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Introduction

The discovery of chromatin in the nucleus of cells in 1879 by Walther Flemming sparked two
centuries of scientific interest in nuclear organization [1]. The chromatin fiber, composed by
DNA wound around protein complexes called histones, was soon linked to genetic heredity
and evolution: even before the discovery of the double helix structure of DNA by Watson
and Crick, August Weismann was able to see the connection between nuclei replication,
in particular meiosis, and traits inheritance. However, the sequence of nucleotides in the
DNA of an organism is not the sole determinant of cell type.

In fact all cells in one organism are able to specialize in a variety of very different tissues,
while all sharing the same genome. The information allowing this striking differentiation
cannot be written in the shared sequence of DNA nucleotides: it must then be encoded in
some epigenetic trait, shared among cells with the same task [2].

Recent research has brought to light the connection between epigenetic markers, molecules
which regulate gene-expression and cell fate, and genome folding[2]: while DNA packing
is a necessity to allow a two meters long genome to fit inside of a nucleus 10 µm wide [3],
the three dimensional spatial organization of chromosomes has a much larger role to play
in determining cell types.

Chromosome conformation capture (3C) experimental techniques have been determi-
nant in shedding light on this aspect of genome folding [4]. These experiments probe
interactions between intra- and inter-chromosomal regions of the genome: in particular,
Hi-C experiments [5], one of the latest incarnations of 3C techniques, have allowed for
genome-wide sampling and can be regarded as fingerprints of the three-dimensional con-
figurations of chromosomes.

They have revealed a hierarchy of structural patterns unique to each cell-type, such as
point-like contacts corresponding to loops [2]; strongly interacting blocks of loci (TADs),
around 1 million base pairs in size (1 Mb) [2]; compartments which span the whole chromo-
some (typically around 100 Mb long in mammalians) and show the tendency of chromatin
to separate into different phases [2]. All of these patterns have been found to be correlated
to the presence of epigenetic markers [6, 7, 8], and have been experimentally shown to
influence the development of illnesses and malformations [9, 10].

Interestingly, however, averaging through different chromosomes also reveals the pres-
ence of common, or aspecific, interaction patterns which can be ascribed to polymer physics:
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8 Introduction

for instance the decay of interaction counts according to the genomic distance between loci
is a shared attribute of different cell-types [2].

The abundance of Hi-C experiments has allowed the focus to widen from the analysis
of single maps to that of pairs of experiments in large datasets [11, 12, 13]. In particular
efforts have been made to obtain quality metrics that guarantee the compatibility of dif-
ferent experiments on the same cell-type, and to quantify the genuine differences occurring
between different lines.

This analysis is important for a number of reasons: to verify the reproducibility of
interaction patterns among biological replicates of one cell-type; to compile compatible
experiments into one and obtain maps of better quality; to locate significant differences
which suggest biological motivations [12, 13].

In order to do this, however, one must beware the peculiarities of these interaction
maps: biases such as the distance dependence of interaction counts [14], as well as the
presence of noise [11, 12, 13], must be carefully taken into account for any analysis to be
successful.

An under-utilized tool is that of spectral analysis: since the inception of Hi-C, re-
sults have shown that the spectrum of these matrices is rich of biological and structural
information [15, 7]. For example the first principal component of properly normalized ma-
trices has been interpreted as the mark of genomic compartments, and linked to chromatin
types characterized by measurable epigenetic markers [15]. More recently, spectral proper-
ties have been employed in reproducibility analysis to compare different matrices [12, 13].
However, these promising studies were limited only to a few eigenspaces: the rest of the
spectrum of Hi-C matrices remains a mostly unknown quantity.

The first part of this work ventures in these uncharted territories to obtain a more
systematic view of the spectral properties of Hi-C maps and how to employ them.

In chapter 1 I will provide a brief introduction to chromosome conformation capture
(3C) techniques [4, 16, 5], from the original method to the more advanced ones, focusing
especially on Hi-C experiments [5]. I will discuss in detail some of the patterns of inter-
action found in Hi-C maps, such as TADs and compartments, and introduce the standard
techniques used to detect or define them [2]. At the end of the chapter I will introduce the
problem of Hi-C maps comparisons and how spectral methods have been previously used
to tackle this kind analyses [12, 13].

In chapter 2 I compare the spectral properties of Hi-C maps to those of random ma-
trices. I show that a large part of the spectra of (properly normalized) Hi-C maps closely
resembles that of random matrices: these eigenspaces can be considered aspecific, in the
sense that they provide a common background which has the same universal properties in
all Hi-C matrices. Only the top eigenspaces, ordered according to the absolute values of
the associated eigenvalue, display significant discrepancies with respect to the null model
provided by random matrices. I dub this part of the spectrum ”essential” in reference to
the concept of essential spaces in the analysis of elastic networks [17]: as suggested by
previous studies [15, 7], these should contain the majority of the structural and biologi-
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cal information encoded in Hi-C maps. Can they be used to enhance these signals? Are
comparisons between essential components easier to interpret?

In order to answer these questions, Chapter 3 delves deeper in the analysis of the
essential component of Hi-C maps: by truncating the spectral sum over the eigenspaces,
one can obtain an essential matrix which does not contain aspecific interactions. I show
that this procedure leads to sharper interaction patterns which correlate better with those
found in non processed high quality experiments. Specifically, I find that TADs are better
reproduced among biological replicates. Comparing the essential components of a large
number of experiments also allows to discriminate between cell-types, with results on this
task which are competitive with other published methods [12, 13].

At the end of the chapter I also adapt essential component analysis to single cell Hi-C
maps, each accounting for the genome structure of a single cell [18], instead of ensemble
averages, observing an improvement with respect to the baseline on classification tasks:
however I do not reach the same quality as for bulk matrices, showing that the challenges
offered by single cell Hi-C maps must be tackled with different strategies.

These results show that it is possible to encode the information contained in Hi-C
matrices in a small number of degrees of freedom, not only making them more manageable
in computational applications, but also enhancing structural and biological features that
are difficult to capture in high resolution maps. This may be of particular importance for
single cell Hi-C maps, since, because of their sparseness, they may benefit more from a
dimensional reduction scheme, both in terms of compression and analysis improvement.

Motivated by this observation, in chapter 4 I look for a dimensional reduction algorithm
specifically designed to compress Hi-C data. The variational autoencoder is a neural net-
work architecture that provides such a tool [19]: the first half of the network, the encoder,
operates by compressing input data to a lower dimensional vector in a regularized latent
space, while a decoder restores the original data in the second half. By training the net-
work to match the output to input data, one can teach autoencoders the most parsimonious
low-dimensional representation of the dataset [19].

Local interaction patterns (spanning only a small portion of the whole matrix) are
shared across different cell-types and chromosomes [20]: one can then use the autoencoder
to learn lower-dimensional representations of these patterns and obtain compressed versions
of Hi-C maps. I compute the intrinsic dimension [21] for square 50× 50 cut-outs sampled
from Hi-C matrices, and show that one can obtain a 25-fold compression of Hi-C maps with
reconstruction errors significantly smaller with respect to linear methods such as PCA. This
could open the door to analyzing large number of HiC maps at a very high resolution with
reasonable memory usage. Moreover, by giving a more parsimonious description of Hi-C
data, this dimensional reduction scheme is also able to enhance the information present
in latent space matrices and obtain competitive results in a number of tasks, such as
classification and TAD calling.

I also apply the autoencoder to single cell Hi-C maps, and find that in this case com-
pression is not able to improve analyses, suggesting that more advanced algorithms or
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expert knowledge is needed when dealing with these kind of data.
Finally, at the end of the chapter, I compare the action of the autoencoder on the spec-

tral properties of Hi-C matrices. Interestingly I discover that widely different techniques
act in a similar manner on the spectrum of Hi-C maps, by enhancing top eigenspaces with
respect to the rest.

The first part of the work (chapters 2 and 3) is mostly based on the following published
paper:

• S. Franzini, M. di Stefano, C. Micheletti
“essHi-C: essential component analysis of Hi-C matrices”
Bioinformatics 37, Pages 2088–2094, 2021



Chapter 1

Chromosome Conformation
Capture: an overview

The problem of genome folding and organization has captured the interest of researchers
for a long time. After all, the details of this subject are quite puzzling. The human genome
contains more than 3 billion base-pairs divided into 23 pairs of chromosomes: if these were
to be aligned end to end, they would span roughly 2 meters, more than the height of
an adult man. Moreover the DNA double helix is quite rigid because of electromagnetic
interactions, which makes folding even more difficult. Yet each cell of our body is able
to contain these long polymers inside its nucleus, an organelle which has a diameter of
roughly 10 µm [2]. It is only natural to wonder at such a feat of dense packing.

While it was always clear that the genome is not a simple one-dimensional rigid polymer,
but rather folds into a complex three dimensional structure, the past has seen a long debate
about the specificity of this organization in the interphase, i.e. the portion of the cell cycle
that occurs between consecutive cell divisions.

Some experiments can show chromatin, the fiber made up of DNA and histones, as
highly structured [22]: supercoiling forms thicker fibers, which then loop and fold into a
hierarchy of ever more complex structures. But other techniques detect very little structure
in what can be seen as a soup of disorganized nucleosomes [23]. Fluorescence in situ
hybridization experiments, which are able to locate specific loci in single-cell assays, reveal
enormous variability between each sample [24]: the distance between any pair of loci, as
well as their sub-nuclear position, can change enormously cell to cell.

However these experiments also point to specific trends in organization. Chromosomes
occupy well defined territories [25], with limited intermingling in their strands at their bor-
ders [26]. While their specific position in the nucleus can have a large degree of cell-to-cell
variability, many chromosomes prefer to shift either towards the periphery of the nucleus
or towards its center [27, 28, 25]. Additionally, chromatin displays the typical behavior of
a copolymer, i.e. a polymer whose components have different properties, with alternating
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12 Chapter 1

sequences of euchromatin and heterochromatin which interact preferentially with sequences
of the same variety, which leads to the formation of phase separated compartments [2, 29].
Finally, chromosomes also undergo a series of dramatic conformational changes as the cell
goes through its life cycle: as the moment of mitosis approaches, chromatin is wound up
into the classic rod-shaped structures observed in every biology textbook, which have to
unfold again after cell replication.

All of these observations give a vision of a nuclear organization that, while stochastic
on the one hand, is guided by some mechanisms which also relate to gene expression and
suppression on the other.

Enormous steps forward have been made in our comprehension of chromosomes spatial
organization in the last decades, and how their folding helps determine many of their
functions, such as gene regulation, or DNA maintenance and replication. This has been
in part possible thanks to the development and improvement of imaging techniques which
work at the single cell level, but also due to the birth of chromosome conformation capture
(3C) technology [4]: this chapter will outline the basics of how these experiments work,
how they were refined since their original creation, and what discoveries about the spatial
organization of chromosomes they allowed. Afterwards, the chapter will present some of
the open questions in the field and the state of the art methods which were devised in order
to tackle them.

1.1 A brief history of the genome

Before delving into 3C techniques, it is interesting to briefly review the history of the study
of the genome, from its discovery to the present.

In 1879 Walter Flemming was able to observe filamentous structures inside the cell
nucleus by using aniline dyes, and dubbed these fibers chromatin and connected it to
heredity. Since then scientist have studied its properties, both physical and chemical, in
the pursuit of a better understanding of the genome inner workings.

During the last two centuries many discoveries contributed to create a fascinating and
complex picture of the machines that are our cells, and how they work: histones were
discovered in 1884, not much later than chromatin itself; in 1924 Emil Heitz coined the
terms euchromatin and heterochromatin, to refer to structural differences within the fiber;
Conrad Waddington proposed epigenetic landscapes in 1942.

Of course one of the most momentous findings in the field was the discovery of the double
helix structure in 1953 by Watson and Crick, which allowed a more in depth description
of DNA. Nevertheless this was not to be the end-all be-all of structural research on the
genome, not by a long shot: rather, it was the stepping stone towards answering even more
difficult questions.

Another fundamental step in understanding the genome structure was the discovery, in
1984, of chromosome territories in many eukaryotes cells during their interphase (yeast S.
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cerevisiae being an exception), thanks to fluorescence labeling techniques.

The motivation for such a relentless interest in the search of a comprehensive description
of the structural and dynamical properties of chromosome is not only driven by scientific
curiosity, but also by the urge of having a better understanding of gene regulation, which
may be the door to many medical applications.

It is in this context that chromosome conformation capture (3C) techniques have been
introduced by Job Dekker and coworkers in 2002, with the objective of studying the three-
dimensional spatial organization of chromosomes.

1.2 Chromosome Conformation Capture

Chromosome conformation capture techniques were introduced by Dekker’s lab in 2002 [4]
to study chromosome structure by mapping in vivo interactions between chromatin loci,
and has since achieved high resolution at genome-wide scale. The main idea behind the
development of 3C methods is that a matrix containing many or all contact frequencies
between loci along the chromosome would enable scientists to infer the three-dimensional
organization of the chromosome.

3C is used to detect the ensemble frequency of interaction of any pair of genomic loci.
Combined with deep DNA sequencing can generate genome-wide interaction frequency
matrices, which have indeed been used as the starting point of many models of the spatial
organization of the genome.

The 3C procedure is outlined by the following steps, illustrated in figure 1.1: first
cells are fixed with formaldehyde to fix the spatial arrangement of chromosome in place.
Restriction enzymes are then used to digest chromatin into fragments, while it is still frozen
in place, so that spatially proximal segments stick together. DNA ends of these segments
are then re-ligated into a loop, and the DNA is subsequently purified.

This assay produces a large set of unique DNA ligation products, each one of which
represent a single spatial co-location event in one cell of the population ensemble. DNA
molecules can be then easily identified by PCR or DNA sequencing, so 3C based techniques
significantly lower the difficulty of determining relative spatial positions of loci inside cells,
by tackling the simpler process of DNA sequence analysis instead.

Many of the molecular steps used by 3C techniques were previously developed in a
different context, and they were used separately. For instance, proximity ligation had been
used to detect bending and looping of DNA due to protein interaction, both in vivo and in
vitro [30, 31, 32]. 3C main innovation lies in the fact that it was designed as an unbiased
method, able to detect any spatial proximity irrespective of the mechanism that brought
the strands of chromatin together.

PCR was initially used to read and count individual ligation products in order to ascer-
tain whether different loci would interact with each other more frequently than expected.
The original 3C paper [4] validated the approach by comparing its reads to the previ-
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ously known interactions between specific loci (e.g. homologous chromosomes and yeast
centromeres or telomeres); furthermore, it presented a (sparse) matrix of the interaction
frequencies for a complete chromosome, which was used to infer the population average
conformation of its folding.

1.3 3C evolution: towards genome-scale and
high-resolution chromatin interaction
matrices

The human genome is more than 3 billion base pairs in length: while other organism may
have smaller chromosomes, the number of possible chromatin interactions makes using
PCR to analyze 3C difficult[2]. This explains why, since its birth, many adaptations were
introduced to allow mapping of chromatin loci interactions at the genome scale and higher
resolutions, both in cell populations and single cell experiments.

All of these variants make use of the same basic steps of the 3C protocol: chromatin
crosslinking, DNA digestion through the usage of enzymes, purification, and re-ligation of
DNA strands ends in close spatial proximity. The differences arise in the method used for
ligation product detection [33].

4C, also called 4c-seq, was published in 2006 [34, 6] and is the first 3C variant: it focuses
on a single region of interest and uses inverse PCR to amplify all loci that interact with it.
Deep sequencing analyses are then able to recover the one-vs-all interaction profile relative
to that single genomic element of interest. While this method is less suited for chromosome
folding inference, since it does not produce a complete matrix of the interaction frequencies,
4C profiles still provide a wide range of information about interesting aspects of genomic
folding: in fact, they are primarily used to identify long-range DNA contacts, especially
between regulatory DNA modules, such as the loops that can be formed by enhancers
and promoters, or architectural chromatin loops between cohesin- and CTCF-associated
domain boundaries. Moreover, 4C-seq contact profiles can help reveal the boundaries of
contact domains and can identify the structural domains that co-occupy the same nuclear
compartment.

5C (chromosome conformation capture carbon copy [16]), published on the same year
as 4C, is used to detect all interactions frequencies between pairs of loci within a certain
region, which can be up to several Mb in size, thus it can be thought of as a ”many-to-
many” approach. This method uses a ligation-mediated amplification followed by detection
of the standard 3C library. While it follows the same usual 3C protocol steps, the 3C
products are incubated with a complex mix of primers designed to anneal exactly at one
of the restriction sites of the genomic region of interest. If the digestion of the DNA and
its subsequent ligation work efficiently, the two primers end up facing each other at the
ligation junction. They can then be ligated by using Taq DNA ligase. Finally, PCR is
used to amplify the ligation product and obtain a map of the interaction frequencies in the
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Figure 1.1: reproduced from G. Li et Al. The figure recapitulates the fundamental
steps in 3C experiments: chromatin proximity ligation through formaldehyde, digestion
of the crosslinked fragments through restriction enzymes, purification and re-ligation of
the fragments. The steps following this basic outline depend on the kind of assay one is
performing, as shown in the panels below.
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region of interest. However, 5C has relatively low coverage (the number of samples collected
in the experiment is low) and the approach is unable to be extended over a genome-wide
sampling of the contacts, as that would require millions of 5C primers to be used.

The Hi-C variant, developed in 2009 by Job Dekker and Liebermann-Aiden [15], en-
ables the unbiased detection of all pair-wise interactions in the genome: in this protocol
the DNA ends, formed after chromatin digestion by restriction enzymes, are labeled with
biotinylated nucleotides before being ligated again. After purification, this allows one to
retrieve sequences that should represent two different restriction loci, that were ligated
together based on their proximity. The pair of sequences can be individually aligned to the
genome, so that one can determine the fragments that were in contact. Hence, all possible
pair-wise interactions throughout the genome are tested [15].

Given the length of the human genome, the number of possible pair-wise interactions
is extraordinarily large (counting ∼ 1014 possible interactions for the genome digested into
250 base pairs fragments[33]): this means that extremely deep sequencing is required to
obtain well resolved maps. However even the most deeply sequenced datasets only contain
enough interaction counts to be binned with a stride between 1-10 Kb [8, 10, 33]. As I will
elaborate on in the following sections, this has given rise to a demand for methods that
allow to validate and compile the reads of different experiments relative to the same cell
strains, in order to achieve deeper sequencing.

Being able to map all-vs-all interactions, Hi-C maps have enabled researchers to uncover
many of the folding principles of complete genomes, and I will discuss the hierarchy of
patterns discovered in Hi-C maps in the next subsection. However Hi-C experiments are
very costly to perform and, even the most deeply sequenced ones, do not capture the
complete interaction landscape that arises from chromosome folding: a need is still present
for targeted methods such as 4C or 5C, that efficiently reveal information about loci or
regions of interest [33].

This is why further developments in the field has seen the emergence of newer targeted
techniques, such as ChIA-PET [35] and HiChIP [36], which only focus on a specific subset
of all the possible genomic loci, obtaining a much richer coverage of these regions.

Another branch of inquiry that has seen growing attention in recent years is that relative
to single-cell genome conformation analysis [37, 38, 39]: there are now several methods that
allow to sample configurations of the folded genome at the single-cell level, as opposed to
population-wide assays, revealing a riveting variability in patterns of interactions [29]. This
seem to point towards the presence of both dynamic and stochastic processes which may
shape the folding conformations of the genome. Nevertheless, the interaction matrices
obtained by these methods tend to be rather sparse, making analysis all the much harder.
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Figure 1.2: Some of the features that can be encountered in Hi-C maps. From left to
right: Point-wise interactions, such as loops, appear as bright spots; TADs are blocks of
strongly interacting loci located along the diagonal, a few hundreds of Kb in size; A/B
compartment form a characteristic checkerboard pattern at the chromosome scale; the
cis/trans ratio between average interaction frequencies within the same chromosome and
different chromosomes, a signature of chromosomal territories. Moreover, one can observe
the distance dependence of interaction frequencies, where the contact probability between
loci within the same chromosome decreases with their genomic distance.
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1.4 Interaction patterns in Hi-C matrices

After the collection of Hi-C interaction reads, the procedure usually involves mapping the
data to a matrix, as well as filtering and bias correction steps [2]. After this is done, one
obtains a genome-wide interaction matrix, where each bin contains the interaction fre-
quency between two genomic loci. Extraction of biological relevant information from these
matrices is complicated by a number of factors: the fraction of cells where each interaction
occurs cannot be directly recovered from the maps; moreover one has to differentiate be-
tween the actual biological signal and noise, as well as identify and interpret the pattern
emerging from the analyses.

The fact that matrices represent an ensemble average of the interactions occurring
over a vast cell population is a critical complication in interpreting signals [2]: one cannot
distinguish whether interactions involving multiple pairs of loci co-occur in each cell of
the population or if they are mutually exclusive. In fact, if one were to directly translate
interaction frequencies to distances, one would quickly discover that some pairs cannot
be in contact at the same time. This also opens up the question of ergodicity: are the
measured interactions frozen in place in each separate cell, or are they dynamic, cycling
through different contact and open states? Even observing a smooth matrix, apparently
devoid of location-specific interactions, is not a guarantee of the absence of structure in the
underlying chromosome conformations. It only means that these structures, if they exist,
may be specific only of a single cell, instead of the whole population: then averaging on
the ensemble can hide their presence.

Secondly, current analyses do not rely on an explicit formal definition of what a specific
interaction pattern looks like to search for it in the matrices; rather they define these
patterns implicitly as the outputs of some method. The result is that comparing methods
aimed at identifying the same type of interaction pattern is often difficult in the absence
of a common gold standard for what the correct result would be.

Moreover, different interaction patterns overlap and coexist with each other, and it
can be difficult, or impossible, to isolate the signature of each structure. In practice, one
usually makes the simplifying assumption that patterns are independent, i.e. they can
be disentangled either because the effect of other patterns on the structure of interest is
negligible, or because they can be normalized out through some procedure.

Nevertheless, several different interaction patterns were observed in Hi-C matrices: they
vary in scale, from looping interactions involving only a couple of loci at small genomic
scales, to large-scale patterns spanning a whole chromosome, or even the whole genome.
Some of these patterns can be recognized in a variety of different cell-types, and even
across different organisms, while others are specific of each strain and condition. In the
next subsections I will briefly introduce and describe some of the most relevant of these
patterns.
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1.4.1 Point interactions

At the smallest scale, point interactions (see figure 1.2) involve only a pair of strongly
interacting loci, often separated by a large genomic distance (from a few Kb to several
Mb) and hinting at a biological function: this is the case of enhancer-promoter interactions
[40, 41, 42, 43, 44], which are localized genomic elements up to 1 Kb in size, which activate
the expression of a gene by coming together in a looping event. It is worth to notice that
loop formation is thought to be mediated by proteins, and that evidence points towards
a dynamic, rather than equilibrium, mechanism of loop extrusion (although the debate is
currently still open)[45].

Such point interactions are expected to appear on the Hi-C map as a local enrich-
ment of contact probabilities [40, 41, 46]. Current approaches to find these patterns do
not provide explicit models for what point interactions look like. Rather, they focus on
locating outliers with higher interaction frequencies than expected for a background model
which consists of overlaps of other larger scale interaction patterns. The chief among these
is the distance-decay function which exponentially suppresses interactions between distal
genomic elements, and arises from chain connectivity; however also other elements can be
incorporated. Notice that without an explicit definition of what a point interaction looks
like, it can be difficult to distinguish between bona fide signals and experimental noise. As
such it is important to test also biological replicates of the interaction map for consistency,
and to validate outliers through other independent methods informed by the knowledge of
underlying biological processes.

Finally, one should beware that not every biologically relevant interaction needs to be
an outlier: interactions between genomic loci close by along the chromatin fiber can have
important regulatory and biological functions without being more likely than average for
that distance; on the other hand, since interactions between distal elements are suppressed,
even a small bump in the binned frequencies can suggest the presence of a biologically
important contact event, which, however, only occurs in a few cells.

1.4.2 Topologically Associating Domains, TADs

At larger scales with respect to point interactions, Hi-C maps reveal the existence of sub-Mb
structures that have been dubbed topologically associating domains or TADs (see figure
1.2 [47, 48, 49, 50]. These are contiguous regions where loci tend to display much higher
interaction frequencies between each other than with loci outside the domain: they show
up on the interaction matrix as darker blocks along the diagonal.

While the detection of such structures may seem simple through this intuitive definition,
in practice TADs tend to be more complicated [51, 49, 48, 52, 53]. First, it easy to observe
a hierarchy of nested TADs at different scales in most Hi-C matrices [54], making it difficult
to actually define the boundaries of any one structure; moreover TADs may overlap, further
complicating the task of detecting boundaries. As such, methods for seeking TADs, lacking
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an explicit definition, tend to define them implicitly as their output.

One method I will use in the following chapters is the Insulation Score (IS) [55]: one
can assign a score to each binned locus of the matrix by computing the average interactions
occurring in the matrix in a 500 Kb × 500 Kb square centered on the chosen bin. The
minima of the one-dimensional profile of the score across the matrix correspond to TAD
boundaries, where the signal is small with respect to well-connected adjacent areas.

Nonetheless, given a definition of how to detect TADs, they have been shown to be
associated with biological functions, although the connection is still not fully understood.
TAD-like structures have been detected in multiple organisms, from mammals to bacteria
[47, 49, 56, 50, 48], and their disruption has been linked to a wide range of diseases, among
which cancer, a variety of limb malformations, and a number of brain disorders. One hy-
pothesis describes TADs as micro-environment which lock enhancer-promoter interactions
and prevent them from happening between different domains [29, 57, ?]. In fact, some
types of genes (such as transfer RNA genes and housekeeping genes) appear near TAD
boundaries more often than would be expected by chance. As such, it seems that TADs
are strongly involved in gene regulation. However some studies have been able to uncouple
genome topology and gene expression, casting doubts about this aspect of TADs function
[58].

The folding mechanism of these structures is another problem around which the debate
is still going on [59, 56, 60, 45]. Their boundaries have been found to be enriched for
CTCF and cohesin binding sites [48, 61], which may be a hint to understand the way
they form. One mechanism that has been proposed is active loop extrusion by cohesin,
and computer simulations have shown that transcription induced supercoiling causes loop
growth with a reasonable speed and in the correct direction[62, 63]. However proof for DNA
loop-extrusion is so far limited only to condensin (a protein complex similar to cohesin).

It is important to note that TADs have been found to be relatively conserved between
different cell types, and even between different organisms, in some specific cases [64].

1.4.3 Genomic Compartments

Another interaction pattern that encompasses the whole chromosome is given by genomic
compartments [15], which were first discovered in early Hi-C studies. Compartments show
up on contact maps as a ”checkerboard”-like motifs of alternating blocks of enriched and
depleted interactions which span 1 to 10 Mb in size (see figure 1.2.

The explanation for the emergence of the checkerboard pattern is straightforward as
it can be modeled by assuming the chromosome to contain two distinct genomic regions
that alternate along the length of the chromatin fiber, as in block-copolymers: attractive
interactions between regions of the same type and repulsive interactions between those
of different types lead to phase separation of the genome, producing the characteristic
signature pattern on the contact maps. The two regions are referred to as A and B
compartments, although more thorough investigations have lead to the definition of at
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least five sub-compartments, two active (A1, A2) and three inactive (B1, B2, B3).

Despite this definition being intuitive, the main method to recover compartments does
not rely directly on it, but rather uses an indirect route by computing the first principal
component of the correlation map computed from the interaction map[15, 2]: in order to do
this one first assigns a Pearson correlation coefficient to each pair of loci by computing the
correlations between the respective contact map columns; the matrix obtained through this
method contains positive correlations between loci in the same compartment, and negative
correlations between different compartments. By using principal component analysis to
isolate the first principal component one is able to find the optimal grouping of the loci
into A/B compartments according to the sign of the component. Alternatively, standard
clustering procedures is also able to uncover the groupings.

Genomic compartments strongly correlate with a number of epigenetic markers and
with chromatin state: DNA accessibility, gene density, GC content, and histone marks are
all good indicators of the compartment type of a region. Euchromatin makes up A-type
compartments and contains gene-dense, lightly packed regions of accessible DNA, while
heterochromatin B-type compartments contain tightly packed inaccessible regions of the
genome.

Compartments have been found to have high variability between different cell-types and
biological conditions, correlating with large scale conformational and regulatory changes
in the genome[15].

1.4.4 Distance-dependent Interaction Frequency

Contact frequencies inside chromosomes decrease, on average, with the genomic distance
between the involved loci. This can be seen in the interaction matrix as a decreasing
gradient of interaction frequencies the further one moves away from the diagonal.

Measurements can either rely on the discrete binning of the matrix, by taking the aver-
age interaction frequency at a fixed genomic distance, or by interpolation of a continuous
function to the data. This usually reveals a dependency of the interaction frequencies from
the distance which is compatible with a power-law decay, with exponent alpha ' −2 [2],
so log-log plots are used to better highlight the dependency.

This peculiar pattern can be explained by the properties of chain connectivity [65, 66]:
on average, loci which have a small contour distance along the chain will come into contact
more frequently than those that are farther away because of the random fluctuations of the
chromosome conformation. In fact various polymer models, such as the ideal chain model,
can recover this interaction pattern without invoking specific loci-dependent interactions.

The distance-induced bias can disrupt some analyses, for example those used to deter-
mine chromosomal compartments, so in many cases it is useful to normalize the matrix
in order to remove the distance-dependence. The product of this procedure is called an
observed-over-expected matrix, as it identifies contacts that are enriched or depleted with
respect to their background.
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There are cases, however, in which the measured data deviate dramatically from the
ones expected from simple polymer models, which may point towards interesting biological
phenomena underlying chromosome folding. One such case is encountered when studying
the evolution of interaction matrices throughout a cell life-cycle [67, 68, 69]: as the cell
approaches mitosis, the chromosomes undergo striking structural changes in order to pre-
pare for cell-division, taking on the iconic cylinder shape that can be found in any biology
textbook. This is reflected in contact maps as a further depletion of contacts beyond a
certain distance threshold ( ∼ 10 Mb ); moreover, recent experiments have pointed out
the appearance of a secondary diagonal, parallel to the primary one, of enriched contacts,
which can be interpreted as a complex chromosomal structure where dense chromatin
loops surround a central helical scaffold [69]. In such cases more refined polymer models
are needed to describe the chromosome structure, and analysis cannot make away with the
distance-dependence of the interaction frequencies.

1.4.5 Cis/Trans Interaction Ratio

At the scale of the whole genome, the largest interaction pattern is given by the ratio
between contact frequencies of loci within the same chromosome and between different
chromosomes[15]. This ratio consistently shows, across different cell-types and species,
that contacts occur preferentially between loci in the same chromosome (i.e. cis), rather
than between different chromosomes (i.e. trans): the Cis/Trans ratio is interpreted as a
signature of the presence of chromosome territories, meaning that, even during interphase,
chromosomes are physically separated and occupy a distinct region of the nucleus, only
intermingling at their interface[2].

Typical values for the cis/trans interaction ratio in the human genome range between
40 and 60 for high quality experiments. However, since noise can affect similarly both
intra-chromosome and inter-chromosome interactions, and because of the universality of
this ratio across different cell-types, a lower than expected ratio may indicate lower quality
experiments [2].

Nevertheless there are situations in which measured trans-interaction frequencies be-
tween two regions of distinct chromosomes can become as large as those expected between
regions of the same chromosome[2]: this is usually a signature of chromosomal translo-
cation, a phenomenon often associated with cancer in which one observes unusual rear-
rangements of chromosomes, i.e. detached fragments of one chromosome are swapped with
those of another, and vice-versa. Because of the way contact reads are sequenced, two re-
gions that are physically part of the same chromosome, due to this rearrangement, can be
attributed to different chromosome, explaining the presence of enriched trans-interaction
frequencies and depleted cis-interaction frequencies in the Hi-C maps.
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1.5 Hi-C maps comparisons

Over the past few years the growing quantity of Hi-C experiments has stratified into large
datasets of contact maps available to be analyzed in search of significant biological meaning.
Many methods have been developed to measure their properties at the single matrix level
and locate the recurring interaction patterns detailed above: there are now multiple tools
to discover loops, TADs, and compartments [70, 71, 72, 73, 74].

However, with the new abundance of data, part of the attention has shifted towards
pair-wise comparison of matrices. The objective of such assays is twofold. First, it seeks
to validate the quality of experiments coming from different sources. Second, comparative
studies serve to establish which features of genome folding are varied across different cell-
types, and which are conserved [13].

The first problem is one of reproducibility[75, 13, 12, 11]: when two experiments sam-
pling the contact maps of biological replicates (i.e. cell populations coming from the same
strain) are available, a common practice is to pool together their interaction counts in
order to obtain a better sampled matrix for downstream analysis. However, this cannot be
done without first introducing some quality measurement tool to investigate whether the
two experiments are concordant or present significant differences, since the latter scenario
would introduce undesirable biases in all subsequent analyses, tainting the results.

The other side of the coin are the occasions in which one wants to compare matrices
obtained from different cell populations: in this scenario the question becomes whether
known (or presumed) biological differences also have an effect on genome folding, and
then to locate and quantify significant differences that may have biological explanations,
important to understand the interplay between genomic structure and gene expression.
In this case comparative tools can be used to establish configurational variations across
different stages of cell development and cell fate, or due to differences in gene transcription,
in disease-related phenotypic alterations, and in cancer.

Strategies previously devised to analyze 1D genomic assays, such as ChIP-seq, DNA
methylation, and RNA sequencing, cannot be reliably applied out of the box to Hi-C
matrices, because these experiments present new challenges [11, 76].

Hi-C maps encode the signature interaction patterns from many complex multi-scale
3D structures, such as TADs and A/B compartments, as well as others described in the
previous section, so they present a rich and unique phenomenology that is qualitatively
different from that of 1D assays. Moreover, the resolution of a contact map (i.e. the size
of a bin in terms of base pairs) can be thought of as a free parameter, that can only be
determined heuristically based on the sequencing depth of the experiment. Finally, the
ligation noise of contact frequencies estimates is also linked to sequencing depth [13].

With so many peculiarities, it is no surprise that naively computing simple correlation
measures, frequently used as a reproducibility score, fails to capture all the complexities
of Hi-C data. This is partly due to the fact that these kind of measures consider each bin
of the contact matrices on its own, disregarding the strong interdependence with contacts
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formed with other loci. For this reason a number of more sophisticated reproducibility
measures have been introduced in the past years: while there are many examples of such
methods (such as HIC-rep[11]), the class I will focus on is that of spectral methods, which
use spectral properties of Hi-C matrices (eigenvalues and eigenvectors) to compare them.

Two methods of this class have been developed to quantify the reproducibility of two
Hi-C experiments: the first one, named HiC-Spector [12], computes the laplacians of intra-
chromosomal matrices and compares the first 20 ordered eigenvectors in order to obtain a
quality score; the second, GenomeDISCO [13], uses random walks on the graph defined by
the interaction maps in order to smooth them, and then performs a bin by bin comparison
of the smoothed matrices. While the latter may not use spectral properties directly, the
smoothing procedure involves taking the n-th power of the transition matrix obtained from
the Hi-C map, with n being the number of steps of the random walk, which increases the
relative importance of the top eigenspaces with respect to the rest of the spectrum. A more
detailed description of the two methods is offered in Appendix A.

My strategy is based on two main observations: one is that one must take into account
the distance-decay when comparing matrices [11], which I will do through a normalization
of the Hi-C maps; the second is that most eigenspaces of normalized matrices behave as
the eigenspaces of random matrices. These form an aspecific background which can be
disregarded in order to enhance the essential features of each Hi-C map and make them
easier to sort according to their cell-type.

1.6 Summary and conclusion

A great deal of effort was poured into understanding the organization of the genome over
the years, both because of the interest in the basic physical and biological principles driving
it, and because of the practical medical implications which stem from this research. In the
last two decades, 3C-based techniques provided a fundamental step forward in the study
of chromosome folding and its relationship to gene regulation: the idea of sampling in-vivo
contacts between genomic loci as a proxy of the 3D folding conformation has allowed, with
the advent of the Hi-C method, the simultaneous detection of genome-wide interaction
patterns, shedding light on a plethora of hierarchically organized structures which span all
scales, from point-wise interactions, to TADs hundreds of Kb in length, to chromosome-
wide compartments, and chromosome territories.

With this wealth of information, the real challenge has become building a solid un-
derstanding of the features appearing in Hi-C contact maps: a long list of computational
tools has emerged to provide unbiasing normalization of binned contact frequencies, detect
different kinds of patterns, and distinguish between statistically relevant interactions and
noise. A particular problem that has become more and more relevant in the last few years,
with the increase in the number of the Hi-C datasets, is the concern about the repro-
ducibility of experiments: are the same interaction patterns shared between Hi-C matrices
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obtained independently by experiments performed on cell-populations of the same strain?
And on the flip-side of the coin: what are the statistically significant difference between
different cell-types?

To answer these questions, naive methods, such as bin-by-bin comparisons, have proven
fruitless[11]: the complexity of Hi-C maps and their inherent noisiness makes it all but
impossible to perform statically significant analyses on the basis of just local information.
Rather, specialized tools that have emerged to tackle the reproducibility problem, deal
with these challenges by incorporating information about the surroundings of each locus
involved in a given interaction, and do so by different routes[11, 12, 13, 77].

One class of methods analyzes the spectral properties of the interaction matrices[12,
13, 77]. By doing so, global properties of the maps and the hierarchy of features they
contain emerge naturally as a consequence of the spectral decomposition, allowing one to
easily isolate and compare statistically significant interactions. However, the two methods
which have taken this route, while being very successful at their endeavor, do not propose
a systematic treatment of the spectral properties of the matrix.

One can then ask whether there’s an optimal way to isolate the essential spectral prop-
erties of Hi-C matrices using physical intuition. Developing such methods would help
enhance the signal contained in Hi-C interaction maps without increasing the coverage
through costly experiments, allowing for more reliable analyses even on low quality matri-
ces.

As an answer to these needs, in the next chapters I will explore the connection between
random matrix theory and the a-specific part of the spectrum of Hi-C maps, i.e. the
featureless part of the spectrum whose properties are repeated irrespective of the cell-type;
as a consequence I will propose, essHi-C, a method to enucleate the specific part of the
spectrum and employ it to obtain more robust contact maps and a metric to compare
them.





Chapter 2

Random Matrix Theory applied to
Hi-C matrices

In this chapter, which will be mostly based on published work[77], I will use Random
Matrix Theory (RMT) as a frame of reference to understand the spectral properties of
Hi-C matrices, in a novel approach which allows one to separate noise-like features from
signal.

Statistical mechanics forgoes the knowledge of deterministic trajectories in order to
describe thermodynamic properties averaged over an ensemble of microstates, which are
sampled from an underlying probability distribution. Random Matrix Theory can be
thought of in the same terms: instead of describing the properties of a single specific matrix,
RMT aims to study the ensemble properties of matrices whose elements are sampled from
some distribution.

The context of the first application of this mathematical theory was nuclear physics,
where Eugene Wigner introduced random matrices to model the nuclei of heavy atoms.
There random matrices were used to replace the complicated Hamiltonian of the quantum
system under study and calculate averages. It was the year 1957 and the success of Wigner’s
approach had just opened a new venue of analysis, which would prove extremely effective
in tackling a wide range of problems.

In fact Random Matrix Theory was widely adopted in physics: it is used in quantum
chromodynamics, in two dimensional quantum gravity, in the description of the fractional
Hall effect, of quantum dots, of Anderson localization, and of superconductors. Of course,
the theory has found applications outside of physics too: the distribution of the zeros of
the Riemann Zeta function can be modeled by the eigenvalues of certain random matrices;
random matrices have been used to describe computation errors in operations such as ma-
trix multiplication; in neuroscience they can describe the network of synaptic connections
between neurons in the brain.

However the potential of the application of RMT to Hi-C matrices has not been explored
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yet. In this chapter I will compare the spectra of Hi-C matrices to random matrices and
show the similarities they share.

The chapter is organized in the following manner: first I introduce the dataset of Hi-C
matrices I will analyze, as well as their normalization. Next I will briefly run through some
of the basic concepts and findings in RMT, which I will then use as a term of comparison
for the spectral properties of Hi-C matrices. Based on the results, I will argue that the
information content of Hi-C maps is mainly encoded in their top eigenspaces, while the
rest of the spectrum describes aspecific noisy interactions

2.1 Hi-C dataset

In this part of the study, I will use a dataset consisting of intra-chromosome Hi-C matrices
from 78 experiments performed on 9 different human cell lines, including five with normal
karyotype (GM12878, IMR90, NHEK, HMEC, hESC) and four with cancerous karyotypes
(T47D, K565, KBM7, SKBR3), the same used in the published article this chapter is based
on.

I will mostly use consider matrices binned at 100 Kb, but some analyses in the following
chapters will be performed also on higher resolution maps to give a more complete view.

The sra-toolkit was used to fetch the Hi-C datasets from the public sequence read
archive (SRA) and to convert them to FASTQ format after validation. The TADbit
pipeline was used to (i) check the quality of the FASTQ files; (ii) maps the paired-end
reads to the Homo sapiens reference genome (release GRCh38/hg38) using GEM account-
ing for restriction enzymes cut-sites; (iii) remove non informative reads using the default
TADbit filtering options; (iv) merge datasets within each experiments when appropriate;
(v) normalize each experiment using the OneD method at 100 kb resolution.

2.1.1 Normalization of Hi-C maps

The presence of the contact frequency decay, dependent on the genomic distance between
interacting loci, exponentially inflates the importance of the diagonal. In some applications,
such as the comparison between different matrices which is one of our aims, this is not ideal:
in fact it has been shown that most of the variability between different cell-types is given
by A/B compartments, away from the diagonal[78, 79]. On the other hand TADs, which
span interactions between loci close along the chain, have been shown to be conserved in
a wide array of cell-types[80, 81, 82, 83]

In order to avoid this problem we apply a normalization scheme in which each entry
Ai,j of the Hi-C matrix A is divided by the average of the interaction frequencies between
loci at the given genomic distance s = |i− j|. Hence we obtain a normalized matrix whose

entries are Bi,j =
Ai,j

I(s) .
This is called the Observed over Expected normalization as it removes the genomic

distance dependency of the interaction frequencies, allowing to easily determine which
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contacts are enriched with respect to the expected background interaction, which often
only contains information about the chain-connectivity of the chromatin filament.

It is important to point out that this is not the only normalization scheme one can use.
For example one could obtain the expected interaction rate as a function of the genomic
distance from an ensemble average (as opposed to obtaining it at the single matrix level),
or from a polymer model[46].

Moreover, there are specific cases in which this scheme fails to consider the biological
importance of the distance dependence: one glaring case is found in mitotic chromosomes,
where a secondary diagonal is observed along with the central one, pointing to an enrich-
ment of contacts between loci 3 Mb apart along the chromatin chain. In such cases an ad
hoc treatment may be more indicated.

2.2 Random Matrices

Random matrices are matrices whose elements are randomly sampled from a distribution.
Depending on the needs, this simple definition can be further enriched by incorporating
other required properties, such as symmetry, or hermiticity, obtaining several sub-classes of
random matrices, which take the name of ensembles. In fact, one is not usually interested
in the properties of a single random matrix: rather, the focus is placed on averages and
common features of these ensembles of random matrices.

The most studied among all ensembles are the Gaussian ensembles, where matrices are
characterized by having elements distributed according to Gaussians. They are divided
into different classes according to additional properties one imposes.

One can require the matrix to have real values and to be symmetric, for example by
taking a random matrix M , whose elements have been independently sampled from the
same distribution, and defining a new matrix M ′ = 1

2(M +MT ), where the operation (·)T
denotes matrix transposition. The eigenvalues of such a matrix M ′ are all real. This defines
the first of the Gaussian ensembles, and it’s called the Orthogonal Gaussian ensemble
(GOE). The name refers to the fact that matrices of this ensemble are invariant under
orthogonal transformations, such as rotation.

One can also make the entries of the matrix complex or quaternionic, but in order to
have real eigenvalues additional symmetry requirements are needed: matrices with complex
entries need to be self-adjointed, i.e. hermitian, and matrices with quaternionic elements
must be self-dual. By considering such matrices one obtains the Gaussian Unitary (GUE)
and Gaussian Symplectic ensembles (GSE) respectively[84].

Since Hi-C matrices have strictly real entries, I will only consider random matrices of
the Gaussian Orthogonal ensemble.

In the next subsection I will detail some of the spectral properties of this particular
ensemble.
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Figure 2.1: Spectral properties of random matrices of the Gaussian Orthogonal ensemble.
The top image shows the distribution of eigenvalues, compared to the semi-circle expected
distribution; the middle image shows the distribution of the spacings, compared the the
Wigner surmise distribution; the bottom image shows the distribution of the components
of an eigenvector of a random matrix, compared to the expected Gaussian distribution.
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2.2.1 The spectrum of random matrices

Here I consider random matrices whose elements are distributed according to a Gaussian
distribution N exp[−x2/(2σ2)], with N being a normalization factor. Hence these matrices
belong to the Gaussian orthogonal ensemble.

If one considers matrices of this ensemble having infinite size, one can observe that
their eigenvalues are distributed according to a semi-circle distribution [84]. However,
even spectra of finite size matrices converge to the same expected distribution as the size
increases.

Given matrices of linear size K, the first observation one can make on their spectra
is that they are concentrated (i.e. significantly nonzero) over an interval of the real axis
enclosed by ±

√
2Kσ. This does not mean that there are no eigenvalues greater than

√
2Kσ

or smaller than −
√

2Kσ; rather it means that regions outside this interval become more
and more depleted as K increases.

It is useful to normalize the eigenvalues by the factor
√

2Kσ so that the interval in
which they are concentrated is [−1, 1] for any choice of σ and K.

For large values ofK the expected distribution of the eigenvalues is a semi-circle[84], and
this observation takes the name of Wigner’s Semi-circle law. Thanks to the normalization
one can use a single explicit formula for the expected distribution, given by

p(λ) =
2

π

√
1− λ2 (2.1)

A mathematical proof of Wigner’s Semi-circle law is beyond the scope of the present
work, however it is interesting to show empirically how well the measured distributions of
eigenvalues conform to the expected behavior. Figure 2.1 shows the histograms of such
distributions for various values of K (each one containing the eigenvalues for 1000 random
matrices sampled from the GOE ensemble). As one can observe, for very small values
of K the differences between the measured distribution and the expected semi-circle are
notable, and eigenvalues tend to spill far beyond the [−1, 1] interval. However, increasing
K rapidly leads to a depletion of the eigenvalues beyond the radius of the semi-circle and
to better and better approximation of the expected distribution: qualitatively, at K = 100
it is difficult to spot deviations from the expected behavior.

Another property of the spectrum is that, while eigenvalues can be thought of as
random variables, they are not independent random variables[84]. In fact one can ob-
serve a repulsion between eigenvalues which would not be present were they indepen-
dent. Indeed, this is the property that Wigner used to describe the level spacings in the
nuclei of heavy atoms. The so called Wigner surmise tells us that given the spacings
s = (λn+1 − λn)/ < λn+1 − λn > between contiguous eigenvalues, the distribution of s is
given by

p(s) =
π

2
exp

[
− π

4
s2
]
. (2.2)
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This holds for matrices of the Gaussian Orthogonal ensemble, but analogous results are
available also for the other Gaussian ensembles.

This result leads to an important corollary: the probability of sampling two very close
eigenvalues (i.e. s → 0) is very small. So the eigenvalues of random matrices have a
tendency to avoid each other.

Finally, another aspect of the spectral properties of random matrices which merits
attention is the distribution of the components of their eigenvectors.

Thanks to the rotational invariance of the Gaussian Orthogonal ensemble, the eigen-
vectors of a random matrix of this ensemble uniformly sample the surface of a unit sphere
in K dimensions[85]. This is an exact result, but in the limit of large K it also has an
important implication about the distribution of the components of said eigenvectors: they
can be considered approximately distributed according to a Gaussian.

To obtain the variance of this Gaussian, one can consider the components vi of the
eigenvector v as approximately independent, then

<
∑
i

v2i >≈
∑
i

< v2i >= K < v2i >= 1, (2.3)

where the last equality is given by the normalization constraint stating that ||v|| = 1.
This is only strictly true for K →∞, however it is a good approximation also for large K,
which is the case we are going to consider, given that Hi-C matrices are usually hundreds of
bins wide at 100 Kb (from K = 2500 for chromosome 1 to chromosome 21 having K = 480
at this resolution).

Figure 2.1 shows the deviations of the distribution of the eigenvectors components of
random matrices from the expected Gaussian, as K increases. One can immediately see
that while for K = 2 the deviations are obvious even from a qualitative point of view, with
the distribution being bimodal, they rapidly decrease so that at K = 10 the distribution
already closely resembles the expected Gaussian. At K = 100 differences are small enough
to be inconsequential.

In the next section I will employ random matrices of the Gaussian Orthogonal ensem-
ble as a null model for aspecific features of the Hi-C matrices, shared across the dataset
irrespective of cell-types.

2.3 Hi-C vs random matrices: comparison of the spectral
properties

In this section I proceed to compare the spectral properties of Hi-C matrices, both with and
without the OoE normalization, to those of random matrices sampled from the Gaussian
Orthogonal ensemble.

I start by comparing the distributions of the eigenvalues: Figure 2.3 compares the spec-
trum of the OoE normalized intra-chromosomal Hi-C matrix relative to chromosome 17 of
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Figure 2.2: Properties of the spectrum of Hi-C maps: comparison to the semi-circular
distribution expected for random matrices of the Gaussian Orthogonal ensemble. The
histogram shows the distribution of the eigenvalues of the experiment HIC001 relative to
its intra-chromosomal Hi-C matrix of chromosome 17 ( OoE normalized ).

experiment HIC001 to the expected random matrix distribution, i.e. Wigner’s semicircular
law. To do this I normalize the eigenvalues of the Hi-C map in the same way as those of
random matrices of the GOE, by a factor

√
2Kσ, where σ is the standard deviation of the

eigenvalues.

When I do this for the whole spectrum of the Hi-C matrix, one observes that the
histogram does not match the null-model provided by the random matrices. This is not
surprising: one would not expect Hi-C matrices to entirely behave like random matrices,
unless genome folding was a completely random process. Since this is not the case, the
spectrum displays glaring differences with that of random matrices.

However, one can notice the presence of outliers in the distribution of Hi-C eigenvalues:
whereas most of the spectrum is concentrated in a central zone, some eigenvalues appear
to have much larger absolute values, and inhabit the fringes of the histogram. One can
order the eigenvalues according to their absolute values, making the outliers correspond to
the top part of the spectrum.

This observation is interesting because one can wonder what would happen if one
removed the top eigenvalues before computing the normalization. In figure 2.3 I consider
different values of a threshold n∗, and compute the standard deviation σ of the spectrum
only for those eigenvalues with orders larger than n∗.

One observes that, as soon as the first n∗ = 10 eigenspaces are removed, the spectrum
distribution of OoE matrices starts to closely resemble that expected for random matrices.
This becomes even more evident when one considers larger thresholds, removing the top
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Figure 2.3: Properties of the spectrum of Hi-C maps: comparison to the semi-circular dis-
tribution expected for random matrices of the Gaussian Orthogonal ensemble. Each panel
shows the results for different values of n∗, corresponding to the quantity of non-random
eigenspaces which are excluded from the analysis. The histograms show the distribution
of the eigenvalues of the experiment HIC001 relative to its intra-chromosomal Hi-C matrix
of chromosome 17, as computed before and after the observed-over-expected normalization
(green and blue coloring, respectively).
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50 or even 100 eigenvalues.

A simple interpretation, could be that interaction frequencies found in Hi-C matrices
are the result of two superimposed signals: one contains relevant biological information,
while the other displays noise like features, it fluctuates rapidly and is not specific of any
particular cell-type, having the same properties of random matrices. I call the former the
essential component of the matrix, in reference to essential space analysis performed on
the spectra of elastic networks[17]. In the model I am presenting, the essential component
is encoded into the top eigenspaces of Hi-C matrices, while the aspecific part is confined
to the rest of the spectrum. The two can be separated by tuning a threshold n∗ according
to some criterion.

As such, an element of a Hi-C matrix A of linear size K can be decomposed into an
essential component Aessi,j and an aspecific one Aaspi,j as

Ai,j =

K∑
n=0

λna
(n)
i a

(n)
j =

n∗−1∑
n=0

λna
(n)
i a

(n)
j +

K∑
n=n∗

λna
(n)
i a

(n)
j = Aessi,j +Aaspi,j , (2.4)

where λn is the n-th eigenvalue, a
(n)
i is the i-th component of the n-th eigenvector.

The results of figure 2.3 can be reproduced in different chromosomes and different Hi-C
maps across the 9 cell-types of the dataset[77]. For this reason this range of values for n∗,
between 10 and 100, already provides an estimate of the number of essential eigenspaces
of Hi-C maps.

Figure 2.3 also shows the spectral distributions of the original matrices, where the
observed-over-expected normalization is not applied, so that the interaction frequencies
still depend on the genomic distance between couples of interacting loci. One can observe
that, as opposed to those of normalized matrices, these spectra do not conform to the
distribution expected for random matrices. This means that the observed-over-expected
normalization is important to decouple the essential and aspecific signals present in the
matrix.

The second aspect that can be investigated is the distribution of level spacings, the
distance between consecutive eigenvalues, which in random matrices follows the Wigner
surmise.

As for the previous analysis, different values of n∗ lead to different distributions because
of the definition of the spacings, which are normalized according to the average difference
between consecutive eigenvalues < λn+1−λn >. Figure 2.4 shows, again, that the presence
of large eigenvalues with large gaps between them in the initial region of the spectrum leads
to a squeezed distribution, but removing this part of the spectrum allows to obtain a better
agreement with the expected one. Spacing distributions obtained from an actual random
matrix sampled from the Gaussian Orthogonal ensemble are shown alongside those from
Hi-C matrices: one can notice that the histograms obtained from the spectrum of a single
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Figure 2.4: Properties of the spacings between eigenvalues of Hi-C maps: comparison to the
Wigner’s surmise distribution expected for random matrices of the Gaussian Orthogonal
ensemble. Each panel shows the results for different values of n∗, corresponding to the
quantity of non-random eigenspaces which are excluded from the analysis. The histograms
show the distributions of the spacings of the experiment HIC001 relative to its intra-
chromosomal Hi-C matrix of chromosome 17 (blue), and of the eigenvalues of a single
random matrix (orange).
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Figure 2.5: Properties of the eigenvector components of Hi-C maps: comparison to the
normal distribution expected for random matrices of the Gaussian Orthogonal ensemble.
Each panel shows the results for eigenvectors of different orders. The histograms show
the distributions of the eigenvector components for the experiment HIC001 relative to its
intra-chromosomal Hi-C matrix of chromosome 17.

matrix, random or otherwise, are very noisy with respect to those presented in Figure 2.4,
which contained contributions from the spectra of many random matrices.

The final property I am going to analyze is the distribution of the components of
eigenvectors, which is expected to be a Gaussian for the eigenvectors of a random matrix.
In this case one does not need to separate the essential part of the spectrum from the
aspecific one a priori in order to carry out the analysis, because one can consider a single
eigenvector at a time.

A qualitative comparison between the measured distribution of the components with
the expected Gaussian is shown in Figure 2.5 for eigenvectors of different orders.

The first few eigenvectors display glaring discrepancies from the Gaussian distribution.
The components of the first eigenvector are concentrated in the positive region of the axis,
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Figure 2.6: Analysis of the kurtosis of Hi-C maps eigenvectors, compared to those of
random matrices of the Gaussian Orthogonal ensemble. The upper panel shows the ratio
between the moments of each eigenvector, ordered decreasingly according to the absolute
value of the associated eigenvalue, of the experiment HIC001 relative to intra-chromosomal
Hi-C matrix of chromosome 17, along with the same measurement for eigenvectors of a
random matrix. The inset in the same panel shows a zoom-in around the value expected
for normal distributions, which is 3. The lower panel shows the distributions of the points
plotted above, both for the Hi-C matrix and the random matrix.
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suggesting all loci participate in this component of the interaction; those of the second
eigenvector, on the other hand, present a bimodal behavior, which shows a separation
of the loci into two well defined clusters. These observation can be repeated for different
chromosomes and experiments, and seem robust features of Hi-C maps: in the next chapter
I will show their connection to some of the patterns previously introduced. Here, however,
it is interesting to note that these deviations, even without further observations suggested
by the nature of the matrices, point towards a highly non trivial behavior which cannot be
explained by the random matrix null model.

On the other hand, if one looks at the components of the 100-th eigenvector, and
beyond, one finds that they qualitatively adhere to the expected Gaussian, suggesting that
the corresponding eigenspaces only contain aspecific noise, comparable to that of a random
matrix.

It is also informative consider a more quantitative analysis: one can take the second
and fourth moment of the measured distributions, their variance m2 and kurtosis m4

respectively, as a function of the degree of the corresponding eigenvector. As the ratio m4

m2
2

is expected to be 3 for Gaussian distributions, it can be used as a quantitative estimator
of normality.

Figure 2.6 shows the results of this analysis: the initial region of the spectrum shows
a highly non-Gaussian behavior, displaying large deviations from the expected ratio, with
a peak around n∗ = 10. After the peak, the following eigenvectors slowly transit towards
normality: significant deviations are still visible in a large portion of the spectrum, but
eigenvectors of degree 100 or higher tend to display a Gaussian behavior consistent with
the one measured for components of the eigenvectors of a random matrix. Other smaller
deviations are found in the final tail of the spectrum, corresponding to eigenvalues close to
0.

2.4 Summary and conclusion

Random matrices provide compelling models for many physical phenomena where averaged
ensemble properties can be more informative with respect to specific details of a single re-
alization, especially when disorder and noise are heavily involved. In fact, many properties
of such matrices, in particular those linked to their spectra, are universal. They do not
strongly depend on specific aspects of the matrices, but rather on a small set of rules in-
volving their symmetries. This is true in the regime of large matrices, which is effectively
achieved for linear sizes of order 100 or greater[84].

For matrices of the Gaussian Orthogonal ensemble, symmetric real matrices whose
entries are normally distributed random variables, one finds that eigenvalues are distributed
according to a semi-circle and display spacings following Wigner’s surmise. Moreover, the
components of their eigenvectors approximately behave as independent Gaussian numbers.

These matrices provide a null model for the stochastic component of Hi-C matrices,
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albeit one that has not been explored before. In fact a large part of the spectrum of OoE
normalized Hi-C matrices is consistent with random matrices. On the other hand, the
top eigenspaces, ordered according to the absolute value of their eigenvalues, display large
deviations with respect to the null model.

Hence one can enucleate an essential component which only contains the top eigenspaces
by setting a threshold spectral order n∗. Quantitative analysis of the distributions of
eigenvectors components suggests that an optimal value for n∗ should not be larger than
100, and is probably closer to 10.

The remainder of the spectrum has properties that only depend on the size K of the
matrix, and exhibits noise like behavior. While these eigenspaces can still carry a residual
part of the biological signal contained in Hi-C matrices, their sum can be regarded as an
aspecific component, common to all matrices of the same size.

Possessing the properties of random matrices, the aspecific part of the spectrum displays
similar properties in different chromosomes and across cell-types. The next chapter will be
devoted to understanding whether this part of the spectrum can be disregarded in order
to carry out some analyses and what benefices can be reaped by limiting oneself to study
the essential component of the spectrum instead.
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Analysis of the essential spaces of
Hi-C matrices

In the previous chapter the spectral properties of intra-chromosomal Hi-C matrices were
compared to those of matrices of the Gaussian Orthogonal ensemble: strikingly, a large part
of the spectrum of Hi-C matrices displays properties which are compatible with random
matrices, suggesting that only, or mostly, aspecific signals are encoded in these eigenspaces.
More interestingly, though, the top few eigenspaces, ordered according to the absolute
value of the associated eigenvalue, seem to deviate significantly from the random behavior
of aspecific eigenspaces. I call this part of the matrix essential, as a nod to the analysis of
essential spaces in elastic network [17], making the rest of the spectrum non-essential.

This chapter, based on published work [77], delves deeper in the properties of the
essential part of the matrix.

I start by comparing the full matrices to their essential part. At the single matrix level
I will show that removing the aspecific component improves concordance with experiments
having deeper sequencing (i.e. better sampling) of the same cell-type and helps recover
specific features, such as TADs, with a higher degree of fidelity.

At the dataset level, I will show that pairs of essential matrices are easier to sort between
biological replicates (experiments of the same cell-type) and non-replicates: I will compare
the result with those of other published spectral methods [12, 13]

Finally, I will apply an ad-hoc version of this analysis to single-cell Hi-C matrices in
order to cluster them according to their position along the cell cycle.

3.1 The essential spaces

As seen in the previous chapter, eigenspaces circa up to the 100th display remarkably
non-random properties, which may be a hint that they contain most of the biologically sig-
nificant signal carried by Hi-C matrices. One can then ask whether removing the aspecific

41
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Figure 3.1: Absolute value of the overlap of the top eigenvectors of HIC001 with those of
HIC002, HIC003, and HIC004 (chromosome 17). All of these experiments share the same
cell-type (GM12878). The top panels show the first 100 eigenvectors, while the bottom
ones zoom on the first 20.

part of the matrix can help with different tasks where noise can be a problem, for example
reproducibility measurement or detection of certain patterns [14, 11, 12, 13].

In order to answer these questions I must first define a threshold n∗ for the number
of essential eigenspaces. For simplicity, here I fix n∗ = 10, which is more stringent with
respect to the previous observation that eigenspaces up to 100 display some non-random
behaviors. This choice is suggested by the observation of the overlaps between eigenvectors
of matrices of the same cell-type (GM12878), defined as their inner product vA · vB of the
eigenvectors of two matrices A and B, and plotted in figure 3.1. One can see that while
the top ∼ 10 eigenvectors tend to preserve their identity between different experiments,
the remaining eigenspaces become more and more intermixed.

This qualitative argument for taking n∗ = 10 is supported a posteriori by the obser-
vation that analyses on essential matrices reach optimal results around this value for the
threshold. Nevertheless the result are very robust with respect to larger choices for n∗.



43 Chapter 3

Figure 3.2: Essential matrices (for n∗ = 2 and n∗ = 10) computed from experiment HIC001,
chromosome 17. The results are shown along the full matrix.

Hence, following a principle of parsimony, I only consider the top n∗ = 10 eigenspaces as
essential.

Having fixed the value for n∗, the resulting essential matrix is given by a sum over the
top 10 projectors of the essential eigenspaces, weighted by the corresponding eigenvalues

Aessi,j =
n∗∑
n=1

λnv
(n)
i v

(n)
j =

n∗∑
n=0

λnP
(n)
i,j (3.1)

where P (n) is the projector over the n-th eigenspace. An example of the resulting
essential matrix is plotted in figure 3.2, along with the original matrix.

It can be shown that this is the optimal approximation of rank n∗ of the original matrix
with respect to the Frobenius norm (see Appendix B).

3.1.1 Physical interpretation of the eigenspaces

As seen above, in figure 3.1, the top 10 eigenspaces are the most conserved in different
experiments: it is then interesting to ask whether they can be given some physical inter-
pretation in terms of the patterns observed in Hi-C matrices.

Previous studies [7] also attempted an interpretation of eigenvectors of Hi-C maps in a
different context, by first applying an iterative correction scheme to the matrices and then
comparing the resulting eigenvectors to known structural and biological signals. Although
in that case the analysis was only carried out on the top three eigenvectors, I will also
follow the same route by computing the correlations with two one dimensional signals.

The first signal I consider is the column-wise sum of the elements of matrix A:
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Figure 3.3: Top eigenvectors of HIC001 chromosome 17 to two known biological signals:
the Observed over Expected coverage and the first principal component of the Hi-C ma-
trix, corresponding to A/B compartments. Each panel contains the Pearson correlation
coefficient r.
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ci =
∑
j

Ai,j (3.2)

In the case of matrices which did not undergo the observed over expected normalization
procedure, this quantity would be interpreted as the coverage of the matrix. In the case
of OoE-normalized matrices, the interaction between any pair of loci is normalized to be
1 on average, so that the expected coverage is simply 〈ci〉 = N , where N is the linear size
of the matrix. Hence, naturally, the quantity ci can be interpreted as the observed over
expected coverage.

Next I consider the A/B compartments signal, σi, as computed using PCA using the
method detailed in van Berkum et Al. [86] and Miura et Al. [87].

Figure 3.3 shows the linear fit of the top 5 eigenvectors components to these two signals.

One immediately sees that the first eigenvector is strongly correlated (Pearson r =
0.96) with the coverage: this vector is mostly positive (with the constraint that its first
component be positive) and encodes the interaction propensity of each node. On the
other hand, the second eigenvector is correlated with A/B compartments (r = 0.94) and
oscillates between positives and negatives values which represent loci with a prevalence of
either euchromatin or heterochromatin. These results are consistent with what is observed
in previous studies on the topic [7].

Simply adding together the projectors associated to these two eigenspaces is enough to
obtain a recognizable interaction matrix, albeit many features get lost, as can be seen in
figure 3.2.

These results are encouraging, but one has to ask whether a certain feature is always
associated with the same eigenvector in different matrices, or whether eigenvectors can
change places or get mixed together. Figure 3.1 shows that while the first two or three
eigenvectors always maintain their position and do not mix much between matrices, the
others are more prone to getting swapped (i.e. there is a mismatch in the index of two
highly overlapped eigenvectors) or mixed (i.e. a certain eigenvector of the first matrix A
significantly overlaps with multiple eigenvectors of the other matrix B).

This means that there is no strong evidence that eigenvectors of higher order can be
identified with a single well defined Hi-C interaction patterns.

3.2 Enhancement of specificity

While the essential part of a Hi-C matrix is the best approximation of rank n∗ of that
matrix, with respect to the Frobenius norm, the objective of this work is not to reproduce
Hi-C matrices, which also contain aspecific patterns: rather I want to enucleate the salient
interaction patterns.

In this section I will show that essential matrices built from the first 10 eigenspaces of
Hi-C matrices have more consistent properties within experiments of the same cell-type,
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Figure 3.4: Visual comparison of a zoomed portion of experiment HIC001 chromosome 17
at 100 Kb resolution, before (left) and after (right) applying the spectral filter in order to
extract the essential component.

and display stronger correlation coefficients with high resolution maps within the dataset.
They can also be analyzed to identify known spatial patterns, such as TADs, to a higher
degree of robustness.

3.2.1 Visual inspection

First, I start with a qualitative comparison of full Hi-C maps with the essential ones: figure
3.4 shows a close up of the map of chromosome 17 from experiment HIC001, before and
after applying the spectral filter in order to extract the essential component. A visual
inspection reveals that features in the essential matrix are more uniform and present sharp
boundaries, although some of the more fine-grained patterns, especially along the diagonal,
are not retained.

The next few subsections will deal with more quantitative analyses which will further
clarify the advantages of using essential matrices and whether or not they reflect the same
patterns contained in the full Hi-C maps.

3.2.2 Signal to Noise Ratio

One can define a ratio γ between the signal and noise contents of a matrix [88, 89]. To
do so, one can assume that a matrix A can be written as a sum of some unknown true



47 Chapter 3

interaction pattern Σ and a noise η:

A = Σ + η (3.3)

The former has the property that it is shared across all maps of experiments on the
same cell-type, while the distribution of the latter is assumed for simplicity to have the
following characteristics:

〈ηi,j〉 = 0

〈η2i,j〉 = σ2,
(3.4)

where the average is carried out on different realization. Notice that, at 100Kb, a
matrix for a single chromosome typically contains ∼ 105 bins: hence averaging the noise
on the matrix elements yields results similar to the actual statistical average.

Notice that by this definition, the noise is simply the variation between elements of the
same dataset, rather than an intrinsic property of a single matrix. With this being the
case one can then obtain the following quantities even without knowing Σ and η explicitly,
by introducing a second matrix of the same cell-type B = Σ + η′, where η′ is some other
independent realization of the noise, having the same properties of η:

〈A+B〉 = 〈2Σ〉 = 2Σ̄

〈(A−B)2〉 = 〈2η2〉 = 2σ2,
(3.5)

where I used the fact that the signal Σ is the same in the both matrices, and that the
realizations of the noise are independent. I can finally define the signal to noise ratio γ as

γ =
Σ̄

σ
(3.6)

This quantity should be close to 1 if the signal and noise contained in the matrices
have the same amplitude, but should be much higher in datasets where matrices are more
robust.

For all chromosomes of experiments from the GM12878 cell-type, I compute γ on all
pairs of matrices and plot the results in figure 3.5. The figure shows that in all cases essential
matrices display larger values of γ on average, with increases between 5 and 10 times the γ
values of original matrices. This shows that essential spaces contain highly specific features
and there is little variance between essential matrices extracted from experiments of the
same cell-type. This dramatic boost shows little bias with respect to chromosome length.

3.2.3 Correlation with high resolution Hi-C maps

The previous analysis shows that the removal of non essential spaces increases the homo-
geneity of the dataset. However this analysis does not prove that all the relevant features
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Figure 3.5: Signal to noise ratio γ as boxplots for 4 chromosomes, selected for length and
gene richness. Other chromosomes are shown in the appendix. Boxplots show: central line,
median; box limits, 75th and 25th percentiles; whiskers, 1.5 times the interquartile range;
outliers beyond this range are shown as individual points.
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Figure 3.6: Spearman Rank correlation coefficient between a representative matrix
(HIC003) and other experiments with lower sequencing depth of the same cell-type
(GM12878, upper panels) and different cell-type (IMR90, lower panels). The panels on
the left refer to chromosome 1, those on the right to chromosome 13.
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are maintained in the passage between a Hi-C matrix and its essential counterpart: the
removal of aspecific spaces could lead to an unwanted loss of signal.

To show that this is not the case, this subsection will compare Hi-C maps of the
GM12878 cell-type and their essential components to the gold standard given by the highest
resolution map of that cell-type in the dataset (i.e. the one with the largest sequencing
depth, HIC003). I stress that the gold standard is given by the full matrix of experiment
HIC003, even when it is compared to essential components.

To carry out the comparison I will use the Spearman rank correlation, which is a
standard tool to compare matrices, and compute the correlation coefficients ρ between the
gold standard and other matrices. Notice that I will compare the essential components to
the original Hi-C matrix of experiment HIC003.

Figure 3.6 shows the results of the analysis: the correlation coefficient is consistently
higher for the essential matrices than it is for their original Hi-C counterparts, meaning
that discounting the aspecific part improves the robustness of high resolution features.
Moreover, while the original full Hi-C maps show a visible dependence from the sequencing
depth, this is visibly not the case for their essential components: in this case the dependence
is much milder, with even the lowest sequenced matrices achieving as good a correlation
as those with higher sampling.

As a control, I repeat this test also between HIC003, which is kept as the gold standard,
and experiments from the IMR90 cell-type: in this case one expects correlations to remain
low even after the extraction of the essential component of the Hi-C matrices. Figure 3.6
shows that this is the case, as both full matrices and essential ones display lower correlation
coefficients than experiments from the same cell-type as HIC003, and comparable to each
other. Essential matrices also display, again, milder dependence on sequencing depth, with
ρ being more or less constant over the whole range of values taken by it.

These results show that essential spaces hold the most genuine features, i.e. those
encountered in high resolution matrices, and are mostly unaffected by a reduction of the
sequencing depth in the matrix from which they are extracted (at least on the range
considered here, which accounts for a ten-fold variation in the sequencing depth with
respect to the gold standard). While some of the signal may still be lost by removing
non-essential spaces, most of it is contained in the essential ones.

Notice also that these observations are general, in the sense that they hold irrespective
of the chromosome considered, with only slight variations in the details[77].

3.2.4 Application to TAD detection

Essential matrices can also help identifying structural features from Hi-C maps, such as
topological associating domains, or TADs.

I used a standard measure of local contacts insulation [55], described in section 1.4.2,
to obtain the boundaries of the TADs in both the original full Hi-C matrices and in their
essential components, and compared the results to the gold standard given by the TADs
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Figure 3.7: MoC score computed by comparing TADs partitions obtained by applying the
Insulation Score to a representative matrix (HIC003) and other experiments with lower
sequencing depth of the same cell-type (GM12878). The panel on the left refers to chro-
mosome 1, the one on the right to chromosome 13.

boundaries of the highest sequencing depth full matrix in the GM12878 cell-type (HIC003).

Next I used the MoC score[90, 91] to measure the similarity of such TAD segmen-
tations with respect to the gold standard, which is a standard analysis to assess TAD
reproducibility.

Given two sets of TADs, MoC asseses the overlap between each pair of TADs, measured
in number of bins and considering the overall size of both TADs. MoC ranges from 0, for
complete lack of concordance, to 1, perfect concordance. It has the desirable property of
being symmetric and has been used in the same context in a previous work[91].

The results are shown for chromosomes 1 and 13 in figure 3.7 as a function of the
sequencing depth of the full matrices. At all sequencing depths, one can observe that
essential matrices improve significantly TAD detection over full ones.

More in general, one can expect essential component analysis to enhance contact pat-
terns or structural features at lengthscales comparable with those that are exclusively, or
mostly, covered by the retained essential eigenvectors. Such lengthscales can be obtained
through Fourier component analysis of the eigenvectors.

The characteristic lengthscale is computed from the real Fourier transform of the eigen-
vector’s components, Fk, and is set equal to N/〈k〉, where N is the linear size of the matrix,
and
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Figure 3.8: Characteristic lengthscales of eigenvectors determined through Fourier analy-
sis. Inset A displays the characteristic lengthscale of the first 50 eigenvectors of the Hi-C
matrix. Data for the first 10 eigenvectors (star symbols) range from 3Mb for the very
first eigenvector to 40kb. The lengthscale of lower raking eigenvectors is shown in inset
B, showing superposable features to random matrices. The final part of the Hi-C spec-
trum, which displays larger fluctuations, corresponds to null eigenspaces, and carried no
meaningful information.
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〈k〉 =

∑
k kF

2
k∑

k F
2
k

(3.7)

is the average wave-vector.

Figure 3.8 shows that top ranking eigenvectors cover an atypically broad spectrum of
lengthscales, from tens of Kb to Mb, compared to the remainder of the spectrum, whose
characteristic lengthscales are close to the matrix resolution and to values observed for
random matrices.

One may then expect large-scale features to be well captured by essential component
analysis, while more local ones, such as loops, may project outside of the essential spaces.

By Fourier analysis one can thus estimate a priori the lengthscale of features that ought
to be well captured by the essential components of a Hi-C matrix.

3.3 Comparison of Hi-C matrices

The abundance of Hi-C data available has recently shifted the focus from the analysis of
the single matrices to the comparison of features present in different experiments.

The first objective of comparisons is to assess the reproducibility of experiments carried
out on independent cell cultures. One can ask whether two experiments on the same cell-
type lead to similar interaction patterns in the respective Hi-C matrices, to what degree
they differ and whether different experimental procedures, such as using different restriction
enzymes, can lead to different results.

The compatibility of experiments from the same cell-type has already been assumed in
the previous sections, but only a thorough quantitative comparison can assure that this
assumption really holds true.

Reproducibility is not only a theoretical question about the stability of the measured
interactions, but also has important practical consequences: when two experiments are
statistically compatible their interaction counts can be compiled to obtain a better sampled,
higher resolution matrix [13].

The same tools used to assess the reproducibility of Hi-C matrices can be adopted to
reveal interesting differences between two interaction maps, suggesting large conformational
rearrangements in otherwise identical genomes.

Beyond reproducibility analysis, which is already challenging for complex data such as
Hi-C matrices, lies the question of the structure of datasets: what are the relationships
between Hi-C maps from different cell-types? Are they organized into clusters? And if so,
are all clusters equally distant from each other or is a hierarchical structure present? Can
Hi-C maps be represented on a lower dimensional manifold?

The next few subsections will address some of these questions.
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Figure 3.9: Visual comparison between various Hi-C maps of chromosome 17 (zoomed
in for clarity). HIC001 (GM12878) is used as reference and compared with a biological
replicate of the same cell-type, HIC002 (GM12878), and a non replicate, HIC050 (IMR90).
The elementwise difference between the reference and the other matrices is shown in the
bottom panels, both for the full matrices and for their essential components.
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3.3.1 Visual inspection

Again, the first step in the analysis pipeline is to visually inspect the matrices, and differ-
ences between them, before and after the spectral filter is applied to obtain their essential
components.

Figure 3.9 shows a zoom in of the comparison of HIC001 (chromosome 17, GM12878
cell-type) to biological replicate (HIC002, GM12878 cell-type) and a non replicate (HIC050,
IMR90 cell-type), both for the full matrices and the respective essential maps.

The entry by entry subtractions of the pairs displayed in the bottom panel reveal
sharper and more deeply marked differences between non replicates essential matrices.
More importantly, the difference matrix between the two GM12878 replicates shows a
uniform background in essential matrices, while speckled patterns are clearly visible for
full matrices.

This is because of the statistical drop-out noise, a phenomenon in which some of the
bins do not contain any interaction counts because the sampling depth of the experiment is
not enough to reveal rarely occurring contacts between two loci. This is often the case for
pairs of loci with a large genomic distance, so that long range interactions are more likely
to incur this particular noise. Because the drop outs are different in each matrix, an entry-
by-entry subtraction between the two matrices leads to the presence of large differences in
unsampled bins: even if the difference in a certain area is zero on average, the measured
local differences sum up to large discrepancies between the two matrices.

Since essential eigenvectors present slower fluctuations with respect to non-essential
ones (as shown in figure 3.8), drop-out noise is less of an issue when comparing essential
matrices. This leads to a higher degree of similarity between replicates, as seen in figure
3.9.

3.3.2 Metric distance

To quantify the difference between two experiments, I introduce a metric distance. First,
by looking at the single chromosome matrices, one can use the Euclidean distance defined
as

d(A,B) =

√∑
i,j

(Ai,j −Bi,j)2. (3.8)

This can be rewritten explicitly in terms of the eigenvectors and eigenvalues of the two
matrices:

d2(A,B) =
∑
i,j

(A2
i,j +B2

i,j − 2Ai,jBi,j), (3.9)

where
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with a
(k)
i being the i-th component of the k-th eigenvector of A, a(k), and λk being the

corresponding eigenvalue. Here, by using the fact that∑
i

a
(k)
i a

(k′)
i = a(k) · a(k′) = δk,k′ (3.11)

one obtains ∑
i,j

A2
i,j =

∑
k

λ2k. (3.12)

Moreover, if bk is the k-th eigenvector of B and µk its corresponding eigenvalue, one
can write

∑
i,j

Ai,jBi,j =
∑
i,j

∑
k,k′

λkµk′a
(k)
i b

(k′)
i a

(k)
j b

(k′)
j =

∑
k,k′

λkµk′

(
a(k) · b(k′)

)2

. (3.13)

Thus one can finally write down the original distance as

d2(A,B) =
∑
k

(
λ2k + µ2k − 2

∑
k′

λkµk′
(
a(k) · b(k′)

)2)
(3.14)

It is easy to see that by truncating the spectral sums over the eigenspaces at n∗ one
obtains the metric distance between the two essential matrices computed from A and B.

However, further analyses, which I will present in section 3.3.5 in this chapter, suggests
to introduce a scaling factor on the spectrum in order to make the distance more robust
with respect to n∗:

λ̄k =
λk∑n<n∗ |λn|

, µ̄k =
µk∑n<n∗ |µn|

(3.15)

so that the final metric distance between essential matrices is given by

d2ess(A,B) =
n∗∑
k

(
λ̄2k + µ̄2k − 2

n∗∑
k′

λ̄kµ̄k′
(
a(k) · b(k′)

)2)
. (3.16)

Once one can compute distances between intra-chromosomal interaction matrices, they
can be combined in order to obtain the genome-wide distance between two experiments α
and β
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dess(α, β) =

[∑
n

d2ess(Mα,nMβ,n)

]
(3.17)

where the subscript n indicates a sum over the chromosomes, and Mα,n is the intra-
chromosomal matrices for chromosome n and experiment α.

3.3.3 Clustering

I compute the genome-wide essential distance between each pair of the 79 experiments
which make up the dataset. In order to visualize the structure of the dataset, figure 3.10
shows a 3D multi-dimensional scaling (MDS) projection of the experiments. In this di-
mensional reduction scheme, each point, representing an experiment, is constrained to ap-
proximate as well as possible the distances measured with respect to all other experiments.
Here I use MDS only to offer a spatial representation of the dataset: one can immediately
see that experiments of with different cell-types, colored differently, form groups separated
by gaps.

I compile the pair-wise distances in a distance matrix, presented in figure 3.11 both for
full matrices and essential ones. A visual inspection reveals, again, that, when experiments
are ordered according to their cell-type, blocks of similar experiments with small distances
between each other appear on the essential distance matrix. These blocks are separated
from each other by larger distances, suggesting natural groupings of experiments.

However this is not the case when looking at distances between full matrices, which do
not seem to contain any reliable grouping.

The emergent groups seen in the matrix of essential distances can be examined through
more quantitative analyses: here I employ a hierarchical clustering scheme with the Ward
method, which not only allows to separate experiments in different groups, but also to
study the hierarchical relationships between different clusters.

Along with the distance matrices, Figure 3.11 shows dendrograms which are the result
of this clustering procedure: each leaf represents an experiment and is colored according to
its cell-type; at each successive grouping, clusters are hierarchically linked to each other by
minimizing the Ward distance between them, represented by the height of their connection
in the dendrogram; by setting a threshold Ward score on the y-axis of the dendrogram,
one can toggle the number of clusters. Natural grouping are easily detectable by looking
for large jumps between two groups, which indicate a gap between them.

The dendrograms presented for full and essential matrices display striking differences.
First, although dendrograms are drawn using the same unit for the Ward score on the

y-axis, the length of the branches for the essential matrices are more than twice as long as
the ones for full matrices (2.5 maximum Ward score). This fact indicated that essential
matrices account for more definite clusters compared to the full matrices.

The contents of the clusters are also very different. In full matrices, one can resolve
the breast cancer cell lines (T47D), whose chromosomal aberrations reflect in large-scale
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Figure 3.10: A 3D MDS projection of all experiments for visualization purposes: it shows
an approximation of the spatial configuration taken by the experiments with respect to each
other, according to the genome-wide distances computed on their essential components.
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Figure 3.11: Clustering of different cell lines: pairwise genome-wide distance matrices
between experiments for full and essential Hi-C maps are shown along with the respective
Ward dendrograms. The pairwise distance matrices are normalized to the maximum. The
red line refers to the optimal number of subdivisions decreed by the Dunn score.
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Figure 3.12: Section of the dendrogram in Figure 3.11 regarding the IMR90 cell line, which
shows the correlation with the used restriction enzymes

conformational changes [92], also due to anomalous karyotype. However, other cell lines
are poorly resolved, including the most numerous ones of GM12878 and IMR90.

On the other hand essential matrices return sharp subdivisions between different cell-
types already from the first separations of the dendrogram hierarchy, suggesting deep gaps
between the clusters.

The quality of these groupings can be quantitatively assessed by using the Dunn index,
which computes the ratio between the intra-cluster distances and the inter-cluster ones.
By applying this analysis for different groupings, one discovers that the optimal number of
clusters in this dataset is 13, which is larger than the number of cell lines (9).

All clusters except one contain one cell-type only, however, while all experiments of
cell-types K562, hESC, SKBR3, and KBM7 are contained within a single cluster, other cell-
types ensembles display a richer internal structure: this is apparent especially for IMR90
experiments, which are sharply divided into two clusters, shown in Figure 3.12. Upon
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closer inspection, one finds that this division is not an arbitrary one, but corresponds to
different restriction enzymes and experimental techniques: one cluster contains only In-situ
experiments using Mbol, while the other only dilution Hi-C experiments using HindIII.

Other subdivisions within cell-lines are not as clear-cut and cannot be explained only
in terms of different experimental methodologies. However one interesting case is given
by the only mixed cluster, containing NHEK and HMEC experiments: both cell lines are
epithelial samples, which may explain their similarity, moreover all experiments within the
cluster share the same methodology (In-situ, Mbol). On the other hand, the single isolated
NHEK experiment is a dilution Hi-C and uses the HindIII reduction enzyme.

This shows that analysis of the essential components not only allows identifying different
cell-types, but also hierarchically highlights differences due to experimental procedures
within clusters of biological replicates.

3.3.4 Comparison to other methods

Biological replicates are expected to be close to each other, and further apart from non
replicates: in the analysis above I showed that this is in fact the case, at least for essential
matrices, and that clusters emerge naturally from the dataset once Hi-C matrices are
cleaned from non-essential components.

Since the cell-types of the experiments are known, one can further quantify the discrim-
inatory performance of metric distances and similarities scores by introducing receiving
operating characteristic (ROC) curves.

These are obtained by considering all pairs of experiments, ordered according to their
distances, and labeling them as biological replicates or non replicates depending on their
cell-types. Then, by varying a threshold distance, one can count the amount of biological
replicates (true positives) and non replicates (false positives) below that threshold. By
computing the rates of these two quantities as the threshold increases and plotting them
on the y and x-axis respectively one obtains a ROC curve which quantifies the ability of
the employed method to discriminate between the two cases.

One expects, for a method with good discriminatory power, that the curve display a
rapid increase where most, if not all, true positives are found before encountering any false
positive, followed then by a plateau. On the other hand, a completely random discrimina-
tor, unable to categorize true and false positives, would trace a straight line bisecting the
x-y plane. Notice that, since one is considering rates, rather than absolute numbers, the
numerosity of True Positives with respect to False Positives does not matter.

Moreover, while a single number cannot fully capture the behavior of ROC curves,
usually the quality of the result is summarized by the Area Under the Curve (AUC) score,
which, as per its name, simply measures the surface of the plane which falls under the ROC
curve. This is expected to be 0.5 for a completely random discriminator and 1 for a perfect
one. This score can also be interpreted as the probability that an individual randomly
chosen pair of biological replicates has a lower distance than a randomly chosen pair of non
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replicates.

In Figure 3.13 I plot these ROC curves not only for essential and full matrices, but also
for other methods.

The higher discriminatory power of essential matrices is conveyed by the ROC curves
shown there. Full matrices yield an AUC parameter of 0.6, which only marginally improves
with respect to the random reference (AUC=0.5). On the other hand, essential matrices
reach a nearly optimal performance, with AUC = 0.98.

As further terms of reference Figure 3.13 shows ROC curves obtained by applying other
methods to Hi-C matrices: a Gaussian filter, Hi-C Spector, and GenomeDISCO.

The first one computes euclidean distances between Hi-C matrices smoothed through
a Gaussian filter, averaging neighboring bins in order to curb noise. This is a standard
method used in other comparative studies in order to provide a measuring stick against
which to pit more refined algorithms. Here I follow a previous study [93] in using a
unitary standard deviation for the Gaussian kernel, corresponding to 100 Kb in terms of
the genomic distances spanned by a single bin.

The other two methods, Hi-C Spector [12] and GenomeDISCO[13], are of interest here
because they are also based on the use of spectral properties to compare Hi-C matrices.

The AUC values for the Gaussian filter, Hi-C Spector and GenomeDISCO are 0.90,
0.91 and 0.82, respectively, which are all significant. Some of these methods, including
spectral ones, were purposely devised towards the comparative analysis of Hi-C matrices.
The about optimal performance by the essential matrices is thus appealing as it is natively
formulated as an enhancement method of individual matrices which can be adopted in
comparative contexts too, as shown here.

3.3.5 Robustness of the AUC score

The discussion up to this point has not dealt with the problem of the robustness of the
essential components analysis. One may ask what effect changing the value for n∗ would
have on the results presented thus far, or whether this analysis is able to capture the most
important features at the same level if the resolution of the dataset is altered.

This section about the comparison of Hi-C maps offers a natural metric to study such
issues: the AUC score presented above can in fact be used to summarize how well the
essential component analysis fares in different situations when the parameter n∗ is changed.

Figure 3.14 shows how the AUC relative to genome-wide distances performs as n∗ is
changed from 1 to 100 (on a logarithmic x-axis): while using only one eigenvector gives
a worse than random AUC, as soon as one considers 2 or more eigenspaces the results
become essentially stationary, reaching the optimality at n∗ = 5 and experiencing only
mild variation over the range considered here.

By only considering distances computed on chromosomes of similar lengths, one can
extend the range of n∗, which would otherwise be limited by the presence of short chromo-
somes. Figure 3.15 shows that beyond n∗ = 100 the AUC slowly decline, but still maintains
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Figure 3.13: ROC curves for the full and essential matrices, along with other methods.
The black dashed line indicates the random discriminator reference.
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Figure 3.14: Area under the curve (AUC) for ROC curves at different values of n∗, based on
the same analysis of Figure 3.13. The plot illustrates the improved n∗-dependent stability
using the distance of eq. (3.17) with the eigenvalues rescaling compared to not using the
rescaling (i.e. by setting λ̄n = λn. The inset shows a zoom of the ROC curve for the
normalized case.
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Figure 3.15: Area under the curve (AUC) for ROC curves at different values of n∗, based on
the same analysis of Figure 3.13. The plot illustrates the improved n∗-dependent stability
using the distance of eq. (3.17) with the eigenvalues rescaling compared to not using the
rescaling (i.e. by setting λ̄n = λn. The inset shows a zoom of the ROC curve for the
normalized case. In order to consider larger values of n∗ only chromosomes 9 to 15, which
have similar sizes, are considered.
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Figure 3.16: ROC curves for the essential matrices at different resolutions. The black
dashed line indicates the random discriminator reference.
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a significant value, larger than 0.9.

The same plots also shows the importance of the spectral normalization of eq. (3.15)
in stabilizing the results, as comparing essential matrices obtained without using the nor-
malized eigenvalues (blue lines) results in visibly faster decaying values of the AUC.

Another aspect of robustness that must be investigated is the effect of changing the
resolution at which Hi-C matrices are analyzed. While the resolution in itself, i.e. the size
of the matrix binning, can be seen as an independent variable, it is in fact linked to the
sequencing depth, the number of interactions sampled in the experiment: the sizes of the
patterns that can be reliably resolved can be lowered only if the matrix is well sampled.
In a heterogeneous dataset it is especially difficult to obtain meaningful comparisons, as
some matrices only allow for low resolution analyses, while others could offer much more
information at higher resolutions.

Figure 3.16 shows the ROC curves for different resolutions: 1Mb, 100Kb, 50Kb, and
20Kb. As the resolution increases, i.e. when using smaller binning sizes, the performance
decreases: 1Mb comparisons are able to distinguish between different cell-types almost
perfectly, while 100Kb and 50Kb matrices still retain a significant discriminatory power.
On the other hand, a visible drop happens at 20Kb, which is nevertheless a significant
improvement with respect to the element by element comparison.

3.4 Single-cell Hi-C

An entirely distinct context is that of single-cell Hi-C analysis, which deals not with matri-
ces whose interaction counts are compiled from all cells in a sample, but rather come from
a single cell.

This allows one to obtain thousands of interaction maps, each depicting a single con-
figuration frozen in time, instead of the ensemble average of multiple configurations one
would get for bulk Hi-C maps. Moreover, even within the same cell population, single-cell
maps can be divided into groups depending on the phase of the cell-cycle each individual
is in: G1, S, G2, and mitosis phases (see figure 3.17) are all characterized by large confor-
mational changes of the genome. This is most striking near mitosis, when chromosomes
coalesce into the characteristic rod-like shape before replication.

Of course this has a huge effect on the patterns found in Hi-C maps at different stages of
the cell-life. Contact maps of mitotic chromosomes, for instance, do not display the usual
checkerboard patterns. Instead, the interactions become dominated by their dependence
on the genomic distances: along with the main diagonal, describing interactions between
neighboring loci along the chain, a secondary diagonal appears, located at a distance of
∼ 3Mb [69].

Methods that perform assays at the single-cell level have helped improve the under-
standing of many aspects of genome organization, but they also offer additional challenges
for the analysis of the results: for example, as seen in figure 3.22, single-cell matrices are
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Figure 3.17: The four phases of the cell cycle. G1 - the intitial growth phase. S - the phase
in which DNA is synthesised. G2 - the second growth phase in preparation for cell division.
M - mitosis; where the cell divides to produce two daughter cells that continue the cell
cycle. Credits to Simon Caulton, CC BY-SA 3.0 https://creativecommons.org/licenses/by-
sa/3.0, via Wikimedia Commons

Figure 3.18: Three single-cell Hi-C matrices relative to chromosome 1 of experiments NXT-
972 (G1 phase), NXT-2244 (early-S phase), and NXT-2126 (late-S / G2 phase). The
matrices are not normalized.
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much sparser than bulk matrices.

In this section I will apply essential component analysis to the dataset obtained by
Nagano et Al. [18], which covers different cell-cycle stages of the mESC mouse embryonic
cell line.

In the original paper, Nagano et Al. [18] time-order the dataset a posteriori through an
elegant dimensional reduction procedure, necessary to extract meaning from the inherently
sparse matrices. Here I will show that clustering obtained from the essential component
analysis can recover the same groupings of the original paper.

3.4.1 Time ordering in the original paper

Here I briefly recount the method used by Nagano et Al. [18] to order cells along the
cell-cycle.

To devise their method, they proceed from the informed observation of the behavior
of chromosomes during the cell-cycle. Mammalian mitotic chromosomes are rod-shaped
and previous analyses of the contact maps obtained from M phase cells has revealed that
intra-chromosomal contacts are enriched for genomic distances which ranges between 2 Mb
and 12 Mb [67]. Contacts in this region are dubbed mitotic contacts.

A comparison of the percentage of mitotic contacts and short-range contacts (those
which happen between loci at genomic distances smaller than 2 Mb) shows a circular
pattern which reflects the position of each cell along the cell-cycle. On the basis of this
observation, Nagano et Al. argue that a gradual remodeling of the chromosomal confor-
mations takes place during the cell life. Hence chromosomal conformations can be used to
phase cells at various stages of their life.

Moreover they observe that early- and late-replicating topological domains are defined
by their copy number dynamics during S-phase. Normalized TAD coverage across the
single-cell dataset reflects a strong correlation between domains previously annotated as
earlier late-replicating in mouse ES cells [94]. They define a repli-score based on the copy-
number ratio of early-replicating regions to total coverage for each cell. This score is
expected to have a low value for G1 and G2 cells approaching mitosis, with a peak for cells
in the S-phase.

Combining repli-score with the circular pattern exhibited by the frequencies of short-
range and mitotic contacts they are able to retrieve exactly the expected trajectory. To-
gether, the mitotic signatures and time of replication analysis define two major anchors to
support phasing of the entire single-cell Hi-C dataset along the cell cycle [18].

Figure 3.19, taken from the original article by Nagano et Al., shows the details of their
work, from the experimental procedure to the time ordering of experiments, and finally to
pooling Hi-C maps of cells in the same phase.

Their time ordering serves as the gold standard for my subsequent analysis.
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Figure 3.19: Taken from Nagano et Al. [18]. a, Single-cell Hi-C schematic. b, Number
of informative contacts retrieved per cell that passed the quality control filter. Median
127,233 (dashed line). c, Percentage of trans-chromosomal contacts per cell that passed
the quality control filter. Median 5.87% (dashed line). d, Genome-wide contact map of
a representative mitotic cell (1CDX4 242). e, Percentage of short-range (≤ 2Mb) versus
mitotic band (2–12Mb) contacts per cell (left), and repli-score (right). Cells are grouped by
percentage short-range and percentage mitotic contacts and coloured by group. f, Single-
cell contact decay profiles ordered by in silico inferred cell-cycle phasing, with approximate
cell-cycle phases shown on top. Each column represents a single cell. g, Selected phased
and pooled contact maps
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Figure 3.20: The upper panel shows Roc curves for full and essential single-cell Hi-C maps,
the dashed line represents the random discriminator reference. The lower panel shows the
correspondence of the clustering (3 groups) to the time-ordering performed by Nagano et
Al. [18].

3.4.2 Application of essential component analysis

Here I apply the essential component analysis to the single cell dataset and compute dis-
tances between experiments. I adopt Nagano et Al. labeling of experiments into G1,
early-S, late-S/G2 phases as the gold standard (disregarding pre-M and post-M phases, as
each of these only contains one viable member).

For each raw matrix in the dataset I compute the observed over expected normalization
in the same way I did for bulk matrices, and from there I extract the first 10 essential spaces.
I compile the genome-wide pair-wise distances into a distance matrix from which, using
the labels defined above, I compute the ROC curve. The result is shown in figure 3.20: in
the case of single cell Hi-C maps, the discriminator used for bulk matrices is completely
ineffective, scoring an AUC = 0.43, which is not only lower than the result for full matrices
(AUC = 0.55), but also worse than the random case.

Why is this the case?

Not only single cell Hi-C matrices are much sparser with respect to their bulk counter-
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Figure 3.21: Percentage of the spectrum covered by the first 10 (blue) or 50 (red) eigenval-
ues. The histograms display the distribution over the population of single cell experiments
contained in the dataset.

parts. The different stages of the cell-cycle observable in single-cell Hi-C are characterized
by a variation in the dependence of the interaction counts on the genomic distance [18, 69].
This means, for example, that mitotic chromosomes are characterized by the presence
of a secondary diagonal of enhanced contacts and a stronger depletion of long distance
contacts with respect to interphase chromosomes [69]. Because it carries relevant biological
information, one cannot discount the dependence on the genomic distance when analyzing
single-cell Hi-C data.

Hence, I adapted the original essential component analysis in two ways: first, I apply it
to raw single-cell matrices, without applying the usual OoE normalization. This makes it
more difficult to capture the relevant information with just 10 eigenspaces, so the second
adaptation is to perform the analysis with n∗ = 50. This allows one to capture most of the
trace of the sparse and non-normalized single-cell Hi-C matrices, as shown in figure 3.21.

Re-computing the distances with these adaptation allows me to obtain the ROC curves
in figure 3.22. The set of full single cell Hi-C matrices cannot be clustered in a meaningful
time-ordered way, as shown by the near-diagonal trend (blue line) in the ROC plot of
Figure 3.22 (with an AUC of 0.55). On the other hand, the essential matrices display
a noticeable and significant improvement, AUC = 0.68. Indeed, the same metrics and
clustering procedure shown in figure 3.11, adopted for the bulk dataset, returns primary
partitions that are in very good accord with the time-ordered cellular stages proposed by
Nagano et Al. [18].

This shows that, with some adaptations, the essential component analysis is able to
capture the partitions obtained by Nagano et Al. [18] by directly comparing matrices.

3.5 Summary and Conclusion

Essential component analysis is different from approaches addressing data noise in Hi-C
matrices at the local or bin-wise level. The latter are in fact designed to remove biological
biases [95, 75] or numerical imbalance [7, 96] from Hi-C matrices at a local scale, while the
essential component analysis presented in this work discounts the non-specific component
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Figure 3.22: The upper panel shows Roc curves for full and essential single-cell Hi-C maps,
the dashed line represents the random discriminator reference. The lower panel shows the
correspondence of the clustering (3 groups) to the time-ordering performed by Nagano et
Al. [18].
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by isolating the spectral, hence generally global, properties that differ from those of random
matrices.

The resulting enhanced specific content of the essential matrices is illustrated by the
clearer and sharper features which emerge once the aspecific part is removed, and, more
quantitatively, by the comparison of different instances of Hi-C matrices from biological
replicates or different cell-types. The subtraction of matrices of the same cell line is no-
ticeably more uniform and less noisy for the essential matrices compared to the full ones,
with the distribution of entries being closer to the expected value of zero. In addition, the
subtraction of the essential matrices of different cell lines provides a clearer highlighting of
the different features, which are instead convolved with noise in full matrices.

I presented two applications of the essential component analysis, chosen for their rel-
evance and challenging nature. Firstly I compared full Hi-C matrices obtained at high
sequencing depth, with matrices at lower depth, both in the full and essential forms. The
comparison demonstrated that essential matrices can significantly boost the correlation
with the highest depth reference matrix and allow for much more consistent identification
of TADs. In fact, essential matrices can retain roughly the same level of accordance with
the high resolution matrix (in both applications) despite the decreasing sequencing depth.
These results provide a striking illustration of the significant potential that the essential
component analysis holds for isolating specific interaction features that would require a
major increase in sequencing depth to be discerned in full matrices.

Secondly, I carried out the unsupervised clustering of a heterogeneous ensemble of Hi-C
matrices covering several cell lines. Good correspondence of cell lines and the subdivisions
obtained from the hierarchical clustering are observed only for essential matrices, with little
evidence of structure found in full matrices. Furthermore, subdivisions based on essential
matrices of the IMR90 cell lines correlate with different restriction enzymes used in the
Hi-C assays for the two subsets: this unexpected result shows that different experimental
conditions can reflect in contact probabilities which are sufficiently distinct to be picked up
by the analysis of the essential components, despite being subtle enough to bypass more
naive methods, such as the bin by bin comparison of full matrices.

Overall, the results show that essential matrices are better suited than full ones to
isolate significant contact patterns, which ought to be useful also in contexts where con-
tact propensities are used for chromosome modeling both to generate mean-field genome
structures [97, 98] or to highlight the cell-to-cell variability [59, 99].

All the above results are obtained with a rule-of-thumb value for the number of essential
spaces to consider, setting the parameter n∗ = 10, but further analysis shows that, in part
thanks to the normalization of the spectrum, these findings are very stable, allowing one
to more confidently use this tool in different contexts (different chromosomes, or different
datasets) without worrying too much about fine tuning.

Finally, to illustrate the perspective potential of the essential component analysis I
discussed a preliminary application to single-cell matrices, focusing on the dataset obtained
from Nagano et Al. [18]. The ROC curves show that the time ordering presented in the
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original paper cannot be recovered from full scHi-C matrices. This is consistent with the
fact that a dimensional-reduction of scHi-C matrices was needed in order to obviate to the
sparsity of the full matrices and establish their time-ordering.

Therefore, it is significant and appealing that, once the aspecific parts of the matrices
are discounted by the essential component analysis, a clear correlation with the time order-
ing of Nagano et Al. emerges, and the main cellular phases are recovered. This suggests
that essential component analysis may be a beneficial tool to use in conjunction with more
fine-tuned ones, like the dimensional reduction scheme presented in the original paper, in
order to obtain information about the dataset which would not be available otherwise (e.g.
the bin-by-bin comparison of matrices is not possible once they pass through the dimen-
sional reduction tool, which only considers the average interaction rate as a function of the
genomic distance).

More in general, these results emphasize the advantages offered by the essential com-
ponent analysis across very different contexts.

The results open numerous perspectives for using essential component analysis to opti-
mally isolate biologically and physically-relevant information from Hi-C matrices. Beyond
the applications considered here, one can expect this tool to be useful in comparative
contexts where variations of chromosome compartmentalization could be picked up with
enhanced reliability and hence better related to epigenomics changes [100] or cell differen-
tiation [10, 101, 102].

In addition this approach could be useful when simultaneously analyzing large ensemble
of matrices, where their encoding into a limited number of essential spaces can serve as a
lossy data compression scheme of retaining the most important features.

The tool is freely available for academic use as the essHi-C software package and can
be accessed at https://github.com/stefanofranzini/essHIC
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Dimensional Reduction and Lossy
Compression of Hi-C Matrices

In the last chapter I presented the results of applying a spectral filter to Hi-C matrices in
order to remove their aspecific component: not only do essential components behave as an
high quality matrix, they also allow for better comparison between different experiments
in order to assess reproducibility and relevant differences. However, one compelling aspect
I did not investigate is the ability of essential component analysis to describe each Hi-C
map using only a limited amount of degrees of freedom.

Essential component analysis obtains a reduced representation by retaining a limited
amount of eigenspaces. However the eigenspaces of each matrix are different: hence one
may ask whether it is possible to obtain a dimensional reduction based on common prop-
erties shared by all Hi-C maps. Aside from the scientific curiosity about recurrent patterns
of Hi-C maps and the optimal number of dimensions at which they can be represented,
answering this question may also lead to operative advantages: a method to encode Hi-C
matrices with a few degrees of freedom, while also offering a way of restoring the original
data, would serve as a lossy compression algorithm tailored to Hi-C maps. This would
potentially allow to increase the volume of data that can be handled during analysis.

Such endeavor is predicated on the premise that, at the local scale, patterns contained
in one Hi-C map are similar to those found in different chromosomes or cell-types [20]:
this means that only a small set of building blocks can be arranged in order to obtain all
the variability found in interaction maps at a global level. If this assumption is true, once
an algorithm is able to encode and decode the local patterns obtained from a small set of
matrices, it can be applied to other datasets without further tuning.

In order to obtain such an algorithm, I turn my attention to a set of tools that are
complementary to the spectral methods (which are based on linear algebra): machine
learning techniques offer a number of network architectures which are singularly apt for
manifold learning and have already been used with a high degree of success in the context
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Figure 4.1: Scheme of an autoencoder: a network which passes data through a bottle-
neck layer at a reduced dimensionality and then tries to reconstruct it on the other side.
Reconstructions may present some minor distortions.

of Hi-C matrices [93, 103, 104], but with different objectives with respect to the one of
dimensional reduction and data compression. Nevertheless the performance of networks
on tasks such as quality enhancement shows that they have the ability of learning the
probability distribution underlying repeated patterns present in Hi-C matrices [93, 103,
104].

An architecture which qualifies for the job is that of the autoencoder[105], a network
which passes data through a bottleneck layer at a reduced dimensionality and then tries to
reconstruct it on the other side (see figure 4.1 for a sketch). This procedure ensures that
the encoded data only retains the most important information about the original matrix.
Here I present a version of this architecture tweaked to better address the problems found
in Hi-C maps and test both its ability to retain information about the original matrix and
the quality of the decoded one.

The idea is to split matrices into small cut-outs, containing local patterns, that can be
passed through an autoencoder in order to learn a low dimensional representation and an
inverse transformation. Doing so will allow to generalize the results obtained on a limited
dataset to other cell-types or chromosomes on which the neural network has not been
trained.

The chapter is organized as follows: first I will address the problem of dimensional
reduction from a theoretical perspective by examining the clustering of small cut-outs
sampled from Hi-C matrices of different chromosomes, containing local portions of their
interaction patterns. This is done both to investigate the optimal dimensionality of the
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dataset and to make sure that patterns from different sources are compatible at the local
level, so that the compression algorithm can be generalized. Next I will revise the methods
that can be used for this task and detail the architecture of the autoencoder employed in
this work. The following sections are devoted to presenting the results of the algorithm
and examining the structures found in the encoded and decoded data, with a focus on the
ability of the algorithm to retain information and the consequences of the lossy compres-
sion. Finally, I will compare matrices reconstructed from the encoded space through the
compression algorithm and the essential components of the original matrices.

4.1 Dimensional Reduction of Local Patterns

An implicit assumption often used when looking at Hi-C matrices is that recognizable local
patterns get repeated in different contexts[20, 2]. Every chromosome and cell-type has its
own typical global structure, leading to different interaction maps that can be compared
and distinguished from each other. However, if one looks at small scales, some structures,
such as loops, or TADs, or the boundaries between compartments, can be found in different
positions in many Hi-C matrices sampled from different cell populations. Hence, these local
patterns can be thought of as building blocks that can be rearranged to obtain all global
combinations encountered in interaction maps.

This is, of course, a plausible assumption. Many methods have been used to define and
then spot specific patterns on Hi-C maps in order to describe their structural properties [2].
Here however the concern is less on the definition of some specific local pattern and more
on the possibility of finding a compact description of repeated motifs in order to perform
dimensionality reduction at the matrix level.

In this section I will explore the properties of local patterns found in Hi-C matrices.
First I will ask whether a dataset made up of these local patterns (in the sense that
I will discuss below) contains any regularities that allow for an efficient dimensionality
reduction. I will then perform an analysis to obtain an estimate for the intrinsic dimension
of the dataset, i.e. the dimensionality of the manifold upon which the dataset rests, which
is the optimal number of degrees of freedom that describe the data points. Furthermore,
I will compute clusters and verify that patterns sampled from different chromosomes and
cell-types are not separated by gaps, so that the results obtained from a limited dataset
can be generalized to other matrices.

4.1.1 The Dataset

Before proceeding I need to define what exactly constitutes the dataset of local patterns.
Here I simply consider square cut-outs sampled randomly from Hi-C matrices, KK bins
wide at 100 kb resolution, with K = 50. For each of cut-out present, its transpose is also
added, in order to equilibrate the dataset.
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Figure 4.2: Scheme of the sampling of local pattern: a 50 × 50 square block is selected
randomly from a matrix and added to the dataset. Examples of the sampled patterns are
plotted on the right.

Figure 4.2 shows a scheme of the sampling procedure and examples of the look of the
members of the dataset.

The matrices used to build the dataset are the same bulk Hi-C maps considered in the
previous chapters, containing experiments from 9 different types of human cells. Since one
of the objectives is data compression, only the raw matrices are considered, as normaliza-
tion, unbiasing [7] and other analyses can be performed downstream.

Finally, only chromosomes 1, 2, 3, 18, 19, and 20 are used to obtain the cut-outs of
the dataset, in order to be able to perform later analyses on other chromosomes and verify
whether the methods developed in this work can be successfully generalized.

By sampling 40 cut-outs per matrix, the dataset contains (not counting the transpose
cut-outs) 18720 data points.

4.1.2 Intrinsic Dimension

Dimensionality reduction is an operation which transforms data from a higher dimen-
sional space into a lower dimensional one while preserving some meaningful properties of
the original dataset, such as distances, or qualitative groupings. Generally, dimensional-
ity reduction is meaningful if the features of the data points display some correlations,
often non-linear, so that the dataset effectively lies on some manifold embedded in the
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Figure 4.3: Intrinsic dimension analysis of the cut-outs dataset: the linear fit is performed
on the top 90% of the data points, while the remaining 10% tail is discarded.

high-dimensional space. Then the problem of dimensionality reduction becomes that of
describing this manifold and finding a representation of the original data-points in terms
of the natural coordinates of that manifold.

For example one could consider a dataset of points lying on the surface of a sphere
in three dimensions: while each point is described by three coordinates, one can also use
two angles in spherical coordinates to obtain the same information with fewer degrees of
freedom. This is also an example of a manifold with a non-trivial topology, as the sphere
is only locally homeomorphic to a plane, but not globally.

For now my objective is not to obtain a low-dimensional representation of the data
points (this will be done later by applying the autoencoder network), but simply to find
out whether dimensionality reduction is possible on the dataset and to what degree. The
intrinsic dimension can be thought of as the minimal number of features (or coordinates)
needed to represent the data: this is akin to asking the dimensionality of the manifold
upon which the data points lie. In the above example, the intrinsic dimension is 2, the
number of coordinates needed to describe a point on the surface of a sphere.

Ideally, the intrinsic dimension represents and estimate of the optimal efficiency of
a compression: using fewer features to describe the dataset may end up removing some
important information about its structure.

To estimate the intrinsic dimension I use the method described by Facco et Al. [21],
which requires only for the density of the data points to be locally (within the distance of
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Figure 4.4: The left panel contains the dendrogram of the training dataset, as determined
through the Ward linkage method. Colors refer to the 5 clusters subdivision, with two
isolated data points shown as black lines that reach the leaves of the dendrogram. The
right panel shows the Dunn score of the same dataset.

two nearest neighbors) homogeneous. I start by computing the euclidean distances between
each pair of data points in the dataset, which I then use as inputs for the method.

The results of the test are shown in figure 4.3: the analysis reveals that, disregarding
a tail of outliers, the intrinsic dimension of the dataset is 98.72, close to 100, so that one
can obtain a 25-fold reduction with respect to the original 50× 50 degrees of freedom.

4.1.3 Clustering

Another interesting aspect that can be investigated is the emergence of clusters in the
dataset of local patterns. I am interested in whether patterns form clusters according to
their cell-type or chromosome to understand if generalizations are possible to matrices not
present in the training set.

As in the previous section, euclidean distances are computed between each pair of
cut-outs and used in order to apply the Ward hierarchical clustering I adopted for Hi-C
experiments in chapter 3. Figure 4.4 shows the dendrogram resulting from this analysis
(clipped to allow visualization): the major gaps between branches of the dendrogram sug-
gest a subdivision into 5 clusters. In order to confirm this quantitatively I also compute the
Dunn score for different numbers of clusters: the result, shown alongside the dendrogram,
shows that while the most robust separation is the one with only two clusters, with one
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containing a single outlier data point, the second higher Dunn score is obtained for the
division into 5 clusters.

In order to understand the structural meaning behind these clusters I first plot their
most representative members: for each cluster (having more than one data point) I order
its members according to the sum of the distances to other members of the same cluster,
i.e. the quantity:

sa =
∑
bεC

da,b (4.1)

where a and b are both members of the cluster C, and da,b is their distance. The
representatives are those with the smallest values of sa, as they live in the most densely
populated neighborhoods. Figure 4.5 shows that while the first two clusters contain iso-
lated outliers, the third one contains the empty areas corresponding to the centromeres
(which appear as void stripes on the matrices). The fourth and the fifth clusters contain
a wider variety of patterns, so an identification of a common thread connecting all the
representatives is more difficult to find.

To further investigate the differences between these two clusters and their significance, I
focus my attention on the position of their members on Hi-C matrices: given an interaction
map, one can obtain a K×K cut-out for each bin of coordinates (i, j), with K = 50. This
cut-out can be compared with the points in the dataset and assigned to a cluster with
the KNN algorithm, with k = 100: first one finds its first k = 100 nearest neighbors and
counts how many belong to each cluster, then the assignment is given to the cluster with
the most members among the nearest neighbors. Moreover, for each cluster one can assign
a probability of belonging to that cluster by computing the quantity

pC(i, j) =
#(nn εC)

k

∣∣∣∣
k=100

(4.2)

where #(nn εC) is the number of nearest neighbors belonging to cluster C.

This gives a map of the probabilities for each cluster, which helps contextualize the
positions in each matrix where patterns belonging to that cluster are more likely to appear.
These maps can also be overlapped by showing, for each bin, the color corresponding to
the most probable cluster assignment. Figure 4.6 shows the results of this analysis for
chromosome 17 of experiment HIC001 (only considering clusters 1, 2, and 3, i.e. removing
outliers): cluster 1, containing empty squares, is most probable alongside masked regions,
such as centromeres, which are not sampled in experiments, but is never the most likely
assignment. Cluster 2 occupies the boundaries delimited by centromeres and some spots
along the diagonal, while the rest of the matrix is occupied by cluster 3, which covers most
of the Hi-C map.

More interesting groupings may emerge when applying more refined techniques to com-
pute the distances (or similarities) between the cut-outs. In fact, as shown in the previous
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Figure 4.5: Top 5 representative cut-outs for each cluster (except for cluster 4 and 5, which
only contain one element each).
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Figure 4.6: Interaction matrix of experiment HIC001, chromosome 17, colored according
to the likelihood of each bin belonging to either of the first three clusters obtained by
the Ward hierarchical clustering. The last panel shows the largest likelihood among those
computed.
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Figure 4.7: Distribution of chromosomes and cell-types for each cluster (except clusters
4 and 5, which only contain one member each). Notice that for cell-types, the bars are
normalized by the total number of each cell-type contained in the dataset.

chapter, essential component analysis greatly enhances the ability to distinguish between
different cell-types. Here it could be applied to enhance structural similarities and dif-
ferences in local patterns, that have not emerged due to the usage of a naive Euclidean
distance. However here I am mainly interested in raw local patterns as they are, without
enhancements, because they form the dataset that need to pass through the dimensionality
reduction scheme.

Returning to the original purpose of this section, I consider the segmentations of the
three main clusters (i.e. excluding the two outliers) according to the chromosomes and
cell-types from which the cut-outs have been sampled. The first panel of figure 4.7 shows,
for each cluster, the distributions of cut-outs sampled from each chromosome. The second
row of figure 4.7 shows the same for the cell-types. In this case, since the numerosity
of each class is different, bars have been normalized by the number of cut-outs of the
corresponding cell-type present in the dataset. In both cases fluctuations are present, but
the clusters are well mixed, which points towards the presence of shared local patterns:
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the same basic patterns can be found in each chromosome and cell-type independently,
and thus the analyses of the following sections can be extended outside the training set
considered here.

4.2 The Autoencoder Architecture

An autoencoder is a type of neural network architecture that can be used to learn an
efficient encoding of unlabeled data[105]. In order to learn and validate the encodings, the
network is trained to use them to reproduce the input. As such, the autoencoder contains
two parts that can be thought as distinct: the first one, called encoder, usually contains
convolutional layers which progressively reduce the degrees of freedom of the input to the
dimension of the latent space, i.e. the space where the encodings live. The second part,
the decoder, inverts the process by progressively upsampling the encodings in order to
produce a point in the same dimensionality of the original input. The reconstructed signal
is then compared to the original one in order to compute the loss function used to train
the network.

By creating a dimensional bottleneck and attempting to reconstruct the original signal,
autoencoders are able to find an efficient representation for a dataset, typically for the
purpose of dimensionality reduction, by training to ignore contingent perturbation and
focusing on patterns shared throughout the dataset.

While the first application that comes to mind for this type of network is dimensionality
reduction, which is what I am mainly interested in, autoencoders find other uses as denoisers
and in anomaly detection [19]. Moreover variants which tweak the loss function, such
as regularized autoencoders and variational autoencoders, can also be used in different
contexts, such as conditional generative models [19].

In practice, autoencoders have already seen some applications to Hi-C maps, in partic-
ular in the context of super-resolution [106, 107]: there the task is to map a low resolution
matrix (usually artifically down-sampled from some real experiment) to its high-resolution
version. In that case, however, the latent space was not studied, and the usage of the
autoencoder as a compression tool was not explored.

Here I will use a modified autoencoder architecture optimized on the dataset of local
patterns sampled from Hi-C matrices. Figure 4.8 shows the basic architecture of the
autoencoder: one starts with a K ×K (with K = 50) cut-out sampled from an Hi-C map,
which I call A, and passes it through the encoder in order to obtain e(A), an array of k
elements in the latent space, with k being a parameter of the model. The square shape of
the encoded vector is not strictly necessary, but allows for a more intuitive visualization
of the results into a matricial form by placing the latent vectors encoded from neighboring
cut-outs next to each other. The encoded vector is then passed through a decoder to obtain
A′ = d(e(A)), a K ×K cut-out to be compared to the original one (K = 50 is fixed).

Let us delve deeper into the details of the architecture.
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Figure 4.8: Scheme of the autoencoder: cut-outs extracted from the training dataset or a
matrix are passed through the encoder to obtain their latent space representations, which
in turn can be fed to the decoder to retrieve their reconstructions. Reconstructed and
compressed cut-outs can be used to compute the loss function, or stitched back together
in order to obtain the reconstructed and compressed, respectively, representations of the
original matrix.
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The basic loss function of an autoencoder is given by the mean square error (MSE)
between the original and the reconstructed signal:

L = MSE(A,A′) =
1

K ×K
∑
i,j

(
Ai,j −A′i,j

)2

(4.3)

where A is the original cut-out, A′ is the cut-out reconstructed by the network, and
K = 50 is their linear size.

Since the only requirement this autoencoder has to satisfy is that the input and output
be similar to each other, its latent space is known to be prone to severe over-fitting [105]:
the autoencoder will try to retain as much information as possible through the dimensional
bottleneck, but at the same time it will not form a proper representation for points outside
the training set. This means that when the decoder is applied to these points, the resulting
reconstruction does not resemble any real pattern encountered in Hi-C matrices. Such a
behavior may be detrimental when trying to generalize the procedure outside the original
dataset, as the autoencoder may not understand input patterns even when they resemble
each other.

In order to avoid this, the latent space must be regularized. Variational autoencoders
[105] do this by exchanging points in the latent space with distributions, so that the whole
space is covered, and over-fitting is avoided. In order to perform this change, the encoder
is changed to return not a single point, but two vectors (with the dimensionality of the
latent space) containing the means and variances of the distribution along each dimension.
These are restrained by the presence of an additional term in the loss function:

L0 = MSE(A,A′) +DKL(N(µ, σ), N(0, 1)) (4.4)

where the second term DKL is the Kullback Leibler divergence between the observed
normal distributionN(µ, σ) with mean vector µ = {µi}i<ki=1 and variance vector σ = {σi}i<ki=0,
and the target normal distribution N(0, 1):

DKL(N(µ, σ), N(0, 1)) =
1

2

i<k∑
i=0

(
σ2i + µ2i − 1− 2 ln(σi)

)
(4.5)

Notice that the covariance matrix of the generated distribution is constrained to be
diagonal.

Finally, one can observe that Hi-C maps are symmetric with respect to the diagonal.
This property should be carried over in the latent space in order to obtain symmetric
results when one inputs symmetric cut-outs. This is enforced by constraining the transpose
encoded vector e(A)T to be equal to the encoded vector of the transposed input e(AT ):

LSYM = MSE(e(A)T , e(AT )) =
1

k2

∑
i,j

(
e(A)j,i − e(AT )i,j

)2

(4.6)
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Figure 4.9: In depth scheme of the variational autoencoder.

this is then plugged into the general loss function to obtain

L = MSE(A,A′) +DKL(N(µ, σ), N(0, 1)) + LSYM (4.7)

Figure 4.9 shows the details of the architecture of the variational autoencoder.

The encoder contains three layers: the first two are standard Convolutional layers
followed by LeakyReLU activations and noisy dropout. The third contains a reshaping
of the resulting square tensor into a linear shape, followed by two Linear combination
layers. The parameters of these layers are chosen in order to progressively reduce the linear
dimensionality of the matrices from K = 50 to k: however in the variational autoencoder
scheme, the encoder output is given in the form of two vectors containing the averages µ
and the variances σ of the underlying distribution. These are used to sample a single point
which is then passed to the decoder.

The decoder does not use standard Deconvolutional layers, as they are prone to output
artifacts: usually these present themselves in the form of noticeable periodic perturbations
in the generated tensors[108]. Rather, I implement a layer formed by a Rescaling followed
by a standard Convlution layer (resize-convolution layer [108]), which has been shown to
be more efficient and less prone to create artifacts[108]. Again, the parameters are chosen
in order to upsample vectors of k elements to K ×K matrices.
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4.3 Analysis of the reconstructed space

In this section I will analyze the reconstructed matrices obtained by passing Hi-C interac-
tion maps through the autoencoder. Various sizes k of the latent space, and thus different
variations of the same basic architecture presented above, have been used in order to com-
pare results.

First I will show visual examples of the original and reconstructed matrices, as well
as differences between the two; then I will proceed to more quantitative analyses. In
doing so I will keep two objectives in mind: the first is to reconstruct the original matrix
through the autoencoder with minimal differences, the second is to check that inevitable
differences between the two do not harm further analyses one could perform on the matrices
downstream of compression and restoration.

The former objective, the consistency between the original and reconstructed matrices,
can be checked by computing the MSE score, which is also defined above in the context
of the loss function. Notice that while this is indeed a term of the loss function L, it is not
the only one: the objective of the autoencoder is to optimize its parameters with respect to
a more complex loss function which also contains constraints about the latent space. This
makes the comparison of the original and constructed matrices through the MSE score
function non trivial. In order to contextualize the results, they will be compared to other
methods.

The latter objective is more broad in its ramifications: what loss of information can
be deemed acceptable when dealing with Hi-C matrices? While the ideal result would
be a lossless compression, it is my opinion that the most important parameter in the real
scenario of lossy compression is the ability of restored Hi-C matrices to retain biological and
structural information. I will perform two analyses that broadly capture the spirit of this
objective: first I will compare TADs obtained from original and reconstructed matrices.
Then I will perform comparisons between pairs of matrices and test the degree to which a
simple euclidean distance can discriminate between biological replicates and non-replicates.

Every analysis will be performed both on Hi-C matrices of chromosomes from which
the cut-outs were sampled (1, 2, 3, 18, 19, 20) and other chromosomes, which are not part
of the learning process of the method.

4.3.1 Visual inspection

First I pass Hi-C matrices through the autoencoder to obtain reconstructed ones. To do
this, I start by cutting the matrix into squaresK×K in size (K = 50); zero padding is added
to the matrix in order to obtain a size commensurable with the squares. Afterwards, each
cut-out is passed separately through the autoencoder; the resulting reconstructed blocks
are collected and positioned next to each others in order to reproduce the original matrix.

Figure 4.10 shows the results: the original matrix of experiment HIC001, chromosome
3, is displayed along with its reconstructions produced by the autoencoder at different
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Figure 4.10: Visual inspection of the reconstruction capabilities of the autoencoder for
different sizes of its latent space, on HIC001, chromosome 3.
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Figure 4.11: Visual inspection of the reconstruction capabilities of the autoencoder for
different sizes of its latent space, on HIC001, chromosome 17.
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values of the linear size k of the latent space. Differences between the original and its
reconstructed matrices are also plotted.

Figure 4.11 plots the same for experiment HIC001, chromosome 17, which was not used
during training.

The first observation is that reconstructed matrices qualitatively resemble the original
ones both for chromosomes used during training and those that the neural network has
not seen before. This is a sign that the scheme used to compress and restore matrices can
be successfully generalized to other dataset without dramatic drops in performance: more
quantitative analyses are offered below.

Secondly, one can qualitatively observe that larger values of k generally correspond
to sharper matrices, with more defined boundaries between domains. However to better
quantify the quality of the reconstruction an analysis of the MSE reconstruction loss is
need.

4.3.2 Reconstruction fidelity

In order to quantify the ability of the autoencoder to restore matrices after compression,
without significant loss of information, I analyze the MSE between original and decoded
matrices over different chromosomes.

To contextualize the result, I compare them to two alternative models that act on the
matrices.

The first, a Gaussian filter with unit variance, acts by averaging neighboring bins and
is used to smooth matrices, at the cost of loosing some of the sharpness of the interaction
patterns. While this is not a compression algorithm, its action on Hi-C maps is qualitatively
similar to what one obtains by passing the maps through a narrow dimensional bottleneck
during the compression: as such it makes sense to employ this method as a baseline of the
baseline result.

A second term of reference is provided by a principal component analysis trained on
the cut-outs dataset and applied to each separate block, as was done for the autoencoder.
PCA is closely related to autoencoders: in fact it can be proven that only using linear layers
to compose the autoencoder, without any non-linear activations between them, leads to
the same results as PCA [109]. This means that PCA can be interpreted as the linear
counterpart of non-linear autoencoders, such as the one devised here. Its ability to provide
a linear dimensional reduction as well as restoring the original matrices from the low
dimensional latent space makes it a good candidate to compare the results with.

Figure 4.12 shows a visual comparison of matrices obtained by applying the three tech-
niques to experiment HIC001, chromosome 17: the Gaussian filter visibly blurs the patterns
of the original matrix, and while this may attenuate the effect of the noise, it also degrades
the quality of the boundaries between domains. PCA obtains better reconstructions, which
are clearly better than the one offered by the Gaussian filter. The autoencoder is also able
to achieve good reconstruction quality, and it is not immediately clear whether its results
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Figure 4.12: Reconstruction of HIC001, chromosome 17, using three different methods: a
Gaussian filter, Principal Component Analysis, and the autoencoder.



96 Chapter 4

are better than those achieved by PCA. By computing the MSE reconstruction loss, one
can compare the two methods from a more objective standpoint.

Figure 4.13 shows the results for different chromosomes and different sizes of the latent
space: autoencoders with larger k perform slightly better, although the value of the MSE is
roughly stable for any value above k ' 100, which also corresponds to the intrinsic dimen-
sion of the dataset. Below this threshold the results quickly degrade. Nevertheless even
the worst performance of the autoencoder (at k = 4) is an order of magnitude better than
results obtained by PCA: while this may not seem immediately clear from visual inspec-
tion of the reconstructed matrices, this comparison quantitatively shows the superiority of
the autoencoder. The Gaussian filter is vastly outperformed by both methods, displaying
errors which are four orders of magnitude larger.

It is interesting to notice that in all methods the MSE scores increase as the size of
the chromosomes decreases. This may be connected to the presence of larger errors along
the diagonals, which hold more weight in small chromosomes: it suggests that the results
of the autoencoder could be further improved by explicitly designing the loss function to
counterbalance this aspect of Hi-C maps by paying more attention to the reconstruction
of cut-outs close to the diagonal.

4.3.3 Preservation of structural details

Here I look at the preservation of TADs in reconstructed matrices.

I apply the MOC score I first used in chapter 3: I compare the TADs obtained from
the insulation score computed on original matrices to those of reconstructed matrices. As
a term of reference I employ the same score to compare TADs of biological replicates and
I use the average as the baseline.

Figure 4.14 shows the results for chromosome 1 and 17, as a function of the size of
the latent space. In both cases the MOC score is roughly constant for k ' 100 and
above, but rapidly decreases for smaller latent spaces. The stable portion of the MOC
score for reconstructed matrices is comparable to the results of the biological replicates
comparison. This is not ideal, as it shows that some structural properties are lost during
the decompression of matrices, however this effect might be mitigated by improving the
reconstruction of the diagonal with an ad hoc loss function.

4.3.4 Preservation of biological information

Here I check whether reconstruction preserves the biological information about the cell-
types of each experiment.

This can be done by looking at the ability of the euclidean distance between experiments
to discriminate between biological replicates and non replicates. Like in the previous
chapter, ROC curves are used to quantify the results and an overall score is provided
by the Area Under the Curve (AUC).
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Figure 4.13: Plots of the MSE scores for the three methods. The score obtained by the
Gaussian filter is shown for different chromosomes; in the case of PCA and the autoen-
coder, the MSE scores are plotted as a function of the number of principal components or
dimensions of the latent space respectively.
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Figure 4.14: MOC scores for TADs computed on original and reconstructed matrices as a
function of the latent space size. The error bars indicate one standard deviation from the
dataset average. The MOC scores computed on original matrices of biological replicates
are also shown as a term of reference, and the shaded area indicates one standard deviation
from the dataset average.

Figure 4.15: ROC curves computed from reconstructed matrices at different sizes of the la-
tent space, in different chromosomes. The ROC curves computed from the original matrices
are shown for comparison, and AUC scores are provided for each curve.
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The results are plotted in figure 4.15 for different chromosomes (both those employed in
training the autoencoder and the others), and different values of the latent space dimension
k: the ROC curves are mostly overlapped in both sets of chromosomes, showing that the
passage through the autoencoder and its dimensional bottleneck does not compromise the
structure of the dataset. In fact, the reconstructed dataset displays slightly larger AUC
scores in most cases, which is a sign that the part of the signal which did not pass through
the dimensional sieve is not biologically relevant.

The quality of the results shown here is not comparable to that of essential component
analysis presented in the previous chapter, but this is to be expected. Using a simple
euclidean distance, with a bin to bin comparison of the Hi-C maps, has already been shown
to be ineffectual. Moreover, I did not account for the genomic distance bias, which makes
differences along the diagonal orders of magnitude more important than those between
long distance regions. In reality, structures along the diagonal have been shown to be
conserved in different cell-types, with much structural variability being contained in those
long distance regions which this naive analysis does not focus on.

Of course the objective of the autoencoder is exactly to reproduce the information
present in untreated matrices, not to enhance it. This allows for more refined analyses to
be applied downstream of the compression and restoration scheme. However, this result
begs the question of whether applying the autoencoder in a more favorable context would
allow it to also enhance the results beyond those obtained on the original dataset. I tackle
this problem in the last section of this chapter, where I compare the autoencoder to essential
component analysis.

4.4 Analysis of the latent space

The previous section dealt with the results of passing matrices through the autoencoder in
order to compress and then reconstruct them. In this section I will delve into the latent
vectors that encode the compressed information about Hi-C maps.

I will first present a visual inspection of the matrices constructed by placing latent
vectors of neighboring cut-outs near to each other. These objects can be thought of as the
compressed matrices and part of the section will be devoted to finding out whether the
dimensional reduction reveals any new structural information about the dataset.

In fact, as shown in the previous section, the autoencoder preserves (to a good degree)
structural and biological features, and is able to nicely reproduce the original matrices.
Compressed representations of local patterns contain fewer redundancies and may be easier
to analyze in search of emergent groupings in the latent space.

As such, I repeat the clustering analysis on the compressed cut-outs obtained from
the training dataset and check whether the previous dendrogram structure of figure 4.4
can be confirmed, or new clusters emerge. Moreover I also repeat the ROC curve analysis
using the latent matrices described above in order to check whether discrimination between
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biological replicates and non replicates improves in this space.

4.4.1 Visual inspection

As usual the first step in analyzing the results is to look at them from a qualitative stand-
point: figure 4.16 shows the latent space representations of the original Hi-C maps of an
array of different chromosomes and cell-types, represented in matricial form.

To obtain these, I start by cutting up the original matrix into blocks and pass them
through the encoder (the first part of the autoencoder). The output is the latent space
representation of the starting cut-out, which one can pass through the decoding portion of
the network in order to restore it to its original form. However in this case I collect the
latent space vectors, which are reshaped as k × k matrices, and place them side by side in
the same order of the matrix they come from.

The resulting matrices are the compressed versions of the original ones: one can start
by noticing that, thanks to the symmetry term of the loss function, they appear symmetric
with respect to the diagonal, preserving the same property of the full matrices. In the
patterns presented in figure 4.16 one can recognize some of the features contained in the
original matrix, such as a darker diagonal. Moreover different cell-types display visibly
different patterns, which may allow one to more easily differentiate between groups.

4.4.2 Clustering

Using latent space representations of high dimensional data has been shown to improve
clustering, allowing better separation between groups of related local patterns. For this
reason, it is interesting to study the structure of the representations of the training dataset
in the low dimensional latent space and apply clustering.

I start by computing euclidean distances between the vectors obtained by applying the
encoder to the dataset and obtain a dataset wide distance matrix. From this, I can employ
the usual hierarchical Ward clustering to obtain an arbitrary number of subdivisions.

In order to choose an optimal grouping I employ the Dunn score, which computes
the ratio between cluster distances and their sizes. The plot in figure 4.17 shows that
the Dunn score is always smaller than the one observed for the original cut-outs in figure
4.4: this signals that any gap between groupings in the latent space will be small with
respect to their diameter. This is a feature of the regularization performed by the KL
divergence of the autoencoder loss, that guarantees that no gaps are present in the latent
space [105]. However meaningful clusters may still emerge: figure 4.17 shows two possible
main subdivisions, into 2 or 8 clusters, and signaled by two isolated peaks.

In order to visualize the groupings, I plot a dendrogram of the hierarchical clustering
in figure 4.18: one can immediately see that the dataset splits neatly into different groups
with large jumps of the Ward score, signaled by longer arms connecting them. Again, this
points to the subdivisions suggested by the Dunn score analysis: a two cluster subdivision
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Figure 4.16: Visualization of latent space representations for two different chromosomes
(1,17) and four cell-types (GM12878, IMR90, K562, T47D). The size of the latent space of
the autoencoder is 10× 10.
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Figure 4.17: Dunn score computed on latent representations of the training set data points.

correspond to the first and largest gap, while each of these groups can still be subdivided
into finer partitions, obtaining eight clusters.

Notice that the situation is different from what is observed for the original high dimen-
sional dataset of local patterns: there (figure 4.4) the Dunn score suggested a subdivision
in either two or five clusters, but the second grouping was not as clear as the one found in
the latent space. Moreover two of the clusters found in that case contained only a single
cut-out, whereas here the smallest cluster counts three members, with all the others hav-
ing large populations. An inspection of the dendrograms immediately confirms that the
subdivision found in the latent space is much more robust with respect to the original one.

The identity of the clusters can be understood by looking at their representatives,
plotted in figure 4.19: following the main division into two groups, clusters one to three
are centered on the masked centrosomes and contain a large quantity of white spaces; the
others are characterized by an array of diverse patterns. Visual inspection suggests that
subdivisions in the latter group are mainly due to the differences in the average interaction:
a more quantitative analysis confirms the presence of a division based on the strength of
the average interactions found in the cut-outs, as seen in figure 4.20.

It is also interesting to ask whether a correspondence is present between the clusters
found in the original dataset (original clusters, for simplicity) and those found in its latent
space representations (latent clusters). In order to answer this question and probe to what
degree this correspondence extends, I plot in figure 4.21 the histograms for each original
cluster, showing how many of their members are contained in each of the latent clusters.
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Figure 4.18: Dendrogram of the latent space representations of the training set data points,
as determined through the Ward linkage method. Colors refer to the 8 clusters subdivision.
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Figure 4.19: Top 5 representative cut-outs for each cluster in latent space.
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Figure 4.20: Interaction frequency measured in different clusters as boxplots. Boxplots
show: central line, median; box limits, 75th and 25th percentiles; whiskers, 1.5 times the
interquartile range; outliers beyond this range are shown as individual points.

Figure 4.21: Subdivision of the original clusters (computed from cut-outs in the high-
dimensional space) into latent clusters (computed from latent space representations of the
same cut-outs), given as histograms.
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Figure 4.22: Interaction matrix of experiment HIC001, chromosome 17, colored according
to the likelihood of each bin belonging to one of the clusters obtained by the Ward hierar-
chical clustering on the latent space representations of the training dataset. The last panel
shows the largest likelihood among those computed.
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Figure 4.23: ROC curves computed from latent matrices at different sizes of the latent
space, in different chromosomes. The ROC curves computed from the original matrices are
shown for comparison, and AUC scores are provided for each curve.

The first original cluster, corresponding to white cut-outs sampled from the masked
centrosome regions, predominantly contains patterns from the first and third latent clus-
ters.Many members of the second cluster, identifying boundary regions near the centro-
somes, also belong to the first and third latent space clusters, but a stronger presence of the
other latent clusters can also be observed. Finally, the third original cluster is mainly com-
posed of members belonging to latent clusters four to eight. While a complete identification
between groups of latent clusters and the original ones is not possible, these histograms
show that the main division in the latent space, between cluster one to three, and four to
eight, corresponds to the division between patterns near the centrosomes and others.

Finally, an analysis of the location of these patterns on a full Hi-C matrix is shown in
figure 4.22, repeating the analysis in section 4.1.3: different colors indicate different clusters,
and the intensity is proportional to the probability of the cut-out at those coordinates to
belong to a certain cluster. The figure shows a very low overall likelihood for most clusters
on this particular matrix (HIC001, chromosome 17), with the exception of clusters one,
three, five, and seven. Of these, the latter is never the most likely. The others alternate
in patterns similar to those of the original clusters, and the most salient feature is the
presence of bright spots belonging to cluster one at the intersections between masked areas
of the matrix.

4.4.3 Discrimination of biological replicates in latent space

The dimensional reduction of Hi-C maps may enhance the discriminative power of bin to
bin comparisons, making the distinction between biological replicates and non-replicates
easier. This is thanks to the dimensional bottleneck provided by the autoencoder, that
prevents patterns of interaction which are not shared across the dataset, such as noise,



108 Chapter 4

from being encoded.
In order to test whether this is the case I start by computing, for each matrix in the bulk

Hi-C dataset, its latent space representation using the encoder part of the autoencoder.
For each pair of latent vectors I can obtain the euclidean distance by taking the differences
between corresponding bins. By doing so one obtains a distance matrix which can then be
used in a number of analysis, as shown in the previous chapter.

Here I limit myself to just computing ROC curves based on the ability of the euclidean
distance to distinguish between biological replicates and non replicates. Figure 4.23 shows
the results, also compared to those obtained by applying the same analysis of the original
matrices.

While the reconstructed matrices did not improve much the results obtained on the
original matrices by this analysis, using the corresponding latent vectors leads to a vis-
ible and much larger increase of the quality ROC curve, also reflected in a quantitative
improvement of the AUC score.

This improvement suggests the application of this analysis also to the tougher problem
of determining biological replicates and non replicates in the context of single cell Hi-C
maps, which will be the theme of the next section.

4.5 Application to single cell Hi-C

Single cell Hi-C maps possess a few features that make dividing them into different cell-
types challenging [110]: their sparseness means that only a few isolated interactions are
sampled for each map. On top of this, one has to face the problem of the inherent variability
of the structures within the same cell-type at the single cell level.

In the previous chapter I have shown how one can employ the essential component anal-
ysis to improve ROC curves (where the reference classes have been determined beforehand
through an ad hoc analysis).

In this section I want to explore whether a different tactic can be employed for the
classification task: I will pass the single cell Hi-C matrices contained in the dataset of
reference [37] through the encoder in order to obtain their low dimensional representations,
and compare these latent vectors as in the previous section to obtain a distance matrix.
Finally I will compute ROC curves and compare the result to the ones obtained by other
methods.

4.5.1 Autoencoder training

Since the matrices to which the autoencoder must be applied is radically different (both
because of their intrinsic nature, both because they are represented at 1 Mb resolution),
it makes sense to re-train the autoencoder from scratch. Nevertheless, in order to try out
different combinations, I employ three different trainings: the first one is simply the one
already used for bulk matrices at 100 Kb; the second retrains the autoencoder, with the
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same architecture, with cut-outs sampled from matrices at 1 Mb, and the same chromo-
somes chosen above (1, 2, 3, 18, 19, 20; finally, the third trains the autoencoder directly on
cut-outs taken from single cell Hi-C maps (chromosomes 1, 2, 3, 4, 5).

4.5.2 Visual inspection of reconstructed matrices

Figure 4.24 shows, side by side, the reconstruction of the same single cell matrix by the
autoencoders trained in three different ways.

Reconstruction using the original training, performed on cut-outs from matrices at 100
Kb, is able to reproduce most of the contacts present in the original matrix, even between
distant loci, although it smudges otherwise sharp point-like interactions. Moreover, even
more importantly, it produces very visible artifacts in the shape of darker squares along
the diagonal.

Training the autoencoder at 1 Mb also does not lead to good reconstructions: in this
case the artifacts are less visible, but still present, and patterns are more blurred than the
previous attempt.

Predictably, only the autoencoder trained directly on single cell Hi-C maps is able to
faithfully reconstruct the original matrix: only in this case is the autoencoder able to
reproduce minute point-wise details present in the original matrix without blurring them
and without adding noticeable artifacts.

This behavior is explained by the diversity between the bulk dataset and the single cells
one: greater sparsity and a greater variety in the local patterns make these Hi-C maps too
different from the bulk ones to be represented through the same dimensional reduction.

4.5.3 Classification results

Distances between matrices for the three models detailed above are computed by comparing
latent space vectors. As usual I obtained these by dividing the original raw matrix into
cut-outs and passing them through the encoder. Then, their latent representations, in
matricial shape, are juxtaposed in order to obtain the full latent vector corresponding to
the initial matrix.

Figure 4.25 shows the results for the three models, as well as those obtained by taking
the euclidean distance between the original raw matrices, and the one computed in the
previous chapter using the spectral components analysis.

Despite efforts to train these models, the results show that computing distances between
matrices using their latent space representations worsens the quality of the ROC curves,
instead of improving it. In fact all three discriminators based on the models yield ROC
curves which are compatible with the one expected for a random classification.

This means that, contrary to what happens for bulk Hi-C maps, dimensional reduction
is not able to single out biological information in the case of single cell Hi-C. While the
autoencoder explicitly trained on datasets extracted from single cell Hi-C maps is able
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Figure 4.24: Visualization of the reconstruction of a single cell Hi-C matrix by three
autoencoders trained on different datasets.



111 Chapter 4

Figure 4.25: ROC curves computed from latent matrices produced by the three autoen-
coders trained on different datasets. The ROC curves computed from the original matrices
and those obtained by essential component analysis are shown as comparison, and AUC
scores are provided for each curve.

to correctly reconstruct the initial patterns, it still cannot solve problems linked to the
intrinsic variability of the patterns contained in single cells, even among cells which are at
the same stage of their life cycle, and the sparseness of the matrices.

It is possible that a deeper architecture, able to reduce the dimensionality even more,
would be able to better understand the structure underlying these data, but this goes
beyond the scope of the present work.

4.6 Comparison with essential
component analysis

Previous sections have shown that the action of the autoencoder on Hi-C maps is remark-
ably similar, at least from a qualitative point of view, to that of the essential component
analysis presented in chapters 2 and 3. Even if their objectives are different, both enucleate
a small set of features from the matrices, which are then used to reconstruct the map. In
the case of the essential component analysis, these features are the top eigenvalues and
eigenvectors, and the operation of truncating the spectral sum which defines the Hi-C map
is akin to reducing its dimensionality and then trying to restore the original Hi-C map,
cleaned of the aspecific part of the spectrum. On the other hand, the autoencoder applies
a divide and impera strategy in which small cut-outs containing local patterns extracted
from an Hi-C maps are passed through non-linear layers of neurons in order to obtain a low
dimensional representation, which is then expanded back to the original size: thanks to the
learning procedure, carried out on a large dataset of such local patterns, this dimensional
bottleneck is able to stop atypical features, such as noise, from being reproduced on the
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other side.

The results are reconstructed matrices (called essential matrices in the case of essential
component analysis) characterized by sharper and less noisy patterns in both cases. And
in both cases this improves classification of biological replicates and non replicates.

The question arises: are these diverse algorithms doing, essentially, the same thing?
What are the main differences between the two approaches? How do their results compare
when applied in a common setting?

To answer these questions, one first has to define the playing field on which the two
models can be compared. In this section I will consider the dataset of bulk Hi-C matrices
used throughout this chapter and the previous ones. Since the natural context of applica-
tion of essential component analysis is on OoE normalized matrices, here I will consider
such matrices. Because the autoencoder is trained on local patterns, where the influence
of the distance dependence is limited, I will not retrain it. The results will show that
retraining is in fact not necessary.

First I will start by comparing the spectral properties of Hi-C matrices before and
after having passed through the autoencoder. Next the two models, autoencoder and
essential component analysis, will be used to classify pairs of experiments as biological
replicates or non replicates, computing distances and ROC curves, which I will use to
quantify the results. In the case of the autoencoder, distances will be computed both
between reconstructed matrices and their latent space representations, as two separate
models.

4.6.1 How does the spectrum changes?

Here I explore the action of the autoencoder on the spectrum of Hi-C maps: in order to
do so, I apply it to a matrix so as to obtain its reconstruction and compute their spectral
properties, i.e. their eigenvalues and eigenvectors.

Figure 4.26 shows part of the spectrum of experiment HIC001, chromosome 17, before
and after the application of the autoencoder, as well as their ratio, for different sizes of
the latent space. The effect of the autoencoder is, in general, to suppress the higher order
eigenvalues, with the size of its latent space determining where the detachment from the
original spectrum occurs: the smaller the dimension of the latent space size, the sooner
visible deviations start to appear. On closer inspection of the ratio between reconstructed
and original eigenvalues, one finds that the top ∼ 20 eigenvalues are the most conserved
ones, while those of larger order become more and more suppressed. In particular, one can
notice that, among the autoencoders, the one with k = 25 is the most dissimilar, as it does
not completely preserve its top eigenvalues.

This seems to confirm the fact that, similarly to the essential component analysis, the
autoencoder also privileges the first eigenspaces in order to reproduce the salient struc-
tural features of the matrix. However, the autoencoder does not remove non-essential
eigenspaces, although their weight is diminished with respect to the original matrix.
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Figure 4.26: Comparison of the spectra of HIC001, chromosome 17 (normalized by its
distance dependence), before and after applying the autoencoder, for different values of
the latent space size. The inset shows the ratio between the eigenvalues obtained after
reconstruction and those of the original matrix.
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Figure 4.27: Overlaps between the top eigenvectors of HIC001, chromosome 17, before and
after passing through the autoencoder for different sizes of its latent space.

One also has to verify whether the eigenspaces maintain their identity while going
through the autoencoder: are the eigenvectors before the dimensional reduction similar
to the reconstructed ones? Or are the reconstructed eigenvectors mixtures of the original
ones? Do swaps in the order of the eigenspaces occur?

In order to answer these question, figure 4.27 shows the matrix of the overlaps between
top eigenvectors of HIC001, chromosome 17, before and after the action of the autoen-
coder, for different sizes of its latent space. Only the top three eigenvectors completely
conserve their identity, while others become mixtures of an increasingly larger number of
the eigenvectors of the original matrix. The effect is more accentuated as the size of the
latent space of the autoencoder decreases. This confirms, again, the importance of the
structural features encoded in the top eigenvalues.

In order to be more quantitative in my assessment, I introduce the root mean-square
inner product (RMSIP) [17], given by

RMSIP =

√√√√ 1

10

10∑
i,j

vi · wj (4.8)

where vi and wj are the i-th eigenvector of the original matrix and the j-th eigenvector
of the reconstructed matrix, respectively. This is a standard score used to quantify the
similarity between the essential spaces of two matrices, i.e. their top 10 eigenspaces. It
has the important property of being rotationally invariant, so that trivial symmetries of
the two essential spaces are taken into account. This property, however, means that there
exist some set of vectors {v′} and {w′}, given by linear combinations of the eigenvectors
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{v} and {w}, for which the following properties hold true [17]:

• A basis vector of one set is orthogonal to all basis vectors of the other except the one
with the same index

v′i · w′j = δi,jαi (4.9)

• the index provides a natural ordering of the basis vectors in terms of decreasing
mutual consistency;

if i < j ⇒ αi > αi (4.10)

These optimal basis can be used to characterize the consistency of two matrices at a
finer level. This allows to monitor how consistent the optimally mixed spaces are at the
level of the single pair of vectors, rather than giving a global measure.

Figure 4.28 shows the overlaps of optimally mixed eigenvectors for experiment HIC001,
chromosome 17, for different sizes of the latent space: while for k ≥ 100 the results are
similar, with most optimally mixed vectors being consistent before a drop of the overlap
on the last one, if one uses an autoencoder with k = 25, one observes a gradual decline of
the overlaps as the index progresses, revealing a wholly different behavior. Moreover as the
latent space is shrunk from k = 900 to k = 100, the RMSIP score decreases from ∼ 0.89
to ∼ 0.87, while further reducing its dimension to k = 25 leads to a drop in the RMSIP to
∼ 0.77. It also shows the overlaps between optimally mixed vectors as k changes.

These observations further corroborates the idea that at least 100 degrees of freedom
(corresponding to k = 100) are necessary to describe the dataset of the local patterns, and
the quality of the reconstruction rapidly deteriorates as one descends to lower values.

4.6.2 Classification of biological replicates
in OoE normalized matrices

Carrying out classification tasks on latent space representations of matrice has been shown
to improve the quality of the ROC curves, even if the results do not reach the same AUC
scores as tools explicitly designed to tackle this problem. However, it is noteworthy to
notice that the autoencoder was applied to raw matrices, which are usually treated before
applying classification tools: not only are they normalized to remove sampling biases, but
also to explicitly take into account the genomic distance dependence of the interaction
frequencies [14].

Hence it is interesting to apply the autoencoder to OoE normalized matrices, which were
also used for the essential component analysis in the previous chapter, and compare the
results on classification tasks. I stress that the autoencoder is not re-trained on normalized
matrices.

For each matrix in the dataset I compute its latent space representation for k = 100.
I compute the distance between each pair of experiments and use the resulting distance
matrix to obtain ROC curves.
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Figure 4.28: Overlaps between optimally mixed vectors obtained from the top 10 spaces,
for different sizes of the latent spaces of the autoencoders. The RMSIP score is given in
the legend.
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Figure 4.29: Comparison of ROC curves obtained by computing distances between full OoE
matrices, their latent space representations (k = 100), and their essential components.
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Figure 4.29 shows the results for different chromosomes, both contained in the training
dataset and outside, as well as the genome-wide results obtained by combining the single
chromosome distances: the ROC curves for latent space representations are plotted, along-
side the results obtained in the previous chapter from essential component analysis and
the baseline euclidean distances between full OoE matrices.

The genome-wide results reveal that, as expected, the quality of the ROC curves im-
proves with respect to those plotted in figure 4.23. They greatly outperform ROC curves
relative to full matrices, and this holds true even when one singles out each individual
chromosome. Most interestingly, the autoencoder is only slightly outperformed by essential
component analysis in the genome-wide case, and on some chromosomes the relationship
is reversed.

These results are competitive with respect to those obtained by other published meth-
ods ( such as those plotted in 3.13 [12, 13, 77]) and confirm the fact that dimensional
reduction, in one shape or another, is key to successfully understanding the spatial fea-
tures encountered in Hi-C maps. Classification tasks also provide an interesting example of
an application of this procedure in which using low dimensional latent space representations
can be more advantageous than carrying out the analysis in the original high dimensional
space.

It is also important to consider, however, the number of degrees of freedom used to
obtain these results by the autoencoder and by the essential component analysis: even
without an explicit count for each chromosome, one can immediately see that the number
L of degrees of freedom of the former model scales like L ∝ N2, where N is the linear size
of the matrix, while the latter scales as L ∝ N , because the number of components is fixed.
As such, the autoencoder, even with the dimensional reduction, uses a much larger number
of degrees of freedom to achieve its results, and the most efficient choice for classification
remains the essential component analysis.

4.7 Summary and Conclusion

In this chapter I tackled the problem of dimensionality reduction and compression of Hi-C
maps: it is known that local patterns found in interaction matrices present similarities
across different chromosomes, cell-types, and even organisms[2]. They can be regarded
as the common building blocks of Hi-C maps, and these regularities can be exploited to
encode a low dimensional representation of the matrices, useful both for storage purposes
and to enhance certain analyses.

The problem is then how to learn this encoding of the local patterns and how to
restore the original information. Autoencoders are a family of neural networks architectures
that provide both an encoding part[105], which derives a low dimensional latent space
representation of the input, and a decoding part, which restores data to the original size.
Deep learning techniques, and specifically autoencoders, have been previously applied to



119 Chapter 4

Hi-C maps in different contexts, that of super-resolution, and provide a sound solution for
the problem at hand.

Specifically, the model I devised involves sampling small cut-outs from Hi-C maps, the
local patterns, to build a training dataset for the autoencoder: only some chromosomes
are used in collecting the samples, so that the others can be employed to test over-fitting.
An analysis of the training dataset reveals that its intrinsic dimension is around 100, and
that some clusters are present: however these subdivision do not represent a local variance
between chromosomes or cell types, but rather structural properties of the matrices, linked
to the regions masked by the presence of centromeres. The network base architecture is
a variational autoencoder, specifically suited for the purpose of generating images from a
regularized latent space, and is modified to take into account the symmetry of the matrices.
Different sizes of the latent space have been used in order to test its limits.

The first test of this model is about its ability to restore latent space representation
to the original size, reproducing the original matrix. I compared the results with PCA,
that can be regarded as a linear autoencoder, and Gaussian smoothing, finding that the
autoencoder outperforms both (as measured by the MSE reconstruction score). Moreover,
reconstructed matrices preserve structural features such as TADs at the same level as
biological replicates. The biological information about cell-types is also preserved, as proven
by the performance of classification tasks (measured by the AUC score of ROC curves).

Then I explored the latent space of the autoencoder. The low dimensional represen-
tations of the cut-outs used in the training set reveal a richer structure than what was
observable in the original high dimensional space: the dendrogram of figure 4.18 shows a
larger number of clusters separated by clear gaps according to the Ward score. However
an inspection of the members of these clusters reveals that they are compatible with those
found in the original space, and they represent their subdivisions. The latent space rep-
resentations of the matrices can also be compared for classification purposes and achieve
an higher degree of accuracy with respect to the original matrices, as proven by the ROC
curves obtained.

This suggests that the autoencoder may also be able to help in the more difficult
problem of classifying single cell Hi-C maps. However, despite trying different training
sets (the original one, one sampled from bulk matrices at 1Mb resolution, and one sampled
directly from single cell Hi-C maps) in order to better adapt the autoencoder to the different
context, the discriminator was not able to distinguish between biological replicates and
non replicates. This is probably due to the sparseness and inherent variability of single cell
matrices, although a deeper autoencoder might be able to successfully operate even in this
environment.

Finally, I compared the action of the autoencoder on the matrices to that of essential
component analysis detailed in the previous chapter. To do so I applied the autoencoder to
matrices where the genomic distance dependence of the interactions had been normalized
out. Interestingly, the autoencoder naturally enhances the top eigenspaces and preserves
their structure, with minimal mixing between their eigenvectors. On the other hand, the
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rest of the eigenvectors become randomly mixed after the application of the autoencoder.
The autoencoder is also able to compete with essential component analysis in classifi-

cation tasks, although it does so by using an overwhelmingly larger number of degrees of
freedom. In particular, the comparison of latent space vectors yields higher quality dis-
crimination of biological replicates and non replicates, showing that not only some analyses
can be performed in the latent space, but they actually benefit from it.

In conclusion, this work is mean to be a proof of concept for compression algorithms
based on deep learning that exploit the local regularities of patterns found in Hi-C maps.
Lossy compression allows for a 25-fold reduction in the number of degrees of freedom of a
matrix with almost no change in the reconstruction performance. The autoencoder used
for this task was also able to nicely generalize to instances outside the training set, without
any significant increase in the reconstruction error.

Interestingly, not only compression would allow to more easily handle large Hi-C datasets,
but it also improves the results of certain analyses. In particular, comparisons of the latent
space representations of Hi-C maps score better than the originals in classification tasks,
and when the autoencoder is applied to OoE matrices, it obtains results comparable to
other published methods.



Summary and Conclusions

This work presents advanced spectral and deep learning methods to analyze Hi-C contact
matrices. The common ground is the ability of these tools to improve the performance of a
number of tasks such as TAD calling and classification by considering a lower-dimensional
representation of the original data.

The first part investigates the spectral properties of Hi-C matrices: while the im-
portance of the first non-trivial eigenspace had been known since the inception of Hi-C
experiments [15, 7], a systematic study of the whole spectrum was lacking.

I find that a large portion of the eigenspaces display the same properties of random
matrices, and can be explained by a background of aspecific interactions which do not
depend on cell-type. Removing the aspecific part by way of a spectral filter reveals the
essential component of the Hi-C matrix, containing only the top eigenspaces and character-
ized by sharper interaction patterns strongly correlated with high quality (non processed)
experiments.

Employing the essential components significantly enhances structural and biological
analyses, as shown by the performance in TAD calling and cell-type classification tasks.

In the second part I exploit the fact that local patterns are shared across chromosomes
and cell-types to learn a lower-dimensional representation of Hi-C matrices by way of a
variational autoencoder [105]. Autoencoders and other deep neural networks have been
employed in various analyses on Hi-C maps, but the dimensional reduction capabilities of
such tools and their effects on matrices still remain unexplored.

Not only does the autoencoder presented here offer a 25-fold compression of Hi-C data,
opening the way for higher performance analyses of high resolution matrices and large
dataset: low dimensional representations of matrices better capture the biological infor-
mation about cell-types, and their pair-wise comparisons allow for better classification
results.

This shows a clear pattern in which reducing the dimensionality of Hi-C data, for
example through spectral or deep learning methods, is a needed step in obtaining high
quality reproducible results in tasks assessing structural and biological properties.

In perspective, one area which has presented significant challenges is that of single
cell Hi-C maps: their sparseness and peculiar characteristics make the tougher to tackle
with standard tools. Spectral methods, with ad hoc modifications, are able to improve
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the baseline results of classification tasks, but not to the same degree as for bulk matri-
ces; dimensional reduction through the autoencoder is not able to correctly capture the
properties of single cell maps and fail to correctly classify them.

However single-cells, given their sparseness, could greatly benefit from data compression
schemes able to isolate robust biological and structural features from random variability.
Developing specific tools to address the unique challenge they pose could be the next step
building on the results presented in this work.



Appendix A

Spectral Methods

A.1 Hic-Spector

HiC-Spector [12] was the first method to offer a metric to quantify the reproducibility of
two Hi-C experiments based on the spectral properties of their contact maps. To do so,
each contact matrix W is first converted into a laplacian L:

L = D −W, (A.1)

where D is a diagonal matrix whose non-null elements are defined as Di,i =
∑

jWi,j ,
which, in the context of Hi-C maps, is the experimental coverage of the bins. Furthermore,
the laplacian matrix thus obtained is normalized again by applying the transformation

L = D−
1
2LD−

1
2 . (A.2)

This ensures that 0 is an eigenvalue of L, so that the set of eigenvalues of L given by
{0 ≤ λ1 ≤ ... ≤ λn−1}, where n is the linear size of the matrix, is called the spectrum of
L. To each eigenvalue one can associate the corresponding eigenvector, so that one obtains
the ordered set {v0 ≤ v1 ≤ ... ≤ vn−1} of L eigenvectors.

Given two experiments with contact maps WA and WB respectively, HiC-Spector seeks
to quantify the similarity between them by decomposing the laplacian corresponding to
each matrix (i.e. LapA and LapB respectively) into its spectral components, and compare
the ordered eigenvectors thus obtained. This is done via a distance metric

Sd(A,B) =

r−1∑
i=0

||vAi − vBi ||, (A.3)

where ||•|| represents the Euclidean norm, and r is a parameter of the model which sets
the number of leading eigenvectors of LA and LB that one needs to compare. The original
paper notices that the distance between higher-order eigenvectors is essentially identical
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to the one between unit vectors whose components are randomly sampled from a gaussian
distribution, so they can be discarded. It then sets r = 20 as a rule of thumb that works
for practical purposes.

The mathematical intuition behind this method is that the normalized laplacian L is
closely related to a random-walk process happening on the underlying graph W , so that
lower-order eigenvectors of L can be thought of as the steady state distribution and the
slowly decaying modes of diffusion on said graph.

By comparing the spectral properties of the matrices, Hi-C Spector was able to capture
global features of the Hi-C maps: as a results it can better separate biological replicates,
i.e. experiments on the same cell-type, and non replicates.

However Hi-C Spector does not allow one to directly compare the underlying patterns
found in Hi-C maps for differential analysis, as it only offers a score of the reproducibility of
the two maps. Nor does it allow to obtain an explicit relationship between the lower-order,
more important eigenvectors, and statically significant patterns found in the underlying
Hi-C maps.

Moreover, the method uses a strong underlying assumption that the eigenvectors of
two different matrices WA and WB are always ordered in the same way, so that one
only needs to compare eigenvectors of the same order. This would imply that a certain
feature of Hi-C maps is always encoded in the same eigenvector, but this is not necessarily
true: since the eigenvalues of the matrix spectrum are often similar to each other, small
perturbations of a matrix can lead to switching between two or more eigenvectors. It is
easy to find examples where eigenvectors of different orders are strongly correlated, while
little or none similarity is present between those of the same order. Furthermore, there
is no assurance that eigenvectors preserve their identity in different matrices: a certain
feature can be encoded by just one eigenvector in a matrix, and be spread between two or
more eigenvectors in another.

Nevertheless the method, despite these simplifying assumptions, is able to obtain the
objective that it set out to: finding a metric distance to compare Hi-C experiments and
assess the degree to which they are reproduced. Then, the fact that some aspects can be
improved on makes one hopeful to gain even better insight with methods founded on the
same intuition.

A.2 Genome DISCO

Genome DISCO [13] represents the contact maps of Hi-C experiments as a network of
interacting loci, with adjacency matrix A, where each node i is a genomic locus of a
specified resolution and size in terms of nucleotides. The weight of each edge between pairs
of loci-nodes is then given by the normalized, experimental contact frequency between
them. This matrix is then converted into a transition transition probability matrix, so
that all rows sum to 1.
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Figure A.1: reproduced from Ursu et Al. An overview of GenomeDISCO: The first
step to compare matrices is smoothing them through a random walk, the second one is to
take the element by element difference between them and compute the concordance score.
The results depend on the level of smoothing, governed by the parameter t, i.e. the number
of steps of the random walk.
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To estimate a concordance score between Hi-C experiments, Genome DISCO indepen-
dently denoises each contact map by using random walks. For each node i in the contact
map, one computes the probability of reaching another node j with a t-steps random walk.
The more well connected the two nodes are, i.e. the more high-probability paths in the
network connect them, the higher the confidence that the two loci are connected. On the
other hand, if only low probability paths exist between two loci, the probability of their
contact being due to background ligation noise increases, and their interactions can be
disregarded with respect to those between more well-connected loci.

Then, in order to obtain the contact probability between i and j after t steps of the
random walk, one only needs to consider the (i, j)-th entry of the t power of the transition
matrix At, i.e. (At)i,j .

This procedure allows one to remove much of the experimental noise present in the
matrix, so that pairwise comparisons of the matrix elements become more significant. In
fact one could argue that (At)i,j does not only contain the local information about the
contact frequency of the two genomic loci i and j, but is also informed by the behavior of
neighboring loci in the 3D structure of the chromosome. Following the work by Ursu et
Al., one can then compute the distance between two Hi-C experiments as the L1 distance
between the transition probability matrices

dt(A,B) =

∑
i,j |(At)i,j − (Bt)i,j |

Nnonzero = 1
2(|{Ai|

∑
j Ai,j > 0}|+ |{Bi|

∑
j Bi,j > 0}|)

. (A.4)

The authors did not explicitly address the link with spectral methods, focusing instead
on the more physical concept of random walks on networks. However one can notice
that, mathematically, the procedure proposed by Ursu et Al. is equivalent to suppressing
the higher-ranked eigenvalues of the transition probability matrix spectrum. In fact, if
one diagonalizes the probability transition matrix A, obtaining a matrix whose non-null
diagonal elements are given by the eigenvalues {1 ≥ λ1 ≥ ... ≥ λn−1}. Then, rising this
matrix to the t-th power means rising each eigenvalue to that same power, so that the non-
null elements become {1 ≥ λt1 ≥ ... ≥ λtn−1}, which, on account of the original eigenvalues
being smaller than 1, will become smaller and smaller as t increases, except for the first one,
with the lower-ranked eigenvalues decreasing more slowly than higher-ranked eigenvalues.
If one goes back to the original matrix, this means that the importance of the higher-ranked
eigenvectors in determining the observed patterns rapidly decreases with t: just as with
Hic-Spector a large part of the spectrum is effectively cut off from the analysis.
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Optimality of the essential
component with respect to the
Frobenius norm

If one considers the Frobenius norm [111, 112] defined by

||A|| =
√∑

i,j

A2
i,j (B.1)

one can show that Aess is indeed the best approximation of rank n∗ of A, meaning that
ε = ||A−Aess|| is minimum.

To show this, one can use the fact that || · || is invariant with respect to unitary trans-
formations to decompose A into three matrices

A = UΣU †, (B.2)

where Σ is the diagonal matrix. It is easy to see then that ||A|| =
√∑

k λ
2
k =√

Trace(A2). Then, if we consider the essential matrix of rank r we obtain the decompo-
sition

Aess = UΣess
r U †, (B.3)

where Σess
r is the diagonalized essential matrix having the r highest eigenvalues of A

along its diagonal, followed by K− r zeros. The Frobenius norm of their difference is given
by
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εr = ||A−Aess|| =
= ||U(Σ− Σess

r )U †|| =

= ||Σ− Σess
r || =

√ ∑
k=r+1

λ2k.

(B.4)

Consider an arbitrary matrix B of rank r and εB, i.e. the norm of (A−B): I need to
prove εr is the minimum value of εB, based on the minimization of ||A − B||. To do so,
assume that B is already the matrix of rank r giving the minimum value of εB, and its
decomposition can be written as

B = V ΣBV
† = V

[
Σ̂B 0
0 0

]
V †, (B.5)

where ˆSigmaB is a diagonal matrix holding the r non-zero eigenvalues of B. I then
define a new matrix C given by

C = V †AV =

[
C11 C12

C21 C22

]
, (B.6)

where C11 is a r × r matrix. Then one has

εB = ||A−B|| =
= ||V †(A−B)V || =

= ||C − ΣB|| = ||C11 − Σ̂B||+ ||C12||+ ||C21||+ ||C22||.
(B.7)

Since I assumed that B already minimizes εB, one must have C12 = 0. Otherwise I
would be able to build a new rank r matrix B̂ given by

B̂ = V

[
Σ̂B C12

0 0

]
V †, (B.8)

so that the new Frobenius norm

εB̂=||A−B̂||=

= ||C11 − Σ̂B||+ ||C21||+ ||C22||.
(B.9)

would be smaller than εB. With the same spirit one needs to have C21 = 0 and
C11 = Σ̂r. Then

C = V †AV =

[
Σ̂B 0
0 C22

]
(B.10)

Since Σ̂B is diagonal, it contains the top r eigenvalues of A. In fact one has
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||A−B|| = ||C − ΣB|| = ||C22|| (B.11)

but since V is a unitary transformation one gets

||A||2 = ||C||2 = ||Σ̂B||2 + ||C22||2, (B.12)

so that

||C22||2 = ||A||2 − ||Σ̂B||2 =
∑
k

λ2k − ||Σ̂B||2 (B.13)

For obvious reasons, this reaches the minimum when Σ̂B holds the top r eigenvalues of
A. Then

ε2B = ||C22||2 =
∑
k=r+1

λ2k = εr (B.14)

Therefore the essential matrix Aess is the best rank r approximation to A based on the
Frobenius norm.
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