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Working with scalar field theories, we discuss choices of regulator that, inserted in the
functional renormalization group equation, reproduce the results of dimensional regularization at
one and two loops. The resulting flow equations can be seen as nonperturbative extensions
of the MS scheme. We support this claim by recovering all the multicritical models in two
dimensions. We discuss a possible generalization to any dimension. Finally, we show that the method
also preserves nonlinearly realized symmetries, which is a definite advantage with respect to other
regulators.
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I. INTRODUCTION

Dimensional regularization (dimreg), together with
modified minimal subtraction (MS),1 is the most widely
used regularization and renormalization method in particle
physics. It owes its popularity mainly to its simplicity and
to the fact that it respects gauge invariance, one of the
cornerstones of particle physics models. It is also remark-
ably selective: in the language of momentum cutoffs, it
extracts only the logarithmic divergences, which for most
applications turn out to contain the important information
(in particular, the beta functions of the marginal couplings).
However, in its standard implementation, dimreg, it is a
purely perturbative device, and it works only in even
dimensions.
On the other hand, the functional renormalization

group (FRG) equation (FRGE) is a convenient way of
implementing Wilson’s idea of integrating out modes
one momentum shell at the time. At its core lies a
choice of a “regulator” function Rk that suppresses
the contribution of low momentum modes to the path

integral.2 The regulator depends on a scale parameter kwith
dimension of mass, and the derivative with respect to k
gives the contribution to the effective action of an infini-
tesimal momentum shell. The contribution to the functional
integral of a momentum shell of thickness Δk can be
written as a loop expansion. The l-loop term is of order
ðΔk=kÞl, so that the continuous FRGE (Δk=k → 0) looks
like a one-loop equation [1]. In the 1PI formulation, the
FRGE reads [2–5]

dΓk

dt
¼ ℏ

2
Tr

�
δ2Γk

δϕδϕ
þ Rk

�−1 dRk

dt
; ð1:1Þ

where the functional Γk is a scale-dependent version of the
effective action (EA), generally called the effective average
action (EAA) and t ¼ logðk=k0Þ. We refer to [6–10] for
reviews of this equation and its applications. The one-loop
nature of the FRGE is manifest in the presence of a single
trace (momentum integration). In fact, the FRGE can be
represented graphically as
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1In the FRG one follows the flow of renormalized quantities.
Therefore, for a meaningful comparison, we have to supplement
dimreg by a renormalization prescription.

2The “regulator” only cuts off the IR end of the propagator and
it does not remove UV divergences from the functional integral.
However, when one computes the derivative of the effective
action with respect to k, one is taking the difference of two
functional integrals that only differ in their low energy parts, and
the UV divergences cancel. In practice, the trace in (1.1) is made
UV finite by the presence of the term dRk

dt .
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where the double line represents the full propagators and the
crossed circle represents the insertion of the regulator ∂tRk.
The counterpart of this simplicity is that the equation is only
exact if one takes into account allpossible terms in the action.
Since it is practically impossible to solve the exact equation,
its effectiveness hinges crucially on a good choice of
approximation. There are three main systematic expansion
schemes. We briefly recall their definition, and then discuss
the relation among them, and to standard perturbation theory.

A. Loop expansion

This is an expansion in powers of ℏ. We write for the
EAA:

Γk½ϕ� ¼ SΛ½ϕ� þ
Xn
L¼1

ℏLΓL;k½ϕ�: ð1:3Þ

Inserting (1.3) in the flow equation (1.1) one can reproduce
the usual beta functions of perturbation theory. First, intro-
ducing S in the right-hand side (rhs) of (1.1), one calculates
theone-loopbeta functional∂tΓ1;k. Integrating overk fromΛ
to k0 gives the one-loopEAAΓ1;k0 , and using this in the rhs of
(1.1) one calculates the two-loop beta functional ∂tΓ2;k. The
procedure can be iterated. Since in many cases the loop
expansion coincides with the expansion in the marginal
coupling constant, this approximation scheme is close to
standard weak-coupling perturbation theory.

B. Vertex expansion

The EAA can be Taylor expanded in powers of the field:

Γk½ϕ� ¼
X
n

Z
p1

…

Z
pn

ΓðnÞ
k ðp1;…; pnÞϕðp1Þ…ϕðpnÞ;

ð1:4Þ
where pn are the external momenta. By functionally differ-
entiating Eq. (1.1) one obtains an infinite sequence of flow
equations for the n-point functions ΓðnÞ. The vertex expan-
sion consists in truncating this sequence at some finite order.
The first three equations of the sequence for a Z2-invariant
scalar theory can be represented graphically as follows:

ð1:5aÞ

ð1:5bÞ

ð1:5cÞ

Here the black dots represent full vertices. The vertex
expansion is clearly a good approximation in weak field
situations, and is widely used in particle physics, where one
generally deals with just a few quanta of the field. In this
approximation one retains the full momentum dependence.

C. Derivative expansion

When one is interested in low energy phenomena, one
can expand the action in powers of derivatives. This is close
to many applications of the effective field theory approach.
For a single scalar field the expansion starts with

Γk½ϕ� ¼
Z

dx

�
VkðϕÞ þ

1

2
ZkðϕÞð∂ϕÞ2 þOð∂4Þ

�
ð1:6Þ

where Vk and Zk are arbitrary functions of the field.
Inserting in Eq. (1.1) one obtains flow equations for Vk,
Zk etc. This is complementary to the vertex expansion,
because one retains the full field dependence, but only the
lowest powers of momentum.
These expansions give rise to different forms of pertur-

bation theory, where different parameters are assumed to be
small, and a statement that is perturbative in one expansion
is generally nonperturbative in the others. Thus for exam-
ple, the leading order of the derivative expansion, which is
called the local potential approximation (LPA), consists in
retaining in (1.6) only the running potential Vk and to put
Zk ¼ 1. The beta function of the potential that can be
obtained in this way from the FRGE contains information
about infinitely many orders of the vertex expansion, and to
all loop orders. If furthermore the potential is assumed to be
a finite polynomial, then one is working simultaneously in
the derivative and vertex expansion. Similarly, truncating
the vertex expansion to a finite order gives n-point
functions that include all orders of the derivative expansion
and of the loop expansion, and the EA calculated at a given
order of the loop expansion contains information that
includes all orders of the derivative and vertex expansion.
Regardless of the choice of approximation scheme

for the FRG equations, each one is able to reproduce
standard epsilon-expansions for any regulator choice, if a
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high-enough order of approximation is considered. This
has been shown since the early years of the FRG [1,11,12].
Yet again, in comparison to standard FRG schemes,
dimreg=MS occupies a somewhat privileged position for
this kind of calculations, as they can be performed more
simply in the latter scheme. For a nice direct comparison of
the two kinds of computations, FRG versus dimreg=MS,
see for instance Ref. [13].
In practice, in applications of perturbative quantum field

theory to particle physics, one generally considers two-,
three- and four-point functions at a finite order of the loop
expansion, and therefore one is working simultaneously in
the vertex and in the loop expansion. This is what we shall
refer to as “standard perturbation theory.” A different
implementation of the weak coupling expansion is possible
in presence of background fields, since perturbation theory
can then account for the full dependence of the vertices on
the latter variables. This is what might be called “functional
perturbation theory.” The application of dimreg to such
functional methods [14–16] has been recently revived in
the study of conformal field theories [17]. In these respects,
our study could be interpreted as an attempt to extend these
methods to the nonperturbative domain.
Focusing again on a scalar field and starting from a bare

action that contains only a quartic interaction λϕ4, one can
compute the two-, three- and four-point functions at some
finite loop order L, by means of a functional integral,
Feynman diagrams etc. How does one obtain such higher-
loop information from the FRGE, which is a one-loop
equation? One has to recall that the FRGE is only exact
when one uses the full propagator and the full vertices. The
propagators and vertices that appear in the vertex expansion
can be expanded in loops, and this gives rise to the higher-
loop effects in the beta function. Integrating the flow from a
bare action S at some UV cutoff scale Λ down to k ¼ 0
gives the desired terms in the EA. We shall discuss this in
some detail in Sec. VI.
In summary, one of the most interesting features of the

FRGE is the availability of various approximation schemes
that sometimes allow us to follow the flow of infinitely
many couplings in a single stroke and to go beyond
standard perturbation theory. On the other hand, the
arbitrariness in the choice of the regulator means that
much of the information contained in the flow is unphys-
ical. One has to learn to extract physical information
from it.
Since the strengths and weaknesses of the FRGE and of

dimreg=MS are quite complementary, it would be useful to
transfer some of the strengths of one method to the other, or
at least to use them in a complementary way, so as to
overcome the respective weaknesses. This paper is a first
attempt in this direction. The main question that we shall
address is the following: is there a choice of regulator that
reproduces the beta functions of the MS scheme in the
standard perturbative domain? We provide here a positive

answer to this question: we show that by bending the
standard rules and procedures of the FRG it is possible to
reproduce the results of dimreg=MS, at least up to two
loops. In this way, we will make manifest the kind of
unphysical features that one has to impose on a regulator so
as to reproduce the results of dimreg. For this reason we
will talk about a “pseudoregulator” that, upon use in the
FRG equation, reproduces the beta functions of MS.
More importantly, having shown that the MS pseudor-

egulator reproduces the results of dimreg in the perturbative
domain, we have a tool that potentially provides a non-
perturbative extension of dimreg=MS. Wewill indeed show
that with the pseudoregulator one can find and study all
multicritical fixed points in two dimensions, as well as the
critical Sine-Gordon theory. It is remarkable that in this
way one can even write the potentials of these models in
closed form. Furthermore, the use of this tool is not limited
to even dimensions, as we shall show by considering the
Wilson-Fisher fixed point in three dimensions.
The use of dimreg is really of great advantage when one

deals with gauge theories. We will not attempt here to use
the MS pseudoregulator in the FRGE for gauge theories,
but we will show that it has definite advantages in the
treatment of nonlinearly realized symmetries.
The paper is organized as follows. In Sec. II we state the

problem in a precise way, in the most straightforward and
simplified setting: the case of a linear scalar field theory in
the LPA. The solution of the problem and our pseudor-
egulator are given in Sec. III. We also explore some of the
intrinsic freedom in the construction of the pseudoregula-
tor, and we exhibit a one-parameter family of regulators
that continuously connects the results of standard FRG
regulators with those of the MS pseudoregulator.
In Sec. IV, we account for the inclusion of the field’s

anomalous dimension. This transition only requires minor
generalizations of the pseudoregulator, allowing for some
more free parameters, which come along with correspond-
ing forms of “RG improvement” in the one-loop flow
equations. Section V further shows that the same pseudor-
egulator is appropriate for the Oð∂2Þ of the derivative
expansion. This discussion offers us the chance to address
two exploratory applications of the MS functional RG
equations. The first is the description of nonperturbative
critical phenomena, namely two-dimensional multicritical
scalar theories. We perform this study with the main goal to
test the physical content of the “RG improvement,” which
is the imprint of the FRG origin of our MS equations. The
second application is provided by nonlinear OðNÞ models
in two dimensions, whose interest in this context lies in the
interplay between nonlinearly realized symmetries and the
FRG equations.
An even more general truncation is needed to reproduce

the two-loop MS beta functions in massive four-
dimensional ϕ4 theory [the perturbatively renormalizable
linear OðNÞ model]. This is discussed in Sec. VI. This

FUNCTIONAL RENORMALIZATION AND THE … PHYS. REV. D 103, 076012 (2021)

076012-3



exercise serves as a proof that by means of the FRG and our
pseudoregulator one can, by considering large-enough
truncations, obtain MS flow equations which are beyond
a one-loop form.
Finally, in Sec. VII we explore the role of dimensionality

in our construction. In fact, while dimreg=MS is usually at
work in an even number of dimensions d, the FRG
equations can be obtained and applied for continuous d.
We show that the latter feature can be preserved while
taking the limit from the FRG to MS.
Section VIII contains some concluding remarks and

an outlook on possible future developments. Several
Appendixes account for the details and the subtleties of
the computations presented.

II. STATEMENT OF THE PROBLEM

In order to make our idea more precise, let us begin by
stating the conditions that are generally imposed on a
regulator for the FRG equation. A regulator is an additive
modification of the inverse two-point function, and is
therefore a function of a single momentum q, or rather
its modulus z ¼ q2, depending on an scale k. The regulator,
which is denoted RkðzÞ, is typically assumed to satisfy the
following conditions:
(1) To be positive (must suppress modes).
(2) To be monotonically increasing with k, for all z.
(3) To be monotonically decreasing with z, for

all k.
(4) limk→0 RkðzÞ ¼ 0 for all z.
(5) For z > k2, Rk goes to zero sufficiently fast, e.g., as

an exponential.
(6) Rkð0Þ ¼ k2.

The first three conditions are obvious properties of a cutoff.
The fourth guarantees that the path integral reproduces the
standard partition function for k ¼ 0. The fifth condition
ensures that high momentum modes are integrated out
unsuppressed and guarantees the UV convergence of the
rhs of the flow equation. The sixth and last condition
provides a sort of normalization. For certain purposes, one
may sometimes forgo the last two conditions and consider
cutoffs that either do not decrease very fast for large
momenta or even diverge when z → 0. These six conditions
are useful in that they provide a clear physical interpretation
for the coarse graining implemented by the regulator, and
they ensure control on the UV and IR end points of the
momentum integrals. However, they are not needed in the
derivation of the FRG equation, which would keep its exact
one-loop form for any regulator choice.
Both z and the function RkðzÞ have dimension of mass

squared, so we can write

RkðzÞ ¼ k2rðyÞ; y ¼ z=k2; ð2:1Þ

where r is a dimensionless “cutoff profile.” The following
are typical choices:

rðyÞ ¼ y
ey − 1

; ð2:2Þ

rðyÞ ¼ y2

ey
2 − 1

; ð2:3Þ

rðyÞ ¼ð1 − yÞθð1 − yÞ: ð2:4Þ

The third choice has been argued to provide “optimized”
results, in a certain class of models and truncations [18,19].
For certain purposes its nondifferentiability is an issue, but
it has the great advantage of allowing an analytic evaluation
of momentum integrals. Note that k plays the role of an
infrared cutoff: its effect is to give a mass of order k to
the modes with

ffiffiffi
z

p
< k, and no mass to the modes withffiffiffi

z
p

> k.
Introducing the cutoff in the functional integral and then

performing the Legendre transform leads to the FRGE
(1.1). We note that the trace on the rhs is IR and UV finite,
and that the equation contains no reference to a bare action
or UV physics.
In order to extract useful information from the exact

equation one has to approximate it in some way. For
definiteness, let us focus on a single scalar field in
the LPA

ΓkðϕÞ ¼
Z

ddx

�
1

2
ð∂μϕÞ2 þ VkðϕÞ

�
: ð2:5Þ

Inserting in the FRGE we obtain the “beta functional”

∂tVk ¼
1

2ð4πÞd=2 Qd=2

� ∂tRk

Pk þ V 00
k

�
; ð2:6Þ

where

Qn½W� ¼ 1

ΓðnÞ
Z

∞

0

dzzn−1WðzÞ ð2:7Þ

is the momentum integral. Assuming Z2 symmetry and
Taylor expanding the potential

VkðϕÞ ¼
X
n

λ2nðkÞ
ð2nÞ! ϕ

2n; ð2:8Þ

we can derive infinitely many beta functions β2n ¼ k ∂λ2n∂k .
These are obtained by expanding both sides of (2.6) in
powers of the field and equating the coefficients. For
arbitrary regulator, and in any dimension, for the first
few couplings this leads to
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β2 ¼ −
1

2ð4πÞd=2 λ4Qd=2

� ∂tRk

ðPk þ λ2Þ2
�
; ð2:9aÞ

β4 ¼
1

2ð4πÞd=2
�
6λ24Qd=2

� ∂tRk

ðPk þ λ2Þ3
�
− λ6Qd=2

� ∂tRk

ðPk þ λ2Þ2
��

; ð2:9bÞ

β6 ¼
1

2ð4πÞd=2
�
−90λ34Qd=2

� ∂tRk

ðPk þ λ2Þ4
�
þþ30λ4λ6Qd=2

� ∂tRk

ðPk þ λ2Þ3
�
− λ8Qd=2

� ∂tRk

ðPk þ λ2Þ2
��

: ð2:9cÞ

We note that these are one-loop beta functions, since no
resummation is involved. They coincide with the first three
equations of the vertex expansion, namely Eqs. (1.5), when
the n-point functions are evaluated at zero momentum. In
order to have more explicit formulas, we can use the
optimized regulator (2.4) that gives

Qn

� ∂tRk

ðPk þ λ2Þl
�
¼ 2

Γðnþ 1Þ
k2ðnþ1Þ

ðk2 þ λ2Þl
: ð2:10Þ

Then, the first beta functions are

β2 ¼ −
kdþ2

ð4πÞd=2Γðd
2
þ 1Þ

λ4
ðk2 þ λ2Þ2

; ð2:11aÞ

β4¼
kdþ2

ð4πÞd=2Γðd
2
þ1Þ

�
6λ24

ðk2þλ2Þ3
−

λ6
ðk2þλ2Þ2

�
; ð2:11bÞ

β6 ¼
kdþ2

ð4πÞd=2Γðd
2
þ 1Þ

�
−90

λ34
ðk2 þ λ2Þ4

þ 30
λ4λ6

ðk2 þ λ2Þ3
−

λ8
ðk2 þ λ2Þ2

�
: ð2:11cÞ

One can also calculate the beta functions of this theory at
one loop using dimreg=MS. The corresponding expres-
sions read

β2 ¼
ð−1Þd=2

Γðd
2
Þð4πÞd=2 λ4λ

d=2−1
2 ; ð2:12aÞ

β4 ¼
ð−1Þd=2
ð4πÞd=2

�
3λ24

λd=2−22

Γðd
2
− 1Þ þ λ6

λd=2−12

Γðd
2
Þ
�
; ð2:12bÞ

β6 ¼
ð−1Þd=2
ð4πÞd=2

�
15λ34

λd=2−32

Γðd
2
− 2Þ þ 15λ4λ6

λd=2−22

Γðd
2
− 1Þ

þλ8
λd=2−12

Γðd
2
Þ
�
: ð2:12cÞ

In fact, one can even derive a functional perturbative beta
function for V, analogous to (2.6) [17]. (We shall discuss
this in Sec. III A.)

The beta functions obtained by the two procedures are
strikingly different. In the beta functions derived from the
FRG, the dimension is carried by k, and there are
denominators that automatically produce decoupling when
one crosses the mass threshold k2 ¼ λ2. In the beta
functions of dimreg the dimension is always carried by
powers of λ2, and threshold effects are not accounted for. In
fact such beta functions are only valid at energies much
higher that λ2.
The difference persists also in the massless limit. In the

beta functions obtained from the FRGE, it is enough to put
λ2 ¼ 0. In the dimreg calculation, the massless limit has to
be taken after fixing the dimension. Then, many terms are
absent from the start. For example, in d ¼ 4 the first term in
(2.12c) is absent because of the Gamma in the denominator.
Then taking λ2 → 0 kills the last term. Altogether in d ¼ 4
and in the massless limit the beta function of λ2n is
proportional to λ4λ2n, for all n ¼ 1; 2; 3….
In spite of these differences, there is a close relationship

between these two sets of beta functions. To see this, note
that, for a generic regulator, the Q functional with l ¼
nþ 1 and λ2 ¼ 0 (which is dimensionless) is universal, i.e.,

Qn

�∂tRk

Pnþ1
k

�
¼ 2

Γðnþ 1Þ ; ð2:13Þ

independently of the shape of the regulator. The reason for
this is that in this case the integrand is a total derivative:

Z
∞

0

dzzn−1
∂tRk

Pnþ1
k

¼
Z

∞

0

dyyn−12
rðyÞ − yr0ðyÞ
ðyþ rðyÞÞnþ1

;

¼
Z

∞

0

dy
2

n
d
dy

�
y

yþ rðyÞ
�

n
: ð2:14Þ

The universal result will hold even if the regulator does not
satisfy all the requirements that are listed in the beginning
of Sec. II: it is enough that rð∞Þ ¼ 0 and rð0Þ > 0.
In the presence of a mass λ2, we can expand the Q

functional for k2 > λ2:

Qn

� ∂tRk

ðPkþλ2Þl
�
¼
X∞
j¼0

ð−1ÞjΓðlþjÞ
ΓðlÞΓðjþ1Þ λ

j
2Qn

�∂tRk

Pjþl
k

�
: ð2:15Þ
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We see that the term j ¼ n − lþ 1 in the sum is universal
and equal to

2ð−1Þn−lþ1

ΓðlÞΓðn − lþ 2Þ λ
n−lþ1
2 : ð2:16Þ

The beta functions of dimensional regularization consist
exactly of all these universal terms, all the remaining ones
being set simply to zero.
This exposes very clearly both the strength and the

weakness of dimreg. The universal terms in the beta
functions are the ones that may be more easily linked to
physically observable quantities, and dimreg very effi-
ciently extracts only these terms. On the other hand,
threshold effects do not have a universal form, but are
still physical, and dimreg does not see them.
The main question wewish to address is whether the beta

functions of dimreg can be obtained directly from the
FRGE. This will be the case provided Rk is such that

Qn

� ∂tRk

ðPk þ λ2Þl
�
¼ 2ð−1Þn−lþ1

ΓðlÞΓðn − lþ 2Þ λ
n−lþ1
2 : ð2:17Þ

Thus the question becomes one about the existence of a
regulator that gives (2.17). It is immediately clear that any
standard regulator, satisfying the criteria given at the
beginning of this section, cannot fulfill this requirement.
To understand why, it is sufficient to consider the case
λ2 ¼ 0, in which case the requirement (2.17) becomes

Qn

�∂tRk

Pl
k

�
¼ 2

Γðnþ 1Þ δl;nþ1: ð2:18Þ

This implies that

1

ΓðnÞ
Z

∞

0

dyyn−1
r − yr0

ðyþ rÞl ¼ 1

Γðnþ 1Þ δl;nþ1: ð2:19Þ

Using integration by parts and the standard properties of
regulators, we obtain�
1−

l−1

n

�
Qn

�
Rk

Pl
k

�
¼
�

l
nþ1

−
l−1

n

�
δl;nþ1

Γðnþ1Þ ð2:20Þ

that, for l ≠ nþ 1, givesQn½Rk

Pl
k
� ¼ 0. Since the integrand in

thisQ functional is positive, this implies thatRk ¼ 0. While
Rk cannot be identically vanishing, it appears possible to
reproduce MS beta functions by giving up some of the
requirements that are usually made of regulators and taking
the Rk → 0 limit in a suitable way, as we shall discuss in the
next section.

III. THE MS PSEUDOREGULATOR

The desired “pseudoregulator” depends, in addition to
the scale k, also on a dimensionless parameter ϵ and a mass
μ, which play a similar role as the ϵ and μ parameters of
dimreg:

RkðzÞ ¼ lim
ϵ→0

z

��
zk2

μ4

�
ϵ

− 1

�
; ð3:1Þ

or equivalently

rðyÞ ¼ lim
ϵ→0

y

��
y
μ̃4

�
ϵ

− 1

�
; ð3:2Þ

where μ̃ ¼ μ=k. A derivation and an explaination of this
ansatz are given in Appendix A. Calculations have to be
performed with a finite positive ϵ and the limit ϵ → 0 must
be taken at the end of all calculations. Note that expanding
for small ϵ

RkðzÞ ¼ ϵz log

�
k2z
μ4

�
þOðϵ2Þ: ð3:3Þ

The function (3.1) grossly violates the defining proper-
ties of a regulator, as spelled out in the beginning of Sec. II.
Aside from the fact that it vanishes in the limit ϵ → 0, it is a
growing function of z and goes to zero for z → 0.
Nevertheless, it does what we asked for. Calculating the
Q functional, we obtain

Qn

� ∂tRk

ðPk þm2Þl
�
¼ k2ðn−lþ1Þ 2

ΓðnÞ
Z

∞

0

dyyn−1
r − y∂yr − μ̃=2∂ μ̃r

ðyþ rþ m̃2Þl ;

¼ lim
ϵ→0

2ϵ

1þ ϵ
m2ðn−lþ1Þ

�
μ2

km

�2nϵ
1þϵ Γð1þ n

1þϵÞΓðl − 1 − nþ nϵ
1þϵÞ

ΓðnÞΓðlÞ :

Here we introduced the more conventional notation m2

for the mass parameter λ2, and defined m̃ ¼ m=k.
The integral in this Q functional is convergent for

l > ðnþ 1þ ϵÞ=ð1þ ϵÞ and is defined elsewhere by
analytic continuation. In the limit ϵ → 0 it goes to zero
except at the points where the second Γ function in the
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numerator has a pole, namely when l − n − 1 is zero or a
negative integer. In this way we recover (2.17). We note that
for n ≤ l − 2 the final result (2.17) is identically zero
because of the presence of the gamma function on the
denominator. Since l is an integer, n must be integer in
order to have a nonzero result: since, for the beta functions
of the LPA, n ¼ d=2, this implies that only in even
dimensions we get a nonzero result. This agrees with the
standard lore that dimreg only works in even dimensions.
Sometimes one needs the Q functionals for n ≤ 0. One

can obtain them by observing that

Qn

� ∂tRk

ðPk þm2Þl
�

¼ ð−1Þj
Γðnþ jÞ

Z
∞

0

dzznþj−1
�
d
dz

�
j ∂tRkðzÞ
ðPkðzÞ þm2Þl ; ð3:4Þ

where j is an integer such that nþ j > 0. Evaluating this
expression for the pseudoregulator, we get

Qn

� ∂tRk

ðPk þm2Þl
�
¼ 2δ−n;0δl;1: ð3:5Þ

This agrees with the analytic continuation of (2.17).

A. The effective potential in the LPA

We complete the discussion of the LPA approximation of
a scalar theory by giving the functional equation for the
potential:

∂tṼk ¼ −dṼk þ
�
d
2
− 1

�
ϕ̃Ṽ 0

k þ cdð−Ṽ 00
kÞ

d
2; ð3:6Þ

where Ṽk ¼ k−dVk, ϕ̃ ¼ k1−
d
2ϕ and cd ¼ 1

ð4πÞd=2Γ½d
2
þ1�. This

agrees with the beta functional in d ¼ 4 discussed in [17].
For comparison, the optimized regulator leads to the form

∂tṼk ¼ −dṼk þ
�
d
2
− 1

�
ϕ̃Ṽ 0

k þ cd
1

1þ Ṽ 00
k

; ð3:7Þ

where cd ¼ 1
ð4πÞd=2Γ½d

2
þ1�. We observe that (3.6) picks exactly

the terms of the expansion of (3.7) with the right power of
Ṽ 00 to give a dimension-d operator. Equations (3.6) and
(3.7) are one-loop results, and in this sense can be said to be
perturbative, but they contain infinitely many terms of the
vertex expansion and thus are not perturbative in the
standard sense.
Equation (3.6) can be applied only to even dimensions,

so it does not admit the Wilson-Fisher fixed point as a
solution in d ¼ 3. This was to be expected, since dimreg
only works in even dimensions. We anticipate however
that generalizations to continuous d (including also odd
integers) are possible, and will be discussed in Sec. VII.

Equation (3.6) has been used in [20–24] to obtain several
new results on statistical models. In d ¼ 2 the correspond-
ing fixed-point equation has the critical Sine-Gordon
solution

V� ¼ −
m2

8π
cos ð

ffiffiffiffiffiffi
8π

p
ϕÞ; ð3:8Þ

where m is an arbitrary mass. This result holds independ-
ently of the shape of the regulator [25].
A related question is whether this pseudoregulator can

reproduce some of the (multi)critical theories in d ¼ 2. It
turns out that the answer is positive, as we shall discuss in
greater detail in Sec. VA, where we consider a larger
truncation.

B. An external field problem

As a somewhat different application, let us consider a
free scalar field with mass m2 in an external metric gμν. Let
Δ ¼ −∇μ∇μ be the covariant Laplacian. In this case we can
take over previous formulas for the pseudoregulator, simply
reinterpreting z ¼ Δ. We refer to [26] for several examples
of this type, both in Lorentzian and Euclidean signature.
The Euclidean beta functional is

∂tΓk
E ¼ 1

2ð4πÞd=2
X∞
j¼0

Qd
2
−j

� ∂tRk

Pk þ λ2

�
B2jðΔÞ;

¼ ð−1Þd=2λd=22

ð4πÞd=2
Xd=2
j¼0

ð−1Þjλ−j2
Γðd

2
− jþ 1ÞB2jðΔÞ; ð3:9Þ

where B2jðΔÞ are the heat kernel coefficients of the
operator Δ and consist of integrals of powers of the
curvature tensor and its covariant derivatives. Note that
the sum terminates at j ¼ d=2, because of the poles in the
Gamma function in the denominator. We get

∂tΓk
E ¼ −

1

4π
ðλ2B0ðΔÞ − B2ðΔÞÞ

for d ¼ 2, and

∂tΓk
E ¼ 1

ð4πÞ2
�
λ22
2
B0ðΔÞ − λ2B2ðΔÞ þ B4ðΔÞ

�

for d ¼ 4. These formulas give the cutoff dependence of the
effective action for the external metric, generated by the
scalar field. By integrating these formulae from some
ultraviolet scale Λ down to k ¼ 0, one obtains the effective
action for the metric. See [27,28] for some calculations of
this type.
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C. A first generalization

In the definition (3.1) we have used an external, arbitrary
mass scale μ. One could use instead a dimensionful
coupling of the theory. In particular, in a massive theory,
one could use m instead of μ. In the discussion of the two-
loop beta functions, it will be convenient to actually use a
mixture of the two. Therefore, let us generalize the
pseudoregulator to

RkðzÞ ¼ lim
ϵ→0

z

��
zk2

m2bμ4−2b

�
ϵ

− 1

�
: ð3:10Þ

Note thatm is a running parameter, so when we evaluate the
Q functional (2.17) it gives rise to an additional term
depending on the beta function of the mass βm2 ¼ ∂tm2:

Qn

� ∂tRk

ðPk þm2Þl
�
¼ 2ð−1Þn−lþ1

ΓðlÞΓðn − lþ 2Þ

×

�
1 −

b
2

βm2

m2

�
m2ðn−lþ1Þ: ð3:11Þ

The term with the beta function of the mass is a higher-loop
effect, so at one loop this pseudoregulator still reproduces
the result of dimreg.
We note that the above discussion could be generalized

replacing m by any combination of couplings with the
dimension of mass. This would give rise to additional beta
functions in the rhs of (3.11) and may be useful in higher-
loop calculations.
In the massless case (m ¼ 0) one has to set b ¼ 0 and

introduce by hand an IR regulator in the Q functionals:

Qn

�∂tRk

Pl
k

�
↦ Qn

� ∂tRk

ðPk þ μ2Þl
�
: ð3:12Þ

The limit μ → 0 has to be taken in the very end. Note that
this IR regulator mass is not necessarily equal to the dimreg
parameter μ, but we will not need this degree of generality,
so the same mass will be used in both rôles. Then we obtain

Qn

� ∂tRk

ðPk þ μ2Þl
�
¼ 2ð−1Þn−lþ1

ΓðlÞΓðn − lþ 2Þ μ
2ðn−lþ1Þ: ð3:13Þ

As we already said above, this formula gives zero for
n < l − 1. Taking the limit for μ → 0 we get zero for
n > lþ 1. So the result is

Qn

�∂tRk

Pl
k

�
¼ lim

μ→0
Qn

� ∂tRk

ðPk þ μ2Þl
�
¼ 2δl;nþ1

Γðnþ 1Þ : ð3:14Þ

We note that only one combination of l and n gives a non-
vanishing result, which corresponds to the universal result
of Eq. (2.13).

D. Interpolation with the optimized regulator

The Q functionals for the optimized regulator have been
given in (2.10). Now let us consider the following one-
parameter family of regulators:

raðyÞ ¼ að1 − yÞθð1 − yÞ: ð3:15Þ

For a ≠ 1 they violate the normalization condition, but
otherwise they are acceptable regulators. In fact, the
parameter a is used to optimize the results [29–31].
The corresponding Q functionals are given by

Qn

� ∂tRk

ðPkþm2Þl
�
¼ 2ak2ðn−lþ1Þ

ðaþ m̃2Þl
1

Γðnþ1Þ

× 2F1

�
l;n;nþ1;−

1−a
aþ m̃2

�
: ð3:16Þ

If l < nþ 1 and m̃ > 0, then these are monotonically
increasing functions of a, which are equal to (2.10) for
a ¼ 1 and decrease monotonically to zero when a → 0.
If l > nþ 1 and m̃ > 0, they grow as functions of a and
they go to zero when a → 0. For m̃ ¼ 0 they are monotonic
functions on the interval 0 < a < 1, with either a zero
or a pole for a → 0 depending whether l < nþ 1 or
l>nþ1. Remarkably, the Q functionals l¼nþ1, m̃¼0
are independent of a and equal to (2.13). Thus, the
universality of these Q functionals is not spoiled by the
regulator not being normalized.
On the other hand, if we set a ¼ 0 the regulator vanishes

identically and so do all the beta functions, including the
universal ones. This means that the limit a → 0 is not
continuous. We would like to find a way to obtain at least
the universal beta functions also for a ¼ 0. One can achieve
this by introducing an additional parameter ϵ. Consider
the following interpolating regulator Rk ¼ k2rðy; m̃2; ϵ; aÞ,
with

rðy; m̃2; ϵ; aÞ ¼ ðaþ ð1 − aÞμ̃−2ð2−bÞϵm̃−2bϵy1þϵ

− yÞθ
�
1 −

a
aþ ϵ

y

�
: ð3:17Þ

For ϵ → 0 it reduces to (3.15) and for a → 0 it reduces to
(3.10). Thus we can go continuously from the optimized
regulator to the pseudoregulator reproducing dimreg by
following a curve of the form shown in Fig. 1. In this way
the limit a → 0 can be made continuous. The price one
pays is that for ϵ ≠ 0 one does not have a good regulator in
the sense of Sec. II. In any case we obtain the desired result
that all the nonuniversal beta functions go continuously to
zero, while the universal ones remain constant.
Let us see how the evaluation of the Q-functionals

proceeds. We have
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Qn

� ∂tRk

ðPk þm2Þl
�
¼ k2ðn−lþ1Þ

ΓðnÞ
Z

∞

0

dyyn−1
2r − 2y∂yr − 2μ̃2∂ μ̃2r − m̃2ð2 − βm2

m2 Þ∂m̃2r

ðyþ rþ m̃2Þl : ð3:18Þ

Using (3.17), the fraction in the integral can be written as the sum of three pieces:

1Þ ¼ 2a
ðð1 − aÞm̃−4ϵ

b y1þϵ þ aþ m̃2Þl θ
�
1 −

ay
aþ ϵ

�
;

2Þ ¼ 2ϵð1 − aÞð1 − b
2

βm2

m2 Þm̃−4ϵ
b y1þϵ

ðð1 − aÞm̃−4ϵ
b y1þϵ þ aþ m̃2Þl θ

�
1 −

ay
aþ ϵ

�
;

3Þ ¼ 2ðaþ ð1 − aÞm̃−4ϵ
b y1þϵ − yÞ

ðð1 − aÞm̃−4ϵ
b y1þϵ þ aþ m̃2Þl

a
aþ ϵ

yδ

�
1 −

ay
aþ ϵ

�
; ð3:19Þ

where m̃2
b ¼ μ̃2−bm̃b. Performing the integral, the Q functional is the sum of three pieces

1Þ ¼ 2a
ðaþϵ

a Þn
ðaþ m̃2Þl

1

Γðnþ 1Þ 2F1

�
l;

n
1þ ϵ

; 1þ n
1þ ϵ

;
ða − 1Þm̃−4ϵ

b ðaþϵ
a Þ1þϵ

aþ m̃2

�
;

2Þ ¼ 2ϵð1 − aÞm̃−4ϵ
b

ΓðnÞðnþ 1þ ϵÞ
�
1 −

b
2

βm2

m2

� ðaþϵ
a Þnþ1þϵ

ðaþ m̃2Þl 2F1

�
l; 1þ n

1þ ϵ
; 2þ n

1þ ϵ
;
ða − 1Þm̃−4ϵ

b ðaþϵ
a Þ1þϵ

aþ m̃2

�
;

3Þ ¼ 2

ΓðnÞ
ðaþ ð1 − aÞm̃−4ϵ

b ðaþϵ
a Þ1þϵ − aþϵ

a Þ
ðð1 − aÞm̃−4ϵ

b ðaþϵ
a Þ1þϵ þ aþ m̃2Þl

�
aþ ϵ

a

�
n−1

:

Taking the limit ϵ → 0

1Þ → 2a
ðaþ m̃2Þl

1

Γðnþ 1Þ 2F1

�
l; n; 1þ n;

a − 1

aþ m̃2

�
;

2Þ → 0;

3Þ → 0:

Then sending a → 1 we get (2.10). If a ≠ 0 we can also
take the two limits in the reverse order and obtain the same
result. For a → 0 the previous expressions are not well
defined, so in this case we have to take ϵ → 0 after the a
limit. For a → 0

1Þ → 0;

2Þ → 2ϵ

�
1 −

b
2

βm2

m2

�Γð1þ n
1þϵÞΓðl − 1 − n

1þϵÞ
ð1þ ϵÞΓðlÞΓðnÞ

×

�
m̃b

m̃

�4nϵ
1þϵ

m̃2ðn−lþ1þ ϵn
1þϵÞ;

3Þ → 0:

Then taking the limit ϵ → 0 we get (3.11).

IV. BEYOND THE LPA

In any quantum field theory application, and in the FRG
framework as well, the choice of a regularization scheme
should be tailored to a specific model and computation. In
the process of relaxing the approximations used to solve the
exact FRG equations, it is thus inevitable to reconsider the
regulator choice. In this section we discuss the adjustment
of the MS pseudoregulator to the transition from the LPA to
the inclusion of the running wave function renormalization.
In the following, after the construction of a more general
family of pseudoregulators, we discuss its application to
scalar field theory. We show how these pseudoregulators

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

FIG. 1. A path in the a − ϵ plane interpolating smoothly
between the optimized cutoff and the pseudocutoff of dimreg.
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are appropriate for investigations within the LPA0 approxi-
mation, which differs from the LPA only for the inclusion
of a field- and momentum-independent wave function
renormalization factor. The next layer of complexity,
namely the O(∂2) derivative expansion including the field
dependence of the wave function renormalization, will be
addressed in Sec. V.
From the point of view of standard perturbation theory,

the step from the LPA to the LPA0 already involves the
resummation of an infinite class of Feynman diagrams—
those self-energy-like one-particle-reducible corrections to
the internal propagator lines which are accounted for by a
nontrivial field’s anomalous dimension—and therefore
goes beyond finite-order perturbative calculations.

A. Rôle of the wave function renormalization

If the kinetic term in the action contains a nontrivial wave
function renormalization factor Zk ≠ 1, one usually
includes this global factor inside Rk

RkðzÞ ↦ ZkRkðzÞ: ð4:1Þ

There are several reasons in favor of this choice. First of all,
it allows to take over the regulators already working in the
LPA, as the relevant regularized kinetic term is then in the
functional form zþ RkðzÞ. Furthermore, it is motivated by
the desired invariance under rigid rescalings of the fields,
also called reparameterizations. In other words, it allows to
remove Zk from the flow equations by simply rescaling the
fields according to their quantum dimension

dϕ ¼ d − 2þ ηk
2

; ð4:2Þ

where

ηk ¼ −∂t logZk ð4:3Þ

is the field anomalous dimension. While the former
motivation is just a matter of convenience, the latter is
deeper and less arbitrary. In fact, this choice is the one that
minimizes the spurious breaking of reparameterization
invariance due to the truncation of the exact FRG equation
[6,32–34].
Following the choice of Eq. (4.1). the flow equations

receive further RG resummations encoded in the appear-
ance of ηk on the rhs as

∂tRkðzÞ ↦ Zkð∂tRkðzÞ − ηkRkðzÞÞ: ð4:4Þ

While the first term on the rhs gives rise to the Q
functionals already discussed in Sec. II, the second term
leads to the following new integrals

Qn

�
Rk

ðPk þm2Þl
�
¼
X∞
j¼0

ð−1ÞjΓðlþ jÞ
ΓðlÞΓðjþ 1Þ m2j

×Qn

�
Rk

Pjþl
k

�
: ð4:5Þ

Also for these new Q functionals we see that the term
j ¼ n − lþ 1 has no explicit k dependence, but it is
not universal. For instance, the exponential regulator of
Eq. (2.2) would give

Qn

�
Rk

Pnþ1
k

�
¼

8>><
>>:

logð2Þ n ¼ 1

logð4
3
Þ n ¼ 2

1
2
logð32

27
Þ n ¼ 3

; ð4:6Þ

while the optimized regulator (2.4) leads to

Qn

�
Rk

Pnþ1
k

�
¼ 1

Γðnþ 2Þ : ð4:7Þ

This exemplifies the arbitrariness in the construction of an
MS pseudoregulator for calculations beyond the LPA.
If we straightforwardly apply the recipe Eq. (4.1), we

obtain a divergent result:

Qn

�
Rk

ðPk þm2Þl
�
¼ lim

ϵ→0

� ð−m2Þn−lþ1

ΓðlÞΓðn − lþ 2Þ

×
�
1 −

n
nþ 1

�
1

ϵ

�
: ð4:8Þ

Therefore, including the wave function renormalization in
the pseudoregulator requires some additional work. In the
following we explore a family of pseudoregulators which
achieve the goal of reproducing one-loop MS results, plus
RG resummations, in the ϵ → 0 limit.

B. An extended family of pseudoregulators

The first requirement on a new pseudoregulator which is
appropriate for the LPA0, is that it reduces to the pseudor-
egulator we have adopted for the LPA in the Zk → 1 limit.3

Hence we consider a generalization of Eq. (3.1) which
amounts to the introduction of two new parameters Z0 > 0
and σ:

RkðzÞ ¼ Z0Zσϵ
k

��
k2

μ4

�
ϵ

z1þϵ − z

�
: ð4:9Þ

While the most common choice, as in Eq. (4.1), would be
Z0 ¼ 1 and σ ¼ 1=ϵ, we prefer to keep the two variables
arbitrary for the time being. We define

3For simplicity we set b ¼ 0.
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Gkðq2Þ ¼ ðZkq2 þ V 00
k þ Rkðq2ÞÞ−1 ð4:10Þ

as the regularized propagator. With our pseudoregulator
this reads

Gk ¼
1

Z0ðZ
σ
kk

2

μ4
Þϵz1þϵ − ðZ0Zσϵ

k − ZkÞzþ V 00
k

; ð4:11Þ

from which it is manifest that having a vanishing ðZ0Zσϵ
k −

ZkÞ would tremendously simplify the task of evaluating the
loop integrals. Though we restrain from this simplifying
assumption, we still assume that this difference is small. We
calculate all loop integrals by means of their Taylor series in
this difference around zero.
Then the generic Q functional becomes

Qn½Gl
k∂tRk� ¼

ϵZ0Zσϵ
k

ΓðnÞΓðlÞ
X∞
p¼0

ðZ0Zσϵ
k − ZkÞp

Γðlþ pÞ
Γðpþ 1Þ

Z
∞

0

dzznþp
ð2 − σηkÞðk2μ4Þϵzϵ þ σηk

ðZ0ðZ
σ
kk

2

μ4
Þϵz1þϵ þ V 00

kÞlþp

¼ ϵZ0Zσϵ
k

ð1þ ϵÞΓðnÞΓðlÞ
X∞
p¼0

ðZ0Zσϵ
k − ZkÞp

Γðpþ 1Þ
�
Z0

�
Zσ
kk

2

μ4

�
ϵ
�

−nþp
1þϵ

×

�
ð2 − σηkÞΓ

�
nþ p
1þ ϵ

þ 1

�
Γ
�
lþ p −

nþ p
1þ ϵ

− 1

��
Z0

�
Zσ
kk

2

μ4

�
ϵ
�

−1
ðV 00

kÞ
nþp
1þϵ−l−pþ1

þ σηkΓ
�
nþ pþ 1

1þ ϵ

�
Γ
�
lþ p −

nþ pþ 1

1þ ϵ

��
Z0

�
Zσ
kk

2

μ4

�
ϵ
�

− 1
1þϵðV 00

kÞ
nþpþ1
1þϵ −l−p

�
: ð4:12Þ

From this expression it can be clearly seen that σ cannot diverge for vanishing ϵ [as a comparison of (4.1) and (4.9) would
suggest] or both terms would also diverge. On the other hand choosing a vanishing σ in this limit would remove any Zk and
ηk dependence, thus reproducing the same results of the LPA pseudoregulator. Finally, choosing σ to stay constant in the
ϵ → 0 limit leads to

Qn½Gl
k∂tRk� ¼

Z−n
0 ð−V 00

kÞn−lþ1

ΓðnÞΓðlÞΓðn − lþ 2Þ
X∞
p¼0

Γðnþ pÞ
Γðpþ 1Þ

�
1 −

Zk

Z0

�
p
�
ð2 − σηkÞ þ

σηkðnþ pÞ
nþ pþ 1

�

¼ Z−n
0 ð−V 00

kÞn−lþ1

ΓðlÞΓðn − lþ 2Þ
�
ð2 − σηkÞ

Zn
0

Zn
k
þ σηk

n
nþ 1 2F1

�
1þ n; 1þ n; 2þ n; 1 −

Zk

Z0

��
: ð4:13Þ

Summarizing we have

Qn½Gl
k∂tRk�

ð2 − σηkð1þH0ÞÞ
¼ Z−n

k ð−V 00
kÞn−lþ1

ΓðlÞΓðn − lþ 2Þ ; ð4:14aÞ

Qn½Gl
kG

0
k∂tRk�

ð2 − σηkð1þH1ÞÞ
¼ −

n
n − 1

Z1−n
k ð−V 00

kÞn−l−1
Γðlþ 2ÞΓðn − lÞ ; ð4:14bÞ

Qn½Gl
kG

00
k∂tRk�

ð2 − σηkð1þH2ÞÞ
¼ 2n

n − 2

Z2−n
k ð−V 00

kÞn−l−2
Γðlþ 3ÞΓðn − l − 1Þ ; ð4:14cÞ

where primes denote differentiation with respect to z, and we introduced the following notations:

H0ðn; Zk; Z0Þ ¼ −
n

nþ 1

�
Zk

Z0

�
n
× 2F1

�
nþ 1; nþ 1; nþ 2; 1 −

Zk

Z0

�
; ð4:15aÞ

H1ðn; Zk; Z0Þ ¼ −
n − 1

n
Z0

Zk
þ n − 1

nþ 1

�
1 −

Zk

Z0

�
×

�
Zk

Z0

�
n−1

2F1

�
nþ 1; nþ 1; nþ 2; 1 −

Zk

Z0

�
; ð4:15bÞ

H2ðn;Zk;Z0Þ ¼
n− 2

n

�
1−

2n− 1

n− 1

Zk

Z0

��
Z0

Zk

�
2

−
n− 2

nþ 1

�
1−

Zk

Z0

�
2
�
Zk

Z0

�
n−2

2F1

�
nþ 1; nþ 1; nþ 2;1−

Zk

Z0

�
: ð4:15cÞ
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The dependence of the Hi functions on Zk=Z0 signals the
expected breaking of reparameterization invariance, which
translates in nonautonomous flow equations for the dimen-
sionless renormalized couplings. An autonomous flow can
be recovered in special cases: besides the σ → 0 limit, other
interesting choices are

lim
Z0→0

HiðnÞ ¼ 0; ð4:16Þ

lim
Z0→∞

HiðnÞ ¼ −1: ð4:17Þ

From (4.14) we see that the second case suppresses the “RG
improvement” terms, in the same way as setting σ ¼ 0, and
therefore gives back the LPA result. Thus, in summary, the
proper way to use the pseudoregulator (4.9) is to first
evaluate the integrals, then take the limit ϵ → 0 and finally
the limit Z0 → 0.
Finally, it is worth stressing that the previous identities

are not restricted to the LPA0 truncation. For truncations
where Zk depends on fields and/or momentum, the relevant
wave function renormalization factor appearing inside the
pseudoregulator is to be identified with Zk evaluated at

preferred values of momentum and fields, for instance
minimizing the potential and the inverse propagator. In the
simplest cases the latter are vanishing values. Then the
simple propagator Gk of Eq. (4.10), and the loop integrals
given in the previous equations, would arise after a
polynomial expansion of Zk to obtain derivative vertices
which are local in field space and in spacetime.

C. Scalar field with a generic potential and its
anomalous dimension

As a first example of application of the above pseudor-
egulator, let us turn to a simple scalar field theory within the
LPA0 truncation. We consider a most generic effective
potential, which can be parametrized as follows

Vk ¼
X
n¼0

Zn=2
k

λn
n!

ϕn: ð4:18Þ

The anomalous dimension ηk is computed by extracting
from the exact FRG equation the contributions to the
quadratic part of the two-point function

ηk ¼ −
1

Zk
lim
p2→0

∂
∂p2

∂t
δ2Γk

δϕpϕ−p

����
ϕ0

¼ −
ðVð3Þ

k ðϕ0ÞÞ2
Zk

lim
p2→0

∂
∂p2

Z
ddq
ð2πÞd Gkðq2Þ2Gkððqþ pÞ2Þ∂tRkðq2Þ

����
ϕ0

: ð4:19Þ

Here ϕ0 is the minimum of the potential. After taking the
derivative and the limit, we obtain

ηk ¼ −
ðVð3Þ

k ðϕ0ÞÞ2
Zkð4πÞd=2

ðQd
2
½G2

kG
0
k∂tRk�

þQd
2
þ1½G2

kG
00
k∂tRk�Þ: ð4:20Þ

For ϕ0 ¼ 0 and in the Z0 → 0 limit, this boils down to

ηk ¼ −
ð−1Þd=2
6Γðd

2
− 2Þ

λ23
ð4πÞd=2 λ

d
2
−3
2

�
1 − σ

ηk
2

�
: ð4:21Þ

Within the LPA0 truncation for this pseudoregulator
we obtain what is essentially a one-loop equation with
RG improvement. Therefore in d ¼ 2, 4 we find

η ¼ 0.4 To reproduce a nonvanishing η with this pseudor-
egulator we need to consider larger truncations, as detailed
in Sec. VI.
Now we consider the equation for the potential and we

calculate the beta functions

∂tVk ¼
1

2ð4πÞd Qd
2
½Gk∂tðZkRkÞ�; ð4:22Þ

βn ¼
n
2
ηλn þ Z−n=2

k
∂n∂tVk

ð∂ϕÞn
����
ϕ¼0

: ð4:23Þ

We list the initial beta functions in the Z0 → 0 limit:

4Note that we drop the k subscript in ηk from this point on.
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β1 ¼
1

2
ηλ1 þ

ð−1Þd=2
Γðd

2
Þð4πÞd=2

�
1 − σ

η

2

�
λ3λ

d=2−1
2 ; ð4:24aÞ

β2 ¼ ηλ2 þ
ð−1Þd=2
ð4πÞd=2

�
1 − σ

η

2

��
λ23

λd=2−22

Γðd
2
− 1Þ þ λ4

λd=2−12

Γðd
2
Þ
�
; ð4:24bÞ

β3 ¼
3

2
ηλ3 þ

ð−1Þd=2
ð4πÞd=2

�
1 − σ

η

2

��
λ33

λd=2−32

Γðd
2
− 2Þ þ 3λ3λ4

λd=2−22

Γðd
2
− 1Þ þ λ5

λd=2−12

Γðd
2
Þ
�
; ð4:24cÞ

β4 ¼ 2ηλ4 þ
ð−1Þd=2
ð4πÞd=2

�
1 − σ

η

2

��
λ43

λd=2−42

Γðd
2
− 3Þ þ 6λ23λ4

λd=2−32

Γðd
2
− 2Þ þ ð4λ3λ5 þ 3λ24Þ

λd=2−22

Γðd
2
− 1Þ þ λ6

λd=2−12

Γðd
2
Þ
�
: ð4:24dÞ

In d ¼ 6, if λ2 → 0 and λn≥4 ¼ 0, we get the universal
one-loop result, plus RG resummations

η ¼ λ23
6ð4πÞ3

�
1 − σ

η

2

�
; ð4:25Þ

β3 ¼ −
3λ33

4ð4πÞ3
�
1 − σ

η

2

�
: ð4:26Þ

Solving these equations and expanding in λ3

η ¼ λ23
6ð4πÞ3 þ σ

2
λ23

¼ λ23
6ð4πÞ3 −

σλ43
72ð4πÞ6 þOðλ63Þ; ð4:27Þ

it can be checked that it is possible to adjust σ to reproduce
the correct two-loop result [35] for either η (σ ¼ −26=3) or
β3 (σ ¼ −250=9) but not both simultaneously.5 In fact,
recovering the full two-loop RG equations requires larger
truncations, as we discuss in Sec. VI.

V. THE Oð∂2Þ DERIVATIVE EXPANSION

The pseudoregulators introduced in the previous section
are also apt for application to a larger class of truncations
which accounts for a possible field dependence of the wave
function renormalization, the Oð∂2Þ of the derivative
expansion. While this kind of more elaborate approxima-
tion is often an optional for many models, it is in some
cases a necessity already as a zeroth order approach, such
as for instance in the applications to nonlinear sigma
models or for conformal field theories in two dimensions.
For this reason, in this section we address these two
examples. They allow us to account for a trivial generali-
zation of the LPA0 formulas given in the previous section,
and also to discuss more subtle points about the scope of an
MS pseudoregulator, such as its applicability to strongly

interacting field theories and to models with nonlinear
symmetries.

A. Multicritical models

We consider the following truncation of Γk

Γk½ϕ� ¼
Z

ddx

�
VkðϕÞ þ

1

2
ZkðϕÞ∂μϕ∂μϕ

�
: ð5:1Þ

This kind of ansatz is general enough to capture the
emergence of a tower of multicritical ϕ2p scalar field
theories below the fractional upper critical dimensions
dp ¼ 2p=ðp − 1Þ, and to provide good estimates of their
properties in d ¼ 2 [36–38]. As these conclusions apply to
conventional FRG regulator choices, it is interesting to
check whether these nice results can be obtained even with
an MS pseudoregulator.
The flow equations of the functions Vk and Zk for the

pseudoregulator (4.9) can be obtained from those presented
in Appendix B for the more general case of OðNÞ models.
More specifically, they correspond to Eqs. (B4) and (B5),
for d ¼ 2 and N ¼ 1.6 Rescaling the field

ϕ ¼ Zkð0Þ−1=2ϕ̃; η ¼ −∂t logZkð0Þ ð5:2Þ

and introducing the dimensionless renormalized functions

vkðϕ̃Þ ¼ k−2VkðϕÞ; ζkðϕ̃Þ ¼ Zkð0Þ−1ZkðϕÞ; ð5:3Þ

these flow equations read

5The situation does not change if we insert also the RG
improvement proportional to β2=λ2, which is finite in the limit
λ2 → 0.

6Here and in the following sections we identify the wave
function renormalization of the single-field theory of Eq. (5.1)
with the one of the radial mode in the linear OðNÞ model, which
is Z̃kðϕÞ in Eq. (B5). Notice that this choice is not the conven-
tional one for FRG studies, which usually associate the single-
field Zk to the N → 1 limit of the Goldstone-modes wave
function renormalization.
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∂tvk ¼ −2vk þ
η

2
ϕ̃v0k −

1

4π

�
1 − σ

η

2

�
ζ−1k v00k; ð5:4aÞ

∂tζk ¼ ηζk þ
η

2
ϕ̃ζ0k þ

1

8π

�
1 − σ

η

2

�

×

�
−2

ζ00k
ζk

þ 3

�
ζ0k
ζk

�
2
�
: ð5:4bÞ

Now we search for the scaling solutions for this system
of equations. Setting the Z2 parity and normalizations
conditions

v0ð0Þ ¼ 0; v00ð0Þ ¼ ζ0m̃2; ð5:5aÞ

ζð0Þ ¼ ζ0; ζ0ð0Þ ¼ 0; ð5:5bÞ

the previous system of equations has the following family
of fixed points

v� ¼ −
2 − ση

16π
m̃2 cos

�
2ffiffiffi
η

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1 −Φ2

r �
; ð5:6aÞ

ζ� ¼ ζ0ð1 −Φ2Þ−1; ð5:6bÞ

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πηζ0
2 − ση

s
ϕ̃: ð5:6cÞ

It is remarkable that with the MS pseudoregulator the
scaling solutions can be written in closed form: usually in
the FRGE they are only known numerically. These sol-
utions manifestly preserve reparameterization invariance:
the normalization factor ζ0 cannot influence observable
quantities as it can be eliminated from the action (5.1) by
rescaling ϕ̃. Depending on the sign of m2, the fixed-point
potential can have a maximum or a minimum for zero field.
Note that ζ� diverges for Φ2 ¼ 1. In order to have a

potential v� which is smooth at this point and is bounded
from below we impose

vðnÞ� jΦ2→1 ¼ finite; ∀ n ð5:7aÞ

lim
ϕ̃→∞

v� ¼ þ∞: ð5:7bÞ

From (5.7a) we get the quantization rule:

sin
πffiffiffi
η

p ¼ 0; ð5:8Þ

such that

η ¼ 1

p2
; p ¼ 1; 2; 3…; ð5:9Þ

while (5.7b) can be fulfilled by adjusting the sign of m̃2

(while the modulus remains free):

m̃2 ≶ 0 if ð−1Þ1= ffiffiηp ¼ �1: ð5:10Þ

In this way v� acquires the typical shape of a (p − 1)-
critical potential.
To compute the critical exponents associated to these

fixed points, we linearize the RG flow around them and
look for eigenperturbations. In other words, we insert
vk → v� þ eθtδv, ζk → ζ� þ eθtδζ and η ¼ η� þ δη into
Eq. (5.4), and expand them to the first order in the
perturbations δv, δζ and δη. For δη ≠ 0 the corresponding
δζ is complex and furthermore singular at Φ2 ¼ 1. We
therefore impose δη ¼ 0. In this simplified case the
linearized equations read

θδv ¼ −2δvþ η

2
ϕ̃δv0 −

1

4π

�
1 − σ

η

2

�

× ζ−1�

�
δv00 − v00�

δζ

ζ�

�
; ð5:11aÞ

θδζ¼ ηδζþ η

2
ϕ̃δζ0 þ 1

4π

�
1−σ

η

2

�

×

�
−
δζ00

ζ�
þ3

ζ0�δζ0

ζ2�
þ
�
ζ00�
ζ�

−3

�
ζ0�
ζ�

�
2
�
δζ

ζ�

�
: ð5:11bÞ

The condition of fixed η results in LPA-like perturbations
with vanishing δζ.
Besides the trivial solutions

θ ¼ −2; δv ¼ 1; ð5:12aÞ

θ ¼ −2þ η

2
; δv ¼ ϕ̃; ð5:12bÞ

θ ¼ 0; δv ¼ v�; ð5:12cÞ
we find the even eigenperturbations

θ ¼ −2þ 2ηn2; ð5:13aÞ

δv ¼ cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2θ

η

s
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1 −Φ2

r �
; ð5:13bÞ

and the odd eigenperturbations

θ ¼ −2þ 2η

�
nþ 1

2

�
2

; ð5:14aÞ

δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−ση

8πð2þθÞ

s
sin

� ffiffiffiffiffiffiffiffiffiffiffiffi
4þ2θ

η

s
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1−Φ2

r �
; ð5:14bÞ

where η assumes its fixed-point value (5.9). Enforcing
regularity of δv at the pole of ζ requires n ¼ 1; 2; 3…. From
the largest even parity eigenvalue (n ¼ 1), excluding the
unit operator, we get the critical exponent ν
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ν ¼ 1

2 − 2η
: ð5:15Þ

In Table I we summarize these results for the critical
exponents η and ν and compare them to FRG estimates
obtained by means of the optimized regulator and with the
homogeneous regulator, as well as with the exact values.
Comparing Eq. (5.9) with the exact result

η ¼ 3

ðpþ 1Þðpþ 2Þ ; ð5:16Þ

we see that for large p our result is off by a factor 3,
whereas ν correctly tends to 1=2.

B. The nonlinear σ model

Addressing the nonlinear σ model with the MS pseudor-
egulator requires only a simple generalization of the
truncation we just studied, to account for a multiplet of
fields, rather than a single one. We therefore start from the
following truncation of Γk for aOðNÞ-invariant multiplet of
scalars:

Γk½ϕ� ¼
Z

ddx

�
UkðρÞ þ

1

2
ZkðρÞ∂μϕa∂μϕa

þ 1

4
YkðρÞ∂μρ∂μρ

�
; ð5:17Þ

where the N fields ϕa are in the fundamental representation
of OðNÞ, and ρ ¼ ϕaϕa=2 is the corresponding local
invariant. We further define the radial wave function
renormalization

Z̃kðρÞ ¼ ZkðρÞ þ ρYkðρÞ: ð5:18Þ

In Appendix B we show the flow equations of this model in
the present truncation, for general d and adopting the
pseudoregulator of Eq. (4.9) in the Z0 → 0 limit. For the
especially interesting case d ¼ 2, we obtain

∂tUk ¼ −
1

4π

�
U0

k þ 2ρU00
k

Z̃k
þ ðN − 1ÞU

0
k

Zk

�
; ð5:19aÞ

∂tZ̃k ¼ −
ðZ̃0

k þ 2ρZ̃00
kÞ

4πZ̃k
− ðN − 1Þ ðZ

0
k þ ρY 0

kÞ
4πZk

þ 3ρðZ̃0
kÞ2

4πZ̃2
k

þ ðN − 1Þ ρZ
0
kðYk − Z0

kÞ
2πZ2

k

: ð5:19bÞ

Here we suppressed the RG improvement by setting
σ ¼ 0; the effect of a nonvanishing σ will be addressed in a
moment.
As it stands, this action could still describe a linear

model. If we make the assumptions

ZkðρÞ ¼
Zk

g2k
; ð5:20aÞ

Z̃kðρÞ ¼
1

g2k

�
1

Zk
− 2ρ

�
−1
; ð5:20bÞ

Uk ¼ −hk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Zk
− 2ρ

s
; ð5:20cÞ

the EAA becomes

Γk½ϕ� ¼
Z

ddx

�
Zk

2g2k

�
δab þ

ϕaϕb

1
Zk
− 2ρ

�
∂μϕa∂μϕb

− hk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Zk
− 2ρ

s �
; ð5:21Þ

which describes a nonlinear σ model with values in a sphere
SN of radius Z−1=2

k and coupled to an external source hk
[40]. In this case the symmetry group is extended to
OðN þ 1Þ. Inserting this ansatz in the flow equations (5.19)
one deduces the correct one-loop beta functions

TABLE I. Estimates of the critical exponents ηp and νp for the
two-dimensional ϕ2p multicritical scalar models. The first three
columns present FRG estimates: the first obtained with the MS
pseudoregulator, the second with the optimized regulator of
Eq. (2.4), the third with a homogeneous regulator. Finally, the
last column shows the exact results, from conformal field theory
methods.

This work opt. [37, 38] hom. [36] exact [39]

η2 0.25 0.2132 0.309 0.25
ν2 0.666667 … 0.863 1
η3 0.111111 0.1310 0.200 0.15
ν3 0.5625 … 0.566 0.556
η4 0.0625 0.0910 0.131 0.1
ν4 0.533333 … 0.545 0.536
η5 0.04 0.0679 0.0920 0.0714
ν5 0.520833 … 0.531 0.525
η6 0.0277778 0.0522 0.0679 0.0535714
ν6 0.514286 … 0.523 0.519
η7 0.0204082 … 0.0521 0.0416667
ν7 0.510417 … 0.517 0.514
η8 0.015625 … 0.0412 0.0333333
ν8 0.507937 … 0.514 0.511
η9 0.0123457 … 0.0334 0.0272727
ν9 0.50625 … 0.511 0.509
η10 0.01 … 0.0277 0.0227273
ν10 0.505051 … 0.509 0.508
η11 0.00826446 … 0.0233 0.0192308
ν11 0.504167 … 0.508 0.506
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∂tgk ¼ −
N − 1

4π
g3k; ð5:22aÞ

η ¼ −∂t logZk ¼
N
2π

g2k; ð5:22bÞ

∂thk ¼ 0: ð5:22cÞ

Thus, the flow equations (5.19) maintain the form of
the ansatz in Eq. (5.20), that is to say, they preserve the
nonlinearly realized OðN þ 1Þ=OðNÞ symmetry. This
might appear trivial as we are applying one-loop RG
equations, but it is not so for two reasons. First, this
compatibility extends beyond one-loop order as we observe
in the following by the inclusion of the RG improvement.
Second, because this conclusion does not hold for finite ϵ,
i.e., within the realm of ordinary FRG computations. In
fact, it is well known that the FRG regulator, being a
deformation of the two-point function of the N fields,
explicitly breaks the nonlinear part of the OðN þ 1Þ
symmetry. For this reason, most FRG applications to
nonlinear sigma models have adopted different formula-
tions based on the background field method [27,41–48].
Let us then turn to the RG improvement, which leads us

beyond the one-loop approximation. To this end we should
note that the pseudoregulator in Eq. (4.9) has a factor Zσϵ

k ,
but here Zk should be replaced by Zkg−2k to be compatible
with the ansatz of Eq. (5.20). Then, with this little adjust-
ment of the pseudoregulator, for a generic σ we get

∂tgk ¼ −
ðN − 1Þg3k
4π þ σg2k

; ð5:23aÞ

η ¼ 2Ng2k
4π þ σg2k

; ð5:23bÞ

∂thk ¼ 0: ð5:23cÞ

Even though the previous flow equations hold in d ¼ 2, it is
possible to apply them in d ¼ 2þ ε by simply augmenting
them with their ε-dependent canonical dimensional part. In
so doing, one can recover the ε-expansion description of the
nontrivial fixed point which exists for ε > 0. We defer this
discussion to the end of Sec. VII.

VI. THE TWO-LOOP BETA FUNCTIONS

In the previous sections we have shown that the ϵ → 0

limit of the FRG beta functions for the MS pseudoregulator
reduces them to well-known MS one-loop RG equations,
possibly up to a resummation. We have shown this in the
LPA, in the LPA0 and in the Oð∂2Þ derivative expansion. In
this section we show how to reproduce the two-loop result
in four dimensions, by considering larger truncations and
by taking the ϵ → 0 limit in a suitable way.

Although the computation of the beta function of the
quartic coupling was discussed by several authors already,
see Refs. [49–56], part of the arguments adopted in those
works do not apply to the MS pseudoregulator, which is not
an IR regulator. Furthermore, we crucially rely on analytic
continuation of divergent integrals, such that parametric
limits are allowed to not commute, whereas standard FRG
regulators render all integrals convergent. In addition, we
also compute the two-loop running of the mass.
We closely follow the notations and the arguments of the

first FRG work addressing this task, namely Ref. [49]. We
therefore focus on the linear OðNÞ models with bare action

S½ϕ� ¼
Z

ddx

�
1

2
∂μϕ

a∂μϕa þ UΛðρÞ
	
; ð6:1aÞ

UΛðρÞ ¼ m̄2ρþ λ̄

2
ρ2: ð6:1bÞ

Note that compared to Eq. (2.8), we have changed the
notation to λ2 ¼ m̄2 and λ4 ¼ 3λ̄, and the bars denote bare
couplings. In a massless scheme such as MS, the two-loop
beta function of the quartic coupling is universal and mass
independent, such that it is usually possible to assume
m̄2 ¼ 0 right from the start. We instead focus on a massive
theory in the symmetric regime for technical reasons. In
fact, we are going to adopt an FRG pseudoregulator which
does not regulate IR divergences. This does not prevent us
from analysing the massless theory though, as we are
allowed to take the m̄2 → 0 limit of any IR safe quantity
after the loop integrals are computed.
In our regularization scheme, it is furthermore essential

to account for the k dependence of the renormalized mass
parameter m2, or else the correct two-loop beta function
would not be reproduced. In fact, as the latter contributes to
the running of λ in any mass-dependent scheme, it does so
also in our computations at nonvanishing ϵ. Interestingly,
this contribution will survive the ϵ → 0 limit, if the latter is
taken carefully enough. This computation will thus serve as
an example of a more general mechanism, according to
which the super-renormalizable and the nonrenormalizable
sectors of a theory, which show a nontrivial running in any
mass-dependent scheme, do feed back into the running of
renormalizable operators even in a massless scheme such as
MS, provided the mass-thresholds effects are correctly
accounted for.7

As discussed in the introduction, a two-loop result
involves arbitrarily high orders of the derivative expansion.
We therefore cannot use an ansatz such as (1.6), or its
multifield generalization. Instead, we must make the ansatz

7This mechanism has been observed also in Ref. [57].
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Γk½ϕ� ¼
Z

ddx

�
UkðρÞ þ

1

2
∂μϕ

aZkðρ;−∂2Þ∂μϕa

þ 1

4
∂μρYkðρ;−∂2Þ∂μρ

	
: ð6:2Þ

Equivalently, expressing the field in the angular
(Goldstone) modes, and in the radial (massive), modeffiffiffi
ρ

p
, one finds that their wave function renormalizations

are given by the function Zk and

Z̃kðρ; q2Þ ¼ Zkðρ; q2Þ þ ρYkðρ; q2Þ; ð6:3Þ

respectively. In order to compute the beta function of the
quartic coupling it may seem sufficient to stop at the fourth
order of the vertex expansion, and hence assume that Uk is
quadratic in ρ and Zk is linear. However, in the vertex
expansion, the beta function of ΓðnÞ involves also Γðnþ1Þ and
Γðnþ2Þ, so we need Uk up to order ρ3 and Zk up to order ρ2.
In general we shall use the following terminology for the
expansion of these functions:

UkðρÞ ¼
X∞
n¼1

un
n!

Zn
kk

d−nðd−2Þðρ − ρ0Þn; ð6:4aÞ

Zkðρ; q2Þ ¼
X∞
n¼0

znðq2=k2Þ
n!

Znþ1
k k−nðd−2Þðρ − ρ0Þn; ð6:4bÞ

Z̃kðρ; q2Þ ¼
X∞
n¼0

z̃nðq2=k2Þ
n!

Znþ1
k k−nðd−2Þðρ − ρ0Þn; ð6:4cÞ

where Zk ¼ Zkðρ0; 0Þ is the wave function renormalization
and ρ0 is the minimum of the potential. In any scheme, the
effective potential is already renormalized at one loop. The
functions Zkðρ; q2Þ and Z̃kðρ; q2Þ also receive one-loop
radiative corrections in mass-dependent schemes. The one-
loop contributions to these functions are however field
dependent corrections, and therefore correspond to radia-
tively generated momentum-dependent vertices. In any
scheme the field-independent part of the wave function
renormalizations, i.e., the field’s anomalous dimensions,
receive corrections from the two-loop order on. These well-
known perturbative facts are recovered from the FRG
equations, straightforwardly in mass-dependent schemes,
and with a little care also for mass-independent schemes, as
we show in this section.
Although the FRGE looks like a one-loop equation, this

is only true as long as one uses the full propagators and
vertices [double lines and black dots in Eqs. (1.5)]. The full
propagators and vertices can be expanded in loops, as
briefly explained in the introduction, giving rise to infinite
series that can be represented in terms of standard Feynman
diagrams. This introduces resummations of perturbative
diagrams of two kinds. The first is the so-called “spectral

adjustment” of the regulator, i.e., the possible dependence
of the regulator on the couplings of the theory, most
commonly the wave function renormalization Zk (as
already discussed in Sec. IVA). This produces terms
depending on the field’s anomalous dimensions. The
second source of resummations is provided by the mass
thresholds, which in a functional setup may also depend on
the point of expansion in the space of field amplitudes,

κ ¼ k2−dZkρ0; ð6:5Þ

at which we define local couplings. These include the
perturbatively renormalizable ones

m2 ≡ k2u1 ¼ Z−1
k U0ðρ0Þ; ð6:6aÞ

λ≡ u2 ¼ kd−4Z−2
k U00

kðρ0Þ; ð6:6bÞ

as well as the nonrenormalizable ones

un ¼ knðd−2Þ−dZ−n
k UðnÞ

k ðρ0Þ; n ≥ 3; ð6:6cÞ

znðyÞ ¼ knðd−2ÞZ−ðnþ1Þ
k ZðnÞ

k ðρ0; k2yÞ; n ≥ 1; ð6:6dÞ

z̃nðyÞ ¼ knðd−2ÞZ−ðnþ1Þ
k Z̃ðnÞ

k ðρ0; k2yÞ; n ≥ 1: ð6:6eÞ

If one were to suppress both these portals towards higher
order corrections, the FRGE would boil down to a pure
one-loop result. However, thanks to these two contribu-
tions, higher loops are generated by solving the RG
equations and constructing the RG trajectory, i.e., in the
process of renormalizing the theory.
Let us now address the task of integrating the d ¼ 4 flow

equations from the UV initial condition Γk¼Λ ¼ S down to
k < Λ.8 We recall that for the bare theory of Eq. (6.1) the
loop expansion corresponds to the expansion in the
coupling λ. From now on it is more convenient to think
in this way. To reproduce perturbation theory, we need to
compute the RG vector field in vicinity of the Gaussian
fixed point up to next-to-leading order in λ. This is
tantamount to integrating the flow order by order in a
Taylor expansion for small λ. We first input the initial
condition ΓΛ on the right-hand sides of the RG equations.
This produces a one-loop beta function for the renormaliz-
able couplings m2 and λ. On the other hand, the RG
equations radiatively generate further couplings, namely
those whose t derivative at this initial point is nonvanishing.
By considering the Feynman diagrams mentioned above,

8Here the limit Λ → ∞ is allowed as part of the regularization
choice, and should not be confused with the possibility to remove
a UV cutoff, thus defining a UV complete theory. The latter
question is instead emerging when trying to take such a limit at
for a fixed IR action Γk¼0.
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we deduce a power counting for the radiatively generated
couplings in terms of λ.
The first few couplings to be generated, and the

corresponding orders of magnitude in terms of the initial
quartic coupling are

η ¼ Oðλ2Þ; z1 ¼ Oðλ2Þ; z̃1 ¼ Oðλ2Þ; ð6:7aÞ

u3 ¼ Oðλ3Þ; z2 ¼ Oðλ3Þ; z̃2 ¼ Oðλ3Þ; ð6:7bÞ

u4 ¼ Oðλ4Þ; z21 ¼ Oðλ4Þ; z̃21 ¼ Oðλ4Þ: ð6:7cÞ

Similar relations hold for un and zn, with progressively
higher powers of λ for higher n. Thus after an infinitesimal
RG step from k ¼ Λ to k ¼ Λ − δk, the effective average
action changes and the perturbative expansion of the
FRG vector field correspondingly adjusts. To compute
the most general form of βλ along such a flow, which is
exact at the order λ3 (still within a local expansion around
vanishing fields), we can use the power counting
of Eq. (6.7) to eliminate the higher order terms. This
results in

βm2 ¼ −
k2

16π2
½ðN − 1Þλl41;0ð0Þ þ 3λl40;1ð2λκÞ þ ðN − 1Þhz1i61;0ð0Þ þ hz̃1i60;1ð2λκÞ�

þ ηm2 þ k2ð2κ þ ∂tκÞλþOðλ3Þ; ð6:8Þ

βλ ¼
N − 1

16π2
l42;0ð0Þλ2 þ

9

16π2
l40;2ð2λκÞλ2 −

N − 1

16π2
l41;0ð0Þu3 −

5

16π2
l40;1ð2λκÞu3 þ ð2κ þ ∂tκÞu3

þ N − 1

8π2
λhz1i62;0ð0Þ þ

3

8π2
λhz̃1i60;2ð2λκÞ −

N − 1

16π2
hz2i61;0ð0Þ −

1

16π2
hz̃2i60;1ð2λκÞ

þ 2ηλþOðλ4Þ: ð6:9Þ

In these equations the threshold functions l4n;m and the
averages hzni6n;m denote one-loop integrals over virtual
momenta, with momentum-independent and -dependent
vertices, respectively. The precise definitions can be found
in Eq. (D5). The λ dependence of mass thresholds should
also be expanded, for instance:

ld0;nð2λκÞ ¼ ldn;0ð0Þ − 2nλκldnþ1;0ð0Þ þOðλ2Þ: ð6:10Þ

However this would bring corrections only for non-
vanishing κ, which is not generated at the two-loop
order. We can thus set κ ¼ 0 in Eqs. (6.8) and (6.9).
While the contribution of the nonrenormalizable couplings
u3, z1;2 and z̃1;2 is obvious in any mass-dependent
scheme, one might expect that it would not be present
in MS, since all dimensionful integrals, in absence of
mass thresholds, need to vanish in the ϵ → 0 limit. This
expectation is however incorrect, because when the
computation is performed at nonvanishing mass, and the
m → 0 limit is taken after the ϵ → 0 limit, the contribution
of the beta functions of the mass and of the nonrenorma-
lizable couplings inside βλ attains a finite nonvanish-
ing value.
To illustrate the details of this mechanism, we should first

choose a specific form of the ϵ-dependent pseudoregulator

which is suitable for the present computation. We adopt the
following function9

RkðzÞ ¼
��

k2

μ4−2bM2b

�
ϵ

ðzþM2Þ1þϵ − ðzþm2Þ
�
: ð6:11Þ

Here μ is a k-independent momentum scale andM plays the
role of a regularized mass, which is assumed to be k
dependent. M should be an analytic function of m, such
that them → 0 limit smoothly removes alsoM.10 The precise
form of M making all relevant integrals finite and ensuring
the k independence of the beta functions in the ϵ → 0 limit is
derived inAppendixC. Imposing the analyticity requirement
on M fixes b ¼ 1.
We now turn to the beta function of Eq. (6.9), where on

the rhs we organized different kinds of contributions on
different lines. The first line provides the one-loop expres-
sion, as well as also a first type of higher order contribution,
due to the RG improvement of the pseudoregulator. More

9As η is vanishing at one loop in this model, we discard the
precise form of the Z0 and Zk dependence of the pseudoregulator:
in fact, the η dependence appearing on the rhs of the flow
equations through the regularization only contributes to the rhs of
the flow from three loops on, and so we can safely replace
Zk → 1.

10If M depended also on other couplings aside from m, their
contributions would only appear from three loops.
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specifically, the threshold functions are responsible for the
appearance of βm2 on the rhs of βλ, as

l40;2ð2λκÞ ¼ l42;0ð0Þ þOðλ2Þ ¼ 1 −
βm2

2m2
þOðλ2Þ;

¼ 1 −
N þ 2

32π2
λþOðλ2Þ: ð6:12Þ

As already anticipated, the ratio βm2=m2 attains a finite
mass-independent value. In fact, the one-loop MS result for
βm2 is recovered also with the present pseudoregulator.
Even the two-loop MS coefficient for βm2 can be correctly
reproduced, although this requires a careful choice of the
function M2, which is described in Appendix D 5.
The second line of Eq. (6.9) encodes the effect of u3,

which is generated by the flow equation itself, as detailed in
Appendix D. It is a general feature of the FRG equations
that solving the flow equation for u3 as a function of λ,
at leading order in λ, is equivalent to setting u3 at its
λ-dependent fixed point value. With the present pseudor-
egulator this value of the sextic coupling reads

uð1Þ3 ¼ N þ 26

32π2
λ3

k2

m2
: ð6:13Þ

This illustrates a second mechanism that generates two-
loop terms, even with the MS pseudoregulator. In fact,
despite all momentum integrals appearing in the beta
function of u3, and any other nonrenormalizable couplings,
being dimensionful and thus vanishing in the ϵ → 0 limit,
some of the integrals appearing in the solution of the flow
and fixed-point equations for these couplings are dimen-
sionless and therefore survive in MS. In other words, the
flow equations should be solved before the ϵ → 0 limit is
taken. Then, replacing Eq. (6.13) in the second line of
Eq. (6.9) produces further λ3 terms in the beta function.
A similar fate applies to the third line of Eq. (6.9),

although the computational details this time are somewhat
more intricate. This is due to the momentum dependence of
the nonrenormalizable couplings appearing inside Z and Z̃.
In the process of solving the flow equations for these
couplings at leading order in λ, and plugging the solution in
Eq. (6.9), the following momentum averages are generated

hz1i62;0ð0Þ ¼ −8ð16π2Þλ2A; ð6:14aÞ

hz̃1i60;2ð0Þ ¼ −4ð16π2ÞðN þ 8Þλ2A; ð6:14bÞ

hz2i61;0ð0Þ ¼ 32ð16π2Þλ3B; ð6:14cÞ

hz̃2i60;1ð0Þ ¼ 8ð16π2ÞðN þ 26Þλ3B: ð6:14dÞ

Here A and B are dimensionless double momentum
integrals whose precise form is given in Appendix D 3.
Although these are two-loop integrals, they involve only one

copy of ∂tRk, because one of them disappears in the process
of solving the flow equations for the nonrenormalizable
couplings.As a consequence, the 1=ϵ2 pole of the integrals is
not balanced by the ϵ factor coming from the single ∂tRk.
Thus both A and B exhibit a 1=ϵ pole.11 Despite this
divergence, the flow equation itself is finite, at least at order
λ3, as in fact the only appearance of A and B on the rhs of
Eq. (6.9) is through the combinationAþ B, inwhich the 1=ϵ
poles cancel. The final result of this process is therefore

Aþ B ¼ 1

2ð16π2Þ2 : ð6:15Þ

Also for these terms, taking the ϵ → 0 limit too early, i.e.,
before the flow for Z and Z̃ is solved and fed back inside βλ,
would fail to unveil higher order corrections.
Putting all these contributions together, the truncated

beta function of Eq. (6.9) in the ϵ → 0 limit reduces to

βλ ¼
N þ 8

16π2
λ2 −

2ð5N þ 22Þ
ð16π2Þ2 λ3 þ 2ηλ: ð6:16Þ

We next turn to the computation of the anomalous
dimension. Following Ref. [49], we split η in the sum

η ¼ ηð1Þ þ ηð2Þ; ð6:17Þ

the two terms on the rhs being the contributions of the
momentum-independent and -dependent parts of the wave
function renormalizations, respectively. Notice that both
contributions would vanish in a truncation neglecting the
field dependence of the wave function renormalizations, as
the vacuum expectation value κ vanishes at this order. Thus

both terms are entirely due to the four-point function Γð4Þ
k .

In the first part, ηð1Þ is proportional to the derivative
couplings at zero momenta

ηð1Þ ¼ 1

16π2
l41;0ð0Þ½ðN − 1Þz1ð0Þ þ z̃1ð0Þ�: ð6:18Þ

The Oðλ2Þ solution of the flow equation gives

z1ð0Þ ¼
1

3ð16π2Þ
k2

m2
λ2; ð6:19aÞ

z̃1ð0Þ ¼
ðN þ 8Þ
6ð16π2Þ

k2

m2
λ2; ð6:19bÞ

11Incidentally, neither A nor B would be divergent within a
strict derivative expansion where the RG-generated momentum
dependence of Z and Z̃ is truncated to its power series expansion
around p2 ¼ 0, because in the latter case the two-loop integrals
would exhibit only a 1=ϵ pole. However this truncation would not
reproduce the full two-loop beta function, but just part of the
Oðλ3Þ contributions.
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such that the first contribution to the anomalous dimension
reads

ηð1Þ ¼ −
ðN þ 2Þ
2ð16π2Þ λ

2: ð6:20Þ

The second part of the anomalous dimension is instead
proportional to the nontrivial momentum dependence of

Γð4Þ
k . Again taking the limit for ϵ → 0 at the end of the

nesting process, we find

ηð2Þ ¼ ðN þ 2Þ
ð16π2Þ2 λ

2: ð6:21Þ

Thus the whole two-loop anomalous dimension is
recovered

η ¼ ηð1Þ þ ηð2Þ ¼ ðN þ 2Þ
2ð16π2Þ2 λ

2: ð6:22Þ

Inserting in Eq. (6.16) we finally arrive at

βλ ¼
N þ 8

16π2
λ2 −

9N þ 42

ð16π2Þ2 λ3: ð6:23Þ

This is the universal part of the beta function at two loops.
With different mass-dependent regulators one would obtain
additional nonuniversal terms depending on the mass. The
contributions to the beta function from three loops up is
known not to be universal. In our approach this regulator
dependence arises at least from two sources: the freedom of
inserting other couplings in the pseudoregulator, as dis-
cussed in Sec. III C and footnote 10, and the contributions
coming from Zk, as mentioned in Sec. IVA and footnote 9.

A similar treatment of Eq. (6.8) leads to

βm2 ¼ m2

�ðN þ 2Þ
16π2

λ −
ðN þ 2Þ
4ð16π2Þ2 λ

2

× ðð1þ 2f1ÞðN þ 2Þ − 8
ffiffiffi
3

p
π þ 70Þ

�
: ð6:24Þ

Some more details are reported in Appendix D 5. We
observe that the two-loop term is not universal, and that the
MS result can be reproduced by suitably fixing the
parameter f1, which enters the pseudoregulator (6.11)
through the choice of M.

VII. GENERALIZATION TO CONTINUOUS
DIMENSIONS

Despite the fact that MS is limited to applications in an
even number of dimensions, the pseudoregulator we dis-
cussed lends itself to generalizations to any continuous d,
thanks to the intimate relation that exists between
dispersion relations and the dimensionality of spacetime.
Consider the following pseudoregulator

RkðzÞ ¼ Z0Zσϵ
k

�
μ2ð1−αÞ

�
k2

μ4

�
ϵ

zαþϵ − z

�
; ð7:1Þ

which generalizes (4.9) in that the regularized propagator is
now an homogeneous function of momentum with power
αþ ϵ, rather than 1þ ϵ. This allows to correspondingly
generalize the formulae (4.14) for the Q functionals,
whenever the dimension of the momentum integrals, after
having factored out all μ dependence, is a nonnegative
integer. In fact, in this case the ϵ → 0 and the Z0 → 0
limits give

QnðGl
k∂tRkÞ ¼ 2μ2nð1−

1
αÞ
ΓðnαÞZ

−n
α

k ð−V 00
kÞ

n
α−lþ1

ΓðnÞΓðlÞ
ð1 − ση

2
Þ

Γðnα − lþ 2Þ ; ð7:2aÞ

QnðGl
kG

0
k∂tRkÞ ¼ −

α2Γðn−1α þ 2Þμ2ðn−1Þð1−1
αÞ

ðn − 1ÞΓðnÞ
2Z

1−n
α

k ð−V 00
kÞ

n−1
α −l

Γðlþ 2Þ
ð1 − ση

2
Þ

Γðn−1α − lþ 1Þ ; ð7:2bÞ

QnðGl
kG

00
k∂tRkÞ ¼

α2ð2α − ðα−1Þðlþ2Þ
n−2
α þ2

ÞΓðn−2α þ 3Þμ2ðn−2Þð1−1
αÞ

ðn − 2ÞΓðnÞ
2Z

2−n
α

k ð−V 00
kÞ

n−2
α −l

Γðlþ 3Þ
ð1 − ση

2
Þ

Γðn−2α − lþ 1Þ ; ð7:2cÞ

where the α-dependent arguments of the Gamma functions
in the denominators are positive integers. Recall that for a
scalar field theory and in the derivative expansion the index
n takes the values d=2þ l with l ¼ 0; 1; 2;…. Hence, if α
is a continuous power, these formulas are applicable to
continuous d.

We illustrate the use of this generalized pseudoregulator,
by addressing the description of the Wilson-Fisher fixed
point for 2 < d < 4, for the linearOðNÞmodels.We focuson
the flow equations we presented in Appendix B within the
derivative expansion, namely Eqs. (B2) and (B3). As we
expect the effective potential to play a dominant role in the
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description of theWilson-Fisher fixed point, we demand that
the corresponding quantum contributions be nonvanishing in
our regularization scheme. Specifically, the first kind of Q

functional, given in Eq. (7.2), is nontrivial in 2 < d < 4 only
if d=2α is a positive integer. Under this assumption the flow
equations of the derivative expansion become

∂tu ¼ −duþ ðd − 2þ ηÞρ̃u0 þ αμ̃dð1−
1
αÞ

ð4πÞd=2Γðd
2
þ 1Þ ½ζ̃

− d
2αð−u0 − 2ρ̃u00Þ d

2α þ ðN − 1Þζ− d
2αð−u0Þ d

2α�; ð7:3aÞ

∂tζ̃ ¼ ηζ̃ þ ðd − 2þ ηÞρ̃ζ̃0 − μ̃dð1−1
αÞ

ð4πÞd=2Γðd
2
Þ ½ðζ̃

0 þ 2ρ̃ζ̃00Þζ̃− d
2αð−u0 − 2ρ̃u00Þ d

2α−1 þ ðN − 1Þζ̃0ζ− d
2αð−u0Þ d

2α−1�

−
ðdþ 2ðα − 6ÞÞðd − 2αÞμ̃dð1−1

αÞ

6αð4πÞd=2Γðd
2
Þ ρ̃ð3u00 þ 2ρ̃u000Þζ̃0ζ̃− d

2αð−u0 − 2ρ̃u00Þ d
2α−2

− ðN − 1Þ dðdþ 2Þðd2 − 4α2Þμ̃dð1−1
αÞ

24αð4πÞd=2Γðd
2
þ 2Þ ρ̃u00ζ0ζ− d

2αð−u0Þ d
2α−2

þ ðN − 1Þ ðd − 2αÞμ̃dð1−1
αÞ

αð4πÞd=2Γðd
2
Þ u00ðζ̃ − ζÞζ− d

2αð−u0Þ d
2α−2; ð7:3bÞ

where u, ζ and ζ̃ are the dimensionless renormalized
counterparts of the Uk, Zk and Z̃k of Eqs. (5.17) and
(5.18), defined in analogy to Eq. (5.3). Here for notational
simplicity we dropped the RG improvement, by setting
σ ¼ 0; the full equations contain the factor ð1 − ση=2Þ in
front of every quantum contribution. The μ̃ dependence of
these flow equations can be canceled by a further rescaling
of all dimensionful quantities with respect to μ̃, which casts
the RG equations in a genuine MS form.
We look for fixed points of the previous flow equations

by means of a small-fields polynomial expansion

u ¼
X
i¼0

λ2i
i!

ρ̃i; ð7:4aÞ

ζ̃ ¼ 1þ
X
i¼1

z̃2i
i!

ρ̃i; ζ ¼ 1þ
X
k¼i

z2i
i!

ρ̃i: ð7:4bÞ

We find the Gaussian fixed point for every value of α and
a nontrivial fixed point only for α ¼ d=4, located at

λ�4 ¼
ð4πÞd=2Γðd

2
Þð4 − dÞ

8þ N
μ̃4−d; ð7:5Þ

with η ¼ 0, and all others couplings being vanishing. We
note that with standard regulators the dimensionless poten-
tial of the WF fixed point has a nontrivial minimum, but the
dimensionful mass (deduced from the limit k → 0) is zero,
in accordance with the fact that the theory is scale invariant
at quantum level. With the MS pseudoregulator the
“dimensionless mass” λ2 is zero even for finite k. The
same phenomenon happens also in the functional pertur-
bative approach [17].

For α ¼ d=4 the power of μ̃ appearing in the Eqs. (7.3) is
(d − 4). Therefore, the rescalingwhichmaps these equations
into those of MS, is effectively declaring the dimensionality
of the couplings to be the one expected in four dimensions,
the rescaling factors differing only by powers of ðk=μ̃Þ4−d.
Furthermore, the value α ¼ d=4 is precisely the one that
makes the quartic interaction marginal for continuous d. In
fact, the effective kinetic term of the regularized theory has a
dispersion relation zα, which changes the dimensionality of
the scalar field from ðd − 2Þ=2 to ðd − 2αÞ=2. In otherwords,
within the present truncation, our one-loop-like equations for
ϕ4 theory are able to detect the Wilson-Fisher fixed point in
continuous d only when the pseudoregulator turns d into an
“effective upper critical dimension.” This interpretation is
also consistent with the apparent absence of the multicritical
models with ρp interactions, for p > 2. In fact, the effective
upper critical dimensions for these models would be at
d ¼ 2pα=ðp − 1Þ, which is not compatible with our sim-
plifying assumption of an integer d=2α.
The stability matrix at the fixed point of Eq. (7.5) is

triangular and the eigenvalues are

θi ¼ −dþ iðd − 2Þ þ i

�
1þ 6ði − 2Þ

N þ 8

�
ð4 − dÞ; ð7:6aÞ

ωi ¼ iðd − 2Þ þ
�
iþ 1þ 3ð2i2 − 2i − 3Þ

N þ 8

�
ð4 − dÞ

þ 3i
2ðN þ 8Þ ð4 − dÞ2: ð7:6bÞ

By setting d ¼ 4 − ε we recognize that this prediction
agrees with the usual first order of the ε expansion.
For instance, for N ¼ 1 we get
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θ ¼
�
−2þ ε

3
; ε; 2þ 3ε; 4þ 19

3
ε; 6þ 11ε…

�
; ð7:7aÞ

ω ¼
�
2; 4þ 4

3
ε; 6þ 4ε; 8þ 8ε…

�
: ð7:7bÞ

Notice that ε here should not be confused with the ϵ of
Eq. (7.1), the latter having been removed by the limit
ϵ → 0. Also, the one-loop predictions of Eq. (7.6) become
exact in the N → ∞ limit.
Order ε2 corrections affect the estimate of ωi in

Eq. (7.6b) but are missing in Eq. (7.6a). This is related
to the fact that the fixed point value of η ¼ 0 is vanishing in
this truncation, such that the RG resummations triggered
by the dependence of Rk on Zk are ineffective at the
fixed point. In fact, improvements on the estimate of θs
can be obtained by allowing for the feedback of other
couplings in the pseudoregulator. For instance, it is
natural to allow for the replacement of the mass parameter
μ2 with the running λ2 through a tunable parameter b,12 and
write

RkðzÞ ¼ Z0Zσϵ
k

�
μ2ð1−αÞ

�
k2

μ2ð2−bÞλb2

�
ϵ

zαþϵ − z

�
: ð7:8Þ

This would result in a different RG improvement of
Eqs. (7.3), where each quantum term is now multiplied
by the factor ð1 − bβ2=ð2λ2Þ − ση=2Þ, which leads to the
following b-dependent quartic coupling evaluated at the
fixed point and critical exponents

λ�4 ¼
ð4πÞd=2Γðd

2
Þð4 − dÞ

N þ 8 − b
2
ðN þ 2Þð4 − dÞ μ̃

4−d; ð7:9aÞ

θi ¼ −dþ iðd − 2Þ þ i
�
1þ 6ði − 2Þ

N þ 8

�
ð4 − dÞ

þ δi;4
b
2

�
N þ 2

N þ 8

�
ð4 − dÞ2; ð7:9bÞ

ωi ¼ iðd − 2Þ þ
�
iþ 1þ 3ð2i2 − 2i − 3Þ

N þ 8

�
ð4 − dÞ

þ 3i
2ðN þ 8Þ ð4 − dÞ2: ð7:9cÞ

Getting better estimates of the critical η and the corre-
lation-length exponent ν does instead require a larger

truncation, accounting for at least part of the two-loop
contributions, as discussed in Sec. VI. This kind of more
elaborate analysis of the Wilson-Fisher fixed point
by means of the MS pseudoregulator is left for future
studies.
We reiterate that the flow equations (7.3) have been

obtained under the assumptions that 2 < d < 4 and that
d=2α is a positive integer. In even dimensions the equations
have additional terms. In fact, taking the d → 2 limit in
(7.3) would miss relevant contributions which are present
in the flow equations studied in Sec. VA. The latter can
indeed be reproduced by the α-generalized MS pseudor-
egulator, by applying Eq. (7.2) directly in d ¼ 2 and taking
the α → 1 limit.
Finally, let us comment on the extension of the nonlinear

sigma model of Sec. V B to dimension d > 2. Instead of
just using the ε expansion, it is possible to use directly
the generalized MS pseudoregulator (7.1). As a result,
in d ¼ 2þ ε we recover the well-known nontrivial fixed
point

g2� ¼
2πε

N − 1
þ πσε2

ðN − 1Þ2 þOðε3Þ; ð7:10aÞ

ν−1 ¼ ε −
σε2

2ðN − 1Þ þOðε3Þ; ð7:10bÞ

η ¼ ε

N − 1
þOðε3Þ: ð7:10cÞ

Here it is possible to adjust σ (σ ¼ −2) to get the full
two-loop result for ν, but not for η.13 The latter correction
would arise by considering a truncation where Zk depends
also on the momenta, as is discussed in Sec. VI.

VIII. CONCLUSIONS

Mass-dependent Wilsonian RG schemes, such as for
instance momentum subtraction with a sharp UV cutoff,
simultaneously achieve the two goals of regularizing a field
theory and of defining the heavy modes to be integrated out
while constructing an effective description of the system. In
these schemes, information about mass thresholds is
essential and built in the effective theory at all scales.
Mass-independent schemes instead, e.g., dimreg=MS,
remove the latter piece of information by taking the
limit of infinite separation between the physical scales
of applicability of the effective field theory and the
heavy masses of the underlying microscopic description.
It is therefore natural that, in the construction of a

12We cannot replace every occurrence of μ2 with λ2, otherwise
singularities of the form β2=ϵ would arise in the beta functions.
The insertion of λ2 in the pseudoregulator must preserve the
cancellation of such poles.

13This situation is similar to the one observed Sec. IV C for ϕ3

theory in six dimensions, although there we could tune σ to get
the right two-loop result for either β3 or η.
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mass-independent scheme out of a Wilsonian one,
the infinite-separation-of-scales limit also becomes a
regularization-removal process.
This is precisely what has been observed in the

present work. More specifically, we have focused on the
functional renormalization group (FRG) equations, a proto-
typical Wilsonian representation of field theory based on
shell-by-shell integration of modes according to a coarse-
graining-defining function Rkðq2Þ, which acts as a smooth
infrared cutoff on modes with momentum q2 ≪ k2. As a
matter of fact, we have found that it is indeed possible
to achieve a continuous transition from this exact mass-
dependent scheme to functional RG equations within MS,
at the price of taking a parametric limit ϵ → 0 that in even
dimensions also results in the removal of the cutoff:
Rk → 0.14

The dependence of Rk on continuous parameters, such as
our ϵ, is allowed and welcome in the FRG setup. In fact, it is
often used in FRG applications as a diagnostic tool (weak
dependence on such parameters is taken as a sign of a good
truncation) or even as a selection criterion for the “best”
regulator (e.g., through the principle of minimum sensi-
tivity [30,31]). However we find that, while taking the
ϵ → 0 limit, the regulator Rk at some point must leave the
domain of acceptable IR Wilsonian cutoffs and violate
some of the conditions that define physical coarse grain-
ings. This is quite to be expected, as dimreg is by no means
a physical IR cutoff. As such, also the pseudocutoff form
which should be attained by Rk for asymptotically small ϵ,
our Eq. (3.1), defies every interpretation as a conventional
regulator, and is well suited for its goal only when
augmented by analytic continuation of the momentum
integrals in ϵ.
Quite interestingly, there is a certain degree of freedom

in how to attain the MS limit, and it is even possible to
achieve it starting from the most popular functional forms
of Rk, as is explained in Sec. III D. This exercise renews
interest on several nontrivial aspects of vanishing-Rk limits
of FRG equations, to which we will devote a subsequent
paper [58]. There, we will also show that this limit can
help to weed out certain unphysical features that are
introduced in the FRGE by some choices of regulator,
and which are intimately related to the preservation of
nonlinear symmetries.
Indeed, one of the most tantalizing aspects of this

research direction, is the possibility to look at the MS
limit of FRG equations as a novel way to approach the
challenging problem of gauge and nonlinear symmetries.
Here, we have limited ourselves to explore these aspects in
Sec. V B, where we have observed that the ϵ → 0 limit

of the RG equations of a linear OðNÞ model have the
pleasant property of preserving also a nonlinearly realized
OðN þ 1Þ symmetry. Further systematic studies of this
problem are in order to assess whether taking the MS limit
might ease the task of fulfilling Ward-Takahashi identities
and master equations (actually Rk-deformed versions of
the latter).
Although it might be possible to study the problem of

reproducing MS at the level of the exact FRG equa-
tion (1.1), we have only addressed this goal within specific
approximation schemes, mainly the first orders of the
derivative expansion and up to two loops. One major
conceptual problem which might be raised against
our efforts is whether it makes any sense to try to join
the FRG framework, whose strength is in the exact and
nonperturbative nature of the formalism, with dimreg=MS,
which is widely believed to be applicable only within
perturbation theory. Another way of formulating this
question, would be to ask for a way of performing
numerical FRG computations and still make sense of an
MS limit.
Keeping this aspect in mind, after the construction of an

FRG pseudoregulator which successfully reproduces the
one-loop MS beta functions for vanishing ϵ, see Sec. III,
we have addressed the question as to whether this
pseudoregulator choice and the ϵ → 0 limit spoil the
nonperturbative nature of the exact FRG equation. We
have provided reasons to argue for a negative answer. In
Secs. IV and V we have first illustrated the physical
content of the RG resummations contained in the RG
improvement of one-loop beta functions, showing that
they account for higher-order perturbative contributions
and can even fairly describe some nonperturbative
critical phenomena in two dimensions, see for instance
Table I.
Furthermore, we have found strong hints suggesting that

the FRG equations remain nonperturbative, as long as the
limit of vanishing ϵ is taken at the end of the relevant
computations (indeed, analytic continuation of integrals
and parametric limits are processes which can be performed
also numerically). To substantiate this conclusion, and to
illustrate how the limit of vanishing pseudoregulator should
be dealt with, in Sec. VI we have derived the two-loop beta
functions for massive ϕ4 theory in four dimensions. The
details of the computation, presented in Appendix D,
show how the typical higher-orders FRG contributions,
which are tied to dimensionful momentum integrals and
stay rightly nonvanishing for ϵ ≠ 0, survive even for ϵ → 0
as long as the RG equations are solved before taking the
latter limit.
Other interesting aspects we have just touched upon,

and that certainly deserve further attention, are the use
of the MS pseudoregulator in theories featuring back-
ground fields (Sec. III B) and in continuous dimensions
(Sec. VII). Finally, as in this work we have confined our

14The generalization to continuous dimensions discussed in
Sec. VII is an exception, as in this case the deformation of the
dispersion relation operated by the pseudoregulator survives the
ϵ → 0 limit.
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attention to scalar field theories, future works will need to
explore the generalization to fermions, gauge theories and
gravity.
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APPENDIX A: DERIVATION
OF THE PSEUDOREGULATOR

In this section we present a derivation of the functional
form of the MS pseudoregulator in Eq. (3.10). We want to
obtain the result (2.17) from the FRGE. Inspired by
the deformation of integrands which takes place in dimen-
sional regularization, we consider the following family of
regulators

RkðzÞ ¼ μ−2ϵFðk; μ; m; ϵÞz1þϵ − z: ðA1Þ

Here the first term containing the momentum power (1þ ϵ)
is needed to reproduce the 1=ϵ pole of the analytically
continued dimensionless integral and can be obtained for
instance by starting with a (dþ ϵ) dimensional integral, and
by integrating out the (þϵ) dimensions [59]. In it, F is an
arbitrary dimensionless function and μ is a classical
arbitrary mass parameter. The second term in Eq. (A1)
is there to cancel the original inverse propagator of the bare
theory [we recall that the regulator Rk acts additively, and
that the regulated inverse propagator is the combina-
tion zþ RkðzÞ].
Note that ∂tRkðzÞ has two contributions: one coming

from the explicit dependence of F on k and another one
proportional to βm2 ¼ ∂tm2. Assuming that ∂tF ∝ ϵ and
using the following identity

Γ½−nþ ϵ� ¼ ð−1Þn
Γ½nþ 1�

1

ϵ
þOðϵ0Þ; ðA2Þ

the Mellin transform of the first term inside ∂tRk is

∂tF

F1þ n
1þϵ

�
μ

m

�2nϵ
1þϵ Γð1þ n

1þϵÞΓðl − n − 1þ nϵ
1þϵÞ

ð1þ ϵÞΓðnÞΓðlÞðm2Þ−ðn−lþ1Þ

¼ ∂tF
ϵF1þn

ð−1Þn−lþ1

ΓðlÞΓðn − lþ 2Þ ðm
2Þn−lþ1 þOðϵÞ: ðA3Þ

So taking the limit for ϵ → 0, we find (2.17) if

∂tFðk; μ; m; ϵÞ ¼ 2ϵFðk; μ; m; ϵÞ1þn; ðA4Þ

that is

F¼1þϵlog

�
k2

μ2−2bm2b

�
þOðϵ2Þ≈

�
k2

μ2−2bm2b

�
ϵ

: ðA5Þ

With this F, the second piece of ∂tRk proportional to βm2

can be calculated in the same way. This agrees with
Eq. (3.10), of which Eq. (3.1) is a special case, correspond-
ing to b ¼ 0. As described in the main text, different
choices of b only affect higher-order corrections.

APPENDIX B: FLOW EQUATIONS IN THE Oð∂2Þ
DERIVATIVE EXPANSION

In this section we present part of the flow equations of
the linear OðNÞ model in the Oð∂2Þ of the derivative
expansion, which can be found for instance in Ref. [60].
These descend from the exact FRG equation upon speci-
fying the truncation of Eq. (5.17). We introduce the
following notations

G0 ¼ ðZkq2 þ Rkðq2Þ þU0
kÞ−1; ðB1aÞ

G1 ¼ ðZ̃kq2 þ Rkðq2Þ þ U0
k þ 2ρU00

kÞ−1; ðB1bÞ

for the Goldstone-bosons and radial-mode propagators.
The flow equations for Uk reads

∂tUk ¼
Qd

2
½G1∂tRk� þ ðN − 1ÞQd

2
½G0∂tRk�

2ð4πÞd=2 : ðB2Þ

The beta functional for Zk is instead presented with slightly
different notations in Appendix D, more precisely in
Eq. (D37). Finally, the flow equation for Z̃k, which is
defined in Eq. (5.18), reads
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∂tZ̃k ¼ −
ðZ̃0

k þ 2ρZ̃00
kÞ

2ð4πÞd=2 Qd
2
½G2

1∂tRk� − ðN − 1Þ ðZ
0
k þ ρY 0

kÞ
2ð4πÞd=2 Qd

2
½G2

0∂tRk�

þ 2ρðZ̃0
kÞ2

ð4πÞd=2
�
2dþ 1

2
Qd

2
þ1½G3

1∂tRk� þ
ðdþ 2Þðdþ 4Þ

4

�
Qd

2
þ2½G2

1G
0
1∂tRk� þQd

2
þ3½G2

1G
00
1∂tRk�

��

þ 2ρð3U00
k þ 2ρU000

k Þ2
ð4πÞd=2

�
Qd

2
½G2

1G
0
1∂tRk� þQd

2
þ1½G2

1G
00
1∂tRk�

�

þ 2ρZ̃0
kð3U00

k þ 2ρU000
k Þ

ð4πÞd=2
�
ðdþ 2Þ

�
Qd

2
þ1½G2

1G
0
1∂tRk� þQd

2
þ2½G2

1G
00
1∂tRk�

�
þ 2Qd

2
½G3

1∂tRk�
�

þ ðN − 1Þ ρYk

ð4πÞd=2 ð2U
00
kQd

2
½G3

0∂tRk� þ dZ0
kQd

2
þ1½G3

0∂tRk�Þ

þ ðN − 1Þ 2ρðZ
0
kÞ2

ð4πÞd=2
�ðdþ 2Þðdþ 4Þ

4

�
Qd

2
þ2½G2

0G
0
0∂tRk� þQd

2
þ3½G2

0G
00
0∂tRk�

�
þ 1

2
Qd

2
þ1½G3

0∂tRk�
�

þ ðN − 1Þ 2ρðU
00
kÞ2

ð4πÞd=2 ðQd
2
½G2

0G
0
0∂tRk� þQd

2
þ1½G2

0G
00
0∂tRk�Þ

þ ðN − 1Þ 2ρZ
0
kU

00
k

ð4πÞd=2 ðdþ 2ÞðQd
2
þ1½G2

0G
0
0∂tRk� þQd

2
þ2½G2

0G
00
0∂tRk�Þ: ðB3Þ

Using the pseudoregulator (4.9), in the Z0 → 0 limit and suppressing the RG improvement by setting σ ¼ 0, we find

∂tUk ¼
ð−U0

k − 2ρU00
kÞ

d
2

ð4πÞd=2Γðd
2
þ 1ÞZ̃d

2

k

þ ðN − 1Þð−U0
kÞ

d
2

ð4πÞd=2Γðd
2
þ 1ÞZd

2

k

; ðB4Þ

∂tZ̃k ¼ −
ðZ̃0

k þ 2ρZ̃00
kÞ

ð4πÞd=2Γðd
2
Þ Z̃

−d
2

k ð−U0
k − 2ρU00

kÞ
d
2
−1 − ðN − 1Þ ðZ

0
k þ ρY 0

kÞ
ð4πÞd=2Γðd

2
ÞZ

−d
2

k ð−U0
kÞ

d
2
−1

þ ð4þ 18d − d2Þ
12ð4πÞd=2Γðd

2
Þ ρðZ̃0

kÞ2Z̃−d
2
−1

k ð−U0
k − 2ρU00

kÞ
d
2
−1

þ ð10 − dÞ
3ð4πÞd=2Γðd

2
− 1Þ ρZ̃

0
kð3U00

k þ 2ρU000
k ÞZ̃−d

2

k ð−U0
k − 2ρU00

kÞ
d
2
−2

−
ρð3U00

k þ 2ρU000
k Þ2

3ð4πÞd=2Γðd
2
− 2Þ Z̃

−d
2
þ1

k ð−U0
k − 2ρU00

kÞ
d
2
−3

þ ðN − 1Þ ð4 − 6d − d2Þ
6ð4πÞd=2Γðd

2
Þ ρðZ

0
kÞ2Z−d

2
−1

k ð−U0
kÞ

d
2
−1

− ðN − 1Þ ðdþ 2Þ
3ð4πÞd=2Γðd

2
− 1Þ ρZ

0
kU

00
kZ

−d
2

k ð−U0
kÞ

d
2
−2

− ðN − 1Þ ρðU00
kÞ2

3ð4πÞd=2Γðd
2
− 2ÞZ

−d
2
þ1

k ð−U0
kÞ

d
2
−3

þ ðN − 1Þ 2ρYk

ð4πÞd=2Γðd
2
− 1Þ

�
U00

k −
d

d − 2
Z0
kZ

−1
k U0

k

�
Z
−d
2

k ð−U0
kÞ

d
2
−2: ðB5Þ

For general σ, the right-hand sides have to be simply multiplied by ð1 − ση=2Þ.
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APPENDIX C: THRESHOLD FUNCTIONS FOR A
MASS-DEPENDENT PSEUDOREGULATOR

In this Appendix we detail the computation of the
following threshold functions

ldn;0ð0Þ ¼
nZn

k

2
k2n−d

Z
∞

0

dzz
d
2
−1 ∂tRkðzÞ

PkðzÞnþ1
; ðC1Þ

where

PkðzÞ ¼ Zkzþ RkðzÞ; ðC2Þ

by means of the mass-dependent pseudoregulator of
Eq. (6.11). As we need the result for the computation of
the two-loop beta function in four-dimensional λϕ4 theory,
we content ourselves of the first orders in a perturbative
expansion in λ. In particular, we neglect the η dependence

appearing on the rhs of the flow equations through the
regularization, as it would lead to higher orders in λ. Our
pseudoregulator choice results in simple propagators but a
somewhat more convoluted contribution of the differenti-
ated pseudoregulator:

PkðzÞ ¼ Zk

�
k2

μ4−2bM2b

�
ϵ

ðzþM2Þ1þϵ; ðC3aÞ

∂tRkðzÞ ¼ 2ϵ

�
1 −

b∂tM2

2M2

�
PkðzÞ

þ ð1þ ϵÞ∂tM2PkðzÞ − βm2 : ðC3bÞ

The loop integral can then be split into three different
kinds of contributions, corresponding to the three pieces
of ∂tRk

2ldn;0
nk2n−d

¼ 2ϵ

Γðd
2
Þ
�
1 −

b∂tM2

2M2

��
k2

μ4−2bM2b

�−nϵ Z ∞

0

dz
z
d
2
−1

ðzþM2Þnð1þϵÞ

þ ð1þ ϵÞ
Γðd

2
Þ ∂tM2

�
k2

μ4−2bM2b

�−nϵ Z ∞

0

dz
z
d
2
−1

ðzþM2Þ1þnð1þϵÞ

−
βm2

Γðd
2
Þ
�

k2

μ4−2bM2b

�−ðnþ1Þϵ Z ∞

0

dz
z
d
2
−1

ðzþM2Þð1þϵÞðnþ1Þ ;

¼ 2ϵ

�
1 −

b∂tM2

2M2

��
k2

μ4−2bM2b

�−nϵ Γðnþ nϵ − d
2
Þ

Γðnþ nϵÞ ðM2Þd2−n−nϵ

þ ð1þ ϵÞ∂tM2

�
k2

μ4−2bM2b

�−nϵ Γðnþ 1þ nϵ − d
2
Þ

Γðnþ 1þ nϵÞ ðM2Þd2−n−1−nϵ

− βm2

�
k2

μ4−2bM2b

�−ðnþ1Þϵ Γðnþ 1þ ðnþ 1Þϵ − d
2
Þ

Γðnþ 1þ ðnþ 1ÞϵÞ ðM2Þd2−ð1þϵÞðnþ1Þ: ðC4Þ

To extract the ϵ → 0 asymptotics we make use of the
standard expansion

Γð−nþ ϵÞ ¼ ð−1Þn
Γðnþ 1Þ

�
1

ϵ
− γ þ hðnÞ

�
þOðϵÞ; ðC5Þ

where hðnÞ ¼Pn
i¼1

1
i. Furthermore, we need to parame-

trize the possible dependence ofM2 on ϵ. Recalling that for
vanishing ϵ also Rk needs to vanish, i.e., M2 should reduce
to m2, we can write

M2 ¼ m2 þ ϵm2
1ðk;m; μÞ þOðϵ2Þ; ðC6Þ

∂tM2 ¼ βm2ðf0 þ ϵF1ðk;m; μÞÞ þOðϵ2Þ: ðC7Þ

Here m2
1 and F1 are two independent functions and f0 is a

proportionality factor. Thus, we allow for the possibility
that limϵ→0 ∂tM2 ≠ ∂t limϵ→0 M2, which can be achieved
e.g., by means of the choice

M2 ¼
�
1þ ðf0 − 1Þ

Z
ϵ2m

2

μ2

ϵ2
dsΓðsÞ

�
m2 þ ϵm2

1: ðC8Þ

The need for this behavior of M2 can be appreciated by
inspecting the integrals
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2ldn;0
nk2n−d

����
n≤d

2
−1

¼ βm2ððnþ 1Þf0 − nÞð−m2Þd2−n−1
nΓðnþ 2ÞΓðd

2
− nÞϵ þ 2ð1 − bf0βm2

2m2 Þð−m2Þd2−n
Γðnþ 1ÞΓðd

2
− nþ 1Þ

þ
βm2ð−m2Þd2−n−1fnð1 − f0Þ½logð k2

μ4−2bm2b−2Þ þ hðnÞ − hðd
2
− n − 1Þ� þ f0 þ F1ðkÞg

nΓðnþ 1ÞΓðd
2
− nÞ

−
βm2m2

1ð−m2Þd2−n−2ððnþ 1Þf0 − nÞ
nΓðnþ 2ÞΓðd

2
− n − 1Þ þOðϵÞ: ðC9Þ

These exhibit a 1=ϵ pole which can be eliminated by tuning f0 ≠ 1. To fulfill this, as well as the condition of removing
the renormalization scale k from the beta functions, we set

f0 ¼
n

nþ 1
; ðC10Þ

F1 ¼ f1 þ
n

nþ 1

�
h

�
d
2
− n − 1

�
− hðnÞ−1 − log

�
k2

μ4−2bm2b−2

��
; ðC11Þ

m2
1 ¼

�
f1 þ

n
nþ 1

�
h

�
d
2
− n − 1

�
− hðnÞ−1 − log

�
k
μ

���
βm2 log

k
μ

þ ðb − 1Þ n
2ðnþ 1Þm

2

�
log

m2

μ2

�
2

þOðλ2Þ: ðC12Þ

As a result we have

2ldn;0
nk2n−d

����
n≤d

2
−1

¼
2ð1 − bnβm2

2ðnþ1Þm2Þð−m2Þd2−n
Γðnþ 1ÞΓðd

2
− nþ 1Þ þ f1

βm2ð−m2Þd2−n−1
nΓðnþ 1ÞΓðd

2
− nÞ þOðϵÞ

¼ 2ð−m2Þd2−n
Γðnþ 1ÞΓðd

2
− nþ 1Þ −

βm2

m2

ð−m2Þd2−n
Γðnþ 2ÞΓðd

2
− nÞ

�
bn

d
2
− n

þ f1
nþ 1

n

�
þOðϵÞ: ðC13Þ

Recall that M2 must be analytic around m2 ¼ 0. From Eq. (C12) we see that this can be achieved only if b ¼ 1.

On the other hand, the remaining loop integrals are
harmless, as they read

2ldn;0
nk2n−d

¼ ðf0 − 1Þ βm2

m2

Γðn − d
2
þ 1Þ

Γðnþ 1Þ ðm2Þd2−n;

þOðϵÞ for n ≥
d
2
− 1; ðC14Þ

2ldn;0
nk2n−d

¼ 2

Γðd
2
þ 1Þ

�
1 − ððb − 1Þf0 þ 1Þ βm2

2m2

�

þOðϵÞ for n ¼ d
2
: ðC15Þ

For completeness we list some of these integrals in the
lowest even numbers of dimensions. If d ¼ 2 there is no
divergent l function, and in particular

l21;0ð0Þ ¼ 1 −
1

2

βm2

m2
; ðC16aÞ

l2n>1;0ð0Þ ¼
βm2

m2

ðf0 − 1Þ
2

�
k2

m2

�
n−1

: ðC16bÞ

If d ¼ 4, the function l41;0 which enters in the determi-
nation of βm2 has a pole unless we choose f0 ¼ 1=2
according to Eq. (C10). This results in

l41;0ð0Þ ¼ −
m2

k2
þ ð1þ 2f1Þ

βm2

4k2
; ðC17aÞ

l42;0ð0Þ ¼ 1 −
βm2

2m2
; ðC17bÞ

l4n>2;0ð0Þ ¼ −
1

4ðn − 1Þ
�
k2

m2

�
n−2 βm2

m2
: ðC17cÞ
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These equations are easily interpreted by applying them
e.g., to a λϕ4 theory within the LPA. To zeroth order in λ,
i.e., neglecting βm2 on the rhs, we recover the standard
result that integrals with negative mass dimension do not
contribute to the one-loop beta functions. Moreover the
positive dimensional integral leads to the usual one-loop
RG equation for the mass:

βm2 ¼ N þ 2

16π2
λm2 þOðλ2Þ: ðC18Þ

Further details of the pseudoregulator choice, such as the
coefficient f1, would affect higher perturbative orders. In
fact, in Appendix D 5 we show that the latter coefficient is
fixed by requiring that βm2 agrees with the MS result also at
two loops.

APPENDIX D: TWO-LOOP COMPUTATION

In this Appendix we detail the computation of the
universal part of the two-loop beta function in ϕ4 theory
in four dimensions.
According to our priority, i.e., the computation of βλ at

order λ3, we first focus on the flow equation for the effective
potential,

∂tUk¼
Z

ddq
ð2πÞd

∂tRkðqÞ
2

�
N−1

M0ðρ;q2Þ
þ 1

M1ðρ;q2Þ
�
; ðD1aÞ

where

M0ðρ; q2Þ ¼ Zkðρ; q2Þq2 þ RkðqÞ þU0
kðρÞ; ðD1bÞ

M1ðρ; q2Þ ¼ Z̃kðρ; q2Þq2 þ RkðqÞ þ U0
kðρÞ

þ 2ρU00
kðρÞ: ðD1cÞ

From this functional equation, the beta functions of the
mass and of the quartic coupling can be derived by
differentiation with respect to ρ. Defining ρ0 as the field
expansion point and

w0 ¼ 2ρ0U00
kðρ0Þ; ðD2aÞ

P ¼ Zkðρ0; zÞzþ RkðzÞ þ U0
kðρ0Þ; ðD2bÞ

P̃ ¼ Z̃kðρ0; zÞzþ RkðzÞ þ U0
kðρ0Þ; ðD2cÞ

the flow equations for the two renormalizable cou-
plings read

d
dt
U0

kðρ0Þ ¼ ∂tU0
kðρ0Þ þU00

kðρ0Þ
d
dt
ρ0

¼ −2vdðN − 1Þkd−2Z−1
k U00

kðρ0Þld1;0ð0Þ − 2vdðN − 1ÞkdZ−1
k hZ0

kðρ0Þidþ2
1;0 ð0Þ;

− 2vdkd−2Z−1
k ð3U00

kðρ0Þ þ 2ρ0U000
k ðρ0ÞÞld0;1ðw0Þ − 2vdkdZ−1

k hZ̃0
kðρ0Þidþ2

0;1 ðw0Þ þ U00
kðρ0Þ

d
dt
ρ0; ðD3Þ

d
dt
U00

kðρ0Þ ¼ ∂tU00
kðρ0Þ þU000

k ðρ0Þ
d
dt
ρ0

¼ 2vdðN − 1Þkd−4Z−2
k ðU00

kðρ0ÞÞ2ld2;0ð0Þ þ 2vdkd−4Z−2
k ð3U00

kðρ0Þ þ 2ρ0U000
k ðρ0ÞÞ2ld0;2ðw0Þ

þ 4vdðN − 1Þkd−2Z−2
k U00

kðρ0ÞhZ0
kðρ0Þidþ2

2;0 ð0Þ
þ 4vdkd−2Z−2

k ð3U00
kðρ0Þ þ 2ρ0U000

k ðρ0ÞÞhZ̃0
kðρ0Þidþ2

0;2 ðw0Þ
þ 2vdðN − 1ÞkdZ−2

k hZ0
kðρ0Þ2idþ4

2;0 ð0Þ þ 2vdkdZ−2
k hZ̃0

kðρ0Þ2idþ4
0;2 ðw0Þ

− 2vdðN − 1Þkd−2Z−1
k U000

k ðρ0Þld1;0ð0Þ − 2vdkd−2Z−1
k ð5U000

k ðρ0Þ þ 2ρ0U
ð4Þ
k ðρ0ÞÞld0;1ðw0Þ

− 2vdðN − 1ÞkdZ−1
k hZ00

kðρ0Þidþ2
1;0 ð0Þ − 2vdkdZ−1

k hZ̃00
kðρ0Þidþ2

0;1 ðw0Þ þ U000
k ðρ0Þ

d
dt
ρ0: ðD4Þ

Here we adopted standard notations for the loop integrals

ldn1;n2ðwÞ ¼ −
Zn1þn2
k

2
k2ðn1þn2Þ−d

Z
∞

0

dzz
d
2
−1∂tfPðzÞ−n1ðP̃ðzÞ þ wÞ−n2g; ðD5aÞ

hDkðρ0Þidn1;n2ðwÞ ¼ −
Zn1þn2
k

2
k2ðn1þn2Þ−d

Z
∞

0

dzz
d
2
−1Dkðρ0; zÞ∂tfPðzÞ−n1ðP̃ðzÞ þ wÞ−n2g; ðD5bÞ
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and v−1d ¼ 2ð4πÞd=2Γðd=2Þ. Notice however that our con-
vention for the inverse propagators Pk and P̃k slightly
departs from the most common choice [49], in that we
include the mass parameter m̄2 therein. Furthermore, while
ρ0 is usually chosen as the running minimum of the
potential, such that ρ0 > 0 corresponds to a regime of

spontaneous symmetry breaking, we instead assume that
U0

kðρ0Þ > 0. We can safely choose ρ0 ¼ 0 for our goals, as
no dynamical symmetry breaking is within reach of a two-
loop computation in the present model.
Equations (D3) and (D4) can be rewritten as

ðβm2 − ηm2Þk−2 ¼ λððd − 2þ ηÞκ þ ∂tκÞ − 2vdðN − 1Þðλld1;0ð0Þ þ hz1idþ2
1;0 ð0ÞÞ

− 2vdð3λþ 2κu3Þld0;1ð2λκÞ − 2vdhz̃1idþ2
0;1 ð2λκÞ; ðD6Þ

βλ ¼ ðd − 4þ 2ηÞλþ u3ððd − 2þ ηÞκ þ ∂tκÞ þ 2vdðN − 1Þλ2ld2;0ð0Þ þ 2vdð3λþ 2κu3Þ2ld0;2ð2λκÞ
− 2vdðN − 1Þu3ld1;0ð0Þ − 2vdð5u3 þ 2κu4Þld0;1ð2λκÞ þ 4vdðN − 1Þλhz1idþ2

2;0 ð0Þ
þ 4vdð3λþ 2κu3Þhz̃1idþ2

0;2 ð2λκÞ − 2vdðN − 1Þhz2idþ2
1;0 ð0Þ − 2vdhz̃2idþ2

0;1 ð2λκÞ
þ 2vdðN − 1Þhz21idþ4

2;0 ð0Þ þ 2vdhz̃21idþ4
0;2 ð2λκÞ; ðD7Þ

where η ¼ −∂t logZk is the field anomalous dimension.
As described in the main text, introducing the power
counting of Eq. (6.7), which is generated by the flow
equation itself, into Eqs. (D6) and (D7), and truncating
them to order λ3, result in the simplified perturbative
Eqs. (6.8) and (6.9) for d ¼ 4. In the following we address
the Oðλ3Þ contributions arising on the rhs of Eq. (6.9),
organizing them line by line, as these also correspond to
different kinds of corrections.

1. βm2 contribution

Using the previous pseudoregulator and the one-loop beta
function for m2 the threshold functions can be expanded at
leading order in λ, as in Eq. (6.12). Inserting this into the beta
function (6.9) we get

βλ ¼
N þ 8

16π2
λ2 −

ðN þ 8ÞðN þ 2Þ
2ð16π2Þ2 λ3 þ 2ηλ

−
N − 1

16π2
l41;0ð0Þu3 −

5

16π2
l40;1ð2λκÞu3 þ 2κu3

þ N − 1

8π2
λhz1i62;0ð0Þ þ

3

8π2
λhz̃1i60;2ð2λκÞ

−
N − 1

16π2
hz2i61;0ð0Þ −

1

16π2
hz̃2i60;1ð2λκÞ: ðD8Þ

2. u3 contribution

To evaluate the contribution of the sextic coupling gen-
erated by the flow equation, it is enough to consider a uniform
and field-independent wave function renormalization for all
modes, as in the LPA0; that is, it is safe to set Zkðρ; q2Þ ¼
Z̃kðρ; q2Þ ¼ Zk atorderOðλ3Þ.The flowof thesexticcoupling
can be deduced by taking the third derivative of Eq. (D1)

∂tU000
k ðρÞ ¼ þ4vdðN − 1Þkd−4Z−2

k U00
kðρÞU000

k ðρÞld2;0ð0Þ − 4vdðN − 1Þkd−6Z−3
k ðU00

kðρÞÞ3ld3;0ð0Þ
þ 4vdkd−4Z−2

k ð3U00
kðρÞ þ 2ρU000

k ðρÞÞð5U000
k ðρÞ þ 2ρUð4Þ

k ðρÞÞld0;2ðwÞ
− 4vdkd−6Z−3

k ð3U00
kðρÞ þ 2ρU000

k ðρÞÞ3ld0;3ðwÞ
− 2vdðN − 1Þkd−2Z−1

k Uð4Þ
k ðρÞld1;0ð0Þ þ 2vdðN − 1Þkd−4Z−2

k U000
k ðρÞU00

kðρÞld2;0ð0Þ
− 2vdkd−2Z−1

k ð7Uð4Þ
k ðρÞ þ 2ρUð5Þ

k ðρÞÞld0;1ðwÞ
þ 2vdkd−4Z−2

k ð5U000
k ðρÞ þ 2ρUð4Þ

k ðρÞÞð3U00
kðρÞ þ 2ρU000

k ðρÞÞld0;2ðwÞ ðD9Þ

and evaluating it at ρ ¼ ρ0, such that w → w0. Using the fact that

∂tu3 ¼ ð2d − 6Þu3 þ Z−3
k

�
∂tU000ðρ0Þ þ Uð4Þðρ0Þ

dρ0
dt

�
; ðD10Þ

one deduces
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∂tu3¼ð2d−6Þu3−4vdðNþ26Þλ3ld3;0ð0ÞþOðλ4Þ: ðD11Þ
At one loop and for d ¼ 4, u3 is given by the fixed-point

solution of the previous equation

uð1Þ3 ¼ N þ 26

16π2
λ3k2Z3

k

Z
∞

0

dz
z
P3

: ðD12Þ

By evaluating the momentum integral with the previous
pseudoregulator we find an expression which is finite in the
ϵ → 0 limit, namely Eq. (6.13) in the main text. Now let us
compute κ at one loop, by looking for a scaling solution for
it, i.e., by solving ∂tκ ¼ 0, which gives

βm2k−2 ¼ λðd − 2Þκ − 2vdðN − 1Þld1;0ð0Þλ
− 2vdð3λþ 2κu3Þld0;1ð2λκÞ: ðD13Þ

Specifying d ¼ 4 and using the previous identities we get

N þ 2

16π2
λm2k−2 ¼ 2λκ þ ðN − 1Þ

16π2
m2k−2λ

þ 1

16π2
3λm2k−2 þOðλ2Þ: ðD14Þ

So as anticipated in the main text, κ ¼ OðλÞ and as such
would not affect the Oðλ3Þ of βλ. Inserting this result for u3
into the beta function (D8) we obtain

βλ ¼
Nþ8

16π2
λ2þ2ð5Nþ22Þ

ð16π2Þ2 λ3

þN−1

8π2
λhz1i62;0ð0Þþ

3

8π2
λhz̃1i60;2ð2λκÞ

−
N−1

16π2
hz2i61;0ð0Þ−

1

16π2
hz̃2i60;1ð2λκÞþ2ηλ: ðD15Þ

3. Wave function renormalization contribution

Recalling that κ and Zk can be neglected in the third line
of Eq. (6.9), as they would give higher order corrections,
the wave function renormalization contribution is encoded
in the following averages

hz1i62;0ð0Þ¼16π2
Z

d4p
ð2πÞ4p

2Z0
kð0;p2Þ∂tRkðp2Þ

Pðp2Þ3 ; ðD16aÞ

hz2i61;0ð0Þ¼ 8π2
Z

d4p
ð2πÞ4p

2Z00
kð0;p2Þ∂tRkðp2Þ

Pðp2Þ2 ; ðD16bÞ

and similar relations for z̃1 and z̃2. Here we should input the
momentum dependence of the wave function renormaliza-
tion as generated at one loop, that is

Z0
kðρ0; p2Þ ¼ −4λ2

Ikðp2Þ
p2

; ðD17aÞ

Z̃0
kðρ0; p2Þ ¼ −2ðN þ 8Þλ2 Ikðp

2Þ
p2

; ðD17bÞ

Z00
kðρ0; p2Þ ¼ 32λ3

Jkðp2Þ
p2

; ðD17cÞ

Z̃00
kðρ0; p2Þ ¼ 8ðN þ 26Þλ3 Jkðp

2Þ
p2

; ðD17dÞ

where Ik and Jk are the following one-loop integrals

Ikðp2Þ¼1

2

Z
d4q
ð2πÞ4

1

PkðqÞ
�

1

PkðqþpÞ−
1

PkðqÞ
�
; ðD18aÞ

Jkðp2Þ¼1

2

Z
d4q
ð2πÞ4

1

PkðqÞ2
�

1

PkðqþpÞ−
1

PkðqÞ
�
: ðD18bÞ

Nesting these expressions leads to Eq. (6.11), where the
averages of z1, z̃1 and z2, z̃2 are, respectively, proportional
to the dimensionless two-loop integrals

A ¼ 1

2

Z
d4p
ð2πÞ4 Ikðp

2Þ ∂tRkðpÞ
PkðpÞ3

; ðD19aÞ

B ¼ 1

2

Z
d4p
ð2πÞ4 Jkðp

2Þ ∂tRkðpÞ
PkðpÞ2

: ðD19bÞ

We first compute Ikðp2Þ with the pseudoregulator (6.11):

Ikðp2; ϵÞ ¼ 1

2

Z
d4q
ð2πÞ4

1

PkðqÞ
�

1

Pkðqþ pÞ −
1

PkðqÞ
�
;

¼ 1

2

�
μ2m2

k2

�
2ϵ Z d4q

ð2πÞ4
1

ðq2 þm2Þ1þϵððqþ pÞ2 þm2Þ1þϵ − ðp → 0Þ;

¼ 1

2

�
μ2m2

k2

�
2ϵ Γð2þ 2ϵÞ
Γð1þ ϵÞ2

Z
d4q
ð2πÞ4

Z
1

0

dx
xϵð1 − xÞϵ

ðxq2 þ ð1 − xÞðqþ pÞ2 þm2Þ2þ2ϵ − ðp → 0Þ;

¼ 1

2

�
μ2m2

k2

�
2ϵ Γð2þ 2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dx
Z

d4q
ð2πÞ4

xϵð1 − xÞϵ
ðq2 þ xð1 − xÞp2 þm2Þ2þ2ϵ − ðp → 0Þ;

¼ 1

32π2

�
μ2

k2

�
2ϵ Γð2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dxxϵð1 − xÞϵ
�
1þ xð1 − xÞ p

2

m2

�−2ϵ
− ðp → 0Þ: ðD20Þ
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Taking the limit for ϵ → 0 results in the following finite expression

Ikðp2Þ ¼ −
1

32π2

Z
1

0

dx log

�
1þ xð1 − xÞ p

2

m2

�
¼ 1

16π2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ p2

p2

s
atanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

4m2 þ p2

s !#
: ðD21Þ

We can then insert this result in the expression (D19) for the A coefficient

A ¼ ϵ

�
μ2m2

k2

�
2ϵ Z d4p

ð2πÞ4
Ikðp2; ϵÞ

ðp2 þm2Þ2þ2ϵ ;

¼ ϵ

ð16π2Þ2
�
μ2m2

k2

�
4ϵ Γð2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dxxϵð1 − xÞϵ
Z

∞

0

dpp3
ðm2 þ xð1 − xÞp2Þ−2ϵ

ðp2 þm2Þ2þ2ϵ

−
ϵ

ð16π2Þ2
�
μ2m2

k2

�
4ϵ Γð2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dxxϵð1 − xÞϵ
Z

∞

0

dpp3
m−4ϵ

ðp2 þm2Þ2þ2ϵ ;

¼ ϵ

ð16π2Þ2
�
μ2

k2

�
4ϵ Γð2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dxxϵð1 − xÞϵ 1

4ð1 − xð1 − xÞÞ

×
� ffiffiffi

π
p

16ϵΓð2ϵþ 1
2
Þðð1 − xÞxÞ2ϵð1þ 2ϵ − ð1 − xÞxð1 − 2ϵÞÞ

sinð2πϵÞΓð2ϵþ 2Þðð1 − xÞx − 1Þ4ϵ

−
2ð1 − ϵÞxð1 − xÞ þ ð1þ 2ϵ − ð1 − xÞxð1 − 2ϵÞÞ2F1ð1; 2þ 2ϵ; 3 − 2ϵ; 1

x−x2Þ
ð1 − xÞ2x2ð1 − 2ϵÞð1 − ϵÞ

�

−
ϵ

ð16π2Þ2
�
μ2

k2

�
4ϵ Γð2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dxxϵð1 − xÞϵ 1

4ϵð1þ 2ϵÞ : ðD22Þ

If we first expand the integrand around ϵ ¼ 0 and then perform the integral over x we find

A ¼ 1

ð16π2Þ2
�
−

1

16ϵ
þ 3 − 2 logðμ2k2Þ

8
þOðϵÞ

�
: ðD23Þ

Notice that the coefficient of the pole is equal to one fourth of the coefficient in front of logðμ2k2Þ.
To demonstrate that the ϵ → 0 limit and the x integration do commute, let us compute the two also in the opposite order.

Thus, we first perform the integral over x and then take ϵ → 0. For notational convenience we split A in four different terms

A ¼ a1 þ a2 þ a3 þ a4; ðD24Þ

where we define

a1 ¼
1

ð16π2Þ2
�
μ2

k2

�
4ϵ ϵΓð−1þ 2ϵÞ

2Γðϵþ 1Þ2
Z

1

0

dx
ðð1 − xÞxÞϵ−1
ð1þ xð1 − xÞÞ ; ðD25aÞ

a2 ¼ −
1

ð16π2Þ2
�
μ2

k2

�
4ϵ

ffiffiffi
π

p
24ϵ−3Γð1

2
þ 2ϵÞ

sinð2πϵÞð2ϵþ 1ÞΓðϵþ 1Þ2
Z

1

0

dx
ðð1 − xÞxÞ3ϵð1þ 2ϵ − xð1 − xÞð1 − 2ϵÞÞ

ð−1þ xð1 − xÞÞ1þ4ϵ ; ðD25bÞ

a3 ¼ −
1

ð16π2Þ2
�
μ2

k2

�
4ϵ πϵ

2 sinð2πϵÞΓð3 − 2ϵÞΓðϵþ 1Þ2

×
Z

1

0

dx
ðð1 − xÞxÞϵð1þ 2ϵ − ð1 − xÞxð1 − 2ϵÞÞ2F1ð1; 2ðϵþ 1Þ; 3 − 2ϵ; 1

x−x2Þ
x2ð1 − xÞ2ð1 − xð1 − xÞÞ ; ðD25cÞ

a4 ¼ −
1

ð16π2Þ2
�
μ2

k2

�
4ϵ 1

8ϵð1þ 2ϵÞ2 : ðD25dÞ
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By performing the integrals over x and then expanding them around ϵ ¼ 0 they become

a1 ¼
1

ð16π2Þ2
�
−

1

2ϵ
− 1 −

π
ffiffiffi
3

p

18
− 2 log

�
μ2

k2

�
þOðϵÞ

�
; ðD26aÞ

a2 ¼
1

ð16π2Þ2
�
1

16ϵ
−
1

8
−

π

36
ð
ffiffiffi
3

p
þ 9iÞ þ 1

4
log

�
μ2

k2

�
þOðϵÞ

�
; ðD26bÞ

a3 ¼
1

ð16π2Þ2
�
1

2ϵ
þ 1þ π

12
ð
ffiffiffi
3

p
þ 3iÞ þ 2 log

�
μ2

k2

�
þOðϵÞ

�
; ðD26cÞ

a4 ¼
1

ð16π2Þ2
�
−

1

8ϵ
þ 1

2
−
1

2
log

�
μ2

k2

�
þOðϵÞ

�
: ðD26dÞ

Combining these results we recover Eq. (D23).
Then we turn to the computation of Jkðp2Þ

Jkðp2; ϵÞ ¼ 1

2

Z
d4q
ð2πÞ4

1

PkðqÞ2
�

1

Pkðqþ pÞ −
1

PkðqÞ
�
;

¼ 1

2

�
μ2m2

k2

�
3ϵ Z d4q

ð2πÞ4
1

ðq2 þm2Þ2þ2ϵððqþ pÞ2 þm2Þ1þϵ − ðp → 0Þ;

¼ 1

2

�
μ2m2

k2

�
2ϵ Γð3þ 3ϵÞ
Γð1þ ϵÞΓð2þ 2ϵÞ

Z
d4q
ð2πÞ4

Z
1

0

dx
x2ϵþ1ð1 − xÞϵ

ðxq2 þ ð1 − xÞðqþ pÞ2 þm2Þ3þ3ϵ − ðp → 0Þ;

¼ 1

2

�
μ2m2

k2

�
3ϵ Γð3þ 3ϵÞ
Γð1þ ϵÞΓð2þ 2ϵÞ

Z
1

0

dx
Z

d4q
ð2πÞ4

x2ϵþ1ð1 − xÞϵ
ðq2 þ xð1 − xÞp2 þm2Þ3þ3ϵ − ðp → 0Þ;

¼ 1

32π2m2

�
μ2

k2

�
3ϵ Γð1þ 3ϵÞ
Γð1þ ϵÞΓð1þ 2ϵÞ

Z
1

0

dx
x2ϵþ1ð1 − xÞϵ

ð1þ xð1 − xÞ p2

m2Þ1þ3ϵ
− ðp → 0Þ: ðD27Þ

Taking the limit ϵ → 0 we again find a finite one-loop result

Jkðp2Þ ¼ 1

32π2

Z
1

0

dx

�
x

xð1 − xÞp2 þm2
−

x
m2

�
;

¼ 1

64π2m2

�
2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2ð4m2 þ p2Þ
p log

�
1þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð4m2 þ p2Þ

p
þ p2Þ

2m2

�
− 1

�
; ðD28Þ

which enters the computation of the B coefficient through Eq. (D19b). The latter proceeds along the same lines as for A.
Namely, we exchange again the p and the x integrals

B ¼ ϵ

�
μ2m2

k2

�
ϵ Z d4p

ð2πÞ4
Jkðp2; ϵÞ

ðp2 þm2Þ1þϵ ;

¼ ϵ

ð16π2Þ2
�
μ2m2

k2

�
4ϵ Γð1þ 3ϵÞ
Γð1þ ϵÞΓð1þ 2ϵÞ

Z
1

0

dxx2ϵþ1ð1 − xÞϵ
Z

∞

0

dpp3
ðm2 þ xð1 − xÞp2Þ−1−3ϵ

ðp2 þm2Þ1þϵ

−
ϵ

ð16π2Þ2
�
μ2m2

k2

�
4ϵ Γð1þ 3ϵÞ
Γð1þ ϵÞΓð1þ 2ϵÞ

Z
1

0

dxx2ϵþ1ð1 − xÞϵ
Z

∞

0

dpp3
m−2ð1þ3ϵÞ

ðp2 þm2Þ1þϵ ;

¼ ϵ

ð16π2Þ2
�
μ2

k2

�
4ϵ Γð1þ 3ϵÞ
Γð1þ ϵÞΓð1þ 2ϵÞ

Z
1

0

dxx2ϵþ1ð1 − xÞϵ 1

6ϵð1 − 3ϵÞx2ð1 − xÞ2

×

�
−

πϵΓð4ϵÞxð1 − xÞð1þ 3xð1 − xÞÞð1 − 1
xð1−xÞÞ−ϵ

sinð3πϵÞΓð1þ ϵÞΓð−1þ 3ϵÞðxð1 − xÞ − 1Þ1þ3ϵ

þ ð1 − 3ϵÞxð1 − xÞ þ ϵð1þ 3xð1 − xÞÞ2F1½1; 1þ ϵ; 2 − 3ϵ; 1
x−x2�

1 − ð1 − xÞx
�

−
ϵ

ð16π2Þ2
�
μ2

k2

�
4ϵ Γð1þ 3ϵÞ
Γð1þ ϵÞΓð1þ 2ϵÞ

Z
1

0

dxx2ϵþ1ð1 − xÞϵ 1

2ðϵ − 1Þϵ : ðD29Þ
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This time however we are not allowed to take the ϵ → 0 limit before computing the x integral. In fact, this would result in the
wrong answer

B ¼ 1

ð16π2Þ2
Z

1

0

dx

�
1

8ð1 − xÞ þ
x
2

�
: ðD30Þ

In other words, the integral over x does not commute with the ϵ → 0 limit, and the latter must be taken as the last step of the
computation. To perform the integral over x of the ϵ-dependent expressions, we split also B in four different contributions

B ¼ b1 þ b2 þ b3 þ b4; ðD31aÞ

b1 ¼
1

ð16π2Þ2
�
μ2

k2

�
4ϵ πΓð4ϵÞ
2 sinð3πϵÞΓðϵÞ2Γð2ϵþ 2Þ

Z
1

0

dx
ð1þ 3xð1 − xÞÞð1 − xÞ2ϵ−1x3ϵ

ðxð1 − xÞ − 1Þ1þ4ϵ ; ðD31bÞ

b2 ¼
1

ð16π2Þ2
�
μ2

k2

�
4ϵ Γð3ϵÞ
2ΓðϵÞΓð2ϵþ 2Þ

Z
1

0

dx
ð1 − xÞϵ−1x2ϵ
ð1 − xð1 − xÞÞ ; ðD31cÞ

b3 ¼
1

ð16π2Þ2
�
μ2

k2

�
4ϵ πϵ

2 sinð3πϵÞΓð2 − 3ϵÞΓðϵÞΓð2ϵþ 2Þ

×
Z

1

0

dx
ð1þ 3xð1 − xÞÞð1 − xÞ−2þϵx2ϵ−12F1ð1; ϵþ 1; 2 − 3ϵ; 1

x−x2Þ
ð1 − xð1 − xÞÞ ; ðD31dÞ

b4 ¼
1

ð16π2Þ2
�
μ2

k2

�
4ϵ ð1þ 2ϵÞ
2ð1 − ϵÞð2þ 3ϵÞð1þ 3ϵÞ : ðD31eÞ

Now we compute the integrals over x and then expand around ϵ ¼ 0, obtaining

b1 ¼
1

ð16π2Þ2
�
−

1

48ϵ
þ 9þ 18iπ − 4

ffiffiffi
3

p
π − 18 logðμ2k2Þ

216
þOðϵÞ

�
; ðD32aÞ

b2 ¼
1

ð16π2Þ2
�
1

6ϵ
þ−18þ ffiffiffi

3
p

π þ 36 logðμ2k2Þ
54

þOðϵÞ
�
; ðD32bÞ

b3 ¼
1

ð16π2Þ2
�
−

1

12ϵ
þ 18 − 9iπ − 36 logðμ2k2Þ

108
þOðϵÞ

�
; ðD32cÞ

b4 ¼
1

4ð16π2Þ2 þOðϵÞ: ðD32dÞ

The sum of these terms leads to the result

B ¼ 1

ð16π2Þ2
�
1

16ϵ
þ 1þ 2 logðμ2k2Þ

8
þOðϵÞ

�
: ðD33Þ

Also in this case the coefficient of the pole is equal to one fourth of the coefficient in front of logðμ2k2Þ. As a consequence, the
sum Aþ Bwhich determines the wave function renormalization contribution to the two-loop beta function is finite, as given
in Eq. (6.15), and the third line of Eq. (6.9) evaluates to
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N − 1

8π2
λhz1i62;0ð0Þ þ

3

8π2
λhz̃1i60;2ð2λκÞ

−
N − 1

16π2
hz2i61;0ð0Þ −

1

16π2
hz̃2i60;1ð2λκÞ

¼ −8ð5N þ 22ÞðAþ BÞλ3 ¼ −
4ð5N þ 22Þ
ð16π2Þ2 λ3: ðD34Þ

4. Anomalous dimension contribution

Within the truncation accounting for a field dependent
wave function renormalization, we define the anomalous
dimension as

η ¼ −
d
dt
logZkðρ0Þ;

¼ −Z−1
k ðρ0Þ∂tZkðρ0Þ − Zkðρ0Þ−1Z0

kðρ0Þ
d
dt
ρ0: ðD35Þ

Possible differences between this definition and a similar
one based on Z̃kðρ0Þ are beyond the Oðλ2Þ we are after.
Also, the second term on the rhs of Eq. (D35) would not
contribute at this perturbative order. Hence, the relevant
term which can be deduced from the exact flow equation is

∂tZkðρ0Þ ¼
1

2
lim
Q2→0

∂
∂Q2

δ2

δϕðQÞδϕð−QÞTrf∂tRkðqÞ½Γð2Þ
k ðqÞ þ RkðqÞ�−1gjρ0 ;

¼ 1

2
lim
Q2→0

∂
∂Q2

Trf∂tRkðqÞðΓð2Þ
k ðqÞ þ RkðqÞÞ−1½−Γð4Þ

k ðQ;−Q; q;−qÞðΓð2Þ
k ðqÞ þ RkðqÞÞ−1

þ2Γð3Þ
k ðQ; q;−q −QÞðΓð2Þ

k ðqÞ þ RkðqÞÞ−1Γð3Þ
k ð−Q; qþQ;−qÞðΓð2Þ

k ðqÞ þ RkðqÞÞ−1�gjρ0 : ðD36Þ

As described in the main text we have that the anomalous dimension is given by the sum of two terms, ηð1Þ and ηð2Þ: the
first one is the contribution at zero momentum, while in the second one is the momentum contribution.
The flow equation which encodes ηð1Þ is the one within the Oð∂2Þ derivative expansion, that is:

∂tZkðρÞ ¼ −2vdkd−2Z−1
k f½ðN − 1ÞZ0

kðρÞ þ YkðρÞ�ld1;0ð0Þ þ ½Z0
kðρÞ þ 2ρZ00

kðρÞ�ld0;1ðwÞg
þ 4vdkd−6ρðU00

kðρÞÞ2Qd;0
2;1ðwÞ þ 4vdkd−4ρYkðρÞU00

kðρÞQd;1
2;1ðwÞ

þ vdkd−2ρðYkðρÞÞ2Qd;2
2;1ðwÞ þ 16vdkd−4Z−2

k ρZ0
kðρÞU00

kðρÞld1;1ðwÞ

þ 8vd
d

kd−2Z−2
k ρðZ0

kðρÞÞ2ldþ2
1;1 ðwÞ þ 8vdkd−2Z−2

k ρZ0
kðρÞYkðρÞldþ2

1;1 ðwÞ

þ 16vd
d

kd−4ρZ0
kðρÞU00

kðρÞNd
2;1ðwÞ þ

8vd
d

kd−2ρZ0
kðρÞYkðρÞNdþ2

2;1 ðwÞ: ðD37Þ

Following Ref. [49] we define the threshold functions

Nd
n1;n2ðwÞ ¼ k2ðn1þn2−1Þ−d

Z
∞

0

dzz
d
2∂tf _PP−n1ðP̃þ wÞ−n2g; ðD38aÞ

Qd;α
n1;n2ðwÞ ¼ k2ðn1þn2−αÞ−d

Z
∞

0

dzz
d
2
−1þα∂t

��
_Pþ 2z

d
P̈ −

4z
d
P−1 _P2

�
P−n1ðP̃þ wÞ−n2

	
; ðD38bÞ

Md
n1;n2ðwÞ ¼ k2ðn1þn2−1Þ−d

Z
∞

0

dzz
d
2∂tf _P2P−n1ðP̃þ wÞ−n2g: ðD38cÞ

These quantities are related in the following way

Qd;α
n1;n2ðwÞ ¼

2n1 − 4

d
Mdþ2α

n1þ1;n2
ðwÞ þ 2n2

d
Mdþ2α

n1;n2þ1ðwÞ þ
2n2
d

ρYkðρÞNdþ2α
n1;n2þ1ðwÞ −

2α

d
Ndþ2α−2

n1;n2 ðwÞ: ðD39Þ

Taking ρ → ρ0 and w → w0 in Eq. (D37) we get the simplified expression

∂tZkðρ0Þ ¼
8

d
vdkd−6λ̄2ρ0Md

4;0ð0Þ − 2vdkd−2Z−1
k ðNZ0

kðρ0; 0Þ þ Ykðρ0; 0ÞÞld1;0ð0Þ; ðD40Þ
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which in d ¼ 4 can be rewritten

ηð1Þ ¼ 1

8π2
m4

4κλ
2 þ Z−2

k k2

16π2
l41;0ð0Þ½ðN − 1ÞZ0

kðρ0; 0Þ þ Z̃0
kðρ0; 0Þ� − Z−1

k Z0
kðρ0; 0Þ

d
dt
ρ0; ðD41Þ

md
n ¼ −

Zn−2
k

2
Md

n;0ð0Þ: ðD42Þ

As at the present order and with our pseudoregulator both κ and m4
4 vanish, we are left with Eq. (6.18). On the other hand,

the derivative couplings generated at one loop are

Z0
kðρ0; 0Þ ¼ −4λ2Z4

k lim
p2→0

Ikðp2Þ
p2

¼ 1

3ð16π2ÞZ
2
km

−2λ2; ðD43aÞ

Z̃0
kðρ0; 0Þ ¼ −2ðN þ 8Þλ2Z4

k lim
p2→0

Ikðp2Þ
p2

¼ ðN þ 8Þ
6ð16π2Þ Z

2
km

−2λ2; ðD43bÞ

which leads to Eq. (6.19). Nesting the latter in Eq. (6.18) results in the final expression (6.20) for ηð1Þ.
We then turn to the momentum dependent contribution. As in Ref. [49] we define the latter by subtracting the momentum

independent part from the four-point vertex:

ΔkðQ;−Q; q;−qÞ ¼ Γð4Þ
k ðQ;−Q; q;−qÞ − Γð4Þ

k ð0; 0; q;−qÞ − Γð4Þ
k ðQ;−Q; 0; 0Þ − Γð4Þ

k ð0; 0; 0; 0Þ;

¼ −λ2diagð2; N þ 8; 2…2
zffl}|ffl{N−2

Þ 1
2

Z
d4p
ð2πÞ4 P

−1ðpÞ½2P−1ðpÞ þ P−1ðp −Q − qÞ

þP−1ðp −Qþ qÞ − 2P−1ðpþQÞ − 2P−1ðpþ qÞ�: ðD44Þ

For a ϕ4 theory at one loop

lim
Q2→0

∂
∂Q2

ΔkðQ;−Q;q;−qÞ¼−λ2diagð2;Nþ8; 2…2
zffl}|ffl{N−2

Þ

×
1

2
lim
Q2→0

∂
∂Q2

Z
d4p
ð2πÞ4P

−1ðpÞ½P−1ðp−Q−qÞþP−1ðp−QþqÞ−2P−1ðpþQÞ�: ðD45Þ

To evaluate this expression it is convenient to define

Hðp2; Q2Þ ¼ P−1ðpÞP−1ðpþQÞ ¼
�
μ2m2

k2

�
2ϵ Γð2þ 2ϵÞ
Γð1þ ϵÞ2

Z
1

0

dx
xϵð1 − xÞϵ

ðp2 þ xð1 − xÞQ2 þm2Þ2þ2ϵ : ðD46Þ

We then need to expand the following function for small Q

Hðp2; ðQ� qÞ2Þ ¼ Hðq2Þ þ ðQ2 � 2Q · qÞH0ðq2Þ þ 2ðQ · qÞ2H00ðq2Þ þOðQ3Þ

⨎qHðq2Þ þQ2H0ðq2Þ þ 1

2
Q2q2H00ðq2Þ þOðQ4Þ; ðD47Þ

where the second equal sign denotes equivalence upon integration over q ∈ R4, and primes denote derivatives with respect
to q2. The anomalous dimension involves the trace of the four-point vertex, which then reads

Tr lim
Q2→0

∂
∂Q2

ΔkðQ;−Q; q;−qÞ⨎q2 − 3ðN þ 2Þλ2
Z

d4p
ð2πÞ4

�
H0ðp2; q2Þ þ 1

2
q2H00ðp2; q2Þ −H0ðp2; 0Þ

�
: ðD48Þ
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This one-loop expression for the momentum dependence of
the four-point vertex is to be nested in the momentum
dependent part of Eq. (D36), thus obtaining

ηð2Þ ¼ 1

2

Z
d4q
ð2πÞ4

∂tRkðqÞ
PðqÞ2 Tr lim

Q2→0

∂
∂Q2

ΔkðQ;−Q; q;−qÞ:

ðD49Þ

For our pseudoregulator, we can specify all the terms in
the integrand according to Eqs. (C3) and (D46). Taking the
limit for ϵ → 0 after all integrals have been performed, we
find the result of Eq. (6.21).

5. Two-loop flow of m2

In this Appendix we show that also the two-loop beta
function of the mass can be obtained as the ϵ → 0 limit of
the corresponding FRG equation. We start from Eq. (D6),
and neglect higher-loop contributions, e.g., by inserting
κ ¼ 0, thus obtaining the simplified result:

βm2 − ηm2 ¼ −
k2

16π2
½ðN þ 2Þλl41;0ð0Þ

þðN − 1Þhz1i61;0ð0Þ þ hz̃1i60;1ð0Þ�: ðD50Þ

The contribution of the one-loop wave function renormal-
ization is similar to the one discussed in the previous
section

hz1i61;0ð0Þ ¼ 8π2k−2
Z

d4p
ð2πÞ4 p

2Z0
kð0; p2Þ ∂tRkðp2Þ

Pðp2Þ2 ;

ðD51aÞ

hz̃1i60;1ð0Þ ¼ 8π2k−2
Z

d4p
ð2πÞ4 p

2Z̃0
kð0; p2Þ ∂tRkðp2Þ

Pðp2Þ2 ;

ðD51bÞ

where Z0
k and Z̃

0
k are given in Eqs. (D17a) and (D17b). Then

the two-loop contributions arise by replacing in Eq. (D50)
the following expressions

l41;0ð0Þ ¼ −
m2

k2
þ ð1þ 2f1Þ

βm2

4k2
; ðD52Þ

ðN − 1Þhz1i61;0ð0Þ þ hz̃1i60;1ð0Þ ¼ ðN þ 2Þ ð9−
ffiffiffi
3

p
πÞ

8π2
m2

k2
λ2;

ðD53Þ

η ¼ ðN þ 2Þ
2ð16π2Þ2 λ

2; ðD54Þ

where f1 is a free regularization parameter as described in
Appendix C. The combination of these corrections gives
Eq. (6.24), from which it is apparent that the unique choice

f1 ¼ −
1

2
þ 4

ffiffiffi
3

p
π − 30

N þ 2
ðD55Þ

produces the MS two-loop result

∂t logm2 ¼ ðN þ 2Þ
16π2

λ −
5ðN þ 2Þ
2ð16π2Þ2 λ

2: ðD56Þ
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