. We now prove
that for a.e. x the solution to 6.10 is unique. We consider the following problem for fixed x ∈ Rd:
given y ∈ Rd, find an absolutely continuous curve yx : [0, T ]→ Rd such that{

d
dtyx(t) = B(t, s, x)yx(t) for L 1-a.e. t,

yx(0) = y
(6.12)

Proposition 6.2.4. Let b a bounded vector field such that Dxb ∈ L1
loc([0, T ] × Rd) and for

which there exists a regular Lagrangian flow F ts(x); in particular, there exists L > 0 such that
F ts∗L

d ≤ LL d. Then for every x ∈ Rd \ N̄ there exists at most one solution to 6.10, with
B(t, s, x) := Dxbt(F

t
s(x))

Proof. Step 1. We show that, for every x ∈ Rd \ N̄ and s ∈ [0, T ], for every y ∈ Rd there exists
at most one solution to (6.12). We call B(t) := B(t, s, x). Let y(t) be a solution starting from y.
Uniqueness is a consequence of linearity of the problem and Gronwall inequality. Indeed, [0, T ] 3
t 7→ |y(t)| ∈ R is an absolutely continuous curve, so it is differentiable for a.e. t and d

dt |y(t)| ≤
|B(t)| |y(t)| for a.e. t ∈ [0, T ]. Notice that for every x ∈ Rn\N̄ , the curve [0, T ] 3 t 7→ e−

∫ t
0 |B(r)| dr

is absolutely continuous and the distributional derivative d
dt

(
|y(t)|e−

∫ t
0 |B(r)|dr

)
≤ 0. Therefore

[0, T ] 3 t 7→ |y(t)|e−
∫ t
0 |B(r)| dr ∈ R is non increasing, which gives that |y(t)| ≤ |y|e

∫ t
0 |B(r)| dr

yielding uniqueness.
Step 2. To conclude, consider two AC solutions A1(t, x), A2(t, x) of 6.10 such that A1(0, x) =
A2(0, x) = Id, define C(t, x) := A1(t, x)−A2(t, x) and use Step 1 by arguing componentwise.

Before stating the main result, we need some preliminary lemmas.

119



Lemma 6.2.5. Let fn, f ∈ L0(Rd) be such that fn → f locally in measure. Let bn : [0, T ]×Rd →
Rd a sequence of vector fields such that there exists C0 > 0 such that ‖bn(t, x)‖L∞([0,T ]×Rd) ≤ C0.

Assume that there exists for every n ∈ N a regular Lagrangian flow Fnts(x) associated to bn and
a regular Lagrangian flow F ts(x) associated to b. We further assume that for every t, s ∈ [0, T ]
Fnts → F ts locally in measure and that there exists L > 0 such that for every n, t, s

Fnts∗L
d ≤ LL d.

Then for every t ∈ [0, T ]

fn(Fnts(·)))→ f(F ts(·)) locally in measure.

Proof. Fix r > 0 and set λ := r + TC0. We fix γ > 0. We fix s ∈ [0, T ] and we estimate

L d(Br ∩ {|fn ◦ Fnts − f ◦ F ts | > γ})

≤ L d(Br ∩ {|fn ◦ Fnts − f ◦ Fn
t
s| >

γ

2
}) + L d(Br ∩ {|f ◦ Fnts − f ◦ F ts | >

γ

2
})

≤ L d(Bλ ∩ {|fn − f | >
γ

2
}) + L d(Br ∩ {|f ◦ Fnts − f ◦ F ts | >

γ

2
}) = I + II.

Since fn converges to f locally in measure, we get that for n large L d(Bλ ∩ {|fn − f | > γ
2}) ≤ ε,

so I ≤ ε for n large. We need to show that II ≤ ε for n large. We know by Lusin’s theorem
that there exists G(·) ∈ C(Bλ) such that L d(Bλ ∩ {f 6= G}) ≤ ε. Since G(·) is uniformly con-
tinuous, we know that there exists δ(γ) such that, if |x − y| ≤ δ, |G(x) − G(y)| ≤ γ

2 . We define
Sn := {x ∈ Br : |Fnts(x) − F ts(x)| ≤ δ}. By the local convergence in measure of the flow maps,
we get L d(Br \ Sn) ≤ ε for n large.
We will use the following fact: given a measurable function u : Rd → R and an invertible measur-
able function h : Rd → Rd such that there exists c, L > 0 such that h∗L d ≤ LL d and, for some
r > 0, h(Br(0)) ⊂ Br+c(0)

L d(Br(0) ∩ {u ◦ h 6= 0}) ≤ LL d(Br+c(0) ∩ {u 6= 0}).

Since h is invertible χh(A) ◦ h = χA. The proof follows by using change of variable formula in the
following computation

L d(Br(0) ∩ {u ◦ h 6= 0}) =

∫
χBr(0)

(
χ{u◦h>0} + χ{u◦h<0}

)
dL d

=

∫
χh(Br(0))

(
χ{u>0} + χ{u<0}

)
dh∗L

d

≤ L
∫
χBr+c(0)

(
χ{u>0} + χ{u<0}

)
dL d = LL d(Br+c(0) ∩ {u 6= 0}).

We apply this result twice considering u = f −G and h = Fnts and h = F ts the second time. We
estimate II as follows, thus concluding the proof

II = L d(Br ∩ {|f(Fnts)− f(F ts)| >
γ

2
})

≤ L d(Br ∩ Sn ∩ {|G ◦ Fnts −G ◦ F ts | >
γ

2
}) + L d(Br \ Sn)

+ L d(Br ∩ {G ◦ Fnts 6= f ◦ Fnts}) + L d(Br ∩ {G ◦ F ts 6= f ◦ F ts})
≤ ε+ 2LL d(Bλ ∩ {G 6= f}) ≤ ε+ 2Lε.
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Remark 6.2.6. Local convergence in measure of the flow maps follows from equibounds on
the L∞([0, T ] × Rd) norm in time and space of the sequence of vector fields, equibounds on the
compressibility constants, the fact that the limit vector fields belongs to L1([0, T ],W 1,p

loc (Rd)) for
p > 1 and local convergence of the vector fields to the limit one in L1([0, T ]× Rd) (see [43]).

Remark 6.2.7. We recall that, given a measure space (X, µ) with µ(X) < ∞, 1 ≤ p < ∞ and
fn, f ∈ Lp(µ), fn → f in Lp(µ) if and only if

1) for every γ, limn→+∞ µ({|fn − f | > γ}) = 0;

2) given An ∈ B(X) such that µ(An)→ 0,
∫
An
|fn|p dµ→ 0.

We recall the proof of the if part. We estimate:∫
|fn − f |p dµ =

∫
{|fn−f |≤1}

|fn − f |p dµ+

∫
{|fn−f |>1}

|fn − f |p dµ

≤
∫

1 ∧ |fn − f |dµ+ Cp

∫
{|fn−f |>1}

|fn|p dµ+ Cp

∫
{|fn−f |>1}

|f |p dµ.

By taking the limit as n→ +∞ and recalling that limn→+∞ µ({|fn − f | > 1}) = 0 we conclude.

Lemma 6.2.8. Let p ≥ 1. Let bn : [0, T ] × Rd → Rd a sequence of vector fields such that there
exists C0 > 0 such that ‖bn‖L∞([0,T ]×Rn) ≤ C0 and for every M there exists CM > 0 such that

sup
n

(
esssupt∈[0,T ]‖Dbnt ‖Lp(BM (0))

)
≤ CM . (6.13)

Assume that there exists for every n ∈ N a regular Lagrangian flow Fnts(x) associated to bn and
a regular Lagrangian flow F ts(x) associated to b. We assume that, for every t ∈ [0, T ], Fnts → F ts
locally in measure and that for every n, t, s Fnts(·) is invertible. We assume Dbn → Db in
L1([0, T ], Lploc(R

d)) and that there exists L > 0 independent of n, t, s such that

1

L
L d ≤ Fnts∗L

d ≤ LL d. (6.14)

Then, we have that, for every s, there exists a subsequence {nk}k and a measurable set N with
L d(N) = 0 such that for every x ∈ Rd \N

lim
k→+∞

∫ T

0
|Dbnk(t, Fnk ts(x))−Db(t, F ts(x))|p dt = 0. (6.15)

As a consequence, we get that

x 7→ sup
k

∫ T

0
|Dbnkt |p(Fnk

t
s(x)) dt (6.16)

is finite for every x ∈ Rd \N .
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Proof. Step 1. Since, for every M > 0, Dbn → Db in L1([0, T ], Lp(BM (0))), we have that, by
using a diagunal argument, there exists N0 ⊂ [0, T ] with L 1(N0) = 0 and a subsequence {nk}k
such that, for every t ∈ [0, T ] \N0

Dbnk(t, ·)→ Db(t, ·) in Lp(BM (0))

for every M > 0. We don’ t relabel this subsequence. As a consequence, we have that, for fixed
t ∈ [0, T ] \N0, {|Dbn(t, ·)|p}n are equiintegrable, i.e. given a sequence An ∈ B(Rd), such that for
some M > 0 An ⊂ BM (0) for every n and limn L d(An) = 0

lim
n→+∞

∫
An

|Dbn(t, x)|p dx = 0.

Step 2. We fix s > 0. We claim that for every M > 0 and every t ∈ [0, T ] \N0

lim
n→+∞

∫
BM (0)

|Dbn(t, Fnts(x))−Db(t, F ts(x))|p dx = 0. (6.17)

We can apply Lemma 6.2.5, taking fn(·) = ∂ib
n(t, ·) and f(·) = ∂ib(t, ·), thus having that

Dbn(t, Fnts(·))→ Db(t, F (t, ·)) locally in measure.

Therefore, it is enough to prove item 2) of Remark 6.2.7 with the sequence {|Dbn(t, Fnts(·))|p}n.
We consider a sequence An ∈ B(Rd) such that L d(An)→ 0 and we compute∫

An

|Dbn(t, Fnts(·))|p dL d =

∫
χFnts(An) |Dbn(t, x)|p dFnts∗L

d

≤ L
∫
Fnts(An)

|Dbn(t, x)|p dL d(x).

Since from (6.14) L d(Fnts(An)) = L d((Fnst )
−1(An)) ≤ LL d(An) and {|Dbn(t, ·)|p}n are equiin-

tegrable

lim
n→+∞

∫
An

|Dbn(t, Fnts(·))|p dL d = 0

yielding (6.17) in view of Remark 6.2.7.
Step 3. We claim that there exists a (not relabeled) subsequence of the original sequence for
which

lim
n→+∞

∫ T

0
|Dbn(t, Fnts(x))−Db(t, F ts(x))|p dt = 0 (6.18)

for every x ∈ Rd \N1 where L d(N1) = 0. We start computing∫
BM (0)

|Dbn(t, Fnts(x))−Db(t, F ts(x))|p dL d(x)

≤ Cp
∫
BM (0)

|Dbn(t, Fnts(x))|p + |Db(t, F ts(x))|p dL d(x)

≤ Cp L
∫
BM+TC0

(0)
(|Dbn(t, x)|p + |Db(t, x)|p) dL d(x)

≤ 2CpLC
p
M+TC0
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where the last term is bounded independently of n, t because of (6.13). Thus, we have, by an
application of dominated convergence theorem, that, for the subsequence given by Step 1

lim
n→+∞

∫ T

0

∫
BM (0)

|Dbn(t, Fnts(x))−Db(t, F ts(x))|p dL d(x) dt = 0. (6.19)

If we start Step 1 from a subsequence, following verbatim the proof up to this point we get that
up to an extraction of subsequence, we get that (6.19) holds for this subsubsequence. Therefore
(6.19) holds for the original sequence in the statement. An application of Fubini theorem and the
fact that L1 convergence implies convergence a.e. up to a subsequence yields the claim.
Step 4. We found a subsequence for which (6.15) holds for every x ∈ Rd \ N . (6.16) is a
consequence of (6.15).

We state now the main theorem of this section.

Theorem 6.2.9. Let p > 1. Let bn, b : [0, T ]× Rd → Rd be a sequence of vector fields for which
there exist associated regular Lagrangian flows Fnts(x) and F ts(x) (possibly not unique) that verify
all the hyphothesis of Lemma 6.2.8. Fixed s ∈ [0, T ], consider Bn(t, s, x) := Dxb

n(t, Fnts(x)) and
B(t, s, x) := Dxb(t, F

t
s(x)). Assume that there exists N0 with L d(N0) = 0 such that for every

x ∈ Rd \ N0 there exists a solution An(t, s, x) of (6.10) for every n and a solution A(t, s, x) of
(6.10). Then, there exists a subsequence such that for every t, s ∈ [0, T ]

An(t, s, ·)→ A(t, s, ·) locally in measure.

Proof. We apply Lemma 6.2.8 and we consider the subsequence {nk} given by the lemma and
we call the negligible set in the statement N1. As a consequence of (6.15), we get that for every
x ∈ Rd \N1, up to a not relabeled subsequence

Bn(·, s, x)→ B(·, s, x) in L1(0, 1).

We fix x ∈ Rd \N0 ∪N1; for every t ∈ [0, T ] and n, applying Gronwall lemma, we have

|An(t, s, x)| ≤ esupn
∫ T
0 |Dxb

n(t,·)|(Fnts(x)) dt = c(x) <∞.

This in particular gives that ‖A(·, s, x)‖L∞(0,T ) ≤ c(x) and ‖A(·, s, x)‖Lp(0,T ) ≤ T
1
p c(x).

We can compute∫ T

0

∣∣∣∣ d

dt
An(t, s, x)

∣∣∣∣p dt ≤
∫ T

0
|Bn(t, s, x)|p |An(t, s, x)|p dt

≤ sup
n

∫ T

0
|Dxb

n
t |p(Fn

t
s(x)) ds ep supn

∫ T
0 |Dxb

n
t |(Fnts(x)) ds =: d(x) <∞.

Fix x ∈ Rd \ (N0 ∪N1 ∪ N̄) and the subsequence {nk}. We have that for every subsequence of it,
there exists a further subsequence (that we do not relabel) and Ā(·, s, x) ∈ C0([0, T ]) such that

An(·, s, x)→ Ā(·, s, x) in C0([0, T ]).
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We claim that A(·, s, x) = Ā(·, s, x). Consider a function ϕ ∈ C∞c ([0, T )); being, for fixed n, a
solution of (6.10) means that∫ T

0

(
Bnk(t, s, x)Ank(t, s, x)ϕ(t) +Ank(t, s, x)ϕ′(t)

)
dt+ Idϕ(0) = 0. (6.20)

Thanks to what we just proved we can pass to the limit in (6.20), thus having that∫ T

0

(
B(t, s, x)Ā(t, s, x)ϕ(t) + Ā(t, s, x)ϕ′(t)

)
dt+ Idϕ(0) = 0.

We recall that, if x ∈ Rd \ (N0 ∪ N1 ∪ N̄), B(·, s, x)Ā(·, s, x) ∈ L1(0, T ) and [0, T ] 3 t 7→
Ā(t, s, x) ∈ W 1,1(0, T ). Therefore, it admits an absolutely continuous representative that solves
(6.10). Proposition 6.2.4 grants that for every x ∈ Rd \ N̄ this is the only absolutely continuous
curve that solves (6.10). Therefore, the claim is proved. Moreover, this implies that the original
sequence Ank(·, s, x) converges in C0([0, T ]) to A(·, s, x). The simple estimate supt∈[0,T ]

∫
BM (0) 1∧

|An(t, s, x)−A(t, s, x)|dx ≤
∫
BM (0) 1∧‖An(·, s, x)−A(·, s, x)‖C0([0,T ]) dx yields the conclusion.

Proof of Theorem 6.0.1. We apply Proposition 6.1.5 with bn for every n and b. For fixed s ∈
[0, T ], we apply Theorem 6.2.9 with ∇Fnts(x) = An(t, s, x) for every n and ∇F ts(x) = A(t, s, x)
(the hyphothesis of local convergence in measure of flows is satisfied as a consequence of Remark
6.2.6).
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Appendix A

Miscellanea on measure theory

A.1 Integration of measures

We consider two complete and separable metric spaces (X, dX) and (Y, dY). Suppose to have a
family of positive probability measures µy ∈ P(X) depending on a parameter y ∈ Y and ν a
nonnegative measure finite on bounded sets of Y. We want to define a new measure

µ(B) :=

∫
Y
µy(B) dν(y) for every B ∈ B(X),

that is Borel and satisfies a generalization of the Fubini theorem∫
X
f dµ =

∫
Y

(∫
X
f dµy

)
dν(y).

Before going into details, the following theorem clarifies when the function that we integrate is
Borel.

Theorem A.1.1. Let (µy)y∈Y ∈P(X). The following statements are equivalent:

1) for every ϕ ∈ Cb(X), the map y 7→
∫

X ϕdµy is Borel;

2) for every B ∈ B(X), the map y 7→ µy(B) is Borel;

3) for every f : X 7→ [0,∞] bounded and Borel, the map y 7→
∫

X f dµy is Borel.

If one of the previous conditions holds we say that the family µy ∈P(Y), y ∈ Y is weakly Borel.

Proof. 1) ⇒ 2). Given an open set U ⊆ X, we can pointwisely approximate χU from below by
the sequence (ϕn)n ⊆ Cb(X) defined as ϕn(x) := 1∧(nd(x, U c)), being such that ϕn ↗ χU . Using
item 1), we have that y 7→ µy(U) is Borel. We define

F := {B ∈ B(X) : y 7→ µy(B) is Borel }.

In particular, we know that {open sets } ⊆ F . Moreover, given (Bn)n a sequence such that
Bn ⊆ Bn+1, B := ∪∞n=1Bn; since for every y ∈ Y µy(Bn) ↗ µy(B), we get that y 7→ µy(B)
is Borel. A similar argument holds for a decreasing sequence of sets. This shows that F is a
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monotone class containing open sets, therefore F = B(X), proving 2).
2)⇒ 3). It is trivial to check that, as a consequence of 2), y 7→

∫
X f dµy is Borel for every simple

function with finite range. Then 3) follows by monotone approximation.
3)⇒ 1). It is obvious.

Theorem A.1.2. Let µy ∈P(X), y ∈ Y be a weakly Borel family. Define

µ(B) :=

∫
µy(B) dν(y) ∈ [0,+∞] for every B ∈ B(X).

Then µ is a positive Borel measure.

Proof. We start by proving that µ is additive. Consider B1, B2 ∈ B(X) such that B1 ∩ B2 = ∅.
We have

µ(B1 ∪B2) =

∫
Y
µy(B1 ∪B2) dν(y) =

∫
Y
µy(B1) dν(y) +

∫
Y
µy(B2) dν(y)

= µ(B1) + µ(B2).

To pass from additivity to countable additivity, it is enough to prove the continuity of the measure
under an increasing sequence of Borel sets. Let An ↗ A, with An, A ∈ B(X) for every n, and we
claim that µ(A) = limn→+∞ µ(An). Hence by monotone convergence

µ(A) =

∫
Y
µy(A) dν(y) = lim

n→+∞

∫
Y
µy(An) dν(y) = lim

n→+∞
µ(An).

Therefore µ is positive Borel measure.

Theorem A.1.3. Let µy ∈ P(X), y ∈ Y be a weakly Borel family. Let f : X 7→ [0,+∞] be a
Borel function and let µ be defined as in Theorem A.1.2. Then∫

Ω
f dµ =

∫
Y

(∫
X
f dµy

)
dν(y).

Proof. If we take f = χB, where B ∈ B(Ω), then the statement is true by definition. Therefore by
linearity the statement is true for every positive simple function. Finally notice that any positive
Borel function f is the pointwise limit of a sequence of increasing positive simple functions fn.
Then ∫

X
f dµ = lim

n→+∞

∫
X
fn dµ = lim

n→+∞

∫
Y

(∫
X
fn dµy

)
dν(y)

=

∫
Y

lim
n→+∞

(∫
X
fn dµy

)
dν(y) =

∫
Y

(∫
X
f dµy

)
dν(y),

since also the sequence of functions y 7→
∫

X fn dµy is monotone increasing.
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A.2 Bochner integral

We introduce the concept of Bochner integral in this manuscript for the following reason: we
need to justify the notation used throughout the paper L1([0, 1], L2(m)), L1([0, 1],W 1,2

C,s(TX)) and

L1([0, 1], L∞(m)). We suggest as an introduction to the topic [46] or [60, Section 1.3].
We fix a banach space B and a metric measure space (X, d, µ) with µ ∈ P(X). Notice that,
given a Borel function f : X → B, since the map B 3 v 7→ ‖v‖B ∈ B is continuous, we have that
X 3 x 7→ ‖f(x)‖B ∈ R is Borel.

Definition A.2.1. A function f : X → B is said to be simple if there exists v1, . . . , vn ∈ B and
E1, . . . , En ∈ B(X), which is a Borel partition of X, such that f =

∑n
i=1 χEivi.

Definition A.2.2 (Strongly Borel maps). A function f : X→ B is said to be strongly Borel (resp.
strongly µ-measurable) if it is Borel (resp. µ-measurable) and there exists a vector subspace V ⊆ B
which is separable and µ({x ∈ X : f(x) /∈ V }) = 0.

The interest for this class of function is that they can be approximated by simple functions.

Lemma A.2.3 ([60, Lemma 1.3.2]). Given a function f : X → B, we have that f is strongly
Borel if and only if there exists a sequence fn : X→ B of simple functions such that limn ‖fn(x)−
f(x)‖B = 0 is satisfied for µ-a.e. x ∈ X.

We can define
∫
f dµ ∈ B as follows in the class of simple functions. Let f =

∑n
i=1 χEivi, we

define ∫
f dµ =

n∑
i=1

µ(Ei)vi ∈ B.

It can be checked the definition is well-posed, namely it does not depend on the way we write the
simple function f .

Definition A.2.4 (Bochner integrable maps). A function f : X → B is Bochner integrable pro-
vided there exists a sequence (fn)n of simple maps such that x 7→ ‖fn(x)−f(x)‖B is µ-measurable
for every n and limn→+∞

∫
‖fn − f‖B dµ = 0.

Given a Bochner integrable maps and a sequence (fn)n of simple functions as in Definition
A.2.4, it can be readily checked that

the sequence

∫
fn dµ is Cauchy.

Therefore, given a Bochner integrable function f : X→ B, we can define∫
f dµ = lim

n→+∞

∫
fn dµ.

It can be checked the definition of
∫
f dµ does not depend on the approximating sequence (fn)n

and that ∥∥∥∥∫ f dµ

∥∥∥∥
B
≤
∫
‖f‖B dµ.

A useful theorem, characterizing Bochner integrable functions, is the following one due to Bochner.
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Proposition A.2.5 (Bochner, (see [60, Proposition 1.3.6])). Given f : X → B, f is Bochner
integrable if and only if it is strongly µ-measurable and

∫
‖f‖B dµ < +∞.

We restrict now to the particular case in which (X, d, µ) = ([0, 1], | · |,L 1|[0,1]
) (the one needed

in our applications). It is natural to introduce the following class of vector valued Lebesgue
spaces. Given p ∈ [1,∞], we define Lp([0, 1],B) as the space of all (equivalence classes up to
L 1|[0,1]

-equality of) strongly measurable maps f : [0, 1]→ B for which the quantity ‖f‖Lp([0,1],B)

is finite, where ‖f‖Lp([0,1],B) is defined as

‖f‖Lp([0,1],B) :=


(∫ 1

0 ‖f‖
p
B dt

) 1
p

p <∞,
esssupt∈[0,1]‖f(t)‖B p =∞.

It can be checked that (Lp([0, 1],B), ‖ · ‖Lp([0,1],B)) is a Banach space for every p ∈ [1,∞].
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