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We show that the nonperturbative dynamics of N ¼ 2 super-Yang-Mills theories in a self-dual Ω
background and with arbitrary simple gauge group is fully determined by studying renormalization group
equations of vacuum expectation values of surface operators generating one-form symmetries. The
corresponding system of equations is a nonautonomous Toda chain, the time being the renormalization
group scale. We obtain new recurrence relations which provide a systematic algorithm computing multi-
instanton corrections from the tree-level one-loop prepotential as the asymptotic boundary condition of the
renormalization group equations. We exemplify by computing the E6 and G2 cases up to two instantons.
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In an ideal world the nonperturbative structure of gauge
theories shouldbe computedbyquantumequationsofmotion
determined by a symmetry principle. The presence of
extended operators generating higher form symmetries in
quantum field theory is a powerful tool to concretely realize
such a program. A perturbative analysis in a weakly coupled
regime, if any, would supply appropriate asymptotic con-
ditions. Extended operators were introduced in the early days
of gauge theory in order to describe its different phases [1]. In
particular, in the dual superconductor picture of confinement,
surface operators play an important role as world-sheet
description of the QCD string. Much progress in the
description of the gauge theories nonperturbative dynamics
has been obtained in the supersymmetric context, thanks to
nonrenormalization theorems [2]. The main point is that the
effective theory at low energies in the supersymmetric
protected sector can be described in terms of a holomorphic
function with prescribed singular behavior, called prepoten-
tial. The prepotential has been computed from the UV
microscopic Lagrangian by introducing an auxiliary gravi-
tational potential, called Ω background [3]. More recently,
surface operators preserving half of the supercharges in
supersymmetric theories have attracted new interest [4]. In
this Letter, we consider a class of theories where the non-
perturbative effects are computed from the properties of
surface operators charged under the center of the gauge
group. These are N ¼ 2 super-Yang-Mills theories in four
dimensional self-dual Ω background, which enjoy a
one-form symmetry generated by surface operators [5].

We show that the renormalization group equation obeyed
by the vacuum expectation value of such surface operators
provides a recursion relationwhich fully determines, from the
perturbative one-loopprepotential, all instanton contributions
on the self-dualΩ background or, equivalently, the all-genus
topological string amplitudes on the relevant geometric
background [6]. Actually, partition functions with surface
operators display a very clear resurgent structure led by the
summation over the magnetic fluxes [7]. Let us remark that
the one-form symmetry, when acting nontrivially, plays an
important role in simplifying the analysis of the above
renormalization group equations. Being the surface operator
described by a supersymmetric gauged linear σ model, its
dynamics can be described by the relevant tt� equations [8].
Indeed, the system of equations we study is the radial
reduction of tt� equations describing complex deformations
of a ZðGÞ singularity, ZðGÞ being the center of the gauge
group. These are the equations of nonautonomous twisted
affine Toda chain of type ðĜÞ∨, where ðĜÞ∨ is the Langlands
dual of the untwisted affine Kac-Moody algebra Ĝ. Each
node of the corresponding affine Dynkin diagram defines a
surface operator, the associated τ function being its vacuum
expectation value. The time flow corresponds in the gauge
theory to the renormalization group. The resulting recurrence
relations constitute a new effective algorithm to determine
instanton contributions for all classical groups G. Let us
remark that the τ functions we obtain provide the general
solution at the canonical rays for the Jimbo-Miwa-Ueno
isomonodromic deformation problem [9,10] on the sphere
with two irregular punctures for all classical groups, which to
the best of our knowledge was not known in the previous
literature. The recursion relationswe obtain are different from
the blowup equations of [11] further elaborated in [12].
Indeed the latter necessarily involve the knowledge of the
partition function in differentΩ backgrounds. Thismakes the
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recursion relations (and the results) coming from blowup
equationsmore involved and difficult to handle.However,we
expect a relation between the two approaches to follow from
blowup relations in the presence of surface defects. Indeed,
the isomonodromic τ function for the spherewith four regular
punctures was obtained in a similar way from SU(2) gauge
theory withNf ¼ 4 in [13]. In this Letter, we summarize our
results and refer to a subsequent longer paper for a fully
detailed discussion.
The τ functions are labeled by the simple roots of the

affinization of the Lie algebra of the gauge group α ∈ Δ̂,
namely fταgα∈Δ̂, and satisfy the equations

D2ðταÞ ¼ −
ðα∨;α∨Þ

2
t1=h

∨ Y
β∈Δ̂;β≠α

½τβ�−ðβ;α∨Þ; ð1Þ

where t ≔ ðΛ=ϵÞ2h∨ and the logarithmic Hirota derivative is
given by D2ðfÞ ¼ f∂2

log tf − ð∂ log tfÞ2. Given a simple root
α, its coroot is as usual given by α∨ ¼ 2α=ðα;αÞ, where
ð·; ·Þ is the scalar product defined by the affine Cartan
matrix. Equation (1) is the deautonomization of the τ form
of the standard Toda integrable system [14,15] governing
the classical Seiberg-Witten (SW) theory [16]. The
deautonomization is induced by coupling the theory to a
self-dual Ω background ðϵ1; ϵ2Þ ¼ ðϵ;−ϵÞ [17]. In the
autonomous limit ϵ → 0, τ functions reduce to θ functions
on the classical SW curve [18], which were used to provide
recursion relations on the coefficients of the SW prepo-
tential in [19]. The gauge theory interpretation of these τ
functions is the vacuum expectation value of surface
operators associated with the corresponding decomposition
of the Lie algebra representation under which these are
charged. We expect these equations and their generaliza-
tions to describe chiral ring relations in the presence of a
surface operator, which deserve further investigation.
Higher chiral observables should generate the flows of
the full nonautonomous Toda hierarchy. The actual form of
Eqs. (1) depends on the Dynkin diagram. For the classical
groups A, B, and D these reduce to bilinear equations
which we solve via general recursion relations. For C, E, F,
and G the resulting equations are of higher order and we
study them case by case. The symmetries of the equations
are given by the center of the group G, namely

g An Bn Cn D2n D2nþ1 En F4 G2

ZðGÞ Znþ1 Z2 Z2 Z2×Z2 Z4 Z9−n 1 1
:

Moreover, the center is isomorphic to the coset of the affine
coweight lattice by the affine coroot lattice, and coin-
cides with the automorphism group of the affine Dynkin
diagram. By a remark in [20], the coweights, and by
extension the lattice cosets, corresponding to these nodes
are the minuscule coweights, a representation of g being
minuscule if all its weights form a single Weyl orbit. This
remark will be crucial while solving the τ system.

The τ functions corresponding to the affine nodes, that is
the ones which can be removed from the Dynkin diagram
leaving behind that of an irreducible simple Lie algebra,
play a special role. Indeed, these are related to simple
surface operators associated with elements of the center
ZðGÞ, and are bounded by fractional ’t Hooft lines. Such
surface operators are the generators of the one-form
symmetry of the corresponding gauge theory [5]. Since
their magnetic charge is defined modulo the magnetic root
lattice, a natural ansatz for their expectation value is

ταaff ðσ; ηjκgtÞ ¼
X
n∈Q∨

aff

e2π
ffiffiffiffi
−1

p
η·ntð1=2ÞðσþnÞ2Bðσ þ njtÞ; ð2Þ

where BðσjtÞ ¼ B0ðσÞ
P

i≥0 t
iZiðσÞ with Z0ðσÞ≡ 1 and

Q∨
aff ¼ λ∨aff þQ∨, Q∨ being the coroot lattice equipped

with the canonical inner product normalized such that the
norm of the short coroots is 2, and ðλ∨aff ;αÞ ¼ δαaff;α for any
nonextended simple root α. The constant κg ¼ ðngÞrg;s ,
where ng is the ratio of the squares of long vs short roots
and rg;s is the number of short simple roots. For simply
laced, all roots are long and κg ¼ 1.
We will now show how the term tð1=2Þσ2BðσjtÞ in (2) is

the full Nekrasov partition function in the self-dual Ω
background upon the identification σ ¼ a=ϵ, where a is the
Cartan parameter. In the An case, (2) is known as the Kiev
ansatz. In the A1 case, it was used to give the general
solution of Painlevé III3 equation in [21] and further
analyzed in [22].
Let us remark that the τ function (2) displays a clear

resurgent structure, with “instantons” given by the
magnetic fluxes in the lattice summed with “resurgent”

coefficients BðσjtÞ and trans-series parameter e2π
ffiffiffiffi
−1

p
η;

see [23] for a similar analysis in the Painlevé III3 case.
The ansatz (2) is consistent with Eqs. (1). Indeed, after

eliminating the τ functions associated with the nonaffine
nodes, the resulting equation is bilinear and therefore
the ansatz (2) reduces to a set of recursion relations for
the coefficients ZiðσÞ. The variables η, σ ∈ Q∨ are the
integration constants of the second order differential
equations (1) and correspond to the initial position and
velocity of the deautonomized Toda particle.
Let us set more precisely the boundary conditions which

we impose to the solutions of Eqs. (1). We consider the
asymptotic behavior of the solutions at t → 0 and σ → ∞ as

logðB0Þ ∼ −
1

4

X
r∈R

ðr · σÞ2 log ðr · σÞ2 ð3Þ

up to quadratic and log terms [24]. We will show that the
solution of (1) which satisfies the above asymptotic con-
dition is such that

B0ðσÞ ¼ Z1−loopðσÞ≡
Y
r∈R

1

Gð1þ r · σÞ ; ð4Þ
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where GðzÞ is the Barnes G function and R is the adjoint
representation of the group G. The expansion of the above
function matches the one-loop gauge theory result upon the
appropriate identification of the log-branch. This reads, in
the gauge theory variables, as ln ½ ffiffiffiffiffiffi

−1
p

r · a=Λ� ∈ R and in
the An case matches the canonical Stokes rays obtained
in [25].
Let us first focus on the An case whose affine Dynkin

diagram is

The root lattice is Q ¼ fPnþ1
i¼1 cieij

Pnþ1
i¼1 ci ¼ 0g, and all

the fundamental weights are minuscule, namely

λi ¼ ð1i; 0nþ1−iÞ − i
nþ 1

ð1nþ1Þ;

where ð1p; 0nþ1−pÞ stands for a vector whose first p entries
are 1 and the remaining entries vanish. We label the τ
functions as ταj ≡ τj. The τ system is given by the closed
chain of differential equations

D2ðτjÞ ¼ −t1=ðnþ1Þτj−1τjþ1; ð5Þ

with τj ¼ τnþ1þj. Since all the nodes in this case are affine
we can use the Kiev ansatz (2). Then, all the τ functions are
determined by τ0 as τj ¼ τ0jQ↦Qj

. It is therefore enough to
solve (5) corresponding to j ¼ 0. Here and in the following
we use the notation fðy� xÞ≡ fðyþ xÞfðy − xÞ. The
ansatz (2) for τ0 reads

τ0ðσ;ηjtÞ¼
X

n∈Q;i≥0
e2π

ffiffiffiffi
−1

p
n·ηtð1=2ÞðσþnÞ2þiB0ðσþnÞZiðσþnÞ

and by inserting it into (5) one gets after some
simplifications

X
n1 ;n2∈Q
i1 ;i2≥0

e2π
ffiffiffiffi
−1

p ðn1þn2Þ·ηtð1=2Þn
2
1þð1=2Þn2

2þi1þi2þσ·ðn1þn2Þ

×

�
1

2
n2
1 −

1
2
n2
2 þ i1 − i2 þ σ · ðn1 − n2Þ

�
2

× B0ðσ þ n1ÞB0ðσ þ n2ÞZi1ðσ þ n1ÞZi2ðσ þ n2Þ
¼ −

X
m1 ;m2∈Q
j1 ;j2≥0

t1þð1=2Þm2
1þð1=2Þm2

2þe1·ðm1−m2Þþj1þj2þσ·ðm1þm2Þ

× e2π
ffiffiffiffi
−1

p ðm1þm2Þ·ηB0ðσ þm1 þ e1ÞB0ðσ þm2 − e1Þ
× Zj1ðσ þm1 þ e1ÞZj2ðσ þm2 − e1Þ: ð6Þ

Now we simply equate the exponents. To fix B0ðσÞ, we
look at the lowest order in t. This produces a quadratic
constraint and nþ 1 linear constraints on the root
lattice variables ðn1;n2Þ and ðm1;m2Þ. Let us fix
p; q ∈ f0;…nþ 1g, p ≠ q. Up to Weyl reflections, the
only solution to the above mentioned constraints is
given by n1 ¼ ep − eq, n2 ¼ 0, and m1 ¼ ep − e1,
m2 ¼ −eq þ e1, leading to

½1þ ðep − eqÞ · σ�2B0ðσ þ ep − eqÞB0ðσÞ
¼ −B0ðσ þ epÞB0ðσ − eqÞ: ð7Þ

This is solved by (4) up to a function periodic on the root
lattice, which is set to one by the asymptotic condition (3).
The higher order terms in (6) provide the recursion
relations

k2ZkðσÞ ¼ −
X

n2þj1þj2¼k
n∈e1þQ;j1;2<k

B0ðσ � nÞ
B0ðσÞ2

× Zj2ðσ − nÞZj1ðσ þ nÞ

þ
X

n2þi1þi2¼k
n∈Q;i1;2<k

ði1 − i2 þ 2n · σÞ2

×
B0ðσ � nÞ
B0ðσÞ2

Zi1ðσ þ nÞZi2ðσ − nÞ;

where B0ðσÞ is given by (4). For k ¼ 1 we easily obtain

Z1ðσÞ ¼ −
Xnþ1

i¼1

B0ðσ � eiÞ
B0ðσÞ2

¼ ð−1Þnþ1
Xnþ1

i¼1

1Q
j≠iðσi − σjÞ2

and, upon abbreviating σij ¼ σi − σj, the next term

Z2ðσÞ ¼ −
1

4

Xnþ1

i¼1

B0ðσ � eiÞ
B0ðσÞ2

½Z1ðσ þ eiÞ þ Z1ðσ − eiÞ�

þ
Xnþ1

i<j

ðσi − σjÞ2
B0½σ � ðei − ejÞ�

B0ðσÞ2
:

The above coincide with one and two instanton
contributions to the SUðnþ 1Þ Nekrasov partition func-
tion as computed from supersymmetric localization
[3,26]. Let us remark that the use of the τ system (5)
provides a completely independent tool to compute all
instanton corrections just starting from the asymptotic
behavior (3). This procedure extends to all classical
groups.
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Dn is a simply laced root system, with the checkerboard
lattice Q ¼ Q∨ ¼ fPn

i¼1 cieij
P

n
i¼1 ci ∈ 2Zg. We con-

sider n > 4. It has four minuscule weights, λ0 ¼ ð0nÞ,
λ1 ¼ ð1; 0n−1Þ, λn−1 ¼ ½ð1

2
Þn−1;− 1

2
�, λn ¼ ½ð1

2
Þn−1;þ 1

2
�.

These correspond to the “legs” of the affine diagram.
Whichever rank we consider, we always have the con-
sistency conditions

D2ðτ0Þ ¼ D2ðτ1Þ; D2ðτn−1Þ ¼ D2ðτnÞ; ð8Þ

which are also equal if n ¼ 4, due to the enhanced
symmetry of D4.

Bn is nonsimply laced. The coroot lattice is the
checkerboard lattice Q∨ ¼ fPn

i¼1 cieij
P

n
i¼1 ci ∈ 2Zg,

and the two minuscule weights are λ∨0 ¼ ð0nÞ and
λ∨1 ¼ ð1; 0n−1Þ, corresponding to the “antennas” of the
diagram. The τ system coincides with that ofDnþ1, with the
modification that (i) there is no τnþ1 and (ii) that

D2ðτn−1Þ¼−2t1=ð2n−1Þτn−2τn; D2ðτnÞ¼−t1=ð2n−1Þτ2n−1:

For n ≥ 3, the analysis proceeds as for Dn except we may
only use the left antennas and consider the first equation
in (8). Therefore,wehave a unified approach for bothDn and
Bn. Explicitly, inserting (2) and τ1ðσjtÞ ¼ τ0ðσ þ λ1jtÞ into
the first of (8) we get after some simplification a formula
analogous to (6) leading to quadratic and linear constraints
on the lattice labels. By repeating the analysis similarly to the
previous case, the equation, analogous to (7), fixing B0 is

½1þ ðep þ eqÞ · σ�2B0ðσÞB0ðσ þ ep þ eqÞ
¼ ½ðep − eqÞ · σ�2B0ðσ þ epÞB0ðσ þ eqÞ: ð9Þ

The two cases are distinguished by the corresponding
different asymptotic conditions (3). Indeed, we have

B½Dn�
0 ðσÞ ¼

Yn
i<j

1

Gð1� σi � σjÞ
;

B½Bn�
0 ðσÞ ¼

�Yn
k¼1

1

Gð1� σkÞ
�
B½Dn�
0 ðσÞ:

Also, the recursion relations are the same, upon using the
appropriate root systems R:

k2ZkðσÞ¼
X

ðn−λ1Þ2þj1þj2¼k
n∈λ1þQj1;2<k

Zj1ðσþnÞZj2ðσ−nÞ

×ðj1−j2þ2n ·σÞ2B0ðσ�nÞ
B0ðσÞ2

−
X

n2þi1þi2¼k
n∈Q;i1;2<k

Zj1ðσþnÞ

×Zj2ðσ−nÞði1− i2þ2n ·σÞ2B0ðσ�nÞ
B0ðσÞ2

:

This result is in linewith the contour integral formulas for the
relevant Nekrasov partition functions. Indeed the poles in
the Dn and Bn cases are the same, with different residues.
From the above recursion relation we can compute the
1-instanton terms

Z1ðσÞ ¼
Xn
k¼1

4σ2k
B0ðσ � ekÞ
B0ðσÞ2

¼

8><
>:

P
n
k¼1

−4Q
j≠k

ðσ2k−σ2j Þ2
; Bn

P
n
k¼1

4σ2kQ
j≠k

ðσ2k−σ2j Þ2
; Dn

and the two instantons

Z2ðσÞ ¼
X

α∈Q∨;α2¼2

−1
ðα · σÞ2½ðα · σÞ2 − 1�2Qβ·α¼1ðβ · σÞ2

þ
Xn
k¼1

Z1ðσþ ekÞðσk þ 1
2
Þ2 þZ1ðσ − ekÞðσk − 1

2
Þ2Q

β·ek¼�1ðβ · σÞ
;

and so on. These are easily compared to [27].
We now turn to the analysis of the other classical groups,

which is more involved. Indeed, the τ system reduces to
higher order equations which produce more complicated
recurrence relations to be solved by a case by case analysis.
We performed explicit checks for C3, C4, and C5 up to two
instantons again in agreement with [27].

For the exceptional group E6 we obtain the system

τ6D4ðτ0Þ ¼ τ0D4ðτ6Þ; ð10Þ

where we used the notation D2n ≔ D2∘D2n−2. The equa-
tions which specify B0 can be written as follows. Choose
the minuscule weight to be λ ¼ ½05; ð− 2

3
Þ3�. Let p1;…; p5

be a permutation of f1;…; 5g and let δ ≔ ½ð1
2
Þ8�. Then one

gets from the lowest order in (10)
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ð1þ σp1
þ σp2

Þ2ð1þ σp1
þ σp3

Þ2ðσp2
− σp3

Þ2
× B0ðσÞB0ðσ þ ep1

þ ep2
ÞB0ðσ þ ep1

þ ep3
Þ

¼ ½ðδ − ep2
− ep3

Þ · σ�2½ðδ − ep2
− ep3

− ep4
− ep5

Þ · σ�2
× ðσp4

þ σp5
Þ2B0ðσ þ δþ λÞ

× B0ðσ þ δþ λ − ep4
− ep5

ÞB0ðσ þ ep1
− λ=2Þ:

The solution satisfying the asymptotic behavior (3) isB½E6�
0 ¼

Y5
i<j¼1

1

Gð1� σi � σjÞ
Y
εi¼�1Q
8

i¼1
εi¼1;

ε6¼ε7¼ε8

1

Gð1þ 1
2

P
8
i¼1 εiσiÞ

:

We also solved the recurrence relation arising from (10) up to
two instantons. For one instanton, our results agree
with the ones of [28], while the two instantons result is a
too huge of a formula to be reported here.We remark that (10)
represents a completely novel way of obtaining equivariant
volumes of instanton moduli spaces for exceptional groups.
Unimodular algebras G2, F4, E8 have no outer auto-

morphisms and consequently all the τ functions associated
with different nodes are independent. Indeed in this case
there is not a one-form symmetry and therefore the equations
on the τ function associatedwith the affine node turn out to be
more difficult to solve. Let us display them for the G2 case.

In the normalizationwhere its longest root has length2, theG2

coroot lattice is the span Q∨ ¼ Zð1= ffiffiffi
3

p Þð−2; 1; 1Þ ⊕
Z

ffiffiffi
3

p ð1;−1; 0Þ. We introduce σ ¼ ðσ1; σ2; σ3Þ but all
expressions should be restricted to σ1 þ σ2 þ σ3 ¼ 0. By
eliminating τ1 and τ2, the τ system reduces to the single
equation

D2½τ−10 D4ðτ0Þ� ¼ 3t½D2ðτ0Þ�3: ð11Þ

The operator on the left-hand side of (11) turns out to factorize
as D2½τ−10 D4ðτ0Þ� ¼ D̃4ðτ0Þ ·D2ðτ0Þ, where D̃4ðτ0Þ is a
fourth order operator in τ0 and its derivatives. The trivial
solution of D2ðτ0Þ ¼ 0 is τ0 ¼ atb which we discard being
incompatible with (2). In the remainder we insert

τ0ðσ;ηjtÞ¼
X
n∈Q∨

e2π
ffiffiffiffi
−1

p
η·nð−t=3Þð1=2ÞðσþnÞ2B0

�
σþnjþ t

3

�

and obtain, after a rescaling t ↦ 3t,

X
fnkg∈Q∨
fikg∈N

Y4
k¼1

e2π
ffiffiffiffi
−1

p
η·nk tð1=2ÞðσþnkÞ2þikB0ðσ þ nkÞZikðσ þ nkÞ

�
1

4!

Y
k1<k2

�
1

2
n2
k1

þ ik1
−
1

2
n2
k2

− ik2
þ ðnk1

− nk2
Þ · σ

�
2

− 9

4

�
1

2
n2
1 þ i1 −

1

2
n2
2 − i2 þ ðn1 − n2Þ · σ

�
2

�
1

2
n2
3 þ i3 −

1
2
n2
4 − i4 þ ðn3 − n4Þ · σ

�
2
�
¼ 0: ð12Þ

The lowest order terms in (12), namely the coefficient of
t3þσ·ð4= ffiffi

3
p

;−2=
ffiffi
3

p
;−2=

ffiffi
3

p Þ, gives a quartic relation which sim-
plifies to the following quadratic one

�
2σ1 − σ2 − σ3ffiffiffi

3
p þ 1

�
2

B0ðσÞB0

�
σ þ 1ffiffiffi

3
p ð2;−1;−1Þ

�

¼
�
σ2 − σ3ffiffiffi

3
p

�
2
�
σ1 þ σ2 − 2σ3ffiffiffi

3
p

�
2
�
σ1 − 2σ2 þ σ3ffiffiffi

3
p

�
2

×

�
σ1 þ σ2 − 2σ3ffiffiffi

3
p þ 1

�
2
�
σ1 − 2σ2 þ σ3ffiffiffi

3
p þ 1

�
2

× B0

�
σ þ 1ffiffiffi

3
p ð1;−2; 1Þ

�
B0

�
σ þ 1ffiffiffi

3
p ð1; 1;−2Þ

�
:

By imposing (3), these are solved by

B½G2�
0 ðσÞ ¼

Y3
i<j

1

G½1� 1ffiffi
3

p ðσi − σjÞ�

×
Y3
ijk

cyclic

1

G½1� 1ffiffi
3

p ð2σi − σj − σkÞ�
:

The 1-instanton contribution is obtained by considering the
coefficient of the next order t3þσ·ð ffiffi

3
p

;0;−
ffiffi
3

p Þ term: all B0ðσÞ
factors drop out and we obtain just

Z1ðσÞ½G2�jσ3¼−σ1−σ2 ¼
2

3σ21σ
2
2ðσ1 þ σ2Þ2

in agreement with [28]. The next order in t gives the
2-instanton term

Z2ðσÞ½G2�jσ3¼−σ1−σ2 ¼
3½9σ41ð6σ22 þ 1Þ þ 18σ31ð6σ32 þ σ2Þ þ 3σ21ð18σ42 þ 9σ22 − 2Þ þ 6σ1σ2ð3σ22 − 1Þ þ ð1 − 3σ22Þ2�

σ21ð1 − 3σ21Þ2σ22ð1 − 3σ22Þ2ðσ1 þ σ2Þ2½1 − 3ðσ1 þ σ2Þ2�2
:
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It should be possible to apply the approach proposed
here to general class-S theories [29] by studying the related
isomonodromic deformation problem (for example for
linear and circular quivers). It would be also interesting
to extend the analysis to non-self-dual Ω background,
which should amount to quantum τ systems, and its lift to
five dimensional gauge theories on R4 × S1, which should
correspond to q-difference τ systems [30–32]. Finally, it
would be great to apply similar ideas to models with less or
no supersymmetry. Let us outline some possible concrete
research lines in this direction. The renormalization group
evolution at strong coupling can be analyzed through late
time expansion of the τ functions. In particular, in [33] the
solution in this regime for the An series has been given in
terms of a matrix model describing the theory around the
massless monopoles point. Confining N ¼ 1 vacua can be
studied through the addition of a mass term for the chiral
supermultiplet [16]. The N ¼ 0 case can be reached by
giving a mass to its complex scalar field component only.
The counterpart in the τ system and its matrix model
solution of these mass deformations deserves to be studied
in order to get an effective matrix model description of the
confining string world sheet. A complementary approach
would be the analysis of N ¼ 1 breaking of theories in
class S along the lines of [34]. More in general, the
exploration of the renormalization group of gauge theories
in the presence of surface defects, possibly in some special
scaling regimes, might reveal interesting structures related
to integrable systems and their deformations.
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