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Abstract Episodic memory has a dynamic nature: when we recall past episodes, we retrieve not

only their content, but also their temporal structure. The phenomenon of replay, in the

hippocampus of mammals, offers a remarkable example of this temporal dynamics. However, most

quantitative models of memory treat memories as static configurations, neglecting the temporal

unfolding of the retrieval process. Here, we introduce a continuous attractor network model with a

memory-dependent asymmetric component in the synaptic connectivity, which spontaneously

breaks the equilibrium of the memory configurations and produces dynamic retrieval. The detailed

analysis of the model with analytical calculations and numerical simulations shows that it can

robustly retrieve multiple dynamical memories, and that this feature is largely independent of the

details of its implementation. By calculating the storage capacity, we show that the dynamic

component does not impair memory capacity, and can even enhance it in certain regimes.

Introduction
The temporal unfolding of an event is an essential component of episodic memory. When we recall

past events, or we imagine future ones, we do not produce static images but temporally structured

movies, a phenomenon that has been referred to as ’mental time travel’ (Eichenbaum and Cohen,

2004; Tulving, 2002).

The study of the neural activity of the hippocampus, known for its first-hand involvement in epi-

sodic memory, has provided many insights on the neural basis of memory retrieval and its temporal

dynamics. An interesting example is the phenomenon of hippocampal replay, that is the reactivation,

on a compressed time scale, of sequences of cells active in previous behavioral sessions. Replay

takes place during sharp wave ripples, fast oscillations of the hippocampal local field potential that

are particularly abundant during sleep and restful wakefulness (Buzsáki et al., 1983; Buzsáki et al.,

1992). Indeed, replay has been observed during sleep (Skaggs and McNaughton, 1996;

Nádasdy et al., 1999), inter-trial rest periods (Foster and Wilson, 2006; Jackson et al., 2006), and

during still periods in navigational tasks (Dupret et al., 2010; Pfeiffer and Foster, 2013). Replay

activity has been hypothesized to be crucial for memory consolidation (O’Neill et al., 2010) and

retrieval (Karlsson and Frank, 2009), as well as for route planning (Pfeiffer and Foster, 2013;

Ólafsdóttir et al., 2018).

A temporally structured activation takes place also before the exposure to an environment

(Dragoi and Tonegawa, 2011), a phenomenon known as preplay, and a recent study showed that

this dynamical feature emerges very early during development, preceding the appearance of theta

rhythm (Farooq and Dragoi, 2019) in the hippocampus. The fact that hippocampal sequences are

present before the exposure to the environment suggests that their dynamical nature is not specific

to a role in spatial cognition, but is inherent to hippocampal operation in general. Moreover, in a

recent study Stella et al., 2019 have shown that the retrieved sequences of positions during slow

wave sleep are not always replaying experienced trajectories, but are compatible with a random

walk on the low dimensional manifold that represents the previously explored environment. This
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suggests that what is essential are not the sequences themselves, but the tendency to produce

them: neural activity tends to move, constrained to abstract low-dimensional manifolds which can

then be recycled to represent spatial environments, and possibly non-spatial ones as well. This

dynamic nature extends to multiple timescales, as suggested by the observation that the neural map

of the same environment progressively changes its component cells over time (Ziv et al., 2013).

Low-dimensional, dynamic activity is not constrained to a single subspace: replay in sleep can

reflect multiple environments (Dragoi and Tonegawa, 2013; Gridchyn et al., 2020), the content of

awake replay reflects both the current and previous environments (Karlsson and Frank, 2009), and

during behavior fast hippocampal sequences appear to switch between possible future trajectories

(Kay et al., 2020). Further evidence comes from a recent study with human participants learning

novel word pair associations (Vaz et al., 2020). The study shows that the same pair-dependent neu-

ral sequences are played during the encoding and the retrieval phase.

A similar phenomenon – a dynamic activity on low dimensional manifolds – is present in memory

schemata, cognitive frameworks that constrain and organize our mental activity (Ghosh and Gilboa,

2014), and have been shown to have a representation in the medial temporal lobe (Baraduc et al.,

2019). Yet another example of dynamical, continuous memories is offered by motor programs,

which have been described as low-dimensional, temporally structured neural trajectories

(Shenoy et al., 2013; Gallego et al., 2017; Oztop and Arbib, 2002), or as dynamical flows on mani-

folds (Huys et al., 2014; Pillai and Jirsa, 2017).

We refer to these objects as dynamical continuous attractors, since they involve a continuous sub-

space that constrains and attracts the neural activity, and a dynamical evolution in this subspace. Fig-

ure 1 schematically illustrates the concept of dynamical continuous attractors and their possible role

in some of the neural processes described above.

In most cases, computational analyses of low-dimensional neural dynamics are not concerned

with memory, and focus on the description of the features of single attractors, more than on their

possible coexistence. On the other hand, mechanistic models of memory usually neglect dynamical

aspects, treating memories as static objects, either discrete (Amit et al., 1985) or continuous

eLife digest When we recall a past experience, accessing what is known as an ‘episodic

memory’, it usually does not appear as a still image or a snapshot of what occurred. Instead, our

memories tend to be dynamic: we remember how a sequence of events unfolded, and when we do

this, we often re-experience at least part of that same sequence. If the memory includes physical

movement, the sequence combines space and time to remember a trajectory. For example, a mouse

might remember how it went down a hole and found cheese there.

However, mathematical models of how past experiences are stored in our brains and retrieved

when we remember them have so far focused on snapshot memories. ‘Attractor network models’

are one type of mathematical model that neuroscientists use to represent how neurons

communicate with each other to store memories. These models can provide insights into how

circuits of neurons, for example those in the hippocampus (a part of the brain crucial for memory),

may have evolved to remember the past, but so far they have only focused on how single moments,

rather than sequences of events, are represented by populations of neurons.

Spalla et al. found a way to extend these models, so they could analyse how networks of neurons

can store and retrieve dynamic memories. These memories are represented in the brain as

‘continuous attractors’, which can be thought of as arrows that attract mental trajectories first to the

arrow itself, and once on the arrow, to the arrowhead. Each recalled event elicits the next one on

the arrow, as the mental trajectory advances towards the arrowhead. Spalla et al. determined that

memory networks in the hippocampus of mammals can store large numbers of these ‘arrows’, up to

the same amount of ‘snapshot’ memories predicted to be stored with similar models.

Spalla et al.’s results may allow researchers to better understand memory storage and recall,

since they allow for the modelling of complex and realistic aspects of episodic memories. This could

provide insights into processes such as why our minds wander, as well as having implications for the

study of how neurons physically interact with each other to transmit information.
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(Battaglia and Treves, 1998; Monasson and Rosay, 2013; Samsonovich and McNaughton, 1997;

Spalla et al., 2019). The production of sequences of discrete memories can be implemented with a

heteroassociative component (Sompolinsky and Kanter, 1986), usually dependent on the time inte-

gral of the instantaneous activity, that brings the network out of equilibrium and to the next step in

the sequence. A similar effect can be obtained with an adaptation mechanism in a coarse grained

model of cortical networks (Kropff and Treves, 2005), with the difference that in this case the transi-

tions are not imposed, but driven by the correlations between the memories in so-called latching

Figure 1. Schematic illustration of dynamic continuous attractors as a basis of different neural processes. Top row: a scheme of continuous attractive

manifolds, with a dynamic component in 1D (a), 2D (b) and 3D (c). The neural activity quickly converges on the attractive manifold (dotted arrows), then

slides along it (full arrows), producing a dynamics that is temporally structured and constrained to a low dimensional subspace. Bottom row: multiple

dynamic memories could be useful for route planning (top left), involved in mind wandering activity (bottom left) or represent multiple learned motor

programs (right).
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dynamics (Russo et al., 2008; Kang et al., 2017). Moreover, adaptation-based mechanisms have

been used to model the production of random sequences on continuous manifolds (Azizi et al.,

2013), and shown to be crucial in determining the balance between retrieval and prediction in a net-

work describing CA3-CA1 interactions (Treves, 2004). In the case of continuous attractor networks,

movement can be induced also by mechanisms that integrate an external velocity input and make

use of asymmetric synaptic strengths. Models of this kind have been used for the description of

head direction cells (Zhang, 1996), spatial view cells (Stringer et al., 2005), and grid cells (Fuhs and

Touretzky, 2006; Burak and Fiete, 2009), and can represent simultaneously the positions of multi-

ple features and their temporal evolution (Stringer et al., 2004). In the simplest instantiation, these

systems do not necessarily reflect long-term memory storage: the activity is constrained on a single

attractive manifold, which could well be experience independent.

Here, we propose a network model able to store and retrieve multiple independent dynamic con-

tinuous attractors. The model relies on a map-dependent asymmetric component in the connectivity

that produces a robust shift of the activity on the retrieved attractive manifold. This connectivity pro-

file is conceived to be the result of a learning phase in which the mechanism of spike timing depen-

dent plasticity (STDP) (Markram et al., 1997) produces the asymmetry. Crucially, the asymmetry is

not treated here as a ’pathological’ feature, assumed to level out in the limit of long learning, but as

a defining trait of the stored memories. The balance between two components – one symmetric and

trajectory-averaged, the other asymmetric and trajectory-dependent – is explicit in the formulation

of the model, and allows to study their effects on memory storage.

In what follows we develop an analytical framework that allows to derive the dependence of

important features of the dynamics, such as the replay speed and the asymmetry of the activity clus-

ter, as a function of the relevant parameters of the model. We show with numerical simulations that

the behavior of the model is robust with respect to its details, and depends weakly on the shape of

the interactions. Finally, we estimate the storage capacity for dynamical memories and we find it to

be of the same order of the capacity for static continuous attractors, and even higher in some

regimes.

Modeling framework
A mechanistic model for dynamic retrieval
The model we consider is a continuous attractor neural network, with an additional anti-symmetric

component in the connectivity strength. We consider a population of N neurons, with recurrent con-

nectivity described by an interaction matrix Jij, whose entries represent the strength of the interac-

tion between neuron i and j. The activity of each neuron is described by a positive real number

Vi 2 Rþ representing its instantaneous firing rate. The dynamic evolution of the network is regulated

by the equations:

t
qVi

qt
þVi ¼ g

X

j 6¼i

JijVj � h0

 !" #þ

(1)

where ½:::�þ is the threshold linear activation function

½x�þ ¼ x�ðxÞ (2)

with the gain g modulating the slope and the Heaviside step function �ð:::Þ setting to zero sub-

threshold inputs. The first term on the right hand side of Equation 1 represent the excitatory inputs

provided to neuron i from the rest of the network through recurrent connections. The threshold h0
and the gain g are global parameters that regulate the average activity and the sparsity of the activ-

ity pattern (Treves, 1990).

In numerical simulations, these parameters are dynamically adjusted at each time step to con-

strain the network to operate at a certain average activity (usually fixed to one without loss of gener-

ality) and at a certain sparsity f , defined as the fraction of active neuron at each time (see appendix

A). The connectivity matrix J of the network encodes a map of a continuous parameter~x spanning a

low-dimensional manifold, e.g. the position in an environment. To do so, each neuron is assigned a

preferential firing location~xi in the manifold to encode, and the strength of the interaction between

Spalla et al. eLife 2021;10:e69499. DOI: https://doi.org/10.7554/eLife.69499 4 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.69499


pairs of neuron is given by a decreasing, symmetric function of the distance between their preferred

firing locations

Jij ~KSðj~xi�~xjjÞ: (3)

This shape of the interactions is a typical one in the framework of continuous attractor neural net-

works (Samsonovich and McNaughton, 1997; Battaglia and Treves, 1998; Tsodyks, 1999) and is

thought to come from a time-averaged Hebbian plasticity rule: neurons with nearby firing fields will

fire concurrently and strengthen their connections, while firing fields that are far apart will produce

weak interactions. The symmetry of the function KS, usually called interaction kernel, ensures that

the network reaches a static equilibrium, where the activity of the neurons represents a certain posi-

tion in the manifold and, if not pushed, remains still.

The shift mechanism
The assumption of symmetric interactions neglects any temporal structure in the learning phase. In

case of learning a spatial map, for example, the order in which recruited neurons fire along a trajec-

tory may produce an asymmetry in the interactions as a consequence of Spike Timing Dependent

Plasticity (Markram et al., 1997), that requires the postsynaptic neuron to fire after the presynaptic

one in order to strengthen the synapse. This phenomenon can be accounted for in the definition of

the interaction kernel. Any asymmetric kernel can be decomposed in two contributions:

Kðj~xi�~xjjÞ ¼KSðj~xi�~xjjÞþgKAðj~xi�~xjjÞ (4)

where KS is the usual symmetric component and KA is an anti-symmetric function

(KAðxi � xjÞ ¼�KAðxj� xiÞ). The parameter g regulates the relative strength of the two components.

The presence of KA will generate a flow of activity along the direction of asymmetry: neuron i acti-

vates neuron j that, instead of reciprocating, will activate neurons downstream in the asymmetric

direction. Mechanisms of this kind have been shown to produce a rigid shift of the encoded position

along the manifold, without loss of coherence (Zhang, 1996; Burak and Fiete, 2009; Fuhs and

Touretzky, 2006). In the quantitative analysis that follows we will concentrate, when not stated oth-

erwise, on a kernel K with the exponential form

Kðj~xi �~xjjÞ ¼ e�j~xi�~xjj þgsignðð~xi �~xjÞ �~nÞe�j~xi�~xjj=� (5)

where ~n is a unit vector pointing in the – constant – direction along which the asymmetry is

enforced, and x is the spatial scale of the asymmetric component, which is fixed to one where not

explicitly stated otherwise. Moreover, we make the simplifying assumption of periodic boundary

conditions on the manifold spanned by ~x, such that the dynamics follows a periodic cycle. Both the

kernel form and the periodic boundary conditions simplify the analytical description of the model,

but are not a required feature of the model. In fact, all the results presented hold for a large class of

interaction kernels, and the boundary conditions can be modified (e.g. with the introduction of inter-

actions between different memories) without compromising the functionality of the network. Both

points will be addressed in the analyses of the model in the next sections.

Results

Asymmetric recurrent connections produce dynamic retrieval
The spontaneous dynamics produced by the network is constrained to the low dimensional manifold

codified in the connectivity matrix and spanned by the parameter ~x. The short-range interactions

and the uniform inhibition enforced by the firing threshold h0 produce a localized ’bump’ of activity

in the manifold. The presence of an asymmetry in the connection strengths prevents the system

from remaining in a stationary equilibrium. Instead, it generates a steady flow of activity in the direc-

tion of the asymmetry.

This flow is illustrated in Figure 2 (a),(b) and (c), obtained with numerical simulation of a network

encoding a one-, two-, or three-dimensional manifold, respectively. In the simulation, each neuron is

assigned to a preferential firing location ~xi in the manifold to encode, and the plots show the activity

of the network organized according to this disposition. The activity of the population clusters in a
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bump around a certain position at each time point (t1, t2, and t3), and the bump shifts by effect of

the asymmetric component of the interactions. In this way, the neural population collectively enco-

des an evolving coordinate on the manifold spanned by ~x. The coherence of the representation is

not affected by the presence of the asymmetric term: the movement of the activity bump happens

without dissipation.

Figure 2. Dynamic retrieval of a continuous manifold. First row: each plot presents three snapshots of the network activity at three different times (t1, t2

and t3), for a system encoding a one dimensional (a), two dimensional (b) and three dimensional (c) manifold. In (c), activity is color-coded (blue

represents low activity, red is high activity, silent neurons are not plotted for better readability). In all cases, the anti-symmetric component is oriented

along the x axis. (d) Dependence of the speed on g and f . Dots are data from numerical simulations, full lines are the fitted curves. (e) Retrieval of two

crossing trajectories. Black arrows represent the two intersecting encoded trajectories, each parallel to one of the axis. Full colored lines show the

trajectories actually followed by the center of mass of the activity from the same starting point. Blue curve: low g , the activity switches trajectories when

it reaches the crossing point. Orange curve: high g, successful crossing. In both cases � ¼ 10. The blue and the orange insets show the activity bumps in

the corresponding cases; the top-right inset shows the dependence of the value g
�, required for crossing, on x.
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The speed of movement of the bump is modulated by the value of the parameter g and by the

sparsity level of the representation f , that is the fraction of neurons active at each given time during

the dynamics. The dependence of the speed on these two parameters is illustrated in 2(d). Stronger

asymmetry (high g) produces a faster shift. Interestingly, the sparsity value f acts as a modulator of

the influence of g: sparser representations move more slowly than dense ones.

While g describes a feature of the synaptic interactions, determined during the learning phase

and relatively fixed at the short timescales of retrieval, f can be instantaneously modulated during

retrieval dynamics. A change in the gain or the excitability of the population can be used to produce

dynamic retrieval at different speeds. Thus, the model predicts an interaction between the sparsity

and the speed of the reactivation of a continuous memory sequence, with increased activity leading

to faster replay. It is worth noting, however, that the direction of the dynamics is fixed with J: the

model is able to retrieve either forward or backward sequences, but not alternate between them.

The dependence of the retrieval speed s on g and f is well described by the approximate func-

tional form

sðg; f Þ ¼ Agf

bgþ cf þ dgf þ egf 2
(6)

This dependence is shown in 2(b), where the dots are the values obtained with numerical simula-

tions and the full curves the fitted relationship. The full understanding of the nature of this functional

form remains an open challenge for future analysis. As we will see in the next section, the analytical

solution of the model yields the same form to describe the dependence of speed on g and f , but a

closed-form solution is still lacking.

In the model presented, the asymmetry in the interactions is enforced uniformly along a single

direction also for two- and three-dimensional manifolds, representing the case in which neural

dynamics follows a forced trajectory along one dimension, but is free to move without energy costs

along the others. However, the same mechanism can be used to produce one-dimensional trajecto-

ries embedded in low-dimensional manifolds, with the introduction of a positional dependence in

the direction of the asymmetry (Blum and Abbott, 1996). In this case, an interesting problem is

posed by the intersection of two trajectories embedded in the same manifold: is the network, during

the retrieval of one trajectory, able to cross these intersections, or do they hinder dynamical

retrieval? The investigation of the full phenomenology of position-dependent asymmetric kernels

with intersecting trajectories is beyond the scope of the present work, but we present in Figure 2(e)

a numerical study of a minimal version of this problem, with two orthogonal trajectories (Figure 2(e),

black arrows) embedded in a 2D manifold and memorized simultaneously in the network. Notice

that in this case the two trajectories are parallel to the main axis of the square environment, but they

do not need to be: any pair of orthogonal trajectories will behave in the same manner. When the

network is cued to retrieve the horizontal trajectory, the behavior at the intersection depends on the

strength g and scale x of the asymmetric component. At low g, the dynamics spontaneously switch

trajectory at the intersection (Figure 2(e), blue curve), while for g sufficiently large the retrieval of

the horizontal trajectory is successful (Figure 2(e), orange curve). The value g
� required for a suc-

cessful crossing depends on the spatial scale x: larger x allow for crossing with lower values of g, as

shown in the top-right inset of Figure 2(e), in which g
�ð�Þ is plotted. Intuitively, the ability of the net-

work to retrieve crossing trajectories depends on the shape of the activity bump, which needs to be

sufficiently elongated in the direction of retrieval for the successful crossing of the intersection. The

blue and orange insets of Figure 2(e) show the difference in shape of the bump in the case of a tra-

jectory switch (blue) and successful crossing (orange).

Analytical solution for the single manifold case
The simplicity of continuous attractor models often allows to extract important computational princi-

ples from their analytical solution (Wu et al., 2008; Fung et al., 2010). In our case, the dynamic

behavior of the system and its features can be fully described analytically with a generalization of the

framework developed by Battaglia and Treves, 1998. For this purpose, it is easier to formulate the

problem in the continuum, and describe the population activity fVig by its profile Vð~xÞ on the attrac-

tive manifold parametrized by the coordinate~x, and the dynamical evolution as a discrete step map,

equivalent to Equation 1.
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Vð~x; tþ 1Þ ¼ g½hð~x; tÞ�þ (7)

hð~x; tÞ ¼
Z

d~x0Kð~x�~x0ÞVð~x0; tÞ� h0 (8)

The requirement of a rigid shift of population activity is then imposed by setting the activity at

time tþ 1 to be equal at the activity at time t, but translated by an amount D~x¼ t s~n, proportional to

the speed s of the shift and in the direction ~n of the asymmetry in the connections. The timescale t

sets the time unit in which the duration of the evolution is measured and does not have an impact

on the behavior of the system.

The activity profile Vð~xÞ is then found as the self-consistent solution to the integral equation

Vð~xþD~xÞ ¼ g

Z

d~x0Kð~x�~x0ÞVð~x0Þ� h0

� �þ
(9)

Equation 9 is valid in general. We will focus here, for the explicit derivation (reported in appendix

C), on the case of a one dimensional manifold with an exponential interaction kernel

Kðx� x0Þ ¼ e�jx�x0j þgsignðx� x0Þe�jx�x0j (10)

In this case, the activity bump will take the form:

VðxÞ ¼ Cek1x cosðk2xÞþ g�
1�2g

if -R�x�R

0 if -R >x or x >R

�

(11)

The parameters k1 ¼ k1ðg; sÞ and k2 ¼ k2ðg; sÞ determine the properties of the solution and they

depend on the values of g and speed s¼ Dx=t .

k2 is related to the bump width by the relation

R¼ p

2k2
(12)

where R is the point at which VðxÞ ¼ 0. k1 is related to the asymmetry of the bump: in the limit

case g¼ 0, s¼ 0 (Figure 3(a), first column) k1 ¼ 0, and we recover the cosine solution of the symmet-

ric kernel case studied in Battaglia and Treves, 1998. Larger k1 values result in more and more

asymmetric shapes (Figure 3(a), second and third columns).

From this analytical solution, we can determine the dependence of the speed s on the asymmetry

strength g and on the sparsity f ¼ 2R=L (note that in the continuum case the fraction of active neu-

rons is given by the ratio between the bump size 2R and the manifold size L). The sparsity f is modu-

lated by the value of the gain g, as shown in Figure 3(b): a larger gain in the transfer function

corresponds to a sparser activity. The exact relation sðg; f Þ can be obtained from the numerical solu-

tion of a transcendental equation (see appendix C), and can be approximated with a functional

shape analogous to the one used for the simulated network:

sðg; f Þ ¼ Agf

bgþ cf þ dgf þ egf 2
(13)

The full transcendental solution and the fitted curves are reported in Figure 3(c).

Dynamic retrieval is robust
The analytical solution of the model shows that the network performs dynamical retrieval for all val-

ues of the asymmetry strength g , and that this parameter influences the retrieval speed and the

shape of the activity bump. To further investigate the robustness of dynamical retrieval to parameter

changes, we investigate with numerical simulations the behavior of the model with respect to

another important parameter: the scale x of the anti-symmetric component. We run several dynamics

of a network with interaction kernel given by

KðdÞ ¼ e�d þgsignðdÞe�d=� (14)
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varying the parameters g and x and measuring the retrieval speed, the peak value of the activity

bump and its skeweness. The joint effects of g and x are shown in Figure 4. In the whole range of

parameters analyzed, spanning four orders of magnitude for both parameters, the network was able

to produce dynamic retrieval. g and x affect the speed of the shift, the peak values of the activity dis-

tribution and the skewness of the activity bump, without hindering network functionality. Moreover,

all these feature vary gradually and mildly with the parameters values, producing dynamical behavior

qualitatively similar in the full parameter range. This analysis shows that dynamical retrieval does not

require any fine tuning of network parameters, but relies on the assumption of an exponential shape

for the interaction kernel. How robust is the behavior of the network to the details of the kernel

shape?

We addressed this question by simulating the network dynamics with alternative kernel choices.

We kept fixed the symmetric component, and explored three different anti-simmetric shapes: a

gaussian-derivative shape (Figure 5a), a sinusoidal shape (Figure 5b) and a double step function

(Figure 5c). Each of these simulations produced the same retrieval dynamics (a stable bump shifting

at constant speed), the only effect of the kernel shape being on the details of the shape of the activ-

ity bump (Figure 5, bottom row). This shows that the dynamic retrieval mechanism, much like stan-

dard continuous attractors, is robust with respect to the precise shape of the interactions.

Figure 3. Analytical solution of the model. (a) The shape of the bump for increasing values of g . (b) Dependence of the sparsity f on the gain g of the

network. (c) Dependence of the speed of the shift on g, at different values of sparsity. Dots show the numerical solution (note some numerical instability

at low f and g ), full curves are the best fits.
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Importantly, no particular relationship is required between the shape of the symmetric and the anti-

symmetric components of the kernel.

A dynamical memory: storing multiple manifolds
We described in detail the behavior of a neural network with asymmetric connectivity in the case of

a single manifold encoded in the synaptic connectivity. For the network to behave as an autoassocia-

tive memory, however, it needs to be able to store and dynamically retrieve multiple manifolds. This

is possible if we construct the interaction matrix Jij as the sum of the contributions from p different,

independently encoded manifolds:

Jij ¼
1

N

X

p

�¼1

Kð~x�i �~x�j Þ (15)

Here, each x
�
i represent the preferred firing location of neuron i in the manifold m, and K is the

same interaction kernel as in Equation 4, containing a symmetric and anti-symmetric component.

The resulting dynamics show multiple continuous attractors, corresponding to the stored mani-

folds. Given an initial configuration, the networks rapidly converges to the nearest (i.e. most corre-

lated) attractor, forming a coherent bump that then moves along the manifold as a consequence of

the asymmetric component of the connectivity. The same dynamics, if projected on the other unre-

trieved manifolds, appear as random noise. This is illustrated in Figure 6 obtained with numerical

simulations of a network encoding three different manifolds (of dimension one in (a), dimension two

in (b)), and dynamically retrieving the first one. How does this shifting activity bump relate to the

activity of single cells? To clarify this aspect we simulated an electrophysiological recording from the

dynamical retrieval of Figure 6(a). We selected a random subset of 15 of the 1000 cells of the net-

work, and generated spike trains using a poisson point process with an instantaneous firing rate pro-

portional to the activity level of each cell yielded by the retrieval dynamics at each time step, plus a

small noise. With this procedure we obtain the spike trains of each cell, that we can visualize with a

rasterplot (Figure 6c). We can sort the cells according to their firing field position on each of the

three manifolds (if these were, e.g., linear tracks, this would correspond to sorting according to

place field positions in each of the tracks). When ordered as in the retrieved manifold, the recorded

cells show a structured pattern that is considered the hallmark of sequential activity in experimental

studies (Figure 6c, first column). If the same spikes are ordered according to the unretrieved mani-

folds, the pattern is lost (Figure 6c, second and third column), indicating that the population activity

is retrieving the dynamical structure of the first manifold specifically.

Figure 4. Dynamical retrieval in a wide range of parameters. Effect of the kernel strength g and its spatial scale x, in the case of the exponential kernel

KðdÞ ¼ e�jdj þ gsignðdÞe�jdj=� .(a) Retrieval speed (b) Peak value of the activity (c) Skewness of the activity bump.
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Multiple dynamic manifolds can be memorized and retrieved by the network, with different

speeds. Figure 7 (b) shows the result of the numerical simulation of a network with five different

one-dimensional manifold stored in its connectivity matrix, each encoded with a different value of g

(see appendix D). These manifold are dynamically retrieved by the network at different speeds,

depending on the corresponding g. This allows the model to simultaneously store memories without

the constraint of a fixed dynamical timescale, an important feature for the description of biological

circuits that need to be able to operate at different temporal scales.

Different memories stored in the same neural population can interact with each other, building

more retrieval schemes in which, for example, the retrieval of a memory cues the retrieval of another

one. To investigate this possibility, we have incorporated in the model a mechanism for interaction

between memories, in which the endpoint of a dynamical, one-dimensional manifold elicits the acti-

vation of the start point of a different one (see Appendix E). This results in the sequential retrieval of

multiple memories, one after the other, as illustrated in Figure 7 (d). The top row shows the evolu-

tion in time of the overlaps m�:

m�ðtÞ ¼
1

N2

X

i;j

KSðx�i � x
�
j ÞViðtÞVjðtÞ (16)

These order parameters quantify the coherence of the population activity VðtÞ with each of the

Figure 5. Different interaction kernels produce similar behavior. Three examples of dynamics with the same symmetric component and three different

anti-symmetric components. Top row: shape of the anti-symmetric component KA. Bottom row: three snapshots of the retrieval dynamics for the

corresponding KA. (a) Gaussian derivative; (b) Sinusoidal; (c) Anti-symmetric step function, �� ¼ �ðdÞ�ð1� dÞ � �ð�dÞ�ðd � 1Þ.
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manifolds. Localized activity in manifold m results in a large m�, while a low m� corresponds to an

incoherent scattering of the activity. The network retrieves the manifolds in sequence, one at a time,

following the instructed transitions encoded in its connectivity. The all-or-nothing behavior of the

coherence parameters segments the continuous dynamics of the network into a sequence of discrete

states.

The bottom row shows the evolution of the retrieved position, given in each manifold by the cen-

ter of mass:

<x>�ðtÞ ¼
1

N

X

i

x
�
i ViðtÞ (17)

a b

c

Figure 6. Dynamic retrieval in the presence of multiple memories. (a) In one dimension (b) In two dimensions. Each row represents a snapshot of the

dynamics at a point in time. The activity is projected on each of the three attractors stored in the network. In both cases, the first attractor is retrieved,

and the activity organizes in a coherent bump that shifts in time. The same activity, projected onto the two non-retrieved maps looks like incoherent

noise ((a) and (b), second and third columns). (c) Spiking patterns from a simulated recording of a subset of 15 cells in the network. When cells are

sorted according to their firing field on the retrieved manifold (first column), they show sequential activity. The same activity is scattered if looked from

the point of view of the unretrieved manifolds (second and third columns).
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The dynamic runs across the retrieved manifold, from its beginning to its end, then jumps to next

one and repeats the process. Note that the position in each of the un-retrieved manifold fluctuates

around L=2, as a consequence of the incoherence of the activity. Within each of the retrieved mani-

folds, the dynamic retains its continuous nature in the representation of the evolving position.

This sequential dynamic goes beyond the simple cued retrieval of independent memories that is

the focus of most autoassociative memory models, and provides an example of a hybrid computa-

tional system, encoding both continuous and discrete features.

The interaction mechanism introduced here provides the opportunity to investigate the effect of

more complex interactions than the simple memory chain presented here. We present here this first

example as a proof of principle of the possibility of storing interacting dynamical memories, and will

Figure 7. Retrieval speed and memory interactions. (a) Multiple mainfolds with different velocity can be stored in a network with manifold-dependent

asymmetric connectivity (b) The retrieved position at different timesteps during the retrieval dynamics of five different manifolds, stored in the same

network, each with a different value of g . (c) Manifolds memorized in the same network can be linked together (d) Sequential retrieval of five manifolds.

Top row: overlap, measuring the overall coherence with the manifold, as a function of time. Bottom row: retrieved position in each manifold as a

function of time.
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proceed to the investigation of more complex structures (e.g. interaction networks, probabilistic

interactions, etc.) in future studies.

Storage capacity
The number of maps that can be stored and retrieved by an attractor network of this kind is typically

proportional to the number of inputs per neuron C (Treves and Rolls, 1991). The memory load

a ¼ p=C crucially determines the behavior of the system: when a is increased above a certain thresh-

old value ac, the network is not able to retrieve any of the stored memories, falling instead into a dis-

ordered state. Therefore it is the magnitude of ac, that is the storage capacity of the system, that

determines how effectively it can operate as a memory. To estimate the storage capacity of dynamic

continuous attractors, and to investigate how it is impacted by the presence of asymmetric connec-

tions, we proceed along two complementary paths.

In the case a fully connected network, where the analytical tools developed for equilibrium sys-

tems are not applicable, we take advantage of the fact that numerical simulations can be effective

for the estimation of the capacity, since the number of connections per neuron C (the relevant

parameters in the definition of the storage capacity ac ¼ p=C) coincides with the number of neurons,

minus one. For a highly diluted system, on the other hand, the number of neurons is much larger

than C, making the simulation of the system very difficult in practice. We then resort to an analytical

formulation based on a signal-to-noise analysis (Battaglia and Treves, 1998), that exploits the van-

ishing correlations between inputs of different neurons in a highly diluted network, and does not

require symmetry in the connectivity (Derrida et al., 1987). The quantification of the effect of loops

in the dense connectivity regime, developed in Shiino and Fukai, 1992 and Roudi and Treves,

2004 for the case of static, discrete attractors, is beyond the scope of the present work and remains

an interesting open direction.

In both the fully connected and the highly diluted case we study the dependence of the capacity

on two important parameters: the map sparsity, that is the ratio between the width of the connectiv-

ity kernel (fixed to one without loss of generality) and the size L of the stored manifolds, and the

asymmetry strength g. Note that the map sparsity 1=L is different from the activity sparsity f : the for-

mer is a feature of the stored memories, that we will treat as a control parameter in the following

analysis; the latter is a feature of the network dynamics, and its value will be fixed by an optimization

procedure in the calculation of the maximal capacity.

Analytical calculation of the capacity in the highly diluted limit
The signal-to-noise approach we follow, illustrated in details in Battaglia and Treves, 1998, involves

writing the local field hi as the sum of two contributions: a signal term, due to the retrieved – ‘con-

densed’ – map, and a noise term consisting of the sum of the contributions of all the other, ‘uncon-

densed’ maps. In the diluted regime (C=N ! 0), these contributions are independent and can be

summarized by a Gaussian term �z, where z is a random variable with zero mean and unit variance.

In the continuous limit, assuming without loss of generality that map � ¼ 1 is retrieved, we can write:

hðx1Þ ¼ g

Z

L

dx10Kðx1 � x10ÞVðx10Þþ �z (18)

The noise will have variance:

�2 ¼ ayL2hhK2ðx� x0Þii (19)

where L is the size of the map, hhK2ðx� x0Þii is the spatial variance of the kernel and

y¼ 1

N

X

i

V2

i (20)

is the average square activity.

We can write the fixed point equation for the average activity profile m1ðxÞ, incorporating the

dynamic shift with an argument similar to the one made for the single map case:

m1ðxþDxÞ ¼ g

Z þ
DzðhðxÞ� h0Þ (21)
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where Dz¼ ðe�z2=2=
ffiffiffiffiffiffi

2p
p

Þdz and
Rþ

f ðxÞdx¼
R

f ðxÞ�ðxÞdx. The average square activity y, entering the

noise term, reads

y¼ g2

L

Z

dx

Z þ
DzðhðxÞ� h0Þ2 (22)

Introducing the rescaled variables

w¼�h0

�
(23)

vðxÞ ¼m1ðxÞ
�

(24)

And the functions

NðxÞ ¼ xFðxÞþsðxÞ (25)

MðxÞ ¼ ð1þ x2ÞFðxÞþ xsðxÞ (26)

where FðxÞ and sðxÞ are the Gaussian cumulative and the Gaussian probability mass function

respectively, we can rewrite the fixed-point equation as

vðxþDxÞ ¼ gN
Z

dx0Kðx� x0Þvðx0Þþw

� �

(27)

y¼ �2g2
Z

dx

L
M

Z

dx0Kðx� x0Þvðx0Þþw

� �

(28)

Substituting Equation 28 in the expression for the noise variance 19 we obtain

1

a
¼ g2L K2


 �
 �

Z

dxM
Z

dx0Kðx� x0Þvðx0Þþw

� �

(29)

If we are able to solve Equation 27 for the rescaled activity profile vðxÞ, we can use Equation 29

to calculate a. We can then maximize a with respect to g and w: this yields the maximal value ac for

which retrieval solutions can be found.

These equations are valid in general and have to be solved numerically. Here we present the

results for the case of one-dimensional manifolds and interactions given by the exponential kernel of

Equation 36. In this case, we have

hhK2ðx� x0Þii ¼ ð1þg
2ÞhhK2

S ðx� x0Þii: (30)

where KSðx� x0Þ ¼ e�jx�x0j is the symmetric component of the kernel. A simple approximation, illus-

trated in appendix F along with the detailed solution procedure, allows to decouple the dependence

of ac on g and L, with the former given by the spatial variance given by Equation 30 and the latter

by the solution of Equations 27 and 29 in the g¼ 0 case. We therefore have:

acðL;gÞ~acðL;0Þ=ð1þg
2Þ (31)

The storage capacity is plotted in Figure 8(a) as a function of g and L.

For sparse maps and small values of the asymmetry, the capacity scales as

ac ~ � 1

ln ð1=LÞð1þg2Þ (32)

The scaling with 1=L is the same found by Battaglia and Treves, 1998 in the analysis of the sym-

metric case, as expected: for g¼ 0 the two models are equivalent.

The presence of asymmetry decreases the capacity, but does not have a catastrophic effect: the

decrease is continuous and scales with a power of g . There is therefore a wide range of values of
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asymmetry and map sparsity in which a large number of dynamic manifolds can be stored and

retrieved.
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Figure 8. Storage capacity. (a) Storage capacity of a diluted network: dependence on g and 1=L (represented as log10ð1=LÞ). (b) Storage capacity of a

fully connected network: non monotonic dependence of the capacity on g. Retrieval / no retrieval phase transition for different values of g , obtained

from simulations with N ¼ 1000, NS ¼ 10 and L ¼ 10, for 1D manifolds. Error bars show the standard error of the observed proportion of successful

retrievals. The non-monotonic dependence of the capacity from g can be appreciated here: the transition point moves toward the right with increasing

g up to g ~ 1, then back to the left. (c) Storage capacity of a fully connected network as a function of map sparsity 1=L and asymmetry strength g, for a

one-dimensional and a two-dimensional dynamic continuous attractor.
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Numerical estimation of the capacity for a fully connected network
To estimate the storage capacity for a fully connected network, we proceed with numerical simula-

tions. For a network of fixed size N, and for given g, L and number of maps p, we run a number of

simulations NS, letting the network evolve from a random initial configuration. We consider a simula-

tion to have performed a successful retrieval if the global overlap

m� ¼ 1

N2

X

i 6¼j

ViVjKSðx�i � x
�
j Þ (33)

that quantifies the coherence of the activity with map m, is large for one map �� (at least 95% of

the overlap value obtained in the case of a single map) and low in all others maps � 6¼ ��. We then

define the retrieval probability as pr ¼NR=NS, where NR is the number of observed retrievals.

We repeat the process varying the storage load, that is the number of stored manifolds p. As p is

increased, the system reaches a transition point, at which the retrieval probability rapidly goes to

zero. This transition is illustrated, for various values of g , in Figure 8(b).

The number of maps pc at which the probability reaches zero defines the storage capacity

acðg; LÞ ¼ pcðg; LÞ=N. Repeating this procedure for a range of values of g and L, we obtain the plots

shown in Figure 8(c), for networks encoding one dimensional and two dimensional dynamical

memories.

The first thing that can be noticed is that the network can store a large number of maps in the

fully connected case as well, for a wide range of g and L. A network with size in the order of ten

thousand neurons could store from tens up to hundreds of dynamical memories.

The capacity for one dimensional attractors is higher than the one for their two dimensional coun-

terparts. This is in line with what was found for symmetric networks (Battaglia and Treves, 1998).

Finally, we see that the peak of the capacity is found not only for intermediate values of map

sparsity – again in line with what is known from the symmetric case – but also for intermediate values

of the coefficient g . This shows that moderate values of asymmetry can be beneficial for the storage

of multiple continuous attractors, a non-trivial phenomenon that may be crucial for the memory

capacity of biological networks. In particular this suggests that the natural tendency of the neural

activity to show a rich spontaneous dynamics not only does not hinder the possibility for multiple

memories to coexist in the same population, but can be a crucial ingredient for the correct function-

ing of memory mechanisms.

Discussion
The results presented show how a continuous attractor neural network with memory-dependent

asymmetric components in the connectivity can function as a dynamic memory. Our model is simple

enough to be treated analytically, robustly produces dynamic retrieval for a large range of the rele-

vant parameters and shows a storage capacity that is comparable to – and in some cases higher

than – the capacity for static continuous attractors.

The analytical solution of the single manifold case shows that the interaction between the

strength of the asymmetry and the velocity of the shift can be modulated by global features of the

network activity such as its sparsity. This makes the network able to retrieve at different velocities in

different regimes, without necessarily requiring short term synaptic modifications. The dependence

of the retrieval speed from the sparsity of the activity yields a testable prediction in the context of

hippocampal replay: faster reactivations are to be expected in association with an increase in the

excitability of the population.

The insensitivity of the general features of the dynamics to the fine details of the shape of the

interactions suggests that this mechanism could robustly emerge from learning or self organization

processes in the presence of noise. The quantitative analysis of the learning process needed to effec-

tively memorize low-dimensional dynamic manifolds is an interesting open direction, which goes

beyond the scope of this work. However, the asymmetric Hebbian plasticity rule used here provides

a simple and biologically realistic starting point.

Our analysis shows that the simple introduction of an aysmmetric Hebbian plasticity rule is suffi-

cient to describe a dynamic memory able to store and retrieve multiple manifolds with different
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speeds, and it can incorporate interactions between them, producing the chained retrieval of a

sequence of continuous memories.

The central result of the paper is the quantification of the storage capacity for dynamic continu-

ous attractors, that we find to be large in magnitude, only mildly impacted by the asymmetry in

diluted networks, and even higher than the capacity for static attractors in fully connected networks

with moderate degrees of asymmetry. The storage capacity of out of equilibrium continuous attrac-

tors has been calculated, in a different scenario, by Zhong et al., 2020. The authors considered the

case of an external signal driving the activity bump along the attractor, in a network of binary neu-

rons, and proceeded to calculate the storage capacity with several assumptions that allowed to

model the interference of multiple maps as thermal noise. Interestingly, their main result is broadly

compatible with what we show here: in the highly diluted regime the velocity of the external signal

has a mild – detrimental – effect on the capacity. This hints that out of equilibrium effects could

show some form of universality across different network models and implementations of the shift

mechanism. Moreover, a high capacity for dynamical sequences has shown to be achievable also in

the case of discrete items (Gillett et al., 2020). Together these results suggest that the introduction

of a temporal structure is compatible with the functioning of autoassociative memory in recurrent

networks, and they open the way to the use of attractor models for the quantitative analysis of com-

plex memory phenomena, such as hippocampal replay and memory schemata.

The model we propose suggests that the tendency of the activity to move in the neural popula-

tion is a natural feature of networks with asymmetric connectivity, when the asymmetry is organized

along a direction in a low dimensional manifold, and that static memories could be the exception

rather than the rule. Indeed, Mehta et al., 2000 have shown that place fields can become more

asymmetric in the course of spatial learning, demonstrating that the idea that symmetry emerges

from an averaging of trajectory-dependent effects (Sharp, 1991) does not always hold true. The

structural role of the asymmetry has important implications for the analysis methods used to

describe the activity of large populations of neurons, which often rely on the assumption of symme-

try in the interactions (e.g. in the analysis of pairwise correlations) or equilibrium of the neural activity

(e.g. the standard inverse Ising inference).

In most of the two- and three-dimensional cases analysed here, the asymmetry is constant along

a single direction in each attractor. This can describe the situation in which the temporal evolution of

the memory is structured along a certain dimension, and free to diffuse, without energy costs, in the

remaining ones. The description of several one-dimensional trajectories embedded in a two dimen-

sional or three dimensional space requires a position-dependent asymmetric component. A system-

atic analysis of this situation is left for future analysis. However, the simple case of two intersecting

trajectories embedded in a 2D map, analysed here, provides a proof of concept that several inter-

secting trajectories can be correctly retrieved, provided that the activity bump is sufficiently elon-

gated in the direction of the trajectory. A progressive elongation of the place fields in the running

direction has been observed in rats running on a linear track (Mehta et al., 1997), and our analysis

predicts that an analogous effect would be observed also in open-field environments, when restrict-

ing the analysis to trajectories in the same running direction.

Another challenge is posed by the evidence that replayed sequences can be organized both for-

ward and backward in time (Foster and Wilson, 2006). The model in its current formulation can pro-

duce the retrieval of a given sequence either forward or backward, but cannot alternate between

the two. This suggests that, if replay relies on asymmetric connections, the hippocampus would have

to use different representations for the forward and the backward component. The fact that a

change in reward uniquely modulates backward replay (Ambrose et al., 2016) provides some evi-

dence in this direction, but this question remains open to experimental investigation.

The dynamical retrieval of the model generalizes, in the framework of attractor networks, the idea

of cognitive maps, incorporating a temporal organization in the low-dimensional manifold encoding

the structure of the memory. This feature is reminiscent of the idea of memory schemata – constructs

that can guide and constrain our mental activity when we reminisce about the past, imagine future

or fictional scenarios or let our minds free to wander (Ciaramelli and Treves, 2019). The use of the

present model to describe memory schemata will require further steps, such as an account of the

interaction between hippocampus and neocortex, and the expansion of the mechanism describing

the transition between different dynamical memories. Nevertheless, the idea of dynamic retrieval of
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a continuous manifold and the integration of the model presented here with effective models of cor-

tical memory networks (Boboeva et al., 2018) open promising perspectives.

Finally, the full analytical description of a densely connected asymmetric attractor network is a

challenge that remains open, and can yield valuable insights on the workings of the neural circuits

underlying memory.

Acknowledgements
Work supported by the Human Frontier Science Program RGP0057/2016 collaboration. We are

grateful for inspiring exchanges with Remi Monasson and others in the collaboration, and thank Sil-

via Girardi for her help with Figure 1.

Additional information

Funding

Funder Grant reference number Author

Human Frontier Science Pro-
gram

RGP0057/2016 Alessandro Treves

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Davide Spalla, Conceptualization, Software, Formal analysis, Investigation, Visualization, Methodol-

ogy, Writing - original draft; Isabel Maria Cornacchia, Software, Validation, Investigation, Visualiza-

tion, Methodology; Alessandro Treves, Conceptualization, Supervision, Funding acquisition,

Validation, Investigation, Writing - review and editing

Author ORCIDs

Davide Spalla https://orcid.org/0000-0002-0328-6476

Isabel Maria Cornacchia http://orcid.org/0000-0002-0704-7480

Alessandro Treves http://orcid.org/0000-0001-7246-5673

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.69499.sa1

Author response https://doi.org/10.7554/eLife.69499.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

The work did not generate any experimental dataset. The code used for numerical simulations is

publicly available on Github (https://github.com/davidespalla/CADM (copy archived at https://

archive.softwareheritage.org/swh:1:rev:65a5bdfa291840cf5bf10e1da48aadb0b316a445)).

References
Ambrose RE, Pfeiffer BE, Foster DJ. 2016. Reverse replay of hippocampal place cells is uniquely modulated by
changing reward. Neuron 91:1124–1136. DOI: https://doi.org/10.1016/j.neuron.2016.07.047, PMID: 27568518

Amit DJ, Gutfreund H, Sompolinsky H. 1985. Storing infinite numbers of patterns in a spin-glass model of neural
networks. Physical Review Letters 55:1530–1533. DOI: https://doi.org/10.1103/PhysRevLett.55.1530,
PMID: 10031847

Spalla et al. eLife 2021;10:e69499. DOI: https://doi.org/10.7554/eLife.69499 19 of 28

Research article Computational and Systems Biology Neuroscience

https://orcid.org/0000-0002-0328-6476
http://orcid.org/0000-0002-0704-7480
http://orcid.org/0000-0001-7246-5673
https://doi.org/10.7554/eLife.69499.sa1
https://doi.org/10.7554/eLife.69499.sa2
https://github.com/davidespalla/CADM
https://archive.softwareheritage.org/swh:1:rev:65a5bdfa291840cf5bf10e1da48aadb0b316a445
https://archive.softwareheritage.org/swh:1:rev:65a5bdfa291840cf5bf10e1da48aadb0b316a445
https://doi.org/10.1016/j.neuron.2016.07.047
http://www.ncbi.nlm.nih.gov/pubmed/27568518
https://doi.org/10.1103/PhysRevLett.55.1530
http://www.ncbi.nlm.nih.gov/pubmed/10031847
https://doi.org/10.7554/eLife.69499


Azizi AH, Wiskott L, Cheng S. 2013. A computational model for preplay in the Hippocampus. Frontiers in
Computational Neuroscience 7:161. DOI: https://doi.org/10.3389/fncom.2013.00161, PMID: 24282402

Baraduc P, Duhamel JR, Wirth S. 2019. Schema cells in the macaque Hippocampus. Science 363:635–639.
DOI: https://doi.org/10.1126/science.aav5404, PMID: 30733419

Battaglia FP, Treves A. 1998. Attractor neural networks storing multiple space representations: a model for
hippocampal place fields. Physical Review E 58:7738–7753. DOI: https://doi.org/10.1103/PhysRevE.58.7738

Blum KI, Abbott LF. 1996. A model of spatial map formation in the Hippocampus of the rat. Neural Computation
8:85–93. DOI: https://doi.org/10.1162/neco.1996.8.1.85, PMID: 8564805

Boboeva V, Brasselet R, Treves A. 2018. The capacity for correlated semantic memories in the cortex. Entropy
20:824. DOI: https://doi.org/10.3390/e20110824

Burak Y, Fiete IR. 2009. Accurate path integration in continuous attractor network models of grid cells. PLOS
Computational Biology 5:e1000291. DOI: https://doi.org/10.1371/journal.pcbi.1000291, PMID: 19229307
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Appendix 1

A Numerical simulations
Numerical simulations are performed with python code, available at: https://github.com/davides-

palla/CADM (copy archived at swh:1:rev:65a5bdfa291840cf5bf10e1da48aadb0b316a445),

Spalla, 2021.

In the single map case, to each of the N units (N ¼ 1000 in 1D, N ¼ 1600 in 2D) is assigned a pref-

erential firing location xi on a regular grid spanning the environment with linear dimension L. From

this preferred firing locations the interaction matrix Jij is constructed, with the formula:

Jij ¼KSðjxi � xjjÞþgKAðjxi� xjjÞ (34)

The precise shape of the symmetric and anti-symmetric parts of the kernel are chosen differently

in different simulations, according to the feature the analysis focused on, as specified in the main

text. Once the network is assembled, the dynamics is initialized either with a random assignment of

activity values to each unit in the range ½0;1�, or with a gaussian bump centered in the middle of the

environment (note that, due to the periodic boundary conditions and the translational invariance of

the connectivity, the choice of the starting point does not influence the outcome). The dynamics is

then evolved in discrete time steps, with the iteration of the following operations:

. Calculation of the local fields hiðtÞ ¼
P

j JijVjðt � 1Þ
. Calculation of the activity values ViðtÞ ¼ gðhiðtÞ � h0Þ�ðhiðtÞ � h0Þ
. Dynamic adjustment of the threshold h0 such that only the fN most active neurons remain

active: h0 ¼ Vf , where
P

j;Vj>Vf
¼ Nf

. Recalculation of the activity ViðtÞ with the adjusted threshold

. Dynamic adjustment of the gain g such that the mean activity hfViðtÞgi is fixed to 1:
g ¼ g=hfViðtÞgi

. Recalculation of the activity ViðtÞ with the adjusted gain

The adjustment of the parameters of the transfer function is enforced to constrain the network to

operate at fixed sparsity f and fixed mean, set to one without loss of generality. The dynamics is iter-

ated for a given number of steps (usually 200), large enough to assure the convergence to the attrac-

tive manifold (reached usually in < five steps) and the observation of the dynamical evolution on the

manifold.

In the case of multiple maps, the implemented dynamical evolution is the same, but the interac-

tion matrix is constructed with multiple assignments of the preferred firing locations xi, one for each

of the p stored maps:

Jij ¼
X

p

�¼1

KSðjx�i � x
�
j jÞþgKAðjx�i � x

�
j jÞ

� �

(35)

The multiple assignments of the preferred firing locations are performed by a random shuffling of

the labels of the units before the assignment to the position on the regular grid spanning each map.

B Simulation of electrophysiological recordings
To simulate the recording from a subset of the network during dynamical retrieval, we constructed a

network of 1000 neurons with three different manifolds encoded in its connectivity matrix. We simu-

lated a dynamic of the network from an initial condition correlated with the first manifold, for T ¼
400 time steps. Since we used circular manifolds, we then selected a chunk of the dynamics corre-

sponding to a single lap on the circle, to have an easier scenario to compare with experimental

work. We then simulated an experimental recording by selecting a random subset of 15 observed

cells. We used the activity values of each cell during the dynamics as the instantaneous firing rate of

a Poisson random process to generate the spiking activity, using a conversion of 1=25 to convert the

arbitrary value of activity to a plausible range of firing rates, in the order of some Hertz. Spikes pro-

duced by this process are our simulated activity recording, and can be plotted according to the pre-

ferred firing position of each of the recorded cell in each of the three manifolds. The preferred firing

position is supposed to be extracted, in an experimental setting, from the average rate maps of the
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recorded cells over many observations of the dynamics. In this way we obtain the plots reported in

Figure 6(c).

C Analytical solution of the single map model in one dimension
To solve the integral Equation 9 in the case of a 1D manifold and the exponential kernel

Kðx� x0Þ ¼ e�jx�x0j þgsignðx� x0Þe�jx�x0j (36)

we start by rewriting it as

VðxþDxÞ ¼ g
R R

�R
dx0Kðx� x0ÞVðx0Þ� h0; if x2W

0 otherwise

�

(37)

where ½�R;R�;R>0 is a compact domain for which there exist a solution of Equation 9 that is zero

at the boundary. This allows to exploit the fact that our threshold-linear system is, indeed, linear in

the region in which VðxÞ>0.
We then differentiate twice to obtain the differential equation

V 00ðxþDxÞ ¼ VðxþDxÞþ 2gVðxÞþ 2ggV 0ðxÞþ g� (38)

This is a second order linear ODE, with constant coefficients. The presence of the shift term Dx

inside the unknown function makes the equation non-trivial to solve. To solve it, we proceed in the

following way: first, we look for a particular solution, that is easily found in the constant function

Vc ¼
g�

1� 2g
(39)

Then, we consider the associated homogeneous equation, and look for a solution in the form

VðxÞ ¼ ekx, where k is a solution of the characteristic equation CðkÞ ¼ 0, with

CðkÞ ¼ k2ekDx þ 2ggkþ 2g� ekDx: (40)

This trascendental equation has to be solved graphically in the complex domain, as shown in

Appendix 1—figure 1.

Appendix 1—figure 1 continued on next page
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Appendix 1—figure 1 continued

Appendix 1—figure 1. Analytic solution of Equation (38). The top row shows the graphical

procedure to find the complex zeros of the characteristic CðkÞ given in (40), for three different values

of g. Black and red lines show the zeros of the real and imaginary part of CðkÞ, respectively. Their
intersections are the complex solutions to CðkÞ ¼ 0. The blue line represents the sparsity constraint

ki ¼ p=2R. The bottom row shows the corresponding solution shapes.

For each value of g and Dx, the equation shows a pair of complex conjugate solutions

k�
1;2ðg;DxÞ ¼ krðg;DxÞ� ikiðg;DxÞ (41)

The general solution of the equation will therefore have the form

VðxÞ ¼ Cekrx cosðkixÞþ g�
1�2g

if -R�x�R

0 if -R >x or x >R

�

(42)

From Equation 42 we can see that the absolute value of ki is related to the width of the bump,

and therefore to the sparsity of the solution, by the relation

R¼ p

2ki
: (43)

R does in turn depend only on the free parameter g, through the relation that can be derived in

the symmetric case (g¼ 0, Dx¼ 0)

tanð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2g� 1

p

RÞ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2g� 1

p

(44)

We can look for a solution with given sparsity f ¼ 2R=L (where L is the length of the manifold) by

setting R¼ fL=2. Requiring the the sparsity to be fixed (i.e. setting R constant) while varying g con-

strains the zeros of 40 to lie in the subspace ki ¼p=2R. This imposes a relation between g and both

the speed s¼ Dx=t (related to the speed of the shift) and kr (related to the asymmetry of the shape

of the solution). Varying R we can study the dependence of the speed on both g and f .

D Storing multiple manifolds with different retrieval speeds
To investigate the possibility to store and dynamically retrieve manifolds at different speeds, we

have performed numerical simulations of a network with recurrent connectivity given by the formula

Jij ¼
1

N

X

p

�¼1

1

1þg�

KSðx�i � x
�
j Þþg�KAðx�i � x

�
j Þ

h i

(45)

Each manifold m is encoded with a different asymmetry strength g�. The normalization factor

1=ð1þg�Þ is added to ensure that each manifold contributes equally to the synaptic efficacies, and

does not affect the ratio of strenghts of the symmetric and asymmetric components.

E Linking multiple manifolds together
In order to model the interaction between different stored manifolds, we add to the connectivity

matrix an ”heteroassociative’ term, whose strength JH
�n
ij is proportional to the distance between the

preferred firing location x
�
i of neuron i in manifold � and the one of neuron j in manifold n, shifted

by the length L of the first manifold, which we denote by ~xn. This shift enforces the fact that the

interaction happens between the end of the first manifold and the beginning of the second. Then,

the connectivity matrix will be given by

Jij ¼
1

N

X

p

�¼1

Kðx�i � x
�
j Þþ

X

�n

G�nKðx�i �~xnj Þ (46)

With

Spalla et al. eLife 2021;10:e69499. DOI: https://doi.org/10.7554/eLife.69499 25 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.69499


~xn ¼ xn þL (47)

and G�n ¼ 1 if there is a transition between � and n, and zero otherwise.

F Analytical calculation of ac in the highly diluted limit
To calculate the maximum capacity, we first need to solve Equation 27 numerically for vðxÞ, for given
g and w. The procedure illustrated here focuses, for the sake of analytical simplicity, on the case of a

one-dimensional, exponential kernel

Kðx� x0Þ ¼ e�jx�x0j �gsignðx� x0Þe�jx�x0j (48)

We start from equation 27:

vðxþDxÞ ¼ gN
Z

dx0Kðx� x0Þvðx0Þþw

� �

(49)

First, following Battaglia and Treves, 1998 we rewrite it with the transformation

uðxÞ ¼N �1 vðxÞ
g

� �

(50)

obtaining

uðxþDxÞ ¼ g

Z

dx0Kðx� x0ÞN ðuðx0ÞÞþw: (51)

We then transform this integral equation in a differential one, by differentiating twice. We obtain

u00ðxþDxÞþ 2ggFðuðxÞÞu0ðxÞþ 2gNðuðxÞÞ� uðxþDxÞþw¼ 0 (52)

where we have used the fact that N 0ðxÞ ¼FðxÞ. Equation 52 is a second order, nonlinear delayed

differential equation. To solve it, it is not sufficient to impose an initial condition on a single point for

the solution and the first derivative (i.e. something like uðx0Þ ¼ u0;u
0ðx0Þ ¼ u0

0
): we have to specify the

value of the function and its derivative in an interval ½x0;x0 þDx�.
To do so, we reason that, if we want a bump solution, uðxÞ has to be finite for x ! �¥ and cannot

diverge. We then require the function to be constant (uðxÞ ¼ u0, u
0ðxÞ ¼ 0) before a certain value x0,

whose value can be set arbitrarily without loss of generality.

The value u0, at g ¼ 0 and Dx ¼ 0 determines the shape of uðxÞ, as shown by the numerical solu-

tion presented in Appendix 1—figure 2. For u0<u
� the solution will diverge at x ! ¥, while for

u0>u
� it will oscillate. We are then left with a single value u0ðg;wÞ ¼ u�ðg;wÞ for which the solution

has the required form.

Appendix 1—figure 2. Solutions to Equation 52 for g ¼ 1, w ¼ �1:8, g ¼ 0, Dx ¼ 0. Then, keeping

u0 fixed, we can repeat a similar procedure to find Dx for different values of g. Also in this case, the

solution either diverges or oscillates, apart from a single value Dx�, for which the solution has the

desired shape (see Appendix 1—figure 3). This eliminates the arbitrariness in the choice of Dx since

it imposes, for given g and w, a relation Dx ¼ Dx�ðgÞ.

Spalla et al. eLife 2021;10:e69499. DOI: https://doi.org/10.7554/eLife.69499 26 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.69499


Appendix 1—figure 3. Solutions to Equation 52 for g ¼ 1, w ¼ �1:8, g ¼ 0:2. We can then find the

shape of the bump uðxÞ for given values of g, +w and g, from which we can obtain the profile vðxÞ ¼
gNðuðxÞÞ that we need for the calculation of the storage capacity. Some examples of the obtained

profiles, for different values of g, are shown in Appendix 1—figure 4.

Appendix 1—figure 4. Activity profile vðxÞ, obtained for the same g ¼ 0:7 and w ¼ �1:3, at different

values of g. Plugging the obtained form of vðxÞ into Equation 29, we can calculate the capacity. The

dependence of the capacity on g is shown, for L ¼ 60, in Appendix 1—figure 5.
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Appendix 1—figure 5. Dependence of the storage capacity on g, for L ¼ 60. The crosses show the

full solution of Equations 27 and 29. The dashed line is obtained by taking the value of the capacity

að0Þ obtained with full solution at g ¼ 0, and multiplying it by the scaling of the kernel variance

ð1þ g
2Þ. Full dots show the value of capacity obtained with the full solution and the contribution of

the kernel variance factored out.

We can see from the full dots in the figure that the contribution of the integral in Equation 29 is

remarkably constant in g . This is due to the fact that the distortions of the bump shape induced by

the presence of the asymmetry have a negligible effect on the average square activity y, whose value

is dominated by the dependence on g of the spatial variance of the kernel (Equation 19).

This allows us to approximate the value of the integral in Equation 29 with its value in the g ¼ 0

case. We can then calculate the capacity as a function of g and L by solving the symmetric case for

different Ls, and then incorporating the dependence on g given by the kernel variance:

acðL;gÞ~acðL;0Þ=ð1þg
2Þ (53)

This approximation yields the results reported in the main text and in Figure 8
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