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Chapter I  

General Introduction 

 

Accounts of reading acquisition and word recognition 

Reading is a uniquely human ability that allows us to perform a diverse set of tasks that 

are essential to functioning in today’s society, such as reading the news, correctly interpreting 

the instructions on a medicine bottle, signing a contract, or even just for ordering a meal from 

a restaurant menu. It is estimated that teenagers in their second year of high school can 

recognise around 80000 English words (Adams, 1990; Castles et al., 2007). From a 

developmental perspective, learning to read constitutes an important milestone as it provides 

children with a direct means to knowledge and education, and thus carries a widespread impact 

on academic performance, self-confidence, and subsequent adult-life chances. It may therefore 

come as no surprise that reading, and its acquisition, have always been in the limelight of 

psychology research (for a review, see Castles et al., 2018). 

A few major computational models of reading have been proposed throughout the last 

decades for skilled reading, focusing mostly on reading aloud. However, when it comes to the 

cognitive processes underlying reading development, there is still no definitive answer as to 

what mechanisms are at play. The dual-route cascaded (DRC) model (Coltheart et al., 1993, 

2001) is a computational model of visual word recognition and reading aloud, which features 

a lexical route and a non-lexical one for print-to-sound mapping. Specifically, the lexical – or 

direct – route entails direct access to whole-word orthographic representation, and 

subsequently to phonology on the one hand and semantic representation on the other. Instead, 

along the non-lexical – or indirect – route, print information undergoes a letter-to-sound rule 

procedure before the whole-word (phonological and semantic) level is accessed. This model 
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postulates the existence of local, rather than distributed, word representations in the reading 

system. 

A different perspective is offered by models which posit distributed word 

representations, such as parallel distributed processing (PDP) models of reading aloud 

(Seidenberg & McClelland, 1989; Plaut et al., 1996). In particular, Plaut’s triangle model (Plaut 

et al., 1996) proposes networks in which interactive connections are established between 

phonological, orthographic and semantic representations. Furthermore, weights allocated to 

units are sensitive to the way in which the network is influenced by the “statistical structure of 

the environment”, reflecting the degree of consistency between mappings, for item 

representations. Therefore, in this sense, the triangle model can account for how beginners 

learn to read words (see also Nation, 2009). 

An essential first step to successful reading aloud, common to all major reading models, 

is the establishment of correspondences between print and meaning. This may happen through 

the mediation of phonology or – as is typical of effortless skilled reading – through direct access 

to meaning. What is still largely unclear is how these mappings develop, and on which units 

developing readers rely, in order to become skilled readers. Unfortunately, when one turns to 

developmental research, there still are no comprehensive models as to how reading acquisition 

unfolds. 

A first essential step towards successful, effortless word reading is the ability to access 

phonological representations of words through the acquisition of letter-to-sound mappings, that 

is, phonological recoding, the core feature of Share’s self-teaching hypothesis (Share, 1995). 

According to this theorization, every successful decoding instance of a new word equips the 

reader with some new information about the orthography of that word, such that, with even 

just a few encounters, a word’s orthography is successfully acquired. In this sense, the ability 

to perform phonological recoding, in interaction with the amount of exposure to a given word, 
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would act as a self-teaching mechanism that allows the creation of new orthographic 

representations. Self-teaching would proceed in a serial, letter-by-letter fashion. Importantly, 

it would also take place in an item-based manner, meaning that, for instance, higher-frequency 

words will be recognized faster and depend less on their phonology (Castles et al., 2018; Share, 

1995). 

While Share’s hypothesis is among the most relevant about the development of skilled 

reading and it crucially recognizes the role of exposure, it does not fully explain how successful 

exposure happens (Castles et al., 2018). In fact, when one turns to consider that the ultimate 

goal of reading development to achieve fast and efficient reading of both regular and irregular 

words – by directly accessing their meaning – the self-learning mechanism does not provide 

much insight as to how this ability will eventually be attained. In other words, it lacks an 

explicit explanation of how exposure would allow to reach the so-called orthographic stage of 

word recognition, a proxy of skilled reading, at which words are processed directly as whole 

entities mapping onto a specific meaning (e.g., Castles et al., 2007; Rastle, 2019). 

A hypothesis that has been put forward to explain how lexical representations are 

refined along development is the lexical tuning hypothesis (Castles et al., 1999, 2007), which 

postulates that the ability to map separate lexical entities onto different print representations – 

instantiated, for example, by the ability to differentiate words that differ by just a letter (e.g., 

cat vs mat) – determines the quality of one’s lexical representation of a given word. What 

follows is that the quality of a reader’s lexical representation is not just influenced by print 

exposure (i.e., reading experience), but also by factors that are inherent to the nature of the 

orthography, such that the number of potential competitors of a given word’s orthography 

interacts with the amount of print exposure, hence the phrase lexical tuning. 

In the brief theoretical excursus outlined thus far, what still remains largely 

underspecified is the core learning mechanism of reading acquisition and, perhaps more 
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importantly, the linguistic units on which such learning capitalizes. An account for the role that 

sublexical units might play in the successful formation of phonological representation is 

posited by the psycholinguistic grain size theory. Ziegler and Goswami, in their 2005 paper, 

theorized that what facilitates grapheme-to-phoneme conversion is the shared grain size (for 

example letters, syllables, up to whole words) between the levels of phonology and 

orthography. A language with inconsistent GPC (grapheme-to-phoneme correspondence), like 

English, features a phonological system that relies on larger grain size, to which a relatively 

slow acquisition of sound-to-spelling mappings might be ascribed. Mastering GPCs allows 

successful phonological recoding. The psycholinguistic grain size theory thus predicts that 

beginning readers of a language like Italian, which features a highly transparent orthography, 

would easily rely on the smallest grain size (single phonemes and graphemes) for successful 

reading acquisition. 

While this theory has the merit of bringing sublexical units into the reading acquisition 

picture, its primary focus is phonology. However, as noted by Castles et al. (2018) in their 

comprehensive review, reliance on GPC might explain sufficiently well decoding of simple, 

monomorphemic words, predominantly encountered in the beginning stages of reading 

(Masterson et al., 2010). Yet, when it comes to more advanced stages of reading development, 

involving encounters with complex words regularities between orthography and semantics 

ought to be brought into the picture as well, besides orthography-to-phonology mappings. 

Morphemes are sublexical entities that represent “islands of regularity” in the language. 

They are the smallest units that carry meaning (e.g., a word such as farmer is composed of a 

stem, farm-, and a suffix, -er) and feature form-meaning consistency. Analyzing the 

morphological constituents of a novel word thus may allow its interpretation. It is clear how 

this passage supports and facilitates print-to-meaning mapping, with morphemes representing 

the shared grain size between orthography and semantics. Therefore, being able to access the 
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morphological structure of words unsurprisingly represents an advantage for the acquisition of 

reading skills (Rastle, 2019).  

A host of studies conducted over the last four decades have provided evidence of the 

special role that morpho-orthographic processing plays in visual word identification. The 

hypothesis that morphemes act as chunks whose co-occurrence regularities are captured by the 

reading system has been outlined in different accounts. Chunking of sublexical units, such as 

letter clusters forming morphemes (i.e., morpho-orthographic units), is a well-established 

mechanism underlying orthographic processing (see, for instance, the fine-grained code in the 

dual-route model described by Grainger & Ziegler, 2011). According to dual-route accounts, 

this chunking mechanism allows developing readers to establish a print-to-meaning mapping, 

which in turn enables them to access the phonological representation of an unknown word. 

Specifically, as far as reading acquisition is concerned, it has been proposed that, also 

in Italian, which features a shallow orthography, morphemes could serve as intermediate grain-

size units (between single grapheme and whole word processing) aiding lexical processing of 

complex words, especially in younger and less skilled readers, for whom whole-word 

processing is more demanding. This is supported by evidence that nonword reading aloud is 

faster when the nonword structure is morphological (Burani et al., 2002, 2008), whereas no 

differences are found in reading aloud complex vs simple words by more skilled or adult 

readers. It is hypothesized that this group of readers would still benefit from morphologically 

complex (i.e., decomposable) words, where possible, but that their whole-word processing 

would not be hampered either. This may appear somewhat inconsistent with the above-

mentioned psycholinguistic grain-size account, proposed by Ziegler and Goswami (2005), 

according to which developing readers of orthographically transparent languages are expected 

to make use of the smallest available grain-size units.  
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More recently, Grainger and Beyersmann (2017) postulated that morpho-orthographic 

processing is prompted by the activation of edge-aligned embedded words. Stems are often 

free-standing words and therefore encountered as words separated by spaces. According to this 

account, morpho-orthographic segmentation would be initiated by the activation of stems, not 

as morphemes, but rather as independent whole words, with which developing readers are 

likely already familiar, too. On the other hand, affixes would be the only entities processed as 

morpho-orthographic units proper, and they would be activated when present, albeit not 

stripped (see Taft & Forster, 1975, on prefix-stripping, and successive more general 

conceptualization, such as Taft & Nguyen-Hoan, 2010). Children would first acquire morpho-

semantic relations (e.g., between farm and farmer; see Beyersmann et al., 2012; Grainger & 

Beyersmann, 2017), while it is still debated at which stage of reading development sensitivity 

to morpho-orthographic relations is completed – that is, at what age sensitivity emerges to the 

relation between a stem and a pseudo-derived word, such as corner and corn (see a lexical 

decision study by Quémart et al., 2011, where priming is found for both types of prime-target 

pairs, as opposed to masked priming studies, such as Beyersmann et al., 2012; Hasenäcker et 

al., 2016, where no evidence is found for morpho-orthographic segmentation in primary school 

children). 

Relevant work with adults has, on the other hand, established skilled readers’ sensitivity 

to the morphological structure of words, to the point that decomposition is initiated even when 

pseudo-complex words are presented. The most notable findings in this respect come from a 

masked priming study by Rastle et al. (2004), where significant priming was found in the 

morphologically opaque condition (such as the pseudo-complex prime corner and the target 

CORN) and was comparable to the effect observed with morphologically transparent pairs 

(e.g., cleaner-CLEAN), while no significant priming effect was detected in the case of mere 

orthographic overlap, with a non-morphologically decomposable prime (e.g., brothel-
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BROTH). Such findings show that skilled readers rely on morphological chunking mechanisms 

so largely that they tend to decompose a word into its constituent morphemes even when they 

only share a pseudo-morphological relation. 

Overall, it is evident that a crucial aspect that must be taken into account for a theory 

of reading development is the role that the sensitivity to linguistic regularities plays in the 

formation and refinement of visual word recognition processes.  

 

The role of statistical learning in reading acquisition 

So far, the role of regularities has been described as predominantly across different 

linguistic levels (i.e., as orthography-to-phonology or orthography-to-semantics mappings). 

For instance, sensitivity to form-to-meaning mappings manifesting as early as second–third 

grade (see Grainger & Beyersmann, 2017; Castles et al., 2018) is regarded as essential to the 

refinement of morpho-orthographic processing along reading development. In general, the 

human cognitive system constantly extracts patterns of regularities from the environment with 

which it interacts. Through this ability, we learn to expect and predict specific patterns of co-

occurrences or sequences of events. The ability to extract salient statistical information from 

the perceptual input, across domains, is termed statistical learning (for reviews, see Armstrong 

et al., 2017; Aslin, 2017; Christiansen, 2019; Frost et al., 2019; Newport, 2016). As evidenced 

by several studies, our visual system is particularly reliant on the ability to extract regularities, 

starting at a very young age; statistical learning has indeed been proposed as a mechanism that 

even infants use to make sense of their surroundings (Gibson, 1969; Fiser & Aslin, 2001).  

Research such as that conducted by Fiser and colleagues has demonstrated the ability 

to extract co-occurrence regularities from visual patterns to which we are exposed, without any 

prior instruction or supervision of any kind. Namely, participants were able to tease apart 

shapes based on how they co-occurred in pairs when displayed to them (Fiser & Aslin, 2001). 
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In another experiment, participants showed to have formed a visual representation not of 

individual shapes, but only of the pairs or quadruples in which those single shapes were 

embedded during the familiarization phase (Fiser & Aslin, 2005). This led the authors to 

propose statistical learning as a bootstrapping mechanism for complex visual representations. 

 

Sensitivity to orthographic regularities in reading development 

Since the crucial role of statistical learning has been generally acknowledged in the 

visual domain (Fiser & Aslin, 2001, 2005; Kim et al., 2009; Orbán et al., 2008), there is no 

obvious reason why beginning readers would not exploit this learning mechanism, relying on 

the extraction of salient statistical information from written language in order to achieve skilled 

reading.  

To explore whether readers extract statistics from frequently co-occurring letter clusters 

that they encounter, the effects of bigram frequency effects on reaction times have often been 

investigated, however yielding mixed findings. Already in 1984, Gernsbacher pointed out 

conflicting evidence from prior studies investigating the effects of bigram frequency on word 

recognition. Those studies were inconsistent when it came to establishing the significance and 

the nature – whether inhibitory or facilitatory – of the effects of bigram frequency in visual 

word processing. The debate is still open, to date. For instance, Schmalz and Mulatti (2017) 

used Bayes Factor to reanalyze previous literature on bigram frequency effects on reaction 

times in lexical decision tasks. The results of their analysis were inconsistent between the two 

English databases used (BLP; Keuleers et al., 2012; ELP; Balota et al., 2007), and overall 

suggested an absence of bigram frequency effects in lexical decision tasks, while inconsistently 

supporting the presence of a facilitatory effect in reading aloud. 
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If studies on the role of the extraction of statistical regularities in visual word processing 

have proven inconclusive with skilled readers, the picture is also not clear and far from 

complete when one turns to developmental studies. 

Pacton and colleagues (Pacton et al., 2001) proposed that the extraction of patterns in 

the written language allows even beginning readers to capture orthographic regularities, 

demonstrating that French-speaking children, as early as in first grade (thus with very little 

print exposure), presented with nonwords, would judge as word-like those items whose letter 

co-occurrence and distributional statistics were compatible with those observed in real words 

(for instance, they would choose illaro over ivvaro, because l is doubled within words in 

French, while v is not), and similar findings are also reported for English (Cassar & Treiman, 

1997). 

Overall, in spite of general agreement (see Chetail, 2015, for a review) on the fact that 

orthographic regularities are extracted by readers and that sensitivity to them increases through 

print exposure, the role that such regularities play in visual word processing, especially in 

reading development, is still unclear. This is also due to the fact that most studies with 

beginning readers have so far employed highly refined lab-based experimental paradigms, such 

as Artificial Grammar Learning (AGL), Serial Recall Task (SRT) (for a review, see Schmalz 

et al., 2016), and implicit learning tasks with visual stimuli (e.g., Kidd & Arciuli, 2016; von 

Koss Torkildsen et al., 2019). Furthermore, only indirect connections between statistical 

learning abilities and reading skills have been established in a few studies (e.g., Arciuli & 

Simpson, 2012; von Koss Torkildsen et al., 2019).  

Therefore, the present work aims at exploring whether and how visual word 

identification capitalises on statistical regularities extracted from clusters of frequently co-

occurring letters, across reading development. In particular, we have used an ecologically valid 
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approach to the study of reading using eye tracking (Chapters II and III of this thesis), as will 

be described later in this Introduction. 

 

Sensitivity to morpho-orthographic regularities as a form of statistical learning 

Lelonkiewicz et al. (2020) have recently provided evidence, through a statistical 

learning task in which affix-like chunks were embedded in pseudoword strings (in an unknown 

non-alphabetic script), for the extraction of affix-like chunks, which were frequently co-

occurring character clusters in a given position of the string. We furthermore know that 

morpho-orthographic units (such as -er in corner) are spotted even in the absence of a semantic 

relationship, such that processing of a word like CORN is facilitated by the delivery of a masked 

prime like corner (Rastle et al., 2004; similarly for French, Longtin et al., 2003), even though 

-er in corner does not signify ‘someone who corns’. In this respect, morphemes may very well 

be defined as clusters of letters that happen to display a consistent form-meaning relationship, 

such that their orthographic identity can be accessed even when morphological decomposition 

is not warranted.  

The above-described findings suggest that visual information about morphemes is 

extracted by virtue of the fact that they represent frequently encountered instances of form-to-

meaning regularities. What follows is that morphemes can be considered as a special case of 

frequently co-occurring letter clusters (n-grams, hereafter), and therefore as salient linguistic 

units. 

As mentioned earlier in this Chapter, behavioural findings suggest that children are 

sensitive to the morphological structure of words quite early on (around Grade 3; e.g., 

Beyersmann et al., 2012; Hasenäcker et al., 2016). However, while the role of morphemes as 

reading units (i.e., morpho-orthographic processing) has been recognised in skilled readers, the 

developmental trajectory of morpho-orthographic processing is still underspecified, as research 
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has yielded mixed evidence in this respect (e.g., Beyersmann et al., 2012; Dawson et al., 2018; 

Quémart et al., 2011).  

While a few studies with French (Casalis et al., 2015; Quémart et al., 2011) and Italian 

primary school children (Burani et al., 2002, 2008) provide some evidence for sensitivity to 

nonwords with a morphological structure, other findings disagree with this. More recently, 

Dawson et al. (2018) investigated the emergence of sensitivity to morphemes within nonwords 

at different developmental stages, finding that an adult-like pattern, with lower accuracy and 

slower reaction times for pseudomorphological nonwords (e.g., earist), compared to control 

nonwords (earilt) fully emerges at a relatively late stage of development (16-17 years of age), 

but not in primary school children (7-9 years old) and young adolescents (12-13 years old). 

Studies in English and German with primary school children using a masked priming paradigm, 

considered to tap into automatic visual processes, reported priming effects only for 

morphologically related pairs (e.g., golden-GOLD), but not for pseudomorphologically (e.g., 

mother-MOTH) or orthographically related ones, such as spinach-SPIN (Beyersmann et al., 

2012), or reported no difference in priming between pairs with suffixed word primes 

(kleidchen-KLEID), suffixed nonword primes (kleidtum-KLEID), nonsuffixed nonword primes 

(kleidekt-KLEID), compared to unrelated controls (e.g., träumerei-KLEID; Hasenäcker et al., 

2016). However, in a similar study in French with children from Grades 3, 5 and 7, Quémart 

et al. (2011) found comparable priming effects from suffixed and pseudosuffixed primes, as 

opposed to nonsuffixed and orthographic ones, across all grades. These findings show 

sensitivity to morphemes in words and pseudowords as early as in third grade, providing some 

evidence for morpho-orthographic processing in young children. 

As outlined earlier in this Chapter, in the account of the developmental trajectory of 

morpho-orthographic processing proposed by Grainger and Beyersmann (2017), beginning 

readers rely on representations of stems, which are quite familiar from early reading 
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development stages due to their existence as free-standing words in the language. Such reliance 

on embedded, edge-aligned stems would serve as a bootstrapping mechanism for initiating 

morpho-orthographic segmentation. However, full morpho-orthographic processing (as 

indexed by the detection of affixes in pseudocomplex words) would only be completed in the 

final developmental stage, even though it is still debated at which point, along development, 

such is reached. 

In conclusion, evidence is mixed with respect to morpho-orthographic processing in 

reading development, although it has been suggested to only fully mature at a relatively late 

developmental stage. Nonetheless, as mentioned, taking a statistical learning perspective, we 

can fairly assume that also morpho-orthographic clusters are regular units on which we 

capitalize to become skilled readers. In order to explore this, as described in the following 

section, I will present a magnetoencephalography (MEG) investigation of the neural 

underpinnings of morpheme identification, at two different stages of reading development: 

Grades 5-6 and adulthood.  

 

Research contribution of the present work 

This thesis project aims at providing an important contribution to the field by adopting 

a statistical learning approach to the investigation of the cognitive processes underlying visual 

word identification and its development, exploring natural reading on the one hand and 

morpheme identification in pseudowords on the other. The two main techniques used were eye 

tracking and magnetoencephalography. In the following subsections, I will present the four 

chapters comprised in this thesis.  
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Much of our knowledge about reading and its development comes from highly refined 

experimental paradigms, which hardly reflect the way in which we approach written material 

in our daily life. We thus aimed at carrying out an ecologically valid investigation of eye 

movement parameters in natural reading, across development. In parallel, we aimed at filling 

a gap in developmental reading research, by building an eye tracking tool based on multiline 

reading. In Chapter II, I present EyeReadIt, a database of eye movement measures recorded 

from a large sample (N=141) of Italian developing readers aged 8-12 (Grades 3-6) and from 

adult controls (N=33), as they silently read multiline passages from kids’ story books for 

comprehension.  

An analysis of developmental changes in eye movement behavior during reading, as 

well as of well-known linguistic effects (word length and word frequency) on eye movements, 

yielded comparable results with the existing literature. We thus conclude that EyeReadIt is a 

valid database, and that it represents a solid resource for different analyses, such as the effects 

of morphological complexity, as outlined in this Chapter. Finally, this database can also be 

employed to address more advanced research questions, as I will describe in Chapter IV. The 

database is being finalized and will be made available at this link: https://osf.io/hx2sj/  

 

Chapter III - Algorithms for the automated correction of vertical drift in eye tracking 

data (with Dr Jon W. Carr) 

In Chapter III, I will introduce a methodological study in collaboration with Dr Jon 

Carr, spurred as a further development of EyeReadIt. This chapter is a slightly adapted version 

of a manuscript accepted for publication, to appear as: Carr, J. W., Pescuma, V. N., Furlan, M., 

Ktori, M., & Crepaldi, D. (2021). Algorithms for the automated correction of vertical drift in 

eye-tracking data. Behavior Research Methods.  

https://osf.io/hx2sj/
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We document ten algorithms – two of which novel – which allow to improve the quality 

of eye-tracking recordings featuring misaligned fixations, by automatically realigning these to 

the correct lines of text. Using both data from EyeReadIt and computational simulations, we 

evaluated the performance of several realignment algorithms (two of which were novel to this 

work) on correcting various phenomena related to so-called “vertical drift”. Vertical drift refers 

to the progressive displacement of fixation registrations on the vertical axis over time and may 

importantly affect data analysis, especially in multiline reading experiments. We provide 

guidance for eye-tracking researchers in selecting and applying these correction methods to 

their data, while also proposing two novel algorithms. In particular, we present one of these 

(warp, based on Dynamic Time Warping) as particularly successful in realigning fixations in 

children’s recordings. All resources have been made freely available and can be found at the 

following link: https://doi.org/10.17605/OSF.IO/7SRKG  

 

Chapter IV - Eye movements during natural reading reveal sensitivity to orthographic 

regularities in children 

In Chapter IV, I will tackle an aspect of the core of our investigation around the 

emergence of sublexical regularities in reading development. Since statistical learning has been 

acknowledged as a mechanism that our visual system exploits, we would expect that the 

extraction of statistical regularities from the input also occurs in reading. Furthermore, we ask 

whether and how reading development interacts with the sensitivity to statistical regularities. 

As most statistical learning and reading-related questions have been addressed through 

highly artificial tasks, we intended to complement the literature by using a more ecologically 

valid approach; to this end, we conducted our analyses on EyeReadIt (presented in Chapter II). 

After all, if statistical cues are extracted during reading and sensitivity changes across reading 

https://doi.org/10.17605/OSF.IO/7SRKG


15 

development, the role that orthographic regularities play should surface even in a less 

controlled approach.  

Here, I will present an investigation of the effects of n-gram frequency metrics on eye 

movement measures. Specifically, postulating that co-occurring groups of letters within words 

(n-grams) are used to extract statistics about written language by the reading brain, we 

examined the effect of different frequency metrics (minimal, average and maximal frequency) 

of differently-sized n-grams on commonly examined eye tracking measures (first-of-many-

fixation duration, gaze duration, total reading time), and we checked whether and how their 

effect was modulated by reading development. 

Our analysis shows that n-gram frequency effects (in particular related to 

maximum/average frequency metrics) are present even in developing readers, suggesting that 

sensitivity to sublexical regularities of words in reading is present as soon as it is possible for 

the developing system to pick it up – in our specific case, as early as in third grade. 

 

Chapter V - Automatic morpheme identification across development: 

magnetoencephalography (MEG) evidence from Fast Periodic Visual Stimulation 

As mentioned in this Introduction, and as will be extensively described in Chapter V, 

the course of morpho-orthographic processing along reading development is still unclear, and 

very little research has so far been conducted to examine its neural bases. In this Chapter, I will 

present an MEG investigation of selective neural responses to morphemes at different stages 

of reading development, carried out in collaboration with Dr Lisi Beyersmann, Prof Anne 

Castles and Prof Paul Sowman at Macquarie University, Sydney, Australia. Here, I present the 

MEG responses of 28 adults and 17 native English-speaking children (Grades 5 and 6) to the 

presentation of pseudowords containing morphemes, as they underwent MEG recording, using 

Fast Periodic Visual Stimulation (FPVS) with an oddball design.  
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Rapid sequences (base stimulation frequency: 6 Hz) of pseudoword combinations of 

stem/non-stem and suffix/non-suffix components were interleaved with oddball stimuli 

appearing periodically every fifth item (oddball stimulation frequency: 6 Hz/5 = 1.2 Hz), and 

were specially designed to examine either stem or suffix detection (e.g., stem+suffix oddballs, 

such as softity, embedded in a sequence of non-stem+suffix base items, such as terpity). 

Successful detection of morphemes would be indexed by a robust peak in the MEG response 

at the oddball frequency.  

Sensor-level analysis was conducted both with a theory-driven approach, by defining a 

left occipito-temporal region of interest to map onto an area corresponding to the ventral 

occipito-temporal cortex, and with a data-driven one, using cluster-based permutations. 

Overall, both in developing and skilled readers, a successful oddball response was found in 

experimental conditions in which the oddball stimuli were fully decomposable pseudowords – 

that is, when oddballs were made up of real stems and suffixes (e.g., softity). 

These results provide evidence for automatic morpheme identification, even at 

relatively early stages of reading development. Critically, they also suggest that morpheme 

identification can be modulated by the context in which the morphemes appear. Additional 

ongoing analyses aim at providing more refined source-level information, in order to help shed 

light on the neural underpinnings of morpheme identification in visual word processing.  
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Chapter II 

EyeReadIt: A Developmental Eye-Tracking Corpus  

of Text Reading in Italian 

 

Reading is a uniquely human ability and, undoubtedly, a fundamental skill to 

functioning in today’s society. It allows us to perform a diverse set of tasks that can be as 

essential as understanding the instructions featured on a medicine bottle, and as ordinary as 

choosing a meal from a restaurant menu. From a developmental perspective, learning to read 

constitutes an important milestone as it provides children with a direct means to knowledge and 

education, and as such carries a widespread impact on academic performance, self-esteem, and 

subsequent adult-life chances (see e.g., Castles et al., 2018). It therefore comes as no surprise 

that a substantial part of psychological research has been dedicated to the study of reading and 

its development. 

One methodological approach that has been particularly influential in this line of 

research is the recording of participants’ eye movements as they read. When we read, our eyes 

make a series of rapid, ballistic movements from one place in the text to another (saccades). 

These are separated by pauses (fixations) during which text information is collected. Critically, 

the pattern of our eye-movement behaviour provides an excellent online indication of the 

cognitive processes underlying reading. For example, the duration of fixations increases when 

we encounter words that are more difficult to identify (e.g., low-frequency words; Rayner & 

McConkie, 1976; Rayner & Pollatsek, 1981). Similarly, when we encounter sentences that are 

syntactically ambiguous, we tend to make regressive saccades that move the eyes backward in 

the text in order to re-read it (e.g., garden path constructions; Frazier & Rayner, 1982).  
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While the first eye-movement experiments date back to the end of the 19th century, it 

was the technological advancements in eye-tracking systems in the mid-1970s that marked 

what has been the most prolific era of eye-movement research in reading to date (see Rayner, 

1998, for a review of early work). Since then, increasingly accurate eye-tracking measures and 

a variety of experimental techniques (i.e., ranging from simple visual display to innovative eye-

contingent display change paradigms) have enabled researchers to investigate reading at 

different levels of processing (see Liversedge & Findlay, 2000; Rayner, 1998, 2009, for 

reviews in skilled adult readers, and Blythe & Joseph, 2011, for a review in developing 

readers). For example, measurements from eye-movement records have been used to indicate 

the scope of the perceptual span (i.e., how many letters readers process in any one fixation; 

Henderson et al., 1997; McConkie & Rayner, 1975; for developmental evidence, Häikiö et al., 

2009; Rayner, 1986) and to reveal the effects that lexical properties (e.g., length and frequency; 

Rayner & McConkie, 1976; Rayner & Pollatsek, 1981; see also studies with developing 

readers, such as: Blythe et al., 2009, 2010; Huestegge et al., 1999; Hyönä & Olson, 1995; 

Joseph et al., 2009; Rayner, 1986) and contextual constraints (e.g., predictability; Rayner, 

Binder, Ashby & Pollatsek, 2001; developing readers: Johnson et al., 2018) can exert on word 

identification. At the same time, eye-movement behaviour has also been used to examine 

higher order processes involved in the comprehension of written language processing (e.g., 

through syntactic ambiguities and semantic inconsistencies during sentence and discourse 

processing; Frazier & Rayner, 1982; Garrod et al., 1994; Rayner, Chace, Slattery, & Ashby, 

2006; Spivey & Tanenhaus, 1998; Joseph & Liversedge, 2013). Indeed, over the last 50 years 

or so, this line of research has grown to the point where sophisticated computational models 

can account for many of the phenomena associated with eye movement behaviour during 

reading in both skilled (e.g., the SWIFT model, Engbert et al., 2002; Engbert et al., 2005; the 
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E-Z Reader model, Reichle et al., 1998; Reichle et al., 2006; Reichle et al., 1999, 2003; the 

OB1 model, Snell et al., 2018) and developing (e.g., Reichle et al., 2013) readers.  

More recently, however, eye-movement research in reading appears to be entering a 

new era. Consistent with the notion that as reading is a highly ecological skill, so should the 

methods used to investigate it be (see Jarodzka & Brand-Gruwel, 2017, for a discussion), this 

era is marked by a movement away from the conventional design of eye-movement 

experiments. Experimental materials are no longer restricted to a set of stimuli rigorously 

selected to test specific hypotheses, nor are presented in highly-controlled, often single-

sentence, reading paradigms. Using instead a more naturalistic range of stimuli, this new 

generation of eye-movement studies adopt multiline reading paradigms during which 

participants read passages of text, ranging from short passages (e.g., Foster et al., 2018; 

Spichtig et al., 2017; Kuperman et al., 2018; Luke & Christianson, 2018; Tiffin-Richards & 

Schroeder, 2018, 2020; Kuperman et al., under review) to entire novels (e.g., Cop et al., 2015; 

Cop et al., 2017). This experimental approach enables researchers to examine reading as we 

experience it in our everyday life, considering the influence of a number of variables at 

different levels of processing (word-level, sentence-level, paragraph-level) and their possible 

interactions.  

An additional advantage of this approach is that it allows the collection of large amounts 

of eye-tracking data, which, in turn, can become information-rich research resources. In 

particular, a corpus of eye-tracking data during multiline text reading can be readily used for 

hypothesis testing that is not limited to the scope of a given study, and can contribute to the 

development of comprehensive accounts of eye movements and visual information processing 

during natural reading conditions. Indeed, several eye-tracking corpora of text reading have 

emerged in the last few years (GECO, Cop et al., 2017; Provo, Luke & Christianson, 2018; 

ZuCO, Hollenstein et al., 2018; MECO, Kuperman et al., under review).  
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However, all of the corpora available contain data from skilled readers, creating an 

obvious need for such an invaluable resource for the purposes of developmental reading 

research. Here we introduce EyeReadIt, the first developmental eye-tracking corpus of natural 

multiline reading. The corpus consists of eye-tracking measures collected from 141 children 

between Grade 3 and Grade 6, and a control group of 33 adults, all Italian readers, as they 

silently read passages from children’s books for comprehension. 

 Furthermore, we report the results of a series of analyses that examine whether, and to 

what extent, well-known phenomena documented in the literature on children’s eye movements 

reading are replicated in the context of our ecologically valid reading paradigm. As indicated 

by Blythe and Joseph’s (2011) review, there is a considerable degree of consistency with 

respect to how the global characteristics of eye movements change as children who are learning 

to read become skilled adult readers. Furthermore, these changes appear to be consistent across 

the different languages and education systems that have been thus far examined. Accordingly, 

our first set of analyses inspects the general developmental pattern of eye-movements during 

reading. In a second set of analyses, we investigate the benchmark effects of word length (i.e., 

long words are fixated longer than short words) and word frequency (i.e., high frequency words 

are fixated longer than low frequency words) on eye-movement measures as a function of 

reading development (Blythe et al., 2009, 2010; Huestegge et al., 1999; Joseph et al., 2009; 

Reichle et al., 2013). Finally, we investigate the effects of an additional word-level variable, 

namely, morphological complexity, on children’s eye-movements during multi-line text 

reading, as a way to demonstrate how EyeReadIt can be used to advance our understanding of 

lexical processing under normal reading conditions.  

EyeReadIt is being finalised and will soon be publicly available as a free resource, that 

researchers will be able to download from the Open Science Framework at https://osf.io/7srkg/   

 

 

https://osf.io/7srkg/
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Materials & Methods 

Participants 

The study was approved by the Ethics Committee of SISSA. Prior to their participation 

children gave oral consent, while written consent was obtained from their parents. Adult 

participants gave written consent. Participants' age and gender, as well as other demographic 

information, are shown in Table 1. Both children and adults were native speakers of Italian 

and/or received formal education in Italian. They all had normal or corrected-to-normal vision, 

and no record of reading disability or neurological impairment. 

 

Developing readers 

156 children from Grade 3 to 6 (age range: 8-12 years) participated in the study and 

received a book as a reward. Data collection was part of a hands-on science activity organised 

between regional schools in Trieste, Italy and SISSA, and took place between June 2017 and 

May 2018. Data from fifteen children were excluded from the analyses due to technical issues 

that occurred during data acquisition (two participants), excessive noise artifacts in the eye-

movement data (e.g., vertical drift, head movement; 10 participants), or session interruptions 

(2 participants). This left an effective sample of 141 children to be included in the analyses. 

All children completed a reading proficiency and a non-verbal intelligence test. 

Reading proficiency was assessed with a subtest of the MT Reading Test for Primary School 

(Cornoldi & Colpo, 1998). In particular, all children were asked to read aloud a short story, 

recommended for the assessment of reading ability at the beginning of Grade 4 (i.e., L’indovina 

che non indovinò; in English, The fortune teller who couldn’t tell fortune), while their voice 

was recorded. Raw scores for reading accuracy and speed (syllables/second and 

seconds/syllable) were calculated according to the test’s scoring guidelines. The raw scores for 

reading speed were converted into z-scores, normalised on the experimental population. 
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Children’s non-verbal intelligence was assessed with Raven’s Coloured Progressive Matrices 

(Raven, 1949), and the raw scores were also converted into z-scores following an analogous 

procedure. 

 

Skilled readers  

37 young adults, mostly students from the University of Trieste and SISSA, participated 

in the study in exchange for monetary compensation. Data from four participants were 

discarded due to excessive noise artifacts in the eye-movement data, leaving a sample of 33 

skilled adult readers to be included in the analyses. Adult participants were administered a 

reading proficiency test for older adolescents/young adults (Cornoldi & Candela, 2015), similar 

to the MT test used with children, while Raven’s (2003) Standard Progressive Matrices were 

used for the non-verbal intelligence assessment. Z-scores were obtained for both tests. 

 

 

Table 1 Participants’ demographic characteristics.  

Developing readers 

 Grade N M age (SD) Range 

N = 141 

F = 73, M = 68 

 

3 37 8.22 (0.42) 8-9 

4 20 9.22 (0.41) 9-10 

5 41 10.05 (0.44) 9-11 

6 43 10.98 (0.34) 10-12 

Skilled adult readers 

 
M years of 

education (SD) 
N M age (SD) Range 

F = 21, M = 12 14.42 (2.28) 33 23.39 (3.32) 19-33 
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Design & Materials 

Experimental materials comprised 12 passages of connected multiline text extracted 

from six children’s books (i.e., two passages per book). These were retrieved from various 

websites online and were slightly adapted in order to appear more relatable to Italian children 

(i.e., references to foreign proper nouns were substituted with Italian ones; e.g., Alì Babà 

became Fabio; pence became euro). The passages were equally divided into two experimental 

stimulus sets, with each set containing a passage from each book. This step ensured some 

variability in the experimental material and accounted for potential idiosyncrasies in the 

selection of the specific passages.  

Each participant was administered one stimulus set of six passages (i.e., Set A or Set 

B). The order of passage presentation within each set was fixed and was based on the text 

difficulty as determined by the target readership’s age of each book provided by the books’ 

publishers. Passages suitable for the youngest group of children (Grade 3) were displayed first 

(e.g., Goldilocks, The Bremen Town Musicians) and those suitable for older children were 

displayed last (e.g., The Call of the Wild, Twenty Thousand Leagues Under the Sea). This step 

was taken in order to encourage young children to read as many passages as possible, thus 

accommodating maximum data collection. The assignment to a stimulus set was performed in 

a counterbalanced order across participants. Prior to the experimental passages all participants 

were presented with a practice passage extracted from a well-known story (i.e., Little Red 

Riding Hood). All passages are shown in Appendix A.  

Passages are an average of 130.5 words long (range: 109-170) and contain 6 sentences 

on average (range: 3-10). Sentences are on average 21.75 words long (range: 2-79). Across all 

passages, there are a total of 1566 word tokens, of which 762 are distinct types. A summary of 

the characteristics of the lexical tokens available in EyeReadIt is presented in Table 2.  



31 

Table 2 Summary of the characteristics of the lexical tokens contained in EyeReadIt’s text 

passages. Word Zipf frequency extracted from SUBTLEX-IT (Crepaldi et al., 2016). The parts 

of speech considered for content words in this analysis are nouns, verbs, and adjectives. 
 

N word tokens 1566 

N word types 762 

Unique parts of speech 11 

Mean word count per text (range) 130.5 (109–170) 

Mean word length (range) 4.66 (1–15) 

Mean word Zipf frequency (range) 5.35 (1.19–7.26) 

N content word tokens (types) 792 (593) 

N complex word tokens (types) - content words 449 (338) 

N simple word tokens (types) - content words 343 (256) 

N derived word tokens (types) - content words 68 (67) 

N inflected word tokens (types) - content words 381 (273) 

 

 

Apparatus 

Eye movements were recorded using an EyeLink 1000 Plus tower mount eye-tracker 

(SR Research, Canada) at a sampling rate of 1000 Hz. A head-and-chin rest was used to 

minimise head movements. Viewing was binocular, but eye movements were recorded from 

the right eye only. Stimuli were delivered on a 27″ monitor with a resolution of 1920x1080 px, 

at a viewing distance of approximately 63 cm. The screen refresh rate was set at 144 Hz. Text 

was displayed in black 20-point Courier New font on a light grey background. Each passage 

appeared as one multi-lined paragraph on the screen, spanning between 10 and 13 lines of text. 

The lines were double spaced, and each character subtended approximately 0.45 degrees of 

visual angle or 16 pixels. 
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Procedure 

Participants were tested individually in a quiet and dimly lit room. The experiment 

began with a nine-point-calibration procedure until calibration error was below an average of 

0.5 degrees of visual angle. At the beginning of each trial, a drift correction was carried out to 

correct for any small movements that may have occurred. For this, a small circular target 

appeared at the location of the first letter of the first word of the sentence (i.e., left-aligned with 

a 360-pixel horizontal and a 140-pixel vertical screen offset). A stable fixation on this target 

was required for the trial to proceed; otherwise, a recalibration procedure was initiated. 

Following the drift correction, a passage was displayed on the screen. Participants were 

instructed to read each passage silently and press a button to indicate they had finished reading 

it and proceed to the next trial. A simple comprehension question was presented after every 

two trials as an index of task engagement, whereby participants were asked to choose between 

two possible answers. To reduce head movements, children were instructed to indicate their 

response by raising their right hand for selecting the right-hand answer as displayed on the 

screen, and their left hand for selecting the left-hand answer; the experimenter would then press 

the right or left key according to the children’s responses. Adult participants indicated their 

response with a button press. Mean accuracy was 93% for children and 93% for adults. 

Experimental trials were preceded by one practice trial consisting of a small 7-lined passage 

(Little Red Riding Hood). The calibration procedure was repeated whenever necessary during 

the experiment. 

Each eye-tracking session with children lasted around 15-20 minutes, in order to fit into 

the hands-on activity scheduled rotation, and to prevent physical discomfort and loss of 

attention. For adults, sessions were often even shorter (approximately 10 minutes), thanks to 

generally smooth calibration and shorter reading times. Participants were free to stop at any 



33 

point, and data from children were retained even when they did not read all six passages 

presented in the experimental session.  

 

Data Analysis 

Two main sets of analyses were performed. First, we sought to capture the general 

trends of developmental changes in eye-movement reading behaviour, as reported in the 

literature (e.g., Blythe et al., 2009, 2011; for an overview, see Blythe & Joseph, 2011). For this 

set of analyses we calculated the following measures: reading rate, which is the number of 

words fixated per minute; saccade length, expressed as the number of text characters covered 

by each saccade; fixation duration; number of fixations per 100 words of text; skipping 

probability, pertaining to the probability that the target word did not receive a direct fixation 

during first-pass reading; refixation probability, referring to the probability that a word receives 

additional fixations following the first fixation, during first-pass reading; and regression 

probability, that is, the probability of a leftward saccade out of the target word, provided that 

it was fixated during first-pass reading. 

The second set of analyses examined the well-established effects that word length and 

word frequency have on reading time measures as well as their interaction with development 

(as expressed in terms of school grade in the current design). The dataset, reflecting natural 

reading experience, displays a strong correlation ( -.79) between word length and word 

frequency. Due to this, length and frequency have been used as independent predictors in 

different models.  

 Additionally, we investigated the effect of morphological complexity on reading times 

as a function of development, in two sets of analyses. In the first set, morphological complexity 

is treated as a factorial variable, with the two levels being “complex” (i.e., multimorphemic) 

vs “simple” (i.e., all base forms). In the second set of analyses, the two levels of morphological 
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complexity are instead “derived” (i.e., complex derived words) and “inflected” (complex 

inflected words). 

To assess the effects of all psycholinguistic variables we calculated the following word-

level reading measures extracted from EyeReadIt: first-of-many fixation duration (for short, 

FoM), pertaining to those instances of first fixation duration in which the first fixation was 

followed by at least another fixation during first pass, was taken to index an early stage of 

visual processing; gaze duration (GD), the summed duration of all fixations performed on a 

word during first-pass reading, before moving rightward, was selected as a measure of lexical 

access; total reading time (TRT), the summed duration of all fixations performed across all 

runs, was taken as reflecting later post-lexical processing (e.g., integration processes).  

All data analyses were carried out using R (version 4.0.4; R Core Team, 2021) and the 

lme4 package (version 1.1-26; Bates et al., 2015). In order to satisfy the assumption of 

normality, all continuous dependent variables were log-transformed, as indicated by a Box-

Cox test (from the R car package; Fox & Weisberg, 2019), and then back-transformed 

exponentially for a clearer illustration of the nature of the effects. For the analysis of 

developmental changes, models with a continuous dependent variable (DV) were constructed 

according to the following basic scheme: lmer(DV ~ IV + MT_zscore + Raven_zscore + 

(1|subjectID) + (1|excerptID)), whereby DV is each of the above-described reading measures, 

and IV (independent variable) is Grade (as a factor with levels: 3, 4, 5, 6, adults). Random 

intercepts for subjects and passages were included as random effects factors. For models with 

probability measures as DVs, the same scheme was adopted; in these cases, however, the 

function glmer, with family = “binomial”, from the lme4 package, was used.  

Statistical models of the effects of lexical variables on eye-tracking measures were 

constructed very similarly, with the only relevant difference being the model predictor, 

modelled as an interaction term of the lexical IV of interest (length, frequency or morphological 
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complexity) and Grade. Random intercepts for subjects, passages and items (word spellings) 

were included as random effects factors. This resulted in the following model structure: 

lmer(DV ~ IV*Grade + MT_zscore + Raven_zscore + (1|subjectID) + (1|excerptID) + 

(1|spelling)). Furthermore, in these models, Grade was contrast-coded using backward 

difference coding, in order for the effect of each grade to be contrasted with that of the previous 

grade. In all models, Z-scores of the MT reading speed test and of the Raven matrices (non-

verbal intelligence) were included as covariates. The significance of the fixed effects was 

determined with either type II (for models of developmental changes, with Grade as the main 

predictor) or III (for lexical variables, in which the main predictors were interaction terms) 

model comparisons, using the Anova function in the car package (Fox & Weisberg, 2019). 

Below we report and discuss the results pertaining to the factors of interest. All results revealed 

a significant effect of MT reading speed test, with eye-movement reading measures decreasing 

as the scores on the reading efficiency test increased, whereas the effect of the non-verbal 

intelligence test was never significant.  

 

Results 

Developmental changes in eye-movements during reading 

 As expected, results revealed that as the school grade increased, so did children’s 

overall reading rate, growing from 90.11 words per minute (wpm) with the 3rd Graders to 

167.30 wpm with the 6th graders, and 289.95 wpm with the adults (Fig. 1a; χ²(4, 114349) = 

564.18, p <.001). This increase in proficiency with school grade was also reflected in all the 

other eye-movement measures examined. First, mean saccade length increased with school 

grade, increasing from 3.77 characters with the 3rd graders to 5.51 characters with the 6th 

graders and 7.80 characters with adults (Fig. 1b; χ²(4, 184071) = 354.39, p <.001). Second, the 

mean fixation duration decreased with grade, ranging from 241.56 ms with the 3rd graders to 
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207.66 ms with the 6th graders and 180.07 ms with the adults (Fig. 1c; χ²(4, 199094) = 157.89, 

p <.001). Third, the mean number of fixations per 100 words also decreased with grade, ranging 

from 306.41 with the 3rd graders to 161.60 with the 6th graders and 109.54 with the adults 

(Fig. 1d; χ²(4, 199094) = 318.02, p <.001). Fourth, skipping probability increased with grade, 

ranging from 0.12 with the 3rd graders to 0.19 with the 6th graders and 0.28 with the adults 

(Fig. 1e, χ²(4, 114350) = 141.94, p <.001). Fifth, refixation probability decreased with grade, 

ranging from 0.41 with the 3rd graders to 0.29 with the 6th graders and 0.17 with the adults 

(Figure 1f, χ²(4, 91430) = 285.81, p <.001). Finally, regression probability decreased with 

grade, ranging from 0.35 with the 3rd graders to 0.30 with the 6th graders and 0.21 with the 

adults (Figure 1g, χ²(4, 91430) = 74.91, p <.001).  

 

 
Figure 1 Illustration of the mixed model estimates of the effects of grade on fundamental eye-

tracking measures indexing reading behaviour. Colour code for grade. 
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Benchmark effects of word length and word frequency 

 Two of the most robust effects in the adult and children eye movement literature are 

those of word length and word frequency. For this reason, we have chosen to evaluate the 

validity of EyeReadIt by seeking evidence for the influence of these two word-level variables 

on the identification of words during passage reading.  

 

Word length 

The effects, as estimated by our models, are reported in Table 3; for plots, see Figures 

2a, 2b, and 2c. With respect to the models in which word length was analysed in interaction 

with grade, we report a significant main effect of word length on first-of-many fixation duration 

(p<.001), gaze duration (p<.001) and total reading time (p<.001), with longer durations of all 

three measures for longer words. A significant main effect of grade is found on all three eye-

tracking measures (all p<.001), with progressively shorter durations in older readers. The effect 

of the interaction between word length and grade is significant for gaze duration and total 

reading time (all p<.001), with the effect of word length getting progressively smaller as a 

function of grade for both measures, but not for first-of-many fixation duration (p=.68).  

 

Word frequency 

Model estimates are reported in Table 3; for plots, see Figures 2d, 2e, and 2f. With 

respect to the models in which word frequency was analysed in interaction with grade, we 

report a significant main effect of word frequency on first-of-many fixation duration, gaze 

duration and total reading time (all p<.001), with shorter durations for higher-frequency words, 

and a significant main effect of grade on all three measures as well (all p<.001), with 

progressively shorter durations in more advanced readers. The effect of the interaction between 

word frequency and grade is significant for gaze duration and total reading time (all p<.001), 
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with the effect of word frequency getting progressively smaller as a function of grade for both 

measures, but not for first-of-many fixation duration (p=.80).  

 

Table 3 Linear mixed model results of the effects of length and frequency, in interaction with 

grade, on eye-tracking measures of interest.  

 

Eye-tracking 

variable 
Predictor 

Main effect of 

predictor 

Main effect of 

grade 
Interaction effect 

First-of-many-

fixation duration 

(ms) 

Length 

Chisq(1, 27262) = 

21.158,  

p<.001*** 

Chisq(4, 27262) = 

73.515,  

p<.001*** 

Chisq(4, 27262) = 

2.307,  

p=.679 

Gaze duration  

(ms) 
Length 

Chisq(1, 91430) = 

782.195, 

p<.001*** 

Chisq(4, 91430) = 

165.433, 

p<.001*** 

Chisq(4, 91430) = 

347.913, 

p<.001*** 

Total reading time 

(ms) 

 

Length 

Chisq(1, 91430) = 

1185.617, 

p<.001*** 

Chisq(4, 91430) = 

218.251, 

p<.001*** 

Chisq(4, 91430) = 

859.701, 

p<.001*** 

First-of-many-

fixation duration 

(ms) 

Frequency 

Chisq(1, 27262) = 

47.825,  

p<.001*** 

Chisq(4, 27262) = 

69.391,  

p<.001*** 

Chisq(4, 27262) = 

1.615,  

p=.806 

Gaze duration  

(ms) 
Frequency 

Chisq(1, 89911) = 

542.821, 

p<.001*** 

Chisq(4, 89911) = 

755.711, 

p<.001*** 

Chisq(4, 89911) = 

320.469, 

p<.001*** 

Total reading time 

(ms) 

 

Frequency 

Chisq(1, 89911) = 

915.429, 

p<.001*** 

Chisq(4, 89911) = 

1195.397, 

p<.001*** 

Chisq(4, 89911) = 

832.745, 

p<.001*** 
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Figure 2 Effects of the interaction between word length and grade, and between word 

frequency and grade on first-of-many fixation duration (FoM), gaze duration (GD) and total 

reading time (TRT). Colour code for grade (key in bottom right subplot). 
 

Morphological complexity effects on reading times  

In a first set of analyses, morphological complexity is treated as a factorial variable, 

with the two levels being “complex” (i.e., multimorphemic) vs “simple” (i.e., all base forms). 

All model estimates are reported in Table 4; for plots, see Figure 3. With respect to the effects 

of morphological complexity and grade (Figure 3a–c), we report a significant main effect of 

morphological complexity on gaze duration and total reading time (all p<.001), with longer 

durations for complex words, but not for first-of-many fixation duration (p=.399). We also 

report a significant main effect of grade on all three measures considered (all p<.001), with 

progressively shorter durations in older readers. The interaction between morphological 

complexity and grade is significant for gaze duration (p=.011) and total reading time (p<.001), 

with the effect of morphological complexity getting progressively smaller as a function of 
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grade for both measures, but not for first-of-many fixation duration (p=.970). In particular, 

with respect to gaze duration and total reading time, Grade 6 readers showed a more marked 

effect of morphological complexity than adult readers (t=2.423 and t=4.439, respectively), 

while no significant difference emerges between developing readers of any grade. This 

suggests that young readers are more sensitive than adults to the effects of morphological 

complexity in reading. 

The second set of analyses, in which the two levels of morphological complexity are 

“derived" and “inflected”, reveals a very similar pattern of results (Figure 3d–f), as reported in 

Table 6, with inflected words yielding shorter gaze durations and total reading times, this effect 

being modulated by grade, with younger readers showing greater sensitivity to derived words 

compared to older ones. As a matter of fact, in this set of analyses, too, gaze duration and total 

reading time reveal a significant interaction of grade and morphological complexity. Grade 3 

and Grade 6 readers display a greater effect than Grade 4 (t=-2.480) and adult readers (t=-

2.127), respectively, when it comes to gaze duration. Grade 6 readers display a greater effect 

than adult readers (t=-4.787), when it comes to total reading time.  
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Table 4 Linear mixed model results of the effects of morphological complexity variables, in 

interaction with grade, on eye-tracking measures of interest, considering content words only.  

 

Eye-tracking 

variable 
Predictor 

Main effect of 

predictor 

Main effect of 

grade 
Interaction effect 

First-of-many-

fixation duration 

(ms) 

MorphComplex (vs 

Simple) 

Chisq(1, 19972) = 

0.594, p=.441 

Chisq(4, 19972) = 

102.474, 

p<.001*** 

Chisq(4, 19972) = 

0.532, p=.970 

Gaze duration  

(ms) 

MorphComplex (vs 

Simple) 

Chisq(1, 52451) = 

17.033, 

p<.001*** 

Chisq(4, 52451) = 

440.325, 

p<.001*** 

Chisq(4, 52451) = 

13.005, 

p=.011* 

Total reading time 

(ms)  

MorphComplex (vs 

Simple) 

Chisq(1, 91430) = 

36.895, 

p<.001*** 

Chisq(4, 91430) = 

583.534, 

p<.001*** 

Chisq(4, 91430) = 

83.827, 

p<.001*** 

First-of-many-

fixation duration 

(ms) 

MorphDerived 

(vs Inflected) 

Chisq(1, 12076) = 

1.034, 

p=.309 

Chisq(4, 12076) = 

99.217, 

p<.001*** 

Chisq(4, 12076) = 

2.431, 

p=.657 

Gaze duration  

(ms) 

MorphDerived 

(vs Inflected) 

Chisq(1, 30010) = 

23.736, 

p<.001*** 

Chisq(4, 30010) = 

412.554, 

p<.001*** 

Chisq(4, 30010) = 

16.799, 

p<.001*** 

Total reading time 

(ms)  

MorphDerived 

(vs Inflected) 

Chisq(1, 38993) = 

32.596, 

p<.001*** 

Chisq(4, 38993) = 

582.044, 

p<.001*** 

Chisq(4, 38993) = 

124.298, 

p<.001*** 
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Figure 3 Effects of the interaction between morphological complexity (a, b, c: complex vs 

simple; d, e, f: derived vs inflected) and grade on first-of-many fixation duration (FoM), gaze 

duration (GD) and total reading time (TRT). Colour code for grade (key in top-right corner of 

panel c). 

 

 

Discussion 

The present work introduces EyeReadIt, the first developmental database of eye-

movement measures in natural reading. While other eye-tracking corpora are based on 

multiline text reading performed by skilled adult readers, EyeReadIt is, to the best of our 

knowledge, the first publicly available resource focusing on eye-tracking data obtained from a 

very large sample of developing readers, while using a naturalistic multiline reading task. Our 

corpus outnumbers the existing ones in terms of participants (141 children and 33 adults); 

currently, the richest eye-tracking resource is the Provo Corpus (Luke & Christianson, 2018) 
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containing data from 84 native English speaking adult participants. However,  it should be 

noted that we have a much lower number of tokens than other corpora (1566 tokens, vs over 

56000 in the Dundee Corpus: Kennedy, 2003; Kennedy et al., 2003; Kennedy & Pynte, 2005), 

and, more generally, we submitted each participant to much less text than other resources (a 

maximum of 6 passages per participant; 55 short passages per participant in the Provo Corpus; 

an entire novel in GECO: Cop et al., 2017). This is due, of course, to the fact that we tested 

children, and therefore had to design an experiment that would not be too tiring or long, while 

allowing us to collect a sufficient amount of data.  

With EyeReadIt, we aim at providing researchers with the opportunity to both conduct 

more exploratory analyses and tackle refined research questions, from a developmental and 

potentially cross-linguistic perspective, without the need to design experiments and collect data 

themselves. Consistent with the new direction of eye-movement research in reading, the nature 

of the experimental task used in EyeReadIt provides, as an added value, the opportunity to 

perform eye-tracking analyses on connected text, and to thus investigate phenomena associated 

with eye movements during natural reading. 

The present work ensured that this novel database allowed to highlight some well-

consolidated effects on eye-tracking measures, which are typically obtained with more artificial 

(commonly sentence-reading) paradigms. We aimed at extending the scope of such effects to 

natural reading with a developmental population. Our eye-tracking data, in keeping with the 

literature (see Rayner, 1986; Blythe & Joseph, 2011; Reichle et al., 2013), demonstrated that 

as children’s school grade increased (along with their age and reading ability), their patterns of 

eye movements came to more closely resemble those of adults, such that they made both longer 

saccades and fewer, shorter fixations, fewer of which occurred in the same word or after 

regressions. 



44 

Furthermore, we showed that both the length of a word and the frequency with which 

it appears in the written language influence the time developing and skilled readers spend 

looking at it: long and high-frequency words require longer reading times than short and low-

frequency words, respectively (for a review, see e.g. Reichle et al., 2013). Both of these lexical 

variables influenced our participants’ reading times in a comparable way. As far as the 

durations of first-of-many fixations are concerned, length and frequency effects were present 

across all reader groups and were not modulated by development. Given that first-of-many 

fixation durations are considered an early measure of lexical processing, these findings suggest 

that length and frequency exert an immediate effect on early visual word identification. 

Interestingly, the influence of length and frequency on gaze durations and total reading times 

interacted with development. These effects were larger in children than adult readers, and 

decreased with grade. These findings reflect that the length and frequency have a more 

substantial impact on children’s lexical processing as compared to that of adults (Blythe & 

Joseph, 2011).  

Overall, the successful replication of the effects of established predictors in our 

experiment allows some interesting considerations. First, this pattern of results corroborates 

the validity of the proposed corpus for the conduction of linguistic analyses, and more generally 

of a much-needed ecological approach to the study of reading development. Second, our results 

are theoretically relevant as well, as they suggest that readers as young as third graders have 

already acquired enough information about word distribution in their lexicon of reference (for 

similar findings in English see, e.g., Joseph et al., 2013) for it to reflect in their eye-movement 

behaviour. Furthermore, the fact that length and frequency effects are observed more 

prominently in younger developing readers, and that the magnitude of the effects gets 

progressively smaller with reading development, confirms trends from prior research (Blythe 
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& Joseph, 2011; Joseph et al. 2013), with the added value of using a multiline text reading task, 

instead of single sentence reading. 

We also used EyeReadIt to analyse the effects of morphological complexity in 

interaction with grade on the above-described eye-movement measures. Coherently with what 

one might predict, in the light of the more fine-tuned nature of the effects of morphological 

complexity and of the naturalistic paradigm used, our results show neither an effect of 

morphological complexity nor a significant interaction with grade, at the earliest stage of 

lexical processing as indexed by first-of-many fixation duration. However, a role of 

morphological complexity surfaces upon lexical access and post-lexical levels of processing 

(gaze duration and total reading time), in a grade-modulated fashion, as detailed above.  

Evidence for an interaction between morphological complexity and reading experience 

is in agreement with morphological decomposition theories (see, e.g., Burani et al., 2008), 

according to which developing readers as young as second and third graders already display 

morphological awareness and use morphological information in reading (Grainger & 

Beyersmann, 2017; Hasenäcker et al., 2016; Quémart et al., 2011). Our pattern of results 

suggest that children exploit the presence of a morphological structure during online processing 

of written words in naturalistic task, and that they do so from a very young age. In this sense, 

we can interpret these effects of morphological complexity as a proxy of ongoing sublexical 

processing (i.e., extraction of information from morphemes), which sits at the interface 

between whole-word processing and the extraction of letter-level statistics.  Furthermore, 

consistent with the notion that younger and less experienced readers rely more heavily on 

sublexical processing, effects of morphological complexity are more pronounced in our 

younger children compared to those of older children and adults that can identify both 

morphologically complex and simple words as whole-units (Burani et al., 2008). These results 
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further corroborate the potential of a resource like EyeReadIt, as it allows to investigate even 

finer aspects of linguistic processing through eye movements without any artificial constraint. 



47 

References 

 

Amenta, S., Marelli, M., & Crepaldi, D. (2015). The fruitless effort of growing a fruitless 

tree: Early morpho-orthographic and morpho-semantic effects in sentence reading. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1587. 

https://doi.org/10.1037/xlm0000104 

Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in 

children and adults. Cognitive Science, 36(2), 286-304. 

https://doi.org/10.1111/j.1551-6709.2011.01200.x 

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. 

H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon 

project. Behaviour Research Methods, 39(3), 445-459. 

https://doi.org/10.3758/BF03193014 

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects 

Models Using lme4. Journal of Statistical Software, 67(1), 1-48. 

https://doi.org/10.18637/jss.v067.i01  

Bertram, R. (2011). Eye movements and morphological processing in reading. The Mental 

Lexicon, 6(1), 83-109. https://doi.org/10.1075/ml.6.1.04ber 

Beyersmann, E., Castles, A., & Coltheart, M. (2012). Morphological processing during visual 

word recognition in developing readers: Evidence from masked priming. Quarterly 

Journal of Experimental Psychology, 65(7), 1306-1326. 

https://doi.org/10.1080%2F17470218.2012.656661 

https://doi.org/10.1037/xlm0000104
https://doi.org/10.1111/j.1551-6709.2011.01200.x
https://doi.org/10.3758/BF03193014
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1075/ml.6.1.04ber
https://doi.org/10.1080%2F17470218.2012.656661


48 

Biederman, G. B. (1966). Supplementary report: The recognition of tachistoscopically 

presented five-letter words as a function of digram frequency. Journal of Verbal 

Learning and Verbal Behaviour, 5(2), 208-209. https://doi.org/10.1016/S0022-

5371(66)80020-8 

Blythe, H. I., Häikiö, T., Bertam, R., Liversedge, S. P., & Hyönä, J. (2011). Reading 

disappearing text: Why do children refixate words?. Vision Research, 51(1), 84-92. 

https://doi.org/10.1016/j.visres.2010.10.003 

Blythe, H. I., & Joseph, H. S. S. L. (2011). Children's eye movements during reading. In S. P. 

Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford Library of Psychology. The 

Oxford Handbook of Eye Movements (pp. 643–662). Oxford University Press. 

https://doi.org/10.1093/oxfordhb/9780199539789.013.0036 

Blythe, H. I., Liversedge, S. P., Joseph, H. S., White, S. J., & Rayner, K. (2009). Visual 

information capture during fixations in reading for children and adults. Vision 

Research, 49(12), 1583-1591. https://doi.org/10.1016/j.visres.2009.03.015 

Burani, C., Marcolini, S., & Stella, G. (2002). How early does morpholexical reading develop 

in readers of a shallow orthography? Brain and Language, 81(1-3), 568-586. 

https://doi.org/10.1006/brln.2001.2548 

Burani, C., Marcolini, S., De Luca, M., & Zoccolotti, P. (2008). Morpheme-based reading 

aloud: Evidence from dyslexic and skilled Italian readers. Cognition, 108(1), 243-262. 

https://doi.org/10.1016/j.cognition.2007.12.010 

Castles, A., Davis, C., & Letcher, T. (1999). Neighbourhood effects on masked form priming 

in developing readers. Language and Cognitive Processes, 14(2), 201–224. 

https://doi.org/10.1080/016909699386347  

https://doi.org/10.1016/S0022-5371(66)80020-8
https://doi.org/10.1016/S0022-5371(66)80020-8
https://doi.org/10.1016/j.visres.2010.10.003
https://doi.org/10.1093/oxfordhb/9780199539789.013.0036
https://doi.org/10.1016/j.visres.2009.03.015
https://doi.org/10.1006/brln.2001.2548
https://doi.org/10.1016/j.cognition.2007.12.010
https://doi.org/10.1080/016909699386347


49 

Castles, A., Davis, C., Cavalot, P., & Forster, K. (2007). Tracking the acquisition of 

orthographic skills in developing readers: Masked priming effects. Journal of 

Experimental Child Psychology, 97(3), 165-182. 

https://doi.org/10.1016/j.jecp.2007.01.006 

Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition 

from novice to expert. Psychological Science in the Public Interest, 19(1), 5-51. 

https://doi.org/10.1177/1529100618772271 

Chetail, F. (2015). Reconsidering the role of orthographic redundancy in visual word 

recognition. Frontiers in Psychology, 6, 645. 

https://doi.org/10.3389/fpsyg.2015.00645 

Cop, U., Drieghe, D., & Duyck, W. (2015). Eye movement patterns in natural reading: A 

comparison of monolingual and bilingual reading of a novel. PloS One, 10(8), 

e0134008. https://doi.org/10.1371/journal.pone.0134008 

Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eyetracking 

corpus of monolingual and bilingual sentence reading. Behaviour Research 

Methods, 49(2), 602-615. https://doi.org/10.3758/s13428-016-0734-0 

Cornoldi, C., & Candela, M. (2015). Prove di Lettura e Scrittura MT-16-19. Edizioni 

Erickson. 

Cornoldi, C., & Colpo, G. (1998). Prove di Lettura MT per la Scuola Elementare-2 Quarta 

elementare. Firenze: Giunti, OS Organizzazioni Speciali. 

Crepaldi, D., Amenta, S., Mandera, P., Keuleers, E., & Brysbaert, M. (2016). Frequency 

estimates from different registers explain different aspects of visual word recognition. 

https://doi.org/10.1016/j.jecp.2007.01.006
https://doi.org/10.1177/1529100618772271
https://doi.org/10.3389/fpsyg.2015.00645
https://doi.org/10.1371/journal.pone.0134008
https://doi.org/10.3758/s13428-016-0734-0


50 

International Meeting of the Psychonomic Society, Granada, Spain, 5–8 May. 

http://crr.ugent.be/subtlex-it/ 

Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in 

reading based on spatially distributed lexical processing. Vision Research, 42(5), 621-

636. https://doi.org/10.1016/S0042-6989(01)00301-7 

Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: a dynamical model 

of saccade generation during reading. Psychological Review, 112(4), 777. 

https://doi.org/10.1037/0033-295X.112.4.777 

Foster, T. E., Ardoin, S. P., & Binder, K. S. (2018). Reliability and validity of eye movement 

measures of children's reading. Reading Research Quarterly, 53(1), 71-89. 

https://doi.org/10.1002/rrq.182  

Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression, 3rd Edition. 

Thousand Oaks, CA. 

https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html  

Frazier, L., & Rayner, K. (1982). Making and correcting errors during sentence 

comprehension: Eye movements in the analysis of structurally ambiguous 

sentences. Cognitive psychology, 14(2), 178-210. https://doi.org/10.1016/0010-

0285(82)90008-1 

Garrod, S., Freudenthal, D., & Boyle, E. (1994). The role of different types of anaphor in the 

on-line resolution of sentences in a discourse. Journal of Memory and 

Language, 33(1), 39-68. https://doi.org/10.1006/jmla.1994.1003 

http://crr.ugent.be/subtlex-it/
https://doi.org/10.1016/S0042-6989(01)00301-7
https://psycnet.apa.org/doi/10.1037/0033-295X.112.4.777
https://doi.org/10.1002/rrq.182
https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html
https://doi.org/10.1016/0010-0285(82)90008-1
https://doi.org/10.1016/0010-0285(82)90008-1
https://psycnet.apa.org/doi/10.1006/jmla.1994.1003


51 

Gernsbacher, M. A. (1984). Resolving 20 years of inconsistent interactions between lexical 

familiarity and orthography, concreteness, and polysemy. Journal of Experimental 

Psychology: General, 113(2), 256. https://doi.org/10.1037/0096-3445.113.2.256 

Goswami, U., & Ziegler, J. C. (2006). Fluency, phonology and morphology: a response to the 

commentaries on becoming literate in different languages. Developmental Science, 

9(5), 451-453. https://doi.org/10.1111/j.1467-7687.2006.00511.x 

Grainger, J., & Beyersmann, E. (2017). Edge-aligned embedded word activation initiates 

morpho-orthographic segmentation. In Psychology of Learning and Motivation (Vol. 

67, pp. 285-317). Academic Press. https://doi.org/10.1016/bs.plm.2017.03.009 

Häikiö, T., Bertram, R., Hyönä, J., & Niemi, P. (2009). Development of the letter identity 

span in reading: Evidence from the eye movement moving window paradigm. Journal 

of Experimental Child Psychology, 102(2), 167-181. 

https://doi.org/10.1016/j.jecp.2008.04.002 

Hasenäcker, J., Beyersmann, E., & Schroeder, S. (2016). Masked morphological priming in 

German-speaking adults and children: Evidence from response time distributions. 

Frontiers in Psychology, 7, 929. https://doi.org/10.3389/fpsyg.2016.00929 

Henderson, J. M., McClure, K. K., Pierce, S., & Schrock, G. (1997). Object identification 

without foveal vision: Evidence from an artificial scotoma paradigm. Perception & 

Psychophysics, 59(3), 323-346. https://doi.org/10.3758/BF03211901 

Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., & Langer, N. (2018). 

ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence 

reading. Scientific Data, 5(1), 1-13. https://doi.org/10.1038/sdata.2018.291 

https://doi.apa.org/doi/10.1037/0096-3445.113.2.256
https://doi.org/10.1111/j.1467-7687.2006.00511.x
https://doi.org/10.1016/bs.plm.2017.03.009
https://doi.org/10.1016/j.jecp.2008.04.002
https://doi.org/10.3389/fpsyg.2016.00929
https://doi.org/10.3758/BF03211901
https://doi.org/10.1038/sdata.2018.291


52 

Hyönä, J., Bertram, R., & Pollatsek, A. (2004). Are long compound words identified serially 

via their constituents? Evidence from an eyemovement-contingent display change 

study. Memory & Cognition, 32(4), 523-532. https://doi.org/10.3758/BF03195844 

Hyönä, J., & Pollatsek, A. (1998). Reading Finnish compound words: Eye fixations are 

affected by component morphemes. Journal of Experimental Psychology: Human 

Perception and Performance, 24(6), 1612. https://doi.org/10.1037/0096-

1523.24.6.1612 

Jarodzka, H., & Brand‐Gruwel, S. (2017). Tracking the reading eye: towards a model of real‐

world reading. Journal of Computer Assisted Learning, 33(3), 193-201. 

https://doi.org/10.1111/jcal.12189 

Johnson, R. L., Oehrlein, E. C., & Roche, W. L. (2018). Predictability and parafoveal 

preview effects in the developing reader: Evidence from eye movements. Journal of 

Experimental Psychology: Human Perception and Performance, 44(7), 973. 

https://doi.org/10.1037/xhp0000506  

Joseph, H. S., Liversedge, S. P., Blythe, H. I., White, S. J., & Rayner, K. (2009). Word length 

and landing position effects during reading in children and adults. Vision Research, 

49(16), 2078-2086. https://doi.org/10.1016/j.visres.2009.05.015 

Joseph, H. S., Nation, K., & Liversedge, S. P. (2013). Using eye movements to investigate 

word frequency effects in children's sentence reading. School Psychology 

Review, 42(2), 207-222. https://doi.org/10.1080/02796015.2013.12087485 

Kennedy, A. L. A. N. (2003). The Dundee corpus [CD-rom]. Psychology Department, 

University of Dundee. 

https://doi.org/10.3758/BF03195844
https://doi.apa.org/doi/10.1037/0096-1523.24.6.1612
https://doi.apa.org/doi/10.1037/0096-1523.24.6.1612
https://doi.org/10.1111/jcal.12189
https://doi.org/10.1037/xhp0000506
https://doi.org/10.1016/j.visres.2009.05.015
https://doi.org/10.1080/02796015.2013.12087485


53 

Kennedy, A., & Pynte, J. (2005). Parafoveal-on-foveal effects in normal reading. Vision 

Research, 45(2), 153-168. https://doi.org/10.1016/j.visres.2004.07.037 

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: 

Lexical decision data for 28,730 monosyllabic and disyllabic English words. 

Behaviour Research Methods, 44(1), 287-304. https://doi.org/10.3758/s13428-011-

0118-4 

Kidd, E., & Arciuli, J. (2016). Individual differences in statistical learning predict children's 

comprehension of syntax. Child Development, 87(1), 184-193. 

https://doi.org/10.1111/cdev.12461 

Kuperman, V., Dambacher, M., Nuthmann, A., & Kliegl, R. (2010). The effect of word 

position on eye-movements in sentence and paragraph reading. Quarterly Journal of 

Experimental Psychology, 63(9), 1838-1857. 

https://doi.org/10.1080%2F17470211003602412 

Kuperman, V., Matsuki, K., & Van Dyke, J. A. (2018). Contributions of reader-and text-level 

characteristics to eye-movement patterns during passage reading. Journal of 

Experimental Psychology. Learning, Memory, and Cognition, 44(11), 1687–1713. 

https://doi.org/10.1037/xlm0000547 

Kuperman, V., Siegelman, N., & Schroeder, S. (under review). MECO. 

Lelonkiewicz, J. R., Ktori, M., & Crepaldi, D. (2020). Morphemes as letter chunks: 

Discovering affixes through visual regularities. Journal of Memory and Language, 

115, 104152.  https://doi.org/10.1016/j.jml.2020.104152  

Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in 

Cognitive Sciences, 4(1), 6-14. https://doi.org/10.1016/S1364-6613(99)01418-7 

https://doi.org/10.1016/j.visres.2004.07.037
https://doi.org/10.3758/s13428-011-0118-4
https://doi.org/10.3758/s13428-011-0118-4
https://doi.org/10.1111/cdev.12461
https://doi.org/10.1080%2F17470211003602412
https://doi.apa.org/doi/10.1037/xlm0000547
https://doi.org/10.1016/j.jml.2020.104152
https://doi.org/10.1016/S1364-6613(99)01418-7


54 

Longtin, C. M., Segui, J., & Hallé, P. A. (2003). Morphological priming without 

morphological relationship. Language and Cognitive Processes, 18(3), 313-334. 

https://doi.org/10.1080/01690960244000036 

Luke, S.G. & Christianson, K. (2018). The Provo Corpus: A Large Eye-Tracking Corpus 

with Predictability Ratings. Behaviour Research Methods, 50, 826-833. 

https://doi.org/10.3758/s13428-017-0908-4 

Marelli, M., Amenta, S., & Crepaldi, D. (2015). Semantic transparency in free stems: The 

effect of Orthography-Semantics Consistency on word recognition. Quarterly Journal 

of Experimental Psychology, 68(8), 1571-1583. 

https://doi.org/10.1080%2F17470218.2014.959709 

Masterson, J., Stuart, M., Dixon, M., & Lovejoy, S. (2010). Children's printed word database: 

Continuities and changes over time in children's early reading vocabulary. British 

Journal of Psychology, 101(2), 221-242. https://doi.org/10.1348/000712608X371744 

McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation 

in reading. Perception & Psychophysics, 17(6), 578-586. 

https://doi.org/10.3758/BF03203972 

McConkie, G. W., Zola, D., Grimes, J., Kerr, P. W., Bryant, N. R., & Wolff, P. M. (1991). 

Children’s eye movements during reading. Vision and Visual Dyslexia, 13, 251-262. 

https://doi.org/10.1093/oxfordhb/9780199539789.013.0036 

McRae, K., Spivey-Knowlton, M. J., & Tanenhaus, M. K. (1998). Modeling the influence of 

thematic fit (and other constraints) in on-line sentence comprehension. Journal of 

Memory and Language, 38(3), 283-312. https://doi.org/10.1006/jmla.1997.2543 

https://doi.org/10.1080/01690960244000036
https://doi.org/10.3758/s13428-017-0908-4
https://doi.org/10.1080%2F17470218.2014.959709
https://doi.org/10.1348/000712608X371744
https://doi.org/10.3758/BF03203972
https://doi.org/
http://dx.doi.org/10.1093/oxfordhb/9780199539789.013.0036
https://doi.org/10.1006/jmla.1997.2543


55 

Quémart, P., Casalis, S., & Colé, P. (2011). The role of form and meaning in the processing 

of written morphology: A priming study in French developing readers. Journal of 

Experimental Child Psychology, 109(4), 478-496. 

https://doi.org/10.1016/j.jecp.2011.02.008 

R Core Team (2019). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. https://www.R-project.org/ 

Rastle, K. (2019). The place of morphology in learning to read in English. Cortex, 116, 45-

54. https://doi.org/10.1016/j.cortex.2018.02.008  

Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother’s brothel: Morpho-

orthographic segmentation in visual word recognition. Psychonomic Bulletin & 

Review, 11(6), 1090-1098. https://doi.org/10.3758/BF03196742 

Raven, J. C. (1949). Progressive matrices (1947), sets A, Ab, B: board and book forms. 

London: Lewis. 

Raven, J. (2003). Raven progressive matrices. In Handbook of nonverbal assessment (pp. 

223-237). Springer, Boston, MA. 

Rayner, K. (1986). Eye movements and the perceptual span in beginning and skilled readers. 

Journal of Experimental Child Psychology, 41(2), 211-236. 

https://doi.org/10.1016/0022-0965(86)90037-8 

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of 

research. Psychological Bulletin, 124(3), 372. https://doi.org/10.1037/0033-

2909.124.3.372  

https://doi.org/10.1016/j.jecp.2011.02.008
https://www.r-project.org/
https://doi.org/10.1016/j.cortex.2018.02.008
https://doi.org/10.3758/BF03196742
https://doi.org/10.1016/0022-0965(86)90037-8
https://psycnet.apa.org/doi/10.1037/0033-2909.124.3.372
https://psycnet.apa.org/doi/10.1037/0033-2909.124.3.372


56 

Rayner, K. (2009). The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in 

reading, scene perception, and visual search. Quarterly Journal of Experimental 

Psychology, 62(8), 1457-1506. https://doi.org/10.1080%2F17470210902816461 

Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001). Eye movement control in 

reading: Word predictability has little influence on initial landing positions in 

words. Vision Research, 41(7), 943-954. https://doi.org/10.1016/S0042-

6989(00)00310-2 

Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye movements as reflections 

of comprehension processes in reading. Scientific Studies of Reading, 10(3), 241-255. 

https://doi.org/10.1207/s1532799xssr1003_3 

Rayner, K., & McConkie, G. W. (1976). What guides a reader's eye movements?. Vision 

Research, 16(8), 829-837. https://doi.org/10.1016/0042-6989(76)90143-7 

Rayner, K., & Pollatsek, A. (1981). Eye movement control during reading: Evidence for 

direct control. Quarterly Journal of Experimental Psychology, 33(4), 351-373. 

https://doi.org/10.1080/14640748108400798 

Reichle, E. D., Liversedge, S. P., Drieghe, D., Blythe, H. I., Joseph, H. S., White, S. J., & 

Rayner, K. (2013). Using EZ Reader to examine the concurrent development of eye-

movement control and reading skill. Developmental Review, 33(2), 110-149. 

https://doi.org/10.1016/j.dr.2013.03.001 

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye 

movement control in reading. Psychological Review, 105(1), 125. 

https://doi.org/10.1037/0033-295X.105.1.125 

https://doi.org/10.1080%2F17470210902816461
https://doi.org/10.1016/S0042-6989(00)00310-2
https://doi.org/10.1016/S0042-6989(00)00310-2
https://doi.org/10.1207/s1532799xssr1003_3
https://doi.org/10.1016/0042-6989(76)90143-7
https://doi.org/10.1080/14640748108400798
https://doi.org/10.1016/j.dr.2013.03.001
https://doi.apa.org/doi/10.1037/0033-295X.105.1.125


57 

Reichle, E. D., Pollatsek, A., & Rayner, K. (2006). E–Z Reader: A cognitive-control, serial-

attention model of eye-movement behavior during reading. Cognitive Systems 

Research, 7(1), 4-22. https://doi.org/10.1016/j.cogsys.2005.07.002 

Reichle, E. D., Rayner, K., & Pollatsek, A. (1999). Eye movement control in reading: 

Accounting for initial fixation locations and refixations within the EZ Reader 

model. Vision Research, 39(26), 4403-4411. https://doi.org/10.1016/S0042-

6989(99)00152-2 

Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The EZ Reader model of eye-movement 

control in reading: Comparisons to other models. Behavioral and Brain Sciences, 

26(4), 445. https://doi.org/10.1017/S0140525X03000104 

Schmalz, X., & Mulatti, C. (2017). Busting a myth with the Bayes Factor: Effects of letter 

bigram frequency in visual lexical decision do not reflect reading processes. The 

Mental Lexicon, 12(2), 263-282. https://doi.org/10.1075/ml.17009.sch 

Schmalz, X., Altoè, G., & Mulatti, C. (2017). Statistical learning and dyslexia: A systematic 

review. Annals of Dyslexia, 67(2), 147-162. https://doi.org/10.1007/s11881-016-

0136-0 

Snell, J., van Leipsig, S., Grainger, J., & Meeter, M. (2018). OB1-reader: A model of word 

recognition and eye movements in text reading. Psychological Review, 125(6), 969. 

https://doi.org/10.1037/rev0000119 

Sperlich, A., Schad, D. J., & Laubrock, J. (2015). When preview information starts to matter: 

Development of the perceptual span in German beginning readers. Journal of 

Cognitive Psychology, 27(5), 511-530. 

https://doi.org/10.1080/20445911.2014.993990 

https://doi.org/10.1016/j.cogsys.2005.07.002
https://doi.org/10.1016/S0042-6989(99)00152-2
https://doi.org/10.1016/S0042-6989(99)00152-2
https://doi.org/10.1017/S0140525X03000104
https://doi.org/10.1075/ml.17009.sch
https://doi.org/10.1007/s11881-016-0136-0
https://doi.org/10.1007/s11881-016-0136-0
https://doi.org/10.1037/rev0000119
https://doi.org/10.1080/20445911.2014.993990


58 

Spichtig, A., Pascoe, J., Ferrara, J., & Vorstius, C. (2017). A comparison of eye movement 

measures across reading efficiency quartile groups in elementary, middle, and high 

school students in the US. Journal of Eye Movement Research, 10(4), 5. 

https://doi.org/10.16910/jemr.10.4.5 

Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. Journal of 

Verbal Learning and Verbal Behaviour, 14(6), 638-647. 

https://doi.org/10.1016/S0022-5371(75)80051-X 

Taft, M., & Nguyen-Hoan, M. (2010). A sticky stick? The locus of morphological 

representation in the lexicon. Language and Cognitive Processes, 25(2), 277-296. 

https://doi.org/10.1080/01690960903043261 

Tiffin-Richards, S. P., & Schroeder, S. (2015). Children's and adults' parafoveal processes in 

German: Phonological and orthographic effects. Journal of Cognitive Psychology, 

27(5), 531-548. http://dx.doi.org/10.1080/20445911.2014.999076 

Tiffin-Richards, S. P., & Schroeder, S. (2018). The development of wrap-up processes in text 

reading: A study of children’s eye movements. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 44(7). http://dx.doi.org/10.1037/xlm0000506 

Tiffin-Richards, S. P., & Schroeder, S. (2020). Context facilitation in text reading: A study of 

children's eye movements. Journal of Experimental Psychology. Learning, Memory, 

and Cognition. https://doi.org/10.1037/xlm0000834 

Traficante, D., Marelli, M., & Luzzatti, C. (2018). Effects of reading proficiency and of base 

and whole-word frequency on reading noun-and verb-derived words: an eye-tracking 

study in Italian primary school children. Frontiers in Psychology, 9, 2335. 

https://doi.org/10.3389/fpsyg.2018.02335 

https://doi.org/10.16910/jemr.10.4.5
https://doi.org/10.1016/S0022-5371(75)80051-X
https://doi.org/10.1080/01690960903043261
http://dx.doi.org/10.1080/20445911.2014.999076
http://dx.doi.org/10.1037/xlm0000506
https://doi.org/10.1037/xlm0000834
https://doi.org/10.3389/fpsyg.2018.02335


59 

von Koss Torkildsen, J., Arciuli, J., & Wie, O. B. (2019). Individual differences in statistical 

learning predict children's reading ability in a semi-transparent orthography. Learning 

and Individual Differences, 69, 60-68. https://doi.org/10.1016/j.lindif.2018.11.003 

Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and 

skilled reading across languages: a psycholinguistic grain size theory. Psychological 

Bulletin, 131(1), 3. https://doi.org/10.1037/0033-2909.131.1.3 

      

  

https://doi.org/10.1016/j.lindif.2018.11.003
https://doi.org/10.1037/0033-2909.131.1.3


60 

 

Chapter III 

Algorithms for the Automated Correction of Vertical Drift 

in Eye-Tracking Data1 

 

Reading is a fundamental skill for navigating modern society and, as such, is subject to 

intense study in the cognitive and language sciences. Among the many tools that researchers 

use to investigate reading in the laboratory, eye tracking occupies a prominent position. Using 

this technique, participants’ eye movements may be recorded as they read written material, 

providing a window into the relevant cognitive processes as they unfold. Technological 

advancements in eye tracking, particularly from the 1970s (see, e.g., Rayner, 1998), have 

allowed researchers to collect increasingly accurate measures of eye movements during reading 

tasks, leading to great improvements in the investigation of the cognitive processes underlying 

reading and reading acquisition.  

Many eye-tracking studies involve the reading of single words or sentences. For 

example, researchers may embed target words into different sentence contexts and manipulate 

predictability (e.g., Rayner et al., 2001), display isolated words to gain insight into how a 

reader’s eye moves when processing a word (e.g., Vitu et al., 2004), or reveal parts of words 

in a gaze-contingent fashion to investigate parafoveal processing (e.g., Schotter et al., 2012). 

Sentence reading experiments have also been essential in revealing the cognitive processes 

behind different levels of written language processing, from the width of the perceptual span 

 
1 This chapter is a slightly adapted version of a manuscript accepted for publication, to appear as: Carr, J. W., 

Pescuma, V. N., Furlan, M., Ktori, M., & Crepaldi, D. (2021).  Algorithms for the automated correction of vertical 

drift in eye-tracking data. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01554-0 
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(e.g., Blythe et al., 2009; Rayner, 1986) to the effects that word length and frequency have on 

eye movements (e.g., Joseph et al., 2009; Tiffin-Richards & Schroeder, 2015), as well as the 

effects of syntactic (e.g., Frazier & Rayner, 1982; Pickering & Traxler, 1998) and lexical (e.g., 

Sereno et al., 2006) ambiguity. 

In our everyday experience, however, we often do not encounter sentences in isolation; 

a good part of our reading experience involves connected text that is distributed over multiple 

lines. Therefore, experiments based on paragraph reading also provide insight into the reading 

experience, while allowing us to address levels of processing that are simply not available when 

one reads a single sentence, such as the role of broader context or the integration of syntactic 

relations across sentence boundaries (Jarodzka & Brand-Gruwel, 2017). Indeed, studies of 

multiline reading have become more prevalent in recent years, with researchers using passage 

reading tasks to investigate, for example, the effect of text- and participant-level characteristics 

on eye movements (Kuperman et al., 2018) or of contextual facilitation on developing readers’ 

eye movements (Tiffin-Richards & Schroeder, 2020). Several multiline-reading datasets have 

also been released, including GECO (Cop et al., 2017), MECO (Kuperman et al., under 

review), and Provo (Luke & Christianson, 2018). 

A technical issue that arises from the particular circumstances of multiline reading is 

so-called “vertical drift,” which we define as the progressive displacement of fixation 

registrations on the vertical axis over time. In other words, fixations may be recorded above or 

below the line of text that the participant was actually reading, and the degree and directionality 

of this error may fluctuate dynamically with each subsequent fixation, making it nontrivial to 

eliminate. Fig. 1a depicts a reading trial exhibiting vertical drift phenomena; in this case, 

fixations—especially those on the left-hand side—are recorded around one line higher than 

where the reader was actually fixating, but they also tend to slope down to the right such that 

fixations on the right hand side seem to be better aligned.  
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Vertical drift can occur quite unpredictably, even following good quality calibration, 

and it is likely caused by spatial phenomena such as degraded eye tracker calibration at the 

corners of the screen, or temporal phenomena such as subtle movements in head position or 

pupil dilation, which can be difficult to control for, even in a laboratory setting. Such sources 

of measurement error are often exacerbated in the context of multiline reading because, in 

comparison to single words or sentences, passages of text are distributed over a larger portion 

of the screen, including areas where general calibration may be worse, and they take longer to 

read, during which time calibration may begin to degrade. There are also less frequent 

opportunities to recalibrate the device during passage reading, since this can only be performed 

between trials or pages and not during the reading of a passage. 

Whatever the cause and however it manifests itself, vertical drift will ultimately have a 

negative impact on the analysis of eye-tracking data because fixations will be mapped to words 

that were not actually being fixated at a given point in time (as we can see in Fig. 1a). It is 

therefore incumbent on the researcher to recognize such issues when they occur and to take 

corrective measures. Specialized software packages, such as EyeLink Data Viewer (SR 

Research, Toronto, Canada) or EyeDoctor (UMass Eyetracking Lab, Amherst, USA), provide 

the ability to manually move fixations, either individually or in small batches. However, 

manual realignment can be very time-consuming and is likely to be error-prone. In particular, 

the realignment process can be greatly complicated by other sources of noise or idiosyncratic 

reading behaviors. For example, Fig. 1b depicts a reading trial by a child reader; in this case, 

not only are the fixations affected by drift issues, but there are also various natural reading 

behaviors, such as within- and between-line regressions, which add an additional layer of 

complexity to the task of realignment, not to mention the baseline level of noise and unusual 

features such as the arching sequence of fixations targeting line 4.  
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A number of methods have previously been developed to automate post-hoc vertical 

drift correction. FixAlign, an R package developed by Cohen (2013), is currently the most well-

established method in the experimental psychology community, although other methods have 

recently been proposed by Schroeder (2019) and Špakov et al. (2019). In addition, there is a 

disparate body of work from several subfields of computer science, such as biometrics (Abdulin 

& Komogortsev, 2015), educational technology (Hyrskykari, 2006), and user-interface design 

(Beymer & Russell, 2005), in which various ad-hoc algorithms have been reported (see also 

Carl, 2013; Lima Sanches et al., 2015; Lohmeier, 2015; Martinez-Gomez et al., 2012; Mishra 

et al., 2012; Nüssli, 2011; Palmer & Sharif, 2016; Sibert et al., 2000; Yamaya et al., 2017).  

 

 

 
 

Figure 1 Example reading trials from (a) an adult participant and (b) a child participant taken 

from Pescuma et al. (in prep.). Each dot represents a fixation and the size of the dots represents 

duration. The adult trial exhibits upward shift, especially in the lower left part of the passage. 

The child trial is extremely noisy and exhibits not just vertical drift issues but also many natural 

reading phenomena that will pose challenges to the algorithms. 

 

These reported methods can be difficult to evaluate and use because they vary widely 

in terms of their availability, design choices, implementation languages, usability, level of 

documentation, expected input data, and the extent to which they rely on project-specific 

heuristics or particular eye tracker hardware. Furthermore, these methods have largely been 
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developed in isolation from each other, and there has been little attempt to systematically 

evaluate them, so drift correction software is moving forward blindly without an evidence base 

to support new directions. In this paper, we attempt to classify the reported methods into ten 

major approaches, which we formalize as ten simple algorithms that adopt a consistent design 

model. In other words, we do not attempt to evaluate existing software implementations; rather, 

we explore the spectrum of drift correction algorithms by isolating and evaluating the core 

principles on which previous methods have been based. Our goal is to provide a systematic 

comparison of these algorithms in order to guide researchers’ choices about the most suitable 

methods and to lay a solid foundation for future drift correction software. 

To be clear, the algorithms we consider in this paper are restricted to one specific 

problem. Firstly, we only consider algorithms designed for the ordinary reading of passages of 

text; other uses of eye tracking, such as visual search and scene perception, can also undergo 

drift correction, but the methods required are quite different (see, e.g., Vadillo et al., 2015; 

Zhang & Hornof, 2011, 2014). Similarly, the reading of source code has received some 

attention, but the affordances and constraints in this domain are quite different from ordinary 

linguistic reading (see, e.g., Nüssli, 2011; Palmer & Sharif, 2016). Secondly, we only consider 

the problem of post-hoc correction; vertical drift can also be corrected in real time, but this 

imposes a more restrictive set of constraints that are better handled by other types of algorithm 

(see, e.g., Hyrskykari, 2006; Sibert et al., 2000). Thirdly, we only consider fully automated 

algorithms that do not require human supervision. 

The paper proceeds in four main sections. First, we outline the algorithms. Second, we 

test the algorithms on simulated fixation sequences afflicted with various types of measurement 

error. Third, we test the algorithms on an eye-tracking dataset (two examples from which are 

presented in Fig. 1). And finally, we discuss the major properties of the algorithms, provide 

guidance to researchers about their use, and suggest ways in which they can be improved 
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further. All code and data required to reproduce the analyses reported in this paper, as well as 

Matlab/Octave, Python, and R implementations of the algorithms, are available from the public 

data archive associated with this paper: https://doi.org/10.17605/OSF.IO/7SRKG 

 

Algorithms 

In this section, we describe ten algorithms for the automated, post-hoc correction of 

vertical drift. The reader may also wish to refer to Supplementary Item 1 where we present the 

algorithms in pseudocode alongside other technical details. 

 

Attach 

The attach algorithm is the simplest of the algorithms considered in this paper. The 

algorithm simply attaches each fixation to its closest line. While this has the benefit of being 

extremely simple, it is generally not resilient to the kinds of drift phenomena described above. 

However, attach serves as a useful baseline algorithm, since it essentially corresponds to 

an eye-tracking analysis in which no correction was performed—a standard analysis of eye-

tracking data would simply map fixations to the closest words or other areas of interest. We 

return to this point later in the paper.  

 

Chain 

The chain algorithm is based closely on one of the methods implemented in the R 

package popEye (Schroeder, 2019) and can be seen as an extension of attach. Fixations are 

first linked together into “chains”—sequences of consecutive fixations that are within a 

specified x and y distance of each other. Fixations within a chain are then attached to whichever 

line is closest to the mean of their y values. This procedure is similar to the slightly more 

https://doi.org/10.17605/OSF.IO/7SRKG
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complex methods reported by Hyrskykari (2006) and Mishra et al. (2012), so we consider these 

to be special cases of chain.  

The chain algorithm generally provides better performance over attach by 

exploiting the sequence’s order information. A disadvantage of the method, however, is that it 

is necessary to specify appropriate thresholds that determine when a new chain begins. If these 

thresholds are set too low, chain becomes equivalent to attach; if they are set too high, 

chain will group large numbers of fixations together and force them onto a single 

inappropriate line. By default, popEye sets the x threshold to 20 × the font height and the y 

threshold to 2 × the font height. It is not exactly clear how these defaults were chosen, but we 

would tentatively suggest that the x threshold should be set to approximately one long saccade 

length (we use 192 px), and the y threshold to around half a line height (we use 32 px).  

 

Cluster  

The cluster algorithm is also based on one of the methods implemented in popEye 

(Schroeder, 2019). cluster applies k-means clustering2 to the y values of all fixations in 

order to group the fixations into m clusters, where m is the number of lines in the passage. Once 

each fixation has been assigned to a cluster, clusters are mapped to lines based on the mean y 

values of their constituent fixations: The cluster with the smallest mean y value is assigned to 

line one and so forth.  

Unlike attach and chain, cluster does not assign fixations to the closest line in 

absolute terms; instead, it operates on the principle that fixations with similar y values must 

belong to the same line regardless of how far away that line might be. As such, the algorithm 

 
2 In both the cluster and split algorithms, we used the KMeans function from the Python library Scikit-learn 

(Pedregosa et al., 2011). There are many variations of k-means clustering, which we have not systematically 

compared.  
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generally handles drift issues quite well. However, cluster will often not perform well if 

there is even quite mild overlap between fixations from different lines. In addition, since k-

means clustering is not guaranteed to converge on the same set of clusters on every run, the 

cluster algorithm is nondeterministic and can be somewhat unpredictable across multiple 

runs on the same reading trial, which is an important consideration from the point of view of 

reproducible research output.  

 

Compare  

The compare algorithm is directly based on the method reported by Lima Sanches et 

al. (2015) and is very similar to the more complex methods described by Yamaya et al. (2017). 

The fixation sequence is first segmented into “gaze lines” by identifying the return sweeps—

long saccades that move the eye from the end of one line to the start of the next. The algorithm 

considers any saccade that moves from right to left by more than some threshold value (we use 

512 px) to be a return sweep. Gaze lines are then matched to text lines based on a measure of 

similarity between them. Lima Sanches et al. (2015) considered three measures of similarity 

and found dynamic time warping (DTW; Sakoe & Chiba, 1978; Vintsyuk, 1968) to be the best 

method (we discuss DTW in more detail later in this section). Similarly, Yamaya et al. (2017) 

use the closely related Needleman–Wunsch algorithm (Needleman & Wunsch, 1970).  

The gaze lines and text lines are compared in terms of their x values under the 

assumption that the fixations in a gaze line should have a good horizontal alignment with the 

centers of the words in the corresponding text line. Relying only on the x values helps the 

algorithm overcome vertical drift issues, but it is also problematic because in many standard 

reading scenarios the lines of text in a passage tend to be horizontally similar to each other; 

each line tends to contain a similar number of words that are of a similar length, resulting in 

potential ambiguity about how gaze lines and text lines should be matched up. To alleviate this 
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issue, both Lima Sanches et al. (2015) and Yamaya et al. (2017) only compare the gaze line to 

a certain number of nearby text lines (we set this parameter to 3, which is effectively the closest 

line plus one line above and one line below).  

 

Merge  

The merge algorithm is closely based on the post-hoc correction method described by 

Špakov et al. (2019). The algorithm begins by creating “progressive sequences”— consecutive 

fixations that are sufficiently close together. This is similar to chain, except that the 

sequences are strictly progressive (they only move forward), so a regression will initiate a new 

progressive sequence. The original method uses several parameters to define what constitutes 

“sufficiently close together,” but here we boil this down to a single parameter, the y_thresh, 

which determines how close the y values of two consecutive fixations must be to be considered 

part of the same progressive sequence (we use 32 px).  

Once these sequences have been created, they are repeatedly merged into larger and 

larger sequences until the number of sequences is reduced to m, one for each line of text. On 

each iteration of the merge process, the algorithm fits a regression line to every possible pair 

of sequences (with the proviso that the two sequences must contain some minimum number of 

fixations). If the absolute gradient of the regression line or its error (root-mean-square 

deviation) is above a threshold (we use 0.1 and 20 respectively), the candidate merger is 

abandoned. The intuition here is that, if two sequences belong to the same text line, the 

regression line fit to their combined fixations will have a gradient close to 0 and low regression 

error. Of the candidate mergers that remain, the pair of sequences with the lowest error are 

merged and added to the pool of sequences, replacing the original two sequences and reducing 

their number by one. This process is repeated until no further mergers are possible.  
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The algorithm then enters the next “phase” of the process, in which the criteria are 

slightly relaxed, allowing more mergers to occur. These phases could in principle be defined 

by the user, but we follow the four-phase model reported by Špakov et al. (2019), which 

effectively builds a set of heuristics into the algorithm. In Phase 1, the first and second 

sequences must each contain a minimum of three fixations to be considered for merging; in 

Phase 2, only the second sequence must contain a minimum of three fixations; in Phase 3, there 

is no minimum number of fixations; and in Phase 4, the gradient and regression error criteria 

are also entirely removed. Of course, as soon as the number of sequences is reduced to m the 

algorithm exits the merge process, so not all four phases will necessarily be required. Finally, 

the set of m sequences is matched to the set of text lines in positional order: The sequence with 

the smallest mean y value is mapped to line one and so forth.  

A similar sounding method is reported by Beymer and Russell (2005) whose technique 

is based on “growing” a gaze line by incrementally adding fixations until this results in a poor 

fit to a regression line, at which point a new gaze line is begun. However, the description of 

the method lacked sufficient detail for us to consider it further.  

 

Regress  

The regress algorithm, which is closely based on Cohen’s (2013) R package 

FixAlign, treats the fixations as a cloud of unordered points and fits m regression lines to this 

cloud. These regression lines are parameterized by a slope, vertical offset, and standard 

deviation, and the best parameters are obtained by minimizing3 an objective function that 

determines the overall fit of the lines through the fixations. The algorithm has six free 

parameters which are used to specify the lower and upper bounds of the slope, offset, and 

 
3 In both the regress and stretch algorithms, we used the minimize function from the Python library SciPy 

(Virtanen et al., 2020). We have not systematically compared the choice of optimizer settings.  
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standard deviation. Here we directly adopt FixAlign’s defaults: [−0.1, 0.1], [−50, 50], and [1, 

20] respectively. Once the m best-fitting regression lines are obtained, regress assigns each 

fixation to the highest-likelihood regression line, which itself is associated with a text line.  

regress tracks FixAlign very closely, except that we did not implement the “run 

rule,” an option that is switched on by default in FixAlign. This option maps ambiguous 

fixations to the same line as the surrounding fixations, if the surrounding fixations were 

classified unambiguously (Cohen, 2013, p. 680). Cohen’s run rule is a more general method 

that could in principle be applied to the output of any algorithm, so in the interest of isolating 

the core concept of FixAlign and comparing all algorithms on a level playing field, we did not 

to implement the option here.  

regress has some conceptual similarities with merge but differs in several 

important respects. Notably, regress takes a top-down approach, where merge is more 

bottom-up, and the regression lines that regress fits to the fixations cannot take independent 

values—it is assumed that all fixations are sloping in the same direction, with the same vertical 

offset, and with the same amount of within-line variance. In addition, unlike merge, 

regress does not utilize the order information; instead, like cluster, it views the fixations 

as a collection of unordered points.  

 

Segment  

The segment algorithm is a slight simplification of the method described by Abdulin 

and Komogortsev (2015). The fixation sequence is first segmented into m disjoint 

subsequences based on the m−1 most extreme backward saccades along the x-axis (i.e., the 

saccades that are most likely to be return sweeps). These subsequences are then mapped to the 

lines of text chronologically, under the assumption that the lines of text will be read in order. 

Abdulin and Komogortsev (2015) do not state precisely how they identify the return sweeps, 
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but it seems they potentially allow for more than m subsequences to be identified, in which 

case, rereadings of a previous line, based on a threshold level of similarity, are discarded. The 

version of the algorithm considered here does not discard any fixations and instead always 

identifies exactly m subsequences.  

The advantage of this general approach, as emphasized by Abdulin and Komogortsev 

(2015), is that the y values of the fixations are completely ignored, rendering any vertical drift 

entirely invisible to the algorithm. However, the approach does not allow for the possibility 

that the lines of text might be read out of order or that a line of text might be read more than 

once, which is not uncommon in normal reading behavior. Therefore, the great strength of 

segment—its identification of m consecutive subsequences, permitting a chronological, as 

opposed to positional, mapping—is also its great weakness: If a large regression is mistakenly 

identified as a return sweep, this will lead to a catastrophic off-by-one error in subsequent line 

assignments.  

 

Split  

As far as we know, the split algorithm takes an approach that is distinct from any 

thing previously reported, although it is conceptually similar to segment. Like segment, 

the split algorithm works on the principle of splitting the fixation sequence into 

subsequences by first identifying the return sweeps. However, split is not restricted to 

finding exactly m−1 return sweeps; instead, it identifies the most likely set of return sweeps, 

however many that turns out to be. There are various ways of approaching this classification 

problem, but here we use k-means clustering to partition the set of saccades into exactly two 

clusters. Since return sweeps are usually highly divergent from normal saccades (i.e., a return 

sweep is usually represented by a large negative change on the x-axis), one of the two clusters 

will invariably contain the return sweeps, which can then be used to split the fixation sequence 
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into subsequences. However, since this is not guaranteed to produce m−1 return sweeps (and 

therefore m subsequences), an order-based mapping is not possible, so split must use 

absolute position: Subsequences are mapped to the closest text lines in absolute terms. split 

has the advantage of generally finding all true return sweeps, and even if it identifies some 

false positives, the resulting subsequences can still be mapped to the appropriate lines by 

absolute position. However, this also means the algorithm is less resilient to vertical drift 

issues.  

 

Stretch  

The stretch algorithm is loosely based on the method proposed by Lohmeier (2015) 

and shares some similarities with Martinez-Gomez et al. (2012) and Nüssli (2011). Lohmeier’s 

(2015) original method was designed for the reading of source code and therefore takes 

advantage of the fact that code has very irregular line lengths and indentation levels. The 

method works by finding an x-offset, y-offset, and scaling factor that, once applied to the 

fixations, minimizes alignment error between the fixations and lines of text.  

The framework we adopt herein never adjusts the x values, and we also assume that an 

ordinary passage of text is being read, so line length is substantially more constant than during 

code reading and therefore less informative. Therefore, we simplified the original method by 

dispensing with all dependencies on the x values. Instead, stretch finds a y-offset, o∗, and 

a vertical scaling factor, s∗, that minimizes the sum absolute difference between the corrected 

fixation positions (fy s + o) and the corrected fixation positions once attached to their closest 

lines. The equations presented in Lohmeier (2015, pp. 37–38) therefore simplify to:  
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where attach(·) returns the y-axis position of the nearest line of text. In other words, the 

algorithm seeks a transformation of the fixations that results in minimal change following the 

application of attach.  

To constrain the minimization problem, the user must specify appropriate lower and 

upper bounds for the offset and scaling factor, resulting in four free parameters. Here we adopt 

offset bounds of [−50, 50], following the regress algorithm, and scaling factor bounds of 

[0.9, 1.1]. Effectively, this means the algorithm can move the set of fixations up or down by 

up to 50 pixels and stretch their positions on the vertical axis by between 90% and 110%. While 

approaching the problem from a different angle, stretch is computationally similar to 

regress, except that it emphasizes systematic offset issues rather than systematic slope 

issues.  

 

Warp  

The final algorithm we consider, warp, is novel to this paper, although it is mostly a 

wrapper around a preexisting algorithm—dynamic time warping (DTW; Sakoe & Chiba, 1978; 

Vintsyuk, 1968). DTW was used by the compare algorithm to provide a measure of 

dissimilarity between a gaze line and a text line. To our knowledge, however, there have been 

no previous reports of DTW being used directly to align fixations to text lines. This is 

somewhat surprising because DTW is the natural computational choice for tackling drift and 

alignment problems. The closest previously-described method is Carl (2013), who uses a 

basket of reading-related measures to place a cost on different paths through a lattice of 

fixation-to-character mappings and selects the path with minimal cost. This is quite complex, 

however, and we consider it to be a special case of warp, which is a direct application of the 

standard DTW algorithm to eye-tracking data.  
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Figure 2 Illustration of the warp algorithm. The veridical fixation sequence is represented in 

blue, and the expected fixation sequence (the sequence of word centers) is represented in red. 

The dashed black lines show the DTW warping path—the optimal way to align the two 

sequences, such that the sum of the Euclidean distances between matched points (i.e., the sum 

of the dashed lines) is minimized.  

 

DTW is typically useful when you have two sequences, not necessarily of the same 

length, and you want to (a) calculate how similar they are (as is the case in the compare 

algorithm) or (b) align the two sequences by mapping each element in one sequence to a 

corresponding element in the other. For example, DTW may be used to calculate the similarity 

between a signature, which can be expressed as a sequence of xy-coordinates over time, and a 

reference signature (e.g., Lei & Govindaraju, 2005; Riesen et al., 2018). Importantly, the two 

sequences do not need to be perfectly matched in terms of overall magnitude or patterns of 

acceleration and deceleration for a good alignment to be found. In the case of signature 

verification, for example, it does not matter if the candidate signature has the same size as the 

reference or that it was drawn at the same speed, what matters is that there is a good match in 

the overall shape and that the strokes were drawn in the same order. DTW finds many other 

applications in, for example, genomics (Aach & Church, 2001), medicine (Caiani et al., 1998), 

and robotics (Vakanski et al., 2014).  
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In order to use DTW to realign the fixation sequence to the text, we first need to specify 

an expected fixation sequence. Since we expect the reader to traverse the passage from left to 

right and from top to bottom, we can use the series of word centers as the expected sequence, 

under the assumption that readers will target the centers of words (O’Regan et al., 1984). Given 

the expected and veridical sequences as inputs, the DTW algorithm finds the optimal way to 

nonlinearly warp the sequences on the time dimension such that the overall Euclidean distance 

between matched points across the two sequences is minimized, while maintaining a 

monotonically increasing mapping.4 In the “warping path” that results from this process, every 

fixation is mapped to one or more words and every word is mapped to one or more fixations 

(see Fig. 2 for an example). It is then simply a case of assigning each fixation to whichever line 

its mapped word(s) belong(s) to. In the unlikely event that the mapped words belong to 

different lines, the majority line wins or an arbitrary choice is made in the case of ties.  

 

 

Table 1 Information utilized by the algorithms 

 

 
4 Specifically, the first fixation must be mapped to (at least) the first word; the last fixation must be mapped to (at 

least) the last word; every other fixation must be mapped to at least one word; and, if fixation i is mapped to word 

j, then fixation i+1 must be mapped to word(s) ≥ j. And vice versa for the mapping from words to fixations.  
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If the final fixation on line i were mapped to the first word on line i+1, this would result 

in a large increase in the overall cost of the mapping, so line changes act as major clues about 

the best alignment. The upshot of this is that warp effectively segments the fixation sequence 

into exactly m subsequences, which are mapped to the lines of text in chronological order. In 

this sense, warp behaves very much like segment. However, the additional benefit of warp 

is that it can simultaneously consider different possibilities about which saccades are the return 

sweeps, selecting only those that result in the best fit to the passage at a global level. 

Nevertheless, warp is ultimately limited by the veracity of the expected fixation sequence, 

which encodes one particular way of reading the passage—line by line from start to end. If the 

reader deviates from this assumption (e.g., by rereading or skipping lines), warp can fail to 

correctly assign fixations to lines.  

 

Summary  

In this section we have described ten algorithms for aligning a fixation sequence to a 

multiline text, each of which takes a fundamentally different approach. A summary of the 

information utilized by the algorithms is provided in Table 1; each algorithm uses at least one 

piece of information about the fixations and at least one piece of information about the passage, 

and some also rely on additional parameters set by the user or built-in heuristics.  

Broadly speaking, the algorithms proceed in three stages, analysis, assignment, and 

update the one exception being attach which has no analysis stage. In the analysis stage, the 

fixations are analyzed, transformed, or classified in some sense. The rationale behind this 

process varies by algorithm, but in general the algorithms can be categorized into those that 

classify the fixations into m groups (i.e., one group per text line; cluster, merge, 

regress, segment, and warp) and those that do not (attach, chain, compare, 

split, and stretch).  
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Table 2 Summary of the analysis and assignment stages of each algorithm 

 

In the assignment stage, the fixations are assigned to text lines. If the analysis stage 

does not produce m groups, then assignment must be based on absolute position (or similarity 

in the case of compare, although it still uses absolute position to select neighboring lines to 

compare to). If the analysis stage does produce m groups, then they can be assigned to text 

lines based on order; this generally allows for better handling of vertical drift because absolute 

position is ignored. In the case of cluster, merge, and regress, which produce unordered 

groups at the analysis stage, groups are matched to text lines based on the order in which they 

are positioned vertically (i.e., mean y value). In the case of segment and warp, the groups 

are assigned to text lines in chronological order, which is only possible because these two 
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algorithms produce subsequences that inherit the order of the original fixation sequence. An 

overview of the analysis and assignment methods is provided in Table 2 for quick reference.  

Finally, in the update stage, the original fixation sequence is modified to reflect the line 

assignments identified in the previous stage. In the versions of the algorithms reported in this 

paper, we always use the same update approach: The y values of the fixations are adjusted to 

the y values of the assigned lines, while the x values and the order of the fixations are always 

left untouched. In principle, however, there are other ways of performing the update stage (e.g., 

retaining the original y-axis variance or discarding ambiguous fixations).  

 

Performance on Simulated Data 

We now test the ability of each algorithm to correctly recover the intended lines from 

simulated fixation sequences. These fixation sequences are simulated with particular 

characteristics, allowing us to understand how the algorithms respond to specific, isolated 

phenomena.  

 

Method  

In each simulation, we generate a passage of “Lorem ipsum” dummy text consisting of 

between 8 and 12 lines with up to 80 characters per line and 64 px of line spacing. We then 

generate a fixation sequence consisting of one fixation for every word in the passage: The x 

value of a fixation (fx) is set randomly within the word; the y value of a fixation (fy) is calculated 

according to:  

 

where ly is the vertical center point of the intended line—the y value that the reader is targeting. 

This models three types of distortion: noise, slope, and shift. Additionally, we simulate two 



79 

types of regression that are characteristic of normal reading behavior but which can 

nevertheless disrupt algorithmic correction. Together, these five phenomena are illustrated in 

Fig. 3 and described below.  

Noise Distortion  

The noise distortion parameter, dnoise, controls the standard deviation of the normally 

distributed noise around the intended line and represents imperfect targeting by the reader 

and/or measurement error. In our exploration of this parameter, we use values of dnoise = 0, 

representing no noise, through dnoise = 40, representing extreme noise. The noise parameter is 

also a proxy for line spacing (raising the noise level effectively corresponds to tightening the 

line spacing), so this parameter also provides an indication of how the algorithms will perform 

under different degrees of line spacing.  
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Figure 3 Example simulated fixation sequences under five phenomena considered in this 

paper. The algorithms must overcome these phenomena in order to correctly infer the intended 

line of each fixation.  

 

Slope Distortion  

The slope distortion parameter, dslope, controls the extent to which fixations 

progressively move downward as the reader moves from left to right across the passage; 

fixations on the left edge of the passage will be correctly located, but for every one pixel the 
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reader moves to the right, the fixations will drift downward by dslope pixels. Unlike noise, this 

is solely attributable to measurement error. In our exploration of this parameter, we use values 

of dslope = −0.1, representing extreme upward slope, through dslope = 0.1, representing extreme 

downward slope.  

Shift Distortion  

The shift distortion parameter, dshift, controls the extent to which fixations progressively 

move downward as the reader moves from one line to the next; fixations on the first line will 

be correctly located, but for every one pixel of intentional downward movement, the fixations 

will drift downward by a further dshift pixels. Like slope, this represents systematic 

measurement error. Our exploration of this parameter uses values of dshift = −0.2, representing 

extreme upward shift, through dshift = 0.2, representing extreme downward shift.  

Within-Line Regression  

As mentioned above, we also consider the effects of two types of regression. The first 

of these is within-line regressions, which is where the reader momentarily jumps back to a 

previous point in the current line. The extent to which the reader performs within-line 

regressions is formalized by a probability. If this probability is set to 1, the reader will perform 

a regressed fixation after every normal fixation, doubling the number of fixations on the line; 

if the parameter is set to 0, the reader will never perform a regression within the line. The x 

position of the regressed fixation is located randomly between the start of the line and the 

current fixation with longer regressions being linearly less probable than shorter regressions. 

The y value of the regressed fixation follows Equation 2.  

Between-Line Regression  

The second type of regression, between-line regressions, is where the reader rereads 
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text from a previous line. Between-line regressions are expressed in terms of the probability 

that the reader will go back to a previous line at some point during reading of the current line. 

Once the regression is completed, the reader returns to the point in the passage before the 

regression occurred. If the parameter is set to 1, the reader will reread part of a previous line 

for every line they read; if it is set to 0, the reader will never perform a regression to a previous 

line. When a between-line regression occurs, the previous line is determined randomly, with 

more recent lines linearly more probable than less recent lines; the section of the previous line 

is determined randomly by two uniformly distributed x values. The y values of the regressed 

fixations follow Equation 2.  

Results  

For each phenomenon, we ran 100 simulations for each of 50 gradations in the 

parameter space, and each of these 5000 simulated reading scenarios was corrected by all ten 

algorithms. Accuracy is measured as the percentage of fixations that were correctly mapped 

back to the target line. Before describing the results, there are three important things to note. 

Firstly, the extreme values we have chosen for each phenomenon are arbitrary, so the 

algorithms should only be compared within, and not across, phenomena.5 Secondly, we have 

not modeled the interactions between phenomena because it is inherently difficult to explore 

the effects of five dimensions on accuracy and it is not clear how the dimensions should be 

weighted a priori. Thirdly, for the algorithms that have free parameters (chain, compare, 

merge, regress, and stretch), we use the default parameter settings defined in the 

previous section. We have not systematically manipulated the parameter settings because (a) 

this would result in an explosion in the number of algorithm/parameter combinations that we 

 
5 For example, regress appears to have worse performance on shift compared to slope; however, if we had 

simulated a narrower range of shift values, the results might have led us to the opposite conclusion.  
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must consider, (b) manipulating a parameter to deal with one phenomenon can have unexpected 

consequences for other phenomena,6 and (c), in a sense, these algorithms ought to incur a 

penalty for not being parameter-free.  

Performance on Noise  

Results for the noise distortion parameter are shown in Fig. 4a. Under zero noise, all 

algorithms perform at 100% accuracy, but six of the algorithms are adversely affected by noise 

when it reaches a sufficiently high level of around 10: Of these, chain performs best, closely 

followed by attach, then cluster, regress, and stretch, and finally merge. Of the 

remaining algorithms, compare and split are highly resilient to noise, while segment 

and warp are entirely invariant.  

Performance on Slope  

In terms of slope distortion (Fig. 4b), when the parameter is set to zero, all algorithms 

perform perfectly, but as the slope becomes more extreme (in either the upward or the 

downward direction), five of the algorithms experience a sustained loss in accuracy. Of these, 

cluster and stretch generally perform best and, initially at least, attach performs 

worst; chain and split initially perform better than attach, but are eventually 

outperformed. Interestingly, although regress is mostly resilient to slope, it has two weak 

spots around the values of −0.03 and 0.03. When the slope takes one of these values, regress 

struggles to disambiguate between (a) zero offset combined with the appropriate slope and (b) 

a large offset combined with slope in the opposite direction; if it selects the wrong option, 

fixations on one half of the passage will be misaligned, causing a substantial drop in accuracy. 

 
6 For example, if the standard deviation bounds of regress are widened, it may be possible to improve performance 

on noise, but the algorithm will be less capable of dealing with slope.  
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This reveals a hidden weakness of the regress algorithm, and we will see an example of it 

later. Of the remaining algorithms, compare and merge are highly resilient to slope, while 

segment and warp are invariant.  

Performance on Shift  

In terms of shift (Fig. 4c), when the parameter is zero, all algorithms perform perfectly, 

but as it becomes more extreme, five of the algorithms—attach, chain, regress, 

split, and stretch—drop in accuracy. In fact, attach, chain, and split produce 

identical results in the case of shift because they are all fundamentally reliant on absolute 

position. Somewhat surprisingly, stretch does not perform especially well on shift. This is 

because stretch can only handle up to one full line of shift; any more than this and the 

bounds have to be relaxed, but this results in an objective function with multiple maxima which 

is difficult to optimize. The compare algorithm is mostly resilient to shift, while the 

remaining four algorithms—cluster, merge, segment, and warp—are invariant.  
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Figure 4 Mean accuracy of the ten algorithms in response to the five eye-tracking phenomena. 

For example, some algorithms (attach, chain, cluster, merge, regress, and 

stretch) are adversely affected as the noise level is increased, while the other algorithms 

are either resilient to noise (compare and split) or entirely invariant to noise (segment 

and warp). The plotted lines have been vertically staggered to aid visualization. 
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Performance on Within-Line Regression  

Results for within-line regressions are shown in Fig. 4d. When there are no within-line 

regressions, all algorithms perform at 100%, but three of the algorithms drop off as the 

probability of within-line regression is increased. Of these, compare and segment track 

each other quite closely because they rely on identifying the return sweeps; merge is generally 

quite resilient, except when the parameter is around 0.7–0.9 because these values cause a large 

number of progressive sequences to be generated which cannot then be merged very freely, so 

the merge process tends to get trapped in local minima (i.e., bad mergers that happen early on 

cannot later be reverted). Of the remaining algorithms, split7 and warp are highly resilient, 

while attach, chain, cluster, regress, and stretch are invariant.  

Performance on Between-Line Regression  

In terms of between-line regressions (Fig. 4e), four algorithms are negatively impacted 

by increases in this parameter. Of these, compare and split can in principle find more than 

m gaze lines, but they have difficulties identifying when a between-line regression occurs, 

while segment and warp are limited to identifying exactly m gaze lines in strictly sequential 

order, so they fundamentally cannot handle between-line regressions. Of the remaining 

algorithms, merge is resilient to between-line regressions, while attach, chain, 

cluster, regress, and stretch are entirely invariant.  

Summary  

In this section, we have simulated five eye-tracking phenomena that are particularly 

 
7 Unlike compare and segment, even if split misidentifies a regression as a return sweep, it will still be able to 

map the resulting gaze line to the appropriate text line because it assigns based on position rather than order.  
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relevant to understanding the performance characteristics of the algorithms. Fig. 5 summarizes 

how accurately the algorithms perform on each phenomenon. No single algorithm is 

invariant—or even resilient—to all phenomena, although merge and warp come quite close: 

merge is only weak on noise, while warp is only weak on between-line regressions. In 

general, there tends to be a tradeoff between how well an algorithm can handle distortion and 

how well it can handle regressions; the ability to deal with one tends to come at the cost of the 

other. Nevertheless, in real world scenarios, performance will very much depend on the degree 

and relative prevalence of the phenomena. Furthermore, there are likely to be other important 

forms of measurement error and reading behavior that we have neglected to consider here, and 

those that we have considered are likely to interact in complex, unpredictable ways. It is 

therefore important to test the algorithms against natural eye-tracking data to get a more holistic 

understanding of their performance.  

 

Figure 5 Mean accuracy of the algorithms for each of the eye-tracking phenomena. Darker 

cells indicate phenomena that an algorithm performs well on. A checkmark indicates that the 

algorithm is entirely invariant to the phenomenon in question, scoring 100% in all 5000 

simulations.  
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Performance on Natural Data 

In this section, we test the algorithms against an eye-tracking dataset that has been 

manually corrected by human experts. Unlike the simulations, there is no ground truth, and we 

cannot isolate particular phenomena; however, the benefit of this approach is that the 

phenomena are combined in a realistic way, allowing us to estimate how well the algorithms 

are likely to perform in real-world scenarios. 

Method  

We tested the algorithms on an eye-tracking dataset collected by Pescuma et al. (in 

prep.), which includes reading data for both adults and children, allowing us to test the 

algorithms on two distinct populations. Our general approach is illustrated in Fig. 6 and 

discussed over the following sections.  

The Dataset  

Pescuma et al. (in prep.) collected eye-tracking data for 12 passages from Italian 

children’s stories (e.g., a passage from Goldilocks). The passages were around 130 words in 

length, spanning 10–13 lines and were presented in 20-point Courier New (each character 

occupying around 0.45 degrees of visual angle). Either of two sets, each comprised of six 

passages, was administered for silent reading to a large sample of children aged 8–12 (N = 141) 

and a smaller sample of adult controls (N = 33) for a total of 877 reading trials. Eye movements 

were recorded using a tower mounted EyeLink 1000 Plus eye tracker (SR Research, Toronto, 

Canada) for which a typical accuracy of 0.25–0.50 degrees is reported by the manufacturer. 

Recording was monocular (right eye) with a 1000 Hz sampling rate.  
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Figure 6 Pipeline for testing the algorithms on a natural dataset. The original dataset was first 

reduced to a smaller sample, which then underwent some initial cleaning steps. This cleaned 

dataset was then corrected by the ten algorithms and two human correctors, whose corrections 

were merged to form the gold standard. Performance is measured by how closely the 

algorithmic corrections match the gold standard correction.  

 

Selection of the Sample for Manual Correction  

Since it was impractical to manually correct all 877 trials (to do so would require 

months of work), we selected a sample for manual correction. For each of the 12 passages, we 

selected two reading trials by adult participants and two reading trials by child participants, for 

a total of 48 trials (5.5% of the full dataset). The reading trials were selected pseudorandomly 

such that no single participant was represented more than once. Additionally, we manually 

checked and adjusted the sample to ensure it contained an equal balance of easy and 

challenging cases, as well as examples of all the various eye-tracking phenomena discussed 

previously.  

Initial Data Cleaning  

We performed two initial cleaning steps in order to isolate the core problem of line 

assignment from two extraneous issues. Firstly, any fixation that was located more than 100 

px from any character in the passage was removed (i.e., out-of-bounds fixations that occur in 

the margins or off-screen). This is because the algorithms are not designed to detect and discard 

these fixations, and such cases can hinder their ability to match fixations to the appropriate 
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lines. Secondly, prior to reading a passage and on its completion, a reader’s fixations will 

typically jump around the text unpredictably; again, since the algorithms are not designed to 

automatically discard such fixations, we manually removed any such cases from the starts and 

ends of the fixation sequences, allowing the algorithms to concentrate on the core problem of 

assigning fixations to lines.  

Manual Correction Procedure  

The cleaned sample dataset was corrected independently by two human correctors 

(JWC and VNP). To perform the correction, each corrector studied plots of the participants’ 

fixation sequences and recorded, fixation by fixation, which line each one belonged to, guided 

by fixation position, saccade trajectories, textual cues, and fixation duration, as well as general 

knowledge of eye tracking and reading behavior. Unlike the algorithms, the human correctors 

also had the option to discard fixations as they saw fit. This is because there were cases where 

it was clear a fixation should be discarded—for instance, due to spatial misplacement or ultra-

short duration—and it would have therefore felt disingenuous to assign these cases to a line 

anyway.  

Across the 48 reading trials, the correctors initially disagreed on 299 of 10,245 fixations 

(2.9%). Of these 299 disagreements, only 15 related to which line a fixation was assigned to; 

on inspection, all 15 cases turned out to be human error on the part of one corrector or the other. 

The other 284 disagreements related to whether or not a fixation should be discarded; following 

discussion of these cases, the correctors reached consensus about how these fixations should 

be treated. This resulted in a single manual correction, which we consider to be the gold 

standard against which the algorithms can be evaluated. In this gold standard correction, a total 

of 255 fixations were discarded across all 48 trials (2.5%; 5.3 fixations per trial).  

It is interesting to note that, although the two correctors had slightly different intuitions 
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about when it was appropriate to discard a fixation, they essentially had perfect agreement 

about which line a fixation ought to be assigned to if it was retained. This suggests that the 

correction of vertical drift is actually quite objective—there is usually an unequivocally correct 

solution to any given trial, even if that solution may be difficult and time-consuming to obtain.  

Results  

We analyze the performance characteristics of the algorithms in four ways. Firstly, we 

look at how the algorithms fare against the gold standard manual correction; secondly, we look 

at what proportion of trials are likely to be usable following drift correction; thirdly, we look 

at how the algorithms perform in comparison to using no drift correction at all; and finally, we 

look at how the algorithms relate to each other, regardless of their accuracy.  

Figure 7 Accuracy of the algorithms on adult reading trials (circles) and child reading trials 

(triangles). The y-axis measures the percentage of fixations assigned to the correct line, as 

defined by the gold standard manual correction. The filled points, linked together by dashed 

lines, correspond to the two example trials illustrated in Figs. 8 and 9. The black bars show 

median accuracy for the adults (solid bars) and children (broken bars).  
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Accuracy against the Gold Standard  

As with the simulations, accuracy is measured as the percentage of fixations that the 

algorithm mapped to the correct line; the ground truth is defined by the gold standard manual 

correction. In cases where the correctors chose to discard a fixation, the algorithm is 

automatically wrong, which amounts to a constant baseline level of error that all algorithms 

suffer from equally. Fig. 7 plots accuracy on the 48 sample trials by algorithm. The most 

striking result is compare with overall median accuracy of 61.2%, substantially worse than 

all other algorithms.8 This contrasts with our simulations, which indicated that compare 

should at least be relatively strong on distortion. The reason for this discrepancy is that the 

simulated fixation sequences were generated directly from the lines of text with one fixation 

per word, so the artificial gaze lines that compare identified tended to be very horizontally 

similar to the artificial text lines. In the natural dataset, however, this is not the case; when the 

data contains a lot of natural noise and regressions, gaze lines cannot be reliably matched to 

text lines based on similarity, even if the set of candidate text lines is narrowed down to the 

three closest neighbors. Given that compare exhibited such poor performance, we consider it 

to be an algorithmic deadend and do not discuss it any further.  

 
8 This concurs with the 60% accuracy reported by Lima Sanches et al. (2015, p. 1231). Yamaya et al. (2017, p. 

104), who describe a slightly more complex method with better sweep detection, report accuracy of 87%, which 

is still quite low compared to the other results obtained in this paper.  
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Figure 8 Original data and corrections of an adult trial. Fixations in red have been assigned to 

the wrong line. The algorithmic corrections correspond to the filled circles in Figs. 7 and 11.  
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Figure 9 Original data and corrections of a child trial. Fixations in red have been assigned to 

the wrong line. Fixations that were discarded in the gold standard manual correction are shown 

in gray. The algorithmic corrections correspond to the filled triangles in Figs. 7 and 11.  
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Figure 10 Proportion of trials that surpassed (a) 90%, (b) 95%, and (c) 99% accuracy, and (d) 

the proportion of corrections deemed acceptable by two human raters. The dark and light bars 

represent the adult and child datasets respectively.  

 

Of the remaining algorithms, median accuracy is typically around 95%, the worst 

performer being attach at 92% and the best performer being warp at 97.3%. Accuracy on 

child trials tends to be lower and more variable than accuracy on adult trials; however, the 

difference in medians was usually quite small. The major exception to this was segment for 

which median accuracy on adult trials was 97.3%, while median accuracy on child trials was 

81.3%, making segment one of the best algorithms in terms of adult data but one of the worst 

in terms of child data. This may be because children tend to perform more regressions (e.g., 

Blythe & Joseph, 2011) and have more disfluent return sweeps (e.g., Parker et al., 2019), both 

of which create obstacles for the segment algorithm.  

Median performance alone conceals the fact that accuracy is often highly variable and 

long tailed. In the best case scenario, an algorithm will produce a perfect correction that is 

identical to the gold standard—all algorithms (even compare) scored 100% in at least one 

trial. In the worst case scenario, an algorithm will perform as low as 10–30% accuracy. In 

addition, the algorithms often differ markedly on particular trials. We have highlighted this in 
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Fig. 7 by singling out two trials, one by an adult and one by a child, which are represented by 

the filled data points that are linked together with dashed lines. Algorithmic corrections of the 

adult trial (filled circles) are depicted in Fig. 8. In this particular case, compare, segment, 

and warp were able to correctly recover the intended line of every fixation. However, the trial 

presented problems for some of the other algorithms; in particular, attach failed to handle 

the upward shift in the lower left quadrant of the passage, and regress misinterpreted the 

situation as a case of upward slope, resulting in fixations on the right hand side of the passage 

being forced down by one line, a potential weakness highlighted by our simulations. 

Fig. 9 depicts the algorithmic corrections of the child reading trial, which are 

represented by the filled triangles in Fig. 7. Performance on this trial is much worse due to the 

large amount of noise. cluster, for example, has struggled to correctly classify the fixations 

due to the large amount of overlap between fixations intended for adjacent lines, and segment 

has identified one particularly long within-line regression as a return sweep, resulting in some 

misalignment in the middle of the passage. Only warp was able to recover the intended lines 

for the majority of fixations, and the few errors it did make appear to be cases where the 

correctors chose to discard some fixations. Overall, these two example trials highlight that, 

although the algorithms have a similar level of performance on average, performance on a 

particular trial can be quite divergent depending on its particular characteristics. Illustrated 

corrections of all 48 trials by each algorithm can be found in Supplementary Item 2.  

Proportion of Corrections Likely to be Usable  

Fig. 10 reports the proportion of corrections that surpassed an accuracy level of 90%, 

95%, and 99% by algorithm. If you are willing to accept relatively low accuracy at the trial 

level (e.g., 90%, Fig. 10a), then cluster, merge, and stretch will provide the best 

performance—a large proportion of corrections will meet this criterion. In comparison, if you 
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have more stringent accuracy requirements at the trial level (e.g., 99%, Fig. 10c), then 

segment, split, and warp are likely to provide better performance. Of course, the cost of 

a more stringent accuracy criterion is that fewer corrections will be usable overall, and it is not 

possible to know which trials have low accuracy in the absence of manual correction data. This 

highlights the fact that it is currently not possible to confidently achieve a high level of accuracy 

in a high proportion of trials, so researchers may still need to invest a significant amount of 

time if a high level of accuracy is demanded.  

 

Figure 11 Improvement in accuracy in comparison to performing a standard eye-tracking 

analysis with no drift correction. The y-axis measures the percentage point increase (or 

decrease) in accuracy beyond the baseline accuracy of the attach algorithm. The filled 

points, linked together by dashed lines, correspond to the two example trials illustrated in Figs. 

8 and 9. The black bars show median improvement for the adults (solid bars) and children 

(broken bars).  

 

To estimate how usable the corrections are likely to be to a typical researcher, we 

performed a more subjective analysis of their quality. All 480 algorithmic corrections were 

presented blind and in random order to two raters (JWC and VNP), who independently 

classified every correction as either “acceptable” or “needs more work.” The raters did not 

discuss in advance what criteria they would use to make these judgments, but agreement was 

nevertheless very high at 94%. In addition to the overall number of errors, the raters weighed 
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up other factors, such as how the errors were distributed over the passage, how challenging the 

input data seemed to be, and what effect the errors might have for downstream analyses. The 

results, which are shown in Fig. 10d, suggest that cluster, merge, and stretch are likely 

to produce very satisfactory results on adult data.  

Improvement over no Drift Correction  

Another way to measure performance is in terms of how much of an improvement an 

algorithm provides in comparison to applying no drift collection at all. To estimate this, we 

first need to define a baseline level of accuracy. As mentioned previously, the attach 

algorithm essentially corresponds to a standard eye-tracking analysis; it is equivalent to 

drawing maximal, nonoverlapping bounding boxes around the words in a passage and then 

mapping fixations to whichever bounding box they fall into (as would be the case in a standard 

analysis of eye-tracking data using the widely adopted Area-of-Interest paradigm). Therefore, 

we can estimate the potential improvement that a given algorithm offers by comparing its 

accuracy to the accuracy of the attach algorithm.  

The results of this analysis are plotted in Fig. 11. The y-axis shows the percentage point 

increase (or decrease) in accuracy that results from applying vertical drift correction. The zero 

line represents the baseline of no drift correction (equivalent to attach). As before, the 

datapoints themselves tell us a lot more than the medians. The chain and split algorithms 

tend to be quite conservative, while the others tend to have more extreme effects. In the best 

case, cluster resulted in a 77 percentage point increase in accuracy in comparison to leaving 

the data uncorrected (i.e., attach = 19%, cluster = 96%); while in the worst case, 

regress resulted in an 81 percentage point drop in accuracy, badly corrupting the original 

input data (i.e., attach = 88%, regress = 7%).  
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These results highlight that, although in most cases the application of vertical drift 

correction can improve data quality, the process is not without risk. Furthermore, there is 

potentially more to gain from applying drift correction to child data, since the baseline level of 

accuracy tends to be lower to begin with; for example, warp offered a modest 2.1 percentage 

point increase in accuracy on adult data but an 8.2 percentage point increase on child data.  

Relationships between Algorithms  

As noted above, some algorithms tend to produce very similar output where others 

produce quite different output. This raises the issue of how the algorithms relate to each other 

regardless of their performance characteristics on real or simulated data. To investigate this, 

for each pair of algorithms, we measured the DTW distance between the corresponding 

algorithmic corrections of each of the 48 sample trials and took the median distance as an 

estimate of how dissimilar those two algorithms are.9 We then analyzed the pairwise distances 

in two ways.  

Firstly, we used agglomerative hierarchical clustering to produce a dendrogram (see 

Fig. 12a), which yields an approximate taxonomy of the algorithms based on their similarity. 

The root node represents all algorithms, which initially fork into two major groups. The 

“sequential algorithms,” segment and warp, both operate on the principle of identifying the 

return sweeps and mapping the resulting subsequences to the lines of text in sequential order; 

in other words, their analysis stages can only produce groups consisting of fixations that were 

arranged consecutively in the original fixation sequence. This means they tend to produce 

similar outcomes—they both, for example, force fixations onto inappropriate lines in order to 

preserve sequentiality. Of the “positional algorithms,” split is the first to branch off, perhaps 

 
9 Since compare was highly divergent from all other algorithms due to its poor performance, it is not included in 

this analysis.  
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because—like the sequential algorithms—it leans heavily on the return sweeps, and among the 

remaining algorithms, there is a clear dichotomy between those that assign based on relative 

position (cluster, merge, regress, and stretch) and those that assign based on 

absolute position (attach and chain).  

Secondly, we used multidimensional scaling to locate the algorithms in some latent 

“algorithm space.” Fig. 12b shows the output of this analysis projected into two hypothetical 

dimensions: Algorithms that are close together in this space tend to produce similar results, 

while algorithms that are far apart tend to produce dissimilar results. The two dimensions of 

the space appear to roughly correspond to the algorithms’ analysis strategy (x-axis) and 

assignment strategy (y-axis). split, for example, shares its analysis strategy with segment 

(it groups fixations based on return sweeps), but it has an assignment strategy that is more 

similar to chain (it assigns based on absolute position). We also see that regress and 

stretch tend to produce very similar output and are therefore likely to be somewhat 

interchangeable. Interestingly, the human correctors—represented by the gold standard manual 

correction—are located in a relatively unexplored part of algorithm space: Their analysis 

strategy appears to be more similar to chain or merge (finding local linear clusters), while 

their assignment strategy seems to be more global and sequential, like warp. Anecdotally, this 

aligns with our experience of performing the manual corrections, and this observation is 

suggestive of fertile ground for the future development of correction algorithms.  
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Figure 12 (a) Hierarchical clustering analysis of the algorithmic outputs, providing an 

approximate taxonomy of the algorithms. (b) Multidimensional scaling analysis of the 

algorithmic outputs; the distance between two algorithms corresponds to how dissimilar their 

corrections tend to be, so the space as a whole approximates how the algorithms relate to each 

other on two hypothetical dimensions.  

 

 

Summary  

In this section, we tested the ten algorithms on a real eye-tracking dataset. Although 

warp was marginally the most performant algorithm across the majority of measures, our 

results indicate that the best algorithm will largely depend on the particular characteristics of a 

given trial, as well as the general characteristics of the dataset being corrected. All 48 reading 

trials could be improved by at least one of the algorithms; the difficulty for the researcher, of 
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course, is in knowing which algorithm to apply to a given trial in the absence of a gold standard.  

Discussion 

We have identified ten core approaches to the methodological problem of correcting 

vertical drift in eye-tracking data. We instantiated each of these approaches as a simple 

algorithm that can be evaluated in a consistent and transparent way. Our first analysis using 

simulated data allowed us to identify which phenomena the algorithms are invariant to and to 

quantify how the algorithms respond to increasing levels of those phenomena. Our second 

analysis validated the algorithms on a real eye-tracking dataset and allowed us to strengthen 

our qualitative intuitions about their similarities and differences. In the remainder of the paper, 

we sum up what we learned about the algorithms, provide some practical guidance for 

researchers in the field, and conclude with some thoughts about how vertical drift correction 

can be improved going forward.  

Major Properties of the Algorithms  

The algorithms can be placed into three major categories. The sequential algorithms, 

segment and warp, hinge on their ability to correctly identify the return sweeps. If 

successful, these algorithms have excellent performance because any vertical drift in the data 

essentially becomes invisible. However, if the text is read nonlinearly, the premise on which 

the sequential algorithms are based breaks down. Therefore, one should apply these algorithms 

with great caution when the data are rich in regressions, either within-line (which warp tends 

to handle well) or between-line. The risk is particularly high with segment, which has good 

median performance on adult data, but can also lead to catastrophic errors if large regressions 

are mistakenly interpreted as return sweeps.  

The relative-positional algorithms, cluster, merge, regress, and stretch, 
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are mostly dependent on their ability to correctly classify the fixations into m groups, each 

using a slightly different technique to do so. So long as the identified groups are sound, then 

the use of relative position to assign the fixations to lines is generally very resistant to vertical 

drift.  

The absolute-positional algorithms, attach, chain, and split, generally tend to 

be the worst at dealing with vertical drift because they assign based on absolute position; this 

feature makes them generally weaker than other algorithms at dealing with noise, slope, and 

shift. However, a benefit of these three algorithms is that they tend to be quite conservative and 

do not make dramatic changes to the data, which makes them a reasonable choice for 

researchers who would prefer a more minimalist data transformation or whose data are not 

overly affected by distortion issues.  

General Guidance for Researchers  

The analyses presented in this paper clearly indicate that each algorithm performs best 

on a different set of factors, some of which we have not considered here in detail. For example, 

if the line spacing is quite tight, the eye-tracking data is more likely to be negatively impacted 

by distortion, making a sequential algorithm a better choice; conversely, if lines are spread far 

apart, a relative-positional algorithm may be more appropriate. Overall, different sets of data 

will require different correction algorithms, and a qualitative inspection of the data will be 

required to detect the relative severity of general noise, drift issues, and regression phenomena. 

To help in this process, one option might be to hand-correct a sample of the trials in order to 

assess which algorithm performs best on those specific cases and then apply this algorithm to 

the entire dataset. However, there might very well be too much trial-by-trial (or participant-by-

participant) variability to use a single algorithm across an entire dataset. In this case, it may be 

preferable to create subsets of data exhibiting comparable patterns of eye-tracking phenomena 
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and deal with those subsets with different algorithms. Another idea would be to run several 

algorithms over the dataset and manually inspect cases where there is disagreement.  

Recording children’s eye movements poses extra challenges relative to adults’, 

particularly due to the difficulty that younger participants often experience sitting still for 

relatively long periods of time (Blythe & Joseph, 2011), which can lead to a loss of calibration. 

Therefore, especially in the case of multiline reading, developing readers’ eye movements are 

generally characterized by more noise, as well as by greater slope and shift, than adults’. This 

would suggest resorting to algorithms like segment and warp, which are entirely invariant 

to noise, slope, and shift (Fig. 5). However, children tend to generally make more regressions 

than adults (e.g., Blythe & Joseph, 2011; Reichle et al., 2003), which is exactly the 

phenomenon that affects segment and warp the most. The general tradeoff between the 

ability to handle distortion and the ability to handle regressions is at play here, and only an 

attentive, qualitative check of the data will tell the researcher which way to go. If there does 

not appear to be too much of an issue with between-line regressions, then warp is probably 

the best choice; otherwise, cluster or merge might be a better option.  

Regarding the practicalities of the algorithm application pipeline, we suggest 

performing a few cleaning steps before drift correction, in order to isolate the line assignment 

problem from other issues that the algorithms considered here were not designed to deal with, 

and which would otherwise impair their performance. For example, researchers may first want 

to discard any fixations that lie beyond the text area and merge or eliminate extremely short 

fixations. Only after these basic cleaning steps have been performed, can algorithmic correction 

be safely applied.  

Another important aspect to consider is the presence of free parameters. The chain, 

merge, regress, and stretch algorithms take additional input parameters that must be 
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set appropriately by the user. In practice, Špakov et al.’s (2019) and Cohen’s (2013) suggested 

defaults for the merge and regress algorithms seemed to work well on our test dataset, but 

in the case of chain, it was somewhat unclear how to set the x and y thresholds appropriately, 

so experimentation might be required to produce the best results. We also found that stretch 

was very sensitive to its parameter settings and that the upper and lower bounds must be tightly 

constrained around likely values for it to produce sensible results. An advantage of all other 

algorithms is that they are parameter free, making drift correction easier to perform, document, 

and justify.  

It is also worth considering the complexity of the algorithms. Some, such as chain 

and segment, are very simple and intuitive, while others, such as merge and warp, are quite 

complex. Although complexity is not an important consideration from a performance 

perspective (in general, we should prefer whichever algorithm works best), it is worth 

considering how complexity might impinge on real-world use. For example, users may be less 

inclined to use an algorithm if they cannot intuitively understand how it will manipulate their 

data, so algorithms should, where possible, be designed in a way that researchers find easy to 

understand and easy to convey to their readership. In that regard, we hope that this paper will 

give researchers more confidence in the algorithms, which we have validated and 

benchmarked.  

Finally, it is worth noting that most of the algorithms have linear time complexity and 

can process a reading trial in fractions of a second, so runtime does not warrant any special 

consideration. The one exception to this is merge which scales quadratically with the number 

of fixations; in our testing, for example, it took 100 ms for a trial consisting of around 100 

fixations but up to 31 s for a trial of around 500 fixations.  
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Improvements on the Algorithms  

We would not wish to claim that the algorithms, as presented here, are the only 

approaches one may take nor that they are the ultimate form of each core method; all can be 

improved in one way or another. Furthermore, there are likely to be ways of combining the 

outputs of multiple algorithms to increase confidence in particular solutions. The goal of this 

paper, however, was to evaluate the algorithms in their more abstract, idealized forms in order 

to make general recommendations and to provide a solid foundation for the future development 

of vertical drift correction software. Nevertheless, here we briefly note some of the most 

obvious ways in which the algorithms could be improved.  

Chain  

The main weakness of the chain algorithm is its reliance on threshold parameters that 

must be set by the user, but this situation could be improved if the parameters defaulted to 

sensible values based on reliable heuristics. For example, it may be the case that the parameters 

can be reliably estimated from the line and character spacing (as appears to be the case in 

Schroeder’s (2019) implementation in popEye) or other known properties of the passage, 

language, or reader. Secondly, our simulations showed that chain does not respond well to 

slope distortion, performing worse than attach under extreme values. This can be alleviated 

by a y threshold that grows as the reader progresses over the line, as is the case in Hyrskykari’s 

(2006) sticky lines algorithm.  

Cluster  

The biggest weakness of cluster was its ability to deal with general noise (or, 

equivalently, tight line spacing). One potential way to improve this would be to utilize the x 

values of the fixations. Unfortunately, it is not simply a case of performing a two-dimensional 
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k-means clustering on the xy values because this leads to situations where clusters are identified 

that span multiple lines because they have similar x values. However, it might still be possible 

to utilize the x-axis information, perhaps by weighting the two axes differently in some way. 

Cluster analysis is a very broad topic in data science, and there are likely to be many other 

candidate algorithms, beyond simple k-means clustering, that will be worth investigating.  

Merge  

The core principle of merge is to start with small groups of fixations and gradually 

build them up into gaze lines, guided by their fit to regression lines. The most extreme version 

of this algorithm would start with every fixation in an individual group, and the algorithm 

would consider every sequence in which mergers could be performed (i.e., the entire binary 

search tree). This would allow the algorithm to explore cases where it is first necessary to make 

a bad merger in order to make a great merger later on (i.e., it would avoid becoming stuck in 

local maxima). Such an algorithm would be intractable, however, due to a combinatorial 

explosion in the number of possible merge sequences. To avoid this, merge uses an initial 

chain-like strategy to seed the merge process with a reduced set of groups, and it then 

explores just one possible path through the search tree, selecting only the most promising 

merger at each step. One way to improve the algorithm, then, would be to use more advanced 

tree traversal techniques, such as beam search in which several of the most promising mergers 

are fully explored on each iteration. This would come at the cost of making an already slow 

algorithm even slower, but it would probably result in better solutions and might also allow for 

the removal of the thresholds and heuristics.  

Regress  

The main weakness of the regress algorithm is that the m regression lines it fits to 
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the data cannot take independent slope or offset values, limiting its ability to handle complex 

cases, especially those involving shift. Thus, one obvious way to advance the algorithm would 

be to allow for such independent values. However, even the simplest case of having a single 

slope parameter, a single standard deviation parameter, and one offset parameter per line of 

text would result in an objective function with m + 2 parameters, which may become difficult 

or impossible to minimize, especially as the number of lines increases. Another avenue for 

improving regress would be to try some form of nonlinear regression. In Fig. 9a, for 

example, we see a case where a gaze line forms a nonlinear arc, which a linear regression line 

cannot fully capture (cf. Fig. 9h).  

Segment  

The performance of the segment algorithm hinges on its ability to identify the true 

return sweeps; when it works, it tends to work very well, but when it fails, it does so 

catastrophically. One way to improve the segment algorithm would therefore be to encode 

additional heuristics about how to distinguish true return sweeps from normal regressions. For 

example, a return sweep is not just an extreme movement to the left but also a movement 

downward by a relatively predictable amount (one line space), ultimately landing near the left 

edge of the passage. Introducing such heuristics would not be without caveats, however; in the 

case of downward slope, for example, return sweeps can appear quite flat (see, e.g., the final 

sweep in Fig. 8a) and would therefore go unnoticed under this change.  

Split  

Like segment, split could also benefit from better sweep detection, as well as 

better detection of between-line regressions. There are likely to be many ways of approaching 

this classification problem, but one simple option would be to use both dimensions in the 
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saccade clustering—the return sweeps would then be the cluster of saccades that have large 

negative change on the x-axis, as well as a small positive change on the y-axis. More generally, 

it might be possible to combine the split and segment algorithms, since they are quite 

closely related computationally. For example, the set of saccades that most resemble return 

sweeps could first be identified, and then the m − 1 most extreme of these could be treated as 

major segmentation points, allowing for a sequential assignment, while the remainder could be 

treated as minor segmentation points, allowing for the identification of between-line 

regressions.  

Stretch  

Our analyses showed that stretch behaves very similarly to regress. This is 

because they are essentially two variants on the same basic idea: Detect the magnitude of the 

underlying slope (regress) or shift (stretch) and then reverse it. However, this does not 

work so well if the underlying calibration error is fluctuating in time or space. One way to 

improve the method, then, would be to search a more complex transformation space by 

including rotations and shears, for example, or by applying separate transformations to each 

quadrant of the text. Additionally, as Equation 1 makes clear, stretch essentially has the 

attach algorithm embedded within it, but in principle it should be possible to substitute this 

with any of the positional algorithms. For example, a stretch-chain algorithm would find 

a transformation of the fixations that results in minimal change when you apply the chain 

algorithm.  

Warp  

The primary weakness of warp is that the expected fixation sequence cannot encode 

unpredictable reading behavior that might be present in the veridical sequence, and there is no 
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feasible way such unpredictability could be encoded. Instead, improving the warp algorithm 

is likely to involve relaxing DTW’s requirement that matches between sequences increase 

monotonically, allowing the algorithm to find a mix of global and local sequence alignments. 

In this respect, the so-called “glocal” alignment algorithms could prove useful (Brudno et al., 

2003), as well as many other sequence alignment algorithms that ought to be systematically 

investigated for the present purposes (e.g., Keogh & Pazzani, 2001; Tomasi et al., 2004; 

Tormene et al., 2009; Uchida, 2005). One simpler option—which could also be applied to 

segment—would be to use attach as a fallback method in cases where a fixation’s revised 

y-axis coordinate is substantially different from its original y-axis coordinate. This would deal 

with cases where the strict sequentiality requirement forces fixations on to lines that are very 

far from their original positions.  

Improvements on the Benchmarking  

Aside from improving the algorithms themselves, it would also be useful to produce a 

much larger, heterogeneous benchmarking dataset, with data contributed from many different 

laboratories. This would offer more generalizable results and would help us understand how 

the algorithms respond to specific factors. For example, one useful feature of the dataset we 

used in this paper is that it includes data from both adults and children on the same passages of 

text, allowing us to compare how the algorithms respond to these two distinct populations. 

However, there are many other factors that will ultimately determine how the algorithms 

behave, such as the layout of the text, the complexity of the reading material, and the 

peculiarities of the eye tracker hardware. In addition, there are likely to be important linguistic 

factors at play: For example, our current set of results may not generalize well to logographic 

writing systems, such as Chinese, right-to-left scripts, such as Hebrew, orthographically 

opaque languages, such as English, or agglutinating languages, such as Turkish, where fixation 
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patterns might differ in ways that the algorithms are sensitive to. However, the main difficulty 

we foresee in creating such a heterogeneous dataset—aside from producing the required 

manual corrections—would be ensuring it is representative of the kinds of experiments that 

researchers most typically run, while also diverse enough to capture all relevant factors.  

Conclusion 

Our intentions with this paper were twofold. Firstly, we wanted to systematically 

evaluate the various vertical drift correction algorithms that have been reported in the literature 

in order to provide guidance to researchers about how they work, when they should be used, 

and what their limitations are. In this respect, our most important observation was that there is 

no one killer app; different datasets—and even different trials within a dataset—will require 

different solutions, so researchers should select their correction method carefully. We hope that 

the guidance we have provided herein will be helpful in this regard. 

Secondly, we wanted to lay a solid foundation for future work on post-hoc vertical drift 

correction by delimiting the core algorithms, providing constraints that future work can operate 

inside, and offering new perspectives on how drift correction techniques can be improved going 

forward. In this respect, we have provided basic implementations of the ten algorithms in 

multiple languages, which can be used as a starting point for building new versions or, indeed, 

as a comparison group against which entirely new algorithms can be compared. Several of the 

algorithms are already implemented in the Python package Eyekit 

(https://jwcarr.github.io/eyekit/) and the R package popEye 

(https://github.com/sascha2schroeder/popEye), which provide higher level tools for processing 

and analyzing reading data more generally. In time, we hope that the algorithms might also be 

implemented in other software packages.  

Finally, we have introduced two novel methods in this paper that are distinct from those 
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that have previously been presented. The warp algorithm, in particular, showed great promise 

and is likely to be especially useful to researchers working on reading development in children. 

We also hope that connecting the literature on vertical drift to sequence alignment techniques 

might also open new avenues for future algorithm development.  

Open Practices Statement 

All code and data required to reproduce the analyses reported in this paper, as well as 

Matlab/Octave, Python, and R implementations of the algorithms, are available from the OSF 

archive associated with this paper: https://doi.org/10.17605/OSF.IO/7SRKG  
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Chapter IV 

Eye Movements During Natural Reading Reveal Sensitivity 

to Orthographic Regularities in Children 

 

In alphabetic languages, learning to map letters (graphemes) onto sounds  (phonemes) 

provides young children with the initial tools to translate the printed form of words 

(orthography) into their spoken equivalent (phonology), through which information about 

meaning can be accessed. Phonological decoding, however, is not sufficient for fluent reading. 

In order to become skilled readers, children are required to develop a sophisticated 

orthographic system that would enable them to recognise printed words rapidly and efficiently, 

and to map orthography directly to meaning (Castles & Nation, 2006, 2008). This process, 

known as orthographic learning, has been the focus of extensive research and, over the last 

three decades, we have learned a great deal about the changes that children’s orthographic 

knowledge undergoes as a result of their experiences with printed words (for a review, see 

Castles et al., 2018). Arguably, however, one aspect of orthographic learning about which we 

know less is the how. How do children acquire orthographic information about words? Or more 

specifically, what might be the underpinning learning mechanism(s) that enables them to do 

so? 

The present study examines the hypothesis that the acquisition of orthographic 

knowledge can be supported by a general learning mechanism that enables children to exploit 

the statistical regularities present in the orthographic information to which they are exposed. 

The underlying premise of this proposal is that such a mechanism is not specific to the 

processing of linguistic material. It refers, instead, to a fundamental domain-general 

mechanism that underpins the capacity of the human cognitive system to implicitly use 
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statistical properties of the input such as the frequency, distributional variability, and 

probability with which events co-occur, in order to discover patterned regularities in the 

environment (for reviews, see Armstrong et al., 2017; Aslin, 2017; Christiansen, 2019; Frost 

et al., 2019; Newport, 2016).  

One domain for which statistical learning has been particularly well documented is 

visual processing. Specifically, evidence from visual statistical learning studies suggests that 

observers compute co-occurrence probabilities for visual objects, both when these objects are 

presented sequentially or embedded within complex scenes (e.g., Fiser & Aslin, 2001; 2002; 

2005; Kim, Seitz, Feenstra, & Shams, 2009; Orbán, Fiser, Aslin, & Lengyel, 2008). Hence, by 

adopting the perspective that written words are instances of visual stimuli, orthographic 

learning can be easily conceptualised as a form of visual statistical learning: in the same way 

we (infants, children, adults) can rapidly and automatically extract patterns of statistical 

regularities from a flow of abstract visual information, we can detect regularities in the 

distribution of letters and letter sequences in words from exposure to print. Such orthographies 

regularities could include, for example, the frequency of letter co-occurrences in written words 

(e.g., in English the letters S and A co-occur more frequently in words than the letters J and A, 

the letter R is more often doubled than the letter D; Chetail, 2015). Alternatively, orthographic 

regularities can be estimated on the basis of letter transitional probabilities (e.g., in English the 

probability that the letter G is followed by the letter O is roughly three times higher than the 

probability that H is followed by O; Chetail, 2015).  

A limited experience appears to be sufficient for young readers to capture some 

orthographic regularities of their written language. Pacton and colleagues (Pacton, Perruchet, 

Fayol, & Cleeremans, 2001), for example, provided a demonstration of such knowledge in 

French-speaking children (Grades 1- 5). They showed that children would consider items like 

illaro to be more word-like than items like ivvaro, consistent with the fact that l is frequently 
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doubled in the French language, whereas v is almost never doubled. Similarly, children would 

consider items like bukkox to be more word-like than items like bukoxx, consistent with the 

fact that even though neither the k nor x is doubled in the language, double consonants never 

appear at the end of French words (for similar findings in English, see Cassar & Treiman, 

1997). Sensitivities to the frequency and position legality of double consonants in words were 

shown to increase with grade level, but, interestingly, they were already present in the youngest 

group of participants after having received only a few months of print exposure.  

However, while children appear to rapidly pick up information about the patterns with 

which letters co-occur in words, the role of this information for the development of a skilled 

orthographic word-recognition system remains grossly underspecified. One main reason for 

this, is that, with the exception of the aforementioned work, developmental research has 

examined the relationship between statistical learning and learning to read by measuring the 

two abilities separately and seeking to provide a correlational link between them (Arciuli & 

Simpson, 2012; von Koss et al., 2019; West et al., 2018). However, as informative as this 

approach might be in highlighting an association between the two capacities, that for statistical 

learning and that for reading proficiency, it cannot speak to the direct influence of statistical 

learning on the development of reading processes. 

Furthemore, the empirical evidence available from studies conducted with adults does 

not provide a coherent account about the impact of orthographic regularities acquired via 

statistical learning on word reading, thus limiting our understanding of its contribution to 

skilled reading. This is clearly illustrated in Chetail’s (2015) review of the relevant literature. 

First, the data yield a mixture of results: while orthographic regularities are sometimes reported 

to exert a facilitatory effect on word recognition processes (e.g., Conrad et al., 2009; Lima & 

Inhoff, 1985; Massaro et al., 1981), other times are shown to have a detrimental effect (e.g., 

Hand et al., 2012; Rice & Robinson, 1975; Westbury & Buchanan, 2002) or no effect at all 
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(e.g., Andrews, 1992; Johnston, 1978; Keuleers et al., 2012). Moreover, this mixed pattern of 

evidence cannot be ascribed to methodological differences because contradictions are present 

both across and within experimental paradigms (e.g., lexical decision; Chetail et al., 2014; 

Conrad et al., 2009; Keuleers et al., 2012; Schmalz & Mulatti, 2017). Finally, there is a clear 

lack of systematicity with regard to the orthographic regularities that have been thus far 

examined. Even though, as already indicated, there are several ways to express orthographic 

regularities, most of the time these are expressed in terms of the frequency with which clusters 

of letters (i.e., n-grams) occur in the written language. However, while in principle readers can 

exploit regularities of multiple grain sizes (e.g., bigrams, trigrams, qudrigrams; Vinckier, 

Dehaene, Jobert, Dubus, Sigman & Cohen, 2007), the investigation of bigram frequency effects 

appears to have dominated this line of research. Perhaps this is unsurprising, given the fact that 

bigrams have been ascribed a special status in several theories of visual word processing (e.g., 

Grainger & Van Heuven, 2003; Grainger & Ziegler, 2011; Whitney, 2001). Nevertheless, as a 

consequence of this specific focus our understanding concerning the effects that orthographic 

regularities of multiple grain sizes might exert on visual word recognition remains limited.  

More recently, a different approach to examining the role of orthographic regularities 

acquired via statistical learning was adopted by two learning studies using artificial script. In a 

study by Chetail (2017) skilled readers were exposed to a stream of unfamiliar character 

strings, with several bigrams occurring very frequently. Following this exposure, participants 

demonstrated considerable sensitivity to high-frequency bigrams, that is, they were more likely 

to judge a previously unseen string as “word-like”, if it contained a high-frequency bigram, 

and if that bigram appeared in the same position as in the strings seen in exposure. Furthermore, 

participants detected letters coming from a high frequency bigram more rapidly than letters 

coming from a low frequency bigram. Using a similar design, Lelonkiewicz et al. (2020) 

extended these findings by demonstrating that skilled readers also capture information about 
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the frequency and position of larger clusters of co-occurring characters (3- and 4-character 

long). Although these experiments involved pseudo-linguistic materials clear parallels between 

these findings and those reported in studies with children can be drawn: even after a short 

exposure readers can encode pure orthographic regularities (i.e., with no reference to higher 

order linguistic information) present in the script. However, exposure to an artificial script, 

albeit the control that it offers for experimentation, is distinctly different from exposure to a 

real script that encompasses the richness and the many nuances of a written language. 

Furthermore, while learning studies with adults can provide a proxy of how learning proceeds 

during the course of development, whether the learning mechanisms used by skilled adult 

readers are comparable to those employed by developing readers is not currently known. 

The main aim of the present work was to provide an investigation into the role of 

orthographic regularities in reading development. To achieve this, we examined sensitivities 

to clusters of co-occurring letters (i.e., bigrams, trigrams, quadrigrams) across a wide range of 

developing readers (Grades 3-6) and a control group of skilled readers. If exposure to print 

leads readers to capture orthographic regularities via a statistical learning mechanism, then 

children should become more sensitive to the frequency with which letter sequences occur in 

the language as they accumulate experiences with printed words (as a function of school grade). 

Alternatively, early sensitivities to letter co-occurrence might diminish as children build up a 

set of well-consolidated visual lexical memories (an orthographic lexicon) during the course 

of reading development. We also sought to adopt a more ecological experimental approach 

than what has been previously used in the literature. To this aim, we investigated children’s 

sensitivity to n-grams in their eye movements, as they silently read multi-line passages of text 

for understanding. made use of a large database of eye movement during natural reading in 

children, which we developed in the lab (Pescuma et al., in prep.; Chapter II in this thesis). The 

database was built on Italian material, and is called. It is based on a group of 141 developing 
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readers, spanning from Grade 3 to Grade 6, and a control sample of 33 skilled, adult readers. 

These participants were asked to silently read for understanding several multi-lined stories 

while their eye movements were recorded.  

 

Methods 

We conducted our analyses using a database of eye movement during natural reading 

in children, which we developed in the lab (EyeReadIt; Pescuma et al., in prep.). The database 

is described more fully in Chapter II of this thesis. EyeReadIt is based on Italian, and contains 

data from a group of 141 developing readers spanning from Grade 3 to Grade 6 (73 girls, 68 

boys; N is 37, 20, 41 and 43 for 3rd, 4th, 5th and 6th graders, respectively). For comparison, 

EyeReadIt also includes a control sample of 33 skilled, adult readers (21 female, 12 male; age 

range 19-33). These participants were asked to silently read passages of text for understanding 

while their eye movements were recorded.  

Eye-tracking metrics (dependent variables) 

We extracted from EyeReadIt all the data pertaining to words, which yielded 202657 

individual fixations (174608 for children and 28049 for adults), on 1566 individual word tokens 

and 762 word types. The lexical-orthographic features of the word types are illustrated in Table 

1. Based on these data, we extracted the following word-level eye-tracking measures for each 

trial. First-of-many fixation duration (FoM) refers to the duration of those instances of first 

fixation in which further fixations on the same word followed during first pass. This index was 

taken to track an early stage of lexical processing. Gaze duration (GD) is the summed duration 

of all fixations performed on a word during first-pass reading. This metric is typically 

considered as the most direct measure of lexical access (Inhoff, 1984; Just & Carpenter, 1980). 

Total reading time (TRT) is the summed duration of all fixations performed across all runs, and 

is typically taken to also reflect later, post-lexical processing (e.g., meaning integration at the 
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sentence or passage level). The three final datasets for the analyses contained 28481, 116484 

and 93253 datapoints, for FoM, GD and TRT respectively. The distribution and correlations of 

the three eye-tracking metrics are illustrated in Figure 1. 

 

Figure 1 Scatter plots illustrating the distribution and pairwise correlations of all three eye-

tracking measures (gaze duration, GD, first-of-many fixation duration, FoM, and total reading 

time, TRT, all durations expressed in milliseconds, ms) that are treated as dependent variables 

in the analyses. The correlation between GD and TRT is fairly high (.65), showing that most 

words were not fixated anymore after first pass reading. It also suggests that these two variables 

mostly track similar processes, at least in the present data. 
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Table 1 Summary of the lexical and sublexical features of the stimuli, as obtained from 

EyeReadIt. All frequency measures are expressed in Zipf units and were obtained using 

SUBTLEX-IT (Crepaldi et al., 2016). 

 

Number of word tokens 1566 

Number of word types 762 

Unique parts of speech 11 

Mean word count per text (range) 130.5 (109–170) 

Mean word length (range) 4.66 (1–15) 

Mean word frequency (range) 5.35 (1.19–7.26) 

Mean average bigram frequency (range) 6.31 (3.46–6.82) 

Mean average trigram frequency (range) 5.42 (2.88–6.44) 

Mean average quadrigram frequency (range) 4.60 (0–5.89) 

Mean maximal bigram frequency (range) 6.57 (3.46–6.83) 

Mean maximal trigram frequency (range) 5.78 (2.88–6.44) 

Mean maximal quadrigram frequency (range) 4.97 (0–5.96) 

Mean minimal bigram frequency (range) 5.96 (3.04–6.82) 

Mean minimal trigram frequency (range) 5.02 (2.06–6.44) 

Mean minimal quadrigram frequency (range) 4.20 (0–5.89) 

 

N-gram frequency metrics (independent variables) 

For each individual word for which we had an eye-tracking metric to model, we 

considered three different sizes of letter n-grams – bigrams, trigrams and quadrigrams. For 



129 

each n-gram size, we computed minimal, maximal and average frequency. So, for example, the 

word house would be analysed as the sequence of bigrams ho, ou, us and se. The log Zipf 

frequency of these bigrams (calculated on SUBTLEX-UK, Van Heuven et al., 2014) is 3.66, 

3.74, 3.67, and 3.85, respectively. Therefore, the minimal bigram frequency for the word house 

would be 3.66, its maximal bigram frequency would be 3.85, and its average bigram frequency 

would be (3.66+3.74+3.67+3.85)/4=3.73. The same procedure would be applied to the trigrams 

in the word (i.e., hou, ous and use), and its quadrigrams (i.e., hous, ouse). We limited our 

analysis to words that were at least one letter longer than the relevant n-grams (i.e., three-letter 

words for bigrams, four-letter words for trigrams and five-letter words for quadrigrams), so as 

to ensure that at least two n-grams were considered for each word. For simplicity, we did not 

consider open bigrams (e.g., Grainger & Whitney, 2004). N-gram frequency was computed 

using Zipf units (Van Heuven et al., 2014), extracted from SUBTLEX-IT (Crepaldi et al., 

2016).  

Because n-gram statistics likely correlate with other established predictors at the word 

level, we also considered word frequency and word length, so as to ensure that whatever n-

gram effect we might find is not a spurious effect out of these correlations (see below). Word 

frequency was also computed based on SUBTLEX-IT, and was modelled in Zipf units (Van 

Heuven et al., 2014).  

Statistical analysis 

Because the n-gram frequency metrics described above were correlated, and also 

correlated with word length and word frequency (see Results), we first subjected all these 

variables to a Principal Component Analysis (PCA) with a Varimax rotation (e.g., Grice, 2001; 

Morucci et al., 2018; Rencher, 1992). To this aim, we used the R function principal from the 

R package psych (version 2.0.12; Revelle, 2020). This procedure rotates the variable space so 

that each dimension (Principal Component) is uncorrelated with the others, and loads 
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maximally different onto the original variables set, so as to be psychologically interpretable 

(see below). 

We used these newly obtained Principal Components to model the eye-tracking metrics 

with linear mixed-effects models. The dependent variables were all log-transformed to better 

approximate a normal distribution. The models included as fixed effects six Principal 

Components (see below), grade, reading speed and non-verbal intelligence, in addition to the 

interaction between grade and each of the six Principal Components, to track the evolutionary 

pattern of sensitivity to letter co-occurrence statistics. The models also included a random 

intercept for items and participants. Significance was assessed via the comparison between 

hierarchical models (using the function Anova from the package car in R; Fox & Weisberg, 

2019) using Type III sum-of-squares and chi-square Wald tests. The nature of the effects was 

illustrated through the computation of model-based estimates (via the function effects from the 

package effects in R; Fox, 2003; Fox & Weisberg, 2019) and the significance of the model 

parameters Beta (via the function summary in R). Following Baayen and Milin (2010), we 

ensured that that the effects were not driven by unduly influential outliers, by fitting additional 

models from which datapoints with residuals higher than 2.5 SD in absolute value were 

excluded. No difference between the main model and these “sanity check” models emerged, in 

terms of patterns or significance level of the effects. 
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Results 

Correlational structure of the n-gram variables and PCA 

Figure 2 illustrates the correlational structure of the n-gram variables, word length and word 

frequency. 

 

 
Figure 2 Correlational matrix between the n-gram variables, word length and word frequency. 

The size of the circles is proportional to the strength of the correlation; color codes for the 

direction of the correlation (blue is positive, red is negative).  
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Unsurprisingly, there are several strong correlations; we designed our study to be as 

naturalistic as possible and thus we did not try to artificially shrink correlations that would tend 

to naturally occur in an unselected sample. Clearly, this correlational structure makes it 

impossible to use all the predictors together in a single regression model (e.g., the condition 

number K is 353, while safe predictor independence is typically indicated by K<30; Baayen, 

2008). As mentioned in the Methods, we performed a Principal Component Analysis with a 

Varimax rotation in order to obtain a set of variables that would be usable in a regression model, 

and also to understand the structure that underlies these correlations (e.g., Grice, 2001; 

Morucci, Bottini and Crepaldi, 2018; Rencher, 1992). As illustrated in Figure 3, six Principal 

Components (PC) accounted for a substantial amount of variance, and were therefore taken 

into consideration. Importantly, the Varimax rotation ensured that their correlations were quite 

small (range = –.24-10). 

The interpretation of the six PCs is illustrated in Figure 4. The first component, which 

accounts for .23 of the variance, correlates most strongly with word frequency, and minimal 

and average quadrigram frequency. Overall, it clearly represents better the statistics of larger 

units than of smaller ones. Also, because it loads high on whole-word frequency, its eventual 

effect cannot be taken as a clear sign of sensitivity to sub-word, n-grams statistics. PC2, which 

accounts for .21 of the overall variance, loads heavily on minimal bigram frequency and, to a 

lesser extent, to average bigram and trigram frequency, and to minimal trigram frequency; 

therefore, it seems to track the minimal and average frequency of smaller n-grams. PC3, which 

explains .15 of the variance, loads heavily on maximal quadrigram frequency, and also tracks 

average quadrigram frequency (and, to a somewhat lesser extent, maximal and average trigram 

frequency). This variable nicely represents maximal and average frequency of larger n-grams, 

particularly of quadrigrams. PC4 (.14 of the overall variance) clearly tracks maximal and 

average bigram frequency; it seems to be the smaller n-grams counterpart of PC3, particularly 
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tuned to bigrams. PC5, which amounts to .12 of the variance, loads particularly on maximal 

and average trigram frequency. PC6, instead, correlates very heavily with word length (and, to 

some extent, to word frequency); this variable accounts for .11 of the overall variance. 

 

Figure 3 Proportion of explained variance by the 11 Principal Components that emerged from 

the Varimax-rotated Principal Component Analysis. 
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Figure 4 Illustration of the mapping between the six Principal Components that explain most 

of the variance, and the 11 original variables subjected to PCA. The Y axis reports loadings, 

which are interpretable as the correlation between the Principal Components and the original 

variables. 
 

 

Some important insight emerges here. First, PC2, PC3, PC4 and PC5 show little 

correlation with word frequency and word length, and therefore can be considered as genuine 

sub-word n-gram variables whose effect would suggest that children are indeed sensitive to the 

statistics of such units during natural reading. Second, it turned out very difficult to isolate the 
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effect of average n-gram frequency; in fact, this variable always goes together with either 

minimal (PC2) or maximal n-gram frequency (PC3, PC4 and PC5). So, despite this is the n-

gram variable that was mostly investigated, it turns out to be the least distinct in this unselected 

sample of language (which might perhaps contribute to explain why data on average bigram 

frequency are largely inconsistent; e.g., Chetail, 2015). Third, it seems difficult to disentangle 

n-grams of different size for what concerns minimal/average frequency; PC2 hinges on both 

bigrams and trigrams, while quadrigrams are captured by the same PC as word frequency, and 

therefore cannot be assessed independently. However, it is possible to disentangle n-grams of 

different size with respect to maximal/average frequency; PC3, PC4 and PC5 load particularly 

on quadrigrams, bigrams and trigrams, respectively. Overall, the structure of the six most 

relevant PCs allows us to distinguish quite well the role of smaller n-grams (PC2 and PC4) and 

larger n-grams (PC3 and PC5). Also nicely (and by no means obvious), the role of larger n-

grams seems to be identifiable independently of word-level variables, as PC3 and PC5 loads 

only mildly to word frequency and word length.   

Correlational structure of the n-gram variables and PCA 

Equipped with the new variables that emerged from the Varimax PCA, we can now 

move on to the analysis of the eye-tracking data. To make the interpretation of the PCs easier, 

we renamed them as follows: PC1-wordFreq, PC2-minAv-smallNgrams, PC3-maxAv-4grams, 

PC4-maxAv-2grams, PC5-maxAv-3grams, and PC6-wordLength. We will start from the 

analysis of gaze duration, which can be thought of as the most direct eye-tracking metric for 

visual word identification. We will then check more specifically what happens at the earlier 

(FoM) and later (TRT) stages of this process.  

Gaze duration was modulated significantly by all Principal Components, except PC2-

minAv-smallNgrams (see Table 2). The effects are illustrated in Figure 5.  
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Table 2 Overall significance of the gaze duration effects. df, numbers of degrees of freedom. 

Significant effects appear in bold. 

 

 Chi-square df p 

PC1-wordFreq 237.19 1 <.001 

PC2-minAv-smallNgrams 1.54 1 .21 

PC3-maxAv-4grams 6.45 1 .01 

PC4-maxAv-2grams 24.44 1 <.001 

PC5-maxAv-3grams 15.11 1 <.001 

PC6-wordLength 304.79 1 <.001 

Grade 460.50 4 <.001 

MT 130.87 1 <.001 

Raven 2.59 1 .11 

pc1_wordFreq:Grade 83.56 4 <.001 

pc2_minAv_smallNgrams:Grade 3.05 4 .55 

pc3_maxAv_4grams:Grade .56 4 .97 

pc4_maxAv_2grams:Grade 7.91 4 .09 

pc5_maxAv_3grams:Grade 11.71 4 .02 

pc6_wordLength:Grade 50.26 4 <.001 

PC1-wordFreq and PC6-wordLength interact significantly with Grade, mirroring the 

results reported above for these variables; this constitutes further validation of the results of 

the PCA. Also, given that all PCs have a similar range, the slopes reported in Figure 5 reflect 

the relevant effect size; it is clear, therefore, that PC1-wordFreq and PC6-wordLength have a 
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much larger effect on gaze duration than the other PCs. This suggests that any effect of n-gram 

frequency is quite smaller than the effects of word frequency and word length, perhaps 

unsurprisingly.  

Nevertheless, PC3-maxAv-4grams, PC4-maxAv-2grams and PC5-maxAv-3grams were 

statistically significant, showing that n-gram frequency effects can be observed independently 

of word length and word frequency. The former two effects did not interact with Grade, and 

show that children (and adults) fixate longer on words whose maximal/average n-gram 

frequency is higher. PC3 tracks larger n-grams, while PC4 is more tuned to smaller n-grams; 

yet, their effects do not seem to differ. PC5-maxAv-3grams, instead, does show a significant 

interaction with Grade; again, readers gaze longer on words with higher n-gram frequency, but 

the effect seems to shrink with age (Figure 5, panel (e)). More specifically, 3rd and 5th graders 

differ in a statistically significant way from adults, and 4th and 6th graders show a solid trend 

in the same direction (Table 3, panel (b)). Also, the effect of PC5-maxAv-3grams is significant 

and strong in all groups of children, while it is not significant in adults (although it does show 

a trend; Table 3, panel (c)). 
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Figure 5 Effects of the six PCs on gaze duration. Colour panels are those where an interaction 

with Grade was significant; different colors refer to different grades as reported in the legend. 

The effect of PC2-minAv-smallNgrams, reported in panel (b), was not significant. The p-value 

of the effect is reported in each panel. 
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Table 3 Model parameters for gaze duration referring to the interaction between Grade and 

pc5_maxAv_3grams. SE, standard error; df, numbers of degrees of freedom. Panel (a) refers 

to a model where Grade was coded with a backward difference scheme, using 3rd grade as the 

reference level; therefore, the first parameter codes for the difference between 4th and 3rd 

grade, the second parameter codes for the difference between 5th and 4th grade, and so on. 

Here the emphasis is on the developmental pathway; however, since the change might be 

smooth and relatively small between consecutive grades (i.e., the time scale of the change 

might be larger than one grade), this approach might not be sensitive enough to capture 

significant differences. Panel (b), on the contrary, refers to a model where Grade was dummy-

coded with the adult sample as a reference level; therefore, each parameter illustrates the 

comparison between each grade and the adult participants. In Panel (c), we illustrate the 

parameter for the main effect of pc5_maxAv_3grams when we change the reference level in 

the dummy-coded model to each of the five levels, therefore effectively tracking the presence 

of a significant pc5_maxAv_3grams in each individual grade (and in the adult sample). 

 

(a)      

 Beta SE t df p 

pc5_maxAv_3grams:Grade1 

(3rd grade vs. 4th grade) 
–.008 .010 –.88 61670 .38 

pc5_maxAv_3grams:Grade2 

(4th grade vs. 5th grade) 
.001 .009 .17 61630 .87 

pc5_maxAv_3grams:Grade3 

(5th grade vs. 6th grade) 
–.006 .007 –.87 61600 .39 

pc5_maxAv_3grams:Grade4 

(6th grade vs. adults) 
–.013 .007 –1.74 61610 .08 

  

(b)      

 Beta SE t df p 

pc5_maxAv_3grams:Grade1 

(3rd grade vs. adults)  
.026 .008 3.20 61850 .001 

pc5_maxAv_3grams:Grade1  

(4th grade vs. adults)  
.017 .009 1.76 61640 .08 

pc5_maxAv_3grams:Grade1  

(5th grade vs. adults)  
.019 .007 2.51 61600 .01 

pc5_maxAv_3grams:Grade1 

(6th grade vs. adults)   
.012 .007 1.74 61610 .08 
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(c)      

 Beta SE t df p 

pc5_maxAv_3grams  

(3rd grade) 
.039 .009 4.41 1640 <.001 

pc5_maxAv_3grams  

(4th grade) 
.031 .010 2.93 2999 .003 

pc5_maxAv_3grams  

(5th grade) 
.032 .008 3.85 1257 <.001 

pc5_maxAv_3grams  

(6th grade) 
.026 .008 3.19 1144 .001 

pc5_maxAv_3grams  

(adults) 
.013 .008 1.61 1312 .11 

Overall, there seem to be clear effects of n-gram frequency, which, albeit smaller in 

size, are clearly distinguishable and independent from word-level effects. Also, maximal n-

gram frequency seems to play a more important role than minimal n-gram frequency1, and it 

correlates positively with gaze duration: higher maximal frequency leads to longer fixations. 

Evidence is more mixed for what concerns developmental change: sensitivity to PC5-maxAv-

3grams does shrink with growing grades, while this is not the case for PC3-maxAv-4grams and 

PC4-maxAv-2grams. 

FoM fixation duration was significantly modulated by PC1_wordFreq, 

PC5_maxAv_3grams, and PC6_wordLength, as reported in Table 4. None of these effects 

significantly interacted with Grade.  

  

 
1 Minimal/average quadrigram frequency is embedded within PC1, which does have a very strong effect on gaze 

duration. However, because PC1 also tracks word frequency, we cautiously consider it to reflect word-level 

processing.  
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Table 4 Overall significance of the first-of-many fixation duration effects. df, number of 

degrees of freedom. Significant effects appear in bold. 

 

 Chi-square df p 

PC1-wordFreq 26.92 1 <.001 

PC2-minAv-smallNgrams 1.33 1 .25 

PC3-maxAv-4grams 1.41 1 .23 

PC4-maxAv-2grams 1.64 1 .20 

PC5-maxAv-3grams 4.48 1 .03 

PC6-wordLength 4.54 1 .03 

Grade 120.92 4 <.001 

MT 33.92 1 <.001 

Raven 0.19 1 .67 

pc1_wordFreq:Grade 2.54 4 .64 

pc2_minAv_smallNgrams:Grade 3.21 4 .52 

pc3_maxAv_4grams:Grade 3.98 4 .41 

pc4_maxAv_2grams:Grade 5.68 4 .22 

pc5_maxAv_3grams:Grade 4.21 4 .38 

pc6_wordLength:Grade 3.84 4 .43 

As illustrated in Figure 6, the duration of FoM fixations shrinks with PC1_wordFreq 

and grows with PC6_wordLength, in line with gaze duration. Also in line with gaze duration, 

FoM fixation grows with PC5_maxAv_3grams. In terms of effect size (represented by slope in 

the figure), word frequency appears to have a much stronger effect, whereas word length and 

maximal/average trigram frequency have a similar effect. 
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This pattern of results suggests that maximal/average trigram frequency modulates the 

fixation pattern at an early processing stage. Furthermore, quite interestingly, the information 

that is relevant at this early processing stage does not appear to change with age.  

 

 

Figure 6 Effects of the six PCs on first-of-many fixation duration. No PC interacted 

significantly with Grade, therefore only their main effects are illustrated. The p-value of the 

effect is reported in each panel. 
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 Total reading time is significantly modulated by most of the PCs considered here, all 

in interaction with Grade, as reported in Table 5. Besides PC1-wordFreq and PC6-

wordLength, a significant effect also emerged for PC3-maxAv-4grams, PC4-maxAv-2grams 

and PC5-maxAv-3grams.  

 

Table 5 Overall significance of the total reading time effects. Significance values as obtained 

via car::Anova(model). df = number of degrees of freedom. Significant effects appear in bold. 

 

 Chi-square df p 

PC1-wordFreq 538.33 1 <.001 

PC2-minAv-smallNgrams 2.13 1 .14 

PC3-maxAv-4grams 27.23 1 <.001 

PC4-maxAv-2grams 23.83 1 <.001 

PC5-maxAv-3grams 31.87 1 <.001 

PC6-wordLength 531.19 1 <.001 

Grade 574.00 4 <.001 

MT 223.67 1 <.001 

Raven 1.24 1 .26 

pc1_wordFreq:Grade 270.48 4 <.001 

pc2_minAv_smallNgrams:Grade 5.55 4 .23 

pc3_maxAv_4grams:Grade 12.52 4 .009 

pc4_maxAv_2grams:Grade 18.48 4 .001 

pc5_maxAv_3grams:Grade 46.66 4 <.001 

pc6_wordLength:Grade 160.36 4 <.001 
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As illustrated in Figure 7, higher n-gram frequency yields longer reading times, more 

markedly so in younger readers. The only component whose effect does not reach statistical 

significance is PC2_minAv_smallNgrams, in line with the results of the analyses of gaze and 

FoM fixation durations. As in the gaze duration analysis, the effects of PC1-wordFreq and 

PC6-wordLength are larger in size than the n-gram effects; nevertheless, again similarly to 

gaze duration, PC3-maxAv-4grams, PC4-maxAv-2grams, and PC5-maxAv-3grams are 

statistically significant, showing that n-gram frequency effects can be observed independently 

of word length and word frequency. All effects also significantly interact with Grade, and show 

that words whose maximal/average n-gram frequency is higher yield longer fixations, and that 

the effect shrinks with age. The effects do not seem to differ greatly across n-gram sizes; 

particularly, the effects of PC3-maxAv-4grams, which tracks quadrigrams, PC4-maxAv-

2grams, tuned to bigrams, and PC5-maxAv-3grams, tracking trigrams, appear to have a very 

similar slope (Figure 7, panels (c), (d) and (e)). For all three n-gram metrics, we found a 

significant difference in their effect on total reading time between 6th graders and adults; as 

far as PC5-maxAv-3grams is concerned, there is also a significant difference in its effect 

between 3rd and 4th graders, and a trend is observed between 5th and 6th graders (Table 6, 

panel (a)). A significant difference in the effect of PC3-maxAv-4grams is observed between 

4th graders and adults, 5th graders and adults, and 6th graders and adults, while for PC4-

maxAv-2grams we found a significant difference between 3rd graders and adults, and 6th 

graders and adults, besides a trend between 4th graders and adults. A significant difference of 

the PC5-maxAv-3grams effect is observed between developing readers of each grade and adults 

(Table 6, panel (b)). Finally, the effects of all three PCs are significant and strong in all groups 

of children and in adults (Table 3, panel (c)). 
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Table 6 Model parameters for total reading time, referring to the interaction between Grade 

and pc3_maxAv_4grams, Grade and pc4_maxAv_2grams, and Grade and 

pc5_maxAv_3grams. SE = standard error; df = number of degrees of freedom. See Table 3 for 

a description of the contrast structure illustrated in each panel, adopted here as well. Significant 

effects appear in bold. 

(a)      

 Beta SE t df p 

pc3_maxAv_4grams:Grade1  

(3rd grade vs. 4th grade) 
.008 .010 0.86 61672 .39 

pc3_maxAv_4grams:Grade2  

(4th grade vs. 5th grade) 
-.004 .009 -0.43 61632 .67 

pc3_maxAv_4grams:Grade3 

(5th grade vs. 6th grade) 
.009 .007 1.35 61617 .18 

pc3_maxAv_4grams:Grade4 

(6th grade vs. adults) 
-.025 .007 -3.56 61629 <.001 

pc4_maxAv_2grams:Grade1 

(3rd grade vs. 4th grade) 
–.026 .016 –1.63 61672 .10 

pc4_maxAv_2grams:Grade2 

(4th grade vs. 5th grade) 
-.009 .015 -0.62 61639 .54 

pc4_maxAv_2grams:Grade3 

(5th grade vs. 6th grade) 
.006 .011 0.52 61624 .60 

pc4_maxAv_2grams:Grade4 

(6th grade vs. adults) 
–.024 .011 –2.07 61614 .04 

pc5_maxAv_3grams:Grade1 

(3rd grade vs. 4th grade) 
–.026 .010 –2.69 61667 .007 

pc5_maxAv_3grams:Grade2 

(4th grade vs. 5th grade) 
.004 .009 0.40 61636 .69 

pc5_maxAv_3grams:Grade3 

(5th grade vs. 6th grade) 
–.012 .007 –1.80 61612 .07 

pc5_maxAv_3grams:Grade4 

(6th grade vs. adults) 
–.016 .007 –2.40 61617 .02 
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(b)      

 Beta SE t df p 

pc3_maxAv_4grams:Grade1 

(3rd grade vs. adults)  
.011 .008 1.48 61857 .14 

pc3_maxAv_4grams:Grade2  

(4th grade vs. adults)  
.020 .009 2.10 61660 .04 

pc3_maxAv_4grams:Grade3  

(5th grade vs. adults)  
.016 .007 2.17 61694 .03 

pc3_maxAv_4grams:Grade4 

(6th grade vs. adults)   
.025 .007 3.56 61629 <.001 

pc4_maxAv_2grams:Grade1 

(3rd grade vs. adults)  
.053 .012 4.28 61824 <.001 

pc4_maxAv_2grams:Grade2  

(4th grade vs. adults)  
.027 .015 1.77 61662 .08 

pc4_maxAv_2grams:Grade3  

(5th grade vs. adults)  
.018 .012 1.53 61677 .13 

pc4_maxAv_2grams:Grade4 

(6th grade vs. adults)   
.024 .011 2.07 61614 .04 

pc5_maxAv_3grams:Grade1 

(3rd grade vs. adults)  
.050 .008 6.59 61825 <.001 

pc5_maxAv_3grams:Grade2  

(4th grade vs. adults)  
.025 .009 2.70 61647 .007 

pc5_maxAv_3grams:Grade3  

(5th grade vs. adults)  
.028 .007 4.04 61664 <.001 

pc5_maxAv_3grams:Grade4 

(6th grade vs. adults)   
.016 .007 2.40 61617 .02 
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(c)      

 Beta SE t df p 

pc3_maxAv_4grams  

(3rd grade) 
.035 .009 3.94 1426 <.001 

pc3_maxAv_4grams  

(4th grade) 
.043 .010 4.18 2592 <.001 

pc3_maxAv_4grams  

(5th grade) 
.039 .008 4.64 1179 <.001 

pc3_maxAv_4grams  

(6th grade) 
.049 .008 5.85 1081 <.001 

pc3_maxAv_4grams  

(adults) 
.024 .009 2.76 1242 .006 

pc4_maxAv_2grams 

(3rd grade) 
.092 .015 6.08 1273 <.001 

pc4_maxAv_2grams 

(4th grade) 
.067 .018 3.79 2300 <.001 

pc4_maxAv_2grams 

(5th grade) 
.057 .015 3.94 1082 <.001 

pc4_maxAv_2grams 

(6th grade) 
.063 .014 4.42 1006 <.001 

pc4_maxAv_2grams 

(adults) 
.039 .015 2.67 1149 .008 

pc5_maxAv_3grams  

(3rd grade) 
.070 .009 7.76 1490 <.001 

pc5_maxAv_3grams  

(4th grade) 
.043 .010 4.24 2597 <.001 

pc5_maxAv_3grams  

(5th grade) 
.047 .008 5.62 1171 <.001 

pc5_maxAv_3grams  

(6th grade) 
.035 .008 4.27 1077 <.001 

pc5_maxAv_3grams  

(adults) 
.019 .008 2.21 1218 .03 
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Figure 7  Effects of the six PCs on total reading time. Color panels are those where an 

interaction with Grade was significant; different colors refer to different grades as reported in 

the legend. The effect of PC2-minAv-smallNgrams, reported in panel (b), was not significant. 

The p-value of the effect is reported in each panel. 

 

Overall, it seems that effects of n-gram frequency are also found consistently later in 

processing, and that they are distinguishable and independent from word-level effects. Again, 

maximal n-gram frequency seems to play a more important role than minimal n-gram 

frequency, and it correlates positively with total reading time: higher maximal frequency leads 
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to longer looking times. Furthermore, sensitivity to all three significant n-gram components 

(PC3-maxAv-4grams, PC4-maxAv-2grams and PC5-maxAv-3grams) appears to shrink as 

grade increases. 

 

Discussion 

The theoretical question that we addressed with this work was centered on (i) the 

relationship between statistical learning and reading, more generally, and (ii) the emergence of 

sensitivity to the statistical properties of written language along reading development, more 

specifically.  While the relevance of regularities between different processing levels (e.g., 

orthography and phonology, Ziegler & Goswami, 2005; or orthography and meaning,) has been 

widely explored, it is still not clear whether and how the extraction of visual regularities within 

the orthographic level benefits reading (see, e.g., Lelonkiewicz et al., 2020; Schmalz & Mulatti, 

2017). In spite of general agreement (see Chetail, 2015, for a review) on the fact that 

orthographic regularities (i.e., clusters of frequently co-occurring letters) are extracted by 

readers and that sensitivity to them increases through print exposure, the role that such 

regularities play in visual word processing, and in reading development in particular, is still 

unclear. Indeed, evidence remains mixed as to whether the effects of bigram frequency, the 

most commonly analysed metric of orthographic regularity, are facilitatory or inhibitory on 

word processing times (e.g., Owsowitz, 1963, in Biederman, 1966; Gernsbacher, 1984; 

Schmalz & Mulatti, 2017). Here, for the first time we addressed these issues : (i) in natural 

reading (eye movements); (ii) with an unselected sample of realistic text (children stories); (iii) 

with a large-scale characterization of regularities in letter statistics (through n-gram frequency, 

on a wide sample of n-grams of different size and a wide sample of words); and (iv) with a 

large cohort of children participants (N=141, from grade 3 to grade 6) and a control group of 

adults (N=33).  
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Overall, our data yielded seven fundamental findings: (i) first and foremost, n-gram 

frequency affects looking times independently of word-level variables such as frequency and 

length; (ii) this is generally true already in the youngest cohort of participants, in third grade; 

(iii) with growing age/grade, the effect of n-gram frequency shrinks; (iv) these developmental 

effects occur in late, but not early measures of lexical processing (i.e., in gaze duration and 

total looking time, but not in first-of-many fixation duration); (v) n-gram size does not seem to 

influence the strength of the n-gram effects, although trigrams seem to yield particularly solid 

results; (vi) maximal and/or average n-gram frequency across a word seem to work better than 

minimal n-gram frequency; (vii) contrary to word frequency, higher n-gram frequency implies 

longer looking times. 

The core result of the present paper is that children show sensitivity to the statistics 

with which letters and graphemes go together in words, independently of other well established 

predictors of eye movement during reading, like word frequency and word length (and reading 

skills, of course). This fundamental result sits well with earlier evidence showing that children 

as young as 6 years old prefer novel words whose spelling conforms to the general 

characteristics of words in their language (Cassar & Treiman, 1997; Pacton et al., 2001). 

Crucially, we extend this evidence to a large-scale operationalization of these characteristics 

in terms of n-gram frequency and, just as important, to the natural reading of real words. This 

suggests that reading and learning to read do indeed benefit from the coding of regularities 

with which letters (and/or graphemes) form words—there is a link between reading and 

learning to read on the one hand, and statistical learning on the other. 

How does this sit with the partial evidence that comes from other studies with children 

(Cassar & Treiman, 1997; Pacton et al., 2001), and from studies on sensitivity to n-gram 

frequency (particularly bigram) in adults (Chetail, 2015; Schmalz et al., 2017; Schmalz & 

Mulatti, 2017)? There are methodological considerations that might explain inconsistencies on 
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this front. Several children studies used a correlational approach, reasoning that if statistical 

learning plays a role in learning to read, children who are good at statistical learning should 

also become more proficient readers (Arciuli & Simpson, 2012; Kidd & Arciuli, 2016; von 

Koss Torkildsen et al., 2019). Results were mixed (West et al., 2018), which might be due to 

the relatively poor reliability of some statistical learning tasks (e.g., Siegelman, Bogaerts and 

Frost, 2017), or perhaps to the fact that statistical learning at the service of reading and visual 

word identification captures a specific type of information – regularities in letter co-occurrence 

– that does not necessarily correlate with the kind of information one learns in the typical 

statistical learning tasks (e.g., the transition probability between non-linguistic visual objects 

in Visual Statistical Learning; see Siegelman et al., 2017). If children (and adults) are 

independently sensitive to how letters go together in real linguistic materials vs. ad-hoc, lab-

specific, non-meaningful visual systems, it comes as no surprise that the correlation between 

performance in classic statistical learning tasks and reading skills is shaky, even if a connection 

between statistical learning and reading becomes apparent when the relationship is studied 

entirely within the domain of reading itself, i.e., with real words and with sensitivity to the 

statistics of co-occurrence between real letters. 

The finding that statistical learning might contribute to visual word identification and 

reading is very relevant for general theories of literacy acquisition, in particular those that focus 

specifically on the construction of an orthographic lexicon that allows a quicker and more 

efficient word identification process. For example, the lexical tuning hypothesis suggests that 

orthographic reading is attained through a progressive sharpening of lexical representations, so 

that stronger lexical competitors (that is, more similar words) get distinguished progressively 

better along reading development (Castles et al., 2007). The present data offer a potential 

account of how this happens, that is, via sensitivity to letter co-occurrence statistics, which may 

identify potential units in the visual input. These candidates for higher-level representations 
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will then be vetted for their functional role in the phonological system (e.g., multi-letter 

graphemes, like ou, or isl) or in the semantic system (e.g., morphemes, like ing, or ness, and 

words); or perhaps, they might more simply remain statistically cohesive (e.g., frequent) 

chunks from a merely orthographic point of view, with no particular correspondence with the 

rest of the language system (e.g., str). Of course, more experience would lead to a more precise 

estimation of the statistics of letter chunks, including words. This will in turn lead to the 

construction of more and more solid, and more and more precise lexical representations—this 

account instantiates one possible form of lexical tuning. This account based on statistical 

regularities in letter co-occurrence does not give any particularly privileged status to words; in 

fact, any frequent enough letter chunks might develop its own representation. Nicely, this 

matches with a growing body of evidence, particularly in the adults literature, suggesting that 

the lexical system also includes non-lexical representations, like affixes (e.g., Taft & Kougious, 

2004), morphemes more in general (e.g., Crepaldi et al., 2010; Xu & Taft, 2014), or even letter 

chunks, like the present account would suggest (e.g., Rastle et al., 2004; Grainger and Ziegler, 

2011).  

Interestingly, the n-gram effects seem strong and solid already in the youngest cohort 

of participants in the present study (third graders). This aspect of the results is again in line 

with the only other investigation of children’s sensitivity to letter regularities, although with 

nonce words and in an artificial, lab-based task. In fact, Pacton et al. (2001) reported that even 

first graders, whose experience with written language is quite limited, preferred novel words 

that conformed better with French orthography (e.g., contained higher-frequency doublet 

consonants). The letter statistics that we considered here are more sophisticated, not much in 

their quality (we also refer to the frequency of letter chunks), but surely in their quantity (we 

considered a wide distribution of n-grams included in a realistic text, rather than a few, 
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carefully selected stimuli); and yet, we also find sensitivity to these statistics as early in literacy 

acquisition as we were able to test. 

Where does this sensitivity come from, in such young and quite inexperienced readers? 

Of course, one possibility is that the visual system is very quick in picking up statistical 

regularities in letter co-occurrence, so that even a very limited experience is enough to generate 

statistical learning effects. This seems quite plausible in the case of Pacton et al. (2001), where 

letter regularities were operationalised as a handful of simple frequency contrasts (e.g., high-

frequency consonant doublets vs. low-frequency consonant doublets) or general rules (e.g., 

vowels never duplicate in French). The present data would attest for a much more powerful 

mechanism, which does not only capture individual chunks, or orthographic rules in a 

language, but keeps track of an entire frequency distribution among a large amount of n-grams 

and words, and does so quite effectively from a relatively early stage (third grade, in this case) 

with surprising accuracy. One important note of caution is in order, however. Italian has a very 

transparent mapping between orthography and phonology, and therefore the statistics of co-

occurrence between letters (or graphemes) largely overlap to the statistics of co-occurrence 

between their corresponding phonemes. Thus, we cannot exclude that at least part of the current 

pattern of sensitivity to statistical information was based on knowledge that was accumulated 

in the phonological domain, in which children have much more expertise (see, e.g., Ehri, 2005). 

There are surely elements that would speak against a strong role of phonological regularities 

here. For example, reading aloud was not required in the present paradigm; although there is 

evidence that phonology is computed even when words are read silently (see, e.g., Alario et 

al., 2007; for a review, see Clifton, 2015), the emphasis on understanding and the lack of open 

articulation should have reduced the contribution of phonological information. Also, early-

stage readers are known to make heavy use of phonological recoding (e.g., Share, 1995), but 

this is mostly a strategic, explicit cognitive mechanism (e.g., Castles et al., 2018), while 
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sensitivity to statistical regularities in the environment is typically implicit and independent of 

strategic control (e.g., Chetail, 2015; Frost et al., 2019). Nonetheless, further data from a 

language where orthographic and phonological regularities are decoupled thanks to more 

opaque grapheme-to-phoneme mappings would certainly be a welcome addition in this respect, 

and would attest more clearly for the genuine orthographic nature of these effects. 

Pacton et al. (2001) also found evidence for a developmental pattern whereby 

sensitivity to statistics increased with age, at least in some of their results. We also find some 

developmental trends in the n-gram frequency effects, but they seem to go in the opposite 

direction: the effects shrink with growing age/grade, instead of strengthening. This might seem 

surprising, because more experience with a written language should intuitively bring better 

knowledge of its statistics, and therefore an increased sensitivity to this factor. However, we 

highlighted above the fact that our data (and Pacton et al.’s) seem to suggest a very early 

sensitivity to letter co-occurrence statistics (perhaps helped, in the present study at least, by 

having the same statistics in the phonological domain). Therefore, the developmental changes 

that we see here might not be related to a better knowledge of the letter statistics, but to other 

dynamics that characterise reading development. For example, it is known that readers make 

heavier use of whole-word processing as they become more proficient (Ehri, 2005; Nation, 

2009; Perfetti & Hart, 2002); this might reduce the importance of letter processing, therefore 

also reducing the importance of their statistics of co-occurrence.  

Some caution is required here, however, by the fact that also the effects of whole-word 

frequency (PC1) and word length (PC6) seem to shrink with age; that is, this developmental 

pattern is not specific for n-gram frequency. This might suggest that there are other factors in 

our data driving the statistical reduction of the effects across development, factors that would 

not be specifically tied to sensitivity to n-grams and their frequency (for example, a mere 

reduction in the variance of the dependent variables with growing grade/age/proficiency, which 
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might artificially reduce the amount of explained variance in higher grades for all variables). 

A potential explanation is provided by the linguistic-proficiency hypothesis outlined by Reichle 

et al. (2013), according to which, as a reader becomes more skilled, his/her increased 

proficiency will also result in increasingly adult-like eye-movement patterns. This possibility 

warrants further consideration. 

It is interesting to note that we were only able to see significant developmental trends 

on relatively late eye-tracking metrics; FoM fixation durations were modulated by n-gram 

frequency (maximal/average trigram frequency, more precisely), but the impact of this variable 

does not seem to change during the course of reading acquisition. This is another novel insight 

that stems from these data, which was enabled by the use of eye tracking. Methodologically, 

this result nicely confirms that the information collected during FoM fixations, and the 

processing thereof, does not entirely overlap with what is tracked by later measures, like gaze 

duration. From a more theoretical point of view, this suggests that the early visual uptake of 

information is fully matured by the time developing readers are in third grade, and does not 

really change substantially as reading proficiency improves. This resonates with much previous 

work on the maturation of the reading/visual system (e.g., Blythe et al., 2009), and suggests 

that the very early stages of word/letter processing during natural reading are mostly visual in 

nature, and perhaps not specific to reading (or at least not entirely specific, to the point that 

they do not change with changes in reading development).   

With this work, we discovered three fundamental properties of sensitivity to n-grams 

in reading and its development. First, we seem to collect information about n-grams of different 

sizes, without one specific dominant “spatial resolution”, or “grain size”, to make a more 

explicit connection with a notable theory of learning to read (Ziegler & Goswami, 2005). 

Trigrams seem to be more important at the early stages of processing (their maximal/average 

frequency is the only significant predictor of FoM fixation duration), but they are quite on par 
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with bigrams and quadrigrams in later, more fully lexical metrics (gaze duration in particular). 

Second, maximal/average frequency affects eye movements more strongly than minimal 

frequency. Finally, words with higher n-gram frequency are fixated for longer periods of time, 

rather than yielding shorter fixations, as it is the case for word frequency. Collectively, these 

properties allow us to characterize n-gram processing –or, more generally, the way we use 

statistical information on letter co-occurrence during reading– with much more precision. First, 

the process seems to be unselective as to what kind of units it would use—it takes statistical 

information whatever it comes from, and is able to consider different n-gram sizes at the same 

time. Trigrams seem to be particularly useful early on (i.e., during first fixations); with a bit of 

speculation, this might be related to the fact that chunks of three letters seem to be a potentially 

useful stepping stone from individual letters to words, and this might be particularly relevant 

when information uptake must be maximised, i.e., when readers perform a quick first fixation 

on a new word, in the view of having further fixations more centrally within that word. 

Perhaps more difficult to understand is why maximal, rather than minimal, n-gram 

frequency within a word emerges as a particularly salient cue. Information is inversely 

proportional to frequency; if you know that a word contains the highly frequent trigram peg, 

you are left with many alternatives, but if you know that a word contains a rare trigram like 

ynx, you can be pretty sure that the word is sphynx. So, this result might sound particularly 

counter-intuitive; readers should focus more on statistics that promise to deliver more 

information. One possible account is related to the fact that we measured eye movements here, 

and therefore the system is not only involved in letter processing, word identification and 

understanding, but also in deciding where to fixate next, for how long, and what the best 

possible landing position might be. So, even if maximally frequent n-grams provide a lesser 

cue to word identity, they might be good processing locations, and therefore the eye movement 

control system might be specifically tuned to find them. Of course, a more detailed study of 
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how information is distributed within words would be necessary here (see, for example, 

Alhama et al., 2019, or Underwood et al., 1990), but there are also cognitive reasons that might 

suggest such a fixation strategy; for example, it might be convenient to have higher-frequency 

material in the fovea, so that more resources are free to compute parafoveal information (e.g., 

Kennedy & Pynte, 2005; Veldre & Andrews, 2018). 

This account for why maximal frequency is more important than minimal frequency 

might also help explaining the somewhat surprising direction of the effect—words with higher 

maximal n-gram frequency attract longer, rather than shorter fixations. If readers are 

particularly interested in maximal n-gram frequency because this allows them to collect more 

information from their fixations, then it makes sense that they stay longer on words whose 

maximal n-gram frequency is higher—there will likely be more information to collect. It is 

important to note, however, that the literature includes trigram effects that go in either 

direction, facilitatory (e.g., Hand et al., 2012) or inhibitory (e.g., Lima and Inhoff, 1985). In 

her review of letter statistic effects, Chetail (2015) does note this inconsistency, and proposes 

an account to reconcile this contrasting evidence. The account is based on different stages of 

processing; n-grams would have a facilitatory effect during the early steps of visual word 

recognition, e.g., orthographic processing, and inhibitory effects on later stages, where lexical 

competition kicks in. Such an account might also apply to our data, of course, but it would be 

difficult to reconcile with the fact that we did not find different results between early eye-

tracking metrics, such as FoM fixation duration, and later ones, like gaze duration.   

For what concerns general models of reading and learning to read (e.g., the lexical 

tuning hypothesis by Castles et al., 2007; the DRC model by Coltheart et al., 1993, 2001; the 

dual-route approach by Grainger & Ziegler, 2011; the EZ reader model by Reichle, 2011; 

Reichle et al. 1998; the OB1 reading model by Snell et al., 2018; the psycholinguistic grain 

size theory by Ziegler & Goswami, 2005), they generally make little explicit connection with 
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statistical learning, and therefore it is difficult to see how the present data would confirm, 

challenge or qualify them further. Also, this work is only a first step towards a more specific, 

mechanistic account of how sensitivity to letter statistics connects to reading and reading 

acquisition; thus, it is probably too early to compare this experimental evidence to the very 

detailed dynamics that are implemented in some of those models. Most generally, however, 

these data are obviously compliant with the emphasis on statistical regularities that is typical 

of connectionist models of reading (e.g., Plaut et al., 1996; Seidenberg & McClelland, 1989; 

Harm & Seidenberg, 1999, 2004), which, interestingly, was also the theoretical framework in 

which Pacton et al. (2001) interpreted their results. In the last decade, several other models 

were proposed, which do not explicitly put themselves in the line of early connectionism, but 

still emphasise the important role played by statistics in the correspondence between different 

linguistic domains (form and meaning in particular; e.g., Baayen et al., 2011; Marelli and 

Baroni, 2015; Marelli et al., 2017). Frost (2012) took up the issue that most models of reading 

and most experimental evidence in this domain is based on a tiny subset of languages in the 

world (e.g., English, Dutch, German, Italian, Hebrew), and argues that a more general universal 

model of reading must be sought for. Critically for the present work, he indicates sensitivity to 

statistical regularities within the reading system as a potentially unifying principle that might 

support the construction of such a linguistically universal model. In addition to explicit, 

mechanistic models of reading and visual word identification, there are also novel experimental 

effects that emerged in recent years and that are entirely built on the idea that the brain is 

sensitive to statistical regularities in the connection between form and meaning (e.g., 

Orthography-to-Semantic Consistency, OSC; Marelli et al., 2015; Marelli and Amenta, 2018; 

Amenta et al., 2020). 

From this perspective, the novelty of the present work is that it focuses entirely on 

orthography, while the work described above focused specifically on ties between different 



159 

domains (e.g., phonology and orthography, form and meaning). The data illustrated here (and 

in some other recent work; e.g., Chetail, 2017; Lelonkiewicz et al., 2020) suggest that not only 

statistical cues are relevant to establish ties between units of different nature (e.g., phonemes 

and graphemes), but even the construction of the relevant representations within one given 

domain (here, orthography) might be dominated by sensitivity to statistical regularities. This 

yields even more generality to the statistical learning approach to reading and learning to read.   

A final note is in order to specify that, although some models of visual word 

identification have explicitly proposed that n-grams (bigrams, in particular) are critical 

processing units in the system (e.g., Dehaene et al., 2005; Whitney, 2001), we would not take 

a strong stance in this respect. The main reason is that n-gram frequency was assumed in this 

work only as one possible operationalisation of letter co-occurrence statistics—one among 

many, which seemed particularly convenient in the context of reading development and visual 

word identification (for example, because this variable has attracted some attention in this 

domain). It was outside the scope of the paper to specifically contrast this metric with other 

potential statistical cues, like, e.g., transitional probability, which has generated comparatively 

more research in the statistical learning domain (e.g., Bogaerts et al., 2016; Fiser & Aslin, 2001, 

2005; Kirkham et al., 2002; Saffran et al., 1996). So, we take these results as surely compatible 

with accounts of reading and literacy acquisition that stipulate a specific role for n-gram 

representations. However, we do not think that these data are particularly constraining to those 

models; in fact, the fundamental theoretical message of the present work, we believe, is that 

sensitivity to letter statistics is an important player in reading acquisition. We started to draft 

the specific characteristics of the cognitive mechanisms that might lie behind this general tenet, 

but this is only the beginning of, we hope, a much longer journey.
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Chapter V 

Automatic Morpheme Identification Across Development: 

Magnetoencephalography (MEG) Evidence from Fast Periodic 

Visual Stimulation 

 

Morphemes are the smallest linguistic units that bear meaning. For instance, a complex 

word like artist contains a stem, art-, and a suffix, -ist. Many languages are morphologically 

rich, meaning that that their lexicon includes a great deal of complex words, by derivation, 

inflection or compounding; it is estimated that 85% of the English lexicon is made up of 

complex words (Algeo & Algeo, 1993; Grainger & Ziegler, 2011). 

In light of the role that morphological processing plays in skilled reading (Rastle, 2019), 

it is unsurprising that several studies in the psycholinguistic domain have focused on the 

sensitivity to morphological structure in visual word processing (for a review see Amenta & 

Crepaldi, 2012). Several theories have been proposed over the years to account for the visual 

identification, comprehension and reading aloud of complex words. Some of these theories 

dispose entirely of explicit morphological representations, and trace back the emergence of 

morphological effects to the appreciation of statistical regularities in the mapping between 

form, meaning and phonology (e.g., Baayen et al., 2011; Seidenberg, 1987). Other models 

affirm the existence of morphological representations, either through different, serially-

arranged stages of processing (e.g., Crepaldi et al., 2010; Taft & Nguyen, 2010; Taft, 2015) or 

along parallel routes of processing (e.g., Grainger & Ziegler, 2011). These “localist” models of 

morphology build in different ways on the distinction between a level of morphological 

processing that is mostly based on form and one in which meaning plays a more substantial 

role. 
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Indeed, behavioural evidence has widely shown that adult readers’ sensitivity to the 

morphological structure of words is such that even pseudocomplex words, i.e., words 

containing non-morphological orthographic units that overlap with existing and productive 

morphemes, hold a special status in visual word processing (e.g., Dawson et al., 2018; 

Diependaele et al., 2011; Kazanina et al., 2008; Longtin et al., 2003; Marelli et al., 2013; Rastle 

et al., 2004). Masked priming evidence with adults show that not only words such as reader 

prime their stem read, but also pseudo-morphological words such as corner, prime their 

pseudostems corn (as compared to a purely orthographic baseline, e.g., brothel-BROTH). 

 More recently, Grainger and Beyersmann (2017, 2021) proposed a novel view, 

whereby the analysis of the internal structure of words is initiated by the identification of stems 

as embedded, edge-aligned words. This would be a bootstrapping mechanism exploited for 

initiating morpho-orthographic processing, as we will discuss later in this section. 

While an extensive body of research has appreciated the role of morphemes as reading 

units, it is far less clear at which point of reading development the ability to recognize 

morphemes fully matures (e.g., Beyersmann et al., 2012; Dawson et al., 2018; Quémart et al., 

2011). Available evidence from behavioural studies is quite mixed in this respect. Sensitivity 

to morphological structure has been reported to emerge as early as seven years of age. For 

example, in a study by Carlisle and Stone (2005) a group of children from Grades 2 and 3 and 

a group from Grades 5 and 6 were administered a reading aloud task. Both groups showed 

faster reading times for derived words (e.g., hilly) than for “pseudoderived” ones, matched for 

number of syllables and frequency (e.g., silly). Similarly, Kirby et al. (2012) found that within 

the first 2-3 years of primary school children already display explicit morphological 

knowledge. Priming studies have corroborated such evidence, consistently revealing 

significant priming for morphologically related pairs (e.g., golden-GOLD in English, 
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kleidchen-KLEID in German) in primary school children, as early as Grade 2 (Hasenäcker et 

al., 2016) or Grade 3 (Beyersmann et al., 2012). 

While morpho-semantic processing appears to be present at an early developmental 

stage, findings are much more inconclusive when it comes to the establishing the trajectory of 

morpho-orthographic processing, which has been shown to regularly occur in skilled adult 

readers (e.g., Dawson et al., 2018; Longtin et al., 2003; Rastle et al., 2004). A few studies 

conducted in French (Casalis et al., 2015; Quémart et al., 2011) and Italian (Burani et al., 2002; 

Burani et al., 2008) have provided evidence for sensitivity to nonwords with a morphological 

structure in primary school children. Of course, children might try to assign some meaning to 

these nonwords, which are typically somewhat interpretable (e.g., mammista, lit. “motherist”, 

Burani et al., 2002), particularly by individuals with a still incomplete lexicon, who might just 

think they have come across a novel word. In this sense, such evidence is not unequivocal 

support for a morpho-orthographic analysis of letter strings similar to what allows adults to see 

corn in corner. However, it does suggest that children can identify morphemes in unfamiliar 

letter strings, that is, they can access morphology pre-lexically and independently of the 

meaning of the letter strings where they are embedded (which, in this case, does not exist 

entirely). 

In a cross-sectional lexical decision study investigating the emergence of sensitivity to 

morphemes within nonwords along development, Dawson et al. (2018) reported lower 

accuracy in rejecting complex nonwords (such as earist) compared to control nonwords (e.g., 

earilt) across all age groups that they tested (adults, older adolescents, young adolescents, 

children); however, only the two older age groups displayed slower reaction times to complex 

nonwords compared to control nonwords. This supports the conclusion that, while 

morphological sensitivity is already present in younger readers, it fully matures quite late in 

adolescence (16-17 years old). 
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Another host of studies investigated the emergence of the corner-corn effect itself, using 

the classic masked priming design with transparent (dealer-DEAL), opaque (corner-CORN) 

and orthographic (dialog-DIAL) prime-target pairs, providing quite mixed evidence about 

morpho-orthographic processing in developing readers. For instance, in a study in English by 

Beyersmann et al. (2012), children in Grades 3 and 5 showed priming only for transparent 

pairs, such as golden-GOLD, but not for opaque (e.g., mother-MOTH) or orthographic ones 

(e.g., spinach-SPIN). A different pattern of results emerged in a French study with third, fifth 

and seventh graders by Quémart et al. (2011). This experiment yielded similar effects for 

opaque (baguette-BAGUE) and transparent pairs (tablette-TABLE), but no priming for 

orthographic (abricot-ABRI) or semantic (tulipe-FLEUR) pairs. Yet another pattern emerged 

in Schiff et al. (2012), where both fourth and seventh graders showed strong priming when 

prime and target were morphologically and semantically related, and seventh graders showed 

also a weak priming effect for pairs that were morphologically related and semantically 

unrelated, displaying a pattern similar to that observed with adult readers of Hebrew in other 

studies (Bentin & Feldman, 1990; Frost et al., 1997).   

An account of the developmental trajectory of morpho-orthographic processing has 

been recently proposed by Grainger and Beyersmann (2017, 2021). According to this model, 

beginning readers rely on previously existing representations of stems (which are often 

encountered as free-standing words and therefore have a more readily available visual 

representation) as a bootstrapping mechanism for initiating morpho-orthographic 

segmentation. Following consistent exposure to printed complex words, orthographic affix 

representations in complex words would occur later in development. Finally, the formation of 

affix representations in pseudocomplex words (i.e., complete morpho-orthographic processing) 

would only occur in the final developmental stage. At what point in development this 

processing stage is completed is still an open question. However, stem activation is not 
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modulated by the presence of an affix per se, suggesting no specific role of morphological 

context in the recognition of stems, even when processing complex nonwords, such as farmity 

(e.g., Beyersmann et al., 2015). This theoretical suggestion is based on a number of studies 

where the classic masked priming design was extended to nonword primes (e.g., dealness-deal 

vs. dealnuss-deal; see, e.g., Beyersmann et al., 2015; Hasenäcker et al., 2016; Longtin & 

Meunier, 2005). With these stimuli, there is typically no difference between morphologically 

structured primes (dealness) and primes with an existing stem but without a suffix (dealnuss), 

contrary to the typical word prime pattern whereby corner yields facilitation, but dialog does 

not. These data led Grainger and Beyersmann (2017) to suggest a primary role for embedded, 

edge-aligned words, rather than morphological structure per se. This is nicely in line with 

recent experiments using a semantic task and showing that children access even the meaning 

of embedded stems/words (e.g., crow in crown) independently of morphology (e.g., corn in a 

pseudosuffixed word like corner as well as pea in a nonsuffixed word like peace; Hasenäcker 

et al., 2021; for similar evidence with adults, see Hasenäcker et al., 2020). 

The mixed evidence described above might be due, at least in part, to issues related to 

commonly used behavioural paradigms, often requiring children to sit through long sessions 

and perform a somewhat unnatural task (e.g., primed or unprimed lexical decision), and usually 

yielding quite small effects. To overcome these limitations, we adopted a relatively novel, 

behaviour-free technique, called Fast Periodic Visual Stimulation (FPVS), paired with an 

oddball design, in a magnetoencephalography (MEG) study with both developing and skilled 

readers. 

This paradigm has so far mostly been coupled with EEG recordings (see, e.g., Lochy et 

al., 2015, 2016; Rossion, 2014; Quek et al., 2018), and has proven very powerful in tapping 

into automatic visual processing through just a few minutes of passive stimulation at a fast 

periodic rate. Frequency-tagging paired with an oddball design allows to identify selective 
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neural responses to stimuli with specific features. For example, stimuli may be delivered at a 

rate of 6 items per second (carrier frequency = 6 Hz), with an oddball stimulus inserted 

periodically every fifth item (6 Hz/5 = oddball frequency of 1.2 Hz) differing along a certain 

dimension from the stream of stimuli in which it is embedded (see Figure 1). A robust peak in 

the EEG (or MEG) signal at the oddball frequency indexes successful discrimination of the 

oddball stimuli from the base stream, suggesting the existence of a neural representation for 

the category exemplified by them (e.g., words in nonwords; Lochy et al., 2015, 2016) or neural 

sensitivity to the dimension that distinguishes between oddball and base stimuli (e.g., frequency 

of occurrence within the visual stream; De Rosa, Ktori et al., 2021). This paradigm has been 

largely employed to detect selective responses to rapidly presented faces (e.g., Rossion, 2014; 

Dzhelyova & Rossion, 2014; Rossion et al., 2015; Quek et al., 2018). It has also been 

successfully applied to psycholinguistic research, allowing to identify neural discrimination 

responses to words in adults (Lochy et al., 2015) and even to letter strings in preschoolers 

(Lochy et al., 2016), in the left occipito-temporal cortex. 

Electrophysiological and neuroimaging techniques have allowed, over the last decades, 

to explore the neural bases of morpheme identification (see Leminen et al., 2019, for an 

extensive review). Thanks to EEG, MEG, and fMRI studies, we have gained insight into the 

neural underpinnings of visual identification of complex words, and more generally into 

morphological processing in the brain. 
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Figure 1 Schematic illustration of the Fast Periodic Visual Stimulation (FPVS) oddball 

paradigm. For a gradual and smooth transition between them, stimuli were presented via 

sinusoidal contrast modulation. In each stimulation sequence, stimuli were presented at 6 Hz 

(base frequency) for 60 seconds, with oddball stimuli appearing every fifth item (oddball 

frequency: 6/5 = 1.2 Hz). Participants engaged in an orthogonal task monitoring the colour 

change of a centrally presented fixation cross.  
 
 

For instance, different hypotheses have been proposed regarding the processing of 

regular vs. irregular inflected forms (e.g., walked vs. ran). Marslen-Wilson and Tyler (1998, 

2007), based on fMRI lesion studies, argued for a bihemispheric dual mechanism. On the one 

hand, regularly inflected forms would be processed through rule-based combinatorial 

processing, entailing decomposition; these processes appear to be left-lateralised, with an 

activation of the left inferior frontal gyrus (LIFG). A similar pattern has been found in an fMRI 

priming study with healthy adult participants on derivational morphology by Bozic et al. 

(2007), supporting the hypothesis that similar decomposition mechanisms underlie the 

processing of derivationally complex forms and regularly inflected ones. On the other hand, 

irregular inflection would yield a more broadly bilateral activation (taken to indicate access to 

lexical and semantic information), as shown by intact access to irregular forms by patients with 

left hemispheric lesion (see Marslen-Wilson & Tyler, 2007, for an overview). 

Turning to derivational morphology, in an auditory lexical decision ERP study, 

Leminen et al. (2010) presented Finnish speaking adults with existing derived words, novel 

derived words, and illegal derivations. They found that both real words and legal novel 
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derivations yielded a comparable N400-like response, suggesting successful interpretation and 

integration of morphemes in both cases. Illegal novel derivations, instead, elicited a larger 

magnitude of the N400, which was taken to reflect difficulties in the semantic integration of 

the constituent morphemes. These findings were overall interpreted as suggestive of 

simultaneous morphemic parsing and whole-word semantic access, in the auditory processing 

of derived stimuli. 

MEG studies have attempted to address whether complex (or pseudocomplex) words 

yield an obligatory early decomposition stage, as established by behavioural evidence (e.g., 

Longtin et al., 2003; Rastle et al., 2004), or whether later semantic effects also intervene. Zweig 

and Pylkkänen (2009), in a lexical decision study, found that adult English speakers displayed 

a clearer M170 – an MEG component indicative of early decomposition processes – when 

presented with real derived words (either suffixed, e.g., farmer, or prefixed, e.g., refill), as 

opposed to opaque ones (e.g., winter) or morphologically simple ones (e.g., switch). The 

emergence of the M170 component was observed both in left and right occipito-temporal 

regions, suggesting a bilateral contribution to early stages of visual word identification. In an 

MEG visual lexical decision study on English suffixed words, Fruchter and Marantz (2015) 

found, in left temporal regions, an earlier facilitatory effect on reaction times of derivational 

family entropy around 240 ms, indexing decomposition processes, and a later facilitatory effect 

of surface frequency, around 430-450 ms, interpreted as a later recombination stage (e.g., Taft, 

2004). Furthermore, a facilitation in left orbitofrontal activity around 350-500 ms was observed 

as an effect of semantic coherence, suggesting access to a semantic analysis of the morphemes 

in order to assess well-formedness. 

Whiting et al. (2015) conducted a masked priming MEG study to investigate differences 

in the processing of simple (walk), complex (farmer), and pseudocomplex (corner) words. For 

both complex and pseudocomplex items, a similar morphological effect emerged around 330-
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340 ms in the left middle temporal gyrus (MTG), diverging instead from noncomplex stimuli. 

A similar set of results was obtained with inflected stimuli, with real and pseudoinflected forms 

eliciting a similar effect around 300-370 ms in left posterior MTG and LIFG, diverging from 

noncomplex forms. This pattern of findings suggests that (pseudo)complex items undergo a 

blind decomposition process (i.e., morpho-orthographic processing), in line with behavioural 

accounts from masked priming. 

Overall, while accounts of morphological processing in the brain are far from being 

homogenous, neural evidence appears to converge on an early involvement of left temporal 

and occipital regions, in line with an early stage of morphological analysis mostly based on 

form (e.g., Crepaldi et al., 2010; Taft & Nguyen-Hoan, 2010) and on converging research on 

the identification of visual words more generally (e.g., Dehaene et al., 2005). This is further 

corroborated by fMRI evidence, such as a masked priming study by Gold and Rastle (2007), 

in which a similar pattern of reduced activation was observed in the left posterior middle 

occipital gyrus for pseudomorphologically related pairs (archer-ARCH) and for 

orthographically related ones (pulpit-PULP), and reduced activity of the posterior face 

fusiform gyrus was observed specifically for pseudomorphologically related pairs. 

However, all this evidence is exclusively based on adults, and fails to address the neural 

bases of the development of morphological sensitivity. In fact, to the best of our knowledge, 

there is no neuroimaging investigation of how children make use of morphology in visual word 

identification in their pathway towards reading proficiency. 

Furthermore, all neural evidence regarding morphological processing has so far 

entailed highly refined and artificial experimental tasks, such as primed or unprimed lexical 

decision, or violation paradigms, which, as mentioned above, entail some difficulties and 

limitations, especially with children.  
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Therefore, we turned to the FPVS-oddball task described above, and we used it in 

conjunction with MEG recordings, to gain insight on the existence and developmental 

trajectories of neural representations of morphemes. In addition to its sensitivity and ease of 

use with children, the FPVS-oddball task is particularly suited to tag automatic visual 

processes, which brings two additional advantages. First, it gives little room for strategic 

processes to contaminate the more specific mechanisms involved in morpheme identification 

(similarly to masked priming). Second, it is likely to capture particularly those early stages of 

morphological analysis where evidence, especially in behavioural experiments, is mixed, 

leaving the developmental trajectory of this processing stage quite unclear. 

The contrast between base and oddball stimuli was manipulated to probe selective stem 

and suffix identification in morphologically structured pseudowords, that is, in the absence of 

lexical processing. The oddball stimuli consisted of 4 types of items. The first two were aimed 

at assessing stem identification, either in nonwords that also contain a suffix (e.g., softity; 

Condition 1) or in nonwords that do not (e.g., softert, Condition 2). Symmetrically, condition 

3 and 4 were focused on suffix identification, in strings that also contain a stem (e.g., softity) 

or in strings that do not (e.g., terpity). The base stimuli in each condition were constructed so 

as to lack the critical morpheme. In Condition 1, the stem+suffix oddballs (softity) were 

embedded in streams of nonstem+suffix base stimuli (terpity), so that the contrast between the 

two tracks stem identification, in the presence of a suffix. In Condition 2, the stem+nonsuffix 

oddballs (softert) were embedded in streams of nonstem+nonsuffix oddballs (terpert), so that 

the contrast tracks stem identification again, but this time in the absence of a suffix. Similarly, 

Condition 3 and 4 featured stem+suffix oddballs within stem+nonsuffix bases (softity in softert) 

and nonstem+suffix oddballs within nonstem+nonsuffix bases (terpity in terpert), thus tracking 

suffix identification. Adults were administered all four conditions, while children only 

underwent Condition 1 and Condition 3, in consideration of their shorter time in the MEG.  
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Materials & Methods 

Participants  

We recruited 32 skilled adult readers (age range: 18-45) and 21 developing readers 

(enrolled in Years 5 and 6 at the time of testing). Data from four adults and four children were 

eventually removed from the final sample analysed here, either for excessive head motion 

(greater than 5 mm for adults; greater than 11 mm for children) or due to an excessive presence 

of artefacts. This left us with 28 skilled adult readers (age: mean 22.93 years, sd 6.38 years) 

and 17 developing readers (age: mean 10.59 years, sd 0.79). 

Adult participants were recruited through the Macquarie University SONA system and 

were offered course credit, where applicable, or monetary compensation. Children were 

recruited through a dedicated portal, called Neuronauts, and their families were awarded 

monetary compensation for their time. Both studies were approved by the Macquarie 

University Human Research Ethics Committee. 

All participants were native English speakers and right-handed; none reported 

neurological problems, developmental issues, language difficulties, or claustrophobia. They all 

had normal or corrected-to-normal (through contact lenses) vision.   
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Stimuli 

All conditions consisted of five 60-second trials, for adults, and of six 60-second trials, 

for children. A within-participant block design was adopted. A non-experimental, baseline 

condition (Condition 0) was administered to all participants. Adults were administered four 

experimental conditions, while children were only administered two of these (Conditions 1 and 

3).  

In condition 0, 4-letter words (oddball stimuli) were embedded in non-pronounceable 

4-consonant strings (base stimuli). This condition was solely administered to ensure that the 

paradigm worked correctly; for this type of stimuli, indeed, there should be a solid 

discrimination response (see, e.g., Lochy et al., 2015, 2016). In condition 1, oddball stimuli 

were nonwords made up of a real stem and a real suffix (e.g., softity), which were embedded 

in nonwords made up of a nonstem and a real suffix (e.g., trumess). In condition 2, nonwords 

made up of a real stem and a nonsuffix (e.g., softert) were used as oddballs and embedded in 

nonwords made up of a nonstem and a nonsuffix (e.g., trumust). In condition 3, oddball 

nonwords were made up of a real stem and a real suffix (e.g., softity) and were embedded in 

nonwords made up of a real stem and a nonsuffix (e.g., stopust). Lastly, in condition 4, 

nonwords made up of a nonstem and a nonsuffix (e.g., terpity) were embedded in nonwords 

made up of a nonstem and a suffix (e.g., trumust). Sequence examples for each condition are 

reported in Table 1.  

Contrasts in each condition were set in order to tap into stem or suffix identification. 

Specifically, a significant oddball response in condition 1 (and 2, in the adult sample only) 

would index stem identification, and in condition 3 (and 4, in the adult sample only) it would 

index suffix identification. The administration of two additional conditions (2 and 4) to the 

adult participants was intended to shed light on the role of context for the identification of 

morphemes – that is, whether a robust response to oddballs was present only when they could 
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be fully broken down into the two constituents morphemes (Conditions 1 & 3), or whether 

morphemes would also be successfully identified when oddballs featured only one morphemic 

constituent (Conditions 2 & 4).  

 

 

Table 1 Example stimuli delivered in a 1-second stimulation cycle in the four experimental 

conditions and in the non-experimental condition 0. Oddball stimuli (illustrated in italic) 

appeared every fifth item. 

 

 
 

base 

 

base 

 

base 

 

base 

 

oddball 

 

base 

Condition 1 
stem+suffix in 

nonstem+suffix 

 

trumess 

 

joskive 

 

molpory 

 

firnure 

 

softity 

 

berfise 

Condition 2 
stem+nonsuffix in 

nonstem+nonsuffix 

 

trumust 

 

joskune 

 

molpute 

 

firnint 

 

softert 

 

berfere 

Condition 3 
stem+suffix in 

stem+nonsuffix 

 

stopust 

 

helpune 

 

parkute 

 

lastint 

 

softity 

 

townere 

Condition 4 
nonstem+suffix in 

nonstem+nonsuffix 

 

trumust 

 

joskune 

 

molpute 

 

firnint 

 

terpity 

 

berfere 

Condition 0 
words in 

nonwords 

 

kltq 

 

rdsc 

 

fgnl 

 

pdrk 

 

roll 

 

tmkj 

 

 

 

In the adult version of the experiment, stimuli were composed of 12 items for each type: 

stems, nonstems, suffixes, nonsuffixes. Nonstems and nonsuffixes were created from the set of 

existing stems and existing suffixes, while keeping the same length, Consonant-Vowel 

structure, and minimising orthographic overlap with existing words (e.g., terp was created as a 

nonstem from soft, ert was created as a nonsuffix from ity). Stem and nonstems were 4 letters 

in length, while suffixes and nonsuffixes were 3-letter long. The 12 nonsuffixes were non-

morphemic endings attested in English. Each set of (non)stems and (non)suffixes was divided 

in two subsets of 6 items; stimuli were then obtained by combining each element in one subset 
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with each element of another. This procedure generated 72 unique combinations (6 items in 

the first set, times 6 items in the second set, times 2 subsets) of each type (stem+suffix, 

nonstem+suffix, stem+nonsuffix, nonstem+nonsuffix), yielding a total of 288 unique stimuli.  

In the developmental version of the experiment, the building blocks were reduced to 6, 

a subset of those used for skilled adult readers. (Non)stems and (non)suffixes were combined 

by groups of 3, to obtain 18 (3*3*2) unique combinations of each type (stem+suffix, 

nonstem+suffix, stem+nonsuffix), yielding a total of 54 unique stimuli. 

All building blocks (stems, nonstems, suffixed and nonsuffixes) are reported in Table 

2. Statistics for stems and suffixes were obtained from two different linguistic databases: 

SUBTLEX-UK (Van Heuven et al., 2014) and MorphoLex (Sánchez-Gutiérrez et al., 2018). 

Specifically, while the former frequency database is particularly relevant for its size (over 

160,000 types and 200 million tokens from English television show subtitles), the latter 

resource is a rich morphologically tagged database for English, allowing the extraction of 

metrics related to the use of items as morphemes in the language.  

 

Stem selection 

All selected stems are four-character long and have a CVCC or CCVC consonant-vowel 

structure. Here, we describe the features of the 12 stems used as constituents in the adult version 

of the experiment, a subset of which was used in the version with developing readers; the 

statistics related to the six stems used in the version for children are provided in square brackets. 

Database exploration, extraction and calculation of relevant metrics were performed using R 

(R Core Team, 2021).  

The average SUBTLEX-UK log Zipf frequency was 5.13, with a sd of 0.43 [mean: 

4.93, sd: 0.28]; the average stem token frequency in MorphoLex was 155217, with a sd of 

144128.60 [mean: 132510, sd: 127152.30], while the average stem family size in MorphoLex 
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was 15.50, with a sd of 9.64 [mean: 22.83, sd: 8.33]. Finally, the average Levenshtein distance 

of the 20 nearest orthographic neighbours (old20) was calculated through the R package vwr 

(version 0.3.0; Keuleers, 2013), based on the data contained in SUBTLEX-UK, the largest 

resource considered here: all stems had a mean old20 of 1 and a sd of 0 [mean: 1, sd: 0]. 

 

Nonstem selection 

Nonstems were nonwords generated with the same length and CV structure types as the 

real stems, in order for the items to be orthographically and phonotactically legal, while at the 

same time minimizing orthographic overlap with the selected stems. The mean old20 for our 

nonstem selection was 1.14, with a sd of 0.21 [mean: 1.07, sd: 0.16]. 

 

Suffix selection  

Twelve three-letter derivational suffixes were shortlisted from the CELEX database 

(Baayen et al., 1993). The CV structure types of the selected suffixes were VCC, VCV, CVC, 

VVC. A subset of six suffixes was used for the developmental version of the experiment. The 

same exploration and analysis were performed as for the above-described stem selection. The 

average SUBTLEX-UK log Zipf frequency was 2.41, with a sd of 0.59 [mean: 2.41, sd: 0.73]. 

We ensured, through MorphoLex, that all selected items were productive suffixes in 

the English language. The average suffix token frequency in MorphoLex was 514914.40, with 

a sd of 452230.50 [mean: 643484.20, sd: 523213.40], while the average suffix family size in 

MorphoLex was 319.25, with a sd of 226.44 [mean: 431.50, sd: 145.89]. All suffixes had a 

mean old20 of 1 and a sd of 0 [mean: 1, sd: 0]. 
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Nonsuffix selection  

We selected 12 three-letter clusters that occur as non-morphological endings in English, 

with a mean old20 of 1 and a sd of 0 [mean: 1, sd: 0]. 

 

Control condition stimuli 

For the control condition, we selected 72 4-letter words (with various CV structure 

types, but always ending with a consonant) and 72 4-letter non-pronounceable consonant 

strings. A subset of 18 words and 18 consonant strings was used for the experiment with 

children. The average SUBTLEX-UK log Zipf frequency was 4.71, with a sd of 0.54 [mean: 

4.91, sd: 0.54]. 

 

Stimuli combinations  

Statistics for the stimuli used in the developmental version of the experiment, which 

did not feature nonstem+nonsuffix combinations, are reported in brackets.  Old20 statistics 

were then computed for all stimuli. Stem+suffix combinations had a mean old20 of 2.32 and a 

sd of 0.30 [mean: 2.43, sd: 0.27], stem+nonsuffix combinations had a mean old20 of 2.49 and 

a sd of 0.37 [mean: 2.55, sd: 0.43], nonstem+suffix combinations had a mean old20 of 2.47 

and a sd of 0.32 [mean: 2.47, sd: 0.32], and nonstem+nonsuffix combinations had a mean old20 

of 2.62 and a sd of 0.31. All unique experimental stimuli can be found in Appendix B (for the 

adult version of the study) and in Appendix C (for the child version of the study). 
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Table 2 Unique stems, nonstems, suffixes and nonsuffixes combined to generate pseudoword 

stimuli, and the respective OLD20 statistics. The underlined items represent the subset of 

items used in the developmental version of the experiment. 

 

Stem 
Non 

Stem 
Suffix 

Non 

Suffix 

old20 

Stem 

old20 

NStem 

old20 

Suffix 

old20 

NSuffix 

help josk ity ert 1.00 1.55 1.00 1.00 

soft terp ive une 1.00 1.00 1.00 1.00 

last firn ory ute 1.00 1.00 1.00 1.00 

ship bron ure int 1.00 1.00 1.00 1.00 

stop trum ous ald 1.00 1.00 1.00 1.00 

hold burk ise ere 1.00 1.00 1.00 1.00 

park molp ful sal 1.00 1.40 1.00 1.00 

jump lort ist arn 1.00 1.00 1.00 1.00 

town bemp ite ene 1.00 1.40 1.00 1.00 

bird jelt ish ult 1.00 1.00 1.00 1.00 

farm culp ese oke 1.00 1.35 1.00 1.00 

milk tand ess ust 1.00 1.00 1.00 1.00 
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Apparatus 

Data were collected at the KIT-Macquarie Brain Research Laboratory (Sydney, 

Australia). Participants lay supine in a dimly lit and magnetically shielded room (MSR). 

Continuous MEG recordings were acquired using a 160-channel whole-head coaxial 

gradiometer system (KIT, Kanazawa Institute of Technology, Japan) at a sampling rate of 1000 

Hz, with an online bandpass filter of 0.03–200 Hz. Visual stimuli were delivered through a 

projector (sampling rate: 60 Hz) and mirrored onto a translucent screen mounted above the 

participant’s head, at a distance of approximately 110 cm. The experiment was controlled via 

a Windows desktop computer, using MATLAB (The Mathworks) and Psychtoolbox (Brainard, 

1997; Kleiner et al., 2007). Parallel port triggers were used to mark the beginning and end of 

each trial, and a photodiode was used to check the correct delivery of oddball stimuli, through 

a white square in the bottom right corner of the screen. 

Participants’ head shape was recorded using the Polhemus FASTRAK system and 

digitizing pen (Colchester, VT, USA). Throughout the MEG recording session, participants 

wore an elastic cap with five marker coils which allowed tracking the head location relative to 

the MEG helmet and to measure motion over time.  

 

Procedure 

Each trial comprised a 60-second stimulation sequence (as illustrated in Figure 1), in 

which 360 stimuli rapidly appeared and disappeared at 6 Hz (six stimuli per second), with a 

contrast modulated by a sinusoidal function—each individual stimulus appeared gradually, 

reaching a contrast peak after 83.5 ms. Each 60-second trial thus contained 360 stimuli overall. 

Each oddball item appeared after five base stimuli (6 Hz/5=1.2 Hz); therefore, the stimulation 

sequence in each trial included 72 oddballs and 288 base items. The oddball stimuli were 

unique items in the adult design, whereas in the developmental design a greater number of item 
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repetitions was present: in each trial, every oddball was delivered a total of 4 times (18*4=72). 

The sets of stimuli were generated through pseudo-randomisation, using in-house RStudio 

scripts (RStudio Team, 2021) for the adult version of the experiment, and using Mix software 

(Van Casteren & Davis, 2006) for the developmental version. As the process could not be 

entirely automatised, lists were then checked and edited manually when deemed necessary, in 

order to prevent repetitions of the same combinations within each stimulation sequence. Both 

with skilled and developing readers, we ensured that the same stimulus was not repeated within 

each 1-second stimulation sequence. 

Overlayed to this stimulus sequence, a fixation cross (12 pixels) was constantly present 

at the center of the screen. The cross changed in colour (from blue to red and vice versa) 

randomly and participants were instructed to tap a button when they detected the colour change 

(Lochy et al., 2015, 2016). 

In the experiment with skilled readers, visual stimuli were displayed in black Courier 

New font, with a fontsize of 100 px, within a white bounding box of 500*150 pixels. In the 

developmental version of the experiment, stimuli were slightly enlarged, and they were 

displayed in black Courier New bold font, with a fontsize of 110 pt, within a white bounding 

box of 510*170 pixels. A large font size was adopted for both skilled and developing readers 

due to their distance from the screen. In both versions of the experiment, stimuli were displayed 

over a grey background. 

Responses were recorded through a fiber optic button box (fORP, Current Designs, 

Philadelphia, PA, USA). Accuracy in this task was very high for all participants (skilled adult 

readers: mean 97.83%, sd 1.84; developing readers: mean 95.64%, sd 4.84). This behavioural 

task was administered with the mere purpose of ensuring that participants engaged with the 

area in which the stimuli would be presented. Trials were separated by a 25-second break. 

The break ended with a 10-second countdown to the new trial. A 2-minute break was given 
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twice between recording blocks, to allow head location measurements to be performed; one 

last measurement was performed at the end of the MEG recording. Overall, the MEG testing 

in the MSR required 45-50 minutes with adults and a maximum of 30 minutes with children.  

 

MEG data preprocessing  

Data were preprocessed in MATLAB using the FieldTrip toolbox for EEG/MEG-

analysis (Oostenveld et al., 2011) and in-house functions. A lowpass filter of 100 Hz was 

applied; continuous MEG recordings were epoched into trials using a custom-made trial 

function. In trial epoching, a pre-stimulus interval and a post-stimulus interval were set, in 

order to avoid edge artifacts. Respectively, the first two oddball cycles (i.e., the first 1.67 

seconds of stimulation) and the last one (833 ms) were cut from each trial, resulting in trials of 

58.33 seconds each (see Lochy et al., 2015). Recordings were then downsampled to 250 Hz. 

Artifacts were not removed from individual trials; however, data from eight subjects (four 

adults and four children) with excessive noise artifacts (one adult) or excessive movement 

artifacts (three adults and four children) were discarded entirely.  

Following visual inspection, noisy channels were removed based on visual inspection, 

and channel interpolation was performed (neighbours were defined using FieldTrip functions 

through a triangulation method). One dataset per condition (five trials per condition for adults, 

six trials per condition for children) per participant was obtained.  

 

Frequency analysis 

A very similar procedure to the one used in Lochy et al. (2015, 2016) was adopted. 

Each participants’ trials were averaged by condition and subjected to a Fast Fourier Transform. 

By calculating the square root of the sum of squares of the real and imaginary parts divided by 

the number of data points, power spectra were then computed for each sensor. As each epoch 
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was 58.333 seconds long, the frequency resolution was 1/58.333 = 0.0171 Hz. The spectra were 

then normalised by dividing the mean power spectrum of each frequency bin by the mean of 

the surrounding 20 bins (10 on either side, excluding immediately adjacent bins), thus obtaining 

a signal-to-noise ratio metric (SNR). Oddball response was defined as the mean SNR of the 

response at the oddball (1.2 Hz) stimulation frequency and its corresponding first three 

harmonics (2.4, 3.6, 4.8 Hz). So, the final dataset consisted of 22400 datapoints for the adult 

sample (28 participants, times 5 conditions, times 160 channels) and 8160 datapoints for the 

children sample (17 participants, times 3 conditions, times 160 channels). 
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Results 

Sensor-level analysis 

Region-of-interest (ROI) analysis 

The first set of results presented here is based on a predefined region of interest (ROI), 

which reflects our focus on the left ventral occipito-temporal cortex (VOTC). Prior 

electrophysiological and imaging research has identified left temporal and occipital regions as 

responsible for visual word identification (for EEG evidence, Lochy et al., 2015, 2016) and for 

the visual identification of morphemes (Leminen et al., 2019, for a comprehensive review; 

Gold & Rastle, 2007, for fMRI evidence). Following this, we defined an ROI of 12 left 

occipito-temporal sensors in our participants’ MEG recordings (Figure 2).  

In this ROI, we checked whether SNR was significantly above 1, which is the expected 

value if there is no sensitivity to the oddball, and therefore power at the relevant frequency 

would be the same as in the surrounding bins. 

 
 

 

Figure 2 Visualisation of the 12 sensors comprised in the left temporo-occipital scalp ROI, 

on the 160-channel Yokogawa MEG layout (KIT, Kanazawa Institute, Japan). 

 

In the sample of skilled adult readers, a robust oddball response was observed in 

Condition 0 (p<.001), which tracks sensitivity to words amongst nonwords. This effect was 
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reported before (Lochy et al., 2015, 2016), and was taken as a sanity check—the paradigm 

must reveal the obvious sensitivity of skilled readers to existing words if we are to trust its 

results on morphemes.  

The results in the experimental conditions are reported in Table 3 and Figure 3. A 

significant oddball response emerged only in Condition 3, which tapped into suffix detection 

in the presence of a stem (e.g., softity vs. terpert; see Table 3).  

Similar to the adults, a robust oddball response emerged in Condition 0 also in the 

sample of developing readers (see Table 4 and Figure 4), which confirms the reliability of the 

paradigm with children. Also similar to the adults, a significant effect emerged in Condition 3, 

but not in Condition 1, suggesting that also developing readers are sensitive to the presence of 

suffixes, while we don’t have evidence for sensitivity to the presence of stems. 
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Table 3 T-test results of the sensor ROI-based analysis in skilled adult readers. Mean SNR, 

average SNR of the oddball response in each condition; t, t-statistic from the t-tests; df, degrees 

of freedom; p, one-tailed p value. 

 

Condition 

(example oddball in 

base) 

Mean 

SNR 
t df p 

Condition 0 - word 

detection 

(roll in kltq) 

1.33 5.49 27 <.001 

Condition 1 – stem 

detection with 

suffixes 

(softity in terpity) 

1.04 1.23 27 .11 

Condition 2 – stem 

detection without 

suffixes 

(softert in terpert) 

0.99 -0.45 27 .67 

Condition 3 – suffix 

detection with 

stems 

(softity in terpert) 

1.06 1.69 27 .05 

Condition 4 – suffix 

detection without 

stems 

(terpity in terpert) 

1.03 0.76 27 .22 
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Figure 3 Visualisation of the mean SNR of the oddball response (averaged across 1.2, 2.4, 3.6, 

4.8 Hz) in skilled adult readers, by condition. Non-boxplots illustrating mean (white line), 

standard error of the mean (darker coloured area), and standard deviation (lighter coloured 

area) per condition (C0–C4). Points represent individual participants (N=28). The red line 

represents the noise level (1), against which SNR is compared in each condition. The grey dots 

illustrate individual participants’ average SNR of the oddball response in each condition. 

The structure of the contrast between oddball (italic, bold) and base stimuli (italic) in each 

condition is as follows: Condition 0, words in nonwords (e.g., roll in kltq); Condition 1, 

stem+suffix in nonstem+suffix (softity in terpity); Condition 2, stem+nonsuffix in 

nonstem+nonsuffix (softert in terpert); Condition 3, stem+suffix in stem+nonsuffix (softity in 

terpert); Condition 4, nonstem+suffix in nonstem + nonsuffix (terpity in terpert). 

 

  



 
 

 
 

197 

 

Table 4 T-test results of the sensor ROI-based analysis in developing readers. 

Mean SNR, average SNR of the oddball response in each condition; t, t-statistic from the t-

tests; df, degrees of freedom; p, one-tailed p-value. 

 

Condition 

(example oddball in 

base) 

Mean 

SNR 
t df p 

Condition 0 - word 

detection 

(roll in kltq) 

1.34 5.54 16 <.001 

Condition 1 – stem 

detection with 

suffixes 

(softity in terpity) 

1.04 0.90 16 .19 

Condition 3 – suffix 

detection with 

stems 

(softity in terpert) 

1.15 2.63 16 .009 

 

 

 

These results suggest that suffixes undergo automatic morpheme identification in 

complex pseudowords, while this might not be the case for stems, at least as far as the MEG-

FPVS paradigm employed here can tell. Also, suffix identification seems to occur only when 

full decomposition is possible–when the strings are entirely composed of morphemes, also in 

the absence of explicit lexical access. We will expand and comment more on this in the 

Discussion. 
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Figure 4 Visualisation of the mean SNR of the oddball response (averaged across 1.2, 2.4, 3.6, 

4.8 Hz) in developing readers, by condition. Non-boxplots illustrating mean (white line), 

standard error of the mean (darker coloured area), and standard deviation (lighter coloured 

area) per condition (C0, C1, C3). Points represent individual participants (N=17). The red line 

represents the noise level (1), against which SNR is compared in each condition. The grey dots 

illustrate individual participants’ average SNR of the oddball response in each condition. 

The structure of the contrast between oddball (italic, bold) and base stimuli (italic) in each 

condition is as follows: Condition 0, words in nonwords (e.g., roll in kltq); Condition 1, 

stem+suffix in nonstem+suffix (softity in terpity); Condition 3, stem+suffix in stem+nonsuffix 

(softity in terpert). 

 

 

 

Cluster-Based Permutation Analysis 

Besides the theory-driven ROI analysis, a data-driven analysis approach was also 

adopted. Despite we are primarily interested in the visual identification of morphemes and the 

present paradigm emphasises quick and automatic visual access, a morphological analysis 

might surely trigger semantic information well outside the early stages of the ventral stream. 

Therefore, we wanted to assess the existence of any potential tagging of the oddball frequency 

at the whole-brain level. To this aim, we conducted a cluster-based permutation test at sensor 

level (Maris & Oostenveld, 2007), adapted for FPVS-MEG datasets, which span over space 

(sensors), but not time. We used a within-subject design and adopted a Montecarlo method for 
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calculating probabilities. A minimum of two neighbouring channels was required in order for 

a cluster to be defined. A cluster alpha level of 0.05 was set and a one-tailed t-test was run (we 

only contemplated the hypothesis that the SNR was higher than 1). An alpha level of 0.05 was 

set and 5000 randomisations were performed. With this configuration, cluster-based 

permutation was run against an array of ones, representing the noise level in each channel (i.e., 

the null hypothesis).  

The results for the adult skilled readers are illustrated in Figure 5. In Condition 0, which 

taps into whole-word identification, we found one large cluster essentially encompassing the 

whole posterior part of the scalp, with a slight left lateralization (t=416.46, p<.001, panel a). 

We also found a significant cluster in Condition 3, which yielded significant results in the ROI 

analysis and probes suffix identification in the presence of a stem (t=113.02, p<.001, panel b). 

This cluster is much smaller than in Condition 0, and extends along the midline from the vertex 

to the back of the brain, and then along the left ventral stream. No other significant clusters 

emerged, that is, there was no reliable sensitivity to the oddball stimuli in Condition 1 (designed 

to track stems in the presence of affixes), Condition 2 (stems in the absence of affixes) and 

Condition 4 (suffixes in the absence of stems). However, one significant cluster appeared in 

Condition 1 when we slightly relaxed the alpha criterion (0.10) at the cluster level – 

importantly, this does not increase the false alarm rate (Maris & Oostenveld, 2007). This cluster 

(t=69.88, p=.02), illustrated in panel c, is located centrally over the occipital and parietal lobes. 

The results for the developing readers are illustrated in Figure 6. For Condition 0, we 

found one significant cluster (t=347.17, p<.001, panel a), which is largely left-lateralised and 

extends over temporo-parieto-occipital sensors, mostly overlapping with the selected ROI, and 

thus likely reflecting an involvement of VOTC areas in response to the presentation of words. 

While this would need to be confirmed through source-level analysis, a VOTC location appears 

plausible and in line with the aforementioned neurophysiological evidence on visual word 



 
 

 
 

200 

 

recognition (Leminen et al., 2019; Gold & Rastle, 2007). A significant occipital cluster, mostly 

located around the midline, emerged in Condition 1 (t=74.90, p=.007, panel b), in which stem 

identification in the presence of suffixes is tracked. In contrast with the ROI analysis results, 

no significant cluster emerged for Condition 3 (suffixes in the presence of stems). However, 

following the same procedure as for the adult readers, one large cluster in Condition 3 emerged 

when we used a relaxed alpha criterion (0.10) at the cluster level. This cluster (t=126.11, 

p=.008), illustrated in panel c, extends bilaterally over temporal and occipital areas. 
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Figure 5 Sensor-level clusters in which a significant oddball response emerged, by condition. 

Data from skilled adult readers. Panel a: Large temporo-parieto-occipital cluster (mostly left-

lateralised, with a right-lateralised part) indicating widespread identification of words in 

nonwords, in Condition 0; p<.001, cluster alpha level = 0.05. Panel b: Left and central occipital 

cluster for the identification of stem+suffix oddballs in stem+nonsuffix base stimuli, in 

Condition 3; p<.001, cluster alpha level = 0.05. Panel c: Central temporo-occipital cluster for 

the identification of stem+suffix oddballs in nonstem+suffix base stimuli, in Condition 1; 

p=.02, cluster alpha level = 0.10.  

Colourbars represent SNR on a continuous scale (blue = low, yellow = high). 
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Figure 6 Clusters in which a significant oddball response emerged, by condition. Data from 

developing readers. Panel a: Temporo-parieto-occipital cluster, largely left-lateralised, for the 

identification of words in nonwords, in Condition 0; p<.001, cluster alpha level = 0.05. Panel 

b: Central occipital cluster for the identification of stem+suffix oddballs in nonstem+suffix 

base stimuli, in Condition 1; p=.007, cluster alpha level = 0.05. Panel c: Central temporo-

occipital cluster for the identification of  stem+suffix oddballs in stem+nonsuffix base stimuli, 

in Condition 3; p=.008, cluster alpha level = 0.10.  

Colourbars represent SNR on a continuous scale (blue = low, yellow = high). 

 

  



 
 

 
 

203 

 

Discussion 

As described in the Results section, our ROI findings reveal successful word 

identification (Condition 0), as well as successful identification of suffixes when presented in 

oddballs which could be completely broken down into two morphemic constituents (Condition 

3), both in developing and in adult readers, in left occipito-temporal sensors, which reflect our 

focus on VOTC. Using a cluster-based permutation approach to sensor-level analysis, we 

found, once again, a significant temporo-parieto-occipital cluster for Condition 0, in both adults 

and children. This cluster was quite large and emerged bilaterally for the skilled adult readers, 

and was instead smaller and largely left-lateralised for the developing ones. As far as 

morpheme identification is concerned, an occipital cluster along the midline and left VOTC 

emerged for Condition 3 (suffixes in the presence of stems) in the adult participants, while an 

occipital, mostly centrally located, cluster emerged for condition 1 (stems in the presence of 

suffixes) in the developing readers.  

Condition 0, tracking identification of words in streams of consonant nonwords, 

importantly revealed that the paradigm worked correctly, confirming that the FPVS technique, 

which has already been quite extensively paired with EEG recordings, can also successfully be 

employed in MEG studies investigating visual word identification. Besides, with the exception 

of Lochy et al.’s (2016) EEG study with preschoolers, to the best of our knowledge, no FPVS 

studies have been conducted in the psycholinguistic domain with developing readers. It is 

indeed worth noting that this paradigm offers a number of advantages, which should be 

considered by researchers seeking to investigate language processing in children. First, it is a 

behaviour-free technique, which makes it suitable also for the more challenging experimental 

populations, including very young children; furthermore, the stimulation is rapid and implicit, 

thus preventing the use of strategies by the participants. Lastly, specifically in the word 

identification condition, our findings confirm how powerful this paradigm is, as a robust 
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response is elicited with a relatively small number of trials (see also Lochy et al., 2015, 2016) 

and that this also occurs in developing readers. 

Indeed, the ROI-based analysis of Condition 0 showed a very strong response to the 

presentation of words, suggesting that the selected sensor-level region reflects an involvement 

of the VOTC. However, the cluster-based permutation analysis revealed the presence of large 

clusters across the posterior part of the scalp, mostly left-lateralised. This suggests that even 

automatic and implicit word identification triggers full processing, possibly even including a 

semantic stage.  

Remarkably, the patterns of results observed for word identification were very similar 

across our developing and adult participants. These findings suggest that 5th and 6th graders, 

with just a few years of reading instructions, have already built up a highly sophisticated visual 

word identification system, roughly comparable to that of adults, at least in terms of automatic 

and implicit word identification 

For what concerns the core research question of the present study, whether automatic 

identification of morphemes emerges in complex pseudowords, the pattern of results that we 

get is – perhaps unsurprisingly – less clear and robust than for words.  

We did find evidence for automatic morpheme identification, but this does not seem to 

be widespread and solid across different types of stimuli. In particular, the ROI analysis 

conducted on the sensors covering VOTC revealed a significant response to suffixes, when 

presented in oddballs that can be fully broken down into morphemes. The fact that the system 

shows sensitivity to suffixes is perhaps not so surprising; they appear across different words 

and tend to be frequently recurring clusters of letters. As such, they are surely salient units in 

the language, both semantically (as they convey systematic meaning) and 

perceptually/orthographically (as frequent chunks). However, we see solid signs of suffix 

identification only in the context of morphological nonwords, which suggests that the process 
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is not simply a catch of frequent and salient units, but involves a comprehensive 

(morphological) analysis of the whole strings. Therefore, this result sits well with the wealth 

of studies showing that the brain and the cognitive system make heavy use of morphology 

during reading and visual word identification (e.g., Amenta & Crepaldi, 2012; Feldman et al., 

2000; Leminen et al., 2019; Marslen-Wilson et al., 2008; Rastle et al., 2000; Whiting et al., 

2015). On the other hand, it is somewhat in contrast with more recent evidence showing that 

masked priming with nonwords is not modulated by the presence of suffixes (e.g., Lisi’s 

studies). We will get back to this issue below.  

Interestingly, stems did not elicit a significant response in the ROI analyses. Overall, 

we only found significant evidence for stem identification in the cluster-based permutation 

analysis on the developing readers.  

This is quite surprising for a few reasons. First, stems are often encountered as whole 

words in English; from this point of view, they might be even more perceptually salient than 

suffixes, given that the surrounding blank spaces might work as “chunking cues” that help the 

system identify these items as important functional units (e.g., Grainger & Beyersmann, 2017). 

Furthermore, stems are more informative about word identity, allowing to narrow the lexical 

and semantic interpretation of a word more than a suffix does per se. For example, upon 

encountering dark-, a reader can reliably predict the general meaning of the rest of that word; 

instead, many different words end in -ness. We may therefore hypothesise that, at least for what 

concerns the signal captured by FPVS, the frequency of a morpheme may be more relevant 

than its informativeness. 

These data also point quite naturally to theories of complex word processing that place 

more emphasis on affixes than on stems. This tenet was quite popular in the early days of 

psycholinguistic research into complex word identification, when the dominant view was that 

affixes are immediately identified and then stripped away, so that the stem is isolated and 
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undergo the process of lexical identification proper (e.g., Taft & Forster, 1975). In fact, the 

emphasis in this account is rather more on the stem than on the suffix, as the former is the key 

for lexical access. However, the very first step in the processing of complex words is indeed 

the identification (and elimination) of the affix, quite in line with the present data.  

The idea of “affix stripping” has been progressively abandoned, in favour of more 

explicit representational accounts (e.g., Taft, 1994). In these models, the original asymmetry 

between affixes and stems has become more blurred, and has mostly taken the form of whether 

affixes have an explicit representation at the most central levels of morphological processing 

(often called “lemma”). For example, Crepaldi et al. (2010) take the stance that affixes are not 

represented as lemmas, while Taft and Nguyen-Hoan (2010) suggest so; the present data seem 

to provide support for the latter. Where most theories agree is that affixes and stems are both 

represented more peripherally, early in the visual identification system, at a morpho-

orthographic stage of processing (e.g., Crepaldi et al., 2010; Longtin et al., 2003; Rastle et al., 

2004). Since the present paradigm insists particularly on automatic, quick visual processing, 

this may be the stage where the data described here have emerged. This would reconcile the 

contrast between Crepaldi et al.’s and Taft’s theories, but would not explain the fundamental 

asymmetry between stems and suffixes that is apparent here.  

Taking a fairly different perspective, Grainger and Beyersmann (2017) suggested that 

what is typically interpreted as morpho-orthographic processing may in fact reflect a 

mechanism of embedded word/stem identification that is not, per se, genuinely morphological, 

i.e., it would operate independently of the presence of an affix. This account fits perfectly with 

the recent observation that when lexical competition is partialled out in priming experiments, 

that is, when nonwords are used, affixed and non-affixed primes provide the same amount of 

facilitation (farmald-FARM = farmness-FARM). However, it is at odds with two aspects of the 
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present results, (i) that affixes are identified, but stems are not and (ii) that morpheme 

identification proceeds much better in strings that are entirely decomposable.  

From a developmental perspective, the pattern of results reveals similarities between 

adults and children: in both samples, a much stronger response emerges for words compared 

to morphemes, and, overall, suffixes appear to be more reliably identified than stems. A direct 

comparison was neither sought nor warranted by the differences in the experimental design; 

however, our findings suggest that children in Grades 5-6 have already developed an efficient 

adult-like visual identification system, thus corroborating our findings for words in Condition 

0. As we noted above, this is at odds with the priming literature with children, particularly on 

morpho-orthographic effects. While some studies have provided data in line with the 

conclusion that one could draw here, that is, that children show a morpho-orthographic priming 

profile early on, similarly to adults (Quémart et al., 2011), others have noted that children don’t 

show morpho-orthographic processing until quite late in development (Beyersmann et al., 

2012; Dawson et al., 2018; Schiff et al., 2012). More than a theoretical issue, this might actually 

be an effect of the task; while masked priming is a fairly difficult paradigm for children, and 

therefore provides noisy evidence (although note that Dawson et al., 2018, is not based on 

masked priming), the present paradigm – completely implicit, behaviour-free and based on 

neural entrainment – might provide a better way to look into the developing reading system. 

Note, however, that a developmental trajectory that brings children to adult-like performance 

later on during reading acquisition was also highlighted in other studies. For example, in a 

reading aloud task, Burani et al. (2008) found that very young or less skilled readers benefit 

from the morphological structure of a word, as this allows them to access the constituents, by-

passing whole-word access. On the other hand, more skilled readers, either developing or adult 

ones, would show less sensitivity to this aspect, as lexical access does not pose any additional 

difficulty for them. 
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Our findings are also somewhat informative as to the areas that appear to be involved 

in the response to morphemes in the adult readers. Indeed, the involvement of the VOTC in the 

identification of suffixes is not only supported by the ROI analysis, but by the clustering 

analysis as well. The fact that a response is elicited by morphemes in a region which is primarily 

devoted to visual word identification (and to visual identification more in general) suggests 

that suffixes are likely processed as visual units, at least at this stage of processing. This sits 

well with theories that state the existence of a level of morphological analysis that is mostly 

based on form (e.g., Crepaldi et al., 2010; Grainger and Ziegler, 2011; Xu and Taft, 2014). At 

this level of analysis, morphemes are primarily seen as frequent, statistically associated clusters 

of letters, perhaps not so differently from what happens in other domains of vision (e.g., Vidal 

et al., 2021). It is well known that neural circuitry in the ventral stream is particularly apt at 

finding regularities in the co-occurrence of lower-level units, to then build higher-level 

representations that take advantage of these regularities (e.g., Dehaene et al., 2005; Tkačik et 

al., 2010). This property is particularly convenient in the domain of visual word identification, 

which is characterised exactly by lower-level units (i.e., letters) that bind together in higher-

level objects (i.e., morphemes and words). In this context, it should not be surprising that 

morphemes are captured as chunks of strongly associated letters.  

Experimental evidence in support of this “statistical learning” view of visual word 

identification, and morphology in particular, is growing. For example, Chetail (2017) asked 

her participants to familiarise themselves with an artificial lexicon made up of pseudo-

characters. The lexicon was such that some bigrams were particularly frequent; when 

participants were involved in a wordlikeness task with entirely novel stimuli, those that 

contained the frequent bigrams were judged as more word-like. So, even in a completely 

unfamiliar novel lexicon, made up of completely unfamiliar pseudo-characters, a few minutes 

of exposure were sufficient for participants to develop sensitivity to small clusters of 
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particularly high frequency. With a similar design and experiment, Lelonkiewicz et al. (2020) 

were able to reproduce effects that emerged in morphological nonwords (e.g., Crepaldi et al., 

2010; Taft & Forster, 1975) with an artificial lexicon that was entirely devoid of any 

phonological or semantic ties, that is, a set of purely visual, non-linguistic entities made up of 

sequences of pseudocharacters. These data suggest that at least part of the morphological 

effects that we observe with genuine linguistic material can be reproduced in purely visual, 

non-linguistic systems.  

It appears less clear why in the children’s data (with respect to stem identification), and 

partly in the adults’ data (with respect to suffix identification), a cluster for morpheme 

identification emerges quite centrally in occipital sensors. While a direct comparison cannot be 

drawn with EEG studies, this location might be suggestive of a classic N400 evoked response 

in ERP experiments, thus reflecting some degree of semantic processing. However, MEG and 

fMRI studies locate the source of an N400-like response in the left temporal lobe (e.g., Halgren 

et al., 2002; Van Petten & Luka, 2006). As far as our data are concerned, further investigation 

on the brain source of this signal can help shed light on these sensor-level findings. We may 

cautiously assume that the largely central cluster for stem identification and the widespread 

bilateral cluster for suffix identification (when a relaxed alpha criterion is used at the cluster 

level) observed in the developing readers reflect a kind of processing which is less specific to 

morpho-orthographic units, perhaps suggestive of a more generic lexical/semantic response. 

This would agree with accounts that suggest morpho-semantic processing to mature earlier 

along development than morpho-orthography, which is instead thought to emerge only at the 

last stage of reading development (Grainger & Beyersmann, 2017), and to be still in maturation 

during adolescence (Dawson et al., 2018).  
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To conclude, we were able to show that sensitivity to morphological structure, also in 

the absence of explicit meaning assignment, has already sufficiently matured by Grades 5 and 

6 to show up in the implicit, behaviour-free paradigm that we adopted here, FPVS-MEG. 

Moreover, the present results suggest that: (i) suffixes are identified, while stems are not (or at 

least, less so), and (ii) morpheme identification is stronger in strings that are entirely made up 

of morphemes (i.e., when both a stem and suffix are present). Signs of this identification 

process appears in sensors that are compatible with a neural source in VOTC, in line with 

accounts of (early) morphological identification as a predominantly visual process, perhaps 

connected to language-agnostic, statistical learning mechanisms (e.g., Crepaldi et al., 2010; 

Lelonkiewicz et al., 2020; Rastle & Davis, 2003; Vidal et al., 2021). However, morpheme 

identification shows up also in sensors that capture activity in other brain areas, compatible 

with deeper processing, perhaps up to the semantic level; this suggests that the FPVS-MEG 

paradigm adopted here is potentially able to also track this kind of processing, in addition to 

more peripheral, implicit visual mechanisms.      
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Chapter VI 

General Discussion 

 

The general research question that this thesis has addressed concerns the ability to 

extract orthographic and morpho-orthographic regularities during reading, as well as the role 

of such mechanism in reading development. Thus far, research on sensitivity to the statistical 

properties of written language has been conducted largely with artificial experimental designs 

and has not focused on natural reading, neglecting the potential impact of such mechanisms on 

an activity that we carry out routinely across most of our lifespan.  

Indeed, if statistical learning is exploited for all visual processing, including 

orthographic processing, we might expect to see this mechanism at play also during text 

reading, where it might emerge in the form of sensitivity to clusters of frequently co-occurring 

letters (n-grams), for instance. Furthermore, if this learning mechanism is used to form and 

reinforce orthographic representations during the early stages of reading development, we 

should also see signs of it in relatively young readers. 

To investigate these issues with an ecologically valid approach, we carried out an eye-

tracking study using a multiline text reading task. This study addressed a gap in the literature, 

providing a large developmental eye-tracking corpus of natural reading, called EyeReadIt 

(presented in Chapter II of this thesis). This resource was validated through the analysis of 

developmental trends in reading behaviour, such as reading rate (number of words read per 

minute), which increases as a function of age, or fixation duration, which, instead, decreases 

as readers become more skilled. Moreover, we looked for some “benchmark” lexical effects, 

such as those of word length and word frequency, on eye-tracking measures. Results from both 

sets of analyses replicate well-established findings and, in fact, extend their scope to the natural 
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reading of multi-line texts (most of these effects were originally obtained with isolated 

sentences). Additionally, the analysis was extended to an investigation of developing readers’ 

sensitivity to morphological structure during natural reading. Our findings demonstrate the 

added value that a similar developmental eye-tracking resource can provide to this field of 

research.  

As a further development, EyeReadIt stimulated the creation of a methodological study, 

in collaboration with Dr Jon Carr (Chapter III of this thesis). Here, we assessed eight existing 

algorithms and two novel ones that we proposed, for the automatised correction of fixations. 

Eye-tracking researchers, especially those working with multiline text reading, may indeed find 

that some fixations in their data are misaligned, due to a set of phenomena related to “vertical 

drift”. These ten methods were validated on some of the data from EyeReadIt, as well as on 

simulated data, allowing us to provide researchers with guidance in the selection of the most 

appropriate algorithm (or algorithms) for the different phenomena characterising the eye-

movement recordings. In particular, one of the novel algorithms that we proposed, which is 

based on Dynamic Time Warping (Sakoe & Chiba, 1978; Vintsyuk, 1968), proved very 

promising for the correction of vertical drift in noisy eye-tracking data, such as children’s. 

Crucially, EyeReadIt was also used to address our question about the emergence of 

sensitivity to the statistical properties of the written language across reading development 

(Chapter IV of this thesis). Such question was operationalised through the use of n-gram 

(bigram, trigram, quadrigram) frequency metrics (minimal, average, maximal frequency); this 

differs from the current literature, which has largely been confined to the use of average bigram 

frequency, with mixed evidence about its role (e.g., Chetail, 2015; Schmalz & Mulatti, 2017). 

Our results showed an effect of n-gram frequency metrics, particularly of average and 

maximum frequency for bigrams and trigrams, across developing and adult readers, with longer 

durations in all three eye-tracking measures considered (first-of-many-fixations duration, gaze 
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duration, and total reading time). Importantly, at a lexical and post-lexical processing stage, 

such effects were also significantly modulated by children’s grade, with younger readers 

displaying greater sensitivity to the n-gram frequency statistics of the texts they are presented 

with, compared to adults. These findings contribute to a theoretical advancement with respect 

to the role of sublexical regularities in reading development, in that they inform us that readers 

of a transparent orthography like Italian appear to make use of such statistical cues from quite 

a young age. While the direction of the effects that we observed may appear counterintuitive, 

with higher maximal frequency n-grams eliciting longer reading times, this is taken to signal 

that n-grams represent highly salient perceptual orthographic units, especially in young 

developing readers, who might be relying more significantly than adults on sublexical 

processing, while still perfecting whole-word representations (see, e.g., Castles et al., 2007; 

Nation, 2009). 

After assessing the sensitivity to orthographic regularities through eye tracking, we 

shifted our focus to the cognitive (and neural) underpinnings of the developmental trajectories 

of sensitivity to morphological structure. This has been addressed in an MEG study (Chapter 

V), using an FVPS-oddball paradigm, conducted at Macquarie University (Sydney, Australia) 

in collaboration with Dr Elisabeth Beyersmann, Prof Paul Sowman, and Prof Anne Castles. 

While it has been established that priming for opaque pairs (corner-CORN) occurs in skilled 

adult readers (e.g., Longtin et al., 2003; Rastle et al., 2004), evidence concerning developing 

readers is far more mixed. Several studies have failed to find evidence for similar morpho-

orthographic processing in very young readers (e.g., Beyersmann et al., 2015; Hasenäcker et 

al., 2016); it has thus been proposed that this only fully matures at quite a late stage of reading 

development (e.g., Dawson et al., 2018; Grainger & Beyersmann, 2017). However, sensitivity 

to words’ morphological structure in the absence of whole-word semantic access has at times 

been reported in children as well (for evidence with primary school children, see: Quémart et 
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al., 2011; Burani et al., 2002, 2008; for partial evidence of morpho-orthographic processing in 

7th graders, see Schiff et al., 2012).  

In order to assess whether developing readers display sensitivity to the presence of 

morphemes in pseudowords, we used FPVS – a behaviour-free paradigm, that allowed us to 

tap into automatic and implicit morpheme identification, while MEG recordings were acquired 

from 17 children in Grades 5 and 6, and 28 adults. Our findings revealed a similar pattern of 

morpheme identification between children and adults. For both populations, an ROI-based 

analysis conducted at sensor level over left VOTC showed a significant response to suffixes, 

when presented in oddball stimuli that can be fully decomposed into a stem and a suffix 

(softity). However, this is not the case for the same type of oddballs when the contrast tracks 

stem identification. The adult version of the study featured two additional conditions in which 

oddballs contained just one morpheme, and could thus not be fully broken down into their 

constituents. In both additional conditions, no significant oddball response emerged, indicating 

failure to identify stems or suffixes in non-morphologically structured pseudowords, and thus 

revealing an essential role of context for morpheme identification. 

Further sensor-level analysis of the MEG data was carried out through cluster-based 

permutation, which yielded a consistent pattern of results in adults, whereby a robust response 

to suffixes in complex oddballs emerges in an occipitally located (mostly central, partially left-

lateralised) cluster. As far as the developing readers are concerned, instead, the clustering 

analysis revealed a significant central occipital cluster in response to the condition tracking 

identification of stems in fully segmentable oddballs (softity).  

Overall, suffixes appear to be reliably identified both by children and by adults, when 

full decomposition of the oddballs is warranted. This suggests that by 10-12 years of age 

readers are already equipped with an adult-like pattern of visual identification of morphemes, 

at least for what concerns the level of processing that FPVS taps upon. Our results regarding 
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the brain areas that are responsible for morpheme identification suggest an involvement of the 

left VOTC, in line with a few neuroimaging accounts (see Gold & Rastle, 2007; Leminen et 

al., 2019, for a review). The cluster-based permutation analysis yielded instead less 

straightforward findings, revealing a robust oddball response in centrally located occipital 

sensors, especially for stem identification in children (and partially for suffix identification in 

adults). This may be suggestive of a response that is less specifically tuned to morpho-

orthographic processing, and perhaps more generally lexical/semantic. If this were the case, 

such findings would support some classic views on the development of morphological 

sensitivity, according to which morpho-semantic processing occurs earlier along development 

(e.g., Grainger & Beyersmann, 2017). However, caution is warranted in the interpretation of 

these results, as source-level analysis will hopefully provide further insight as to the location 

of our effects across developmental stages. 

 

Conclusive remarks and implications 

 The studies presented in this thesis aimed at providing a research contribution as to the 

emergence, across reading development, of sensitivity to the statistical properties of sublexical 

units. First, we were able to answer a refined question – whether sensitivity to n-gram 

frequency emerges in reading – adopting an ecologically valid approach to the developmental 

study of eye movements in reading. Furthermore, we employed an implicit MEG paradigm to 

investigate an underspecified aspect of morpho-orthographic processing––its neural 

underpinnings at different stages of reading development. 

 On a theoretical level, our findings suggest that both n-grams and morphemes are 

exploited as reading units, also at quite early stages of reading development. As outlined in the 

Introduction (Chapter I of this thesis), sensitivity to orthographic and morpho-orthographic 

regularities supports the account that children must be relying on a statistical learning 
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mechanism, which likely allows them to improve their reading abilities. Hence, our findings 

have a twofold implication for current major models of orthographic and morpho-orthographic 

processing on the one hand, and for models of reading acquisition on the other.  

We showed that children are sensitive to statistics of letter co-occurrences quite early 

during their pathway towards becoming proficient readers. This resonates with several models 

of visual word identification that state the existence of an early stage of processing where 

morphemes (and, possibly, other frequent letter clusters) are identified independently of their 

semantic contribution (e.g., Crepaldi et al., 2010; Taft & Nguyen-Hoan, 2010), or with models 

that highlight the sensitivity of the system (or at least part of it) to letter statistics more generally 

(e.g., Grainger & Ziegler, 2011; Grainger & Beyersmann, 2017). 

However, the role of within-level regularities is still underspecified, in a developmental 

framework. Research has highlighted the role of sensitivity to linguistic regularities for skilled 

reading. As skilled reading builds up on an increasingly more efficient mapping between 

graphemes and phonemes, or between print and meaning, the focus of such research has so far 

mostly concerned between-level regularities. For instance, Share’s (1995) self-teaching 

hypothesis relies on the acquisition of letter-to-sound mappings, through a phonological 

recoding process; the core of Ziegler and Goswami’s (2005) theory is that the shared grain size 

between orthographic (also at a sublexical level) and phonological units supports successful 

grapheme-to-phoneme mapping.  

In the present work, we revealed the saliency, across development, of statistical 

regularities at the orthographic level – independently of whether these units map onto specific 

sound or meaning entities –, showing that developing readers exploit such regularities to 

process written language from quite an early stage, at least in a language with a very transparent 

orthography like Italian. Also, children appear to rely on letter statistics more markedly than 

adults, whose reading system, we would suggest, is perhaps already skilled and efficient 
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enough to afford greater reliance on whole-word representations. We thus suggest that this 

aspect ought to be taken into account for the advancement of literacy acquisition research, 

besides and beyond the obvious role played by regularities across different linguistic levels. 

Of course, the idea that visual word identification, and morphology in particular, might 

be based on the many statistical cues that orthographic systems offer is not entirely new (e.g., 

Baayen et al., 2011; Rueckl et al., 1997; Rumelhart et al., 1986; Seidenberg, 1987). However, 

these accounts focused mostly on regularities between levels of processing (e.g., form and 

meaning, orthography and phonology), while the results presented here (and several others that 

emerged recently; e.g., Chetail, 2017; Lelonkiewicz et al., 2020; Vidal et al., 2021) stress the 

fact that statistical learning might also be happening within levels of processing (orthography, 

in the present case), so that the relevant functional units (e.g., word and morpheme 

representations, but possibly also representations for other statistically associated chunks that 

do not correspond to meaning or phonological units) get established based on this mechanism.     

As outlined in the first section of this Discussion, developmental research is still unclear 

about sensitivity to a specific type of between-level regularities, that is, morpho-orthographic 

processing. Differently from some of the prior behavioural findings, we showed that, at a neural 

level, English-speaking fifth and sixth graders displayed a similar pattern of morpheme 

identification as their adult counterparts, in an automatic and implicit task. In addition to this, 

we provided evidence for the role of context towards successful identification of morphemes 

in pseudowords1.  

Furthermore, we showed that suffixes were successfully identified by children, as well, 

suggesting that children aged 10-12 may have already reached a higher proficiency stage, in 

 
1 Note that this conclusion is especially warranted for the adult participants, as they were subjected to two 

additional experimental conditions aimed precisely at shedding light on this aspect. Oddball pseudowords were 

always made up of a stem and a suffix in the two conditions shared by the child and adult version of the 

experiment. 
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terms of morpho-orthographic processing, than has been proposed based on behavioural 

evidence (e.g., Dawson et al., 2018). These results inform a rich debate around the role of stems 

and affixes in visual word identification, in both adults (e.g., Crepaldi et al., 2010; Feldman et 

al., 2009; Xu & Taft, 2013) and children (e.g., Grainger & Beyersmann, 2017), suggesting a 

predominant role for suffixes (vs. stems) and for the morphological structure of letter strings 

(vs. the mere identification of frequent chunks or embedded words). As we employed for the 

first time a technique like FPVS, paired with MEG, to the study of morphological sensitivity 

in children, we are aware that our findings, albeit novel, warrant further investigation. 

However, if our general pattern of results were to be corroborated by future findings, this may 

inform a reconsideration of the developmental stage at which morpho-orthographic sensitivity 

fully forms. 

Finally, from a methodological perspective, this work provides two valuable 

methodological resources for the eye-tracking and reading community: i. a large developmental 

eye-tracking corpus of natural reading in Italian, EyeReadIt (Chapter II), which is being 

finalised and will soon be freely available; ii. a series of algorithms for the automatised 

correction of vertical drift in eye-tracking data (Chapter III), which is already publicly 

available. 
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Appendix A 

Materials used as stimuli for EyeReadIt (Chapter II of this Thesis). The column “Set” specifies whether the passage belongs Set A or B (the practice 

passage was common to A and B). “Number” illustrates the order in which the passages were displayed. “Trial type” distinguishes between practice 

and experimental trials. “Passage” reports the content of the passage as it was displayed. In the column “Author; Book; Story” is reported, as 

applicable, the information about the author, book, and story for each passage, in Italian, and in brackets an English translation is provided; website 

references are also provided in this column. 
 

Set Number Trial type Passage Author; Book; Story 

A,B 1 Practice 

La bambina bussò alla porta. "Nonnina, posso entrare?" - chiese. Il lupo, 

nascosto tra le coperte, rispose: "Vieni! Tira il paletto ed entra". "Ma che 

voce che hai, nonna!" - si stupì la bambina. "È per salutarti meglio, 

tesoro." - rispose il lupo. "E che occhi grandi che hai!" "È per guardarti 

meglio, cara." "Ma che mani grandi che hai!" "Per accarezzarti meglio, 

bambina mia!" "Ma che bocca grande che hai!" "Per mangiarti meglio!" - 

ruggì il lupo. 

Cappuccetto Rosso 

(Little Red Riding Hood) 

Retrieved from:  

http://culturabile.it/wp-

content/uploads/cappuccetto%20rosso.txt 

http://culturabile.it/wp-content/uploads/cappuccetto%20rosso.txt
http://culturabile.it/wp-content/uploads/cappuccetto%20rosso.txt
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Set Number Trial type Passage Author; Book; Story 

A 2 Experimental 

C’erano una volta tre Orsi, che vivevano in una casina nel bosco. C’era 

Babbo Orso grosso grosso, con una voce grossa grossa; c’era Mamma 

Orsa grossa la metà, con una voce grossa la metà; e c’era un Orsetto 

piccolo piccolo con una voce piccola piccola. Una mattina i tre Orsi 

facevano colazione e Mamma Orsa disse: "La pappa è troppo calda, ora. 

Andiamo a fare una passeggiata nel bosco, mentre la pappa diventa 

fredda". Così i tre Orsi andarono a fare una passeggiata nel bosco. Mentre 

erano via, arrivò una piccola bimba chiamata Riccidoro. Quando vide la 

casetta nel bosco, si domandò chi mai potesse vivere là dentro, e picchiò 

alla porta. Nessuno rispose, e la bimba picchiò ancora. Nessuno rispose: 

Riccidoro allora aprì la porta ed entrò. E là, nella piccola stanza, vide una 

tavola apparecchiata per tre. 

Fratelli Grimm; Fiabe; Riccidoro 

(Brothers Grimm; Fairy Tales; 

Goldilocks) 

Retrieved from: 

http://www.lefiabe.com/grimm/riccidoro.h

tm 

http://www.lefiabe.com/grimm/riccidoro.htm
http://www.lefiabe.com/grimm/riccidoro.htm
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Set Number Trial type Passage Author; Book; Story 

A 3 Experimental 

Così il soldato viveva allegramente, andava a teatro, passeggiava nel 

giardino reale di Parigi e dava ai poveri tanto denaro, e questo era ben 

fatto. Lo sapeva bene dai tempi passati, quanto fosse brutto non avere 

neppure un soldo. Ora era ricco e aveva abiti eleganti e si trovò tantissimi 

amici, tutti a ripetergli quanto era simpatico, un vero cavaliere, e questo 

al soldato faceva molto piacere. Ma spendendo ogni giorno dei soldi e non 

guadagnandone mai, alla fine rimase con i soli spiccioli e fu costretto a 

trasferirsi, dalle splendide stanze in cui aveva abitato, in una piccolissima 

cameretta, proprio sotto il tetto, e dovette pulirsi da sé gli stivali e cucirli 

con un ago, e nessuno dei suoi amici andò a trovarlo, perché vi erano 

troppe scale da fare. 

H.C. Andersen; Fiabe; L'acciarino 

(H.C. Andersen; Fairy Tales; The 

Tinderbox) 

Retrieved from: 

http://archigianni.altervista.org/senza_titol

o1_00001b.htm 

A 4 Experimental 

Fabio si trovava un giorno nella foresta, e aveva appena finito di tagliare 

legna all'incirca sufficiente per caricare i suoi asini, quando vide una fitta 

polvere che si alzava in aria e avanzava verso di lui. Guarda attentamente 

e distingue un numeroso gruppo di persone a cavallo che arrivavano a 

buona andatura. Per quanto nel paese non si parlasse di briganti, Fabio, 

tuttavia, sospettò che questi cavalieri potessero esserlo. Senza considerare 

ciò che sarebbe capitato ai suoi asini, pensò a salvare sé stesso. Salì su un 

grosso albero i cui rami si diramavano in cerchio, tanto vicini gli uni agli 

altri da essere separati solo da uno spazio piccolissimo. 

Le mille e una notte; Alì Babà e i quaranta 

ladroni 

(One Thousand and One Nights; Ali Baba 

and the Forty Thieves) 

Retrieved from: 

http://www.nuvolotta.altervista.org/milleu

na/alibaba4.htm 

http://archigianni.altervista.org/senza_titolo1_00001b.htm
http://archigianni.altervista.org/senza_titolo1_00001b.htm
http://www.nuvolotta.altervista.org/milleuna/alibaba4.htm
http://www.nuvolotta.altervista.org/milleuna/alibaba4.htm
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Set Number Trial type Passage Author; Book; Story 

A 5 Experimental 

Alcuni piatti ricoperti dalla loro campana d'argento furono posati 

simmetricamente sulla tovaglia e noi prendemmo posto a tavola. Il pane e 

il vino brillavano per la loro assenza e l'acqua, benché fosse limpida e 

fresca, non era troppo gradita a Lorenzo. Tra le vivande che ci furono 

servite c'erano diverse qualità di pesci cucinati accuratamente, ma di altre, 

peraltro eccellenti, non avrei nemmeno saputo dire se fossero animali o 

vegetali. Su ogni piatto era incisa la lettera N circondata da un motto 

quanto mai adatto a quel battello sottomarino. La lettera N era senza 

dubbio l'iniziale del nome dell'enigmatico personaggio che comandava 

negli abissi. 

J. Verne; Ventimila leghe sotto i mari 

(J. Verne, Twenty Thousand 

Leagues Under the Seas) 

Retrieved from:  

http://www.nemoischia.it/wp-

content/uploads/2013/10/20mlaleghe.pdf  

 

 

A 6 Experimental 

Il capitano alzatosi più presto del solito era sceso alla spiaggia col suo 

coltellaccio dondolante sotto le larghe falde del suo abito blu, il 

cannocchiale sotto l'ascella, e il cappello buttato indietro sulla nuca. Vedo 

ancora il suo alito ondeggiare in aria dietro a lui come fumo mentre egli 

si allontanava rapidamente. L'ultimo suono che giunse alle mie orecchie 

mentre egli girava dietro la grande rupe fu un potente sbuffo di ira, come 

se egli ancora fosse agitato dal pensiero del dottor Rossi. Mia madre era 

in quel momento di sopra col papà; ed io stavo apparecchiando la tavola 

per la colazione del capitano, quando l'uscio della sala si aprì, ed uno 

sconosciuto si fece avanti. Era pallido come cera; due dita gli mancavano 

alla mano sinistra; e, per quanto portasse un coltellaccio, non pareva 

troppo aggressivo. 

R.L. Stevenson; L'isola del tesoro 

(R.L. Stevenson; Treasure Island) 

Retrieved from: 

https://www.lingq.com/el/lesson/capitolo-

2-1-1111670/ 

http://www.nemoischia.it/wp-content/uploads/2013/10/20mlaleghe.pdf
http://www.nemoischia.it/wp-content/uploads/2013/10/20mlaleghe.pdf
https://www.lingq.com/el/lesson/capitolo-2-1-1111670/
https://www.lingq.com/el/lesson/capitolo-2-1-1111670/
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Set Number Trial type Passage Author; Book; Story 

A 7 Experimental 

In estate vi è in quella valle un visitatore che gli Indiani non conoscono. 

È un grande lupo dalla meravigliosa pelliccia, simile agli altri lupi, e 

tuttavia diverso da loro. Arriva solitario dal ridente paese dei boschi e 

scende fino a una radura tra gli alberi. Là un fiume chiaro fluisce da sacchi 

marciti di pelle di alce e si disperde a terra; lunghe erbe e muschi lo 

ricoprono e nascondono al sole il suo giallo splendore. E là egli rimane 

per qualche tempo silenzioso, ululando una volta sola, a lungo e 

tristemente, prima di partire. Non sempre è solo. Quando vengono le 

lunghe notti d'inverno e i lupi seguono il loro cibo nelle vallate più basse, 

lo si può vedere correre alla testa del branco nella pallida luce lunare o 

dell'aurora boreale. 

J. London; Il richiamo della foresta 

(J. London; The Call of the Wild) 

Retrieved from: 

https://ita.calameo.com/read/002611183bd

bb50b159ff 

B 2 Experimental 

C’era una volta un vecchio asino che aveva lavorato sodo per tutta la vita. 

Ormai non era più capace di portare pesi e si stancava facilmente, per 

questo il suo padrone aveva deciso di relegarlo in un angolo della stalla 

ad aspettare la morte. L’asino però non voleva trascorrere così gli ultimi 

anni della sua vita. Decise di andarsene a Brema, dove sperava di poter 

vivere facendo il musicista. Si era incamminato da poco quando incontrò 

un cane, magro e ansimante. "Come mai hai il fiatone?" gli chiese. "Sono 

dovuto scappare in tutta fretta per salvare la pelle" gli rispose il cane. "Il 

mio padrone voleva uccidermi, perché ora che sono vecchio non gli servo 

più". 

Fratelli Grimm; Fiabe; I musicanti di 

Brema 

(Brothers Grimm; Fairy Tales; The 

Bremen Town Musicians) 

Retrieved from: 

https://www.fiaberella.it/i-musicanti-di-

brema/  

https://ita.calameo.com/read/002611183bdbb50b159ff
https://ita.calameo.com/read/002611183bdbb50b159ff
https://www.fiaberella.it/i-musicanti-di-brema/
https://www.fiaberella.it/i-musicanti-di-brema/
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Set Number Trial type Passage Author; Book; Story 

B 3 Experimental 

Ida mise i fiori nel lettino della bambola, li coprì per bene con la coperta 

e disse che dovevano stare tranquilli: avrebbe preparato del tè per loro, 

così sarebbero guariti e si sarebbero alzati di nuovo l'indomani. Poi tirò le 

tende vicino al lettino per evitare che il sole li disturbasse. Per tutta la sera 

non poté fare a meno di pensare a quello che lo studente le aveva 

raccontato, e quando lei stessa dovette andare a letto, guardò prima dietro 

le tendine della finestra dove c'erano i bei fiori della sua mamma, i giacinti 

e i tulipani, e sussurrò piano piano: "So bene che dovete andare al ballo 

questa notte"; i fiori fecero finta di niente, non mossero neppure una 

foglia, ma Ida sapeva bene quello che diceva. 

H.C. Andersen; Fiabe; I fiori della piccola 

Ida 

(H.C. Andersen; Fairy Tales; Little Ida’s 

Flowers) 

Retrieved from: 

https://www.andersenstories.com/it/anders

en_fiabe/i_fiori_della_piccola_ida  

B 4 Experimental 

L’uomo con la giacca blu portava la bisaccia come gli altri, si avvicinò 

alla roccia, molto vicino all'albero su cui Giovanni si era rifugiato; e, dopo 

essersi fatto strada attraverso gli arbusti, pronunciò queste parole: 

"Sesamo, apriti", così distintamente che Giovanni le sentì. Appena il capo 

dei ladri le ebbe pronunciate, si aprì una porta; e, dopo aver fatto passare 

tutti i suoi uomini davanti a sé ed averli fatti entrare tutti, entrò anche lui, 

e la porta si chiuse. I ladri restarono a lungo nella rupe; e Giovanni, 

temendo che qualcuno di loro o tutti insieme uscissero mentre egli 

lasciava il suo nascondiglio per fuggire, fu costretto a rimanere sull'albero 

e ad aspettare con pazienza. 

Le mille e una notte; Alì Babà e i quaranta 

ladroni 

(One Thousand and One Nights; Ali Baba 

and the Forty Thieves) 

Retrieved from: 

http://www.nuvolotta.altervista.org/milleu

na/alibaba4.htm 

https://www.andersenstories.com/it/andersen_fiabe/i_fiori_della_piccola_ida
https://www.andersenstories.com/it/andersen_fiabe/i_fiori_della_piccola_ida
http://www.nuvolotta.altervista.org/milleuna/alibaba4.htm
http://www.nuvolotta.altervista.org/milleuna/alibaba4.htm
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Set Number Trial type Passage Author; Book; Story 

B 5 Experimental 

Verso mezzogiorno entrai dal capo con qualche bibita rinfrescante, e 

medicine. Egli si trovava ancora nel medesimo stato, forse un tantino 

sollevato, e appariva insieme debole ed eccitato. "Giacomo" disse "tu sei 

l'unico, qui, che valga qualcosa; e tu sai come io sono sempre stato buono 

con te. Non c'è stato mese che non ti abbia pagato i tuoi quattro euro. E 

ora tu vedi, amico mio, come sono malandato e abbandonato da tutti. 

Giacomo, tu mi devi dare un bicchierino di rum; è vero che me lo dai, mio 

piccolo amico?". "Il medico..." presi a dire. Ma egli mi tagliò la parola con 

una voce fiacca ma appassionata. "I medici sono una massa di scope: e 

quel medico, che vuoi che sappia, lui, di gente di mare? Io sono stato in 

paesi dove si arrostiva, e i miei compagni la febbre gialla te li faceva 

cascar come mosche, e i terremoti facevano ondeggiare la terra come un 

mare: ebbene, che può sapere il medico di paesi simili?" 

R.L. Stevenson; L'isola del tesoro 

(R.L. Stevenson; Treasure Island) 

Retrieved from: 

https://www.lingq.com/el/lesson/capitolo-

2-1-1111670/ 

https://www.lingq.com/el/lesson/capitolo-2-1-1111670/
https://www.lingq.com/el/lesson/capitolo-2-1-1111670/
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Set Number Trial type Passage Author; Book; Story 

B 6 Experimental 

Fido non era né un cane casalingo né un cane da canile. Il reame era tutto 

suo. Si tuffava nella vasca o andava a caccia con i figli del giudice; 

scortava Marta e Alice, le figlie del giudice, durante lunghe passeggiate 

mattutine o crepuscolari; e, nelle serate invernali, stava sdraiato ai piedi 

del giudice davanti al camino scoppiettante della biblioteca. Si lasciava 

cavalcare dai nipotini del giudice o li faceva rotolare sull'erba, e 

sorvegliava i loro passi nelle loro avventurose escursioni alla fontana nel 

cortile delle scuderie e anche più in là, verso i prati e i cespugli. Andava 

deciso fra i segugi e ignorava Tito e Isabella nel modo più assoluto, perché 

era un re: un re di tutto ciò che camminava, strisciava o volava nella 

proprietà del giudice Bianchi, compresi gli uomini. 

J. London; Il richiamo della foresta 

(J. London; The Call of the Wild) 

Retrieved from: 

https://ita.calameo.com/read/002611183bd

bb50b159ff  

B 7 Experimental 

Allora nelle società e nelle pubblicazioni scientifiche scoppiò una 

polemica interminabile tra quelli che credevano al fenomeno e gli 

increduli. La questione accese gli spiriti, i giornalisti di parte scientifica 

in lotta con gli umoristi versarono fiumi d'inchiostro. La battaglia continuò 

per sei mesi con alterna fortuna ed esito incerto. Ma a poco a poco 

l'umorismo sconfisse la scienza e la faccenda del mostro si concluse tra le 

risate universali. Così nei primi mesi dell'anno l'argomento sembrava 

ormai dimenticato, quando accaddero altri strani fatti che vennero ben 

presto a conoscenza del pubblico. Allora il fenomeno apparve sotto una 

luce nuova: non si trattava più di un problema scientifico da risolvere, 

bensì di un pericolo serio e reale dal quale bisognava difendersi. 

J. Verne; Ventimila leghe sotto i mari 

(J. Verne; Twenty Thousand 

Leagues Under the Seas) 

Retrieved from: 

http://www.nemoischia.it/wp-

content/uploads/2013/10/20mlaleghe.pdf  

 

https://ita.calameo.com/read/002611183bdbb50b159ff
https://ita.calameo.com/read/002611183bdbb50b159ff
http://www.nemoischia.it/wp-content/uploads/2013/10/20mlaleghe.pdf
http://www.nemoischia.it/wp-content/uploads/2013/10/20mlaleghe.pdf
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Appendix B 

 

The table illustrates the complete set of unique combinations of stems/nonstems and suffixes/nonsuffixes (N=288) used as experimental stimuli 

for the adult version of the FPVS-MEG study (Chapter V of this Thesis).  

The table header is to be interpreted as follows: “(Non)stem” refers to the stem (or nonstem) used as first constituent of the pseudoword. 

“(Non)suffix” refers to the suffix (or nonsuffix) used as second constituent of the pseudoword. “(Non)stem ID” and “(Non)suffix ID” are the 

unique identifiers for (non)stems and (non)suffixes, used for the creation of semi-randomised lists. “Stimulus” is the pseudoword combination 

used as stimulus. “Stimulus ID” is the unique identifier of the stimulus, resulting from the two constituents’ IDs and from a description of the 

combination used for the stimulus. “Global old20” refers to the stimulus’ old20 metric, as obtained from SUBTLEX-UK (Van Heuven et al., 

2014), using the old20 function from the R package vwr (Keuleers, 2013). 

 

Colour code: light blue = stem+suffix combinations (N=72); light green = stem+nonsuffix combinations (N=72); yellow = nonstem+suffix 

combinations (N=72); orange = nonstem+nonsuffix combinations (N=72). 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

soft ity 2 1 softity 0201_StemSuffix 2.50 

ship ity 4 1 shipity 0401_StemSuffix 2.25 

stop ity 5 1 stopity 0501_StemSuffix 2.65 

hold ity 6 1 holdity 0601_StemSuffix 2.30 

jump ity 8 1 jumpity 0801_StemSuffix 2.20 

farm ity 11 1 farmity 1101_StemSuffix 2.10 

soft ous 2 5 softous 0205_StemSuffix 2.75 

ship ous 4 5 shipous 0405_StemSuffix 2.85 

stop ous 5 5 stopous 0505_StemSuffix 2.35 

hold ous 6 5 holdous 0605_StemSuffix 2.45 

jump ous 8 5 jumpous 0805_StemSuffix 2.60 

farm ous 11 5 farmous 1105_StemSuffix 1.95 

soft ful 2 7 softful 0207_StemSuffix 2.85 

ship ful 4 7 shipful 0407_StemSuffix 2.45 

stop ful 5 7 stopful 0507_StemSuffix 2.75 

hold ful 6 7 holdful 0607_StemSuffix 2.60 

jump ful 8 7 jumpful 0807_StemSuffix 2.95 

farm ful 11 7 farmful 1107_StemSuffix 2.40 

soft ite 2 9 softite 0209_StemSuffix 2.50 

ship ite 4 9 shipite 0409_StemSuffix 2.45 

stop ite 5 9 stopite 0509_StemSuffix 2.30 

hold ite 6 9 holdite 0609_StemSuffix 2.05 

jump ite 8 9 jumpite 0809_StemSuffix 2.55 

farm ite 11 9 farmite 1109_StemSuffix 1.95 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

soft ese 2 11 softese 0211_StemSuffix 2.20 

ship ese 4 11 shipese 0411_StemSuffix 2.45 

stop ese 5 11 stopese 0511_StemSuffix 2.40 

hold ese 6 11 holdese 0611_StemSuffix 2.20 

jump ese 8 11 jumpese 0811_StemSuffix 2.75 

farm ese 11 11 farmese 1111_StemSuffix 1.90 

soft ess 2 12 softess 0212_StemSuffix 2.10 

ship ess 4 12 shipess 0412_StemSuffix 2.00 

stop ess 5 12 stopess 0512_StemSuffix 1.95 

hold ess 6 12 holdess 0612_StemSuffix 1.90 

jump ess 8 12 jumpess 0812_StemSuffix 2.55 

farm ess 11 12 farmess 1112_StemSuffix 1.95 

help ive 1 2 helpive 0102_StemSuffix 2.55 

last ive 3 2 lastive 0302_StemSuffix 1.90 

park ive 7 2 parkive 0702_StemSuffix 1.95 

town ive 9 2 townive 0902_StemSuffix 2.45 

bird ive 10 2 birdive 1002_StemSuffix 2.40 

milk ive 12 2 milkive 1202_StemSuffix 2.25 

help ory 1 3 helpory 0103_StemSuffix 2.75 

last ory 3 3 lastory 0303_StemSuffix 1.95 

park ory 7 3 parkory 0703_StemSuffix 2.20 

town ory 9 3 townory 0903_StemSuffix 2.75 

bird ory 10 3 birdory 1003_StemSuffix 2.75 

milk ory 12 3 milkory 1203_StemSuffix 2.20 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

help ure 1 4 helpure 0104_StemSuffix 2.80 

last ure 3 4 lasture 0304_StemSuffix 1.95 

park ure 7 4 parkure 0704_StemSuffix 2.35 

town ure 9 4 townure 0904_StemSuffix 2.60 

bird ure 10 4 birdure 1004_StemSuffix 2.65 

milk ure 12 4 milkure 1204_StemSuffix 2.60 

help ise 1 6 helpise 0106_StemSuffix 2.35 

last ise 3 6 lastise 0306_StemSuffix 2.00 

park ise 7 6 parkise 0706_StemSuffix 1.90 

town ise 9 6 townise 0906_StemSuffix 2.30 

bird ise 10 6 birdise 1006_StemSuffix 2.25 

milk ise 12 6 milkise 1206_StemSuffix 2.05 

help ist 1 8 helpist 0108_StemSuffix 2.35 

last ist 3 8 lastist 0308_StemSuffix 1.90 

park ist 7 8 parkist 0708_StemSuffix 1.95 

town ist 9 8 townist 0908_StemSuffix 2.50 

bird ist 10 8 birdist 1008_StemSuffix 2.40 

milk ist 12 8 milkist 1208_StemSuffix 2.45 

help ish 1 10 helpish 0110_StemSuffix 2.15 

last ish 3 10 lastish 0310_StemSuffix 2.00 

park ish 7 10 parkish 0710_StemSuffix 1.85 

town ish 9 10 townish 0910_StemSuffix 2.05 

bird ish 10 10 birdish 1010_StemSuffix 2.10 

milk ish 12 10 milkish 1210_StemSuffix 2.25 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

soft ert 2 1 softert 0201_StemNonsuffix 2.25 

ship ert 4 1 shipert 0401_StemNonsuffix 2.00 

stop ert 5 1 stopert 0501_StemNonsuffix 2.00 

hold ert 6 1 holdert 0601_StemNonsuffix 1.90 

jump ert 8 1 jumpert 0801_StemNonsuffix 1.95 

farm ert 11 1 farmert 1101_StemNonsuffix 1.80 

soft ald 2 5 softald 0205_StemNonsuffix 2.90 

ship ald 4 5 shipald 0405_StemNonsuffix 2.80 

stop ald 5 5 stopald 0505_StemNonsuffix 2.85 

hold ald 6 5 holdald 0605_StemNonsuffix 2.75 

jump ald 8 5 jumpald 0805_StemNonsuffix 2.95 

farm ald 11 5 farmald 1105_StemNonsuffix 2.20 

soft sal 2 7 softsal 0207_StemNonsuffix 2.90 

ship sal 4 7 shipsal 0407_StemNonsuffix 2.70 

stop sal 5 7 stopsal 0507_StemNonsuffix 2.60 

hold sal 6 7 holdsal 0607_StemNonsuffix 2.80 

jump sal 8 7 jumpsal 0807_StemNonsuffix 2.90 

farm sal 11 7 farmsal 1107_StemNonsuffix 2.75 

soft ene 2 9 softene 0209_StemNonsuffix 2.05 

ship ene 4 9 shipene 0409_StemNonsuffix 2.55 

stop ene 5 9 stopene 0509_StemNonsuffix 2.60 

hold ene 6 9 holdene 0609_StemNonsuffix 1.95 

jump ene 8 9 jumpene 0809_StemNonsuffix 2.65 

farm ene 11 9 farmene 1109_StemNonsuffix 1.95 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

soft oke 2 11 softoke 0211_StemNonsuffix 2.75 

ship oke 4 11 shipoke 0411_StemNonsuffix 2.75 

stop oke 5 11 stopoke 0511_StemNonsuffix 2.30 

hold oke 6 11 holdoke 0611_StemNonsuffix 2.70 

jump oke 8 11 jumpoke 0811_StemNonsuffix 2.95 

farm oke 11 11 farmoke 1111_StemNonsuffix 2.60 

soft ust 2 12 softust 0212_StemNonsuffix 2.75 

ship ust 4 12 shipust 0412_StemNonsuffix 2.85 

stop ust 5 12 stopust 0512_StemNonsuffix 2.70 

hold ust 6 12 holdust 0612_StemNonsuffix 2.50 

jump ust 8 12 jumpust 0812_StemNonsuffix 2.85 

farm ust 11 12 farmust 1112_StemNonsuffix 2.70 

help une 1 2 helpune 0102_StemNonsuffix 2.80 

last une 3 2 lastune 0302_StemNonsuffix 2.55 

park une 7 2 parkune 0702_StemNonsuffix 2.50 

town une 9 2 townune 0902_StemNonsuffix 2.75 

bird une 10 2 birdune 1002_StemNonsuffix 2.65 

milk une 12 2 milkune 1202_StemNonsuffix 2.65 

help ute 1 3 helpute 0103_StemNonsuffix 2.70 

last ute 3 3 lastute 0303_StemNonsuffix 2.70 

park ute 7 3 parkute 0703_StemNonsuffix 2.60 

town ute 9 3 townute 0903_StemNonsuffix 2.80 

bird ute 10 3 birdute 1003_StemNonsuffix 2.65 

milk ute 12 3 milkute 1203_StemNonsuffix 2.85 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

help int 1 4 helpint 0104_StemNonsuffix 2.25 

last int 3 4 lastint 0304_StemNonsuffix 1.90 

park int 7 4 parkint 0704_StemNonsuffix 1.85 

town int 9 4 townint 0904_StemNonsuffix 2.40 

bird int 10 4 birdint 1004_StemNonsuffix 1.95 

milk int 12 4 milkint 1204_StemNonsuffix 2.05 

help ere 1 6 helpere 0106_StemNonsuffix 2.20 

last ere 3 6 lastere 0306_StemNonsuffix 1.95 

park ere 7 6 parkere 0706_StemNonsuffix 1.90 

town ere 9 6 townere 0906_StemNonsuffix 1.90 

bird ere 10 6 birdere 1006_StemNonsuffix 1.90 

milk ere 12 6 milkere 1206_StemNonsuffix 1.90 

help arn 1 8 helparn 0108_StemNonsuffix 2.55 

last arn 3 8 lastarn 0308_StemNonsuffix 2.05 

park arn 7 8 parkarn 0708_StemNonsuffix 2.15 

town arn 9 8 townarn 0908_StemNonsuffix 2.80 

bird arn 10 8 birdarn 1008_StemNonsuffix 2.60 

milk arn 12 8 milkarn 1208_StemNonsuffix 2.30 

help ult 1 10 helpult 0110_StemNonsuffix 2.90 

last ult 3 10 lastult 0310_StemNonsuffix 2.90 

park ult 7 10 parkult 0710_StemNonsuffix 2.80 

town ult 9 10 townult 0910_StemNonsuffix 2.90 

bird ult 10 10 birdult 1010_StemNonsuffix 2.95 

milk ult 12 10 milkult 1210_StemNonsuffix 3.00 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

terp ity 2 1 terpity 0201_NonstemSuffix 2.25 

bron ity 4 1 bronity 0401_NonstemSuffix 2.45 

trum ity 5 1 trumity 0501_NonstemSuffix 2.50 

burk ity 6 1 burkity 0601_NonstemSuffix 2.40 

lort ity 8 1 lortity 0801_NonstemSuffix 2.65 

culp ity 11 1 culpity 1101_NonstemSuffix 2.55 

terp ous 2 5 terpous 0205_NonstemSuffix 2.20 

bron ous 4 5 bronous 0405_NonstemSuffix 2.15 

trum ous 5 5 trumous 0505_NonstemSuffix 2.20 

burk ous 6 5 burkous 0605_NonstemSuffix 2.40 

lort ous 8 5 lortous 0805_NonstemSuffix 1.95 

culp ous 11 5 culpous 1105_NonstemSuffix 2.70 

terp ful 2 7 terpful 0207_NonstemSuffix 2.75 

bron ful 4 7 bronful 0407_NonstemSuffix 2.75 

trum ful 5 7 trumful 0507_NonstemSuffix 2.65 

burk ful 6 7 burkful 0607_NonstemSuffix 2.85 

lort ful 8 7 lortful 0807_NonstemSuffix 2.70 

culp ful 11 7 culpful 1107_NonstemSuffix 2.70 

terp ite 2 9 terpite 0209_NonstemSuffix 2.00 

bron ite 4 9 bronite 0409_NonstemSuffix 1.90 

trum ite 5 9 trumite 0509_NonstemSuffix 2.70 

burk ite 6 9 burkite 0609_NonstemSuffix 2.35 

lort ite 8 9 lortite 0809_NonstemSuffix 2.45 

culp ite 11 9 culpite 1109_NonstemSuffix 2.55 



 
 

 
 

249 

 

(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

terp ese 2 11 terpese 0211_NonstemSuffix 2.30 

bron ese 4 11 bronese 0411_NonstemSuffix 2.00 

trum ese 5 11 trumese 0511_NonstemSuffix 2.70 

burk ese 6 11 burkese 0611_NonstemSuffix 2.10 

lort ese 8 11 lortese 0811_NonstemSuffix 2.45 

culp ese 11 11 culpese 1111_NonstemSuffix 2.75 

terp ess 2 12 terpess 0212_NonstemSuffix 2.05 

bron ess 4 12 broness 0412_NonstemSuffix 1.95 

trum ess 5 12 trumess 0512_NonstemSuffix 2.40 

burk ess 6 12 burkess 0612_NonstemSuffix 1.80 

lort ess 8 12 lortess 0812_NonstemSuffix 2.00 

culp ess 11 12 culpess 1112_NonstemSuffix 2.70 

josk ive 1 2 joskive 0102_NonstemSuffix 2.80 

firn ive 3 2 firnive 0302_NonstemSuffix 2.65 

molp ive 7 2 molpive 0702_NonstemSuffix 2.70 

bemp ive 9 2 bempive 0902_NonstemSuffix 2.70 

jelt ive 10 2 jeltive 1002_NonstemSuffix 2.40 

tand ive 12 2 tandive 1202_NonstemSuffix 2.50 

josk ory 1 3 joskory 0103_NonstemSuffix 2.95 

firn ory 3 3 firnory 0303_NonstemSuffix 2.85 

molp ory 7 3 molpory 0703_NonstemSuffix 2.80 

bemp ory 9 3 bempory 0903_NonstemSuffix 2.85 

jelt ory 10 3 jeltory 1003_NonstemSuffix 2.95 

tand ory 12 3 tandory 1203_NonstemSuffix 2.10 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

josk ure 1 4 joskure 0104_NonstemSuffix 2.85 

firn ure 3 4 firnure 0304_NonstemSuffix 2.70 

molp ure 7 4 molpure 0704_NonstemSuffix 2.90 

bemp ure 9 4 bempure 0904_NonstemSuffix 2.70 

jelt ure 10 4 jelture 1004_NonstemSuffix 2.25 

tand ure 12 4 tandure 1204_NonstemSuffix 2.50 

josk ise 1 6 joskise 0106_NonstemSuffix 2.90 

firn ise 3 6 firnise 0306_NonstemSuffix 2.15 

molp ise 7 6 molpise 0706_NonstemSuffix 2.60 

bemp ise 9 6 bempise 0906_NonstemSuffix 2.70 

jelt ise 10 6 jeltise 1006_NonstemSuffix 2.75 

tand ise 12 6 tandise 1206_NonstemSuffix 2.20 

josk ist 1 8 joskist 0108_NonstemSuffix 2.85 

firn ist 3 8 firnist 0308_NonstemSuffix 2.25 

molp ist 7 8 molpist 0708_NonstemSuffix 2.75 

bemp ist 9 8 bempist 0908_NonstemSuffix 2.65 

jelt ist 10 8 jeltist 1008_NonstemSuffix 2.60 

tand ist 12 8 tandist 1208_NonstemSuffix 2.20 

josk ish 1 10 joskish 0110_NonstemSuffix 2.75 

firn ish 3 10 firnish 0310_NonstemSuffix 1.85 

molp ish 7 10 molpish 0710_NonstemSuffix 2.10 

bemp ish 9 10 bempish 0910_NonstemSuffix 2.60 

jelt ish 10 10 jeltish 1010_NonstemSuffix 2.15 

tand ish 12 10 tandish 1210_NonstemSuffix 1.90 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

terp ert 2 1 terpert 0201_NonstemNonsuffix 2.25 

bron ert 4 1 bronert 0401_NonstemNonsuffix 2.00 

trum ert 5 1 trumert 0501_NonstemNonsuffix 2.30 

burk ert 6 1 burkert 0601_NonstemNonsuffix 1.95 

lort ert 8 1 lortert 0801_NonstemNonsuffix 2.25 

culp ert 11 1 culpert 1101_NonstemNonsuffix 1.95 

terp ald 2 5 terpald 0205_NonstemNonsuffix 2.85 

bron ald 4 5 bronald 0405_NonstemNonsuffix 2.35 

trum ald 5 5 trumald 0505_NonstemNonsuffix 2.85 

burk ald 6 5 burkald 0605_NonstemNonsuffix 2.60 

lort ald 8 5 lortald 0805_NonstemNonsuffix 2.60 

culp ald 11 5 culpald 1105_NonstemNonsuffix 2.80 

terp sal 2 7 terpsal 0207_NonstemNonsuffix 2.75 

bron sal 4 7 bronsal 0407_NonstemNonsuffix 2.50 

trum sal 5 7 trumsal 0507_NonstemNonsuffix 2.85 

burk sal 6 7 burksal 0607_NonstemNonsuffix 2.60 

lort sal 8 7 lortsal 0807_NonstemNonsuffix 2.70 

culp sal 11 7 culpsal 1107_NonstemNonsuffix 2.90 

terp ene 2 9 terpene 0209_NonstemNonsuffix 2.10 

bron ene 4 9 bronene 0409_NonstemNonsuffix 2.40 

trum ene 5 9 trumene 0509_NonstemNonsuffix 2.65 

burk ene 6 9 burkene 0609_NonstemNonsuffix 2.25 

lort ene 8 9 lortene 0809_NonstemNonsuffix 2.05 

culp ene 11 9 culpene 1109_NonstemNonsuffix 2.65 



 
 

 
 

252 

 

(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

terp oke 2 11 terpoke 0211_NonstemNonsuffix 2.90 

bron oke 4 11 bronoke 0411_NonstemNonsuffix 2.10 

trum oke 5 11 trumoke 0511_NonstemNonsuffix 2.95 

burk oke 6 11 burkoke 0611_NonstemNonsuffix 2.85 

lort oke 8 11 lortoke 0811_NonstemNonsuffix 2.90 

culp oke 11 11 culpoke 1111_NonstemNonsuffix 2.80 

terp ust 2 12 terpust 0212_NonstemNonsuffix 2.75 

bron ust 4 12 bronust 0412_NonstemNonsuffix 2.45 

trum ust 5 12 trumust 0512_NonstemNonsuffix 2.70 

burk ust 6 12 burkust 0612_NonstemNonsuffix 2.65 

lort ust 8 12 lortust 0812_NonstemNonsuffix 2.80 

culp ust 11 12 culpust 1112_NonstemNonsuffix 2.80 

josk une 1 2 joskune 0102_NonstemNonsuffix 2.95 

firn une 3 2 firnune 0302_NonstemNonsuffix 2.90 

molp une 7 2 molpune 0702_NonstemNonsuffix 2.85 

bemp une 9 2 bempune 0902_NonstemNonsuffix 2.85 

jelt une 10 2 jeltune 1002_NonstemNonsuffix 2.70 

tand une 12 2 tandune 1202_NonstemNonsuffix 2.85 

josk ute 1 3 joskute 0103_NonstemNonsuffix 2.90 

firn ute 3 3 firnute 0303_NonstemNonsuffix 2.75 

molp ute 7 3 molpute 0703_NonstemNonsuffix 2.80 

bemp ute 9 3 bempute 0903_NonstemNonsuffix 2.70 

jelt ute 10 3 jeltute 1003_NonstemNonsuffix 2.85 

tand ute 12 3 tandute 1203_NonstemNonsuffix 2.70 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

josk int 1 4 joskint 0104_NonstemNonsuffix 2.40 

firn int 3 4 firnint 0304_NonstemNonsuffix 2.50 

molp int 7 4 molpint 0704_NonstemNonsuffix 2.65 

bemp int 9 4 bempint 0904_NonstemNonsuffix 2.75 

jelt int 10 4 jeltint 1004_NonstemNonsuffix 2.35 

tand int 12 4 tandint 1204_NonstemNonsuffix 2.00 

josk ere 1 6 joskere 0106_NonstemNonsuffix 2.85 

firn ere 3 6 firnere 0306_NonstemNonsuffix 2.40 

molp ere 7 6 molpere 0706_NonstemNonsuffix 2.70 

bemp ere 9 6 bempere 0906_NonstemNonsuffix 2.15 

jelt ere 10 6 jeltere 1006_NonstemNonsuffix 2.40 

tand ere 12 6 tandere 1206_NonstemNonsuffix 1.95 

josk arn 1 8 joskarn 0108_NonstemNonsuffix 2.95 

firn arn 3 8 firnarn 0308_NonstemNonsuffix 2.80 

molp arn 7 8 molparn 0708_NonstemNonsuffix 2.80 

bemp arn 9 8 bemparn 0908_NonstemNonsuffix 2.80 

jelt arn 10 8 jeltarn 1008_NonstemNonsuffix 2.90 

tand arn 12 8 tandarn 1208_NonstemNonsuffix 2.05 

josk ult 1 10 joskult 0110_NonstemNonsuffix 2.90 

firn ult 3 10 firnult 0310_NonstemNonsuffix 2.95 

molp ult 7 10 molpult 0710_NonstemNonsuffix 2.95 

bemp ult 9 10 bempult 0910_NonstemNonsuffix 3.00 

jelt ult 10 10 jeltult 1010_NonstemNonsuffix 3.00 

tand ult 12 10 tandult 1210_NonstemNonsuffix 2.90 
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Appendix C 

 

The table illustrates the complete set of unique combinations of stems/nonstems and suffixes/nonsuffixes (N=54) used as experimental stimuli for 

the child version of the FPVS-MEG study (Chapter V of this Thesis).  

The table header is to be interpreted as follows: “(Non)stem” refers to the stem (or nonstem) used as first constituent of the pseudoword. 

“(Non)suffix” refers to the suffix (or nonsuffix) used as second constituent of the pseudoword. “(Non)stem ID” and “(Non)suffix ID” are the 

unique identifiers for (non)stems and (non)suffixes, used for the creation of semi-randomised lists. “Stimulus” is the pseudoword combination 

used as stimulus. “Stimulus ID” is the unique identifier of the stimulus, resulting from the two constituents’ IDs and from a description of the 

combination used for the stimulus. “Global old20” refers to the stimulus’ old20 metric, as obtained from SUBTLEX-UK (Van Heuven et al., 

2014), using the old20 function from the R package vwr (Keuleers, 2013). 

 

Colour code: light blue = stem+suffix combinations (N=18); light green = stem+nonsuffix combinations (N=18); yellow = nonstem+suffix 

combinations (N=18). 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

soft ity 2 1 softity 0201_StemSuffix 2.50 

ship ity 4 1 shipity 0401_StemSuffix 2.25 

hold ity 6 1 holdity 0601_StemSuffix 2.30 

soft ous 2 5 softous 0205_StemSuffix 2.75 

ship ous 4 5 shipous 0405_StemSuffix 2.85 

hold ous 6 5 holdous 0605_StemSuffix 2.45 

soft ful 2 7 softful 0207_StemSuffix 2.85 

ship ful 4 7 shipful 0407_StemSuffix 2.45 

hold ful 6 7 holdful 0607_StemSuffix 2.60 

town ory 9 3 townory 0903_StemSuffix 2.75 

bird ory 10 3 birdory 1003_StemSuffix 2.75 

milk ory 12 3 milkory 1203_StemSuffix 2.20 

town ise 9 6 townise 0906_StemSuffix 2.30 

bird ise 10 6 birdise 1006_StemSuffix 2.25 

milk ise 12 6 milkise 1206_StemSuffix 2.05 

town ish 9 10 townish 0910_StemSuffix 2.05 

bird ish 10 10 birdish 1010_StemSuffix 2.10 

milk ish 12 10 milkish 1210_StemSuffix 2.25 

soft ert 2 1 softert 0201_StemNonsuffix 2.25 

ship ert 4 1 shipert 0401_StemNonsuffix 2.00 

hold ert 6 1 holdert 0601_StemNonsuffix 1.90 

soft ald 2 5 softald 0205_StemNonsuffix 2.90 

ship ald 4 5 shipald 0405_StemNonsuffix 2.80 

hold ald 6 5 holdald 0605_StemNonsuffix 2.75 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

soft sal 2 7 softsal 0207_StemNonsuffix 2.90 

ship sal 4 7 shipsal 0407_StemNonsuffix 2.70 

hold sal 6 7 holdsal 0607_StemNonsuffix 2.80 

town ute 9 3 townute 0903_StemNonsuffix 2.80 

bird ute 10 3 birdute 1003_StemNonsuffix 2.65 

milk ute 12 3 milkute 1203_StemNonsuffix 2.85 

town ere 9 6 townere 0906_StemNonsuffix 1.90 

bird ere 10 6 birdere 1006_StemNonsuffix 1.90 

milk ere 12 6 milkere 1206_StemNonsuffix 1.90 

town ult 9 10 townult 0910_StemNonsuffix 2.90 

bird ult 10 10 birdult 1010_StemNonsuffix 2.95 

milk ult 12 10 milkult 1210_StemNonsuffix 3.00 

terp ity 2 1 terpity 0201_NonstemSuffix 2.25 

bron ity 4 1 bronity 0401_NonstemSuffix 2.45 

burk ity 6 1 burkity 0601_NonstemSuffix 2.40 

terp ous 2 5 terpous 0205_NonstemSuffix 2.20 

bron ous 4 5 bronous 0405_NonstemSuffix 2.15 

burk ous 6 5 burkous 0605_NonstemSuffix 2.40 

terp ful 2 7 terpful 0207_NonstemSuffix 2.75 

bron ful 4 7 bronful 0407_NonstemSuffix 2.75 

burk ful 6 7 burkful 0607_NonstemSuffix 2.85 

bemp ory 9 3 bempory 0903_NonstemSuffix 2.85 

jelt ory 10 3 jeltory 1003_NonstemSuffix 2.95 

tand ory 12 3 tandory 1203_NonstemSuffix 2.10 

bemp ise 9 6 bempise 0906_NonstemSuffix 2.70 

jelt ise 10 6 jeltise 1006_NonstemSuffix 2.75 
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(Non)stem (Non)suffix (Non)stem ID (Non)suffix ID Stimulus Stimulus ID Global old20 

tand ise 12 6 tandise 1206_NonstemSuffix 2.20 

bemp ish 9 10 bempish 0910_NonstemSuffix 2.60 

jelt ish 10 10 jeltish 1010_NonstemSuffix 2.15 

tand ish 12 10 tandish 1210_NonstemSuffix 1.90 
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