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Spin Hall insulators beyond the helical Luttinger model
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We consider the interacting, spin-conserving, extended Kane-Mele-Hubbard model, and we rigorously establish
the exact quantization of the edge spin conductance and the validity of the helical Luttinger liquid relations for
Drude weights and susceptibilities. Our analysis takes fully into account lattice effects, typically neglected in
the helical Luttinger model approximation, which play an essential role for universality. The analysis is based
on exact renormalization-group methods and on a combination of lattice and emergent Ward identities, which
enable the emergent chiral anomaly to be related with the finite renormalizations due to lattice corrections.
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I. INTRODUCTION

The remarkable edge transport properties of quantum spin
Hall insulators (QSHI), predicted in [1–5] (see [6–8] for
reviews), have been explained so far via topological arguments
or effective quantum field theory (QFT) descriptions. In
the absence of many-body interactions, and if the spin is
conserved, topological arguments ensure the quantization of
the spin Hall conductance. Many-body interactions, however,
break the single-particle picture, and prevent the use of such
methods. Nevertheless, experiments have shown values of
spin conductances that are approximately quantized [9–13].
It is a challenge for theorists to understand a mechanism
for universality, or to predict possible deviations from the
quantized value.

Due to the reduced dimensionality and to the massless
dispersion relation, the edge states form a strongly correlated
system. To analytically understand its behavior, the helical Lut-
tinger (HL) model [4], a QFT for relativistic one-dimensional
fermions with locked spin and chirality, has been proposed
as an effective field-theoretic description. This model can
be studied via bosonization, see e.g., [14,15]; as a result,
it exhibits anomalous decay of correlations, and the chiral
anomaly. Also, nonuniversal anomalous exponents, velocities,
and transport coefficients are related by exact scaling relations.
Several generalizations of the HL model have been considered,
see [16–27]. However, these effective QFT descriptions are
insufficient to conclude whether many-body interactions break
or not the quantization of the spin conductance, since they
neglect important lattice effects; it is well known that nonlinear
corrections to the dispersion relation and umklapp terms might
produce finite corrections to the transport coefficients, as, for
instance, in graphene [28,29].

In this paper, we establish the exact quantization of the
edge spin conductance of a truly interacting lattice QSHI,
going beyond the effective QFT description. Moreover, we
establish the validity of the HL scaling relations by taking
fully into account lattice effects and the nonlinearity of the
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energy bands. We use recently developed nonperturbative RG
methods, introduced to prove rigorous universality results for
nonsolvable statistical mechanics models [30].

II. THE KMH MODEL

A. The model

A basic model for interacting, time-reversal-invariant topo-
logical insulators is provided by the extended, spin-conserving
Kane-Mele-Hubbard (KMH) model. The KMH model is a
time-reversal-symmetric system, describing spinful fermions
on the honeycomb lattice. The honeycomb lattice � can be
represented as the superposition of two triangular sublattices
�A,�B of side L, � = �A + �B . We denote by ��1, ��2 the
normalized basis vectors of �A, and we set �B = �A + (1,0).
We shall denote by x1,x2 the coordinates of the point �x ∈ �A in
the ��1,��2 basis. We introduce fermionic creation/annihilation
operators a±

�x,σ
and b±

�y,σ
, with spin labels σ = ±, acting on

the two triangular sublattices �A and �B . In the absence of
interactions, the Hamiltonian is

H0 = −t1
∑
�x,j,σ

[
a+

�x,σ
b−

�x+�δj ,σ
+ b+

�x+�δj ,σ
a−

�x,σ

]

−it2

⎡
⎢⎢⎢⎣

∑
〈〈�x,�y〉〉

σ

a+
�x,σ

(�σ �ν�x,�y)a−
�y,σ

+
∑

〈〈�x,�y〉〉
σ

b+
�x,σ

(�σ �ν�x,�y)b−
�y,σ

⎤
⎥⎥⎥⎦

−W
∑
�x,σ

[
a+

�x,σ
a−

�x,σ
− b+

�x+δ1,σ
b−

�x+δ1

] − μN , (1)

where in the first sum �x ∈ �A, and j = 1,2,3 labels one of its
three nearest neighbors in �B , connected by the vectors �δj ;
see Fig. 1. The second and third sums run over next-to-nearest
neighbors on the A,B sublattices, connected by the vectors
±�γj , j = 1,2,3; we denote by �σ = (σ1,σ2,σ3) the vector of
the Pauli matrices, and we set

�ν�x,�y = ( �d�x,�z × �d�z,�y)/| �d�x,�z × �d�z,�y |, (2)

where �z is the intermediate site between �x and �y, and
�d�x,�y = �x − �y. The third term includes a staggered potential
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FIG. 1. The honeycomb lattice �: the empty dots belong to the
A sublattice, while the black dots belong to the B sublattice.

±W on the A,B sublattices, and the last term fixes the chemical
potential μ (N is the number operator). The Hamiltonian
of the model is the sum of two copies of the Haldane
model [31]: H0 = ∑

σ Hσ
0 , where Hσ

0 acts on the σ -spin
subsector. The connection between the different spin sectors
is H+

0 = CH−C, with C the complex conjugation operator,
which ensures the invariance under time-reversal symmetry of
the full Hamiltonian.

To reduce the honeycomb lattice to a Bravais lattice, we
collect the fermionic operators associated with the sites �x, �x +
�δ1 in a single, two-component fermionic operator (see Fig. 1):
φ+

�x,σ
= (a+

�x,σ
,b+

�x+�δ1,σ
) ≡ (φ+

�x,A,σ
,φ+

�x,B,σ
). With these notations,

we rewrite the noninteracting Hamiltonian as

H0 =
∑
�x,�y

∑
ρ,ρ ′,σ

φ+
�x,ρ,σ

Hσ
ρρ ′ (�x,�y)φ−

�y,ρ ′,σ , (3)

with Hσ a one-particle Schrödinger operator, acting on
�A × C2. Let us now define the density operator as ρ�x,σ =∑

ρ=A,B ρ�x,ρ,σ , with ρ�x,ρ,σ = φ+
�x,ρ,σ

φ−
�x,ρ,σ

. The interacting
Hamiltonian is

H = H0 + λV,

V =
∑
�x,�y

∑
ρ,ρ ′

[
ρ�x,ρ,σ − 1

2

][
ρ�y,ρ ′,σ ′ − 1

2

]
vρρ ′ (�x,�y) (4)

for vρρ ′ (�x,�y) short-ranged, and where λ is the coupling
constant.

B. Lattice currents and conservation laws

Let A(t) = eiHtAe−iHt be the time evolution of A. The
density operator satisfies the following lattice continuity
equation:

∂tρ�x,σ (t) = i[H,ρ�x,σ (t)] =
∑

�y

∑
ρ,ρ ′

j
ρρ ′;σ
�x,�y (t),

j
ρρ ′;σ
�x,�y = iφ+

�y,ρ
Hσ

ρρ ′(�y,�x)φ−
�x,ρ ′ + H.c. (5)

The operator j
ρρ ′;σ
�x,�y is the bond current operator, corresponding

to the pairs of honeycomb lattice sites labeled by (�x,ρ; �y,ρ ′).

Notice that, by the finite range of the hopping Hamiltonian, the
only nonvanishing bond currents are those connecting (�x,�x ±
��i), with i = 1,2, and (�x,�x ± �γ1), with �γ1 = ��1 − ��2.

Let jσ
�x,�y = ∑

ρ,ρ ′ j
ρρ ′;σ
�x,�y . Let us define the discrete lattice

derivative as dif (�x) = f (�x) − f (�x − ��i). Then, the continuity
equation can be rewritten as

∂tρ�x,σ (t) = −d1j�x,�x+��1
−d2j�x,�x+��2

−j�x,�x+��1−��2
− j−��1+��2+�x,�x

≡ −d1j1,�x − d2j2,�x, (6)

where we defined jσ
1,�x = jσ

�x,�x+��1
+ jσ

�x,�x+��1−��2
and jσ

2,�x =
jσ

�x,�x+��2
+ jσ

�x,�x−��1+��2
. We shall collect densities and currents in

a single 3-current jσ
μ,�x , μ = 0,1,2. Also, we define the charge

and spin 3-currents as j c
μ,�x = ∑

σ jσ
μ,�x , j s

μ,�x = ∑
σ σjσ

μ,�x ,

which satisfy ∂0j
�

0,�x + ∑
i dij

�

i,�x = 0, with � = c,s.
We shall study the thermodynamic properties of the

model in the grand-canonical ensemble. The Gibbs state of
the model is 〈 〉β,L = (1/Zβ,L)Tr e−βH, with Zβ,L = Tr e−βH

the partition function. We introduce the imaginary-time (or
Euclidean) evolution of the fermionic operators as φ±

x,ρ,σ :=
ex0Hφ±

�x,ρ,σ
e−x0H, x = (x0,�x), with x0 ∈ [0,β), extended an-

tiperiodically for all x0 ∈ R.
A crucial ingredient in our analysis will be the use of Ward

identities, implied by the charge and spin conservation laws.
Let d0 ≡ i∂x0 . The lattice continuity equation can be rewritten
in a compact form as

∑
μ dμjσ

μ,x = 0. This relation can be used
to derive identities among correlations, such as∑

μ

dxμ

〈
Tjσ

μ,x ; jσ
ν,y

〉
β,L

= iδ(x0 − y0)
〈[
jσ

0,�x ,jσ
ν,�y

]〉
β,L

. (7)

In Eq. (7), T is the time-ordering operator, and the contact
term on the right-hand side is called the Schwinger term.
Equation (7) is the Ward identity for the current-current
correlation functions. In the same way, one can also derive a
Ward identity relating the vertex functions of the lattice model
to the two-point correlation function:∑

μ

dzμ
〈Tj�

μ,z ; φ−
y,σ,ρ ′φ

+
x,σ,ρ〉β,L = iσ�[〈Tφ−

y,σ,ρ ′φ
+
x,σ,ρ〉β,Lδx,z

−〈Tφ−
y,σ,ρ ′φ

+
x,ρ〉β,Lδy,z],

(8)

where δx,z = δ(x0 − y0)δ�x,�y and σc = +, σs = σ .

III. NONINTERACTING TOPOLOGICAL INSULATORS

In the absence of interactions, λ = 0, the Hamiltonian
reduces to the sum of two noninteracting Haldane Hamil-
tonians, H0 = ∑

σ=± Hσ
0 . Suppose the model is equipped

with periodic boundary conditions. Then [using the fact
that the single-particle Hamiltonian is translation-invariant,
Hσ (z,z′) ≡ Hσ (z − z′)], we can introduce the Bloch Hamil-
tonian as Ĥ σ (�k) = ∑

z e−i�z·�kHσ (z) for �k in the Brillouin zone
B. We have

Ĥ σ (�k) =
(

mσ (k) −t1�
∗(k)

−t1�(k) −mσ (k)

)
, (9)
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where mσ (�k) = W − 2σ t2α(�k), α(�k) = ∑3
i=1 sin �k · �γi , and

�(�k) = 1 + e−i�k·��1 + e−i�k·��2 . The corresponding energy bands
are

Eσ
±(�k) = ±

√
mσ (�k)2 + t2|�(�k)|2.

To make sure that the energy bands do not overlap, we assume
that t2/t1 < 1/3. The two bands can only touch at the Fermi
points �k±

F = ( 2π
3 , ± 2π

3
√

3
), which are the two zeros of �(�k),

around which �(�k±
F + �k′) 
 3

2 (ik′
1 ± k′

2). The condition that
the two bands touch at �kω

F , with ω = +,−, is that mσ
ω = 0,

with

mσ
ω ≡ mσ

(�kω
F

) = W + ωσ3
√

3 t2.

Therefore, the unperturbed critical points are given by the
values of W such that W = ±3

√
3 t2. Choosing the chemical

potential μ = 0, which lies halfway between the two energy
bands, the condition W �= ±3

√
3 t2 corresponds to the insulat-

ing phase for which the correlations decay exponentially fast.
In the insulating phase, the system may or may not be in a
topologically nontrivial phase, depending on the value of the
Hall conductivity. This quantity is defined starting from the
Kubo formula, which we use directly in its imaginary-time
version (see [32] for a discussion of the Wick rotation):

σσ
12 = lim

p0→0
lim
�p→0

lim
β,L→∞

1

p0

∫ β

0
dx0

∑
x

(1−e−ip·x)
〈
jσ

1,x ; jσ
2,0

〉
β,L

.

(10)

In the absence of interactions, the Hall conductivity of the
Haldane model can be computed explicitly. One finds

σσ
12 = νσ

2π
, νσ = sgn(mσ

−) − sgn(mσ
+). (11)

Concerning the Kane-Mele model, its net Hall conductivity
σ c

12 = σ+
12 + σ−

12 vanishes while the net spin conductivity σ s
12 =

σ+
12 − σ−

12 is nonzero:

σ s
12 = σ+

12 − σ−
12 = ν+

π
. (12)

This is the quantum spin Hall effect. In the spin-symmetric
case, the quantization of σ s

12 follows from the quantization of
σσ

12, which is ensured for topological reasons. In the absence
of spin symmetry, for instance in the presence of Rashba
couplings, one does not expect the spin conductivity to be
quantized. Nevertheless, topology survives in the sense that
the Hamiltonians are classified by a suitable Z2 invariant [1,2].

A remarkable feature of topological insulators is the
presence of gapless edge modes. Suppose now the system
is equipped with cylindric boundary conditions, say periodic
in the ��1 direction and Dirichlet in the ��2 direction, on
the boundaries at x2 = 0, x2 = L. By translation invari-
ance in the ��1 direction, we can introduce a partial Bloch
transformation of the initial Hamiltonian, Ĥρρ ′ (k1; x2,y2) =∑

z1
e−iz1k1Hρρ ′ (z1; x2,y2), with k1 ∈ S1. By construction, the

Hamiltonian is symmetric under the action of the time-
reversal operator, T ∗Ĥ (k1)T ≡ T ∗[Ĥ+(k1) + Ĥ−(k1)]T =
Ĥ−(−k1) + Ĥ+(−k1) ≡ Ĥ (−k1) since Ĥ σ (k1) = Ĥ−σ (−k1).
Edge states correspond to solutions of the Schrödinger

equation Ĥ (k1)ξ (k1) = ε(k1)ξ (k1) at the Fermi level μ, which
are exponentially localized around one of the two edges:∣∣ξx2 (k1)

∣∣ � Ce−c|x2|,
∣∣ξx2 (k1)

∣∣ � Ce−c|L−x2|. (13)

These 1D eigenfunctions of Ĥ (k1) correspond to 2D eigen-
functions for the Hamiltonian H , of the form e−ik1x1ξx2 (k1);
they are responsible for the transport of dissipationless edge
currents. In the Haldane model, the edge eigenfunctions can be
found explicitly [33]: each cylinder edge supports either a zero-
or one-edge mode. Consequently, the Kane-Mele Hamiltonian
H = ∑

σ=± Hσ supports either zero- or two-edge states per
edge. Let ε+,ε− be their dispersion relations. By time-reversal
symmetry, ε+(k1) = ε−(−k1): the model displays two Fermi
points k±

F , k+
F = −k−

F , such that

ε+(k+
F ) = ε−(k−

F ) = μ.

Time-reversal symmetry implies that the edge modes are
counterpropagating: v+ = ∂k1ε+(k+

F ) = −v−.
The edge transport of the system can be investigated by

probing the variation of the density or of the current (of
charge or of spin) after introducing an external perturbation
supported in a strip of width a from the x2 = 0 edge. We
shall study these transport phenomena in the linear-response
regime. To define the edge transport coefficients, let us
introduce the following notations. Given a local operator O�x ,
we define its partial space-time Fourier transform as Ôp,x2 =∫ β

0 dx0
∑

x1
e−ip·xOx, with p = (p0,p1), p0 the Matsubara fre-

quency, and x = (x0,x1). Let 〈〈〈 · 〉〉〉∞ = limβ,L→∞(βL)−1〈·〉β,L.
We define, for �,�′ = c,s,

G
�;a
ρ,ρ(p) =

a∑
x2=0

∞∑
y2=0

〈〈〈
Tρ�

p,x2
; ρ�′

p,y2

〉〉〉
∞,

G
�;a
ρ,j (p) =

a∑
x2=0

∞∑
y2=0

〈〈〈
Tρ�

p,x2
; j�′

1,−p,y2

〉〉〉
∞, (14)

G
�;a
j,j (p) =

a∑
x2=0

⎡
⎣ ∞∑

y2=0

〈〈〈
Tj

�

1,p,x2
; j�′

1,−p,y2

〉〉〉
∞ − i�(x2)

⎤
⎦,

where �(x2) = limβ,L→∞〈∑σ [tσ�x,�x+��1
+ tσ�x,�x+��1−��2

]〉β,L, with

tσ�x,�y = ∑
ρρ ′ −iφ+

�y,ρ
Hσ

ρρ ′ (�y,�x)φ−
�x,ρ ′ − H.c. As we shall see later,

this function is related to the Schwinger term in Eq. (7). The
edge spin conductance is

σ s = lim
a→∞ lim

p0→0+
lim

p1→0
G

c,s;a
ρ,j (p). (15)

It measures the variation of the spin current after introducing
a shift of the chemical potential supported in a region of
width a from the x2 = 0 edge. Similarly, the edge charge
conductance is

σ c = lim
a→∞ lim

p0→0+
lim

p1→0
G

c,c;a
ρ,j (p). (16)

Instead, the edge susceptibilities and Drude weights, of charge
or of spin, are

κ� = lim
a→∞ lim

p1→0
lim

p0→0+
G�,�;a

ρ,ρ (p),

D� = − lim
a→∞ lim

p0→0+
lim

p1→0
G

�,�;a
j,j (p). (17)
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As we shall see, due to the lack of continuity at p = (0,0) of the
expressions in (14), the order of the limits in the above defini-
tions is crucial. It turns out that, in the absence of interactions,
the edge transport coefficients can be computed. One has

σ c = 0, σ s = σ s
12,

κ� = 1

π |v+| , D� = |v+|
π

. (18)

The equivalence of the edge spin conductance with the
bulk spin conductivity is a manifestation of the bulk-edge
correspondence: namely, a duality between the presence
of edge modes at the Fermi level with the value of the
topologically invariant classifying bulk Hamiltonians (acting
on infinite lattices, with no edges). For the IQHE [34–37],
this duality implies that the sum of the chiralities of the
edge states

∑
e ωe, with ωe = sgn[∂k1εe(ke

F )], equals the Chern
number of the Bloch bundle, which fixes the value of the
Hall conductivity. For time-reversal-invariant systems, instead,
1
2

∑
e |ωe| mod 2 turns out to be equal to the bulk Z2 invariant

[38–40]; in particular, for the spin-conserving Kane-Mele
model, this implies that the edge spin conductance equals
the bulk spin conductivity. The bulk-edge correspondence has
been rigorously established for single-particle Hamiltonians:
there is no general argument ensuring its validity for interacting
many-body systems. Finally, notice that in contrast to σ s, the
edge susceptibility κ� and the Drude weight D� are nonuniver-
sal quantities, depending on the velocity of the edge modes.

The goal of this paper is to understand the effect of many-
body interactions of the edge transport coefficients: the natural
question we address here is whether some form of universality
persists, and in particular if the quantization of σ s holds true.

IV. MAIN RESULT

Here we shall consider the edge transport properties of
the Kane-Mele-Hubbard model, λ �= 0. Our main result is the
following theorem.

Theorem. Consider the KMH Hamiltonian (4) with cylin-
dric boundary conditions. Let us choose the chemical potential
μ in the gap of the bulk Hamiltonian. Suppose that the
single-particle KM Hamiltonian supports a pair of edge modes,
ε+(k+

F ) = ε−(k−
F ) = μ, and that v+ �= 0. Then, there exists

λ0 > 0 such that, for |λ| < λ0, the following is true. Let
ω = sgn(v+). The edge spin conductance is universal:

σ s = −ω

π
. (19)

Moreover, the Drude weights and the susceptibilities satisfy
the helical Luttinger liquid relations:

κc = K

πv
, Dc = vK

π
, κs = 1

πvK
, Ds = v

πK
(20)

with K = 1 + O(λ) �= 1, v = v+ + O(λ) �= v+. Finally, the
two-point function decays with an anomalous exponent, η =
(K + K−1 − 2)/2.

As a corollary, our result combined with the universality
of bulk transport, following from the analysis of [32,41],
provides a rigorous example of bulk-edge correspondence
for an interacting time-reversal-invariant topological insulator
(see [42] for the analogous result for Hall systems). The lack

of many-body corrections to the conductance is in agreement
with experimental results [9,11]. Notice that, in contrast with
the conductance, the susceptibilities and the Drude weights
are interaction-dependent: nevertheless, if combined with the
dressed Fermi velocity v, they verify a marginal form of
universality, in the sense of the validity of the helical Luttinger
liquid relation:

κ�v2

D�
= 1. (21)

Moreover, the HL parameter K allows us to determine the
anomalous exponent of the two-point function via the formula
η = (K + K−1 − 2)/2.

The rest of the paper is organized as follows. In Sec. V
we introduce a Grassmann integral representation for the
transport coefficients. We then integrate out the “bulk degrees
of freedom” corresponding to the energy modes far from
the Fermi level. As a result, we end up with an effective
one-dimensional model, which is reminiscent of the helical
Luttinger model up to some crucial differences: the fermionic
fields are defined on a lattice, the interaction involves arbitrar-
ily high monomials in the fields, the energy-dispersion relation
is nonlinear, and the umklapp scattering process is present.
Then, in Sec. VI we study this lattice QFT via exact RG,
which allows us to represent the transport coefficients in terms
of renormalized, convergent series. Such expansions can be
reorganized by isolating the contributions corresponding to an
emergent, effective chiral QFT theory with suitably fine-tuned
bare parameters, from a remainder term, that depends on all
lattice details. The advantage of this rewriting is that the
current-current correlation functions of the emergent QFT can
be computed exactly (see Sec. VII) thanks to the validity
of extra chiral Ward identities. This allows us to compute
the edge transport coefficients of the KMH model up to
finite multiplicative and additive renormalizations, depending
on all the microscopic details of the model. The values
of these renormalizations are, however, severely constrained
from one side by the validity of the Adler-Bardeer anomaly
nonrenormalization property of the emergent chiral theory,
and from the other side by the lattice WIs of the KMH model.
As we show in Sec. VIII, these facts imply nonperturbative
relations among all finite renormalizations, from which our
theorem follows.

V. REDUCTION TO AN EFFECTIVE 1D THEORY

For simplicity, we shall directly consider the case L = ∞,
which corresponds to having just one edge. It is useful to
switch to a functional integral representation of the correlation
functions of the lattice model. We define the generating
functional of the correlations as

eW(A) =
∫

P (d�) e−V (�)+B(�;A), (22)

where �±
x,σ,ρ are Grassmann variables, labeled by x = (x0,�x) ∈

[0,β) × �A, σ = ±, ρ = A,B; P (dψ) is a Gaussian Grass-
mann integration with a propagator given by the noninteracting
Euclidean two-point function,

gσ,σ ′(x,y) = δσσ ′

∫
dk

(2π )2

e−ik·(x−y)

−ik0 + Ĥ σ (k1) − μ
(�x; �y), (23)
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where k = (k0,k1), with k0 the fermionic Matsubara frequency
and k1 the quasimomentum associated with the translation-
invariant direction ��1. The Grassmann counterpart of the many-
body interaction is

V (�) = λ
∑
ρ,ρ ′
σ,σ ′

∫
dx dy nx,ρ,σ ny,ρ ′,σ ′vρρ ′ (�x,�y)δ(x0 − y0),

where
∫

dx = ∫ β

0 dx0
∑

�x , and nx,ρ,σ is the Grassmann coun-
terpart of the density operator. Finally, B(�; A) is a source
term of the form

B(�; A) =
∑
μ,�

∫
dx A�

μ,xJ
�
μ,x (24)

with J
�
μ,x the Grassmann counterpart of j

�
μ,x.

We now use the addition principle of the Grassmann
variables to write � = �(e) + �(b), with �(e), �(b) indepen-
dent Grassmann variables, with propagators g(edge) and g(bulk),
where g(e) takes into account the energy modes close enough
to the Fermi level. That is,

g
(e)
σσ ′(x,y) = δσσ ′

∑
e

∫
dk

(2π )2
e−ik·(x−y)

× χσ (k1)

−ik0 + εσ (k1) − μ
P σ

k1
(x2; y2), (25)

with P σ
k1

= |ξσ 〉〈ξσ |, where ξσ is the edge mode of Ĥ σ (k1),
with energy εσ , and χσ (k1) ≡ χ (|k1 − kσ

F | � δ) is a compactly
supported cutoff function. By construction, the propagator
g(bulk) is gapped; it only depends on the energy modes that
are at a distance at least ∼δ from the Fermi level. Thus,
|g(bulk)(x,y)| � Ce−c|x−y|. Instead, due to the fact that, for
k1 = k′

1 + kσ
F and k′

1 small

εσ

(
k′

1 + kσ
F

) − μ = σv+k′
1 + O

(
k′

1
2)

, (26)

the edge propagator in Eq. (25) only decays as |x −
y|−1e−c(|x2|+|y2|).

The field �(b) can be integrated out, expanding the integrand
of (22) in the coupling λ and using the exponential decay of
the bulk propagator together with fermionic cluster-expansion
techniques [43]. We then get

eW(A) = eW
(b)(A)

∫
Pe(d�(e))e−V (e)(�(e))+B(e)(�(e);A), (27)

where the new effective interaction V (e)(�(e)) is a sum over
monomials P in the fields �(e) of any order |P | = n, with
kernels W

(e)
P (x1, . . . ,xn), exponentially decaying in |xi − xj |

for i �= j . Graphically, a given kernel can be represented
as a sum of Feynman diagrams with |P | external lines,
corresponding to the edge fields, and an arbitrary number
of quartic vertices connected by the bulk propagators. This
expansion turns out to be convergent for small λ, thanks to
determinant bounds for fermionic field theories, combined
with the good decay properties of the bulk propagators. The
new effective source term B(e) admits a similar representation,
where now external lines corresponding to the A fields are
present as well.

Due to the special form of the edge propagator, given by
Eq. (25), we now notice that the edge field can be represented
as the convolution of a truly one-dimensional field with the
edge mode eigenfunctions. That is,∫

Pe(d�(e))e−V (e)(�(e))+B(e)(�(e);A)

=
∫

P1D(dψ)e−V (e)(ψ∗ξ̌ )+B(e)(ψ∗ξ ;A), (28)

where P1D is a Grassmann Gaussian integration for a one-
dimensional field ψ±

�x,σ
, with the propagator given, in momen-

tum space, by

ĝσ,σ ′(k) = δσσ ′
χσ (k)

−ik0 + εσ (k1) − μ0
, (29)

where now χσ (|k|) = χ (|k − kσ
F | � δ) and μ − μ0 = ν0, with

ν0 = O(λ) a counter term that is chosen so as to fix the value
of the interacting chemical potential; and

(ψ+ ∗ ξ̌ )x,ρ =
∑
y1

ψ−
(x0,y1),σ ξ̌ σ

x2
(x1 − y1; ρ), (30)

where ξ̌ σ
x2

(x1; ρ) is the Fourier transform of χσ (k1)ξσ
x2

(k1; ρ).
This representation of the edge field allows us to decouple the
x2 variables from the remaining x0,x1 variables in the effective
interaction. Summing over x2 (recalling the exponential decay
of the edge modes), one finally gets

eW(A) = eW
(b)(A)

∫
P0(dψ) e−V (0)(ψ)+B(0)(ψ ;A), (31)

where P0 ≡ P1D and for suitable new effective interaction and
source terms, which can be again expressed as sums over
monomials of arbitrary order in the 1D fields ψ . One has

V (0)(ψ) =
∫

dx

[
λ0ψ

+
x,+ψ−

x,+ψ+
x,−ψ−

x,− +
∑

σ

ν0ψ
+
x,σψ−

x,σ

]

+RV (0)(ψ), (32)

where the new coupling constant is

λ0 = λ
∑
x2,y2
ρ,ρ ′

v̂ρρ ′ (0; x2,y2)ξ (1,σ )
x2 (kF ; ρ)ξ (1,σ )

x2
(kF ; ρ)

×ξ
(1,σ )
y2 (kF ; ρ ′)ξ (1,σ )

y2
(kF ; ρ ′) + O(λ2), (33)

and RV (0) collects all the higher-order terms, together with
nonlocal terms. All these contributions turn out to be irrelevant
in the RG sense. Similarly,

B(0)(ψ ; A) =
∑
μ,�

∫
dx Z�

μ(x2)A�
μ,xn

�
μ,x + RB(0)(ψ ; A),

(34)
where Z�

μ(x2) is such that |Z�
μ(x2)| � Ce−cx2 , and it is analytic

in λ; and

nc
0,x =

∑
σ

ψ+
x,σψ−

x,σ , nc
1,x =

∑
σ

σψ+
x,σψ−

x,σ ,

ns
0,x = nc

1,x , ns
1,x = nc

0,x . (35)

Let us give a quick proof of Eqs. (34) and (35). After the
integration of �(b) and the reduction to 1D theory, the effective
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source term has the following form, in momentum space:

B(0)(ψ ; A) =
∑

μ,�,x2

∫
dk

(2π )2

dp

(2π )2

×Â
�

μ,(p,x2)ψ̂
+
k+p,σ ψ̂−

k,σ Ŵ �
μ,σ (p,k; x2) + O(A2)

(36)

for suitable kernels Ŵ �
μ,σ . The higher orders in A turn out to be

irrelevant in the RG sense. Let us localize the kernel by writing
Ŵ �

μ,σ (p,k; x2) = Ŵ �
μ,σ (0,kσ

F ; x2) + RŴ �
μ,σ , where the R error

terms are irrelevant. The effective 1D model is invariant under
time-reversal symmetry [recall that ξσ (k1) = ξ−σ (−k1), and

that Ĥ σ (k1) = Ĥ−σ (−k1)]:

Â�
μ,p,x2

→ γ�γμÂ
�
μ,−p,x2

, ψ̂ε
k,σ → ψ̂ε

−k,−σ , c → c̄, (37)

with c a generic constant in the action, γc = 1 = −γs, and
γ0 = 1 = −γ1. This symmetry implies that Ŵ �

σ,μ(0,kσ
F ; x2) =

γ�γμŴ
�
−σ,μ(0,k−σ

F ; x2). Also, the model is invariant under
complex conjugation:

Â�
μ,p,x2

→ Â
�
μ,p̃,x2

, ψ̂+
k,σ → −ψ̂−

k̃,σ
,

ψ̂−
k,σ → ψ̂+

k̃,σ
, c → c̄ (38)

with k̃ = (−k0,k1). This last symmetry implies that
Ŵ �

σ,μ(0,kσ
F ; x2) is real. Going back to configuration space,

Eq. (35) follows.
Equation (31) is an exact (but very involved) representation

of the generating functional of the KMH model in terms of an
effective one-dimensional field. It differs from the HL model
by the presence of nonlinear corrections in the dispersion and
irrelevant terms in the effective interaction.

VI. MULTISCALE ANALYSIS OF THE EDGE MODES

Due to the absence of a mass gap, the field ψ cannot be
integrated in a single step. Instead, we proceed in a multiscale
fashion, exploiting a renormalization procedure at every step.
We rewrite the ψ field in terms of single-scale quasiparticle
fields as follows:

ψ±
x,σ = e±ikσ

F x1

0∑
h=hβ

ψ (h)
x,σ , (39)

where each field varies on a scale 2−h, with h � 0. The last
scale hβ is fixed by the inverse temperature, hβ ∼ | log2 β|.
The covariance of the fields is defined inductively. We
integrate the fields in an iterative fashion. From a RG point
of view, the ψ+

x ψ−
x terms are relevant, while the ψ+

x ∂μψ−
x ,

ψ+
x,σψ−

x,σψ+
x,σ ′ψ

−
x,σ ′ terms are marginal.

After the integration of the scales h + 1, . . . ,0, we obtain
the following representation of the generating functional:

eW(A) = eW
(h)(A)

∫
Ph(dψ (�h))e−V (h)(

√
Zhψ)+B(h)(ψ ;A), (40)

where the new Gaussian Grassmann integration has a
propagator:

g
(�h)
σ,σ ′ (x,y) = δσσ ′

Zh

∫
dk′

(2π )2

e−ik′ ·(x−y)χh(k′)
−ik0 + σvhk

′
1

[1 + rh(k′)],

where χh is a smooth cutoff function supported for |k′| �
2h+1; rh is an error term, |rh(k′)| � C|k′|; and Zh and vh

are, respectively, the wave-function renormalization and the
effective Fermi velocity, whose RG flow, as a function of
h, is marginal. Time-reversal symmetry (37) and complex
conjugation (38) imply that these parameters are real and
spin-independent.

The new effective interaction is a sum of Grassmann
monomials of arbitrary order. We rewrite it as V (h) = LV (h) +
RV (h), where LV (h) takes into account all the relevant and
marginal contributions:

LV (h)(
√

Zhψ) =
∫

dx

[
λhZ

2
hψ

+
x,+ψ−

x,+ψ+
x,−ψ−

x,−

+
∑

σ

2hZhνhψ
+
x,σ ψ−

x,σ

]
,

while RV (h) takes into account all irrelevant terms. By the
symmetries (37) and (38), the parameters λh and νh are again
real and spin-independent. In the same spirit, we rewrite B(h) =
LB(h) + RB(h), where LB(h) collects all marginal terms (there
are no relevant terms in the source term):

LB(h)(ψ ; A) =
∫

dx Z
�

h,μ(x2)A�
μ,xn

�
μ,x (41)

for suitable (real) running coupling functions Z
�

h,μ(x2).
Let us briefly discuss the flow of the running coupling

constants. The (relevant) flow of νh is controlled via a fixed
point argument by properly choosing the initial shift of
the chemical potential ν0; see [42] for details in a similar
case. Instead, the (marginal) flows of λh,vh are controlled
using a highly nontrivial cancellation in the renormalized
expansions, the vanishing of the beta function [30], giving
λh = λ0 + O(λ2) and vh = v0 + O(λ) uniformly in h. Instead,
the flows of the wave function and vertex renormalizations
diverge with anomalous exponents,

Zh ∼ 2−ηh, Z
�

h,μ(x2) ∼ 2−ηhZ
�

0,μ(x2), (42)

with η = λ2
0

8π2v2
0

+ O(λ4
0).

The outcome of this construction is a convergent expansion
for the correlation functions in terms of the running coupling
constants, which can be used to prove bounds for the decay of
the current-current correlations. Convergence follows from the
use fermionic cluster expansion at every step of integration, as
in [42], and excludes nonperturbative effects. We have

∣∣∣∣ lim
β,L→∞

〈
T j�

μ,x ; j�′
ν,y

〉
β,L

∣∣∣∣ � Ce−c|x2−y2|/(1 + |x − y|2). (43)

This estimate, however, is not for the computation of the edge
transport coefficients. In fact, it is not even enough to prove
the boundedness of the Fourier transform of the current-current
correlation, uniformly in p. To improve on this, we need to
exploit cancellations in the renormalized expansion, following
from the emergent chiral symmetry of the theory.
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VII. EMERGENT CHIRAL QFT

In this section we introduce an emergent effective chiral
QFT theory, defined by the generating functional:

eW
χ (A) =

∫
PN (dψ)e−λχ Zχ2

∫
dx dy v(x−y)nx,+ny,−+B(ψ ;A), (44)

where PN (dψ) is a Gaussian Grassmann measure with a
propagator:

g
χ

σ,σ ′(x,y) = δσσ ′

Zχ

∫
dk

(2π )2
e−ik·(x−y) χN (k)

−ik0 + σvχk1
, (45)

where χN is an ultraviolet cutoff, supported for |k| � 2N+1,
for N � 1 (to be sent to infinity at the end). The source term
is B(ψ ; A) = ∑∞

x2=0

∫
dx Z�,χ

μ (x2)A�
μ,xn

�
μ,x . The interaction

potential v(x − y) is nonlocal and short-ranged. The presence
of the UV cutoff is crucial to give a nonperturbative meaning
to Eq. (44). Its final removal is done through an ultraviolet
multiscale analysis, in which the nonlocal, short-range nature
of the interaction plays an essential role [30]. The infrared
regime of this QFT can be studied as for the lattice model. Let
us denote by λ

χ

h , Z
χ

h , v
χ

h , and Z
�,χ

μ,h(x2) the running coupling
constants of the emergent chiral model 〈〈〈 〉〉〉χ .

The bare parameters Zχ , vχ , λχ , and Z�,χ
μ will be chosen

in such a way that the running coupling constants of lattice
and chiral theory converge to the same limit as h → −∞.
This fact, together with the convergence of the renormalized
expansions for both models, implies that the correlations of the
KMH model can be written in terms of the correlations of the
emergent chiral model, up to finite multiplicative and additive
renormalizations, depending on all the microscopic details of
the KMH model:〈〈〈

T j�
μ,p,x2

j
�′
ν,−p,y2

〉〉〉
∞ = Z�,χ

μ (x2)Z�,χ
ν (y2)〈〈〈n�

μ,pn
�′
ν,−p〉〉〉χ

+Ĥ �,�′
μ,ν (p,x2,y2), (46)

where 〈〈〈 · 〉〉〉χ denotes the correlations of the emergent chiral
model, and Ĥ �,�′

μ,ν (p; x2,y2) is an error term, continuous in p, in
contrast with the first term on the right-hand side of (46). The
improved regularity of this contribution is due to the fact that it
involves irrelevant terms in the RG sense, which all come with
a dimensional gain: in configuration space, such a term decays
as, for large distances, e−c|x2−y2|/(1 + |x − y|2+ϑ ) for some
ϑ > 0. Thus, even though this term disappears pointwise in
the scaling limit of the correlations, it gives a finite contribution
to the Fourier transform of the lattice correlations. Concerning
the multiplicative renormalizations, they verify the bound
|Z�,χ

μ (x2)| � Ce−cx2 as a consequence of the exponential decay
of the edge states.

Similarly, up to subleading terms for small external mo-
menta,〈〈〈

T ĵ �
p,z2,μ

; φ̂−
k+p,x2,ρ,σ φ̂+

k,y2,ρ,σ

〉〉〉
∞

= Z�,χ
μ (z2)Qσ

x2

(
kω
F ; ρ

)
Qσ

y2

(
kω
F ; ρ

)〈〈〈n�
μ,p ; ψ̂−

k+p,σ ψ̂+
k,σ〉〉〉χ

(47)

for some functions Qσ , such that Qσ = [1 + O(λ)]ξσ , which
satisfy the exponential bound |Qσ

x2
| � Ce−c|x2|. Moreover, up

=
Zμ Zν

+ Hμ,νχ

(a)

(b)

Zμ

χDσ(p) =

−

σ σ σ σ

σ −σ σ

χ

χ χ +
σ σ

χ

FIG. 2. (a) Graphical representation of Eq. (46). “χ” denotes
the contributions due to the emergent chiral model. The full dots
correspond to the vertex renormalizations, associated with the factors
Z�,χ

μ in Eq. (46). (b) Graphical representation of the first WI in Eq. (49)
for a finite UV cutoff N . The small white circle denotes a correction
vertex, corresponding to the insertion of Cσ (p,k)ψ+

k+p,σ ψ−
k,σ . The

empty bubble is a noninteracting diagram, whose N → ∞ value is
− 1

4π |v|Z2 D−σ (p).

to subleading terms in the external momenta,〈〈〈
T φ̂−

k,x2,ρ,σ φ̂+
k,y2,ρ ′,σ

〉〉〉
∞ =Qσ

x2

(
kω
F ; ρ

)
Qσ

y2

(
kω
F ; ρ ′)〈〈〈ψ̂−

k,σ ψ̂+
k,σ〉〉〉χ .

(48)

The advantage of comparing the lattice correlations with those
of the emergent model is that the latter can be computed in a
closed form, thanks to chiral Ward identities, following from
U (1) chiral gauge symmetry. Notice that this symmetry is only
approximate, due to the presence of the ultraviolet cutoff. As
a result, the UV regularization produces extra terms in the
Ward identities of the emergent chiral theory, which do not
vanish as N → ∞, but rather produce anomalies breaking
the conservation of the chiral current; see Fig. 2(b). In the
figure, the white circle corresponds to the insertion of a
correction vertex Cσ (p,k) = [χ−1

N (k) − 1]Dσ (k) − [χ−1
N (k +

p) − 1]Dσ (k + p), with Dσ (p) = −ip0 + σvχp1. For p =
O(1), this vertex insertion fixes the momentum of the incoming
and outgoing fermionic lines on the scale of the ultraviolet
cutoff. In the figure, we isolated the terms where the fermionic
lines incident to the correction vertex meet at the same point;
instead, the last term on the right-hand side of Fig. 2(b) collects
all contributions corresponding to diagrams where the lines
meet at different points. It turns out that this last term vanishes
as N → ∞, thanks to the nonlocality of the interaction, and
to the support properties of the correction vertex. See [30,44]
for a detailed proof of this statement, in a similar case.

Setting Dσ (p) = −ip0 + σvχp1, we have

Dσ (p)〈〈〈ρ̂p,σ ; ρ̂−p,σ〉〉〉χ = − D−σ (p)

4π |vχ |Zχ 2

+τD−σ (p)̂v(p)〈〈〈ρ̂p,−σ ; ρ̂−p,σ〉〉〉χ ,

〈〈〈ρ̂p,σ ; ρ̂−p,−σ〉〉〉χ = τ
D−σ (p)

Dσ (p)
v̂(p)〈〈〈ρ̂p,−σ ; ρ̂−p,−σ〉〉〉χ ,

(49)
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where τ = λχ

4π |vχ | is the chiral anomaly. The linearity of the
anomaly in the bare coupling constant is a highly nontrivial
fact, known as Adler-Bardeen anomaly nonrenormalization.
The explicit value of the anomaly can be used to determine the
critical exponents of the emergent chiral model. For instance,
the anomalous exponent of the two-point Schwinger function
is η = K + K−1 − 2 with K = 1−τ

1+τ
.

Thus, supposing that v̂(0) = 1, we have, up to subleading
terms in p,

〈〈〈ρ̂p,σ ρ̂−p,σ〉〉〉χ = −1

4π |vχ |Zχ2

1

1 − τ 2

D−σ (p)

Dσ (p)
,

(50)

〈〈〈ρ̂p,−σ ρ̂−p,σ〉〉〉χ = −1

4π |vχ |Zχ2

τ

1 − τ 2
.

These expressions can be plugged in the representation for
the lattice current-current correlation function, (46). All we
have left to do is to determine the unknown multiplicative and
additive renormalizations.

VIII. UNIVERSALITY

To fix the values of the finite multiplicative and additive
renormalizations, we use again Ward identities, this time for
the lattice model. These identities introduce nonperturbative
relations between the renormalization coefficients, which,
as we shall see, imply a dramatic cancellation in the final
expression of the edge transport coefficients. To begin, it is
convenient to rewrite the Schwinger term of the lattice WI (7)
in the following more explicit way:〈[

jσ
0,�x ,jσ

1,�y
]〉 = (

δ�x,�y − δ�x,�y+��1

)〈
tσ�y,�y+��1

+ tσ�y,�y+��1−��2

〉
+(

δ�x,�y+��1
− δ�x,�y+��1−��2

)〈
tσ�y,�y+��1−��2

〉〈[
jσ

0,�x ,jσ
2,�y

]〉
= (

δ�x,�y − δ�x,�y+��2

)〈
tσ�y,�y+��2

+ tσ�y,�y−��1+��2

〉
+(

δ�x,�y+��2
− δ�x,�y−��1+��2

)〈
tσ�y,�y−��1+��2

〉
(51)

with tσ�x,�y defined after (14). Summing up (7) over y2, one gets

dy0

∑
y2

〈T j
�

1,�x ; j�

0,�y〉 + dy1

∑
y2

〈T j
�

1,�x ; j�

1,�y〉

= iδ(x0 − y0)
(
δx1,y1 − δx1,y1+1

)
�(x2),

dy0

∑
y2

〈T j
�

0,�x ; j�′
0,�y〉 + dy1

∑
y2

〈T j
�

0,�x ; j�′
1,�y〉 = 0. (52)

To get these relations, we crucially used that
∑

y2
dy2 (· · · ) = 0,

which is implied by the Dirichlet boundary conditions. By
going into Fourier space, we can use the relations (52) to
prove identities for the edge transport coefficients:

− ip0G
�,�;a
j,ρ (p) + p1η(p1)G�,�;a

j,j (p) = 0,
(53)

−ip0G
�,�′;a
ρ,ρ (p) + p1η(p1)G�,�′;a

ρ,j (p) = 0,

with p1η(p1) = p1 + O(p2
1) the Fourier symbol associated

with the lattice derivative dy1 . Equations (53) can be used
to determine the p → 0 limit of the additive renormalization∑a

x2=0

∑∞
y2=0 Ĥ �,�′

μ,ν (p; x2,y2) (which exists by continuity in
p). For instance, consider the edge charge conductance,

G
c,s;a
ρ,j (p). We can rewrite the second of Eqs. (53) as

G
c,s;a
ρ,j (p) = [ip0/p1η(p1)]Gc,s;a

ρ,ρ (p); thus, this relation implies
that limp1→0 limp0→0 G

c,s;a
ρ,j (p) = 0. This identity, together

with the representation (46) of the current-current corre-
lation function, allows us to compute the p → 0 limit of∑a

x2=0

∑∞
y2=0 Ĥ

c,s
0,1(p; x2,y2) in terms of the other unknown

renormalized parameters. A similar strategy can be followed
for the other transport coefficients.

For simplicity, let us drop the χ label, and let us set
Z�

μ ≡ ∑
z2

Z�,χ
μ (z2). The above-mentioned strategy allows us

to compute, up to subleading terms in p,

lim
a→∞ G

c,s;a
ρ,j (p) = − Zc

0Z
s
1

Z2(1 − τ 2)

1

π |v|
p2

0

p2
0 + v2p2

1

,

lim
a→∞ G

�,�;a
j,j (p) = − Z

�

1Z
�

1

Z2(1 − τ 2)

1

π |v|
p2

0

p2
0 + v2p2

1

, (54)

lim
a→∞ G�,�;a

ρ,ρ (p) = Z
�

0Z
�

0

Z2(1 − τ 2)

1

π |v|
v2p2

1

p2
0 + v2p2

1

.

It remains to determine the multiplicative renormalization
in Eqs. (54). This is done by comparing the vertex WIs of
lattice and emergent models. From Eq. (8) we have, setting
η0(p1) = −i,

1∑
μ=0

ημ(p1)
∑
z2

〈
T ĵ �

p,z2,μ
; φ̂−

k+p,x2,σ
φ̂+

k,y2,σ

〉
β,L

= σ�

[〈
T φ̂−

k,x2,σ
φ̂+

k,y2,σ

〉
β,L

− 〈
T φ̂−

k+p,x2,σ
φ+

k+p,y2,σ

〉
β,L

]
(55)

with σc = 1 and σs = σ . On the other hand, the WIs for the
emergent chiral model are

−ip0〈〈〈̂n�

0,p ; ψ̂−
k+p,σ ψ̂+

k,σ〉〉〉 + p1v〈〈〈n�

1,p ; ψ̂−
k+p,σ ψ̂+

k,σ〉〉〉

= σ�

Z(1 − η�τ )
[〈〈〈ψ̂−

k,σ ψ̂+
k,σ〉〉〉 − 〈〈〈ψ̂−

k+p,σ ψ̂+
k+p,σ〉〉〉] (56)

with ηc = +, ηs = −. As before, we now express the lattice
correlation functions appearing in the lattice WI in terms
of those of the emerging chiral model, using Eqs. (47) and
(48); we therefore get two identities for the correlations of the
emergent chiral model, one involving the Z�

μ parameters, the
other involving Z,v,τ . Therefore, we can use these identities
to prove relations among these coefficients; we get

vZ
�

0

Z
�

1

= 1,
Z

�

0

Z(1 − η�τ )
= 1. (57)

Remarkably, Eq. (57) provides a link between the emergent
chiral anomaly and the finite lattice renormalizations. We can
now use Eq. (57) to simplify the expressions in Eqs. (54).
Setting Kc = K , Ks = K−1, we get

Z
�

0Z
�

1

Z2(1 − τ 2)v
= K�,

Zc
0Z

s
1

Z2(1 − τ 2)v
= 1,

Z
�

1Z
�

1

Z2(1 − τ 2)v
= K�v,

Z
�

0Z
�

0

Z2(1 − τ 2)v
= K�

v
. (58)

The second relation implies the quantization of σ s [for λ

small, sgn(v) is independent of λ]. The last two imply the
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nonuniversality of D�, κ�, and the helical Luttinger liquid
relation D� = v2κ�.

IX. CONCLUSIONS

We have established the exact quantization of the edge
spin conductance for the spin-conserving Kane-Mele-Hubbard
model. As a corollary, our result provides an example of
bulk-edge correspondence for a nonsolvable, interacting time-
reversal-invariant system. In addition, we proved a marginal
form of universality for the susceptibilities and the Drude
weights, showing the validity of the helical Luttinger liquid
scaling relations for the KMH model. Our strategy is based
on an exact RG construction of the lattice model, and on the
combination of lattice Ward identities, following from lattice
conservation laws, with relativistic Ward identities, following

from the emergent chiral gauge symmetry of the system. Even
though they break the integrability of the interacting system,
lattice effects and bulk degrees of freedom play a crucial role
for universality.

As an open problem, it would be interesting to include spin-
nonconserving terms in the Hamiltonian, and to quantify the
possible breaking of universality of the edge spin conductance.
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