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Abstract
We study the relation between class S theories on punctured tori and isomonodromic
deformations of flat SL(N ) connections on the two-dimensional torus with punctures.
Turning on the self-dual �-background corresponds to a deautonomization of the
Seiberg–Witten integrable system which implies a specific time dependence in its
Hamiltonians. We show that the corresponding τ -function is proportional to the dual
gauge theory partition function, the proportionality factor being a nontrivial function of
the solution of the deautonomized Seiberg–Witten integrable system. This is obtained
by mapping the isomonodromic deformation problem to WN free fermion correlators
on the torus.
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1 Introduction

A major problem in modern quantum field theory is that of understanding its non-
perturbative formulation. While this issue is somehow accessible in low space-time
dimensions (d = 0, 1, 2), in higher dimensions this turned out to be achievable only
for particular classes of models, namely supersymmetric ones. In these cases, due to
a sophisticated analysis of the quantum measure and of the Feynman path-integral, it
is possible to perform exact computations of BPS saturated sectors of the theory [1],
that are reduced essentially to matrix models. A crucial aspect of these results is that
special functions and transcendental functions show up as basic building blocks. This
is indeed an expected feature from several general view points, first of all from the
analysis of the asymptotic nature of the power series in the coupling constants arising
in perturbative QFT [2].

A particular set of results in this wider framework were started by the analysis
of [3], where a link between Painlevé transcendents and multi-instanton counting in
N = 2 d = 4 SU (2) SUSYgauge theories in self-dual�-background [4] was noticed.
Further analysis has shown the natural identification to be between partition functions
and solutions of Painlevé equations in τ -form.

This was not the first time in which Painlevé transcendents arose in gauge theory.
Indeed, Painlevé functions show up already in d = 0 gauge theory, namely matrix
models. The most famous example appears in the analysis of the Hermitian matrix
model with cubic potential of Kontsevich and Painlevé I equation [5]. As an important
fact, the full matrixmodel partition function has been identifiedwith theKP τ -function
in [6].

In this paper, we will analyze how the identification between gauge theory partition
function and the τ -function of a suitable isomomonodromy deformation problem (of
which Painlevé equations constitute the simplest instance) arises for a AN−1 class S
theories on the torus, a typical example of which is a circular quiver N = 2 d = 4
SU (N ) SUSY gauge theory, depicted in Fig. 1, in a self-dual�-background andwhich
are the integrable systems involved, generalizing the result of [7], where the simplest
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Fig. 1 Circular quiver gauge
theory corresponding to the
torus with n punctures: for every
puncture zi we have a
hypermultiplet of mass mi
sitting in the bifundamental
representation of two different
SU (N ) gauge groups. The case
n = 1 is special, as the
hypermultiplet is in the
bifundamental representation for
the same SU (N ) gauge group,
so that it is an adjoint
hypermultiplet and the theory is
theN = 2∗ theory

N

N

N

N

m1mn

m2

mi−1mi

mn−2

of such theories, namely the SU (2) N = 2∗ gauge theory, was shown to be related to
the elliptic form of the Painlevé VI equation [8].

In order to understand the correspondence between isomonodromy deformations
and four-dimensional N = 2 supersymmetric gauge theories a central object is the
Hitchin system [9], in terms of which it is possible to formulate Seiberg–Witten theory,
describing the Coulomb branch of the theory [10]. The appearance of such an object
is best understood within the context of class S theories [11–15]: one obtains theories
in this class by compactifying the AN−1 six-dimensional (2, 0) superconformal field
theory on aRiemann surface�g,n of genus gwith n punctures, with punctures carrying
also additional information given by singular boundary conditions for the fields. The
basic reason for the appearance of Hitchin systems is that the four-dimensional theory
preservesN = 2 supersymmetry iff the internal fields (A, φ) on �g,n satisfy Hitchin
equations: {

F + [φ, φ̄] = 0,

∂̄φ = 0,
(1.1)

with singular behavior at the punctures specified by the boundary conditions. On the
one hand, the moduli space of these equations is a hyperkähler manifold given by the
total space of a torus fibration, whose base space can be identified with the Coulomb
branch of the four-dimensional gauge theory; on the other hand, this space is known
to be an algebraic integrable system. In the I complex structure, the Hitchin system
reduces to a Higgs bundle whose spectral curve

�SW : det(φ − λ) = 0, (1.2)

can be identified with the Seiberg–Witten curve. The “Higgs field” φ of the Higgs
bundle defined by (1.1) is the Lax matrix of the integrable system. The question of
how this picture gets modified when one tries to follow the physics from the deep
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IR of the Coulomb branch was asked since the early days of Seiberg–Witten theory,
and the answer to this question was found to be that one has to split the times of the
integrable system into “slow” and “fast” times, effectively deautonomizing the system
in a consistent way: this corresponds, in the language of integrable system, to the
so-called Whitham deformations [16,17]. However, the procedure to study Whitham
deformations is very involved, and with this method it is only possible to reconstruct
the physics order by order in the deformation.

Actually it turns out to be more convenient to start from the UV physics, which is
described by instanton counting in terms of Nekrasov partition functions [4,18]. First,
an expression for the tau function of isomonodromic deformations of Higgs bundles
corresponding to theories in class S associated to Riemann surfaces of genus zero
has been found as a Fourier transform of Virasoro [19,20] or WN conformal blocks
[21,22] on the sphere. By using the AGT correspondence [23] one can show that this
object is essentially identified with the Nekrasov–Okounkov dual partition function
(modulo some known proportionality factor) for linear quiver gauge theories in class
S [3,24]:

ZD ∝ T , (1.3)

where the Nekrasov–Okounkov dual partition function is a discrete Fourier transform
of the full Nekrasov partition function with respect to the Cartan parameters. In the
cases where we have only one isomonodromic flow and two-dimensional monodromy
manifold, the deformation equations are Painlevé equations, and the degeneration of
one Painlevé equation into another is precisely mapped to the decoupling of hyper-
multiplets in the corresponding gauge theory, or in some cases to taking the limit to an
Argyres–Douglas fixed point [24–27]. These equations have the natural interpretation
of exact, nonperturbative renormalization group equations for the asymptotically free
gauge theories, since the deformation times are given by the dynamically generated
scale, or as conformal manifold equations, since in the conformal case the times are
given by the exactly marginal deformations of the theory. This picture has been gen-
eralized in [7] to the case of Gaiotto curves of genus one by considering the specific
case of the torus with one puncture. This corresponds to the N = 2∗ gauge theory
with SU (2) gauge group. It was there shown that beyond genus zero the above picture
is slightly modified, since now

T = η2(τ )

θ1(Q(τ ))2
ZD
N=2∗ , (1.4)

where η(τ) is Dedekind’s eta function and Q(τ ) solves the particular case of Painlevé
VI equation in elliptic form [8]

(2π i)2
d2Q

dτ 2
= m2℘′(2Q). (1.5)

Thus in this case the proportionality factor is not just a simple function, but a highly
transcendental one.

These results show that the integrable structure underlying the UV theory (in the
self-dual omega background) is not the Higgs bundle itself, but rather its isomon-
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odromic deformation, which corresponds to the oper limit of the Hitchin system in
the complex structure J [24]. This realizes in an exact way the original idea of using
Whitham deformation to describe the physics outside of the deep IR regime. Further,
given the appearance not just of Nekrasov partition functions, but rather of their dual
version, it seems more natural to reformulate the CFT solution by using free fermion
conformal blocks [28], that naturally yield a Fourier series structure from the sum
over fermionic charges in the Fock space. In fact, it was shown in [7] that as soon as
one goes beyond genus zero, this reformulation is not just more natural, but actually
necessary, so that it really seems the correct framework for this problem.

Another feature of working with free fermions is that there is a natural connection
of free fermions with the theory of topological strings, where they appear in various
contexts [29–34]. The topological strings in turn engineer theories of class S when
formulated on certain toric Calabi–Yau manifolds [35,36]. In fact, it turns out that
these isomonodromic deformations underlie topological strings only in the geometric
engineering limit, where we have a theory of class S. The full topological string
partition function itself, as computed with the (unrefined) topological vertex [37],
are instead related to tau function of q-Painlevé equations [38–41], and q-Virasoro
conformal blocks [42–45]. In fact, the connection with isomonodromy problems goes
beyond the perturbative setting of the topological vertex, making contact with the
nonperturbative proposal of [46] for the Topological String partition function (see
also [47] for recent developments).

Our main result is the generalization of (1.4) to the case of an SL(N , C) isomon-
odromic problem on the torus with an arbitrary number of punctures, i.e., to class
S circular quiver theories with SU (N ) gauge groups obtained by compactifying the
six-dimensional AN−1 (2, 0) superconformal field theory on a genus one surface with
n regular punctures at positions z1, . . . , zn . We show that the expression (1.4) is gen-
eralized to this case in the following way:

T = ZD
∏
i

η(τ)

θ1(Qi ({zk}, τ ) − στ − ρ)
, (1.6)

where Qi are again the dynamical variables of the isomonodromic system. These
solve a system of coupled nonlinear differential equations corresponding to an elliptic
version of the Schlesinger system, in which the times are the punctures’ positions
z1, . . . , zn and the elliptic modulus τ [48], and ZD is a Fourier transform of free
fermionic conformal blocks, of the form

ZD = trH
(
qL0(−)Fe2π iη·J0V1 . . . Vn

)
. (1.7)

J0 are charges under the Cartan of a twisted ĝl(N )1 algebra and η their fugacities. σ, ρ

are the U (1) charge and fugacity of this ĝl(N )1. When the vertex operators V1 . . . Vn
are semi-degenerate fields of WN , through the AGT correspondence ZD is identified
with the dual partition function of a circular quiver gauge theory,while formore general
values of their W-charges the derivation, while formally holding at the level of CFT,
does not have a known gauge theory counterpart, and thus an explicit combinatorial
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expression in terms ofNekrasov functions [4,18,49]. Note thatwhile the representation
(1.7) corresponds to the dual partition function of a circular quiver gauge theory, by
applying fusion transformations on the vertex operators it is possible to obtain the
other class S theories corresponding to the same number of punctures on the torus.
The corresponding tau functions will differ by connection constants determined by
the fusion kernels, as it happens in the case of the sphere [27,50–52]. The construction
contains additionalU (1) parameters over which the tau function does not depend. We
show however that the zeroes of the dual partition function in these additional variables
are exactly the solutions Qi of the nonautonomous system. The condition ZD = 0
is therefore shown to be the nonautonomous generalization of the algebro-geometric
solution of the Calogero–Moser model [53]. Moreover, the fact that the tau function
does not depend on σ, ρ can be made explicit by decomposing the trace in (1.7) into
different slN sectors, labeled by j = 1, . . . , N . We can then rewrite the relation (1.6)
as1

ZD
j = � j (Q)

η(τ )N−1 T , (1.8)

where now ZD
j , j = 0, . . . , N − 1 are N different dual partition functions for the

SU (N ) quiver theory, with different shifts in the Fourier series over the Coulomb
branch parameters, and � j are Riemann theta functions given by Eq. (7.20).

The paper is structured as follows: in Sect. 2 we define the rank N isomonodromic
problem on the torus with n regular singularities; in Sect. 3 we introduce N -component
complex free fermions and their related vertex operators, that we then use in Sect. 4 to
provide an expression for the kernel and tau function of the isomonodromic problem.
In Sect. 5, we provide an alternative proof of the statements of Sect. 4 by using the
technique of Verlinde loop operators: while less general than that of the preceding
section, this proof has the upside of being less formal, and to every quantity is provided
an explicit expression. In Sect. 6, we discuss the CFT solution to the linear system
defined by Krichever’s approach to isomonodromic deformations [54], which we also
briefly discuss. In Sect. 7, we use our results to find an explicit formula for the solutions
of the elliptic Schlesinger system as zeros of the dual partition function, generalizing
the algebro-geometric solution of the Elliptic Calogero–Moser integrable system [53]
to the nonautonomous case with arbitrary number of singular points. In “Appendix
A,” we provide our notations about elliptic and theta functions, while in “Appendix
B” we briefly recall some generalities aboutWN algebras and their (semi-) degenerate
fields.

2 General Fuchsian system on the torus

We are going to study monodromy preserving deformations of linear systems on the
torus of the form

∂zY (z|τ) = L(z|τ)Y (z|τ), (2.1)

where L,Y are N × N matrices and L , the Lax matrix, has n simple poles located at
{z1, . . . , zn}, also called Fuchsian singularities. Differently from what happens on the

1 See Sect. 7 for details.
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sphere, L(z)dz is not a single-valued matrix differential, but rather has the following
twist properties along the torus A- and B-cycles [48,55–57]:

L(z + 1) = TAL(z)T−1
A , L(z + τ) = TBL(z)T−1

B . (2.2)

As can be seen from (2.1), these twists will act on the solution Y of the linear system
on the left, in addition to the usual right-action by monodromies. Note that while
the monodromies are left invariant by the isomonodromic flows z1, . . . , zn, τ , this
is not true for the twists. In fact, as was already discussed in [7], the twists are
essentially parametrized by the dynamical variables of the isomonodromic system,
of which z1, . . . , zn, τ are the times. The analytic continuation of Y along the gener-
ators γ1, . . . , γn, γA, γB of π1(�1,n) is then

⎧⎪⎨
⎪⎩
Y (γk · z|τ) = Y (z|τ)Mk,

Y (z + 1|τ) = TA({zi }, τ )Y (z|τ)MA,

Y (z + τ |τ) = TB({zi }, τ )Y (z|τ)MB .

(2.3)

Together with the singular behavior of Y around z1, . . . , zn , which are its branch
points, these conditions fix completely Y (z|τ).

As discussed in [48], for the group SL(N , C) there are N inequivalent Laxmatrices
of this kind characterized by the commutation relation of the twists:

TAT
−1
B T−1

A TB = e2π ic1/N , (2.4)

where c1 = 0, . . . , N − 1 is the first Chern class of the bundle having the centre
of SL(N , C) as structure group. It is possible to relate Lax matrices characterizing
inequivalent bundles by means of singular gauge transformations, called Hecke modi-
fications of the bundle [58].Another possible approach, as in [54], is to consider instead
a single-valued Lax matrix with additional simple poles at the so-called Tyurin points.
We will discuss the CFT solution to the problem defined by this latter Lax matrix, and
its relation to our approach, in Sect. 6.

Because of (2.3), it is possible to define the following kernel:

K (z′, z) ≡ Y−1(z′)�(z′, z)Y (z), (2.5)

where � is defined so that it has one simple pole at z = z′, and transforms as

�(z′ + 1, z) = TA�(z′, z), �(z′, z + 1) = �(z′, z)T−1
A , (2.6)

�(z′ + τ, z) = TBM
U (1)
B �(z′, z), �(z′, z + τ) = �(z′, z)

(
MU (1)

B

)−1
T−1
B ,

(2.7)

in such a way that its transformation cancels the twists of Y . We also included the
possibility for � to introduce further U (1) factors, which will be useful to compare
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with the free fermion description. Because of this, along a closed cycle γ , K transforms
as follows:

K (γ · z′, z) = M̂−1
γ K (z′, z), K (z′, γ · z) = K (z′, z)M̂γ , (2.8)

where
M̂γ = Mγ M

U (1)
γ (2.9)

is the GLN representative of γ in the monodromy group, while Mγ is its SLN repre-
sentative (the monodromy of the solution Y ).

Keeping in mind the aforementioned fact that we can straightforwardly change
from one bundle to another by means of a (singular) gauge transformation, from now
on we consider the case c1 = 0 of a topologically trivial bundle, for which the Lax
matrix has the form

L(z|τ) = p +
n∑

k=1

L(k), (2.10)

where
p = diag(p1, . . . , pN ) (2.11)

and

L(k)
i j = δi j

θ ′
1(z − zk)

θ1(z − zk)
S(k)
i i + (1 − δi j )

θ ′
1(0)θ(z − zk − Qi + Q j )

θ1(z − zk)θ1(−Qi + Q j )
S(k)
j i , (2.12)

where the parameters S(k)
i i are subject to the constraint

∑
k

S(k)
i i = 0, (2.13)

so that we have the correct quasi-periodicity properties (2.2). The monodromy pre-
serving deformations of (2.1) involve moving the singular points z1, . . . , zk (one of
which can be fixed using the automorphisms of the torus), and the modular parameter
τ . These flows are generated by the Hamiltonians, given by the trace of the Lax matrix
squared

1

2
tr L2(z) = Hτ +

n∑
k=1

HkE1(z − ak) + Ck
2E2(z − ak), (2.14)

where E1, E2 are the Eisenstein functions (see “Appendix A” for their definition), Ck
2

is the Casimir at the orbit of zk , while Hk, Hτ generate the flows with times zk and
2π iτ , respectively, and can be computed by performing contour integrals:

Hk =
∮

γk

dz

2π i

1

2
tr L2(z), Hτ =

∮
A
dz

1

2
tr L2(z). (2.15)
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These Hamiltonians can all be obtained as usual from the logarithmic derivative of a
single tau function [48,55–57]:

∂zk log T = Hk, 2π i∂τ log T = Hτ . (2.16)

3 N-component free fermions

In [7], it was shown that to describe SL(2, C) isomonodromic deformations on the
torus it is not sufficient to consider representations of Virasoro algebra, but we have
to extend our space to include also a Fock space Fσ with vacuum charge σ . This
generalizes to the SL(N , C) case by considering representation ofWN algebra, rather
than Virasoro, as in [21,22]. In turn, this makes contact, rather than with the usual
AGT correspondence [23], with a four-dimensional limit of topological strings, that
are more naturally connected to free fermions [29,31,34,59]. Due to the extra Fock
space, the system that is needed in the end is that of N -component complex free
fermions, which we define in this section without introducing degenerate fields of
WN . The more “traditional” approach to isomonodromy involving degenerate fields
and Verlinde loop operators is described in Sect. 5.

The approach thatwewill adopt is very close to that of [28]:we define N -component
free complex fermions, collecting them in two vectorsψ, ψ̄ , by their Fourier expansion
in cylindrical coordinates:

ψ(z) =
∑

r∈Z+1/2

ψr e
2π i(r+a+ 1

2 )z, ψ̄(z) =
∑

r∈Z+1/2

ψ̄r e
2π i(r−a− 1

2 ), (3.1)

or in components

ψα(z) =
∑

r∈Z+1/2

ψα,r e
2π i(r+aα+ 1

2 )z, ψ̄α(z) =
∑

r∈Z+1/2

ψ̄α,r e
2π i(r−aα− 1

2 ) (3.2)

Here, a is in the Cartan of slN , and the Fourier modes of the componentsψα(z),ψβ(z)
satisfy the usual canonical anticommutation relations

{ψα,r , ψβ,s} = {ψ̄α,r , ψ̄β,s} = 0, {ψ̄α,r , ψβ,s} = δα,βδr ,−s, (3.3)

r , s ∈ Z + 1/2, α, β = 1, . . . , N . (3.4)

The fermionic bilinear operators

Jαβ(z) ≡: ψ̄α(z)ψβ(z) : (3.5)

generate a twisted ĝl(N )1 algebra, whose Cartan subalgebra can be used to define a
WN ⊗F subalgebra. Its generators are given as elementary symmetric polynomials of
the Cartan currents:

Wn(z) ≡
∑

α1<···<αn

: Jα1 . . . Jαn : (3.6)
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where n = 1, . . . , N , and

Jα(z) = Jαα(z) (3.7)

These generators can be split into WN and Fa generators by the replacement

Jα(z) → Jα(z) + j(z), (3.8)

where j(z) is identifiedwith theU (1) current ofF, while after the replacement
∑

Jα =
0. We will however, for convenience consider directly the original ĝl(N )1 currents.

As a consequence of what we just said, the fermionic Hilbert space H can be
decomposed in sectors with definite ĝl(N )1 charge given by a vector n ∈ Z

N :

H =
⊕
n∈ZN

Hn. (3.9)

From the free fermions, we can also define vertex operators in an axiomatic way by
their braiding relations involving free fermions, i.e., as intertwiners (for more details,
see [28]): if one analytically extends a matrix element involving ψ(z) along a contour
γ that interchanges its time-orderingwith a vertex operator Vθ going counterclockwise
above the insertion of the vertex operator, then

ψ̄(γ · z)Vθ (0) = Vθ (0)B
−1ψ̄(z), ψ(γ · z)Vθ (0) = Vθ (0)ψ(z)B. (3.10)

Although our discussion will be fully general, the explicit form of B is known, for
SLN , only for the specific semi-degenerate case, that we will discuss in detail in
Sect. 5. Let us denote by B̃ the braiding matrix defined by

Vθ (0)ψ̄(γ̃ · z) = B̃−1ψ̄(z)Vθ (0), Vθ (0)ψ(γ̃ · z) = ψ(z)B̃Vθ (0), (3.11)

where γ̃ follows the same orientation as γ , but goes below the insertion of the ver-
tex operator: see the second and third steps in Fig. 4. Then, we can compute the
monodromies around any punctures by iterating these two moves, noting that γ̃ ◦ γ

represents a noncontractible contour around the point of insertion of the vertex:

〈σ | . . . Vθ (zk)ψ(z) . . . |σ ′〉 → 〈σ | . . . ψ(z)Vθ (zk) . . . |σ ′〉
= 〈σ | . . . Vθ (zk)ψ(z) . . . |σ ′〉Bk

→ 〈σ | . . . Vθ (0)ψ(z) . . . |σ ′〉B̃k Bk . (3.12)

The monodromy as composition of braiding operation is represented pictorially in
Fig. 2. To be able to compute all the monodromies, we also need a further ingredient:
when the fermion is inserted near zero, its monodromy is diagonal, and given by 2

ψ(γ0 · z)|a〉 = ψ(z)|a〉e2π ia. (3.13)

2 In our notations e2π ia = diag(e2π iai , . . . , e2π iaN ).
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0 ∞ 0 ∞ B
0 ∞B̃B

Fig. 2 Braiding of a fermion with a vertex operator. The wavy line represents the insertion of a free fermion
operator, while the solid line represents the insertion of a vertex

In fact, this is not only true for the primary state |a〉 but also for all descendants

|M, a〉 ≡ ψα1,−p1 . . . ψαl ,−pl ψ̄β1,−q1 . . . ψ̄βl ,−ql |a〉, (3.14)

labeled by the colored Maya diagram

M = {((α1,−p1), . . . , (αl ,−pl)), ((β1,−q1), . . . , (βl ,−ql))}. (3.15)

Analogous statements hold if the fermion is inserted instead near infinity. These last
points follows from the solution of the problem on the three-punctured sphere: by
repeated insertions of the identity

〈σ | . . . ψ(z)Vθ (zk) . . . |σ ′〉
=

∑
M,M′

〈σ | . . . |M, a〉〈M, a|ψ(z)Vθ (zk)|M′, a′〉〈M′, a′| . . . |σ ′〉 (3.16)

we can reduce the problem of computing monodromies around arbitrary punctures to
a repeated use of the rules described above.

Finally, as shown in Fig. 3, let us note that the braiding matrix B can be explicitly
written in terms of the fusion matrix of the fermions with the vertex operators as

Bθ = F

[
1 ψ

0 ∞
]−1

eiπθ1F

[
ψ 1
0 ∞

]
≡ F̃−1eiπθ1F (3.17)

by decomposing the four-point braiding move into two fusion and one three-point
braiding moves3. From this, it is clear that the parameters θ characterizing the vertex
operators are the monodromy exponents of the linear system, since the monodromy
around the vertex insertion has the form

M = B̃ B = F−1e2π iθ F, (3.18)

so that by choosing different θ ’s for the vertex operators we can realize monodromies
in arbitrary conjugacy classes. Further note that an explicit form of B̃, B is not actually
needed to arrive to this conclusion: we will obtain in Sect. 5 the explicit form of the
braiding matrix for the semi-degenerate case, which is given by equation (5.33).

3 We used here the standard notation of [60] for the fusion matrix.
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0 ∞ 0 ∞ F
0 ∞ eiπθF

0 ∞ F̃−1eiπθF

Fig. 3 Four-point braiding as composition of three-point braiding and fusion

4 Kernel and tau function from free fermions

Wenow show that the kernel (2.5) has the following expression in terms of free fermion
conformal blocks:

K (z′, z) = Y−1(z′)�(z − z′,Q)Y (z) = 〈Vθ1(z1) . . . Vθn (zn)ψ̄(z′) ⊗ ψ(z)〉
〈Vθ1(z1) . . . Vθn (zn)〉

, (4.1)

where

�(z − z′,Q) = diag (x(στ + ρ − Q1, z), . . . , x(στ + ρ − Qn, z)] , (4.2)

x being the Lamé function defined in “Appendix A.” The notation 〈. . . 〉 stands for

〈O〉 = trH
(
qL0(−)Fe2π iη·J0O

)
, (4.3)

where H is our free fermionic Hilbert space (3.9), J i0 are the ĝl(N )1 Cartan charges
and ηi their fugacities. The insertion of (−)F shifts the periodicity condition of our
fermions around the B-cycle of the torus and will be relevant in the computation of
the B-cycle monodromy. As discussed in Sect. 2, we included the U (1) charge and
fugacity in the definition of �, that we denoted by

σ = 1

N

N∑
i=1

σi , ρ = 1

N

N∑
i=1

ηi . (4.4)

It will be also useful to introduce sln projections of the charge vectors

σ̃i = σi − σ, η̃i = ηi − ρ. (4.5)

Themotivation behind thematrix� is the following: it gives theLHSof the equation
a simple pole, that in the RHS is due to the OPE of the free fermions, while also
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producing the U (1) part of the monodromies, absent in Y but present by construction
in the CFT. Further and most importantly, it cancels both the twists of the solution Y ,
so that the kernel K has monodromies acting from both left and right as in Eq. (2.8).
Our goal will be to show that the vertex operators can be defined in such a way that the
RHS has given monodromies acting in exactly such a way with prescribed conjugacy
class, which together with the identical singular behavior around z, z′ ∼ zk , z ∼ z′
coming from the OPE of the free fermions with the vertex operators shows that the
two objects coincide.

In this section, we compute the monodromies following the method explained
in Sect. 3: the vertex operators are defined through their action on free fermions,
so it is possible to realize a monodromy with prescribed conjugacy class at every
puncture. Operationally, if one wants to compute the monodromy around the cycle γn ,
for example, the operation is the following (we are summing over repeated indices):

〈Vθ1(z1) . . . Vθn (zn)ψ̄i (z
′)ψ j (z)〉 → −〈Vθ1(z1) . . . Vθn (zn)ψ j (z)ψ̄i (z

′)〉
→ −〈Vθ1(z1) . . . ψk(z)Vθn (zn)ψ̄i (z

′)〉(Bn)
k
j

→ −〈Vθ1(z1) . . . Vθn (zn)ψk(z)ψ̄i (z
′)〉(B̃n Bn)

k
j

→ 〈Vθ1(z1) . . . Vθn (zn)ψ̄i (z
′)ψk(z)〉(B̃n Bn)

k
j ,

(4.6)

so that the monodromy around zn is

Mn = B̃n Bn = F−1
n e2π iθn Fn ∼ e2π iθn . (4.7)

Following the same idea, one can compute the monodromy around an arbitrary punc-
ture zα: one perform a braiding around every puncture from zn to zα+1, then twice
around zα , then again around zα to zn in the opposite direction as before. The operation
is represented graphically in Fig. 4 for the puncture z1 in the two-punctured torus. The
result is that the monodromy around an arbitrary puncture zα is given by

Mα = B−1
n . . . B−1

α+1 B̃αBαBα+1 . . . Bn

= (FαBα+1 . . . Bn)
−1e2π iθα (FαBα+1 . . . Bn) ∼ e2π iθα . (4.8)

The monodromy around the A-cycle is fixed by our choice of gluing: it is given by

MA = e2π ia. (4.9)

Finally, the monodromy around the B-cycle can be computed in the following way.
First we go once around every zk :

〈Vθ1(z1) . . . Vθn (zn)ψ̄i (z
′)ψ j (z)〉 → −〈Vθ1(z1) . . . Vθn (zn)ψ j (z)ψ̄i (z

′)〉
→ · · · → −〈ψk(z)Vθ1(z1) . . . Vθn (zn)ψ̄i (z

′)〉(B1 . . . Bn)
k
j . (4.10)
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Fig. 4 Monodromy of a fermion around a puncture through braiding on the two-punctured torus. On the
upper side, the steps that compose the monodromy operation are represented in terms of conformal block
diagrams. On the lower side, the meaning of the conformal block diagram is drawn on the torus: the thin
cylinders represent the fermions, while the larger tubes represent the vertex operators. The intermediate
steps are drawn in olive green

Now, to go around the B-cycle we have to bring the fermion back to the original
position without crossing again the other operators. This is done by using the cyclicity
of the trace, but in fact in doing so we also have to take into account the insertion of
(−)Fe2π iη·J0 in the trace:

− 〈ψk(z)Vθ1(z1) . . . Vθn (zn)ψ̄i (z
′)〉(B1 . . . Bn)

k
j

= −trH
(
qL0(−)Fe2π iη·J0ψk(z)Vθ1(z1) . . . Vθn (zn)ψ̄i (z

′)
)

(B1 . . . Bn)
k
j

→ trH
(
ψk(z)q

L0(−)Fe2π iη·J0Vθ1(z1) . . . Vθn (zn)ψ̄i (z
′)
)

(e2π iηB1 . . . Bn)
k
j

= 〈Vθ1(z1) . . . Vθn (zn)ψ̄i (z
′)ψk(z)〉 · e2π iρ(e2π i η̃B1 . . . Bn)

k
j (4.11)

so that
MB = e2π iρe2π i η̃B1 . . . Bn . (4.12)

The two sides of Eq. (4.1) have prescribed monodromies and singular behavior, and
so they coincide. To compute the tau function, we have to expand the trace of Eq. (4.1)
for z ∼ z′.

By expanding the LHS, we get a term involving the Lax matrix

Y (z + t/2)Y−1(z − t/2) =
(

I + t L(z) + t2

2
L2(z)

)
, (4.13)
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and two terms from the expansion of the matrix �:

θ ′
1(0)

θ1(t)
= 1

t
− t

6

θ ′′′
1

θ ′
1

+ O(t3), (4.14)

θ1(t − Q̃i )

θ1(−Q̃i )
= 1 + t

θ ′
1(−Q̃i )

θ1(−Q̃i )
+ t2

2

θ ′′
1 (−Q̃i )

θ1(−Q̃i )
. (4.15)

Here, we introduced
Q̃i = Qi − στ − ρ. (4.16)

On the RHS, the expansion consists of the OPE for the fermions, yielding

trψ(z + t/2) ⊗ ψ̄(z − t/2) = N

t
+ N j(z) + t

2
T (z) + O(t2). (4.17)

The O(t) term relates the expectation value of the energy–momentum tensor to the
trace squared of the Lax matrix:

〈T (z)V1 . . . Vn〉
〈V1 . . . Vn〉 = 1

2
tr L2(z) + tr L(z)

θ ′
1( Q̃)

θ1( Q̃)
+ 1

2
tr

θ ′′
1 ( Q̃)

θ1( Q̃)
− N

6

θ ′′′
1 (0)

θ ′
1(0)

≡ 1

2
tr L2(z) + t(z) (4.18)

We see that, as in [7], in the genus one case there is a correction to the relation that
one has in genus zero [20,22,28], encoded in t(z).

Wewish now to determine the expression for the tau function by computing contour
integrals of (4.18) and comparing with (2.15) and (2.16). From (4.18) we see that we
can split the tau function in two parts:

T = T0T1, (4.19)

which are defined by the following equations:

∂zk log T0 =
∮

γk

dz

2π i
〈T (z)V1 . . . Vn〉, 2π i∂τ log T0 =

∮
A
dz

1

2
〈T (z)V1 . . . Vn〉,

(4.20)

∂zk log T1 = −
∮

γk

dz

2π i
t(z), 2π i∂τ log T1 = −

∮
A
dzt(z). (4.21)

The first term would be there also in the genus zero case, while the second term is a
new feature appearing in higher genus. T0 is computed by applying the VirasoroWard
identity:

〈T (z)V1 . . . Vn〉 = 〈T 〉+
n∑

k=1

E1(z−zk)∂k log〈V1 . . . Vn〉+
n∑

k=1

θ2k E2(z−ak), (4.22)
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yielding
T0 = 〈V1 . . . Vn〉. (4.23)

We now turn to computing the contour integrals of t(z): since we have

∑
i

S(k)
i i = 0,

∫ 1

0
dz

θ ′
1(z − zk)

θ1(z − zk)
= π i (4.24)

when zk lies in the fundamental domain. Then, the only contribution to the τ -derivative
of T1 will be

−2π i∂τ logT1 = tr p
θ ′
1( Q̃)

θ1( Q̃)
+ 1

2
tr

θ ′′
1 ( Q̃)

θ1( Q̃)
− N

6

θ ′′′
1 (0)

θ ′
1(0)

= 2π i tr ∂τ Q̃
θ ′
1( Q̃)

θ1( Q̃)
+ 2π i tr

∂τ θ1( Q̃)

θ1( Q̃)
− 2π i

N

3

∂τ θ
′(0)

θ ′
1(0)

= 2π i∂τ

(
tr log θ1( Q̃) − N log η(τ)

)
(4.25)

Therefore,

T1 = f ({zk}) η(τ )N∏
i θ1(Q̃i ({zk}, τ ))

= f ({zk})
Ztwist ( Q̃({zk}, τ ))

, (4.26)

where f ({zk}) is an arbitrary function of the punctures’ positions, left undetermined
by the integration. In fact, let us show that f ({zk}) = 1: computing the residues of
t(z) yields

− ∂zk log T1 =
∑
i

S(k)
i i

θ ′
1(Q̃i )

θ1(Q̃i )
. (4.27)

At first sight, the RHS does not look like a total zk-derivative. However, let us consider
the p-dependent part of the corresponding Hamiltonian:

Hk = 1

2
Res zk trA(z)2 =

∑
i

S(k)
i i pi + . . . (4.28)

from which it follows that ∂zk Qi = S(k)
i i . Therefore,

∂zk log T1 =
∑
i

θ ′
1(Q̃i )

θ1(Q̃i )
∂zk Q̃i = ∂zk log

∏
i

θ1(Q̃i ) (4.29)

Therefore, in (4.26) f ({zk}) = const , and we can put without loss of generality
f ({zk}) = 1, as promised. The isomonodromic tau function is

T ({zk}, τ ) = 1

Ztwist ( Q̃(τ ))
〈V1(z1) . . . Vn(zn)〉. (4.30)
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Let us remark that theCFTarguments used above are valid for general vertex insertions.
However, in order to have explicit calculable expressions one needs to consider the
insertion of (semi-) degenerate fields. In this case, the fermionic correlator is identified
with the dual partition function of a circular quiver gauge theory with gauge group
U (N )n and n hypermultiplets in bifundamental representations of the gauge groups,
as encoded in the conformal block diagram. Therefore, the above equality can be
rewritten as

T = ZD(τ, {zk}|{ak}, {ηk}, {θk})
Ztwist ( Q̃(τ, {zk}))

, (4.31)

where we made explicit the dependence on all the intermediate channel charges ak ,
k = 1, . . . n, together with their duals entering in the Fourier transform ηk , and set
a ≡ a1.

5 Torus monodromies with Verlinde loop operators

In this section, we show an alternative proof of formulas (4.1) and (4.30) for the
kernel and tau function, respectively, using Verlinde loop operators acting on (semi-)
degenerate representations of WN algebras, along the lines of [22]. The necessary
definitions about degenerate fields and WN algebras are collected in “Appendix B.”

5.1 General setup

We wish to study the monodromy properties of the torus conformal block with inser-
tions of two WN completely degenerate fields, φ and φ̄, and n semi-degenerate
W-primaries V :

�i j (σ
0; σ 1, . . . , σ n−1|z, z0)

= trH
σ0

(
qL0φi (z)φ̄ j (z0)Vν1(z1)Pσ 1Vν2(z2) . . . Vνn−1(zn−1)Pσ n−1Vνn (zn)

)
.

(5.1)

In this formula, the operators Vνk are semi-degenerate W-primaries with W-charges
given by θk = νkω1, where ω1 is the first fundamental weight of AN−1. Operators
φi and φ̄ j are completely degenerate fields with W-charges given by ω1 and ωN−1,
respectively. Indices i and j label fusion channels.

The normalization of Vνk is given by:

〈σ ′|Vν |σ 〉 ≡ N+(σ ′, νω1, σ ), (5.2)

where

N±(σ ′, νω1, σ ) =
∏

l j G(1 ∓ ν/N ± σl ∓ σ ′
j )∏

k<m G(1 + σk − σm)G(1 − σ ′
k + σ ′

m)
. (5.3)
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σ 1σ 0−
h
i +

h
j

σ 0−
h
i

σ 0

ν 1
ω 1

ν 2
ω 1

ω N
−1

ω 1

Fig. 5 Toric conformal blocks with n = 2 semi-degenerate and 2 degenerate fields

We also fix normalization of the completely degenerate field by4

〈σ |φi (1)|σ − hi 〉 = eiπN (σ ,hi )N−(σ ,ω1, σ − hi ). (5.4)

As in Eq. (B.10), Pσ k is the projection operator onto the W-algebra representation
with charge σ k , expressing the fact that the conformal block has fixed intermediate
charges. It is useful to expand the trace of (5.1) as a sum of diagonal matrix elements:

�(σ 0; σ 1, . . . , σ n−1|z, z0) =
∑
Y

q |Y |�(Y)(σ 0; σ 1, . . . , σ n−1|z, z0) (5.5)

where vector of Young diagrams Y labels W-algebra descendants, and we defined the
matrix element between descendants

�(Y) = 〈σ 0,Y |φ(z) ⊗ φ̄(z0)Vν1 . . . Vνn |σ 0,Y 〉. (5.6)

We remind one of the main results of [22, Theorem 5.1]: the Fourier transforma-
tion of �(Y) over all internal W-charges has number-valued (not operator-valued as
generically happens) monodromies around 0,∞ and the insertion points z1, . . . , zn ,
as a function of z and z0, independent from Y . The Fourier transform is defined by

�(Y)D(σ 0; σ 1, η1, . . . , σ n−1, ηn−1|z, z0)
=

∑
wi∈QAN−1

e2π i
∑n−1

i=1 (ηi ,wi )�(Y)(σ 0; σ 1 + w1, . . . , σ n−1 + wn−1|z, z0),

(5.7)

where QAN−1 is the slN root lattice. Moreover, for the case Y = ∅ the function �0;D
gives the solution of the n + 2 point Fuchsian system on the sphere. So using the
results of [22] we get automatically the following statement: the function �D , given

4 This parameterization differs from one in [22] by the factor eiπ(1−N )(σ ,hi ).
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σσ′
σ
+

h
l

νω1 ω1

=
∑

j Blj(σ′, ν,σ)
σσ′

σ ′−
h
j

νω1ω1

Fig. 6 Braiding transformation of conformal blocks

by the formula5

�D =
∑

wi∈QAN−1

∑
Y

e2π i
∑n−1

i=1 (ηi ,wi )�(σ 0; σ 1 +w1, . . . , σ n−1 +wn−1|z, z0) (5.8)

has number-valued monodromies Mk around all zk , and also number-valued A-cycle
monodromy MA = e2π iσ

0
, since after taking trace we identify A-cycle with the loop

around 0 or ∞ on the initial sphere. The problem now is to find a linear combination
of �D that has number-valued monodromy around the B-cycle.

5.2 B-cycle monodromy operator

The main ingredient in the computation, as in the case of free fermions, is the braiding
move exchanging two insertions in a four-point conformal block, as in Fig. 6, where
we see how the braiding can be expressed in terms of the fusion matrix B, given below
in Eq. (5.10).

It is a local transformation of conformal blocks and maps a conformal block to a
linear combination of other conformal blocks with different intermediate dimensions.
Since it is local, it can be studied for conformal blocks with one degenerate, one semi-
degenerate and two arbitrary fields: in this case the conformal block is given by a
generalized hypergeometric function N FN−1, so the computation of the fusion matrix
F is equivalent to re-expansion of hypergeometric function around zero in the vicinity
of infinity, see [22] and references therein. The analytic continuation between these two
region is performed around a semidegenerate field insertion in the counterclockwise
direction. These conformal blocks can be obtained directly from geometric engineer-
ing in topological string theory, as in [61,62]. We perform the sequence of braiding
transformations that correspond to the B-cycle monodromy pictorially, exemplified in
the case of two punctures, in Fig. 7.

From the figure, we can see that after analytic continuation along the B-cycle, the
intermediate charges are shifted: in other words, we have an operator-valued mon-
odromy matrix M̂B , containing shift operators. The main problem, as in [20,22], will
be to turn this matrix into number-valued matrix MB . Before going through the whole
computation, let us make the following observation: while in the spherical case, all

5 In all formulas letter “D” stands for “dual.”
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Fig. 7 Monodromy of degenerate field

monodromies led to shifts in the AN−1 root lattice (generated by hi − h j ), in the toric
case the single B-cycle monodromy also simultaneously shifts all the charges by a
single hi . Therefore, the arbitrary shift vector, which appears here and will have to
appear in the Fourier transform, has the form (w0 + ωk,w

1 + ωk, . . . ,w
n−1 + ωk),

where wl ∈ QAN−1 are the elements of AN−1 root lattice. To get the proper ker-
nel for the Riemann–Hilbert problem it will be necessary to sum over this set: the
essential difference from the naive expectation is the presence of the extra shift by the
fundamental weight ωk .

Now we perform the precise computations along the lines of [22]. The explicit
formula for the fusion kernel is given by

Bl j (σ
′, ν, σ )

= e−iπ((N−1)/N+σl−σ ′
j )

∏
k �=l

sin π((ν + 1)/N + σ ′
j − σk)

sin π(σk − σl)
× eiπN ((σ+hl ,hl )−(σ ′

j ,hl )),

(5.9)

where the last factor comes from the renormalization of the structure constants (5.4)
between [22] and the present work. The latter formula can be rewritten in a more
compact form:

Bl j (σ
′, ν, σ ) = eπ i(ν+1/N )

∏
k �=l

1 − e−2π i((ν+1)/N+σ ′
j−σk )

1 − e−2π i(σl−σk )
. (5.10)

The main advantage of the normalization (5.4) is that the new braiding matrix is
periodic under σi �→ σi + 1 or σ ′

i �→ σ ′
i + 1.

In matrix notation, the braiding of Fig. 6 takes the form

Pσ ′Vν(z) �φ(γ · y)Pσ = B(σ ′, ν, σ ) · Pσ ′ �φ(y)�(z)Pσ , (5.11)

Another basic operation is the permutation of a degenerate field and a projector:

�φ(z)Pσ = ∇σPσ
�φ(z). (5.12)
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Here ∇σ is a diagonal matrix with entries given by the shift operators: (∇σ )i iPσ =
Pσ+hi . The appearance of such operators makes monodromy matrices operator-
valued. The transformation of the conformal block (5.1)whenwe analytically continue
in z along the B-cycle is expressed as a sequence of these operations: in order to write
it down, it is convenient to introduce the column vectors

�� j (z) = (
�1, j , . . . , �N , j

)T
, (5.13)

constructed from the lines of �. In terms of these, we can write the monodromy
transformation as

�� j (γB · z) = M̂T
B

�� j (z), (5.14)

where

M̂T
B = ∇−1

σ 0 B(σ n−1, νn, σ
0)∇−1

σ n−1B(σ n−2, νn−1, σ
n−1) . . .

∇−1
σ 1 B(σ 0 + h j , ν1, σ

1)eπ i(1−N )/N , (5.15)

To compute braiding of two degenerate fields, we used the simple identity

B(σ 0,−1, σ 0 + h j − hl)lk = eπ i(1−N )/N . (5.16)

To further simplify the form of themonodromymatrix M̂B , we do somemanipulations
in order to make all shift operators act only on the conformal blocks, but not on the
other matrices. We will denote a shift operator that acts only on the conformal block
by ∇̃. This can be done with the help of the following identities:

B(σ ′, ν, σ ± hm) = −B(σ ′, ν ± 1, σ ),

B(σ ′ ± hm, ν, σ ) = −B(σ ′, ν ∓ 1, σ ) (5.17)

and their obvious consequence:

∇−1
σ B(σ ′, ν, σ ) = −∇̃−1

σ B(σ ′, ν + 1, σ ). (5.18)

Naively one might think that M̂T
B acts differently on different rows of �, but due to

(5.17) this dependence disappears. Simplified form of the monodromy matrix is

M̂T
B = (−1)neπ i(1−N )/N ∇̃−1

σ 0 B(σ n−1, νn − 1, σ 0)∇̃−1
σ n−1B(σ n−2, νn−1 − 1, σ n−1) . . .

. . . ∇̃−1
σ 1 B(σ 1, ν2 − 1, σ 2)∇̃−1

σ 1 B(σ 0, ν1 − 1, σ 1). (5.19)

5.3 Fourier transformation

One can easily verify using (5.17) that

∇σ i ⊗ ∇−1
σ i ⊗ M̂B = ∇̃σ i ⊗ ∇̃−1

σ i ⊗ M̂B,
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∇σ 0 ⊗ ∇σ 1 ⊗ · · · ⊗ ∇σ n−1 ⊗ M̂B = ∇̃σ 0 ⊗ ∇̃σ 1 ⊗ · · · ⊗ ∇̃σ n−1 ⊗ M̂B .

(5.20)

this means that the matrix M̂B is periodic with respect to shifts by the vectors
(ω j , . . . ,ω j ) + (w0, . . . ,wn−1), where wi ∈ QAN−1 .

We can thus construct a Fourier transformation of the fundamental solution in order
to (almost) diagonalize all shift operators simultaneously:

�D
k ≡

∑
wi∈QAN−1

e2π i
∑n−1

i=0 (ηi ,wi+ωk )�
(
{σ i + wi + ωk}

)
. (5.21)

The shift operators act on this expression as follows:

∇−1
σ 0 ⊗ ∇−1

σ 1 ⊗ · · · ⊗ ∇−1
σ n−1�

D
k = e2π i η̃

0 ⊗ e2π i η̃
1 ⊗ · · · ⊗ e2π i η̃

n−1
�D

k−1 (5.22)

This means that one can replace

∇−1
σ 0 ⊗ ∇−1

σ 1 ⊗ · · · ⊗ ∇−1
σ n−1 → e2π i η̃

0 ⊗ e2π i η̃
1 ⊗ · · · ⊗ e2π i η̃

n−1
T−1, (5.23)

where the operator T shifts the index k ∈ Z/NZ:

T : �D
k �→ �D

k−1. (5.24)

Thanks to this, the B-cycle monodromy matrix of �D is given by

M̂T
B = (−1)neπ i(1−N )/Ne

˜2π iη
0

B(σ n−1, νn − 1, σ 0)e2π i η̃
n−1

B(σ n−2, νn−1 − 1, σ n−1)

. . . . . . e2π i η̃
2
B(σ 1, ν2 − 1, σ 2)e2π i η̃

1
B(σ 0, ν1 − 1, σ 1). (5.25)

The A-cycle monodromy can be computed in the obvious way, but the problem is
that it is different in the sectors with different shifts ωk :

MA,k = e2π i(σ̃
0−ωk ) = e2π ik/Ne2π i σ̃

0
. (5.26)

To fix this issue, it is necessary to introduce an extra U (1) boson ϕ(z) with the OPE

ϕ(z)ϕ(w) ∼ − 1

N
log(z − w) (5.27)

Using this boson, we turn W-degenerate fields into N-component fermions:

ψi (z) = φi (z) ⊗ eiϕ(z),

ψ̄i (z) = φ̄i (z) ⊗ e−iϕ(z). (5.28)
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After analogous, but quite simpler considerations w.r.t. the ones reported above, we
arrive at the result that, for theU (1) factor, the B-cycle monodromy is just the charge-
shifting operator for U (1) charge, and the A-cycle monodromy is just some number,
different in the different sectors:

M̂U (1)
B = e2π i(ρ+ N−1

2N )
(
TU (1)

)−1
,

MU (1)
A,k = e−2π ik/Ne2π iσ

U (1)
, (5.29)

where the U (1) shift operator is defined as

TU (1) f (σ ) = f

(
σ + 1

N

)
(5.30)

We are finally able to construct the following object, which is invariant under the
action of T · TU (1):

�U (N )(z, z0) =
N−1∑
k=0

�D
k (z, z0)�

U (1)
k (z, z0), (5.31)

that has number-valued monodromies:

MT
B = (−1)ne2π iη

0
B(σ n−1, νn − 1, σ 0)e2π iη

n−1
B(σ n−2, νn−1 − 1, σ n−1) . . .

. . . e2π iη
2
B(σ 1, ν2 − 1, σ 2)e2π iη

1
B(σ 0, ν1 − 1, σ 1),

MU (N )
A = e2π iσ

0
, (5.32)

giving a solution to the Riemann–Hilbert problem.
Finally, let us note that from this we can read the explicit form of the fermion

braiding matrix Bk used in the previous section:

Bk = −BT (σ k−2, νk−1 − 1, σ k−1)e2π iη
k−1

. (5.33)

6 Relation to Krichever’s connection

We wish now to connect the solution we found in the previous sections to the solution
of the linear system defined by the Lax matrix

Lii (z|τ) = pi +
∑
k

L(k)
i i

[
ζ(z − zk) − ζ(z − Qi ) − ζ(Qi − zm)

]
,

∑
m

Liim = −1,

(6.1)

Li j (z|τ) =
∑
k

L(k)
i j

[
ζ(z − zk) − ζ(z − Q j ) − ζ(Qi − zk) + ζ(Qi − Q j )

]
, i �= j,

(6.2)
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obtained following Krichever’s construction [54,63], which is a different approach
to the construction of Lax matrices on elliptic curves, that also extends to algebraic
curves of higher genus.

Recall that Riemann–Roch theorem forces, in the g > 0 case, the introduction of
twist factors that we discussed in Sect. 2. More specifically, a Lax matrix is a mero-
morphic matrix-valued differential with poles specified by a divisor on the Riemann
surface. The space of r × r matrix functions with degree d divisor of poles has dimen-
sion r2(d − g + 1). Besides the Lax pair matrices L, M , the Lax equation involves
also their commutator: if n,m are the degrees of the divisors of L, M , respectively,
the degree of their commutator is n +m. We thus have r2(n +m − g + 1) equations,
but only r2(n + m − 2g + 1) unknown functions modulo gauge equivalence. Unless
g = 0, this results in an overdetermined system of equations. One way of dealing
with this is tensoring with some other bundle, which is technically what we do when
we introduce twists: our Lax matrix was not a meromorphic differential but rather a
section of some other bundle, so we cannot straightforwardly apply Riemann–Roch
theorem as above.

There exists another way to handle this problem, which is to consider the linear
system as defining a vector bundle of degree rg, instead of a degree zero bundle as in
the construction with twists. Then, the determinant bundle will vanish at rg points, and
one can show that the Lax matrix L(z) for such a linear system will have additional
simple poles at extra points, the so-called Tyurin points. These simple poles have
residue one, so that from the point of view of the linear system they are apparent
singularities around which the solution of the linear system

∂zY
Kr (z|τ) = LKr (z|τ)Y Kr (z|τ) (6.3)

will have no monodromies. The Riemann–Hilbert problem for Y Kr is modified as
following: instead of having (2.3), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Y (γk · z|τ) = Y (z|τ)Mk, k = 1, . . . , n

Y (z + 1|τ) = Y (z|τ)MA,

Y (z + τ |τ) = Y (z|τ)MB,

det Y (Qi |τ) = 0, i = 1, . . . , r ,

(6.4)

with Lax matrix given by (6.1).
To make contact with our fermionic construction, first recall that in Sect. 2 it was

mentioned that starting from the original Lax matrix (2.10) it is possible to go to a
description involving a different one by means of a singular gauge transformation, so
that to find the CFT description of this approach we should find a g(z|τ) such that

LKr = gLg−1 + ∂zgg
−1. (6.5)

For the one-punctured torus with a single pole at zero, the Lax matrices are

LKr
i j = m

θ1(z + Qi − Q j )θ1(z − Qi )θ1(Q j )

θ1(z)θ1(z − Q j )θ1(Qi − Q j )θ1(Qi )
, (6.6)
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LKr
ii = pi + E1(z − Qi ) − E1(z) + E1(Qi ) (6.7)

LCM
i j = mx(Qi − Q j , z), LCM

ii = pi , (6.8)

so that the gauge transformation is relatively easy to find, and is given by

g(z) = diag

[
θ ′
1(0)θ1(z + Qi )

θ1(z)θ1(Qi )

]
. (6.9)

To generalize this to the case of many punctures, it is convenient instead to consider
the Riemann–Hilbert Problem (6.4). Such solution, that we will from now on denote
by Y Kr , can be constructed from Y (z) in the following way:

Y Kr (z) = diag
θ ′
1(0)θ1(z − z1 + Qi )

θ1(z − z1)θ1(Qi − z1)
× Y (z) ≡ g(z)Y (z) (6.10)

We see that det Y Kr (z1 − Qi ) = 0 in all points Qi , and also all its singular exponents
in the point z1 are shifted. One way to obtain this solution is the following: consider
first the kernel (4.1):

K (z, z0) = Y (z0)
−1 θ ′

1(0)θ1(z − z0 + Q)

θ1(z − z0)θ1(Q)
Y (z), (6.11)

and then send z0 → z1:

Y Kr (z) = lim
z0→z1

Y (z0)K (z, z0). (6.12)

This formula has clear CFT interpretation: near z1 the behavior of the solution is

Y (z0) = G1(z0 − z1)(z0 − z1)
θ1C1, (6.13)

where G1(z) is holomorphic and invertible around z = 0. Therefore,

K (z, z0) = C−1
1 (z0 − z1)

−θ1G1(z0 − z1)
−1Y Kr (z). (6.14)

Because of the limit z0 → z1, in the CFT we have to consider the OPE of the fermion
ψ̄α(z0) with the primary field Vθ1(z1):

ψ̄α(z0)Vθ1(z1) =
∑
β

(
C−1
1

)
αβ

(z0 − z1)
−θ1,β δβVθ1(z1) + . . . , (6.15)

where δβVθ1 is a field with shifted W-charge θ1 �→ θ1 − hβ .6

6 Notice that in the general WN case fields δβV are rather problematic. The only well-understood fields
are the ones with θ1 = ν1ω1, but fields with charge θ1 − hβ generally do not lie in this class.
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Now comparing (6.15) with (6.12) we can identify

Y Kr (z)αβ =
∑
γ

G1(0)αγ

〈ψα(z)δγ Vθ1(z1)Vθ2(z2) . . . Vθn (zn)〉
〈Vθ1(z1) . . . Vθn (zn)〉

. (6.16)

We see that up to normalization (which is not actually fixed) Krichever’s solution
has the nice CFT interpretation of the expectation value of the single fermion in the
presence of all the vertex operators. The expression of the two-fermionic correlator in
terms of Krichever’s solution can be obtained by applying the gauge transformation
(6.10):

K (z, z0) = Y (z0)
−1 θ ′

1(0)θ1(z − z0 + Q)

θ1(z − z0)θ1(Q)
Y (z) =

= Y Kr (z0)
−1 θ1(z0 − a1 + Q)

θ1(z0 − a1)

θ ′
1(0)θ1(z − z0 + Q)

θ1(z − z0)θ1(Q)

θ1(z − a1)

θ1(z − a1 + Q)
Y Kr (z).

(6.17)

We thus see that Krichever’s solution becomes less natural than Y (z) if we wish to
express the two-fermionic correlator, because it contains a more involved diagonal
matrix between Y Kr (z0)−1 and Y Kr (z). On the other hand, contrary to what happens
in the twisted formulation, the solution itself can be obtained from the CFT, not only
the kernel.

7 Solution of the elliptic Schlesinger system

As a further application of our results wewill now show how, starting fromEqs. (4.30),
(4.31), one can obtain a formula for the solution of theCalogero-like variables Qi of the
elliptic Schlesinger system.This formula generalizes the algebro-geometric solution of
the ellipticCalogero–Mosermodel found in [53] to the nonautonomous casewithmany
punctures, and suggests a double role of the dual partition function from the point of
view of integrable systems: on the one hand, being proportional to the tau function, its
vanishing locus includes the Malgrange divisor, where the Riemann–Hilbert problem
is no longer solvable [64–66]. On the other hand, we have an extra vanishing locus,
which generalizes the Riemann theta divisor of the Krichever/Seiberg–Witten curve,
whose points are the solution to the equations of motion of the isomonodromic system.
Note that this is essentially a consequence of our choice of twists, or analogously of
the choice of Calogero-like dynamical variables. As a byproduct, we will also obtain a
direct link between the isomonodromic tau function and the SU (n), rather thanU (n),
gauge theory.

However, note that in the case ofmore thanonepuncture, theCalogero-like variables
Qi do not specify the whole system: there are additional spin variables satisfying the
Kirillov-Kostant Poisson bracket for sl(N ) [57] that will not enter in the following
discussion: while it may be that there is some further connection between ZD and
these remaining dynamical variables, this does not seem evident at the moment.
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In order to obtain the aforementioned result, we first split ZD in various components
having different types of gl N shifts:

ZD = trH(−)Fe2π iη·J0qL0V =
∑
n∈ZN

trHn(−)Fe2π iη·J0qL0V , (7.1)

where we denoted by V the whole string of vertex operators. To perform the splitting,
it is convenient to decompose η as

η = η1ω1 + · · · + ηN−1ωN−1 + Nρe ≡ η̃ + Nρe, (7.2)

where

e ≡ 1

N
(1, . . . , 1) , (7.3)

and ωk are the fundamental weights of slN , normalized as

ωk · ωk = k
N − k

N
. (7.4)

We also decompose n as

n = (n1, . . . , nN ) ≡ ñ + N

(
k + j

N

)
e, (7.5)

where we separated the traceless part from the U (1) factor

JU (1)
0 = n · e = n

N
≡ k + j

N
, (7.6)

with j = 0, . . . , N − 1. The space Hn analogously decomposes into a WN highest
weight module plus a Fock space, with U (1) charge given by

Hn = Wa+ñ ⊕ Fσ+1/2+k+ j/N , (7.7)

where we shifted theU (1) charge σ by 1/2 to get consistent signs in the monodromy,
as in the 2 × 2 case. Then,

ZD =
N−1∑
j=0

∑
k,ñ

trWa+ñ

(
e2π iη·ñqL0V

)
tr Fσ+k+ j/N+1/2

(
e2π i N (ρ+1/2)(k+ j/N )qL0

)
,

(7.8)
where we encoded the fermion number operator into a shift of ρ by 1/2. However, we
must note that j is not independent of the WN charge shift. In fact, if we parametrize

n = (n1 + k, n2 + k, . . . , nN−1 + k, k), (7.9)
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the U (1) charge is indeed

JU (1)
0 = k + n1 + · · · + nN−1

N
≡ k + j

N
, (7.10)

but we also have
n1 + · · · nN−1

N
= n · ωN−1, (7.11)

so that j/N is the shift in the WN weight along the ωN−1 direction. Then,

ZD = 1

η(τ)

N−1∑
j=0

ZD
j

∑
k

e2π i N (ρ+1/2)(k+ j/N )eNπ iτ(σ+k+ j/N+1/2)2

= qσ 2
qN/8qN (στ+1/2)/2

η(τ)

N−1∑
j=0

θNτ

[
j/N
0

]
(N (ρ + 1/2 + (σ + 1/2)τ ))ZD

j ,

(7.12)

where we defined

ZD
j ≡

∑
ñ∈QAN−1 , ñ·ωN−1= j/N

trWa+ñe
2π iη·ñqL0V (7.13)

We should now compare with

ZD = T
∏
i

θ1(Qi − στ − ρ)

η(τ)
. (7.14)

First of all, from this expression we see that στ + ρ = Qi are zeros of ZD . In other
words, the solutions of the nonautonomous system are given by

ZD|στ+ρ=Qi = 0, i = 1, . . . , N . (7.15)

This is a generalization to the nonautonomous case of the condition θ(Q) = 0, express-
ing the solution of the autonomous integrable system as the vanishing theta divisor of
the Seiberg–Witten curve, which is the autonomous limit of our description. Further,
the decomposition (7.12) is a deformation of the one expressing the Riemann theta
function associated to the Seiberg–Witten curve as a sum over N − 1 Jacobi theta
functions with characteristics shifted by j [53].

We can further write the isomonodromic tau function in a way that is manifestly
independent from theU (1) charges. By writing all the theta functions in their q-series
representation, we have

ZD = qσ 2

η(τ)N
(i)NT

∑
n1,...,nN

(−)n1+···nN e2π iτ
[
(n1+1/2)2+···+(nN+1/2)2

]
/2
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× e2π i[(n1+1/2)(−Q1+στ+ρ)+···+(nN+1/2)(−QN+στ+ρ)]

= qσ 2

η(τ)N
(i)NT

∑
n∈ZN

e2π in·(−Q+(στ+ρ+1/2)e)e2π i(n+e/2)2τ/2. (7.16)

We decompose, similarly as before,

n = ñ + N (n + j/N )e, (7.17)

and find

ZD = i NT qσ 2

η(τ)N
(i)NeiπN (στ+ρ)

N−1∑
j=0

∑
ñ,k

(
e2π i ñ·Qeiπ ñ

2τ
)

(
eiπN (k+ j/N )eiπNτ(k+ j/N+1/2)2e2π i N (στ+ρ)(k+ j/N )

)

= T qσ 2

η(τ)N
eiπN (στ+ρ+1/2)

N−1∑
j=0

� j (Q)
∑
k

eiπNτ(k+ j/N )2e2π i N ((σ+1/2)τ+ρ+1/2)

= T qσ 2

η(τ)N
eiπN (στ+ρ+1/2)

N−1∑
j=0

� j (Q)θNτ

[
j/N
0

]
(N ((σ + 1/2)τ + ρ + 1/2)) .

(7.18)

Comparing the two expressions, we see that

ZD
j = eiπNρ

η(τ)N−1� j (Q)T , (7.19)

where
� j (Q) =

∑
n∈QAN−1 : n·ωN−1= j/N

e2π in·Qeiπn2τ . (7.20)

8 Conclusions and outlook

In this paper,we showed how the isomonodromic tau function for a linear systemon the
torus with n regular singularities can be expressed as a Fourier transform of conformal
blocks in a free fermionic CFT, where the Fourier transform is obtained by summing
over all the fermion charges under the Cartan of a twisted ĝl(N )1 algebra. Through
the AGT correspondence, these are related in the usual way to dual partition functions
of a circular quiver gauge theory, so that this results extends the Painlevé/gauge theory
correspondence [3,24] to the case of circular quiver theories in class S with gauge
groups SU (N ) and their S-duals, obtained by wrapping a stack of N M5-branes on
a punctured torus with an arbitrary number of punctures. Let us remark that as a
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consequence of this identification we get a relation between the solution of the multi-
particle integrable deautonomized system and the gauge theory dual partition functions
ZD
j , which can be regarded alternatively as equations for the gauge theory partition

functions given the solution of the integrable system (7.19).
An interesting direction for further studies is the relation to surface operators in

gauge theory: in class S theories there are two ways of constructing surface operators
[67]: from intersecting another set of M5-branes with the original ones wrapping the
Riemann Surface that define the theory (codimension 2 defects) or from M2-branes
with endpoints on the original M5s (codimension four defects). This latter type of
surface operator is localized at one point on the Riemann surface: in the context of the
AGT correspondence the partition function in the presence of such a surface operator
is realized by the insertion of a Virasoro degenerate orWN completely degenerate field
in the conformal block that yields the usual instanton partition function [68,69]. As we
show in the appendix, our fermions are constructed from such degenerate fields just
by adding a U (1) boson: as such, the kernel (4.1) is naturally related to such objects.
The other possible surface operator instead has dimension four in the six-dimensional
theory and wraps the whole Riemann surface: the relation between these two types
of surface operators, also from the CFT viewpoint, has been discussed in [70]. In the
2d CFT, this amounts to changing the theory itself, and the partition function in the
presence of such a surface operator is given by a conformal block of a ŝl(N )k algebra
with an insertion of a certain twist operator K—see [71], with level k related to the
equivariant parameters by requiring that the original Virasoro algebra of the Liouville
theory is recovered upon quantum Drinfeld–Sokolov reduction, i.e.,

k = −N − ε2

ε1
. (8.1)

Because of this, the partition function in the presence of a codimension four surface
operator is a solution of KZB equations [72,73], which are known to be a quantization
of isomonodromy deformation equations [74,75]. In fact, it is expected [76] that the
classical k → ∞ limit of the partition function with codimension four surface defect
reproduces the formula identifying the tau functionwith the dual gauge theory partition
function. On the one hand, it would be interesting to investigate how the extra factors
present in our formulas arise when doing such a procedure on a circular quiver theory,
or even more simply in the N = 2∗ theory. On the other hand, it should be noted
that we already have a (twisted) Kac–Moody algebra in our construction, but with
fixed level one. The relation between the appearance of a twisted KM algebra at level
one and that of the classical limit of an untwisted KM algebra with the additional
insertion of a twist operatorK certainly needs further elucidation. Moreover, it would
be interesting to lift our analysis to 5d SUSYgauge theories and groupHitchin systems
[77], but on elliptic curves, in which case discrete Painlevé equations should play a
central role.

Acknowledgements Wewould like to thankM. Bertola, J. Harnad, D. Korotkin for interesting discussions.
The work of G.B. and F.D.M. is partially supported by INFN-ST&FI. The work of P.G. was carried out
within theHSEUniversity Basic Research Program and funded by theRussianAcademic Excellence Project
“5-100.” The results of Sect. 5 were obtained under the support of Russian science foundation within the

123



Circular quiver gauge theories, isomonodromic… Page 31 of 38 83

Grant 19-11-00275. The work of A.T. is partially supported by INFN-GAST. The work of A.T. is supported
by PRIN project “Geometria delle varietà algebriche.” The work of G.B. is supported by the PRIN project
“Non-perturbative Aspects Of Gauge Theories And Strings.”

Funding Open Access funding provided by Scuola Internazionale Superiore di Studi Avanzati - SISSA.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Elliptic and theta functions

We consider tori normalized so that their periods are (1, τ ). In our discussion appear
two different theta functions: the Jacobi theta function with characteristics

θτ

[
a
b

]
(z) =

∑
n∈Z

eiπ(n+a)2τ e2π i(z+b)(n+a) (A.1)

and its specification

θ1(z|τ) ≡ θτ

[ 1
2
1
2

]
(z) = −i

∑
n∈Z

(−1)neiπ(n+ 1
2 )2τ e2π i z(n+ 1

2 ). (A.2)

In the following, we will also denote q = e2π iτ . A z-derivative is indicated by a prime,
and when the theta function or its derivatives are evaluated at z = 0, we simply omit
the z-dependence: θ1(0|τ) ≡ θ1(τ ), and so on. The quasi-periodicity properties of the
theta functions are

θτ

[
a
b

]
(z + 1) = e2π iaθτ

[
a
b

]
(z), θτ

[
a
b

]
(z + τ) = e−iπτ−2π i z−2π ibθτ

[
a
b

]
(z),

(A.3)

so that

θ1(z + 1|τ) = −θ1(z|τ), θ1(z + τ |τ) = −q−1/2e−2π i zθ1(z|τ). (A.4)
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We also use Weierstrass elliptic functions ℘ and ζ . ℘ is an elliptic function with a
single double pole at z = 0. Its expression in terms of theta functions is

℘(z|τ) = −∂2z log θ1(z|τ) − 2η1(τ ) = −ζ ′(z|τ), (A.5)

where

η1(τ ) = −1

6

θ ′′′
1 (τ )

θ ′
1(τ )

. (A.6)

Weierstrass’ ζ function is minus the primitive of ℘. It has only one simple pole at
z = 0, with an affine quasi-periodicity along the A- and B-cycle:

ζ(z|τ) = 2η1(τ )z + ∂z log θ1(z|τ), (A.7)

ζ(z + 1|τ) = ζ(z|τ) + 2η1(τ ), ζ(z + τ |τ) = ζ(z|τ) + 2τη1(τ ) − 2π i .
(A.8)

It turns out to be convenient to normalize theWeierstrass elliptic functions in a different
way, in order to have vanishingA-cycle integral. The functions thus obtained are called
Eisenstein functions:

E1(z|τ) = ∂z log θ(z|τ) = ζ(z|τ) − 2η1(τ )z, (A.9)

E2(z|τ) = −∂z E1(z|τ) = ℘(z|τ) + 2η1(τ ). (A.10)

Finally, we use Dedekind’s η function, defined as

η(τ) = q1/24
∞∏
n=1

(1 − qn). (A.11)

It is related to the function θ1 by

η(τ) =
(

θ ′
1(τ )

2π

)1/3

. (A.12)

Because of the quasi-periodicity properties of the theta functions (A.4), the Lamé
function

x(u, z) = θ1(z − u|τ)θ ′
1(τ )

θ1(z|τ)θ1(u|τ)
(A.13)

has the following transformations:

x(u, z + 1) = x(u, z), x(u, z + τ) = e2π iu x(u, z). (A.14)

x(u, z) has the following important property:

2π i∂τ x(u, z) + ∂z∂ux(u, z) = 0. (A.15)
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BWN algebra and degenerate fields

WN algebras, first introduced by Zamolodchikov [78], are infinite-dimensional alge-
bras with generators up to spin N [79–81]. They are a higher-spin generalization of the
Virasoro algebra, which is the particular caseW2, generated by the energy–momentum
tensor T (z) of spin 2. In this appendix, we provide the necessary definitions for the
c = N −1WN algebra generators, conformal blocks, and degenerate fields, as well as
showing the connection between degenerate fields and free fermions. In the following
we will use fundamental weights plus zero vector given by

ω0 = (0, 0, 0, . . . , 0),

ω1 =
(
N − 1

N
,
−1

N
,
−1

N
, . . . ,

−1

N

)
,

ω2 =
(
N − 2

N
,
N − 2

N
,
−2

N
, . . . ,

−2

N

)
,

. . .

ωN−1 =
(
1

N
,
1

N
,
1

N
, . . . ,

1 − N

N

)
, (B.1)

to be distinguished from the weights of the first fundamental representation of slN :

h1 =
(
N − 1

N
,
−1

N
,
−1

N
, . . . ,

−1

N

)
,

h2 =
(−1

N
,
N − 1

N
,
−1

N
, . . . ,

−1

N

)
,

. . .

hN =
(−1

N
,
−1

N
,
−1

N
, . . . ,

N − 1

N

)
. (B.2)

A WN algebra can be embedded in a ŝlN algebra, and in fact a WN CFT can be
represented as a constrained WZNWmodel through the so-called quantum Drinfeld–
Sokolov reduction [82,83]. In particular, for c = N − 1 there is a realization of the
WN algebra in terms of free bosons ϕk , subject to the relation

N∑
k=1

ϕk = 0. (B.3)

The WN algebra generators are defined in terms of the U (1) currents generated by
these free bosons:

Jk = i∂ϕk, W ( j) =
∑

1≤i1≤N

: Ji1 . . . Ji j :, (B.4)

where j = 2, . . . N . In particular, note that W (2) is the Sugawara energy–momentum
tensor associated to the current algebra.
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Analogously to the case of Virasoro, where we can find a basis of the Vermamodule
Vθ labeled by partitions, in the WN case we can find a basis labeled by N − 1-tuples
of partitions λ( j) = (λ

( j)
1 , . . . , λ

( j)
k ), given by

|λ, θ〉 ≡ W (N )

−λ(N ) . . .W (2)
−λ(2) |θ〉 ≡ Wλ|θ〉, (B.5)

where W ( j)
−λ represents the product of WN generators

W ( j)
−λ = W ( j)

−λ1
. . .W ( j)

−λk
, (B.6)

where k = |λ|, the length of the partition. However, differently from the N = 2 case,
a generic matrix element of descendants operators cannot be written solely in terms of
primary matrix elements by using the conformal Ward identities. One class of fields
for which this is possible is that of quasi-degenerate fields, for which the conformal
weight θ is proportional to the weight of the first fundamental representation of slN :
θ = νω1.

The Verma module defined by this highest weight state has N −2 null-state decou-
pling equations that allow the matrix elements of Vνω1 and its descendants to be
expressed in terms of its primary matrix elements

〈θ ′|Vνω1 |θ〉 ≡ N (θ , νω1, θ)z�θ ′−�νω1−�θ , (B.7)

where

�θ = −e2(θ) = θ2

2
, (B.8)

e2 being the second elementary symmetric polynomial in θ1, . . . , θN .
We will employ also the even more special case of completely degenerate fields, for

which θ = h1 = ω1 (first fundamental representation of slN ) or θ = −hN = ωN−1
(last fundamental representation of slN ). In this case, there are additional null states
that imply further constraints in order for the N ’s to be nonvanishing. The fusion of
a completely degenerate field with a primary state is

Vh1 |θ〉 =
N∑

s=1

N (θ + hs, h1, θ)z�θ+hs−�h1−�θ |θ + hs〉. (B.9)

It turns out to be convenient to restrict the completely degenerate field to a specific
fusion channel by using projectors Pθ :

φs,θ ≡ Pθ+hs Vh1Pθ , φ̄s,θ ≡ Pθ−hs V−hNPθ , (B.10)

where s = 1, . . . N . These “reduced” fields have just one fusion channel:

φs,θ |θ〉 = N (θ + hs, h1, θ)y�θ+hs−�h1−�θ |θ + hs〉, (B.11)

φ̄s,θ |θ〉 = N (θ − hs,−hN , θ)y�θ−hs−�hN −�θ |θ − hs〉, (B.12)
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and OPEs

φs(z)φ̄s′(w) ∼ δs,s′

(z − w)(N−1)/N
, (B.13)

φs(z)φs′(w) ∼ 0, φ̄s(z)φ̄s′(w) ∼ 0. (B.14)

Out of these degenerate fields, one can construct N-component free fermions (with
very specific slN charges) like those we have used throughout the body of the paper
by the addition of a U (1) boson ϕ satisfying the OPE

ϕ(z)ϕ(w) ∼ −1

2
log(w − z), (B.15)

so that the fields

ψs(z) = eiϕ(z)φs(z), ψ̄s(z) = e−iϕ(z)φ̄s(z) (B.16)

satisfy the fermion VOA

ψ̄s(z)ψs′(w) ∼ δss′

z − w
. (B.17)
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