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Abstract

My thesis argues that memory resembles navigation by fragments, as proposed in

[1]. To relate to it, imagine you are in Paris and you already know quite well the

neighbourhood of where you are staying. Now, it is easy to get to the Eiffel Tower:

you may need some help with an overall direction, but once you follow it, it does

not really matter how exactly, very soon you will see the Tower and you will find

your way to it. When you get closer you will remember the immediate surroundings

of the Tower and how to find the nearest coffee place. Similarly from there you

can get to Notre Dame: now you may just follow the river, it is one-way and you

may only remember just a couple of spots along the way, but near the Cathedral

you recognize every pigeon. Here the remembered fragments are the two landmarks,

their neighbourhood and the river, to some extent. Keep this in mind.

I prepared a guided tour for you, where the fragments I learned to navigate

through are memory phenomena that can be studied from a point of view of navi-

gation by fragments. Pick a sustainable vehicle, I suggest a sailing boat as it must

have the right speed, or you may imagine this trip as cycling uphill (as I certainly

felt it), and follow my thoughts.

We start with the hippocampus and its relation to memory and navigation. We

discuss how the discovery of spatially selective cells there led to study memory

systems in our brain as attractor neural networks, what fragmentary knowledge

about the representation of space could be learnt from the hippocampus and the

open questions that remain.

Just across a bridge, in Chapter 2, we will attempt to answer some of those
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Fragmentary Understanding of Memory

questions, studying a mathematical model of an attractor neural network in CA3.

We will expand our knowledge about the quasi-continuous maps our model forms

for multiple sample environments, their storage and their usage. We will argue that

CA3 network storage can in fact be thought of as a fragment assembly.

We must take a series of one-way turns to reach some understanding of how

human recall relates to virtual rat navigation, but I will be your guide. In chapters

3 and 4 we will discuss, using free recall as a model example, how human memory,

too, can be thought of as navigation by fragments. We will present a series of exper-

iments and simulations of a Potts network that together point at the semi-random

nature of human recall. We suggest that when given a plain environment to learn –

a hexagonal grid on a screen, as an empty box for a rat in a lab, human participants

tend to memorize locations on the screen by ‘seeing’ there various familiar frag-

ments. And the more restrictive the memorization task is, the least they can reach

these attractive patterns. We will discuss how common biases and unanimity across

participants in fragment activation can be predictive of human recall capacity.

Finally, we will briefly visit Milan of Mind Wandering and Rome of Remembering

Poetry. We will argue that, despite being seemingly (and luckily) far from each

other, both of these places-processes have in common their functional reliance on

fragmentary schemata. First, we will propose an experiment that aims at quantifying

the effect of recently acquired episodic schemata on mind wandering in participants

with a lesion to vmPFC and in their healthy controls. Separately, we will suggest

a mechanism of selective involvement of poetic meter variables as schemata helping

remember non-words in non-poems.

In the end we will gather to review the pictures from the journey and discuss

the takeaways. Let’s go!
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Chapter 1

Introduction

1.1 Spatially selective cells

First to have been discovered of spatially selective cells, place cells are operationally

defined by the characteristic firing behavior these neurons show when the animal

explores a typical laboratory environment, usually a one-dimensional path of various

shapes or a two-dimensional, flat, empty recording box. They can be found in

different areas of the hippocampal division, a region of the brain identified to be

crucial not only for spatial cognition but also for episodic memory. Their discovery,

in the early 70’s for place cells [2] and in 2005 for grid cells [3] led to the Nobel Prize

in 2014. Let us take first a brief look at the anatomy and at the firing properties of

these cells.

1.1.1 Main anatomical traits

Place and grid cells have been discovered in the hippocampal system, a brain region

situated in the medial temporal lobe. The hippocampal system can be subdivided

in several areas, and first in two main regions, the hippocampal formation and the

parahippocampal region [4], which can be differentiated by their gross cytoarchi-

tectonic organization. The hippocampal system is highly similar in different mam-

malian species; here we give a short overview focusing on rodents.

9



Fragmentary Understanding of Memory

The hippocampal formation – with place cells: The hippocampus proper,

or cornu ammonis (CA) has pyramidal principal cells in one layer -– a cortical

structure called allocortex – and is further subdivided in a sequence of three areas,

CA1, CA2 and CA3, with remarkably distinct connectivity between them. It is

flanked on the input end by the dentate gyrus, or DG, which evolves out of the same

type of cortex but with small granule cells instead of pyramidal cells, and on the

output end by the subicular complex, which, in as many as 5 internal subdivisions

[5], links the hippocampus to the adjacent multi–layer cortex. Place fields have been

found throughout the hippocampal formation and have been studied especially in

CA1 and CA3. For a long time, in fact, it was puzzling how place cells in the two

subfields looked so similar, apart from minor statistical differences, when, instead

the circuitry is so different: CA3 is dominated by recurrent connections (RC), unlike

CA1, and the main afferent connections to CA3 are from the DG granule cells and

from Entorhinal Cortex layer II (these connections are referred to as perforant path

or PP), unlike those to CA1 which are from EC layer III and from CA3 itself (see

Fig. 1.1).

Figure 1.1: Schematic representation of the connectivity between three main regions
of the hippocampus: DG, CA3 and CA1.

The parahippocampal region – also with grid cells: The parahippocam-

pal region is characterized in part as periallocortex, to emphasize its transitional

nature to fully neocortical structure with multiple layers of principal cells. It is

formed by the entorhinal, perirhinal, postrhinal cortices and by the components
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of the subicular complex, that some prefer to view separately from the subiculum

proper. The medial subdivision of the entorhinal cortex (mEC) has risen to partic-

ular prominence after the discovery of grid cells, somewhat obscuring the fact that

most of its principal cells do not conform to the grid cell stereotype even in standard

laboratory settings, nor do those of the other parahippocampal areas. At the system

level, perirhinal cortex makes afferent connections to lateral EC that do not appear

to convey fine spatial information, unlike the connections from postrhinal cortex to

mEC. Grid cells emerge, in this perspective, as one form of refinement of spatial

information before it is merged with nonspatial information in the hippocampus,

where both lEC and mEC project, and largely transformed into a place cell code,

at least in rodents.

The entorhino-hippocampal circuitry: Principal cells from EC layer II

reach DG and CA3, while principal cells from EC layer III reach CA1. Internally in

the hippocampus, activation propagates in a sort of one-directional loop, with recur-

rence (in CA3) and shortcuts. DG granule cells project their so-called mossy fibers

to CA3, where they make sparse but powerful synapses on the apical dendrites close

to the cell body of CA3 pyramidal cells. Since the same CA3 cells receive many

more (but weaker) synapses on their distal apical dendrites from the same fibers

originating in EC layer II that, en passant, connect to the granule cells, a major rid-

dle has been to understand this apparent duplication of the information arriving to

CA3, directly and, as it were, translated by the DG. A more recent question involves

CA2, which had long been regarded merely as a small transition region between CA3

and CA1; recent evidence on a potentially important role in social cognition [6] has

been accompanied by the observation of CA3-like anatomical features in CA2, such

as prominent recurrent collaterals [7] and the formation, perhaps in pathological

conditions, of mossy synapses [8]. Feedforward connections from CA3 to CA1 (the

Schaffer collaterals) and from CA1 to subiculum are also intriguingly combined, in

what may be called a heteroassociative architecture, with EC layer III inputs to

these two regions. Fibers then project back from CA1 and subiculum to EC layers
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V and VI.

1.1.2 Single cell selectivity

When considering spatial cognition, cells in the hippocampal division have been first

characterized, mainly in rodents, through their individual selectivity, by looking

at the firing rate map of each cell. In such a map, the spike events are plotted

in a drawing representing the environment in which the animal is moving, at the

position of the head of the animal when each spike occurred. Spikes clustered in

a specific region form a field. The number of spikes occurring in each spatial bin

is typically divided by the time spent in that bin, and the map is then regularized

to look smoother. A common trait to the various types of cells listed below is that

the localization of their fields appears unrelated to the position of each cell in the

tissue, and neighboring cells do not necessarily show overlapping firing fields in the

environment. The main types are:

• Place cells: Originally discovered half a century ago [2], their activity is

peaked at one or a few positions in space in the typical environments in which

rodents are made to run in the laboratory. In one-dimensional environments,

such as circular paths, n-arm mazes or linear tracks, place fields seem to be

directional, i.e. there occurs remapping of place cell activity when the animal

is running in one direction with respect to the other direction [9] (although

on a ring there seems to be only rate remapping [10]). On two-dimensional

environments they tend to be, or to become, non-directional. Place cells have

been most extensively described in CA3 and in CA1, where it is estimated

that between a quarter and a half of all pyramidal cells show at least one place

field in a typical 1 m2 box. Place activity, like other types of selective spiking,

is typically modulated by the speed of the animal.

• Head Direction cells: First reported in 1984 [11], HD cell activity depends

on the direction of the head of the animal, which on average tends to coincide
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with, but is quite distinct from, its direction of motion. They are found in a

variety of areas, especially in the parasubiculum and in the EC.

• Grid cells: A startling discovery [3], their activity is peaked, ideally, at the

vertices of a hexagonal lattice, spacing from a few tens of centimiters upwards,

giving rise, in a typical two-dimensional box, to several grid fields per cell.

The spacing and orientation of the lattice appear to be shared by neighbor-

ing cells, but not the position of their fields. Whereas in EC layer II grid

activity is characterized as a-directional (but see [12]), in deeper layers of EC

the activity of most grid cells is modulated by head direction, and they are

called conjunctive (grid) cells [13]. The spacing of the grid lattice increases

towards the ventral portion of mEC [14] in what appear to be discrete steps,

or modules. Grid cells are predominantly found in mEC but are also present

in the pre/para-subiculum.

• Border cells: Described by [15], the activity of border cells is intense at one

or several borders of the environment the animal is exploring. They are found

in the EC and pre/para-subiculum.

• Speed cells: Originally found in [16], their firing rates linearly depend on the

velocity at which the animal is navigating. They have been found in the EC,

but variants sensitive to angular velocity have been recently reported, also in

the pre/para-subiculum.

• Object, object-trace, object-vector, social cells: A still burgeoning va-

riety of selectivity types is observed when objects (or other animals[17]) are

introduced in the same environment, starting with those observed by [18],

which fire selectively at positions related to an object and which were found

in the lateral enthorinal cortex.

One should note that the selectivity of cells in the parahippocampal region tends

to be stable, presumably due to the mixture of inputs they receive and the network

they are embedded in. Instead, cell selectivity in the hippocampal formation is
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thought to be determined by the context: the same pyramidal cells may show two

place fields in one box, none in another, and be selective for an odor in an olfactory

discrimination task [19].

1.2 Place cell memory models

By 1971, at the time place cells in the rat hippocampus were discovered, two other

milestones had been reached: half a century of investigations by many laboratories

on synaptic plasticity in the mammalian brain had just begun, with the discovery of

long-term potentiation (LTP) in the rabbit hippocampus (preliminary findings from

1966, reported in [20], see [21]); and the solitary daring enterprise of a young student,

David Marr, had been concluded with the publication of his theory of archicortex,

i.e., of the hippocampus [22]. While the work on LTP had the potential, later

expressed, to bridge the other two, the theoretical model developed by David Marr

seemed at first to have nothing to do with place cells, and viceversa.

1.2.1 Integrating place cells within memory representations

Marr’s vision is of a memory system, a simple memory, as he calls it in contrast

with the theory he had developed earlier for neocortex [23]; in his memory system,

representations are disembodied, abstract entities, to which neurons, or simple bi-

nary units, are recruited as required by the contingency. The initial description of

place cells, instead, appeared to reveal that what they encode is very much con-

crete, a specific position of the animal, with the same dedication and reliability with

which primary visual cortex cells would encode the presence of light in certain re-

gions of their receptive field. Integrating the two approaches has required gradually

broadening both perspectives, so as to ground Marr’s and to lift up O’Keefe’s.
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A theoretical perspective on how the hippocampus forms and stores mem-

ory

The human hippocampus had already been associated with episodic memory. Most

of the observations on hippocampal intellectual function had come in fact from stud-

ies in brain-lesioned patients, the most famous ones with patient HM [24]. Following

a bilateral hippocampal lobectomy in adult age, he had lost most memories about

his life, extending several years before the operation, and he was not able to form

new ones, but he had preserved cognitive capacities, relatively spared remote memo-

ries, and remembered who he was – though not his present circumstances, where he

was and why he was there [25]. It was from the thorough study of HM that Brenda

Milner proposed that the fundamental role of hippocampus is in the formation of

episodic memories.

With his 1971 paper [22], David Marr developed a detailed neural network theory

for this function, bridging with a mechanistic model the observations in patients and

the neuroanatomy of the mammalian hippocampus.

In the very middle of the brain, as it were, the hippocampus gets inputs, direct

or indirect, from all the sensory areas, and “binds” them in a way that later, when

cued with partial information, say a visual signal, the hippocampus integrates all the

elements related to that memory – and we are able to “relive” a whole episode, for

example a birthday dinner two months ago. So, at least, the mainstream narrative

goes.

Marr’s theory was a grandiose attempt to structure such narrative into a well-

defined mathematical model, aiming to understand the anatomical structure of the

hippocampus based on the memory impairment described in patients with hip-

pocampal damage. This general logic is clear, and it has been profoundly inspira-

tional for later work by many researchers. The implementation, however, is rather

complicated, often becoming obscure, perhaps to Marr himself, and definitely ham-

pered by the lack of adequate mathematics – it will be contributed by physicists

over 10 years later – and of adequate numerics, which forced Marr to continuously

15



Fragmentary Understanding of Memory

zig zag between logic and quantitation, relying solely on his powerful intuition.

Marr’s work did not consider the place cells, that were being discovered at the

same time by O’Keefe and Dostrovsky in rodents. The discovery would stimulate a

computational hypothesis in a different direction: that the location of the animal in

space is computed within the hippocampus, and therefore its internal circuitry has to

be understood as functional to self-localization, and hence in general to navigation,

rather than to memory.

First computational theory uniting space and memory

16 years after Marr and O’Keefe with Dostrovsky, McNaughton and Morris in a

review paper [26] set out to recombine the two hippocampal narratives – the memory

function and the spatial function: they suggested that the hippocampal circuitry

stores spatial representations within its synapses. Although they obviously cite the

discovery of place cells and the book that framed it into a conceptual theory [27], the

emphasis of the review is on the mechanics of learning. For that, McNaughton and

Morris suggest a set of simple network models, all based on the Hebb [28] idea that

“neurons that fire together, wire together” – associative memory at the synaptic

level, which envisages that a pair of neurons with conjunctive activity develop a

stronger synapse between them. The spatial character of the information presumed

to be the bread and butter of the hippocampus does not really inform the network

models, all constructed with binary units and binary synaptic weights, that are

difficult to relate to continuous space; but the different networks are brought into

tantalizing correspondence with different parts of the hippocampus.

At the core of each network there is a matrix of associatively modifiable weights,

which is taken to capture, in binary form, and through cumulative learning, the

occurrence of conjunctive activity between input patterns on two streams X and Y,

as represented in Fig.1.2: if two patterns on X and Y are paired together in which

neurons j and k are both active, the associative matrix is taken to learn the pairing

by activating the corresponding weight (to a standard “1” value, which cannot be
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raised further).

Figure 1.2: Example of a correlation matrix of converging input patterns X and Y

The memory mechanism initially proposed by Marr in these terms looks like

schema B from Fig. 1.3: the two converging streams of information are paired in an

asymmetric fashion: one (above in the schema) determines the original activation

pattern on the receiving units, and needs not modify its synaptic weights onto

them; the other (below, in the schema) modifies them when paired with the first,

and as a result comes to reactivate a very similar pattern, alone, acting as a learned

cue, to retrieve what may hence be called a memorized representation – in the

simplest model, a binary one. But McNaughton and Morris point out that usually,

particularly for the spatial context, any part of it may act as the cue, that is we

may recall the whole scene starting from any arbitrary element it contains, as long

as it identifies the scene among those concurrently in storage – the stable division

between primary and modifiable inputs of schema B has no meaning, in this case,

and one reverts to the undifferentiated form of schema A, called auto-association.

Finally, a mechanism like that exemplified in schema C associates the input

X to the system’s own output – this type of auto-association could serve to store

sequences of scenes, as in episodic memory, that is, cued with the first memorized

pattern (or a fraction of it serving as a suitable cue) it can recall the whole sequence

of consecutively stored patterns. In addition, with its recurrence it can keep the

output units activated longer than the afferent inputs, thereby realizing a simple

form of short-term memory.

These simple schemata appear intriguingly related to elements of hippocampal
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circuitry, although McNaughton and Morris are quick to point out that the corre-

spondence should not be interpreted too rigidly. Thus, the cortical inputs to DG

include the medial perforant path, conveying spatial information through suppos-

edly stronger synapses, and the lateral perforant path, which can be paired with it,

enabling its object-related information to act as a cue to elicit the same downstream

pattern that had original been activated by the whole spatial scene, a bit like in the

schema of Fig. 1.3B. At the same time, they argue that 3% of the synapses on the

medial pathway are 10-20 times stronger than the others, thus acting as detonators

that impress a representation on the receiving units, which can be later reactivated

by any arbitrary subset, as in the schema of Fig. 1.3A. The highly recurrent col-

lateral network in CA3, already noted by David Marr, resembles the scheme in

Fig. 1.3C, and there the detonator synapses could be those on the mossy fibers, the

axons of the granule cells which, McNaughton and Morris note, provide a transform

of the same cortical inputs arriving also directly onto the apical dendrites of CA3

pyramidal cells. In this way, not only CA3 can serve for pattern completion, it could

also store sequences of patterns. A cue coming from the dentate gyrus would help

recall the whole sequence.

The simple schemata may help interpret also components of hippocampal anatomy

not explicitly highlighted in [26]: the convergence of distinct input pathways onto

the same cells, for example, is particularly prominent in CA1 (Fig. 1.1), where it

is the Schaffer collaterals from CA3 and the cortical layer III inputs that could

entertain the asymmetric relationship depicted in Fig. 1.3B.

Attractor neural networks help handle spatial information

The recurrent connectivity of the auto-associative model in Fig. 1.3C implies that

the neurons, serving as inputs and output to the same synaptic matrix, will tend

to reach a stable configuration, or pattern, if they can find one in which the acti-

vation of each neuron is consistent with that of the neurons that feed its inputs.

This consistency is of the same nature as that describing the relaxation dynamics of

18



Fragmentary Understanding of Memory

Figure 1.3: Adapted from [26]: simple schemata of neuronal networks embodying
variations of associative memory mechanisms. The red circles represent feedforward
and feedback inhibitory cells, whose control of the yellow pyramidal cells is discussed
both by [22] and by [26].

dissipative physical systems of interacting variables, as envisaged by John Hopfield

in his seminal paper on content addressable memories [29]. Relaxation to a steady

state, though subject to additional constraints in physical systems, such as sym-

metric interactions, can be regarded as a mechanistic paradigm for the cue-driven

reactivation of a memory pattern, in which the memory is selected on the basis of the

partial content represented by the cue. Distinct steady states can be accessed by the

different ensembles of cues that they attract, and typically it takes a very short time

for the relaxing activity pattern to become very similar to its attract, as the first few

steps, as it were, are much larger than the later ones. Amit, Gutfreund and Som-

polinsky showed how the attractors of such dynamics can be studied with a beautiful

nontrivial mathematical formalism derived from the statistical physics of disordered

systems [30]. Applying the formalism, however, and even simply conceptualizing

attractor dynamics, is less straightforward when dealing with the representation of

spatial, continuous variables.

Let us take therefore a step back, and first look at attractor dynamics in another

special type of spatially selective cells, to understand basic aspects of attractor

dynamics in the representation of space.

Cells sensitive to the absolute head direction of the animal were discovered in

different parts of the brain: in the subiculum, thalamus, retrosplenial neocortex,

dorsal striatum, etc. [31]. In these studies, head direction (HD) is calculated,
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typically from two diodes attached to the head of the animal, independently of

its spatial location or the relative position of the head to the body. With HD

cells in each of these regions, the striking finding is that the direction that most

activates a cell remains the same in every environment, familiar or new. In fact,

this is striking because often the information on the basis of which the animal can

calculate its head direction is partially misleading, e.g., when an object has been

moved. Therefore, although all the information might be concurrently available, it

has to be interpreted, and perhaps in part discarded. Further, when most of it is not

coming through the senses, for example because lights are turned off, and olfactory

cues have been washed, HD can be reconstructed from memory, if a system exists

that keeps it in memory.

This system can be an attractor network, and in fact such an observation has

motivated the development of a simplified version of the theory of continuous attrac-

tor neural networks. In 1995, Skaggs et al [32] proposed that a ring attractor could

interpret sensory cues and keep HD in active (short-term) memory. To understand

it intuitively, imagine: one places head direction cells on a ring, each at the angle

it is most responsive to (see Fig. 1.4), and the connections between the neurons are

taken to have been strengthened by Hebbian plasticity, resulting in neurons close to

each other on the imaginary ring exciting each other. What we can observe then,

is a bump of activity or an “activity pocket” – it corresponds to the animal’s head

direction, wherever it is pointing, among the 2π directions on the ring. Fig. 1.4 il-

lustrates a somewhat more sophisticated version of this concept, in which there are

3 rings, not one, and slightly asymmetric connections between the rings are used to

update the angular position of the bump with velocity inputs. What remains true

also in the sophisticated version, however, is that the interactions among the units

– producing attractor dynamics – compactify, stabilize and can keep in short-term

memory a position on the ring, but not select among alternative rings.

Could this system also include the selection of one among a number of rings?

The question becomes very concrete, and easy to visualize, if applied to place cells,
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Figure 1.4: Head direction cell ring (adapted from [32], to which we refer for an
explanation of the proposed mechanism.).

in 2 dimensions.

Remapping: a continuous attractor for each familiar environment

A fundamental discovery was reported the same year as the McNaughton and Morris

review [33, 34], when it was found that place cells remap their activity from one

spatial context to another: they change their firing patterns when the animal is

moved to a different environment, in a manner that appears totally unpredictable

from knowledge of its place field(s) in the original environment, or from the changes,

or remapping, expressed by nearby cells.

Figure 1.5: Remapping illustration: the place fields of three place cells (marked by
different colors) as they may appear in three different environments.

As schematically and summarily illustrated in Fig. 1.5, in detail these experi-

mental findings show that:

• place cells tend to form a new, seemingly entirely reshuffled configuration
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of activity for each new environment the animal is exposed to, unless it is

identified with a previously familiar environment;

• a place cell may have one or more fields of activity in some environments, and

remain silent in others;

• relations between place fields, whether expressed by the same or different cells,

are not preserved by remapping;

• the switch between two representations is very abrupt, although in special

conditions, when the animal is confused, remapping might teeter back and

forth for a few seconds [35].

This last fact led to a strong hypothesis that the configuration of place cells activ-

ity, in a given environment, should serve as a continuous attractor for the network,

i.e., comprise a manifold of all the spatial positions in that environment. Attractor

dynamics would then unfold at two different levels. Within one environment, it

would refine or interpret possibly conflicting sensory evidence, and keep in short-

term memory the continuously varying position of the animal in the environment,

much as with the ring model for HDs. When moving the animal to a new envi-

ronment, attractor dynamics would again refine and interpret possibly conflicting

evidence, but this time for selecting the representation of the environment among

a set, possibly discrete, kept in long-term memory. Unlike the continuous updating

of spatial position, this will then result in an abrupt “jump” from one attractor to

another, that could be observed in the activity of single cells or of small groups,

as in Fig. 1.6. The distinction between the two levels of operation, continuous and

discrete, is clearly an oversimplification, which may well prove inadequate when

moving outside artificial environments defined in the lab.

In 1997, McNaughton and Samsonovich [37] proposed a network model that

accounts for the expression of multiple continuous attractors in 2-dimensional space,

which they called charts. A chart can be conceived as an arrangement of place cells

on an imaginary plane in such a way that each cell is represented at the location of
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Figure 1.6: Adapted from [36]: Population vector correlation of firing rate maps of
place cells in CA3 and in CA1, after making rats familiar with boxes A and B, and
then testing them in morphed environments spanning a quasi-continuum in between.
Population activity undergoes a sharp transition, especially in CA3, suggestive of
attractor dynamics between the two discrete long-term maps of A and B.

its highest activity (just like the placement of head direction cells on a ring), and

then the actual spatial position within a chart is represented as a bump of activity

moving along a continuous attractor, with the motion suggested to be registered by

path integration.

Figure 1.7: Adapted from [37]. Conceptualization of a chart: a place cell configura-
tion on a plane, where each cell is placed in the location of its highest activity and
the actual location of the animal is represented by a“bump” of activity.

Remapping between charts should let the system update its estimate of the

position of the animal, as the latter navigates among familiar environments, but

attractor dynamics can only be effective, if the system can hold in long-term memory

a sufficient number of environments – therefore the chart model makes sense only if

the storage capacity of the continuous attractor model, applied to the CA3 systems,

turns out to be substantial.

A simple mathematical model of a recurrent network of threshold-linear units
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was analyzed by [38], in which a unit is assigned one field or none, in each chart, with

an overall sparsity a of population activity (roughly, a is the fraction of significantly

active units at any one time). The model allows calculating the maximum number

pc of charts that can be stored and individually retrieved, which scales up with the

number C of distinct recurrent connections each unit receives, so that the result is

expressed as usual with the ratio αmax = pc/C. αmax was found to depend mainly

on a and on the degree of recurrence of the connectivity; interestingly, for a fully or

densely connected networks αmax is seen to have a maximum for intermediate values

of sparsity [38]. Fig. 1.7 shows the result for one-dimensional charts, but for two-

dimensional ones the outcome of the calculation is similar, if quantitatively lower.

The indication, therefore, is that a densely recurrent network with of order 104

connections per neuron can store up to roughly a hundred charts [39]. This provides

one form of quantitative convergence between the two hippocampal narratives –

episodic memory and spatial cognition.

Figure 1.8: Memory capacity of the network for one-dimensional (left) and two-
dimensional (right) charts as a function of chart sparsity, in the fully connected
(lower curve) and extremely diluted (upper curve) limits [38].

Note that these calculations assume uncorrelated charts, as perhaps enabled by

the dentate gyrus inputs to CA3. With correlations, the storage capacity but even

more the remapping dynamics would be different, as already indicated by beautiful

analytical work [40].
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1.2.2 How can place fields be set up?

Theories of memory should conceivably devote at least as much attention to the

issue of how memories are created, as to how they can be retrieved. Yet, the two

dominant memory modelling narratives of the 80’s shirked their responsibility to-

wards memory formation in the brain, for different reasons. For networks trained

with backpropagation [41], the artificial learning algorithm was an embarrassment

and its plausibility was best glossed over, focusing instead on the ability of such

networks to implement whatever mapping was requested, as if by an outside agent.

For auto-associative networks analyzed from a statistical physics perspective [42],

instead, the characteristics of the stored representations are a given, a bit like the

constituents of a piece of condensed matter, and the focus is on analyzing their

dynamical rearrangement – the retrieval process – not how they came to be in the

first place. It was again the McNaughton and Morris review that raised the issue of

how to set up spatial representations for memory.

Non-associative inputs in associative memory

As already mentioned above, the key idea was that of synapses acting as “detona-

tors”, a notion borrowed from the study of the neuromuscular junction [43]. It was

proposed in [26] that a small subset of the synapses on the medial entorhinal input

to DG act as detonators, those presumed to be much stronger than the rest. They

would then essentially establish the primary selectivity of the receiving cells, with

the remaining numerous mEC and lEC inputs relaying additional attributes that

can be paired, through associative learning, with such primary selectivity. They

also proposed that the very granule cells of the dentate gyrus, with their sparse and

powerful mossy synapses, serve as “detonator cells” for the CA3 network. Then

they could establish a place field, for example, to which performant path inputs to

the apical dendrites could associate spatial context (from mEC) and object (lEC)

information.

The idea that memory representations in CA3 are primarily established by DG
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inputs was cast in semi-mathematical form by Treves and Rolls [44], with a simple

model that suggests that the perforant path, on its own, would not have the strength

to prevail over the interference produced by already stored memories, reverberating

in CA3 mainly on the recurrent collaterals; whereas the mossy fiber inputs have

the appropriate quantitative characteristics to imbue new memories with sufficient

information content. A logical inference from this model is that, once the new mem-

ory representation has been formed, removing the granule cells or just blocking their

afferents to CA3 should not impair the retrieval of information already deposited

there. Such a prediction was confirmed in two different experiments, in mice and

rats, employing different manipulations to either transiently or permanently remove

DG inputs to CA3 [45, 46].

The intuition that emerges from these findings is that for the CA3 network to

be able to store multiple charts the input from DG has to be strong and sparse.

And yes, there has to be additional input into the recurrent network in order to

cue the retrieval of the memories – this could be the perforant path from entorhinal

cortex [46]. Also in 2004, Leutgeb et al. in fact pointed out that the place fields of

CA3 and CA1 cells, hitherto so strikingly similar, presented one major contrast in

a suitable experimental paradigm: the former remap to orthogonal representations

when changing environment, the latter show graded changes, that reflect the physical

similarity of the two environments [47]. Note, however, that the mathematical model

in [44] does not refer to place fields at all, and is framed, in fact, in terms of discrete

patterns of activity. To gain insight into the formation of place fields, an even

simpler computer model had been proposed a year earlier.

Associative model for DG place fields

Patricia Sharp [48] proposed an associative model, which can be taken to account for

the formation of non-directional place fields wherever they appear first, in informa-

tion flow, e.g., in the dentate gyrus. Imagine combining together sensory informa-

tion from all possible orientations, i.e., all possible directions in a two-dimensional
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environment, which the animal can follow to traverse a particular location. A repre-

sentation of the specific location, independent of direction, can be established by a

straightforward variant of Hebbian learning (a trace learning rule) within a compet-

itive associative network. The mechanism exploits the continuity of space: different

viewpoints of the same environment from nearby directions can be smoothly asso-

ciated together, as the animal changes its head direction. The resulting simulated

place fields can be seen on Fig. 1.9: they resemble very non-noisy place cell signals.

This could therefore be a mechanism to form DG place fields, although it might

have to be extended to incorporate more than just visual information. Note that,

in the models we discuss later, we take cellular selectivity to be already in the form

of place fields, arguably inherited from those set up in the DG.

Figure 1.9: Examples of simulated “place cells” and real place cells firing maps
corresponding to a floor of a cylinder rat cage, where the firing rates are binned for
computational purposes (modified from [48]).

The Sharp model describes one mechanism for the formation of place fields from

inputs of a different nature, a simple mechanism that may be selected for even by

brain-less genetic algorithms [49], and that generalizes directly, eg., to primates, from

the learning of arbitrary association [50] to the establishment of spatial view fields

[51].There is no real need for such a mechanism if place cells are taken to emerge

from the place fields of other cells; if anything, the computational problems that

a model may try to explain are different. For example, if place fields are assumed

to emerge from the summation of the place fields of many different grid cells of

different phases and orientation, the challenge may be how the former dispose of the
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periodicity of the latter [52] (but see [53, 54]).

CA3 fields from DG fields

In the same logic, if CA3 place fields arise from those in DG, the question is not so

much how they arise ex nihilo, but rather whether they can be sufficiently defined by

the DG inputs to overcome the interference due to other memories, including other

spatial charts, previously stored in the CA3 network. This question was addressed

in [55, 56], with a study of an attractor neural network of CA3, in which DG inputs

are in the form of spatial maps (Fig. 1.10).

Figure 1.10: Schematic representation of the model wiring in [55].

The model assumes that DG granule cells encode position in a room of size l× l,

by a fraction of them having assigned, independently of each other, one or a few

place fields each, but with most of them being silent. Their activity, denoted as βi, is

fed into a recurrent network corresponding to the CA3 region, whose pyramidal cells

have activity ηi. They receive input connections from DG cells as well as recurrent

inputs from each other, other afferents and inhibition, which are summarily described

by a stochastic term δi and by a threshold T

ηi(
−→x ) = g

[∑
j

cMF
ij JMF

ij βi(
−→x ) +

∑
k

cRCkj J
RC
kj ηk(

−→x ) + δi − T

]+

, (1.1)
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As the virtual rat follows a trajectory in the room, simulating exploration during

free foraging, different sets of connections are modified, and a quantification of the

amount of information in the population activity of CA3 cells allows to determine

the influence of each parameter in the model.

Figure 1.11: From [55]: computer simulations and analytical estimates converge on
a quantification of the spatial information in a sample of NCA3 units as a function
of network parameters, here CMF , the number of DG inputs per CA3 cell, showing
a maximum for a plausible value of CMF .

Confirming the analytical calculations by [44], the results of both analytical cal-

culations and simulations with varying parameters show that (Fig. 1.11) the spatial

information in CA3 population activity does not depend on the number of fields per

DG unit and is maximal when:

• the number of connections from DG to CA3 is low, but not too low;

• importantly, the activity of the CA3 network, which is also in the form of place

cells, is sparse.

Moreover, plasticity on the MF synapses is shown not to increase the informa-

tion content of CA3 representations – DG can exert its driving force through non-

modifiable weights.

Representations of multiple spatial maps within CA3

Experimental evidence shows that CA3 cells, in line with theoretical predictions,

form a representation of a novel space quite different from previously stored spa-

tial memories, and that essentially orthogonal charts are produced for at least 11

(physically very similar) environments [57].
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However, simulations with the same model, when trained to explore a number

of different environments, and with associatively modifiable recurrent weights, indi-

cate that several charts can be stored on the same synapses, but with a degree of

granularity in the representation of each space – the would-be continuous attractors

are in fact only quasi-continuous. In [56] the network is simulated to learn a num-

ber of two-dimensional environments, with the CA3 recurrent network allowed to

self-organize, i.e. to adjust its synaptic weights with a simple Hebbian rule. This

self-organizing model is then compared with a pre-wired version, where the connec-

tion strength is defined at the beginning as an exponential function of the distance

between the place field centers of a pair of units.

Figure 1.12: From [56]: Contrasted with a pre-wired chart (A), one that self-
organizes during exploration (B) is more irregular and granular, in the sense that
the continuous attractor is broken into a number of discrete attracting locations (C).

As shown in Fig. 1.12, the information about the newly explored environment

can be stored in the self-organizing network, independently of the noise level, but the

attractors of the population dynamics appear to have some granularity. In parallel,

learning produces a refinement of the place fields that would have resulted from DG

inputs alone, as shown in Fig. 1.13.

1.2.3 What happens within one chart?

The models above focus on the representation of multiple environments, coarse-

grained in time. A most intriguing phenomenology emerges when looking at the

representation of even a limited environment, but with finer temporal resolution.

Only a few salient traits of this phenomenology will be mentioned in the following,

to be considered in refinements of the simple models above.
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Figure 1.13: The progressive refinement of place fields in the model analyzed in [56]:
Six examples of CA3 firing maps in the DG-CA3 model network with MF and RC
connections. The top row shows CA3 place fields with no Hebbian learning; the
middle row shows the same fields after learning; and the bottom row shows them
after mossy fiber inputs are turned off.

Phase precession and its possible role in the memory process

A finding from rodents that must be taken into account in relation to place cells,

is phase precession. Place cells are observed to fire action potentials in relation to

local theta waves, and O’Keefe and Recce [58] noticed that in a one-dimensional

track place cells tend to fire late in theta cycle when the animal enters the firing

field of each cell and as it approaches the center of the firing field the firing occurs

earlier and earlier in the theta period, often in a burst of action potentials – as if

moving backward, i.e., precessing, within the theta cycle (Fig. 1.14).

Figure 1.14: A place cell firing in relation to theta waves during one run of a rat.

In one-dimensional environments place cells are directional, meaning they nor-

mally have different fields when running in the two directions. Therefore each field

is entered at roughly the same position in space, and so the spikes it elicits code for

that position also via the exact theta phase at which they occur – an enrichment of

the pure frequency code. In two dimensions, however, the phenomenon persists, but
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each field, typically non-directional, can be entered from multiple directions, hence

the additional code loses its meaning as the correspondence between exact position

and theta phase does not hold.

Nevertheless, phase precession may play a role in facilitating plasticity that pro-

motes the learning of sequences. This can occur, as cells active at slightly displaced

positions A and B can fire together within a theta cycle, i.e., within the appropriate

plasticity window, with A, already at the center of its field, firing earlier and thus

strengthening its connection and its influence on the firing of B. Blum and Abbott

[59] suggest this may serve to store in memory a trajectory: a recent trajectory

could then be retrieved by replaying it at a speed not necessarily similar to the one

at which it was stored. Phase precession may thus be a way for place cells to deposit

simple navigational “plans”.

Replay, preplay and goal-directed behavior

During rest, whether awake or asleep, place cells can be observed to fire in sequences

that roughly match those seen during locomotion, typically but not necessarily in

one-dimensional environment. The phenomenon is called replay [60] when it occurs

after the behaviour, and preplay if before. In replay, as the animal is sleeping, resting

or before it starts another run on a track or in a box, the place cells corresponding

to a learned trajectory would activate sequentially, in forward or reverse order, over

short time scales (Fig. 1.15). This has been interpreted as a mechanism used to

consolidate the trajectory in memory, and perhaps also to replay possible routes for

future decision making.

Here the one-dimensional case from a mechanistic point of view is rather straight-

forward – a bump of population activity can easily be made to propagate following

the remembered route, which has no alternative. In two dimensions there are alter-

natives, and a new set of intriguing questions arose following the discovery of preplay

by Pfeiffer and Foster in 2013 [61]. What they reported was that, during rest, place

cells would activate sequentially in relation to the trajectory to be followed shortly,
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Figure 1.15: From [60]: a raster plot of place cell activity during a run on a linear
track and during a period of REM sleep. The run section is scaled to correspond to
the sleep period.

to a remembered goal location (Fig. 1.16).

Figure 1.16: Preplay phenomenon from [61]: firing of place cells corresponding to
locations in a familiar square box, as interpreted by a decoding algorithm: the
frames are summed over time durations indicated in ms in the bottom right corners.
Cyan circles correspond to the position of the rat home, cyan arrows to the current
position of the rat.

Interestingly, in terms of neural network operations, this phenomenon can be seen

as a goal-directed behavior driven by adaptation – the omnipresent characteristic

of pyramidal cells, whereby they tend to decrease their firing rate after some time

of activity, as if adapting to the input. Such a mechanism has been modeled [62]

by adding a simple form of firing rate adaptation to the attractor CA3 network

described above. Adaptation gives the place cell code some predictive power – the

trajectory decoded from CA3 activity is shifted towards future steps, as shown in
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Fig. 1.17.

Figure 1.17: From [62]: the spatial location decoded from network activity relative
to the present position of a virtual animal (point 0 on the x-axis) for different values
of an adaptation parameter d. Steps in the past have negative values.

Many questions of course arise around goal-directed behavior in general: how are

goals incorporated in a place cell code, and, most interesting, how is the correspond-

ing neural dynamics operating in the presence of numerous goals. Such questions

still await critical experimental advances.

1.3 Out and about: what happens in the real non-

ideal world?

However complex the questions may seem, new experimental findings appear as

we write and make it even more challenging to develop theoretical models on how

spatial memory in the hippocampus may function, in rodents and in other species,

including humans. Most intriguing results begin to appear when the experiments

move from the conservative lab conditions to more ecological environmental settings.

Described in numerous studies, place cells having one place field each in a perfectly

square empty laboratory box cease to exist once given more of any relevant context,
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pointing towards the more complex nature of the memory function.

The hippocampal recordings in bats that started in the lab of Nachum Ulanovsky

in the late 2000’s have shown that three-dimensional space gives rise to three-

dimensional place cells. This fact alone raises several questions from a theoretical

point of view. One of their most recent studies, by Eliav et al. [9], focuses on

the neural representation of a long one-dimensional tunnel, and the findings make

us reconsider many assumptions used in modeling up to date: it appears that on

a long track place cells acquire multiple receptive fields of various sizes and peak

rates, in a spatial code that appears dominated by disorder. One wonders whether

such disorderly representation can be deposited in memory as is, just by virtue of

associative plasticity.

Several experimental results have shown that grid regularity can be distorted as

soon as the environment becomes more complex, for example by non-standard shape

of the walls [63] or the presence of goals [64] – on the other hand, the variability

in the peak rates of the fields of the same cell, not just in their position, has been

shown to be reliable, hence it probably carries some information [65, 66]. Such

effects are expected to be huge in the natural environments in which the place and

grid cell system has presumably evolved, for example the habitat of the Norway

rat [67], Fig. 1.18. These observations call for a theoretical analysis, but defining a

mathematical model of an arbitrarily shaped environments containing a number of

arbitrary objects is a sure recipe for an arbitrary outcome.

Taking an alternative approach to the question, we ask: is the regularity an

artifact of a sterile square environment? Do real memory representations make

their living off in the irregularities?

1.3.1 Are charts pieced together by fragments?

To address these questions, let us consider the theory of navigation by fragment fit-

ting introduced by Worden in [1]. In his theory, mammals store their representation

of space as a number of independent fragments bound to specific landmarks. When

35



Fragmentary Understanding of Memory

Figure 1.18: From [67]: An example of a burrow system of a Norway rat.

Figure 1.19: Our schematic illustration to the navigation by fragment theory by
Worden [1]: separate sectors (in color) of a complex environment are stored in
memory as fragments of a puzzle and are fitted together during navigation.

navigating, the animal puts these fragments together rather like solving an unbound

jigsaw puzzle (Fig.1.19).

In this thesis we hypothesize that human memory relies on a similar principle,

and it extends both to spatial and non-spatial memory. To illustrate this claim, we

use both theoretical approaches and behavioral experiments in humans.

In chapter 2 we study our more regular model of CA3 from [56] and look closer

at the quasi-continuous maps that form for each square room. We find that when

the learning is asymmetric and sparse, more real-life like, then the memory patterns

stored are fragmentary and reflect better the attractive nature of the learned bits.
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Section Main topic Objectives
Chapter 2 Model of CA3 Study of spatial memory with an

attractor neural network, its ca-
pacity and dynamics

Chapter 3 Potts network and free recall Propose a model for short-term
memory, study free and serial re-
call dynamics in humans and with
the model

Chapter 4 Free recall Characterize dynamics of recall,
study common tendencies

Section 5.1 Mind wandering Study the effects of schemata and
episodic memories on a model of
free thought dynamics

Section 5.2 Poetry memory Study effects of poetic meter vari-
ables on poetry recall

Table 1.1: Summary of the different studies that are described in the following
chapters.

In this context we call fragments the well memorized parts of the learning trajectory

and test whether the localization accuracy is better within fragments.

In chapters 3&4 we study human behavior in ’lab-like’ conditions: we cannot

record human place cells in a regular box, but we can observe the more complex be-

havior arising in spatial memory tasks. We introduce such a task on a homogeneous

hexagonal grid and describe the dynamics of recall as biased by the fragmentary

schemata that already exist in human memory. For example, we hypothesize that

seeing a familiar fragment, like a number of dots on a straight line, should facilitate

fragment recall.

Finally, in chapter 5 we give two further approaches to studying the fragmentary

nature of memory: in the first part we introduce an ongoing experiment on mind

wandering – a schema-driven process of freely latching thought. We aim to test

whether imposing a novel schema can bias a free association chain, and whether

in absence of an important actor in schema formation, the ventromedial prefrontal

cortex, such bias would persist.

In the second part of this chapter we describe how poetic meter and its com-

ponents help memory when learning poetry. Here our goal is to underscore the

disorderly arrangement of the schemata orchestrating the memory fragments.

37



Chapter 2

Can CA3 be rethought as a

fragment assembly?

As described in the introduction, the CA3 network, with its distinctive DG inputs,

has been widely considered to operate with attractor dynamics also in the spatial do-

main, as indicated by the simplified model studied by Erika Cerasti and Alessandro

Treves [55]. They have shown that Hebbian learning applied to random exploration

in a novel environment allows to form a quasi-continuous attractor in CA3 – a spatial

map, and several maps can be learnt on top of each other within the same synapses

of CA3.

Several questions remain, which we aim to address here:

• can learning improve indefinitely, or does it saturate?

• how many maps can the network store?

• in what sense are CA3 maps quasi-continuous?

• are the continuous bits related to the trajectories learnt?

• can we model replay in the same network?
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2.1 The model

Here we build upon the mathematical model of CA3 proposed in [55]. The simulated

CA3 consists of a network of 500 threshold-linear units [68] defined by the firing rate

of the unit neurons and the weights of the connections between them. The input

to the network is given as firing rate maps of simulated units of DG through sparse

connections, with added noise δ and an integrated term of inhibition+threshold T .

The firing rate of a CA3 unit i at a position ~x is given as a weighted sum of all the

inputs to it at this position:

ηi(~x) = g

[∑
j

cDGij JDGij βj(~x) +
∑
k

cCA3ik JCA3ik ηk(~x) + δi − T

]+

(2.1)

In the current simulations we take the gain term g = 1. The threshold T , defined

to include inhibition term, is set to control for the sparsity of the CA3 firing aCA3

in the sense of the Treves-Rolls population code sparsity [69]:

aCA3 =
(
∑

i ηi(~x))2∑
i ηi(~x)2

(2.2)

In the reported simulations aCA3 = 0.1. Note that defined as in eq. 2.2 fixing

the sparsity of population code provides for a peaked distribution of activity – with

many small (or zero) values and few high values of the firing rate, whereas fixing

the population mean would give uniformly low firing rate.

The connectivity cDGij from DG to CA3 is set to be sparse, 50 random connections

(10 % of the active DG units) per CA3 unit. The weights JDGij of the existing

connections are set to 1. The connections cCA3ik are set so that each CA3 unit gets

input from 300 other CA3 units, so that the recurrent network is at its best in some

sense [38, 55] – neither fully connected nor too diluted. The strength JCA3ik of a

connection between i and k evolves following a Hebbian learning rule, increasing for

the pairs of cells that fire together:

∆JCA3ik = γηi(t)(ηk(t)− Λk(t)). (2.3)
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Here Λ(t) denotes a trace of the recent postsynaptic activity and γ is a learning

rate.

2.2 Storage of multiple environments

We will start by addressing the first two questions together. In [56] Cerasti and

Treves show that the model CA3 network, defined and with the same parameters

above, can store multiple sample environments. Each environment is defined as a

1m x 1m square room, assigned a random coverage of place fields of DG units, inde-

pendently for each separate room. Note that in [55] Cerasti & Treves demonstrated

that in their model there is no effect on CA3 map storage if there is one or more

fields per DG place cell in an environment. Ten years later, more findings suggest

that in larger and more realistic settings place cells, also in CA3 itself, and definitely

in CA1, tend to have multiple fields [9, 70, 71], often differing in their size and firing

rate range. For this reason here we report the work done on the model defined as in

[56], where each place cell of DG has number of place fields drawn from a Poisson

distribution, averaging at q = 1.7 disorderly distributed place fields per cell, each of

the same effective size and peak firing rate – the full parameters space to remains

to be explored in future work.

The virtual rat runs through each room following a random trajectory long

enough (3000 steps of 2.5 cm) to basically explore all positions multiple times; the

firing of DG units is fed upstream to CA3, where it is seen to gradually form a quasi-

continuous attractor state, or a map of this room. In [56] they let the network learn

4 rooms, and test map storage by giving the network partial cues along a new ran-

dom trajectory and then comparing the firing of a sample of CA3 cells to the stored

templates of activity in every location of each of the four rooms. Fig. 2.1A shows

the resulting map classification along a testing trajectory: the correct environment

is recognized more often than those coded in the other maps but the latter interfere,

and as a result classification accuracy is low. Fig. 2.1B shows the proportion of the

maps retrieved in each room and we see that the room learnt last is recognized best,
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while all the other rooms are classified correctly about half of the time.

Figure 2.1: Testing the storage of 4 rooms. A – from [56]: environment decoded
(color and shape) along a sample trajectory of 300 steps from CA3 activity, then
compared to all stored templates; the correct environment is noted by a green square.
C – same done with epochs of slower interleaved learning. B, D – the proportion
of locations along the trajectory classified to templates in every room stored, B –
with the original learning procedure (that of [56]), D – with the slower interleaved
learning.

To increase the decoding accuracy uniformly across the environments, we mod-

ified the learning procedure: we broke the exploration phase in several epochs of

learning and lowered the learning rate. The slower interleaved learning gave better

results (see Fig. 2.1 C, D): decoding accuracy is stable over 75% for all the rooms

learnt, after an equivalent of accumulated 30 minutes of exploration in each room.

Note that all the parameters, except for learning rate, remain the same as in [56].

2.2.1 Storage capacity

We repeated the procedure for different number of rooms and different learning

rates. For each number of environments we found an optimal learning rate. Taking

the average correct decoding as the measure of stability of storage, we find that the

network of 500 units, with the other parameters above, has a storage capacity limit
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of 10 maps (see Fig. 2.2): when the network “tries” to learn 11 rooms, the accuracy

of retrieval drops to chance level for all the rooms.

This result is consistent with the independent remapping of the place cell activity

in CA3 shown to happen at least for 11 experimental rooms in rats in [57], also after

around 30 minutes of random exploration, even though the real CA3 networks differs

from our overly simplified model in so many ways, starting from its connectivity.

Figure 2.2: Average over the number of stored rooms percent correctly retrieved
maps (yellow points, green line) and incorrectly retrieved maps (blue points, red
line) for different number of rooms learnt.

The mathematical analysis of an idealized model indicates a substantial storage

capacity for a CA3 network of recurrently connected place cells [38], in the order of

a hundred charts, with realistic rat parameters, with an order of 104 connections per

unit, as mentioned earlier [39], but in our case, with only 500 neurons, the estimate

has to be scaled down accordingly.

As mentioned earlier, in our simulations the activity of CA3 neurons is set to be

sparse with the parameter aCA3 = 0.1. Following the calculations of [38] and taking

the factor kd = 3.6 (also from [38]) the effective size |M | of an environment used in

our simulations reads:
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1

|M |
=
aCA3
kd

=
0.1

3.6
≈ 0.02778 (2.4)

As our network is neither fully connected nor extremely diluted, with 300 recur-

rent connections per CA3 cell, according to Fig. 1.8 right the 2D capacity of our

network should lie somewhere between the limits of ∼ 0.01 and 0.04, which corre-

sponds to being able to store between 3 and 12 sparse maps. The limit of 10 maps

that we find for the network numerically (Fig. 2.2) falls in between.

The network storage capacity depends on the number of units in it and the

recurrent connectivity, and we wanted to see how the capacity limit changes when

we scale the network down. Decreasing the number of neurons by 100 and 200

(keeping the connectivity ratio at 3/5), we were surprised to find the drop in the

correctly retrieved curve as on Fig. 2.2, at 10 maps. This observation leaves us

puzzled as to whether what we find here is indeed a capacity storage limit, or a

limit imposed by the parameters of learning and/or definition of the spatial maps.

More work is needed to better study the question.

However, compared to the analytical calculations of [38], the simulation of a

self-organizing, more detailed version of the model points at the role of disorder in

determining granular charts, that represent space only quasi-continuously. Further

studies are needed to better quantify this phenomenon and its influence on the

storage capacity of the network. Such quantification appears to be important in

interpreting the representation of natural habitats, for example the representation

of extended, quasi-one-dimensional spaces by bats, currently being investigated in

quasi-naturalistic conditions [9, 72].

We decided to look closer at the continuity issue, turning to the next two ques-

tions from our list together, namely: in what sense are CA3 maps quasi-continuous?

And are the continuous bits related to the trajectories learnt?
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2.3 Fragmentary ’recall’ in a sparsely learnt envi-

ronment

Even though the average fraction of steps classified correctly increases with the

slower interleaved learning, the granularity of the attractor states persists (see

Fig. 2.1 A and C where dots of the same color tend to cluster together): the network

seems to jump between the stored maps when unsure. We hypothesised that the

learning trajectories influence the local quality of storage and decoding of each map.

In order to understand better the difference between the parts of the environ-

ment that are decoded more reliably and those parts where all the different maps are

decoded with the same probability (Fig. 2.1), we get back to teaching the network

4 environments and look at the relationship between the learning and testing tra-

jectories. With the original learning procedure, the virtual rat explores each room

extensively, as its learning trajectory covers the environment multiple times.

With a shorter exploration trajectory, covering only a part of the environment,

we can separate the parts learned continuously and those left for generalization. On

Fig. 2.3 we show this contrast: indeed, the testing locations that are close or coincide

with the learning trajectory are classified more accurately than those in the area

not covered in exploration – there, the decoding probability of each map is close to

chance level.

This finding reflects the attractive fragments of memory that arise plainly from

an uneven learning procedure. On Fig.2.4 we give a visual link between the feature-

less map learning in CA3 and the notion of navigation by fragment in an animal

mind: we can consider each map of a room to have only formed partially, and so the

fragments decoded correctly, salient to the parts learnt in said room, are interleaved

with decoding an incorrect environment. In a more information-rich environment

like that shown again on the right panel of the figure, the fragments are hypothesised

to form in relation to important locations in a den (e.g., where food is stored, or

where family sleeps).
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Figure 2.3: Fragmentary recall in decoding. A – map decoded along a testing
trajectory of 300 steps(round points, color); the learning trajectory in the correct
environment (room 2, green) is shown by grey crosses. B – the templates decoded
along the testing trajectory as a function of the distance to the trajectory used in
learning.

Figure 2.4: Left – A schematic illustration of fragmentary encoding of the map 2 in
the model of CA3 (same as left of Fig. 2.3, but decolorized so that correctly decoded
locations of the trajectory are now shown in black, and all the incorrect are shown
as empty circles). The portions highlighted in color are the parts where the learning
trajectory was and decoding is most reliable. Right – For a visual analogy, we show
again the schematic illustration of the Norway rat den with most salient fragments
of the map in color.

Interestingly, a recent study [73] suggests a mechanism in DG that could support

switching between generalization to discrimination when novel information needs to

be stored. The authors report observed depolarization of membrane potential in

DG granule cells when the animal is exposed to a novel environment, and propose a
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model accounting for an external cholinergic signal to enable the above-mentioned

switch. Incorporating such a mechanism within our framework could potentially

help form a more stable map for a plain environment, like those that we show here,

but in real-world conditions with multiple important novel objects such a mechanism

should produce even more inbalance in learning, forming fragments of memory biased

towards the new or the more salient information.

2.4 Neuronal adaptation and prediction

Another problem we wanted to address was the phenomenon of replay in neuronal

firing, described in the introduction. Replay is the process of offline reactivation

of the place cells active during exploration in the order they were activated in the

actual trajectory, but on a shorter timescale [60]. Because it is usually observed

during sleep or just before a task run, this phenomenon has been associated with

memory consolidation and planning.

We wanted to see if within our framework we could model replay as a process

that would arise within the recurrent connections without external input: again,

because replay is observed offline, an intrinsic cue should be all that triggers the

sequence of activation.

For that we borrow the idea from [62]: also described more in detail in the

introduction, the idea is to add neuronal adaptation to the equation. This intrinsic

property of neuronal firing in response to stable input is brought by fatigue, and

computationally drives the activity forward. What happens physiologically is that,

given monotonous input, a neuron first fires a lot, but over (quite a short) time its

activity in response to the same stimulus decreases.

To model this effect within the current model we subtract from the neuron firing

rate, summed at t as in Eq. 2.1, a fraction d of its own recent activity at each time
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step, as proposed in [62]:

ηi(t) = ηi(t)− d
t−1∑

k=−∞

ηi(k) (2.5)

As in [62], adding this term to our model gives the firing code some predictive

power: while the animal moves along a trajectory, the location decoded from the

activity of CA3 is shifting toward future steps, varying with the parameter d (Fig.

2.5). Without adaptation, d = 0, we decode the current position cued to the vir-

tual animal, and with increasing d the location decoded moves to the future. We

hypothesize that with a suitable value of d, given just a cue, the recurrent network

will replay trajectories within a fragment of memory. However, within the current

framework it is difficult to define the regions of interest, and the notion of a landmark

or a goal is needed to further address this question.

Here the mechanism moving activity forward is based on firing rate adaptation.

Somewhat similar results were obtained by Romani and Tsodyks in [74], but there

the term of synaptic depression drives the propagation of the network activity in

time. Both our and Romani & Tsodyks approaches rely passively on the networks

inherent properties for modeling replay, while a new more active approach was

suggested by Spalla et al. in [75]: the authors consider an asymmetric component to

the the synaptic plasticity, that is acquired through learning and produces dynamic

retrieval similar to online replay.

Stella et al. in [76] observed that the activation of place cells in CA1 during sleep

after aimless foraging appears to be similar to random walks in the environment used

in foraging. Our model, while not suited for the retrieval of trajectories leading to

specific goals, can well serve to produce these random trajectories, but to understand

better the dynamics of aimless foraging, we have first turned to a behavioral task

in humans that might rely on a similar process — free memory recall, studied in

the next two chapters. The described mechanism of adaptation-driven replay aiding

Hebbian learning could serve human memory for more complex multidimensional
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material: in chapter 5 we will dive deeper into this conceptual link, suggesting

that a process similar to replay could drive the schemata involved in remembering

poetry.
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Figure 2.5: Predictive effect of firing rate adaptation. Top - decoded location relative
to the current position of the animal (0 on the x-axis) for different values of the
adaptation parameter d. Bottom - an example of a simulated trajectory of the
animal (in blue) with respective locations (in red) decoded from the activity with
d = 0.07 (we do not add all the links in red for better visibility: e.g.,the middle
points of the trajectory are all classified to be the interim location linked to 2 and
3)
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Chapter 3

Recall and Potts network

In an attempt to describe human spatial memory if given as plain and dull environ-

ment as the ones traditionally used for animal studies, we introduce a simple task.

Our CA3 model is based on the neuronal recording data of freely moving rodents,

and recording the activity of single neurons in freely moving humans, even if it were

useful, is not feasible. On the bright side, in behavioral tasks in humans we can ask

for much more than we can ask from animals, for example, to memorize and recall

different types of material.

Several recent studies using intracranial recordings in human participants [77, 78]

find signatures of spatially selective cells in the parahippocampal area, that are also

activated during free recall. This gives us additional motivation to study dynamics

of recall in order to characterize the general properties of memory across species.

Here we will discuss the relevance of a notable model of memory recall, argue

in favor of our own Potts network1 as an alternative STM mechanism, capable of

immediate recall, and describe some prominent features of recall arising from the

experimental evidence we gathered.

1Note: the work on the Potts network was done by Kwang Il Ryom and Vezha Boboeva in our
joint paper [79], and in this thesis I will not go into great detail of this study. Instead I will focus
mainly on the results of the experiments, conducted and analyzed by me, using the results of the
modeling to illustrate further the thesis of fragmentary understanding of memory.
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3.1 Models of free recall

Studies of free recall have been showing a common trend since the 1960s [80, 81]:

when asked to name as many as possible out of a list of M random words, participants

give on average k
√
M correct answers.

A simple attractive account of such behavior is that offered in [82]: a parameter-

free associative model gives a scaling law of
√

1.5πM (see Fig.3.1). It is worth

pausing for a moment to consider what the data in Fig.3.1 imply. With the number

of items recalled always growing, it is striking how much a person can remember, if

never stopped. But were not we told that short-term memory is limited in capacity?

(by, say, seven items: [83], or four: [84]).

Figure 3.1: From [82]: number of recalled items R for various list length M in free
recall of words and facts with different presentation rate.

3.1.1 Is free recall – navigation by fragments?

It may well be so when the task is to recall words: one cannot control for all

the possible associations each participant can have between any of individual high-

dimensional stimuli, like words. It is in itself a very interesting research question and

we try to approach it with a free association paradigm in chapter 5. What about
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the contradiction between the limited capacity of STM and the unbounded recall in

Fig.3.1? Perhaps it could in fact be addressed through a fragmentary understanding

of memory: the more there are fragments or schemata that bind the stimuli from the

list, the better is the navigation through the list, and the higher the recall capacity.

In contrast, short-term memory experiments, for example, serial recall with short

presentation time and penalizing mistakes in recall order might yield very limited

recall performance, because there is no time for fragment activation – a hypothesis

that comes from the results of our experiment described in part 2 of chapter 5.

To be able to test these hypotheses, however, we need to reduce the dimension-

ality of the stimuli, so as to bring individual fragments to the light without the need

to account for all possible semantic associations. This is why we have chosen to run

a spatial memory task, aiming to look closely at what happens during recall.

We have designed an experiment in which participants are shown a progressively

increasing number of spatial locations on a hexagonal grid and are asked to recall

as many as they can by clicking on the corresponding positions on the screen (Fig.

3.3). This way we could record every (mis)click and follow the series of recall.

First, we needed to see if the unboundedness of the free recall capacity holds for our

simple spatial stimuli and what constrains this capacity. Secondly, we have explored

giving a trajectory structure (like navigating in structured environments in rodent

experiments) and introducing simple non-salient landmarks (also, like in some rodent

experiments) to see whether it improves recall performance in restrained conditions

(serial recall). Then we have compared the performance of the participants with

that extracted from latching dynamics in the Potts network (see next subsection).

Lastly, we have analyzed the recall sequences in free recall for the signatures of

schema-driven fragments.

3.1.2 Potts network

The Potts network has been studied as a model of interacting cortical patches and

its latching as a model of retrieval of memory patterns distributed across the cortex
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Figure 3.2: From [85]. Left: A schematic illustration of a Potts neural network. Here
each of three Potts units (colors) can be in 4 states. Right: examples of latching
dynamics in a Potts network: the correlation of the current state of the network
with the stored patterns (each of a different color): (a) absense of latching after one
retrieved pattern; (b) latching that eventually dies out; (c) self-sustained infinite
latching between patterns.

[85–87]. Earlier research has demonstrated that this model helps characterize the

structure and dynamics of an extended memory system, for example, the complex

problem of the storage of correlated semantic memories [87] or impairments in the

short-term storage of phonemes in the phonemic output buffer [88].

The Potts network is a distributed memory model, that comprises several in-

terconnected cortical patches, called Potts units, each consisting of many model

neurons that, as a collective, can be active in one of S local attractor states (see

Fig. 3.2, left panel). Attractor dynamics, due to the local and global plasticity of the

network, leads to the capability to retrieve p global attractor states of the cortical

activity. The network acts as an auto-associator, in fact, capable of retrieving these

p patterns when given a partial cue. In Braitenberg’s skeleton model [89] focusing

on the N pyramidal cells of the cortex, there are
√
N compartments, each with

√
N

pyramidal cells fully connected with each other; this organization would lead to a

number S of local attractor states per compartment limited to be at most of order
√
N , while the number C of effective connections each compartments receives from

other patches is left undetermined, but at most again of order
√
N .

Irrespective of Braitenberg model, Iddo Kanter analyzed a specific version of
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the Potts autoassociative network, back in the 1980’s [90], and showed that the

maximum numer of (global) memory patterns it could retrieved scaled like pc ∼ CS2,

therefore potentially supralinearly in N .

Previous studies of the Potts network [85, 86] show that with an added feedback

term the network retrieves a pattern – it reaches a global attractor state – and stays

in it until neuronal fatigue destabilizes it, and then its activity either dies out or

reaches another attractor state (see Fig. 3.2, right panel). This saltatory dynamics

among attractive network states was named latching.

In [79] we hypothesize that, when restrained to a subset of patterns, Potts net-

work latching can serve as a basis for short-term memory retrieval, or recall. We

find that a Potts network can indeed reproduce some of the features of the human

behavior in recall for different types of material, provided we use suitable measures

of recall performance and, in the case of serial recall, we add to the basic plasticity

model an extra heteroassociative component, as discussed below.

We can look at latching dynamics as a semi-stochastic process linking retrieved

memory fragments. If the extra heteroassociative component is assumed to be lo-

calized in prefrontal cortex (see Chapter 5), successive patterns can be interpreted

as reactivating the context needed for a full episodic memory replay.

3.1.3 Definition of the model and parameters

In [79] we consider different models for STM, but here, for comparison with the

experimental data we will only refer to one of the proposed models, and call it

Model 2, so that we keep in mind that it is only one a number of possibilities for

modeling short-term memory in free recall. Let us define the model in general terms.

As in the basic definition, in Model 2 each Potts unit has S active states, in-

dexed as 1; 2; . . . ;S, representing local attractors in that patch, and one background-

firing state (no local attractor is activated), the 0 state. The N units interact with

each other via tensor connections, that represent associative long-range interactions

through axons that travel through the white matter, while local, within-gray-matter
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interactions are assumed to be governed by attractor dynamics in each patch. The

values of the tensor components are pre-determined by the Hebbian learning rule,

which can be contrued as derived from Hebbian plasticity at the synaptic level:

Jklij =
cij

cma(1− a
S

)

p∑
µ=1

(δξµi k −
a

S
)(δξµi l −

a

S
)(1− δk0)(1− δl0), (3.1)

where cij is either 1 if unit j gives input to unit i or 0 otherwise, allowing for

asymmetric connections between units, and the δ’s are the Kronecker symbols. The

number of input connections per unit is cm. The p distributed activity patterns

which represent LTM items are assigned, in the simplest model, as composition

of local attractor states ξµi (i = 1; 2; . . . ;N and µ = 1; 2; . . . ; p). The variable ξµi

indicates the state of unit i in pattern µ and is randomly sampled, independently

on the unit index i and the pattern index µ, from 0; 1; 2; . . . ;S with probability

P (ξµi = k) =
a

S
(1− δk, 0) + (1− a)δk,0 (3.2)

The parameter a is the sparsity of patterns – fraction of active units in each

pattern; the average number of active units in any pattern µ is therefore given by

Na. In the simulations reported here S = 7, a = 0.25.

Local network dynamics within a patch are taken to be driven by the input that

the unit i in state k receives

hki (t) =
N∑
j 6=i

S∑
l=1

Jklij σ
l
j(t) + w[σki (t)− 1

S

S∑
l=1

σli(t)], (3.3)

where the local feedback w models the depth of attractors in a patch – it helps the

corresponding Potts unit converge to its most active state. The activation along

each state for a given Potts unit is updated with a soft max rule

σki (t) =
exp[βrki (t)]∑S

k=1 exp[βr
k
i (t)] + exp(β[U + θAi (t) + θBi (t)])

if k > 0, (3.4)
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σ0
i (t) =

exp(β[U + θAi (t) + θBi (t)])∑S
k=1 exp[βr

k
i (t)] + exp(β[U + θAi (t) + θBi (t)])

if k = 0, (3.5)

where U is a fixed threshold common for all units and β measures the level of noise

in the system. Note that σki takes continuous values in (0, 1) and that
∑S

k=0 σ
k
i = 1

for any i. The variables rki , θ
A
i and θBi parametrize, respectively, the state-specific

potential, fast inhibition and slow inhibition in patch i. The state-specific potential

rki integrates the input hki by

τ1
drki (t)

dt
= hki (t)− θki (t)− rki (t), (3.6)

where the variable θki is a specific threshold for unit i and for state k.

Taking the threshold θki i to vary in time to model adaptation, i.e. synaptic or

neural fatigue selectively affecting the neurons active in state k, and not all neurons

subsumed by Potts unit i

τ2
dθki (t)

dt
= σki (t)− θki (t), (3.7)

the Potts network additionally expresses latching dynamics, the key to its possible

role in short-term memory.

The unit-specific thresholds θAi and θBi describe local inhibition, which in the

cortex is relayed by at least 3 main classes of inhibitory interneurons [91] acting on

GABAA and GABAB receptors, with widely different time courses, from very short

to very long.

In the Potts network it has proved convenient, in order to separate time scales,

to consider either very slow or very fast inhibition [66]. Here, we consider a case

in which both slow and fast inhibition are taken into account. Formally, we have

two inhibitory thresholds θAi and θBi (to denote fast, GABAA and slow, GABAB

inhibition, respectively) that vary in the following way:

τA
dθAi (t)

dt
= γA

S∑
k=1

σki (t)− θAi (t), (3.8)
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τB
dθBi (t)

dt
= (1− γA)

S∑
k=1

σki (t)− θBi (t), (3.9)

where one sets τA < τ1 � τ2 � τB and the parameter γA sets the balance of

fast and slow inhibition. In the presented simulations we fix it intermediate regime

γA = 0.5.

In the Model 2 that we will present here a parameter regulating firing rate

adaptation is reduced selectively for the neurons that are active, in those patches, in

the representation of the L items. That is, we decrease adaptation, by subtracting

from the adapted threshold (θki ) a term ∆θ, for the Potts states that are active in

any one of the L patterns,

τ2
dθki (t)

dt
= σki (t)− θki (t)−∆θΩ(

L∑
µ=1

δξmui ,k). (3.10)

In the following sections we will only refer to this version of the model, calling

it Model 2 and discuss how varying the adaptation decrease term ∆theta we can

observe latching dynamics resembling that of human recall. To model serial recall

we add a heteroassociative term within the synaptic weights definition (Eq. 3.1)

with varying strength γ.

3.2 Experiment: free recall of spatial locations

The first experiment described here is a free recall task of locations on a hexagonal

grid (see Fig. 3.3). The aim of the experiment was to characterize human recall

capacity in a spatial recall task, compare it with the known limit for the recall

performance with other material and with what could be presumed would be the

corresponding measure, from latching dynamics of Potts network.

First we will describe the procedure for conducting experiments online, adopted

just before the covid-19 pandemic and adapted to most of the experiments that are

described in this thesis, unless noted otherwise.
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(a) (b) (c)

Figure 3.3: Sample stimuli used in the experiments. Participants were presented
with a grid of grey dots on a screen, after which a series of yellow dots appeared.
Subsequently, after they had disappeared, participants had to recall the locations by
clicking on their positions. This experiment was carried out under several different
conditions. (a) The dots appeared simultaneously and then disappeared all together.
The participants then had to freely recall their positions. (b) Same as in (a) but with
additional landmarks, intended to probe whether landmarks help memory recall. (c)
In this case, the dots appeared one by one (white to yellow) and formed a continuous
trajectory, contrary to (a) and (b), after which participants performed serial recall.

3.2.1 Note on the general procedure for online experiments

All of the experiments described in this chapter were conducted online, with partic-

ipants recruited through https://www.prolific.co/. The platform provides a pool of

participants from all over the world that can chose to take part in an experiment for

a remuneration proportional to the time that the task requires. For the experiments

with words, like the one described in Chapter 4.2, we only recruited native speakers

of Italian. For the other tasks, no filter was applied to the sample, except for not

having taken part in our other experiments of the same type, i.e., in other recall

tasks.

Through Prolific we were able to control that the participants were using desktop

screens (not smartphones or tablets) to complete all the tasks. The experimental

setting constrained to fixate the relative dimensions of the task boards and fonts.

In all the experiments, we asked the participants to agree to the experimental

procedure with a consent form approved by the Ethical Commitee of SISSA.

Before the experiments described in this chapter, and before the Covid-19 pan-

demic, we tested the participants in a lab setting using the same experimental

paradigms, so when we moved to the online setting we had a baseline to compare to.
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Unlike the participants in the lab, the online participants had the ability to cheat,

unobserved, e.g. to take pictures of the screen and then ”recall” perfectly. To ac-

count for that, we discarded the blocks of data where the participants’ performance

deviated more than 2 standard deviations above or below the sample mean. If more

than 20/35 trials were to fall into this category, we discarded the participants’ data.

Overall we discarded in this way almost 9% of the data, 4% due to deviations above

and 5% below. If not noted otherwise, the number of observations is reported after

exclusion. The resulting data was not significantly different between the online and

offline participants.

Software

All the experiments reported in this work have been written in Javascript by me

– using D3.js for visual features and everything written from scratch, unless stated

otherwise (the experiments of Chapter 5.2). No additional software was used for the

experimental designs. Data analysis was conducted mainly using R and Python.

On sample size

The two experiments described in this chapter were designed in parallel, and the

sample size was defined to rend them comparable. The experiment on serial recall

needed balancing participants across order of conditions, which is described more

in detail in the experimental setting, and we chose to test 3 participants in each

of 12 condition-presentation time order combinations, so that to obtain a balanced

design with 36 participants. For free recall experiment we collected data from 40

participants to have comparable results.

3.2.2 Experimental procedure

In this experiment we tested the participants’ ability to recall spatial locations on

a grid in any order. The stimuli were the locations highlighted in yellow on a

hexagonal grid (see Fig. 3.3). The sets of stimuli were presented all at once, and
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the participants (N = 40, F = 12, Age: mean = 25.5, sd = 6.26) were instructed to

repeat as many as they could recall, by clicking on the dots in the grid. For each

set size2 L in {4, 6, 8, 12, 16, 24, 32}, the participants had 5 trials to do, each trial

allowing for 2L−(number of correctly recalled items) clicks overall, unless all correct

items were recalled already (or 2(L − #correct(t)) of remaining clicks at time t).

For example, if participants correctly clicked 3 dots in a trial with L = 4, they were

given another 2(4 - 3) = 2 clicks. Instead if they clicked incorrectly once and then

correctly once, they had 2(4 - 1) - 1 = 5 clicks left.

A set of size L was presented for log2 L seconds. The choice of presentation time

was motivated by the results of the experiment described in Section 3.3, allowing

the same time for memorizing each item of a set as given time per item in serial

presentation for any value of L.

3.2.3 Results

We refer to the the joint paper [79] for the modelling results, and focus here on

the experimental ones. Let us just say that we compare the quantitative measures

on latching dynamics, constrained to a small number L of the p activity patterns

stored in the network, serving as an STM storage of long-term memory items, with

the same measures of performance of human participants in a free recall task. For

example, in the intermediate regime of latching shown in Fig.3.2b we count 9 recalled

items, two of which are repeated twice and one is repeated thrice (the blue curve).

Then, in the measures limited by repetition, this simulation scores 1, and a mistake

would be counted for each item not from the pool of L STM items.

As it is problematic to establish a correspondence between human recall time

and simulation time in the Potts model, we define another quantity: we compute

the number of correctly retrieved items, ignoring errors and repetitions, MR, within

a given number of consecutive latches, denoted by g(L).

Clearly, the parameters of the experimental protocol can be expected to affect

2when we described the model by [82, 92] list length was referred to as M ; here we passed to
calling L list length in our experiments and number of items in STM in Potts network.
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recall, including the amount of time allocated for recall. However, in our experiment,

participants only need to click on the correct locations (as opposed to typing in the

words they recall [82]), and setting a fixed recall time may seem ad hoc. As an

alternative, and to further explore the validity of latching dynamics as a model for

this experiment, we give participants a limited number of clicks adjusted in the trial,

set as 2(L−h(t|L)), where h(t|L) is the number of correctly recalled dots up to that

point in time. Then we computed MR, defined as the number of correctly recalled

dots for a given L ignoring errors and repetitions, and compute the same measure

from simulations with the Potts model, setting g(L) = 2(L− h(t|L)).

We find a reasonable agreement between the performance of the Potts model and

human subjects in our experiment, where both cases show a slope of approximately

0.5 (Fig. 3.4). This suggests that latching dynamics capture some aspects of the

underlying neural mechanisms of free memory recall, perhaps related to the random

walk nature of the trajectory, although the exact details depend on the paradigm.

If limited by errors, the network cannot recall beyond its STM capacity

Now we want to look at the errors, which often interfere in recall, altering its dynam-

ics [93]. We hypothesize that the limited capacity of recall, often seen in short-term

memory tasks [83, 84], may be due to the interference of other long-term memories.

In the scaling model [82], a quantity R is defined as the number of recalled items

until the searching trajectory enters a loop, which is then iterated indefinitely. STM

items are drawn, in their framework, from a virtually unlimited reservoir of (LTM)

memory items. Since they define transitions between items as being completely

deterministic and based on the largest representational similarity between them,

trajectories always enter a loop. Given such simple transition rules, the relation

R ∝
√
L can be derived, where L is the number of items to recall.

So far we have ignored errors (extra-list items) in order to compare with [82,

92]. Note that errors are not discussed in their conceptual model and experiment, in

which retrieval of extra-list words is simply dismissed as irrelevant. The beauty of
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Figure 3.4: Free recall of locations in a 2D grid also shows an approximate
√
L

dependence (note: L was noted M when citing [82]). MR, the average number of
correctly recalled locations in our experiment, is shown by the height of pink bars in a
log-log scale. The distance from the bar to the dot of the same colour corresponds to
the standard deviation of the mean. Results of 40 participants are pooled together.
The same quantity MR is computed, from simulating Model 2 (one of the versions
of a Potts network we describe in [79]), as the number of correctly retrieved STM
items within a given number of consecutive latches set as 2(L−h(t|L)), where h(t|L)
is the number of correctly recalled STM items up to that point in time (blue bars).
The dashed gray line is the theoretical prediction of R in [82]. Both results, from
our experiment and the Potts model, show an approximate

√
L trend.

their treatment, in fact, stems from the simple question they pose, without getting

into how the recall process happens dynamically in the brain and how LTMs affect

performance of free recall. These questions are our own interest in this work.

Again, we consider lengths of g(L) = 2(L− h(t|L)), where h(t|L) is the number

of correctly retrieved STM items up to that point in time; within this sequence we

count the number of correctly recalled STM items until there is either an error or

a repetition. We compute this quantity Mcorr for several values of ∆θ, a parameter

decreasing the adaptation in the Potts model. We find that the behaviour of Mcorr

with respect to L is qualitatively similar to that of the experimental curve for a broad

range of ∆θ values (see Fig.3.5). For all values of ∆θ, Mcorr saturates reaching a

maximum that is similar to that of the experimental data, of around 8 items correctly

recalled. Exceptions are at the two extremes: too small and too large values lead to
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Figure 3.5: Two measures, Mcorr and MR, are shown for several values of ∆θ,
coded by colours. Black dotted curves are the experimental results of free recall of
locations in a 2-dimensional grid. (a): Mcorr has a maximum value. It is the number
of recalled STM items until the network either revisits one of the already-recalled
STM items or visits one of the LTM items, but within a given number of latches
2(L−h(t|L)), where h(t|L) is the number of correctly recalled STM items up to that
point in time. (b): MR shows a scaling behaviour. MR is the number of recalled
STM items, ignoring repetitions and errors, within a given number of consecutive
latches set as again, 2(L− h(t|L))

lower capacity of the Potts model, below 7 items.

The saturation behaviour, and hence the notion of memory capacity, reflected

in the measure Mcorr, again contrasts with the scaling behaviour approximated by

the various measures such as MR. This contrast holds irrespective of the values

of network parameters used in simulations. Indeed the scaling behaviour of MR

is almost independent on the value of ∆θ except when it is too large, ∆θ = 0.6

(Fig. 3.5b).

“Performance” therefore depends very differently on L, if recall is taken to be

terminated by errors, i.e. by the recall of an item that is not in STM. Thus, while

if ignoring errors the notion of STM capacity appears irrelevant (evident from the

scaling behaviour of the various quantities discussed above), it becomes relevant if

errors are considered to be critical in the task.

In summary, we have shown in this section that whether we get scaling or sat-

uration in the performance depends on the specific metric we use to measure the

performance, both in the Potts model and in our experiment. In free recall ex-

periments, performance has often been quantified through the MR index, thereby
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ignoring errors. The scaling behaviour of this index has recently been corroborated

for lists up to 512 words [82]. In contrast, taking our experiment as an example,

we have shown that if errors are considered critical, in our case through the Mcorr

measure, then the performance of human subjects actually expresses a saturation

at about 8 items. In our model, that expresses a similar behaviour, this saturation

is brought about by the interference from long-term memories.

3.3 Serial recall of different stimuli

We have found that repetition-limited and duration-limited measures of performance

in free recall in the Potts model endowed with short term memory function can

express quasi-square-root behaviour in the number of items in the list. One question

that naturally arises is whether the same model can express behaviour similar to

serial recall, a paradigm very similar to free recall, but with a crucial difference.

Here, participants are instructed to recall items in the same order as they have been

presented, making the task more difficult.

We have run serial recall experiments with three different types of material. We

asked participants to observe and repeat sequences of stimuli presented to them on

the screen - either digits or spatial locations on a 2-dimensional grid (Fig. 3.3), and

varied the time of presentation of the stimuli in the observed sequence. There were

two conditions for the spatial locations, referred to as Locations and Trajectories: in

the Locations condition, considered to involve only “discrete” items, the six chosen

locations around the centre of the grid were highlighted in any order; while in the

Trajectories condition, every next location was one of the six consecutive locations

around the previous one, thus suggesting a “continuous” trajectory.

3.3.1 Experimental procedure

The 36 participants (F = 11, age: mean = 30.8, sd = 10.8) were instructed to

watch a sequence appear on the computer screen and repeat the sequence just after,
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by clicking on the screen. They had to repeat sequences of L stimuli (L starting

from 3). Contrary to the previous experiment reported in Section 3.2, in this task

participants had to recall the material in the correct order, otherwise the trial was

dismissed as incorrect. In one of the conditions, 5 trials are available for each length

L, with L growing until 3 out of 5 trials are incorrect; the last L before the one

with 3 incorrect trials is then called the limit capacity for this participant in this

condition. For each participant the sequences were of all three stimulus variants:

• (D) Digits out of 1, 2, 3, 4, 5, 6 on a black screen, presented one at a time;

• (L) Locations on a hexagonal grid (Fig. 3.3) highlighted one by one, out of 6

around the central (blue) dot;

• (T) Trajectories on the same hexagonal grid: now each consecutively high-

lighted dot is one of 6 neighbors of the previous one (the first one is always

one of the six around the center), thus suggesting a “continuous” trajectory.

Each stimulus was presented for one of the time durations (in separate blocks):

400ms, 200ms, 100 ms. First always came the 400 ms training session, then either

200 ms or 100 ms (balanced), and then the remaining duration. Presentation order

was balanced across duration and stimulus material.

3.3.2 Variations of the experiment

In earlier versions of the experiment we had also tested the effect of adding spatial

cues or landmarks to the background of the grid (Fig. 3.3b) on memory capacity

for the trajectories condition. No significant effect on the recall performance was

observed.

Further, testing the different conditions including the additional presentation

times of 500 ms, 300 ms and 50 ms indicated the same consistent trend – recall

capacity falling with decreased presentation time for all types of stimuli – so for the

final version of the experiment described above we only included three representa-
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tive presentation times, to make the experiment shorter, and so less tiring for the

participants.

3.3.3 Results

One block of Condition x Presentation time was defined as follows: participants

started with short sequences of length 3; if they recalled them correctly in at least

3 out of 5 trials, the sequence length increased, until a memory capacity limit for

this stimulus type and presentation time was reached. In this way we measure the

memory capacity for serial recall, taking as a measure the Area Under the Curve

(AUC), often used in the field [94].

Our experiment yields two main results (Fig. 3.6). The first is that the type

of stimulus does not affect the recall probability, except for a slight disadvantage

in the discrete Locations condition, suggesting a universal mechanism for recall

independent of the material, which manifests itself at the systems level. The second,

which is instead pronounced, is the effect of presentation time per stimulus, that,

when shortened, makes it more difficult to correctly remember and repeat the longer

sequences, suggesting a disadvantage at the encoding stage. We ask whether latching

dynamics in the Potts model can express this finding. Given that our results, as well

as those from other studies [95], show very little dependence on stimulus material,

hereafter we only consider the result with digits in order to establish a comparison

with our model.

Adding a heteroassociative rule to the network dynamics, we find a good agree-

ment between our experimental data and the model (Fig. 3.7). In addition, we find

that human subjects perform better if the to-be-memorised digit series include ABA

or AA (Figs. 3.7a, 3.7c), in line with the notion that the repetition of an item aids

memory [96–99]. Such sequences are not produced by our model, due to firing rate

adaptation and inhibition preventing the network from falling back onto the same

network state. Due to this, we refer to stimulus sets excluding such sequences as

Potts-compatible.
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Figure 3.6: Short-term memory capacity for serial recall does not markedly depend
on stimuli type. Memory capacity (from the AUC measure) for serially presented
stimuli for different presentation times: bars correspond to the average across par-
ticipants of the longest correctly recalled sequence, while the distance from the bar
to the dot of the same colour corresponds to the standard deviation of the mean.
We performed the experiment for three different stimulus types, shown in different
colours.

The heteroassociative component of the learning rule provides “instructions” to

the network regarding the sequential order of recall, allowing it to perform serial

recall (this is to be contrasted with the model with a purely autoassociative learn-

ing rule, performing free recall). The strength of such instructions is expressed

through the parameter λ. We find that this parameter plays a role similar to that

of presentation time in our experiments; increasing it enhances performance, just

as increasing the presentation time increases the performance of human subjects

(Fig. 3.7). However, values of λ that are too large again make performance worse

and deteriorate the quality of latching (Fig. 3.7d).

Therefore, the most functional scenario is when the heteroassociative instruc-

tion acts as a bias or a perturbation to the spontaneous latching dynamics rather

than enforcing strictly guided latching in the Potts model, which could be the Potts

network analogue to fragments of memory. This is in sharp contrast with the mech-
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Figure 3.7: (a) Proportion of correct trials in the serial recall task with digits. Data
for all subjects (n = 36) are pooled together. Colour codes for presentation time
in units of milliseconds. Solid and dashed curves for each colour show the result of
“Potts-compatible” trials and of all trials, respectively. (b) Proportion of correct
subsequences in a latching sequence of the Potts model. Colour codes for values of
λ. Solid (dashed) curves are for ∆θ = 0.1(0.2). (c) Area Under the Curve (AUC)
computed from the curves of (a). Colour-coding is the same as in panel (a) and
the bars filled with dots (open circles) correspond to solid (dashed) curves in (a).
(d) AUC for latching sequences of the Potts model. Same colour-coding as in (b) is
used. Bars without hatches are for solid curves in (b) and those filled with oblique
lines are for dashed curves in (b). Black dots indicate the quality of latching on the
right y-scale.
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anism for sequential retrieval envisaged in the model considered in [100], where the

heteroassociative connections are the main and only factor driving the sequential

dynamics; in that case, without it, there are no dynamics but rather, at most, the

retrieval of only the first item. The effect of lower adaptive threshold (expressed

by ∆θ) on latching sequences is to constrain the dynamics to a subset of presented

items among p patterns, but values of ∆θ that are too high degrade the performance

as well as the quality of latching (Fig. 3.7b, 3.7d). As mentioned above, the Potts

Figure 3.8: Serial recall of digits by human subjects and the Potts model. Proportion
of correct subsequences in a latching sequence of the Potts model. The solid curve
is for congruent instructions only and the dashed curve is for a shuffled version of
intrinsic sequences.

model produces latching sequences even without any heteroassociative instructions.

This means that the free transition dynamics of the model may or may not coincide

with the “instructions” provided by the heteroassociative weights. Then one ques-

tion naturally arises. How does the congruity between spontaneous, endogenous

sequences and instructed ones affect the performance of the model? To see this

effect, we obtain some intrinsic sequences by running simulations with λ = 0; from

these sequences, we generate a set of instructions. These instructions are congru-

ous, as they reproduce latching sequences emerging without any heteroassociative
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instructions. Then we compare the performance for these congruous instructions

with those of incongruous instructions, which we obtain by shuffling the congru-

ous ones. We find that the capacity of the model (denoted as AUC in the legend

in Fig. 3.8) increases by as much as 1 item for the congruous case relative to the

incongruous case.

These results together with those from the previous section indicate that in-

trinsic latching dynamics, similar to a random walk, can serve short-term memory

(e.g., free recall). Furthermore latching dynamics can also serve serial recall, if sup-

plemented by biases that modify the random walk trajectory; the modification (or

perturbation) should be a quantitative one, which biases the random walk character

of the trajectories, rather than an all-or-none, or qualitative one, that inhibits it.

This is consistent with our experimental result from the next chapter (see Fig. 4.2),

where “assisted” serial recall leads to poorer performance than a non-guided con-

trol. Whereas, like a congruent bias improves “performance” of the Potts network,

an established schema trace should be what differentiates human recall dynamics

from that of a random walk.

3.4 Unfolding the dynamics of recall

While in a Potts network it is us who tune the parameters, in human behavior it is

the data that should reveal a bias in recall, if there should be any. That is why we

conducted further analysis on the data from the experiment on free recall.

The spatial recall task has an advantage compared to the word-recall tasks, in

which any word or non-word or word fragment could be typed by participants: since

an answer is a click on a spatial location, the mistakes are as good as the data as

the correct clicks. On Fig. 3.5 we showed that the well established scaling law of

immediate memory capacity holds on average if measuring the recall capacity before

a mistake. Looking at all the data together, rather than only at the average, gives

out a great variability in recall dynamics (Fig. 3.9): a lot of participants make a

mistake on their first click, more so in the longer trials, and some recall the whole
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set of locations in one perfect streak of clicks, or at least for the first m of L STM

locations.

This observation motivates further questions: what makes a sequence memo-

rable? How far off are the mistakes? What is there common in the recall sequences

of different participants?

Figure 3.9: First recall sequence across all participants: frequency of the number of
items recalled before a mistake for different number of items presented (normalized
separately for different list length).

In the experiments described in this chapter the configurations of stimuli were

fully randomized, so the apparent characteristics of the recall process did not depend

on the exact patterns. And we look at the common trends across the very different

patterns. Addressing the questions above, we plot the statistics of individual clicks

during recall sequences on different trials (Fig. 3.10, Fig. A.1,A.2), and we observe

a number of common properties:

1. on shorter trials, the clicks are close to the correct locations and far from each

other: the participants remember well the pattern and follow it if they avoid

mistakes;
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2. on longer trials, the clicks are only very precise at first, for 3-4 well remembered

points;

3. after the first correct streak, the clicks are still close to the correct ones, in-

dicating that participants now vaguely remember the overall schema of the

shown pattern;

4. on very long trials, after all they recalled correctly, the participants just click

everywhere, probably in what one may dub a random foraging behavior.

This combination of schemata – smaller(2) and larger(3) – and foraging moti-

vated our further investigation of schemata in recall, described in the next chapter.

In this chapter we introduced a spatial recall task and demonstrated that, quite like a

stored map of a randomly explored environment is biased by the learning trajectory

in the model of CA3, human recall of random material seems to be a semi-stochastic

process, resembling latching of a Potts network, and relying on partial schemata in

its partial order.

In the next chapter we will explore this topic further, focusing on how instruction

and/or freedom of choice inspire the selective activation of fragmentary memory,

whether mnemonic techniques help connect the fragments, and whether there are

common schemata, or features of fragments that help memory recall.

To address these questions we needed a possibility to add words to the memory

board and a compartmentalized setting, where we could define a spatial inaccuracy

associated with any spatial error and thus characterize general memory schemata

that may be faulty.
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(a) L = 4 (b) L = 4

(c) L = 12 (d) L = 12

Figure 3.10: The individual clicks by the participants as the trial progresses (y axis)
for two trial types – of length 4 and of length 12. The figures in the left column
show the distribution for all participants of distance of the current click to the closest
correct. The figures in the right column show distance of the current click to the
previous click. Distances are normalized to grid units (as in Fig. 3.3). Vertical lines
show the average value, while the short vertical dashes show individual points (with
jitter). Note: there was a maximum of 2L clicks available for each trial of length L,
but the trial ended sooner, e.g. if the participant recalled all the correct locations
before reaching 2L. For other length of trials see Appendix (Fig. A.1, A.2).
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Common fragments: a closer look

at recall dynamics in a

compartmentalized environment

In order to add a linguistic dimension to the spatial memory experiments, we have

designed a beehive-like grid shown on Fig. 4.1. This setting was developed initially

for the experiment on mind wandering, described in chapter 5. The board consists

of 18 6-petal flakes of identical cells, which allows for:

• multiple symmetries that help balance the design,

• recording the general area of recall (or semantic association in case of using

words).

4.1 Instructions and fragmentary recall

First, we aimed to address two of the questions arising from the previous experimen-

tal results: to what extent do explicit instructions interfere with fragment activation

and where does the limit on recall capacity arise from?

For this aim we designed an experiment on spatial memory, where only the

presentation mode varied between the conditions – serial in the first and third or
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Condition A B C
Free Recall Serial Recall Assisted Serial Recall

Presentation mode Simultaneous Serial Serial
Presentation time log2 L s 315 ms per stimulus 315 ms per stimulus
Allowed clicks 2[L− h(t)] 2[L− h(t)] L

Table 4.1: The three experimental conditions of experiment 1. Setting described for
a trial with L stimuli.

simultaneous in the second – while in the third condition the participants were cued

as to where was positioned the next item they were asked to retrieve from memory.

Unlike in the experiment on serial recall in Chapter 3, in this experiment we did

not terminate each trial as a function of the number of mistakes, and the locations

for recall were randomly distributed, like in the simultaneous presentation condition

of Section 3.2. Because of no structure now guiding the encoding during the serial

presentation, but also no penalty for order mistakes, we expected to see similar

results for serial recall as in the previous experiment, Trajectory condition (Fig. 3.6).

The assisted recall condition consisted in giving the participant the order of recall

areas, thus leaving them only to remember the relative petal positions, which with

probability 1/6 match the Locations condition of experiment of Section 3.3.

Our hypothesis was that in the simultaneous presentation condition, see Table 4.1

and Fig. 4.1, a participant can pick up on a set of fragments, e.g., a sequence of

two-three positions in a particular relation to one another, for example two next to

each other, or three in a straight line, they would memorize more easily, associating

them with a simple schema in long-term memory, e.g., “three points on a straight

line” and that would be reflected in a higher number of recalled items, growing

sublinearly with the number of items on the list, as in [80–82] and Experiment 1 of

Chapter 3. Limited recall capacity for serially presented items should then remain

low for any number of items presented.

4.1.1 Experimental procedure

We tested 90 participants from www.prolific.co, 30 in each of the three experimental

conditions of Table 4.1.
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Figure 4.1: The spatial arrangement of the hexagonal cells used in the experiments.
We refer to the arrangement as a snowflake, each separate six-petal unit of which
we call a flake. The spatial positions to be memorized were shown in green, either
simultaneously (a, condition A) or serially (b, conditions B and C). In condition C,
at the recall phase, the correct flake is highlighted in light green and the participant
has to choose one of the six petals for each flake in the order of presentation.

The general setting

In all the tasks of Section 4.1, the participants were instructed to watch subsets

of L out of 108 hexagonal cells (petals) turn green on the screen and reproduce as

many as they could recall by clicking on the corresponding cells. The sets of stimuli

of sizes L = {4, 6, 8, 12, 16, 24, 32} were presented in growing order, 5 trials per

length.

There were 3 separate experimental settings, as shown in Table 4.1:

• In condition A, the Free Recall experimental condition, the sets of L cells were

highlighted simultaneously for log2 L seconds. Participants were instructed

to recall freely as many locations as possible. While the participants were

recalling the cells by clicking on them, they had 2[L − h(t)] available clicks.

h(t) was the number of correctly retrieved cells by the time t. This way we

could observe both how many items people recall overall and how many they

could recall in the first L clicks.

• In condition B, the Serial Recall condition, the L cells were highlighted one

by one, each for 315 ms (the mean over L of log2 L
L

). The participants were

instructed to recall as many locations as they could in the same order as they

were presented. While the participants were recalling the cells by clicking on
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them, they again had 2[L− h(t)] available clicks.

• In condition C, the Assisted Serial Recall condition, the sets of L cells were

highlighted one by one, each for 315 ms (the mean over L of log2 L
L

). The par-

ticipants were instructed to recall as many locations as they could in the same

order as they were presented. Each flake (the separate six-petal hexagonal

flower) was highlighted in light green and the participant had to choose one of

the six petals. The participants only had L clicks for recall in this condition.

We excluded 4 participants (2 in condition A, and 1 in each of B and C) for

doing the task ‘too well’ (suspected cheating) - on at least 20/35 trials they ex-

ceeded mean+2sd of raw correct responses (the overall number of correct clicks be-

fore chance correction). In Section 3.2 we explain the motivation for this exclusion

criterion.

4.1.2 Results

Participants. The population sample after exclusion consisted of 86 participants

(gender: F = 36, age: mean = 27.08, sd = 9.19) recruited through Prolific. Since

this was an exploratory study, we aimed first at having 30 participants in each

experimental condition, so that the results could be comparable to the results of the

experiments of Chapter 3.

On Fig. 4.2 we show the average recall performance per condition for different

measures of correct recall sequence and the theoretical prediction for recall of words

from [82].

For all of the experimental conditions we corrected the recall measures by the

differing chance level in each condition. In condition C, we chose to only include

the sequences and answers that were reported in the different flakes, in order to be

able to estimate the chance level with simple calculations.

Free recall performance roughly follows the theoretical ∝
√
L trend in simultane-

ous presentation condition (both measures), with a lower slope if stopped at L items
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Figure 4.2: Mean number of items correctly recalled for different number of L pre-
sented spatial locations. Color marks the different conditions and different measures
of recall: blue and light pink show the results in condition A; yellow and green for
condition B; orange for the condition C (only one measure of correct recall applied).
The dark pink line depicts the theoretical prediction from [82].

recalled. Allowing space for mistakes, given with the 2[L− h(t)] clicks allocated for

recall of a sequence of length L, allows for additional correct recall that may come

from the ‘foraging’ for correct answers in longer trials.

For serially presented items the theoretical prediction does not hold. As already

shown in the experiments of Chapter 3, and in line with the existing literature, serial

recall is worse in performance than free recall and imposed order yields limited recall

capacity [95]. The present experiment extends and qualifies the results presented in

Chapter 3, in that it indicates that allowing for mistakes, to a smaller or larger extent

depending on the measure, is not sufficient to recover the ∝
√
L trend – suggesting

that serial encoding has, at least in this spatial paradigm, a major detrimental effect

per se, independently of whether the recall attempt is terminated by mistakes.

Moreover, the assisted order of recall turned out to be the most difficult condition

for correct recall. This condition imposed an order in both presentation and recall,

and, irrespective of that they could ‘see’ in the spatial array of locations to click,

a participant could only rely on an artificially imposed schema for successful recall.
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This result is consistent with the hypothesis that a major contribution to free recall

comes from the activation of LTM schemata, which are specific to each participant;

they are more difficult to activate with serial presentation, and are made irrelevant

anyway by imposing recall order in the ‘assisted’ condition. Comparing with our

observations on Potts model latching, reported in detail in a forthcoming publication

(not in this Thesis), we note that both in Potts network simulations and in human

behavior a congruent instruction could improve the memorability of a sequence,

while arbitrarily imposed instructions can only make recall more difficult. While

with the Potts model we implemented ‘congruent instructions’ by first observing the

latching sequences spontaneously produced by a particular network, an interesting

challenge is now how to operationally define instructions, in terms of serial order,

which are congruent with the specific schemata of a particular participant.

One strong strategy for congruent instructions is using mnemonic techniques.

For example, the method of loci suggests using navigation among (non-spatial)

items, having first anchored them to spatial locations. In this case, the instructions

are internally driven, they are in effect self-instructions, congruent with a fragment

of memory well-learnt already: usually, a trajectory through one’s own house or

their route to work. It is natural to hypothesize that activating well encoded LTM

fragments helps learning additional information, and we thus wondered what is the

special role of spatial memory in it.

4.2 Mnemonic techniques and free recall

In their recent study [101], our colleagues have shown, in collaboration with mentalist

Vanni De Luca, that just two hours of a lecture on mnemonic techniques can have

a major impact on the ability of participants to memorize and correctly recall lists

of 16 items, in 5 different tests with material varying from digits to images. The

main mnemonic technique used in the training was the well-known Cicero method,

or method of loci, where one learns to associate objects with spatial locations on a

familiar route. It is natural to assume that memorizing the spatial positions of food
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Condition A1 A2 B1 B2
Presentation mode Simultaneous Simultaneous Serial Serial
Presentation time 4 log2 L s 4 log2 L s 315*3 ms/stim. 315*3 ms/stim.
Allowed clicks L L L L
Petal layout Random Fixed Random Fixed
Presentation order – – 2 orders 2 orders

Table 4.2: The four experimental conditions of experiment 2. Setting described for
a trial with L stimuli.

and of safe spaces when foraging was a primary function in the evolution of memory

systems, across mammalian species and perhaps beyond.

Using our experimental setting, we decided to test whether anchoring words to

spatial positions increases the memory capacity in immediate free recall, too.

4.2.1 Experimental procedure

For this experiment we took the same snowflake board as in the previous section.

Again, we highlighted subsets of hexagonal cells in green, but now words also ap-

peared on them. We took the words from the word lists that have beeb used in

the mind wandering experiment described in chapter 5. From the design of that

experiment we also took the six possible arrangements of the words on the board

to balance out the relative spatial positions of words between participants. We will

explain the choice of word lists and their arrangement a couple of sections below.

In these experiments, participants were asked again to click on remembered loca-

tions, but now on each click they were also requested to type a word corresponding

to this location.

Sample size definition

In these experiments the sets of words on cells were of sizes L2 = {4, 6, 8, 12, 16} and

the number of trials of these sizes were respectively, TL = {4, 3, 2, 1, 1}. This way we

could define 6 conditions to balance combinations of words and their arrangements

on the board across participants; for each participant not one cell, and so not one

word, was repeated twice. Given 6 arrangements of the words on the board and 6
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petals in each flake, we have 36 variants of the task, here for each condition we tested

18 variants with one participant per variant (so, 18 participants); while in the serial

task we tested 9 out of 18 variants from free recall in 2 orders, resulting in overall

18 participants in the serial presentation condition, too – 9 seeing the location-word

pairings in one order, and 9 in another.

In order to counter balance any possible direct associations between words, the

2 orders for serial presentation were defined so that no pair of words was used

consecutively in both and the relative order 1 of all words is inverse with respect to

the order 2. This is achieved by constructing order 2 from order 1 by first taking the

even positions of order 1 in reverse order and then the odd positions. For example, if

order 1 was ABCDEF, order 2 would be FDBECA, and two separate experimental

groups did exactly the same task, but with different presentation orders.

Thus under each of the 4 experimental conditions we tested 18 participants,

resulting in sample size of 72 participants (gender: females = 37, age: mean =

27.36, sd = 7.64) recruited through Prolific.

Choice of stimuli: locations and words

As mentioned earlier, in these experiments we fixed the spatial configurations of

stimuli so that none of the locations were used twice throughout a testing session.

This was motivated by the way the words were arranged on the board.

The word lists used in this experiments were initially chosen for the mind wan-

dering experiment, and the rationale behind this choice is explained more in detail

in Chapter 5. The current experiment was partly motivated by the design of the

former: we wanted to test whether the spatial arrangement of words will affect their

recall with and without additional associative schemata introduced to participants

of the mind wandering experiment. In the current section we will only describe

the initial attempt to find the space-word associations within the stimuli set shared

between the two experimental settings.

The word lists were taken from Deese/Roediger– McDermott (DRM) [102, 103]
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lists for Italian from [104]. These are lists of words reported as a first association

to a given word. For example, for a word ”Trash” in the original DRM lists for

English language people most often named ”garbage”, ”waste”, ”can” etc. It has

been shown that if another group of people are presented with the list ”garbage”,

”waste”, ”can”..., they falsely recall having heard the lure word ”Trash” with a

probability of 49%, and falsely recognize the lure with a probability of 78% [105,

106].

In the experiment of this section we use words from the list not including the

lure. Each of the flake has six petals, so a flake can accommodate six semantically

associated words. In one of the six subconditions described above, a participant

would get words ”garbage” and ”tea” and another participant, given a different

subcondition, gets ”waste” and ”mug”, thus between these participants we can ac-

count for somehow parallel, although distinct association that could affect recall

and/or mind wandering. We aim to use this paradigm for further exploration along

these axes, but for now we treat all the words as independent stimuli. Note that

because no two petals of the same flake are one a trial, a participant can never have

two highly associated words within a trial.

Experimental conditions

The 4 experimental conditions are summarized in Table 4.2. Additionally:

• In the experimental condition A the sets of L cells were highlighted simulta-

neously for 4 ∗ log2 L seconds. (4 times as much as for the purely spatial task,

simultaneous presentation).

Now we also wanted to test the different resolution levels in the visual spatial

memory, and:

– in version A1 random locations on the screen were presented. The par-

ticipants had to remember both the flake and the petal for each word.

– in version A2, all the cells that were highlighted in one trial belonged to
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the same flakes as in the version A1 (administered to other participants),

but they were also on petals of the same relative petals of each flake(see

Fig. 4.3 for a visual explanation).

• In experiments B1 and B2, each cell with a word was shown for 315*3 ms.

(again, in accordance with the spatial task, serial presentation).

Figure 4.3: Two subconditions of stimulus presentation (in green): random petal
(left) and fixed petal (right).

The typed words were counted as correct if they had less than two typos – inser-

tions, deletions and substitutions – with respect to the form of the word presented.

After each of the word experiments the participants also did the Free Recall

version of the purely spatial task – this way we made sure they matched the average

performance of the other participants.

4.2.2 Results

In this experiment we could directly compare the participants recall capacity in the

number of retained locations, flakes (the regions of the locations) and words.

From the results of recall capacity under different conditions (Fig. 4.4) we observe

that:

• again, simultaneous presentation is beneficial to recall capacity;
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(a) Random petal (b) Fixed petal

Figure 4.4: Average recall capacity as proportion of items recalled over number
presented along the recall sequence for the two conditions: random petal (a) and
fixed petal (b). Solid lines show the results of recall after simultaneous presentation
of stimuli and the dashed lines – after serial presentation.

• the participants obviously remember Flakes better than Petals, under all con-

ditions, but the difference is minor when the petals are in a fixed position;

• the memory capacity for words is effectively limited to 4-6 items in all condi-

tions.

These findings should be complemented by testing participants on the recall

of only the words, but at this stage we have no support for the idea that linking

words to locations help memory in immediate recall task, and we are inclined to

think that, at least in this paradigm, the spatial anchoring per se is not all there

is to the mnemonic techniques. Indeed, a very recent study [107] suggests that

using an Australian Aboriginal mnemonic method that resembles the method of

loci, but relies even more on an episodic context given to anchor the memory item,

improves recall even more than the method of loci. We are then led to presume

that successful implementation of a memory technique relies on internalizing and

consciously binding the recently acquired material to the existing episodic memory,

forming an enriched fragmentary memory, rather than just on separating the words

in space.

The result on the Flakes vs. Petals difference in recall performance points toward

the memorization of the general schema as a main strategy for successful recall, more

84



Fragmentary Understanding of Memory

so when the order of encoding is decided by the participant, then when imposed by

the presentation modality.

4.3 Common biases

For a more fine-grained analysis of the dynamics of recall, we ask: are there common

dynamics of recall across participants? Is the random walk random? Or are there

spatial schemata we all tend to use to help us memorize?

To address these questions we took one layout of spatial arrangements from the

previous experiments, consisting of 10 trials of varying sequence length, and asked

participants to recall freely, again, by clicking on the positions on the screen. When

we look at the sequences of correct choices, we see that among all possible orders

for a sequence of length M , that is A(M) = M !, participants pick a very limited

number of orders (Fig. 4.5).

On sample size. In this experiment we tested 37 participants (gender:male = 22,

age not recorded) from Prolific. This has been an exploratory study and we will test

more participants to validate the models proposed in the following sections. We will

have to calculate needed sample size depending on procedures of validation.

In some trials, over 80% of the correct answers were given in the exact same

spatial order. Analysing these orders offers a number of insights, including:

• On average, participants’ trajectories are shorter than random ones;

• When there is a way to approximately do it, participants prefer to memorize

the locations along a circular path, clockwise or counterclockwise;

• Otherwise, there is a common tendency to go in a straight or quasi-straight

line, and proceed from left to right.

So, generally, there are common schemata shared among people, and they seem

to be activated when applicable. We hypothesize that these schemata are the learned

attractor states that help (and bias) the recall dynamics.
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Figure 4.5: Two examples of layouts of 4 points given to participants in the exper-
iment (left column). The highlighted green cells were shown empty and the order
numbers show the most common recall order across participants. Right column:
the frequency of choosing the order of recall across participants (there were 4!=24
possible orders of 4 points).

To test this point with the spatial setup data we ran a Monte Carlo-like simula-

tion procedure that is aimed at approximating human behavior by adding schema-

like biases Si imposed on the probability of an order ν being picked from the pool

of all possible orders, by applying schema-dictated measures Mi:

P (ν) = exp(−
∑
i

βi(Mi(ν)−Mi,0)
2) (4.1)

Here Mi,0 denotes the bias-favored order.

From the experiments in chapters 3 and 4 we learned that when the sequences to

remember are short, participants can recall them very well, and the first 3-4 items

of all trials are recalled more accurately. Together with the notion of chunking [84],

which suggests that when dealing with longer sequences participants tend to deal

with them by first grouping or chunking them into fragments, this motivated us to

look at sliding windows of sequences of recalled locations of length 3 and 4.
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Now, for the recall data and for a simulated pool of randomly generated recall

sequences we calculate the statistical measures that we drew from the data on the

subsequences of length K = 3 and K = 4:

• total length M1 =
∑

t(~xt − ~xt−1)
2

• absolute angle change M2 = |θ12−θ23|
π

(for length 3) and M2′ =
∑

t
|θt−1−θt|

π

• total angle change M3 = θ12−θ23
π

(for length 3) and M3′ = θ2−θ0
2π

,

where ~xt is the location chosen on step t and θij is the angle between the line

connecting locations ~xi and ~xj and the x-axis, denoted by θt in the case of quadru-

plets.

βi was calculated for the different subsequences of length 3 and 4 for each measure

Mi to match the simulated mean to the average bias on that measure in the data

M̄i:

βi =
M0

i − M̄i

σ2
i

,

where σi is standard deviation of the means of the 1000 simulations in measure

Mi.

Adding the biases we observed – the shorter length of the trajectory, the circular-

ity or the minimal angle change – to the probability of picking a trajectory through

the remembered positions, we chose 1000 distributions of sequences. We show these

distributions for the four trials of length 4 together on Fig. 4.6. For contrast we

show the distributions of entropy of random orders (in grey): if participants recalled

spatial positions in an unorganized manner, the red line (entropy of participants

responses) would be within the grey histogram. If we constrain the probability of

choosing a long trajectory to be low with eq. 4.1 when picking orders from a random

sample, the entropy of the resulting sample (pink) is lower on average, approaching

the value for the data in trials 1 and 2 (rows 1-2), but overshooting for trials 3 and

4 (rows 3-4). Similar trend can be seen when we add a constraint on total angle

change (resulting distribution shown in green).
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We thus concluded that accounting for biases can give some approximation of

the human behavior, but in the present form it does not reflect its variability. This

indicates that while such biases seem to affect participants’ recall dynamics across

trials, they affect it in different ways than how we attempted to model it here.

While in the approach expressed by eq. 4.1 we seek to optimize choosing order

with respect to common biases altogether, it may be that the memory mechanism

behind successful recall is in fact biased selectively. What we are suggesting is that

there may be common schemata that act as biases with respect to the statistical

measures described above, and when these schemata are partially present in a con-

figuration of dots, participants pick up on them. For example, in trial 1 (top) on

Fig. 4.5 one can see three dots in a straight line – and there minimizing the absolute

angle change should only be applied partially; while it could be (although not seen

in the data) that some participants would have a schema corresponding to “>” and

they would start the recall with this pattern. To account for this computationally

we need to reward similarity to a common schema instead of penalizing the distance

to it as in eq. 4.1. If the reward or penalty were linear, the two approaches would be

equivalent but as in eq. 4.1 the penalty is quadratic in the distance, and the reward

quadratic in the similarity, they are not.

For that reason we next assumed that the actual schemata are independent of

optimization rules and they are in fact traces of experience that attract the patterns

close to them. For a visual explanation on the difference between the two approaches

see Fig. 4.7.

4.4 Attractive traces of experience

Let us assume that all the different traces described by measures Mi are stored in a

memory like patterns of activity in an associative network described in Chapter 1.

We want to show that, presented with a layout of spatial locations, the network may

associate its subconfiguration (in our case, a subsequence of length K=3 or K=4)

to a previously stored trace or traces that as attractors bias the recall.
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Figure 4.6: Distributions of entropy calculated for the samples of recall sequences for
different trials of length 4 (rows). The red line marks the entropy of the experiment
sample. In grey, the histogram of entropy for the randomly sampled orders of recall;
in pink – for the orders with total length of trajectory constrained by eq. 4.1; in green
– for the orders with the length of trajectory and total angle change constrained be
eq. 4.1. K=3 and K=4 are the different lengths of subsequences of recall starting at
S.

We consider all the measures Mi described above, and add a few more: shift

along x-axis, shift along y-axis, change in shift along each of the axis and absolute

angle change.

For each of these measures Mi, we calculate its normalized version µi(νKS):

µi(νKS) =
Mi −minν(Mi)

maxν(Mi)−minν(Mi)

(to reach the attractive end for each of the measures, we take µi = 1 − µi if

µ̄i) > 0.5, where µ̄i is the mean of orders νKS of µi(νKS).).

Next we define the associative term (equivalent to a ’coupling’ strength) for all
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Figure 4.7: The two approaches to understanding biases in recall: A - the first
approach: here the quadratic distance to an external bias is penalized, leaving space
for all the variety of choices in between, not representing the real complexity of
memory space. Here we have tuned the parameter β to adjust it to represent the
outer borders. B - the second approach: now we reward similarity to internal
memory schemata that are inherent to all participants and independent from each
other, so only leave space in the transitions in between. Here instead we look for β
as a measure of adjustment to common biases.
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the pairs of measures µi for each of the subsequences of length K starting at S,

which is summed over the subsequences νKS chosen by participants:

JKSii′ =
∑
ν

(µi(νKS)− µ̄i)(µi′(νKS)− µ̄i′)

Let us note that all the calculations are done separately for each K and S, so

for now we will drop the index KS for the ease of reading.

We perform cross-validation within the sample, leaving each time a participant’s

subsequence ν(p) out when calculating Jii′(−p) and computing the probability that

the network should pick the suborder ν(p):

P (ν(p)) = exp−β[µ(ν)Jii′(−p)µ
T (ν)].

The reason why we use cross-validation now and not comparing the experimental

sample to all possible orders of recall, is because we wanted to include mistakes in

recall, too. Notably, even incorrect answers given by participants shared a lot in

common.

Next question was to find a β such that the entropy of the distribution P (ν(p))

across participants approaches the entropy of the distribution of the data. On

Fig. 4.8 we show the results of the search, obtained by minimizing the square error.

Note that for different trial length there is a different number of starting subse-

quences and there was only one trial of length 12 by design, so naturally the optimal

β for last positions in recall coincides with the overall optimal, hence there is no

error of prediction in the final steps.

Looking at Fig. 4.8, let us reiterate that the entropy of participants’ choices

grows with recall progression. Furthermore, Fig. 4.8 gives quantifiable evidence to

the feature of recall that has been following us throughout this thesis: optimal beta

decreases throughout recall, meaning that the fragmentary schemata that may help

recall are indeed helpful but are only activated near the beginning of the process,

leaving us ‘foraging’ towards the end of a trial (as hypothesized in Section 3.4).
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Modeling results for subsequences of length K = 3 (top row) and K = 4
(bottom row). (a), (d) – entropy of the subsequence distributions in the data as a
sliding window along the recall sequence, calculated for different trial lengths (color)
and overall (violet), for each starting position. (b), (e) – optimal β calculated for
starting positions separately, for different trial lengths (color) and overall (violet),
(c), (f) - normalized distance from the prediction with optimal β to the data, taken
as the overall optimal for each starting position (violet on the plot (b), (e)).

We wondered nevertheless whether there could also be any general schemata that

may guide us throughout the trial, although with a blur.

4.5 Fragments in recall

To test this idea, we calculated the occurrence of the participants’ recall sequences in

steps, that is, individual transitions between two locations, and looked at the distri-

butions of these transitions. This way we could trace the overall schemata that guide

the encoding and recall, testing the idea motivated by the results of the experiment

of Chapter 3, Fig. 3.10 and of experiment 2 of this chapter, Fig. 4.4: people often

remember the general regions of the locations and the transitions between them as

one fragment, so also the close misses can be informative.

An example of common transitions on a trial is drawn on Fig. 4.9: we show all

the transitions (simulated from the probability distribution of the data), that take

place from one of the two most commonly chosen locations as first in the sequence
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Figure 4.9: Common schemata of recall: 300 simulated trajectories from the training
set of the data in a colored order for a trial with 6 positions to be recalled (yellow
circles). The first choice is fixed and taken as the most commonly chosen first
location to be recalled (top left yellow circle). Most common (correct) transitions
are marked with the straight grey arrows.

of recall of 6 locations. We note the 2 common trends of recall orders at the first

transition (in red). The main observation here however is in the common schemata

of transitions, that hit close to the correct items and continue in parallel to the other

participants’ recall sequences.

4.5.1 Do schema fragments help correct recall?

The core issue that this thesis has been building up for is what is the interaction

between LTM memory fragments and successful recall. To approach this question,

we take inspiration in the observations from the previous sections.

We calculated the number of subsequences of length 3 for each trial, wherever in

the recall sequence they start, and group these orders of choice by proximity to the

most common answers (see Fig. 4.10 for a visual explanation). Because of the way

93



Fragmentary Understanding of Memory

Figure 4.10: An illustration for the procedure of extracting loose common schemata.
We take a decolorized Fig. 4.9 as an example, and its most common fragments of
length 3 are highlighted in color: to be grouped together, the exact clicks did not
have to be correct (match the yellow circle), but they had to be at most one unit
away from other common answers at each node.
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the board (Fig. 4.3) is constructed and the trial sequences are defined, there are no

2 petals of the same flake in the sequence of stimuli, so we can define a region of

quasi -correct recall as those petals that are at maximum 1 petal away from the most

common choice in a similar subsequence (which, in theory, could also be completely

incorrect, but chosen by many). For each subsequence of length 3, we calculate its

occurrence frequency as follows:

fi = (
∑
subs

(1− 0.25w))/
∑
j

fj,

where a wiggle parameter w = 0 if the subsequence chosen is the same as the

subsequence of reference, substracting w = 1, 2, 3 for each of 1, 2, 3 deviating nodes

in the 1-petal neighbourhood of the nodes of the subsequence of reference, and w = 4

for all the other subsequences. On this weighted frequency measure we can define a

measure of entropy for the common schemata used in recall:

Entropy(f) = −
∑
j

fj ∗ log fj.

Fig. 4.11 shows the percentage of correct answers (fully recalled sequences) as a

function of the entropy measure above: the lower the entropy, the fewer there are

groups of response patterns chosen between the participants. Compared within the

same trial-size groups, the results suggest that the unanimity in choosing orders of

recall is predictive of correct recall. In other words, if we group the fragments of

responses by proximity to their respective nodes, we find common schemata bits

even in incorrect answers, and they seem to help memory.
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Figure 4.11: Percent of correctly recalled sequences as a function of entropy for
different trials. Colors denote different trial length, that are shown on the same plot
for convenience: the longer trials naturally had more possible subsequences, so the
measures should be only compared within the same color-size-group.
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Chapter 5

Schemata in mind wandering and

in poetry

In this chapter we will describe two projects which focus on forms of the human

behavior which can be argued to rely on fragmentary memory, bound in schemata:

mind wandering and remembering poetry.

Recently, in the memory literature the notion of schemata, long seen as impor-

tant (see e.g., [108]), has been discussed again [109], stimulated also by the analysis

of its neurobiological basis in rodents [110]. A schema, whether directly functional

like those involved in preparing coffee [111] or social/ornamental, like rituals of salu-

tations [112], can be considered as a set of regularities that help organize and retrieve

information [113]. In these two studies we will argue that both mind wandering and

remembering poetry, processes that are not well understood from their functional

point of view, but that are certainly more than ornamental for human cognitive

function, rely on schemata of fragmentary memory in a rather similar way. We will

attempt to characterize the functional role of schemata in both phenomena.

Mainly bound by their relation to schemata theory and the fact that my role in

both of the projects was, as for schemata, functional but partial (the first one is lead

by Elisa Ciaramelli and the second one by Sara Andreetta [114]), the two studies

are attempts to address the question on how schemata support human memory and
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thought process.

In the first project described in this chapter, the mind wandering experiment,

my role was to design the experimental setting with the others and set it up. While

the questionnaires and the direct interaction with the participants was done by

Mariachiara Esposito, I developed the experimental environment, referred to as the

Snowflake, and curated its functioning. We also analysed the preliminary data

together with Mariachiara Esposito. We discussed and readjusted the experimental

paradigm muptiple times together with her, Elisa Ciaramelli, Massimiliano Trippa,

Aline Viol and Alessandro Treves.

In the second project described here I joined at the stage when the experiment

was already running and helped Sara Andreetta with its transferring online, par-

ticipated in the discussions on the experiment readjustments and assisted the data

analysis.

5.1 Schemata in fragmentary thought: mind wan-

dering

In this project, still in its initial stages, we have prepared a setup to analyse in control

conditions, to the extent that it is at all possible, the spontaneous dynamics of

mind wandering. Mind wandering is the process of freely latching from one thought

to another, planning the future or reverberating past experiences. Already from

this definition, mind wandering is a great illustration to a fragmentary perspective

on memory – bringing up a fragmentary episode from among one’s own thoughts

and jumping to the next in a schema-driven association. Like free recall, it relies

on internal dynamics, but in the case of mind wandering, the whole process is

internal, driven by endogenous schemata. Humans spend 25-50% of their wake time

mind wandering [115], and studying the underlying neuronal mechanisms may help

understand a lot about human cognitive function in general.

In fact, we already know where mind wandering lives. The brain default mode
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network (DMN), that is the network including medial prefrontal cortex (PFC), pos-

terior cingulate cortex and the temporoparietal junction, was given its name for

being active independently of any ongoing task [116]. DMN activity has long been

associated with internal thought processes, or mind wandering [117, 118]. Moreover,

recent studies have brought to light the particular roles of parts of the DMN in mind

wandering. In [119] the authors compare the free thought patterns reported by par-

ticipants with lesions to vmPFC to those in healthy and control-lesion participants

and find that the former group tends to mind wander significantly less, but when

they do, their thoughts are focused on the present and self, while the participants

with an intact PFC often time travel in their thoughts, spread evenly in focus on

the self and on others. In contrast, patients with a lesion to the hippocampus, in a

similar experiment [120], mind wander almost as much as their healthy counterparts,

but their thoughts latching lack episodicity and visual details, and can be described

as plainly semantic and poor in context.

Bringing these observations together, it was further hypothesized how these parts

of the DMN interact during mind wandering [121]: the vmPFC, known to be in-

volved in schemata construction[122], initiates a stream of thought by activating a

relevant schema, which is given context and schema-congruent details through it-

erative connections to the hippocampus-neocortex network. Assuming that mind

wandering is schema-driven, it is interesting to take a closer look at an effect of in-

dividual schemata on mind wandering dynamics, and how a disruption in the DMN

would alter it.

A disadvantage of the studies described above, as of most of the studies on

mind wandering, is that they have mainly relied on self-reports by the participants,

who would drift off in their thoughts when given a boring task to do. The common

procedure, named Experience Sampling, consists in interrupting the task and asking

participants about the current whereabouts of their thoughts.

Our experiment, designed in collaboration with Elisa Ciaramelli, is an effort

to quantify mind wandering, independently of self-reports, in order to be able to
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study its dynamics as it unfolds. The idea is to introduce new episodic schemata

to a group of participants by giving them a task where they have to build strong

episodic associations between fixed words and test how these ‘episodic memories’

affect their train of thought in a free association task. Our hypothesis is that an

effect of the episodic simulation should be stronger in healthy population than in

vmPFC-lesioned participants.

5.1.1 Experimental design

We have designed the flake-petal wordboard (Fig. 4.1, Fig. 5.1), used in the experi-

ments described in Chapter 4, and filled it with words taken from the Deese/Roediger–

McDermott (DRM) [102, 103] lists for Italian from [104]. The DRM lists are se-

mantically associated word lists that are created as follows: for a given word, called

lure, a number of participants is asked to name their first association. The 12 most

frequent answers are a DRM list for the lure. These lists have been used to induce

false recall and false recognition: when a participant is given all or most of the 12

named words, but not the lure, and asked to recall as many words as possible, they

recall or recognize the lure as frequently as the seen words, suggesting that they

have formed a false memory [102, 103].

For our task, instead, we took as the stimuli the lure and the first 6 associated

words from the list, thus creating basins of highly semantically associated words.

The idea is to be able to contrast the effects of these semantic associations, presumed

to hold across subjects, with episodic associations, both those that the participants

have in their own idiosyncratic, experience-derived schemata and those that we

introduce in the experiment.

To remove any outliers within stimuli, making sure all the words are distributed

equally in the semantic space and are not too abstract, we have slightly adjusted

the lists balancing their semantic similarity based on [123] and imageability score

based on [124].

Due to its six-fold symmetries, the snowflake setting allows us to define 6 in-
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dependent arrangements of the flakes that counterbalance any effect on association

that could arise from the physical distance between the word groups.

Figure 5.1: The arena with words used in the mind wandering experiment. We refer
to the arrangement as a snowflake, each separate six-petal unit of which we call a
flake. In each trial the participants are given a starting word cue (in blue) and they
are asked to click on the words following their free associations.

Experimental procedure

The test is done in two days (see Fig. 5.2): first we attempt to introduce episodic

associations, that could be construed as novel schemata, to the participants by

asking them to imagine and write an episode that would link three words, that we

assign specifically to each participant, from the lists above: for the experimental

group the word combinations also belong to the wordboard, while for the control

group the words are from lists not used in the creation of the board.

We have defined 4 sets of 9 episodic cues for 4 experimental groups, all including

only the words, which are central words of the flakes. Note that in order to coun-
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Figure 5.2: The timeline of a pilot of a mind wandering experiment. The testing is
done in two days and consists of the same steps for all the experimental and control
groups with a difference only in the words used for creating episodes (Task 2 on Day
1).

terbalance a novelty effect on the unused central words, we give all the participants

a ranking task on all the central words (see Fig. 5.3): the participants are given the

layout of the central words – the lures of the DRM lists – and are asked to rank

each in two categories – familiarity and relevance.

This allows the participants to get used to the arrangement of the semantic

groups of words (different between the 6 layout-groups). Moreover, we get additional

data on the possible closer associations of used words for the individual participants

of the study.

The next day participants are presented with the wordboard. Cued with a word

on it (blue on Fig. 5.1), they are asked to freely associate by choosing words on the

board (clicking on them). To give participants motivation to explore the board, we

give them a delayed score that is proportional to semantic similarity and physical

distance of each transition between the words. The procedure is repeated 6 times

with different starting words. In order to prevent falling into the same association
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Figure 5.3: The separate ranking task given to participants in the mind wandering
experiment: given an arrangement of the central words (left) from the snowflake
board (Fig. 5.1), participants are asked to chose them in a free order and rank the
words in their familiarity and relevance (right).

stream, the used words are temporarily disabled in the adjacent trials. After the

task the participants are asked to recall the associations formed the day before, so

we can differentiate between the explicitly and implicitly encoded schemata.

5.1.2 Preliminary results and predictions

We ran 4 pilots for this study, varying additional tasks and their importance. For

example, when we found novelty effect affecting significantly the chance of choosing

unseen words with respect to those used in the first-day tasks, we added a ranking

task and a sentence-association task (Fig. 5.2).

Sample. In each pilot, the general procedure consisted in testing 16 participants

in the experimental group – 2 in each subgroups of episodic cues (in the pilots

we used 2 sets of words out of 4 we prepared), using 4 different layouts of the

snowflake; and 8 or 16 participants (in different pilots) in the control group, also

using 4 different layouts of the snowflake. All the participants were taken from

the Cognitive Neuroscience master course at the University of Bologna, that the
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population samples of different pilots were equally distributed in age, gender and

education. In the experiment planned to be run with the patients, the sample will

be matched in all demographic variables accordingly.

Data analysis. In the initial stages of our study we have been aiming to analyse

the dynamics of free thought latching in its unfolding. First of all, we want to see

whether there is any effect of the schemata imposed by the episodic simulation task.

To test that, we compare the number of times the episodic cues (central snowflake

words used in the writing task by experimental groups) were chosen in associative

chains within experimental and control groups. Further, we look at the individual

‘jumps’ – the frequency of transitions between episodic cues within schema-triplets

and towards other words on the board. We also look at the possible covariates in

the schema-driven associations: the coherence of constructed episodes, association

recall on the next day, familiarity and relevance rankings, and the results of the mind

wandering questionnaire. In parallel, we run a more elaborate analysis on graphs of

transitions in order to find less visible effects of the episodic memory manipulation

on free association chains.

Preliminary results. Our prediction was that the experimental group will have

association dynamics altered by the newly introduced schemata, i.e., the “episodic”

associations among the sets of 3 words assigned to them to construct an episode

with, the day before; compared to the control group. This prediction was not borne

out in the 4 pilots we have run. Fig. 5.4 shows one of the preliminary results of

pilot 4: contrary to our predictions, the experimental group does not show in their

free association chains a preference towards the words used in episodic simulations,

even though the participants of the experimental groups remember the associations,

according to the recall tasks (results not shown). With respect to the control group

(who did not use these words in episode writing), the experimental group uses less

central words overall. We also do not find associative ’jumps’ within the episodically

bound triplets that we expected to see (not shown). We hypothesize that the episodic

simulation task in the form that it is used now may be too straightforward, and
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Figure 5.4: Preliminary results of a pilot: a total over 6 trials of the number of
times a participant chose a cue used in writing an episode the day before, averaged
across participants for each cue group within experimental and control groups of
participants.

the participants understand what is expected of them and feel inclined to do the

opposite.

Running pilots of the study, we have attempted with successive modifications to

make these episodic associations stronger but more subtle, and we are currently re-

vising the paradigm to explore more effective ways to associate the “episodic words”

in the mind of the participants. The plan is to further test a group of patients.

Given the abundant evidence of the role of the vmPFC and hippocampus in

forming episodic memories, schemata and mind wandering [118, 120, 121, 125], we

expect to see different effects of the episodic simulation on the free association pat-

terns in these groups. In addition, this new paradigm for assessing mind wandering

dynamics may allow us to see more in detail differences in free thought processes

between patients and healthy participants.

5.2 Schemata in poetry

Poems, nursery rhymes, traditional songs: they are found in every culture, and they

have been around for ages, well before the advent of writing systems. Sometimes,
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they have or had the crucial mission of carrying an important message for the

listeners: a list to know by heart, an event happening every year, a warning of a

potential danger. What do these texts have in common? At least one aspect: they

adopt a variety of devices that help hold verbal material in memory.

Human memory can, in fact, fail spectacularly at times. Writing systems have

helped safely store verbal information, in a format relatively difficult to tamper

with; before, when our ancestors had to rely on their fallible memory, a number

of linguistic devices crystallized to help them remember words and verbal material.

Cultural transmission, then, has depended for ages on these devices, which in poetry

we can broadly refer to as “meter”. These devices may range from the use of repeated

metaphors: “rosy-fingered dawn” in Homer [126], to the ring composition in the

Zoroastrian Yasna [127] to semantic repetition as in Biblical poetry: “In the way of

righteousness is life; and in the pathway thereof there is no death.” in Prov. 12:28

(King James Version).

In several Western literary traditions, including the Italian one, the local struc-

ture of poetry revolves around the verse, and includes a constant number of syllables,

a limited variability in the pattern of accents, and a specific organization of rhymes.

Can the role of metrical features be explained from a neurocognitive point of

view, with respect to memory? In this context, we consider the components of

meter as schemata which, by encouraging regularities, facilitate the recall of verses.

They operate as schemata insofar as they help us recruit, and possibly produce, the

next element of a sequence stored in our memory.

In facilitating verbal sequence replay, metrical features appear to be effective with

extended “trajectories”, lasting even several verses. These are extended relative to

the short trajectories thought to be produced by the phonological loop of Baddeley’s

model of working memory, which are presumed to last only a couple of seconds,

precisely because of the lack of specific devices that extend their range[128]. To the

best of our knowledge, though, the effectiveness of these features has never been

quantified. In this study, we aim at measuring the strength of some metric devices.
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Specifically, we focus on the three main characteristics of classical Italian meter:

rhyme, pattern of accents, and verse length.

5.2.1 The two experiments

We extracted passages from two masterpieces of Italian literature: the Divina Com-

media by Dante Alighieri (1265–1321), and the Orlando Furioso by Ludovico Ariosto

(1474–1533). From the latter we chose ottave (octaves, stanzas of eight verses) from

canti XIII, XV, XIX and XXX, and one from canto I to train subjects, while from

the former we selected sequences of three consecutive terzine (hence nine verses)

from two canti from Inferno (XXIV for the experiment, V for training), two from

Purgatorio (VI and XVI) and one from Paradiso (XXVII). All passages had only

proper (Italian) hendecasyllables with an accented 10th syllable, and were, to our

arbitrary judgement, devoid of explicit or easily reconstructed memorable content

or references.

Poem manipulation

The original texts were manipulated in a number of different ways. Firstly, most con-

tent words were converted into non-words in order to eliminate discernible semantic

content, hence semantic effects on memory; an effort was made to change phonemes

with similar ones, while maintaining the original prosody. Function words were not

modified. This applied equally to all texts and resulted in “original non-poems”

(ONPs).

The second stage of manipulations focused on metrical patterns. We created

three conditions:

• a condition where we eliminated rhymes (“NPR” – Non-Poem without Rhyme)

• a condition where the accent patterns of four-five verses per passage were

replaced with less standard ones (“NPA” – Non-Poem with modified Accents).

To validate proper original accents, we consulted with an expert scholar for
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Orlando Furioso, whereas for Divina Commedia we referred to the “Archivio

Metrico Italiano”, a database collecting masterpieces of Italian literature with

their accents annotated (www.maldura.unipd.it).

• a condition where the number of syllables per verse, which in the ONPs were

strictly 11 throughout (regular hendecasyllables) was altered again in four-

five verses, to nine, 10, 12 or 13 –(“NPS” – Non-Poem with wrong numbers

of Syllables). Note that by adding or subtracting one or two syllables, also

the pattern of accents was perforce altered, but we attempted to make the

alteration less noticeable than the number change, in contrast to the NPA

condition in which, while there were strictly 11 syllables/verse, the accents

followed more unusual patterns.

These manipulations were applied to all texts. All texts were then recited by a

professional actor and audio recorded.

For the experiment, every subject was administered four texts in total, by the

same (original) author: one per canto and one per condition. Therefore, twenty-four

combinations were created.

An example of an NPS we used, from the Commedia, is presented in Fig. 5.5

together with its original spectrogram,

Ranking

We conducted an online survey about how these manipulated poems were perceived

by a group of Italian native speakers. Participants were asked to listen to the four

conditions and give a ranking of preference, from the one that sounded the most

“poetically plausible” to them, to the one they perceived as the strangest.

Subjects. 62 people participated in the online survey for Ariosto (F=32, M=30,

mean age = 29.06, sd= 8.13) and 65 people for Dante (F=35, M=30, mean age =

26.48, sd = 6.26). Part of either cohort were the participants in the main experiment

below, but tested with the other author, and they were asked to complete this

survey after the end of the second session of the main experiment. Another group
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Figure 5.5: NPS example derived from Purgatorio, canto VI. For each terzina
(vv.127–135) the NPS text, shown below the sound wave by the professional actor,
maintains rhymes, in color, and accents, in boldface, as in the ONP version; whereas
overall three syllables have been added and two taken away, in gray. The underlined
non-words were the targets of the memory test; underlined blanks denote synizesis
(when two syllables are pronounced as one).

of participants was recruited through the online platform Prolific (www.prolific.co).

This last group was compensated with five euros. We had aimed for 72 rankers

in each cohort, but had to exclude some a posteriori, who failed to complete the

ranking in full.

Experimental design. The online survey was designed with the open-source

toolkit Psytoolkit [129]. After an example, presented as training also in the main

experiment below, they listened to the four poems one at a time. Every poem was

associated with a name, in order to help participants refer to that specific condition.

If they wanted, they were allowed to listen again and again to the same poem before

proceeding to the next.

At the end they were asked to rank the four poems: from the one they perceived

as the best, to the one that sounded worse to them. From the rankings by all par-
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ticipating subjects we extracted an average index of metric plausibility by assigning

a value 0.6 to the first–ranked condition (e.g., NPA), 0.3, to the second, 0.1 to the

third, and 0 to the fourth. The logic behind this assignment is that subjects oc-

casionally reported being unsure as to which passage sounded the strangest. The

rankings were collapsed across canti, with the relatively large number of participants

ensuring approximately even sampling (each canto was presented originally 18 times

per condition, which came down to 16+/-2 after the exclusions). As a result, the

average metric plausibility of each condition could in principle range from 0 to 0.6,

but in practice was much more restricted, particularly with passages from Dante, to

values around the average of 0.25 (see Fig. 5.6).

Figure 5.6: Relative metric plausibility. The different versions of the same four
passages from the Divina Commedia (red) and Orlando Furioso (blue) were ranked
in the same order, but the plausibility index is more spread out for Ariosto.

Memory experiment

Subjects. 48 native Italian speakers who had been exposed to Italian literature

through one of the national high school curricula were recruited for the main exper-

iment. Half of them were administered material from Ariosto (F= 15, M=9, mean

age= 26.34, sd=4.02), the other half from Dante (F=15, M=9, mean age= 26.12,

sd=3.61).

Experimental design. The experiment was designed with Psychopy Builder [130].

It included a study phase of about 30 minutes the first day, and the test of about
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10 minutes the second day.

We aimed at an almost exclusively auditory experiment, in order to assess how

memory relies on meter if listening is the only available channel to learn from [131].

Indeed, the material included audio files only, with the sole exception of written

material when a fill in the gap task appeared.

Besides the four passages, verses from two other canti were used for training, as

indicated above. However, these verses were presented only in the ONP condition,

leaving meter intact.

Every passage, including the training, was associated with an image, taken from

among Gustave Doré’s illustrations of the Divina Commedia. The images were

consistent for the same canto in different conditions and were intended to help

engage memory without, at the same time, biasing the linguistic material. Every

poem, including the training, was presented divided into three consecutive portions.

5.2.2 Results

Two separate cohorts or rankers, for Dante- and Ariosto-derived non-poems, were

presented with a combination of the four passages from the same author, one in each

of the ONP, NPS, NPS and NPR versions, and were asked to rank them in order

of metric plausibility. The fully balanced design allowed us to extract a passage-

independent plausibility score.

Data analysis. The outcome of interest is essentially the presence of a significant

correlation between the dependent variables measured in the ranking (the plausi-

bility index, see Fig. 5.6) and in the memory experiment (correct responses, and

reaction times, see Fig. 5.8), that would indicate a joint dependence on the type of

passage manipulation. Correlations were considered significant at p < 0.05.

The contribution of distinct components to metric plausibility

Both when derived from passages by Dante and Ariosto, non-sense poems were

found most plausible in their fully metric ONP versions, somewhat less when the
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number of syllables was manipulated (NPS), even less when the pattern of accents

was altered in the NPA renditions, and the least when rhymes were removed, NPR.

Remarkably, however, differences in the plausibility index are shown in Fig. 5.6

to be quite limited, making the fully balanced design essential. The variance was

particularly limited in passages from the Commedia, which may be due to Dante’s

taking more liberties with the meter he had adopted (the same hendecasyllables as

Ariosto, but in terzine rather than ottave). To quantify this perception, at least

in relation to accent patterns, which are more accessible to analysis, we applied

two independent measures of accent variability to the four original passages by each

author.

Dante appears to be slightly more variable in his accent patterns relative to

Ariosto, but the main observation that can be gleaned off Fig. 5.7 is that both poets

are far from using a fixed pattern, utilizing over half of the maximum entropy they

had available in terms of accenting those passages.

Figure 5.7: Variability in the pattern of accented syllables in the eight
original passages by the two authors. Two independent entropy measures of
variability, per syllable and per verse are both normalized to range from 0 (a single
fixed pattern) to 100% (i.e., each syllable in the verse is accented half the time; or
each verse follows a different accent pattern).
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Meter can facilitate memory

Does such a loose structure help remember individual words? Fig. 5.8 (upper) shows

that it does, only for the non-poems derived from Ariosto’s octaves. Twenty-four

subjects per author were asked, one day after repeatedly listening to one version of

each passage, to remember non-word targets out of three alternatives, upon listening

to the non-poem with selected non-words muted. There were three such targets

in each non-poem. While in the case of those derived from passages in the Divina

Commedia the overall number of correct responses per condition was unrelated to its

metric plausibility (r2=0.04), seemingly fluctuating as much as the correct responses

to the first, second, and third query taken alone, for the passages from Orlando

Furioso the correlation with metric plausibility was remarkable (r2=0.98) and highly

significant (p < 0.01). Interestingly, the total score of the two cohorts was nearly

identical, 147 for Ariosto and 148 for Dante, out of a total of 288 (24×4×3).

Meter helps, but not for free

The analysis of reaction times helps interpret the above results. As shown in Fig. 5.8

(lower), overall it took longer for participants to pick a wrong answer over the correct

answer (on average, 733 ms more), and it took longer for participants tested with

Ariosto, relative to those tested with Dante, to respond (on average, 547 ms more).

Most importantly, in each of the four types of trials above, the more metrically

plausible the passage, the longer the reaction time. However, the trend is significant

only with Ariosto, if data from the two authors are analyzed separately, and it is

significant overall (p < 0.004) with a slope mainly determined by the Ariosto data, if

analyzed together, as shown in Fig. 5.8. The slope for the Dante data alone would be

higher, but not significant, likely because of the limited plausibility range spanned.

These findings suggest that processing meter in order to help retrieve a non-

word heard the day before has a cognitive cost, and takes the order of hundreds of

ms extra time, depending on exactly how much meter is “used up” in the process.

For passages derived from Dante, it appears that although outwardly the metric
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Figure 5.8: Memory and reaction times both increase with metric plau-
sibility. (Upper) Overall correct responses (out of 72) for each condition, ordered
in terms of their metric plausibility, as in Fig. 5.6, for passages from Dante (red)
and Ariosto (blue). (Lower) Reaction times (in seconds) for correct (circles) and
wrong responses (dots) are regressed against plausibility for each author, with a
single slope parameter. The slope is significant and similar to that characterizing
the Ariosto data alone, whereas it is denoted with a dashed line for the Dante data,
because the latter would not produce a significant correlation on its own.

structure is essentially the same (with the slight qualification reported in Fig. 5.7,

and the note that a passage is a sequence of three terzine rather than a single ottava),

meter is used less, and the very same memory performance is attained on average

in less time.
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Chapter 6

Conclusions

In this work we study several aspects of human and (model) rodent memory and

attempt to suggest that memory relies on navigation by fragment fitting, roughly

as envisaged in [1].

First of all, we build upon the mathematical model of CA3 after [56] and address

a number of questions concerning spatial memory. It has been shown in [56] that the

recurrent network of CA3 can store multiple maps in the form of quasi-continuous

attractors. We suggest that by only changing the learning procedure to slower and

interleaved, we can improve uniformly the storage and thus the decoding accuracy

for maps of multiple sample environments. We find a capacity limit for the network

storage that is broadly in line with analytical predictions.

Further, we show that intrinsically within the recurrent network we can model

replay of exploration routes by adding neuronal adaptation to their firing dynam-

ics. Finally, analyzing the continuous portions of correctly decoded trajectories, we

observe that the closer they are to the trajectory used in learning, the higher is the

chance of their correct classification. We suggest that this finding falls in line with

the navigation by fragment hypothesis: given a very short exploration period the

CA3 network may, in fact, not learn the map of the environment evenly, but rather

just some fragments and, possibly, generalize in between.

Moving on, we suggest a human analogue of random exploration and retrieval –

the free recall of spatial locations. We explore the human capacity of recall and its
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dynamics through spatial memory tasks consisting in recalling locations on a hexag-

onal grid, shown simultaneously or serially and with or without spatial structure (in

separate experiments).

In the first experiment, we find that participants can freely recall ∝
√
L out of L

given random locations shown simultaneously. This result has been earlier shown to

be a limit scaling law for recall of lists of words and facts [80, 82], but it is puzzling

with respect to the numerous studies showing a single limit of e.g. 4 or 7 items in

short-term memory (STM).

We suggest a Potts network, and specifically its latching dynamics as a model

of recall of a number of STM items within all the LTM items (stored in the Potts

network). We show that the unrestricted latching dynamics of Potts network also

follows the scaling law found for words and for spatial locations.

Instead, in the more restricted experiment testing serial recall, where we did

not allow any mistake in the order, we find indeed a capacity limit of short-term

memory largely independent of the material used, that is lower the shorter the time

of presentation. This again was a feature reproducible by the Potts network, when

restricted to no return to the visited pattern. Notably, latching by the network has

itself a semi-random nature, so its ability to reproduce some statistical aspects of

human recall stimulates more detailed analyses of the latter.

Further analyzing the responses in a free recall task, we find that participants

seem to remember a general fragmentary schema of locations on the screen and

during recall they make mistakes that are spatially very close to correct answers –

a feature difficult to quantify in a free recall of words.

To further explore the difference in recall limits we have designed a single ex-

periment for spatial recall under different conditions – with simultaneous or serial

presentation, differing recall instructions and two measures of correct recall. As ex-

pected, the results indicate that the overall number of recalled items is highest when

the procedure is least restrictive: the items are shown simultaneously and mistakes

are allowed.
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Next, we chose to add words as stimuli for recall to the spatial task. Given

evidence that mnemonic techniques using spatial anchoring of non-spatial memory

items improve longer-term memory recall performance [101, 107], we wanted to test

whether anchoring words to spatial locations would help their memorization. The

main result of this experiment is that no, the spatial positioning does not seem to

improve the recall capacity in words, nor the opposite effect seems to exist. The

participants have been shown to memorize well neighbourhoods of shown items, not

so well individual locations, while word recall seemed to stably hit the same limit of

4-5 items.

Putting together the observations gathered so far, we decided to test whether

the above-mentioned fragmentary schemata are common across population. We

have run experiment presenting exactly the same spatial configurations of stimuli to

participants. We found that the participants choose common orders when recalling

the positions and these orders are, on average, shorter than random and possess a

number of other shared properties. We describe our attempt to characterize these

schemata as configuration biases favoring the observed geometrical features (e.g.,

shortest distance), but we do not find this first approach to fully explain the observed

unanimity in order of recall.

We further hypothesize that these orders are in fact biased by fragmentary

schemata that are native to participants’ memory. Considering these schemata as

attractive states, we were able to model recall basing it on ‘collective’ experience and

show that the biases could explain the correct and unanimous recall in the beginning

of each trial that fades as the trial progresses.

Considering fading, we returned to the question of an overall blurry schema

that the participants seems to have for a configuration of positions on the screen,

that results in faulty recall dynamics, but similar across participants. Indeed, when

we calculate the occurrence of subsequences in the recall order across participants,

grouping responses by proximity across nodes, we find that the recall capacity in-

creases with a decreasing entropy of choices within groups of common fragments
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(including errors), suggesting that the more common across participants the frag-

ments of a sequence are the easier it is to remember the whole sequence.

These last two results give us two important pieces of the puzzle we have been

putting together in this thesis: we find both common biases in the beginning of

recall that fade with the trial progression and traces of an overall schema consisting

of these common fragments. Furthermore, these results seem to suggest a common

tendency in increasing entropy during recall within trial as well as increasing entropy

with the trial number. We plan to further validate these findings with more different

spatial patterns and more participants.

Now, taking a leap to a different memory-dependent process, namely, remem-

bering poetry, we suggest that remembering fragments of poems is aided by poetic

meter as schemata-driving elements. We show that a similar replay process to the

one mentioned above helps in the memorization of non-words inserted in poetry:

the different features of poetic meter are shown to improve the recall performance

selectively, when needed.

Just before that, we propose an experimental setting in which we should be

able to test to what extent fragmentary schemata operate our train of thought in

mind wandering. Bridging the evidence suggesting that mind wandering depends

on vmPFC [119] and schemata [122], we hope to be able to quantify the differential

effect evoked by introducing novel episodic schemata to free thought process between

a group of patients with lesion to vmPFC and a group of healthy controls.

We want to highlight the thread binding these results and observations together –

the idea of fragmentary memory. In our recall experiments we find that people tend

to remember better the fragments of information that fall in line with what they

have experienced before and that traces of experience help memory by activating

selectively: for example, as rhyme sometimes helps to recall verses in our poetry

experiment, and sometimes it does not.

We observe similar trends in our simulations of models of the memory system:

in our model of CA3 we find that the localization accuracy is higher when the
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remembered fragment is close to a learning trajectory – similarly to how human

participants have shown to recall better the locations close to forming a familiar

geometrical shape, say, a straight line. In our model of short-term memory, the

Potts network, we find that congruent instructions lead to better recall – again, in

human recall it is analogous to remembering better the fragments that resemble one’s

own experience. This also supports our findings on influence of recall instructions

on performance.

The message of this thesis is that schemata that help our memory are sparse: in

our model of CA3 they are parts of the learning trajectory that “attract” memory

and in human recall the same function is associated to the fragments that “click”:

only when an observed configuration of dots is close to a remembered schema it will

be recognized as such. In our Potts model of STM we hypothesize that a similar

effect may be produced by the heteroassociative term: once the network retrieves

the element in a short sequence that has been effectively stored and that can then be

remembered, a whole fragment emerges following the initial order. We hypothesize

that variables of poetic meter have a comparable role, e.g. the length of a phrase

can fit a remembered verse schema and this helps retrieve the correct (non)word.

Theoretically and empirically we thus observe potential signatures of fragmen-

tary memory effect on recall performance – in number of items and in accuracy,

so we cannot help but wonder whether storing information by fragment could be

more efficient computationally. It seems intuitively reasonable that memorizing all

the incoming information in great detail can be computationally expensive and thus

probably redundant over time. After all, we all learn the importance of generaliza-

tion at school. But understanding the advantages of fragmentary memory at the

level of navigation, for example, could help us learn more about memory function

overall.

Further work is needed to determine how place cells could be involved in the

fragmentation. Recent experimental evidence in rodents has been showing that the

presence of objects in the foraging arena attracts activity of spatially selective cells
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[64, 132], and it seems natural to suggest that fragments of space near important

objects bear more significance for memorization, like, for example, routes to an exit

or to food storage sites in an animal natural habitat. It would be interesting to

design experiments in humans and rodents to test such a hypothesis and on the

computational modeling could give further insight on of the problem.

Another direction to explore in this framework is the influence of fragmentary

memory on different cognitive functions. One of the cognitive functions we started

to study has been the free thought process. More work is needed in order to be able

to characterize the role of fragments in memory on mind wandering. For the nearest

future we envisage to explore at least two areas of interest within our paradigm – the

imposed fragmentary schemata in mind wandering (experiment of Chapter 5.1) and

those schemata that are already present in participants’ experience (continuation

for the word-location experiment of Chapter 4.2).
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Dynamics of recall: additional

figures
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(a) L = 6 (b) L = 6

(c) L = 8 (d) L = 8

(e) L = 16 (f) L = 16

Figure A.1: The individual clicks by the participants as the trial progresses (y axis)
for different trial types – of length 6, 8, 16. The figures in the left column show
the distribution for all participants of the distance of the current click to the closest
correct. The figures in the right column show the distance of the current click to the
previous click. Distances are normalized to grid units (as in Fig. 3.3). Vertical lines
show the average value, while the short vertical dashes show individual points (with
jitter). Note: there was a maximum of 2L clicks available for each trial of length L,
but the trial ended sooner, e.g. if the participant recalled all the correct locations
before reaching 2L.
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(a) L = 24 (b) L = 24

(c) L = 32 (d) L = 32

Figure A.2: The individual clicks by the participants as the trial progresses (y axis)
for two trial types – of length 24 and of length 32. The figures in the left column
show the distribution for all participants of the distance of the current click to the
closest correct. The figures in the right column show the distance of the current
click to the previous click. Distances are normalized to grid units (as in Fig. 3.3).
Vertical lines show the average value, while the short vertical dashes show individual
points (with jitter). Note: there was a maximum of 2L clicks available for each trial
of length L, but the trial ended sooner, e.g. if the participant recalled all the correct
locations before reaching 2L.
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