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Introduction

Transport coefficients are archetypal examples of off-equilibrium properties, related
to the flow of a conserved quantity, such as energy, momentum, or charge. They
are an essential element for the understanding of many physical phenomena and
technological applications, such as planetary evolution, energy saving, thermal
dissipation, heat management in devices, study of biological processes and chemical
reactions.

The microscopic description of the relaxation of small off-equilibrium fluctua-
tions and the response of systems to small perturbations have a rigorous theoretical
foundation in the Green–Kubo (GK) theory of linear response [1–4]. The transport
coefficients are found to be proportional to the integral of the time auto-correlation
function (tACF) of some macroscopic currents computed at equilibrium, which can
be evaluated from molecular dynamics (MD) simulations.

Density functional theory (DFT) has established itself as the golden standard
for the quantum mechanical modelling of materials. It enables to compute inter-
atomic forces entirely from first principles, starting only from the chemical compo-
sitions and the fundamental laws of nature. The combination of DFT with classical
MD, in both Born-Oppenheimer [5, 6] or Car-Parrinello [6, 7] formulation, has a
considerable impact in many fields, such as chemistry and material science. De-
spite the apparent simplicity and elegance of the GK and the power of DFT based
methods, their combination for the computation of thermal transport coefficients
has been deemed to be impossible [8–10]. This alleged incompatibility had roots
in the misconception that the intrinsic indeterminacy of the decomposition of the
total energy in local contributions would undermine the uniqueness of the trans-
port coefficients that are derived from them. This conundrum has been recently
overcome, thanks to the introduction of a so-called gauge invariance principle [8],
which allowed Marcolongo, Umari and Baroni (MUB) to derive a general DFT
expression for the adiabatic energy flux.

The MUB approach made ab initio simulations of heat transport possible for
disordered systems, like liquids and glasses, albeit at the price of lengthy and costly
simulations. Progress in statistical techniques for the analysis of the flux time
series [11, 12] made possible to achieve 10% accuracy in the calculated thermal
conductivity with simulations of a few dozen to a few hundred picoseconds. Still,
the computational burden of ab initio MD (AIMD), based on on-the-fly generation
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2 Green-Kubo simulation of transport properties

of a potential energy surface (PES) from DFT, is heavy and requires access to high
performance computer platforms for substantial wall-clock times.

In the last decade, a combination of standard electronic-structure methods,
based on DFT, and new machine-learning techniques have allowed the construction
of inter-atomic potentials possessing quantum mechanical accuracy at a cost that
is only marginally higher than that of classical force fields. All the machine learned
potentials, which are represented either by a deep-neural network (DNN) [13–16] or
by a Gaussian-process [17], use a local decomposition of the total potential energy
of the system in terms of atomic contributions, which makes straightforward to
define the energy flux, or current, from which to compute the heat conductivity via
GK theory. We made extensive use of the recently developed deep potential (DP)
framework [16, 18]. DP molecular dynamics (DPMD) simulations have been used
successfully to study bulk thermodynamic properties beyond the reach of direct
DFT calculations [19–25], as well as dynamic properties like mass diffusion in solid
state electrolytes [26, 27], infrared spectra of water and ice [28].

In our work, we focus on the study of water. It is composed of two of the three
most abundant elements in the universe, making it a quintessential constituent of
many planets and moons, and an essential medium for the life on Earth [29–31].
Any attempts at a quantitative evolutionary model of water-rich celestial bodies
rely on accurate knowledge of the heat and electrical conductivities of some phase
of water at high-pT conditions. However, despite its apparent chemical simplicity,
water is a very complex liquid with a rich phase diagram. Although of its impor-
tance many of its properties are poorly understood [32, 33]. In our study, we focus
on the computation of thermal conductivity and viscosity of water and we present
results obtained from both AIMD and DPMD. We show that properly trained
neural-network potentials (NNP) are powerful tools for an extensive investigation
of transport properties of materials. They allowed us to overcome the limitations
of AIMD, that have limited the study of transport properties. For example, the
viscous properties of water has always been avoided by any study based on DFT
[34–42], because an accurate computation of the viscosity of water would require
exceedingly long first-principles simulations [40].

The thesis is organized as follows. Chapter 2 introduces the Green-Kubo theory
of linear response of general conserved quantities, in Chapter 3 we focus on thermal
transport and derive the formulation of energy flux from a classical force field.
We, also, introduce the invariance principles for the thermal transport coefficient.
In Chapter 4 we describe the data analysis techniques, called cepstral analysis,
used to compute accurate and reliable transport coefficients from MD trajectories.
Chapter 5 contains the derivation of the MUB current and an overview of its
implementation in the open-source code QEHeat [43]. In Chapter 6, we performed
AIMD simulations of liquid water and ice Ih within the PBE generalized gradient
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approximation (GGA) [44]. Then, we show our results of thermal conductivity
from the DFT adiabatic energy flux using QEHeat . Chapter 7 contains a brief
presentation of the DP framework. In Chapter 8 we show the results for the thermal
conductivity of water obtained from a DP model. Our DNN methodology is first
validated by a comparison with the results from AIMD simulations of liquid water
at the PBE level of theory [44]. Then, we take advantage of the simple expression
for the energy current with neural-network potentials to compute the thermal
transport coefficients of liquid water with a complex DFT approximation, the
strongly constrained and appropriately normed (SCAN) meta-GGA. Chapter 9
contains the results for the viscosity of water, both from AIMD and DPMD. In
Chapter 10, we describe a recent extension of the DP model, which includes also
the long-range electrostatic contributions, and its application to the computation
of electrical conductivity in water at high-pT, where a short range models fails to
reproduce the correct ab initio results. Conclusions are drawn in Chapter 11.
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The original work presented in this thesis is based on the following publications
and preprint:

[A] A. Marcolongo, R. Bertossa, D. Tisi, and S. Baroni, QEHeat: An open-source
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[B] D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, and S. Baroni, Heat trans-
port in liquid water from first-principles and deep neural network simulations,
Physical Review B 104, 224202 (2021);

[C] C. Malosso, L. Zhang, R. Car, S. Baroni, and D. Tisi, Viscosity in water from
first-principles and deep-neural-network simulations, arXiv:2203.01262 (2022).
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Green Kubo Theory

The Green-Kubo (GK) theory of linear response is a general theoretical framework
for the microscopic description of transport properties. It is rooted in the work of
Onsager [45, 46] culminated, twenty years later, with the Green-Kubo equations
[1–4]. These equations are a consequence of the fluctuation-dissipation theorem
and establish a relation between (non-equilibrium) transport coefficients, called
Onsager coefficients, and the time auto-correlation function of the relevant currents
at equilibrium.

2.1 Hydrodynamic variables

Extensive variables have the property that the value they have on a system equals
the sum of their values on each of its subsystem. Thus, an extensive variable, A,
can be written as the integral of a suitably defined density, a(r):

A[Ω, t] =

∫
Ω

a(r, t)dr (2.1)

where Ω is the volume of the system. For a locally conserved extensive quantity
a current density, (r, t), can be defined and associated to its conserved density
thought the continuity equation:

∂a(r, t)

∂t
= −∇ · (r, t), (2.2)

where ∇· represent the divergence. In the following, the densities of conserved
quantities will be denote as conserved densities. Applying the space Fourier trans-
form to Eq. (2.2):

˙̃a (q, t) = −iq · ̃ (q, t) , (2.3)

where the dot indicates a time derivative and the tilde a Fourier transform.
Eq. (2.3) suggests that the longer the wavelength, the slower is the dynamics
of a conserved density. Thus, conserved densities are adiabatically decoupled from
all the fast atomic degrees of freedom. These long-wavelength Fourier components
of conserved densities are called hydrodynamic variables.
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6 Green-Kubo simulation of transport properties

Phenomenological equations

Let us now consider a system with Q of conserved extensive variables
{A1, A2, ..., AQ}. For instance, in the case of a one-component fluid, Q = 5 and
{A1, A2, ..., A5} are, respectively, the mass (i.e. particle number), the energy and
the three components of the momentum. Without loss of generality, we can set
the average values of the conserved quantities to zero, 〈Ai〉 = 0, so that their
densities, ai (r, t), directly describe the deviation from equilibrium. We indicate
by i (r, t) the corresponding currents. At equilibrium, all conserved densities and
currents vanish. Off equilibrium, it will be assumed that the wavelength and the
time scale of the disturbances are so long that the assumption of local thermal
equilibrium is valid. Assuming small deviations from equilibrium, we can express
the time derivatives of conserved densities as a linear combination of the densities
themselves:

ȧi (r, t) =

Q∑
j=1

∫
Λij (r − r′, t− t′) aj (r′, t′) dr′dt′ (2.4)

where Λ is a suitable coefficient that depends only on r − r′ and t − t′ due to
respectively space translation and time translation symmetry of the system. Ex-
ploiting the convolution theorem, the space-time Fourier transform of Eq. (2.4)
reads:

− iω˜̃ai (q, ω) =

Q∑
j=1

˜̃Λij (q, ω) ˜̃aj (q, ω) , (2.5)

where the double tildas correspond to the space-time Fourier transforms. By com-
bining the last set of equations with the time Fourier transform of Eq. (2.3), one
obtains the constitutive equations :

− iq · ˜̃i (q, ω) =

Q∑
j=1

˜̃Λij (q, ω) ˜̃aj (q, ω) , (2.6)

and for the longitudinal component of the conserved currents, it holds:

˜̃i (q, ω) = i
q

q2

Q∑
j=1

˜̃Λij (q, ω) ˜̃aj (q, ω) . (2.7)

In isotropic media, the ˜̃Λs are functions of q = |q|, whereas ˜̃Λij(q = 0) = 0. In
fact a non-vanishing value would imply a long-range dependence of the currents on
density fluctuations, in contrast with the assumption of local thermodynamic equi-
librium. Thus, the long-wavelength low-frequency limit of the coupling constants
can thus be assumed quadratic in q:

˜̃Λij (q, ω) ∼ q2λij. (2.8)
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Then inserting this last expression in Eq. (2.7) one obtains

˜̃i (q, ω) = iq

Q∑
j=1

λij ˜̃aj (q, ω) , (2.9)

valid in the long-wavelength low-frequency regime. Defining the flux as the macro-
scopic average of i :

J i =
1

Ω

∫
Ω

i (r) dr; (2.10)

and the corresponding components of the macroscopic density gradients Di as:

Di =
1

Ω

∫
Ω

∇ai (r) dr, (2.11)

we can relate explicitly these last two quantities through Eq. (2.9) and obtain:

J i =

Q∑
j=1

λijDj. (2.12)

Let αi = ∂S
∂Ai

be the intensive variable conjugate to the extensive variable

Ai, where S = S (A) is the system’s entropy, and χij = 1
Ω
∂Ai

∂αj
the corresponding

susceptibility. Under the assumption of local thermal equilibrium, local values
of intensive variables αi (r) can be defined and the normalized integrals of their
gradients are called thermodynamic forces :

F i =
1

Ω

∫
Ω

∇αi (r) dr. (2.13)

The thermodynamic forces can be related to the macroscopic density gradients
through the susceptibilities:

Di =

Q∑
j=1

χijF j, (2.14)

and inserting this relation into Eq. (2.12), one gets the phenomenological equations :

J i =

Q∑
j=1

LijF j, (2.15)

where

Lij =

Q∑
k=0

λikχkj, (2.16)
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are the Onsager’s coefficients (or phenomenological coefficients). Eq. (2.15) states
a linear relation between the macroscopic conserves currents J and the thermo-
dynamic forces F . In particular the Onsager’s coefficients satisfy the so-called
Onsager’s reciprocal relations [45–47], derived from microscopic reversibility:

Lij = Lji, (2.17)

that shows the equality of the cross-coefficients.
In the case of heat transport the conserved quantity is the energy and the

associated thermodynamic force is the gradient of the inverse of the temperature.
Thus, in the simplest case where we consider only one conserved quantity (Q = 1),
we obtain the renowned Fourier’s law of thermal conduction [48]:

JE = −κ∇T, (2.18)

where κ is the thermal conductivity and T is the temperature.

2.2 Linear-Response Theory

In order to evaluate the phenomenological coefficients appearing in Eq. (2.15), we
introduce the linear-response theory. First of all we consider a classical system of
N interacting atoms described by the Hamiltonian H0:

H0 (Γ) =
N∑
i=1

1

2Mn

P 2
n + Φ (R1,R2, ...,RN) , (2.19)

where Mn, Pn and Rn are respectively the mass, the momentum and the position
of the n-th particle, while Γ = {Rn,Pn} indicates the phase-space coordinates of
the entire system, and Φ is a generic many-body potential that depends on the
atomic positions.

Let us suppose that the system is subjected to a external potential that couples
to a linear combination of conserved densities, {ai (r; Γ)}, as:

Φ′ (Γ, t) =
∑
i

∫
Ω

vi (r, t) ai (r; Γ) dr, (2.20)

where {vi (r, t)} are time-dependent fields and {ai (r; Γ)} are space-phase observ-
ables. The conserved densities are theirs ensemble averages:

ai (r) = 〈ai (r,Γ)〉eq

=

∫
ai (r; Γ)P0 (Γ) dΓ.

(2.21)
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P0 (Γ) is the equilibrium distribution function:

P0 (Γ) ∝ e
−H

0(Γ)
kBT , (2.22)

where kB is the Boltzmann constant and T is the temperature of the system.
We suppose that at t = −∞ the system is at equilibrium with respect to the
Hamiltonian H0, implying the coupling fields to be such that vi (r, t = −∞) = 0.
The conserved currents are ensemble averages of the phase-space observables:

i (r) = 〈i (r,Γ)〉eq. (2.23)

Let Γ′t = {Rn (t) ,Pn (t)} be a dynamical trajectory of the system, driven by
the perturbed Hamiltonian H ′(t) = H0 + Φ′(t), through the Hamilton’s equations
of motions:

Ṙn (t) =
∂H ′

∂Pn

∣∣∣
t
,

Ṗn (t) = − ∂H
′

∂Rn

∣∣∣
t
,

(2.24)

whose solutions are uniquely determined by the initial conditions Γ(t = 0) = Γ0.
When a phase-space observable is evaluated along a dynamical trajectory, Γt, it
will depend on time, through the positions and momenta, as well as on the initial
conditions. Averaging with respect to the initial conditions will result in a time
dependent expectation value for the conserved densities (or currents):

ai (r, t) = 〈ai
(
r,Γ

′

t

)
〉eq

=

∫
ai
(
r; Γ

′

t

)
P0 (Γ0) dΓ0

(2.25)

where the dependence on Γ
′
t stresses that the dynamic is driven by the perturbed

Hamiltonian. According to the Green-Kubo theory [1, 2, 49] the linear response to
a perturbation of the α component of a conserved current i is:

iα (r, t) =
1

kBT

∑
j

∫ t

−∞
dt′
∫

Ω

dr′
〈
iα (r,Γt) ȧ

j (r′,Γt′)
〉
eq
vj (r′, t′) . (2.26)

By combining Eq. (2.26) with the continuity equation and integrating by parts,
one obtains:

iα (r, t) =
1

kBT

∑
j

∑
β

∫ t

−∞
dt′
∫

Ω

dr′
〈
iα (r,Γt) 

i
β (r′,Γt′)

〉
eq

∂

∂r′β
vj (r′, t′) ,

(2.27)
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where rβ is the β component of the position vector. Thanks to space-time homo-
geneity and isotropy, the last equation can be averaged to recover the macroscopic
flux as in Eq. (2.15).

J iα(Γt) =
1

Ω

∫
Ω

iα (r,Γt) dr, (2.28)

F i
α(Γt) =

1

ΩT

∫
∂

∂rα
vi (r,Γt) dr, (2.29)

Lijαβ(Γt) =
Ω

kB

∫ ∞
0

〈
J iα (Γt) J

j
β (Γ0)

〉
eq
dt. (2.30)

Eq. (2.30) is the famous Green-Kubo formula for transport coefficients from clas-
sical linear-response theory, it is a powerful and elegant tool to evaluate the
Onsager’s coefficients from equilibrium molecular dynamics. The Onsager’s reci-
procity relations Eq. (2.17) can be recovered combining Eq. (2.30) with time-
translational invariance 〈J iα(Γt)J

i
β(Γ0)〉 = 〈J iα(Γ0)J iβ(Γ−t)〉 and micro-reversibility

〈J iα(Γt)J
i
β(Γ0)〉 = 〈J iα(Γ−t)J

i
β(Γ0)〉.



3

Heat Transport

Numerical studies of heat transport at the molecular scale often rely on Boltz-
mann’s kinetic approach [50–53]. This is adequate when the relaxation processes
are dominated by binary collisions, as in the case of dilute gases of particles, such
as atoms or molecules, or of quasiparticles, such as phonons in crystalline solids.
A different microscopic description is needed for high temperature solids, where
the anharmonic effects eventually make the quasiparticle picture break down [54],
or glasses and liquids where phonon dispersions are not even defined. A more gen-
eral approach to simulate the heat transport coefficients is provided by molecular
dynamics (MD). Non-equilibrium MD [3, 4, 55, 56] directly exploits the Fourier
law and applies straightforwardly to finite systems and interfaces, but suffers from
severe practical difficulties, such as finite-size and non-linear effects. We will focus
on equilibrium MD in combination with the Green-Kubo (GK) theory of linear
response [1–4].

3.1 Green-Kubo theory of linear response

Heat transport is determined by temperature gradients which cannot be described
by any mechanical perturbation. The concept of temperature distribution implies
a local thermal equilibrium over lengths and times bigger than typical atomic
distances and relaxation times. Let us now suppose that the system of volume Ω can
be subdivided into subsystems, {Ω1,Ω2, . . .Ωk}, indicating with Γk the phase-space
variables of the k−th subsystem. Local equilibrium means that the phase-space
variables of different sub-systems are weakly correlated, thus the total probability
density can be factorized:

P (Γ1,Γ2, . . . ) ≈ P (Γ1)P (Γ2)

∝ e
−

∑
k

Ĥk
kBTk

(3.1)

where Hk and Tk are respectively the Hamiltonian and the temperature of the
the k−th subsystem. Defining the two continuous functions ê(r,Γ), as the energy
density, and T (r) as the local temperature. We can assume small variations of the

11
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temperature:
T (r) = T 0 + ∆T (r), (3.2)

where T 0 is the average temperature of the system and |∆T (r)| � T . At the first
order in ∆T , the probability density becomes:

P (Γ) = e
− 1
kBT

0 (Ĥ0(Γ)−
∫
Ω ê(r,Γ)

∆T (r)

T0 dr)
(3.3)

where Ĥ0(Γ)+Φ′(Γ) is the perturbed Hamiltonian and Φ′(Γ) = −
∫

Ω
ê(r,Γ)∆T (r)

T 0 dr
the perturbation, equivalent to Eq. (2.20). In a system where the only non-trivial
conserved quantity is the energy, the constitutive equation that couples the energy
flow to temperature gradients is:

JEα = −καβ∇βT (r). (3.4)

καβ is the thermal conductivity tensor, defined as:

καβ =
LEEαβ
T 2

(3.5)

καβ =
Ω

kBT 2

∫ ∞
0

〈
JEα (Γt) J

E
β (Γ0)

〉
eq
dt. (3.6)

where LEEαβ are the Onsager’s coefficients and JEα the macroscopic energy flux:

JEα (Γ) =
1

Ω

∫
Ω

Eα (r,Γ) dr. (3.7)

Eα (r) is the current energy density, defined by the continuity equation, Eq. (2.2),
for e(r,Γ):

∂e(r,Γt)

∂t
= −∇ · E(r,Γt). (3.8)

In isotropic systems the thermal transport coefficient is a multiple of the iden-
tity, καβ = κδαβ where:

κ =
1

3

∑
α=x,y,z

καα (3.9)

=
Ω

3kBT 2

∫ ∞
0

〈
JE (Γt) · JE (Γ0)

〉
eq
, (3.10)

analogously an isotropic Onsager coefficient, LEE, can be defined.
To conclude the section, we derive an explicit relation for the energy current
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from a microscopic expression for the energy density. Let’s take the Taylor expan-
sion of the spatial Fourier transform of Eq. (3.8):

dẽ(q = 0,Γt)

dt
+∇q

dẽ(q,Γt)

dt
|q=0 = −iq · ̃E(q = 0,Γt) +O(q2) = 0 (3.11)

d

dt

∫
Ω

e(r,Γt)dr − iq ·
[∫

Ω

ė (r,Γt) rdr −
∫

Ω

E(r,Γt)dr

]
+O(q2) = 0. (3.12)

in the thermodynamic limit, the first term of Eq. (3.12) is zero because the time-
derivative of the total energy. Thus, at the first order in q the term inside the
square brackets is zero, allowing me to write JE in terms of derivatives of the
energy density:

JE =
1

Ω

∫
Ω

ė (r,Γt) rdr (3.13)

=
1

Ω

∫
Ω

drr
∑
n

(
∂e(r,Γt)

∂Rn

· Vn +
∂e(r,Γt)

∂Pn

· Fn
)
, (3.14)

where the sum over n correspond to a sum over the atoms of the system, Fn = ∂Pn
∂t

is the force acting on n-th atom, and Vn = Pn
Mn

its velocity. Eq. (3.14) is ill-defined

in PBC, this issue will be resolved once we will derive the exact expression of JE

from either a classical force field or DFT.

3.2 Green-Kubo vs. DFT: a long-lived misconception

A long-lasting obstacle at the combination of GK theory and DFT ab initio meth-
ods was the inherent indeterminacy of any quantum mechanical expression for the
energy density. In classical MD the computation of the energy current relies on the
fact that the total energy of an extended system can be decomposed into localised
contributions (local energies). In a quantum-mechanical setting, it is not possible
to uniquely define atomic energies and the total energy of a system can at most be
expressed in terms of an energy density, which is also ill-defined. For instance, the
electrostatic energy of a continuous charge-density distribution can be expressed as
either one half the integral of the density times the potential, or of 1

8π
the squared

modulus of the field. For this reason, it has long been feared that “the Green-Kubo
relation does not serve our purposes [of computing the thermal conductivity] be-
cause in first-principles calculations it is impossible to uniquely decompose the total
energy into individual contributions from each atom” [57].

Actually, although not generally fully appreciated, the same indeterminacy
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arises with classical force fields as well, because classical atomic energies themselves
are ill-defined. For example for pair-wise interactions any different partition of the
interaction energy of the nm pair into individual atomic contributions would be
equally acceptable and, yet, would lead to a different expression for the energy flux
[58]. This long-standing problem has been recently solved with the introduction of
a gauge invariance principle for the transport coefficients [8–10, 58].

In order to introduce, and understand, the recently discovered gauge and con-
vective invariance principles for the transport coefficients, it is helpful to define the
concept of diffusive flux. A flux is said to be diffusive if its GK integral, as defined
in Eq. (3.6), is different from zero; the flux is said to be non-diffusive otherwise.

3.3 Gauge invariance

Figure 3.1: The energy of an isolated system is the sum of the energies of its
(isolated) subsystems, E(Ωi) plus their interaction, W12. In the thermodynamic
limit, while E(Ωi) are proportional to the volume of the subsystem, the interaction
energy scales as the surface of the interface. The latter is, then, negligible in the
limit, but it is not when defining energy densities or local energies. The picture is
taken from [9]

Fig. 3.1 (taken from [9]) illustrates the intrinsic difficulty of partitioning the
energy of a system into local contribution. The energy can be written as: E(Ωi) =
E(Ωi)+ 1

2
(1±λ)W12, where E(Ωi) are the energies of the two isolated subsystems,

W12 their interaction energy, and λ an arbitrary constant. In the thermodynamic
limit the interaction energy can be neglected and so the value of the λ constant
is irrelevant. This is because, at the leading order, all E(Ωi) are linear in the
volume, while the interaction between subsystem is sub-linear. When it comes
to defining energy densities (i.e. energies of infinitesimal portions of a system)
or atomic energies, instead, the magnitude of the interaction between different
subsystems is comparable to their energies, which become therefore intrinsically
ill-defined.

The total energy, as any extensive quantity, is defined by the integral over the
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(energy) density:

E =

∫
Ω

e(r)dr. (3.15)

Notice that, in the thermodynamic limit, we should consider as equivalent any two
energy densities whose integral over the volume Ω differs by a quantity that scales
as the volume boundary. For instance, two densities are equivalent if they differ
by the divergence of a (bounded) vector field b(r, t):

e′(r) = e(r)−∇ · b(r, t). (3.16)

We can think of e′(r) and e(r) as different gauges of the same scalar field. Since
the energy is conserved, an energy current density (and its related macroscopic
flux) can be associated to any gauge of the energy density via the continuity
equation, Eq. (2.2).

′(r) = (r)− ḃ(r, t) (3.17)

J ′ = J − Ḃ(t) (3.18)

where B = 1
Ω

∫
Ω
bdr. Thus, the macroscopic energy fluxes in two different energy

gauges differ by the total time derivative of a bounded phase-space vector function.
By inserting J ′ inside the Green Kubo equation one obtains:

κ′ =
Ω

kBT 2

∫ ∞
0

〈
J ′(t) · J ′(0)

〉
eq
dt (3.19)

= κ+
Ω

kBT 2

[〈
B(t) · Ḃ(0)

〉
eq
|+∞−∞ +

〈
B(t) · J̇(0)

〉
eq
|+∞−∞
]

(3.20)

Since B is bounded and the equilibrium expectations of both a total time derivative
and a current vanish, we conclude that κ′ = κ.

3.4 Energy flux from a classical force field

In classical MD the total potential energy, E can be divided in local atomic con-
tributions, E =

∑
nwn. The energy density can be defined accordingly:

e(r,Γt) =
∑
n

δ(r −Rn)en(Γt) (3.21)

en(Γt) =
P 2
n

2Mn

+ wn({R}) (3.22)
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where P 2
n

2Mn
is the atomic kinetic energy.

In order to evaluate Eq. (3.14), we need the derivative of the energy density:

∂e(r,Γt)

∂Rn

= δ(r −Rn)
∂en(Γt)

∂Rn

+ en(Γt)
∂

∂Rn

δ(r −Rn) (3.23)

∂e(r,Γt)

∂Pn

= Vn. (3.24)

By inserting Eqs. (3.23) and (3.24) into Eq. (3.14), we get an expression for
the energy flux:

JE =
1

Ω

∫
Ω

drr
∑
n

[
Vnδ(r −Rn)

∂en
∂Rn

+

+Vnen
∂

∂Rn

δ(r −Rn) + Vn · Fnδ(r −Rn)

]
(3.25)

=
1

Ω

[∑
n

Vnen +
∑
n

Rn

(
Fn · Vn +

∑
m

Vm ·
∂wn
∂Rm

)]
(3.26)

=
∑
n

[
Vnen +

∑
m

(Rm −Rn)
∂wm
∂Rn

· Vn

]
(3.27)

The Eq. (3.27) is the expression for the energy current with classical force field: the
first depends on the atomic (potential and kinetic) energy J conv =

∑
n Vnen and

it is often called convective contribution; the second, denoted virial contribution,
depends on the derivative of the atomic energy Jvirial =

∑
nm(Rm−Rn)∂wm

∂Rn
·Vn.

The matrix Wα,β
n =

∑
m(Rα

m − Rα
n)∂wm

∂Rβn
, often referred to as the atomic virial,

is symmetric in the Cartesian indexes only in the case of two body potentials [59,
60]. In which case, the term ∂wm

∂Rn
can be interpreted as the negative of the force on

atom m due to atom n.

3.5 Multicomponent systems

A system made of Q atomic species (a Q-component system) has Q+ 4 conserved
quantities (the number of atoms of each species, the energy, and the three com-
ponents of the momentum). The energy and atomic-number currents are vector
quantities, whereas the momentum currents are 3×3 (stress) tensors, which do not
couple with the former in a rotationally invariant system. The total momentum is
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not only a conserved quantity by itself, but is also a linear combination of the vol-
ume integral of the atomic-number currents (atomic-number fluxes). This reduces
the number of independent mass fluxes from Q to Q− 1. We conclude that, when
dealing with an Q-component system, the conserved quantities relevant to heat
transport are the total energy and the total particle numbers (or masses) of each
one of the Q−1 independent atomic components. The phenomenological equations
in Eq. (2.15) becomes:

J i =

Q−1∑
j=0

LijF j, (3.28)

where the energy flux is identified as the zero-th term and the remainingQ−1 fluxes
being any linearly independent combinations of the mass fluxes. Given F 0 = −∇T

T 2 ,
the thermal conductivity is defined as the ratio between the energy flux and the
opposite temperature gradient:

κ =
J0

T 2F 0
. (3.29)

Dropping the Cartesian indices, from Eq. (3.28) J0 is:

J0 =

Q−1∑
i=0

L0iF i (3.30)

J0

F 0
= L00 +

1

F 0

Q−1∑
i=1

L0iF i. (3.31)

By imposing that all particle currents vanish (J i = 0 for i > 0), we get the
component of the vector [F 1, F 2, · · · , FQ−1]T as solution of the remaining linear
system:

F i = −
Q−1∑
j=1

(L−1
Q−1)ijLj0F 0, (3.32)

where L−1
Q−1 is the inverse of the (Q−1)×(Q−1) mass block of the Onsager matrix,

which elements are all Lij with i, j 6= 0 . Combining Eq. (3.31) and Eq. (3.32) we
can get the final expression for the thermal conductivity:

κ =
1

T 2

[
L00 −

Q−1∑
i,j=1

L0i(L−1
Q−1)ijLj0

]
. (3.33)

The expression in square brackets in Eq. (3.33) is called the Schur complement of
the mass block in the Onsager matrix, and is nothing but the inverse of the 00
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element of the inverse Onsager matrix:

κ =
1

T 2(L−1)00
. (3.34)

3.6 Convective invariance

From Eq. (3.33) a new invariance of the thermal transport coefficient arises, which
we call convective invariance: any linear combination of the mass fluxes can be
added to the energy flux without affecting the thermal conductivity [9, 10, 12]. If a
new energy flux (J0)′ is defined as:

(J0)′ = J0 +

Q−1∑
i=1

ciJ
i, (3.35)

where ci are arbitrary real numbers, even though all the Onsager coefficients in
Eq. (3.33) change, the resulting thermal transport coefficient is the same: κ′ = κ.

This also implies that the heat conductivity is insensitive to a change of the
zero of energy of each atomic species (crucial in the case of ab initio simulations),
which would result in a change of the energy flux:

(J0)′ = J0 +

Q−1∑
i=1

δεi
Mi

J i, (3.36)

being δεi the change in energy of the species i and Mi the mass of the atoms of
that species.
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Data analysis

In this chapter we will illustrate the data analysis tool called ceptral analysis [11,
58]. We will consider the case of heat transport but the equations can be generalised
to any transport coefficient which can be expressed as the Green-Kubo integral of
an auto-correlation function of one flux.

4.1 Power spectrum and Wiener-Khintchine theorem

Equation (3.6) relates the thermal transport coefficient to the time auto-correlation
function (tACF) of the energy current:

C(t) =
〈
JE (Γt) J

E (Γ0)
〉
eq

(4.1)

κ =
Ω

kBT 2

∫ ∞
0

C(t)dt, (4.2)

where we considered only one Cartesian component. Being the flux a stationary
process we can apply the Wiener-Khintchine theorem [61, 62] to write:

SE(ω)
.
= lim

t→∞

1

t

〈∣∣∣∣∫ t

0

JE(t′)eiωt
′
dt′
∣∣∣∣2
〉

(4.3)

=

∫ +∞

−∞
C(t)eiωtdt. (4.4)

Where we defined the power spectrum, S(ω), as the expectation of the squared
modulus of the Fourier transform of the flux. By combining Eqs. (4.3) and (4.4)
we can write the thermal transport coefficient as:

κ =
Ω

2kBT 2
SE(ω = 0). (4.5)

In a general multi-component system, when several conserved currents interact
with each other, one can define the cross-spectrum of the conserved fluxes as the
Fourier transform of the cross-time correlation functions:

19
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S̄ij(ω) =

∫ ∞
−∞
〈J i(Γt) · J j(Γ0)〉e−iωtdt (4.6)

Then, even the thermal transport coefficient in Eq. (3.33) can be written as
ω = 0 value of a multi-component spectrum, κ = S(ω = 0) [9, 10, 12]:

S(ω) =
Ω

2kBT 2

1

[S̄−1(ω)]00
(4.7)

where [S̄−1(ω)]00 is the 00 element of the inverse of the cross spectrum matrix
defined in Eq. (4.6).

4.2 Cepstral analysis

The next sections will be dedicated to the cepstral analysis as presented in Refs.
[9, 11, 12].

In every MD simulation, we have only access to a discrete sample of the flux (
a time series), JE

n = JE(nε), 0 ≤ n ≤ N − 1 where ε is the sampling period of the
flux and N the length of the time series, assumed to be even for simplicity. Let us
define the discrete Fourier transform of the flux time series as:

ĴEk =
N−1∑
n=0

JEn e
2πi kn

N , (4.8)

for 0 6= k 6= N − 1. The periodogram is defined as:

ŜEk =
ε

N

∑∣∣∣J̃Ek ∣∣∣2 . (4.9)

For large N , 〈ŜEk 〉 = ŜE(ωk = 2π k
Nε

), which means that the periodogram is an
unbiased estimator of the power spectrum of the process at ωk. Denoting N (µ, σ2)

a normal distribution with mean value µ and variance σ2, Re
(
J̃k

)
, Im

(
J̃k

)
∼

N
(
0, N

2ε
SE(ωk)

)
. For simplicity, we neglect to treat differently k = 0 and k = N/2

committing an error of order O(1/N), which vanishes in the long-time limit, more
details in Refs [9, 11]. We conclude that in the large-N limit the sample spectrum
of the energy flux time series is:

ŜEk = SE(ωk)ξk, (4.10)
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where the ξs are independent random variables distributed as a 1
2
χ2

2 [63].
In many applications we have access to multiple time series to estimate the

power spectrum of a same process, {pJn}, p = 1, . . . l. For example, in molecular
dynamics a single trajectory provides one independent time series per Cartesian
component of the flux, all equivalent in a isotropic system. It is convenient to
define a mean sample spectrum:

lŜEk =
ε

lN

l∑
p=1

∣∣∣pJ̃Ek ∣∣∣2 , (4.11)

= SE(ωk)
lξk, (4.12)

where ξk ∼ 1
2l
χ2

2l. Eqs. (4.10) and (4.12) suggest that lŜE0 is an unbiased estimator
of the zero-frequency value of the true power spectrum. However, the variance of
this estimator does not vanish in the large-N limit.

4.3 Log-spectrum and cepstral space

Fig. 4.1 displays the (estimator) of the power spectrum of water at ambient condi-
tions, obtained from a 100 ps classical MD trajectory, showing its extremely noisy
behaviour. The multiplicative nature of the statistical noise in Eq. (4.12) makes
difficult to decouple the noise from the signal. Ercole et al. [11] suggest to pass to
the logarithm space and apply a linear filter.

The logarithm of Eq. (4.10), called log-periodogram or log-spectrum, splits the
signal and the noise in two addenda:

lL̂k = log
(
lŜEk

)
(4.13)

= log
(
SE(ωk)

)
+ log

(
lξk
)

(4.14)

= log
(
SE(ωk)

)
+ lΛ + lλk (4.15)

where we defined log
(
lξk
)

= lΛ + lλk,
lΛ = 〈log

(
lξk
)
〉 and lλk = log

(
lξk
)
− lΛ are

zero mean identically distributed independent stochastic variables with variance
σ2
l :

lΛ = φ(l)− log(l) (4.16)

σ2
l = φ′(l), (4.17)

where φ(l) and φ′(l) are the digamma and trigamma functions [64], respectively.
Now a low-pass filter to Eq. (4.15) can be applied to reduce the noise without
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Figure 4.1: The (estimator of the) power spectrum of the heat current of liquid
water computed with a NN potential trained over PBE data. The darker line is
the window filtered spectrum, shown to better reproduce the overall behaviour.

affecting the real signal. Defining the cepstrum as the inverse Fourier transform of
the log-spectrum [11, 65]:

lĈn =
1

N

N−1∑
k=0

lL̂ke
−2πi kn

N . (4.18)

Similarly to the sample power spectrum, the cepstral coefficients defined in Eq.
(4.18) are real, periodic, and even: Ĉn = ĈN−n. A generalized form of the central-
limit theorem ensures that, in the large-N limit, the inverse Fourier transform
of the lλ̂k in Eq. (4.15) are a set of independent (almost) identically distributed
zero-mean normal deviates [66]. It follows that:

lĈn = Cn + δn0
lΛ + lµ̂n, (4.19)

Cn =
1

N

N−1∑
k=0

log
(
SE(ωk)

)
e−2πi kn

N , (4.20)



Data analysis 23

where lµ̂n are independent zero-mean normal deviates with variance:

〈lµ̂2
n〉 = 2

σ2
l

N
(4.21)

If the log-periodogram of the true signal is smooth enough, the number of non-
null Cn in Eq. (4.20), is much smaller than N , only few of them really contributes
to the signal we want to compute, S(ωk). One can, thus, discard the high-frequency
part of lL̂k, only keeping the first P ∗ coefficents, assuming that any Cn for n > P ∗

do not contribute to the real signal but only to the power of the noise. Then
one can retrieve the filtered log-periodogram from a discrete Fourier transform of
Eq. (4.20):

lL̂∗k = lĈ0 + 2
P ∗−1∑
n=1

lĈn cos

(
2πkn

N

)
. (4.22)

A simple example of the effects of the filter is shown in Fig. 4.2. The upper
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Figure 4.2: Upper panel shows the cepstral coefficients lĈn as function of n. The
vertical coloured lines correspond to the different values of P ∗ used for the filter
in the lower panel. The lower panel shows the full log-spectrum (shade area) and
three different filtered log-spectra for different values of P ∗. The trajectory is the
same as in Fig. 4.1.
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panel displays the values of the cepstral coefficients lĈn for n ≤ 110, the lower panel
exhibits, instead, the full log-spectrum (shade area) and three different filtered
log-spectra for different values of P ∗. Limiting the number of cepstral coefficients
smooths the curves lL̂∗k. It can be seen that only a few lĈn (those below the blue
vertical line) are not negligible, thus increasing P ∗ results only in including noise
and not new information from the real signal. For instance, in the lower panel
of Fig. 4.2 the red, green and blue lines converge to the same value at ω = 0.
Nonetheless, the lower P ∗, the smoother is the filtered line.

4.4 Extracting the transport coefficient

The transport coefficient is related to the value at zero of Eq. (4.22):

lL̂∗0 = lĈ0 + 2
P ∗−1∑
n=1

lĈn, (4.23)

= log
(
SE(ω = 0)

)
+ lΛ + lµ̂0 + 2

P ∗−1∑
n=0

lµ̂n. (4.24)

Since lL̂∗0 is a Gaussian variable ∼ N
(
log (S(ω = 0)) + lΛ, φ′(l)4P ∗−2

N

)
, the trans-

port coefficient and its statistical uncertainty can be extracted:

κ =
Ω

2kBT
exp

(
〈lL̂∗0〉 − φ(l)− log(l)

)
, (4.25)

σ2
κ = κ2φ′(l)

4P ∗ − 2

N
. (4.26)

Equation (4.26) shows that the statistical error on κ vanishes for N → +∞
and, for a fixed trajectory, it depends only on P ∗. To select the optimal value of
the latter the authors in Ref. [11] adopt the Akaike’s Information Criterion [67].
The cepstral analysis can be extended to multi-component systems. Here we report
only the final results, more details in Refs. [9, 12].

κ =
Ω

2kBT
exp

(
〈lL̂∗0〉 − φ(l −Q+ 1)− log(l −Q+ 1)

)
, (4.27)

σ2
κ = κ2φ′(l −Q+ 1)

4P ∗ − 2

N
. (4.28)

The cepstral analysis is fully implemented in the code SporTran [68].
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4.5 Sampling and cut-off frequencies

For any discrete signal, such as the heat flux in a MD simulation, the Nyqvist
frequency is the maximum frequency available for spectral/cepstral analysis [69].
It is determined by the sampling period ε as fNy = 1

2ε
. Transport coefficients

depend on the behaviour of the spectrum near zero, which is independent of ε, if
the latter is small enough as to avoid aliasing effects. For this reason, L. Ercole et
al [11] suggest to eliminate the high-frequency portion of the spectrum (f > f ∗) by
applying a low-pass filter to the time series (e.g a moving average as implemented
in SporTran) and then resample the latter with a sampling period ε∗ = 1

2f∗
, thus

resulting in a time series of N∗ = N f∗

fNy
time steps.

In general, both the optimal number of cepstral coefficients and σ2
κ depend on

the choice of the cutoff frequency. The smaller f ∗, the smaller are the number of
cepstral coefficients necessary to describe the log-spectrum to any given accuracy
over the shorter frequency range [9, 11]. However, since N∗ < N , the variance of
κ is increased, following Eqs. (4.26) and (4.28).

4.6 Improving the data analysis with the multi-component analysis:
the case of molecular fluids

Notwithstanding gauge and convective invariance, the statistical noise affecting
the estimate of the heat conductivity does depend on the energy flux of the non-
diffusing components that are added to the diffusive energy flux. Gauge invariance
can then be leveraged to tune the optimal linear combination of non-diffusive
fluxes to minimize the statistical error on the heat conductivity. In molecular
fluids, all mass fluxes are non diffusive [8] and the energy is the only conserved
quantity relevant to heat transport. Therefore in Eq. (4.7), we actually have that
S(0) = V

2kBT 2 S̄
00(0) and, strictly speaking, no multi-component analysis would be

needed. However data analysis is greatly facilitated when the power spectrum is as
smooth as possible (to be precise, when the number of inverse Fourier coefficients
of the logarithm of the spectrum are as few as possible [11]). For this reason, it
may be convenient to complement the diffusive energy flux with a number of non-
diffusive ones, which, while not altering the value of the spectrum in Eq. (4.7) at
ω = 0, decrease the total power, thus easing data analysis [9, 10, 12, 70]. This
can be effectively done by treating the energy current as one component of an Q-
component system, where all the other currents are non-diffusive ones [12]. This is
illustrated in Fig. 4.3 where we report the power spectrum obtained via Eq. (4.4)
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Figure 4.3: The power spectrum obtained via Eq. (4.4) (orange), and the multi-
component spectrum in Eq. (4.7) (green). Both spectra are filtered with a window
of 0.5 Thz. The inset shows the behaviour near ω = 0 where the transport coeffi-
cients are extracted and the two spectra collapse to the same value. The green line
has always a lower power. The dashed lines represent the cepstral-filtered spectra.
The trajectory is the same as in Figs. 4.1 and 4.2.

(orange), and the multi-component spectrum in Eq. (4.7) (green). The latter is
computed choosing Q = 2 and taking the momentum of the oxygen atoms as the
auxiliary non-diffusive flux. This decorrelation decreases the power of the spectrum
and flattens the spectrum near ω = 0 facilitating data analysis by reducing the
number of the required cepstral coefficients.
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DFT energy current

A lot of progress has been made in recent years to develop ab initio approaches to
heat transport based on electronic DFT. Some schemes used ad hoc ingredients,
such as a (rather arbitrary) quantum-mechanical definition of the atomic energies
[71]. Other schemes used a definition of the energy flux based on the normal-
mode decomposition of the atomic coordinates and forces, which is only possible
in crystalline solids [72]. Leveraging the gauge invariance [8, 58], Marcolongo,
Umari, and Baroni (MUB) derived a general DFT expression for the adiabatic
energy flux [8].The MUB expression of the heat current is implemented in QEHeat

[43], an open-source code distributed with Quantum ESPRESSO project [73–
75]. In this chapter we first illustrate the expression of the MUB adiabatic energy
flux, then we give a detailed presentation of our implementation in QEHeat.

5.1 The MUB DFT adiabatic energy flux

In order to derive an expression for the adiabatic energy flux, we start from the
standard expression for the DFT total energy in terms of Kohn-Sham (KS) eigen-
values εv, eigenfunctions φv(r), and density n(r) =

∑
v |φv(r)|2 [76, 77]:

EDFT =
1

2

∑
s

MsV
2
s +

∑
s

wZs ({R}) +
∑
v

εv −
e2

2

∫
n(r)n(r′)

|r − r′|
drdr′

+

∫
dr(εXC [n](r)− µXC [n](r))n(r),

(5.1)

where e is the electron charge, {R} and {r} indicate ionic and electronic positions,
respectively, s represents an atom in the computational cell; wZs is the atomic
electrostatic energy; εXC is the local exchange-correlation (XC) energy per particle,
defined by the relation:

EXC [n] =

∫
εXC [n](r)n(r)dr, (5.2)

27
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EXC being the total XC energy of the system, and µXC is the XC potential:

µXC(r) =
δEXC

δn(r)
= εXC(r) +

∫
δεXC(r′)

δn(r)
n(r′)dr′, (5.3)

The actual expression for εXC depend on the type of exchange correlation potential
used. In QEHeat are implemented only the local density approximation (LDA) and
the generalized gradient approximation (GGA). The DFT energy density can be
defined from its integral [8, 78]:

EDFT =

∫
eDFT (r)dr, (5.4)

eDFT (r) = eKS(r) + e0(r) + eH(r) + eXC(r) (5.5)

where, denoting ĤKS the instantaneous Kohn-Sham Hamiltonian:

eKS(r) =Re
∑
v

φ∗v(r)ĤKSφv(r) (5.6)

e0(r) =
∑
s

δ(r −Rs)

(
1

2
MsV

2
s + wZs

)
(5.7)

eH(r) =− 1

2
n(r)vH(r) (5.8)

eXC(r) =(εXC(r)− µXC(r))n(r). (5.9)

The expression for the DFT adiabatic energy flux, JMUB, can derived inserting
Eq. (5.5) into Eq. (3.13) [8]:

JMUB = JKS + J0 + Jn + JH + JXC , (5.10)

For a more extensive and detailed study of the implementations of the many com-
ponents of the MUB current the reader is referred to Section 5.2.1.
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JKS =
∑
v

(
〈φv|r̂ĤKS|φ̇v〉+ εv〈φ̇v|r̂|φv〉

)
, (5.11)

J0 =
∑
sL

∑
v

〈
φv
∣∣(r̂ −Rs −L)

(
Vs · ∇sLv̂

0
)∣∣φv〉 , (5.12)

Jn =
∑
s

[
Vse

0
s +

∑
t6=s

∑
L

(Rs −Rt −L)
(
Vt · ∇tLw

Z
s

)
−
∑
L6=0

L
(
Vs · ∇sLw

Z
s

)]
(5.13)

JH =
1

4πe2

∫
v̇H(r)∇vH(r)dr, (5.14)

JXC =


0 (LDA)

−
∫
n(r)ṅ(r)∂εGGA(r)dr (GGA).

(5.15)

In the following, these components are referred to as the Kohn-Sham, Zero, Ionic,
Hartree and Exchange-Correlation fluxes, respectively. For the insulating systems
of interest in this work, the ionic degrees of freedom completely define the state of
the system and the electrons populate the ground state, according to the adiabatic
approximation. Each time derivative, indicated with the usual dot operator, has
then to be understood from the implicit dependence on the atomic positions.

Here and in the following, we indicate with L the lattice vector. We stress that
periodic boundary conditions (PBC) are assumed here over the unit (simulation)
cell. This implies that Kohn-Sham orbitals and energies are sampled at the Γ
point of the Brillouin cell. The notation ∇sL is a shorthand for the gradient with
respect to displacement of the atom at location Rs + L. A summation over s
runs over all atoms belonging to the simulation cell. Unless otherwise specified,
carets indicate quantum-mechanical operators, as in ĤKS or r̂. The symbol εGGA

stands for the generalized gradient approximation (GGA) exchange-correlation
local energy per particle and its derivative with respect to density gradients is
indicated with ∂εGGA, which is a vector whose component along direction i ∈
{x, y, z} is given by ∂εGGA(n,∇n)/∂(∇in). In the present version of QEHeat only
the local density approximation (LDA) and the generalized gradient approximation
given by the PBE [44] functional are implemented.

The formulas reported are compatible with PBC. Thus, they can be imple-
mented for periodic systems, where some of the summations need to be extended
to all the periodic replicas of the atoms. Nevertheless, the computation of the
various contributions to the energy current, Eqs. (5.11-5.15), is plagued by the
occurrence of several divergences, arising from the long range character of the
Coulomb interaction. As it is the case for the total energies, atomic forces, and



30 Green-Kubo simulation of transport properties

stress, the individual electronic, ionic, and electron-ion contributions diverge and
it is only their sum that is regular in the thermodynamic limit. In order to reg-
ularize the individual components of the MUB flux, we compute all the relevant
terms by screening the Coulomb interaction with a Yukawa cutoff, 1

x
→ e−µx

x
. In

Section 5.2.1, we check explicitly that the singular contributions to the various
terms cancel each other in the µ → 0 limit, so that they can be consistently and
safely neglected.

5.2 QEHeat: a DFT energy flux calculator

QEHeat is an open-source code that implements the computation of the MUB
current, distributed within the Quantum ESPRESSO project. QEHeat can be
easily interfaced to read a dynamical trajectory generated with a code of choice
and compute the MUB flux for the corresponding steps. It is already delivered with
an interface for the cp.x program of the Quantum ESPRESSO distribution,
which is routinely used to perform Car-Parrinello molecular dynamics simulations
[73–75]. The combination of QEHeat, cp.x and the post-processing tool SPORTRAN
[68], which implements the cepstral analysis, provides a convenient framework to
compute the heat conductivity of extended insulating systems-be they crystalline,
amorphous, or liquid-entirely from first principles.

QEHeat computes the MUB energy flux as a function of the atomic positions,
{Rs} and velocities, {Vs}, i.e. for any selected snapshot of an ab initio molecular
dynamics (AIMD) trajectory. Despite the complexity of the resulting formula for
the energy current, from a practical point of view the use of QEHeat relies on a
limited number of additional input parameters with respect to a standard Quan-
tum ESPRESSO DFT computation. These are reported in the energy_current

input namelist, which is shown in figure 5.1. The meaning of all the keywords is ex-
plained in more detail in section Section 5.2.3. The only additional parameters are
eta and n_max, controlling the Ewald summations, which appear only in classical
contributions to the energy current, and delta_t, a time-discretization parameter,
used to perform numerical derivatives. The default values should work for most
systems.

5.2.1 Numerical implementation of each current component

Kohn-Sham current

Starting from Eq. (5.11) and after some simple algebra [8] we end up with the
following expression for the Kohn-Sham current. For every Cartesian component,
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i, one has:

JKSi = R
∑
v

〈φ̄ c
v i(t)

∣∣∣ĤKS + εv

∣∣∣ φ̇ c
v (t)〉, (5.16)

where

|φ̄ c
v i〉 ≡ P̂ cr̂ i |φv〉 , (5.17)

|φ̇ c
v 〉, ≡ P̂ c

∣∣∣φ̇v〉 , (5.18)

P̂ c ≡ 1− P̂ v (5.19)

P̂ v ≡
∑
v

|φv〉 〈φv| , (5.20)

and P̂ v and P̂ c are the projectors over the occupied- (valence-) and empty-
(conduction-) state manifolds respectively. φ̄ c

v is calculated by solving the linear
system:

(ĤKS − εv + αP̂ v)
∣∣φ̄ c
v i

〉
= P̂ c[ĤKS, r̂ i] |φv〉 , (5.21)

where [·, ·] indicates the commutator between quantum mechanical operators and
α is a positive constant that removes the singularity of the linear system and forces
the solution to be orthogonal to the valence manyfold, using standard techniques
from density-functional perturbation theory (DFPT) [79]. In order to avoid align-
ment problems between wave-functions at different time steps, φ̇ c

v is calculated by
moving the derivative to the projector [8, 74], using the relation:∣∣∣φ̇ c

v

〉
≡ P̂ c

∣∣∣φ̇v〉
= P̂ c ˙̂

P v |φv〉 ,
(5.22)

which can be evaluated using a finite-difference scheme, as explained in detail in
Sec. 5.2.2, reading:∣∣∣φ̇ c

v

〉
= P̂ c ˙̂

P v |φv〉

∼ 1

dt
(1− P̂ v(t))(P̂ v(t+ dt/2)− P̂ v(t− dt/2)) |φv(t)〉 ,

(5.23)

where dt is a time-discretization parameter, input of a QEHeat computation, which
is discussed in more detail in Section 5.2.2 and 5.2.6. After evaluating Eq. (5.23)
and solving Eq. (5.21), the results can be inserted into (5.16). We note that the
computational cost to evaluate all the components of the MUB current is domi-
nated by the solution of the linear system, Eq. (5.21).
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Zero current

The Zero current J0, Eq. (5.12), can be better treated by separating the local and
non-local contributions from the ionic pseudo-potential, v̂0. Each contribution acts
on a generic wave-function φ in the following way:

v̂0 =
∑
sL

v̂LOCsL + v̂NLsL , (5.24)

〈r|v̂LOCsL |φ〉 = fLOCs (|r −Rs −L|)φ(r), (5.25)

v̂NLsL |φ〉 =
∑
lm

Ds
l |βsLlm〉〈βsLlm |φ〉, (5.26)

where the total pseudopotential has been separated into atomic contributions and
into its local (LOC), long-tailed, and non-local (NL), short-range, components.
The subscripts in the expressions v̂LOCsL and v̂NLsL indicate that the corresponding
ionic pseudo-potential is centered at the atomic position Rs + L. Note that the
atomic contributions v̂

LOC/NL
sL , when differentiated with respect to ionic positions,

only depend on the position of the atom located at Rs + L.
The local and nonlocal potentials provide two contributions to the Zero cur-

rent, which we discuss individually in the next sections. For the local contribu-
tion, fLOCs (r) is the radial local pseudo-potential provided in the pseudo-potential
datasets for each species. The centered beta functions βslm(r) (also called projec-
tors) define the non-local component of the pseudo-potentials and are defined as
βslm(r) ≡ βsl (r)Ylm(r̂), where Ylm are the real spherical harmonics with quantum
numbers l,m and r̂ is the unit versor, not to be confused with the multiplicative
position operator. We denote the radial components of the beta functions with the
similar notation βsl (r). These are the ones provided for each atomic species in the
pseudo-potential datasets, alongside the constant D matrix. At every time step,
the beta functions need to be centered on the instantaneous ionic positions and in
Eq. (5.26) we indicated the translated beta function for atom at position Rs −L
with an apex. More explicitly :

〈r|βsLlm〉 ≡ βslm(r −Rs −L). (5.27)

We fix some handy notation and define from a (real) localized function γ(r) (e.g.
a β function or the local pseudo-potential) its periodic counterpart as:

γ(r) ≡
∑
L

γ(r −L), (5.28)

whose Fourier components can be computed as:

γ̃(G) = F [γ](G) ≡ 1

Ω

∫
R3

γ(r)e−iG·rdr, (5.29)
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where we introduced the symbol F [γ](G) to identify a standard Fourier transform
over all the three dimensional space, here defined for localized functions. In the fol-
lowing we use the notation γa to indicate the translated and periodic function built
from its localized counterpart, analogously to the notation introduced for the pro-
jector. Note that the following relation is used in the code, γ̃

a
(G) = e−iG·aF [γ](G),

thanks to standard properties of the Fourier transform. The remaining Fourier
transforms are evaluated numerically by QEHeat whenever needed, as explained
below.

Zero current: local contribution

The local pseudo-potential of the s-atom fLOCs (r) behaves as ∼ −Zse2/r for large
r. We call this local long-range contribution to the flux JLR

0 :

JLR
0 =

∑
v

〈
φv

∣∣∣∑
sL

(r̂ −Rs −L)
(
Vs · ∇sLf

LOC
s (|r̂ −Rs −L|)

)∣∣∣φv〉 . (5.30)

We use the chain rule and the definitions:

hsij(r) ≡
∑
L

(r −L)i(r −L)j
|r −L|

f
′LOC
s (|r −L|) (5.31)

ui(r) ≡ −
∑
s

∑
j∈{x,y,z}

Vsjh
s
ij(r −Rs), (5.32)

where f
′LOC
s (r) is the derivative of the local pseudo-potential. Note that both h

and u are periodic functions. The current can then be rewritten as:

JLR0,i =

∫
Ω

n(r)ui(r)dr

= Ω
∑
G

ñ(G)ũi(−G), (5.33)

where:

ũi(G) = −
∑
s

∑
j∈{x,y,z}

Vsjh̃
s
ij(G)e−iG·Rs . (5.34)

The reciprocal Fourier components of hsij(r) are computed through the follow-
ing procedure, which avoids an explicit numerical differentiation of the pseudo-
potential. One writes:

hsij(r) = ∂j

[∑
L

(r −L)if
LOC
s (|r −L|)

]
− δij

∑
L

fLOCs (|r −L|)

≡
∑
G

(
h̃1,s
ij (G) + h̃2,s

ij (G)
)
eiG·r. (5.35)
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The resulting expressions of h̃1(G) and h̃2(G) can be evaluted using Eq. (5.29) and
the standard expansion of e−iG·r into spherical harmonics and Bessel functions Jl:

h̃1,s
ij (G) =


0 for G = 0

4π

Ω

GiGj

G2
G

∫ ∞
0

r3fLOCs (r)J1(Gr)dr for G 6= 0,
(5.36)

where the G = 0 component vanishes thanks to the presence of a derivative in the
definition of h1. For h2 the situation is different:

h̃2,s
ij (G) =


−δij

4π

Ω

∫ ∞
0

r2fLOCs (r)dr for G = 0

−δij
4π

Ω

∫ ∞
0

r2fLOCs (r)J0(Gr)dr for G 6= 0

(5.37)

These expressions need still to be a bit elaborated before being evaluated by
QEHeat. In order to evaluate integrals of the localized functions, one needs to
add and subtract the asymptotic long-range tail of the local pseudo-potential. The
long-range part can be integrated analytically for any finite value of the Yukawa
screening parameter, µ, after plugging in the exact form of the spherical Bessel
functions. For h2, this permits to extract the divergent part in the G = 0 contri-
bution as well. The final results read:

h̃1,s
ij (G) =


0 for G = 0

4π

Ω

GiGj

G2
G

[∫ ∞
0

r3

(
fLOCs (r) +

e2Zs
r

)
J1(Gr)dr − 2e2Zs

G3

]
for G 6= 0

(5.38)
and

h̃2,s
ij (G) =


−δij

4π

Ω

[∫ ∞
0

r2

(
fLOCs (r) +

e2Zs
r

)
dr − e2Zs

µ2

]
for G = 0

−δij
4π

Ω

[∫ ∞
0

r2

(
fLOCs (r) +

e2Zs
r

)
J0(Gr)dr − e2Zs

G2

]
for G 6= 0

(5.39)
We note here again that only from h2 we get a Coulombian divergence when µ→ 0.
Overall, the divergent part of the Zero current is equal to

J0
div = −Ztote2 4π

µ2Ω

∑
s

VsZs, (5.40)

where Ztot =
∑

s Zs.
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Zero current: nonlocal contribution

The non-local part is inherently short range and we call it JSR
0 :

JSR
0 =

∑
v

〈
φv

∣∣∣∣∣∑
sL

(r̂ −Rs −L)
(
Vs · ∇sLv̂

NL
sL

)∣∣∣∣∣φv
〉
, (5.41)

For a pair of two localized functions (γ1(r), γ2(r)) we introduce the notation, given
a generic translation a:

A[γ1, γ2](a) ≡
∑
v

〈γa1 |φv〉〈φv|γa2 〉 = 〈γa1 |P̂v|γa2 〉, (5.42)

where we recall that γa1 and γa2 are the translated and periodic counterpart of
localized functions. We note that, once the Fourier components of φ, γ1 and γ2 are
known, evaluating A[γ1, γ2](a) involves just scalar products between periodic func-
tions and is straightforward. Using these expressions and expanding the projector
operator in their integral form, the current can be rewritten as:

JSR0,i =
∑
s

∑
lm

∑
j∈{x,y,z}

VsjD
s
l (A[−ri∂jβslm, βslm](Rs) +A[riβ

s
lm,−∂jβslm](Rs)) .

(5.43)

In order to evaluate Eq. (5.43) via (5.42) the Fourier transforms of the follow-
ing four localized functions are needed : βlm(r), riβlm(r),−∂iβlm(r),−ri∂jβlm(r),
where we dropped the atomic index s. We need only to evaluate the first two
expressions thanks to the identities:

F [−∂jγ] (G) = −iGjF [γ] (G) (5.44)

F [−ri∂jγ] (G) = −iGjF [riγ] (G) + δi,jF [γ] (G), (5.45)

which are valid for every localized function γ(r). We show how to evaluate the
Fourier transform of the second function, riβlm(r), for i = x, which is the most
complex one. The procedure is similar for the remaining expressions. One starts by

replacing the factor x using that Y11 (r̂) = −
√

3
4π

x
r

(according to the convention

followed by Quantum ESPRESSO for the sign of the spherical harmonics). By
expanding e−iG·r as well into spherical harmonics, one gets:

F [xβlm](G) = −4π

Ω

√
4π

3

∑
l′m′

Yl′m′
(
Ĝ
)
×(

(−i)l′
∫ ∞

0

r3βl(r)Jl′(Gr)dr

)(∫
dr̂ Yl′m′ (r̂)Ylm (r̂)Y11 (r̂)

)
, (5.46)
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where dr̂ indicates an integral over the solid angle, such that dr = r2dr̂dr. In
Quantum ESPRESSO the Clebsch-Gordan coefficients are stored in a array ap

defined as:
YlmYl′m′ =

∑
LM

ap (L,M, l,m, l′,m′)YLM (5.47)

Application of this relation to the product YlmY11 allows us to simplify Eq. (5.46)
to the final form:

F [xβlm](G) = −4π

Ω

√
4π

3

∑
LM

YLM

(
Ĝ
)
×(

(−i)L
∫ ∞

0

r3βl(r)JL(Gr)dr

)
ap (L,M, l,m, 1, 1) .

(5.48)

The remaining radial integral is performed numerically on a grid.

Ionic current

The so-called Ionic flux, Jn, is the contribution to the total energy flux that
depends only on the ionic positions, Rs, and velocities, Vs. First of all let’s take,
as reported in A.1, the definition of the ionic energy e0

s = 1
2
MsV

2
s + wZs and the

electrostatic energy:

wZs =
e2

2

∑
t6=s

∑
L

ZtZs
|Rs −Rt −L|

+
1

2
e2Z2

s

∑
L6=0

1

L
, (5.49)

where L = |L|. We can separate the expression of the Ionic flux, Eq. (5.13), in
two terms: one depending only on the mass and velocity of the ions, an other
depending on wZs and its gradient.

∇tLw
Z
s = −e

2

2
ZsZt

Rs −Rt −L

|Rs −Rt −L|
f ′(|Rs −Rt −L|), (5.50)

where ∇tL is the shorthand notation for the gradient with respect to displacement
of the atom with position Rt + L, introduced in Section 5.1. We, also, introduced
f(x) = 1

x
to keep track of the Coulombian contributions when applying the Yukawa

screening.
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For the sake of simplicity, let’s introduce the following four quantities:

S
A

ij =
∑
L6=0

LiLj
|L|

f ′(L), (5.51)

SB =
∑
L6=0

f(L), (5.52)

SC(Rs −Rt) =
∑
L

f(|Rs −Rt −L|), (5.53)

S
D

ij (Rs −Rt) =
∑
L

(Rs −Rt −L)i(Rs −Rt −L)j
|Rs −Rt −L|

f ′(|Rs −Rt −L|), (5.54)

where i, j ∈ {x, y, z} represent the Cartesian coordinates. Then, consider the fol-
lowing properties for the function f(x):

∂if(|x−L|) =
(x−L)i
|x−L|

f ′(|x−L|), (5.55)

and that S
A

ij = limx→0

∑
L6=0

(x−L)i(x−L)j
|x−L| f ′(|x − L|). The following relations be-

tween S
A

ij, S
B, SC(Rs −Rt) and S

D

ij (Rs −Rt) hold:

S
A

ij = lim
x→0

[
∂xj
∑
L6=0

(x−L)if(|x−L|)

]
− SBδij

≡ SAij − SBδij,

(5.56)

S
D

ij (Rs −Rt) =

[
∂xj
∑
L

(x−L)if(|x−L|)

]
x=Rs−Rt

− SC(Rs −Rt)δij

≡ SDij (Rs −Rt)− SC(Rs −Rt)δij,

(5.57)

Finally, by combining Eqs. (5.49) to (5.54), (5.56) and (5.57) into Eq. (5.13) we
can re-write Jn:

Jn = JnA + JnB + JnC + JnD (5.58)

JnA =
1

2

∑
s

VsMsV
2
s (5.59)

JnBi =
∑
s

VsiZ
2
s e

2SB − e2

2

∑
s

∑
j∈x,y,z

VsjZ
2
sS

A
ij (5.60)

JnC =
∑
s

∑
t6=s

ZtZse
2SC(Rs −Rt)Vs (5.61)

JnDi = −e
2

2

∑
s

∑
t6=s

ZtZs
∑
j∈x,y,z

SDij (Rs −Rt)Vtj. (5.62)
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Introducing the matrix Tij = SBδij + SAij , which only depends on the cell and not
on the individual atoms within it, we can rewrite Eq. (5.60) as a sum of terms that
depends only on the atomic species and the cell:

JnBi =
e2

2

∑
j∈{x,y,z}

Tij
∑
S

Z2
S

∑
t∈S

Vtj, (5.63)

where
∑

S is a sum over the atomic species. Recent theoretical developments in the
statistical analysis of fluxes [8, 9, 12, 58, 70], and in particular the gauge [8] and
convective [12] invariances tell us that fluxes written as sum of terms that depends
only on the atomic species do not contribute to the value of the thermal transport
coefficient. Thus, JnB can be neglected in the computation of Jn, reducing the
implemented formula to:

Jn = JnA + JnC + JnD. (5.64)

We still need to deal with the long-range Coulomb contributions in JnC , JnD

and JnB. Following the scheme explained in Section 5.1 we introduce a Yukawa
screened interaction, 1

x
→ e−µx

x
, and we will study the limit µ→ 0. We can, then,

straightforwardly apply the Ewald techniques [80], with a convergence parameter
η, for the computation of SAij , S

B, SC(Rs−Rt) and SDij (Rs−Rt). Further details
of the computation can be found in A.2:

SAij =−
∑
L 6=0

LiLj
L2

[
f(L)erfc(

√
ηL) + 2

√
η

π
e−ηL

2

]
− 2δij

√
η

π

+ δij
∑
L6=0

f(L)erfc(
√
ηL) +

∑
G 6=0

4π

Ω

GiGj

G2

exp(−G
2

4η
)

G2

[
2 +

G2

2η

]
,

(5.65)

SB =
∑
L 6=0

f(L)erfc(
√
ηL)− 2

√
η

π
+

4π

Ω

∑
G 6=0

e−
G2

4η

G2
+

4π

Ω

(
1

µ2
− 1

4η

)
, (5.66)

SC(Rs −Rt) =
∑
L

f(|Rs −Rt −L|)erfc(
√
η|Rs −Rt −L|)+

4π

Ω

∑
G 6=0

e
−G2

4η

G2
eiG(Rs−Rt) +

4π

Ω

(
1

µ2
− 1

4η

)
,

(5.67)
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SDij (Rs −Rt) =
∑
L

(
√
ηh(
√
η|Rs −Rt −L|)δij+

ηh′(
√
η|Rs −Rt −L|)(Rs −Rt −L)i(Rs −Rt −L)j

|Rs −Rt −L|

)
+

+
∑
G 6=0

eiG(Rs−Rt)
4π

Ω

GiGj

G2

e−
G2

4η

G2

(
2 +

G2

2η

)
,

(5.68)

where erfc(x) = 1 − erf(x), erf(x) is the error function [80], and h(x) = erfc(x)
x

.
Since Eqs. (5.65) and (5.68) do not diverge in µ, the divergent parts of the Ionic
flux are given only by Eqs. (5.66) and (5.67):

JnB
div = e2 4π

Ωµ2

∑
s

VsZ
2
s , (5.69)

JnC
div = e2 4π

µ2Ω

∑
s

∑
t6=s

ZsZtVs, (5.70)

Jn
div = JnB

div + JnC
div ,

= Ztote
2 4π

µ2Ω

∑
s

ZsVs. (5.71)

Hartree and Exchange-correlation currents

A finite-difference scheme, explained in detail in section 5.2.2, can be directly
implemented to evaluate the scalar fields v̇H(r) and ṅ(r), which are needed to
evaluate JH and JXC . For the Hartree current, the gradient ∇vH(r) is needed as
well. Since the gradient operator in reciprocal space is multiplicative, this suggests
to rewrite the entire expression in reciprocal space:

JH = −i Ω

4πe2

∑
G

v̇H(G)vH(−G)G, (5.72)

which is the equation actually implemented. Analogously, for JXC the gradient
∇n(r) is first computed in reciprocal space and then Fourier transformed onto
the real grid. In the PBE case, εGGA has an explicit analytical expression as a
function of n and |∇n|. The analytic expression of the derivative ∂εGGA/∂(∇n) is
cumbersome but can be straightforwardly derived from the latter. The resulting
expression is then evaluated at the local values of n(ri) and ∇n(rs) for each point
rs of the grid in real space. Finally, contributions from all grid points are summed
up.



40 Green-Kubo simulation of transport properties

Electronic density current

As a by-product of the computation of the adiabatic energy flux, QEHeat also
evaluates the adiabatic electron-number flux by implementing Thouless’ expression
[81] and using DFPT [79]. To this end, by leveraging the continuity equation, one
first formally expresses the number flux as the first moment of the time derivative
of the electron number density, to obtain for every Cartesian component i:

J el
i =

∫
ṅ(r)ridr

=
∑
v

〈
φv|r̂i|φ̇v

〉
+
〈
φ̇v|r̂i|φv

〉
= 2

∑
v

〈
φ̄ c
v i|φ̇ c

v

〉
. (5.73)

All quantities needed to evaluate the Electronic density current have already been
discussed in the section dedicated to the Kohn-Sham current. The electronic flux
thus evaluated is interesting per se, e.g. to compute the electric conductivity in
ionic conductors, and also as an ingredient to facilitate the statistical analysis
of the energy-flux time series, using multi-component [12] or decorrelation [70]
techniques.

Center-of-mass ionic current and Charge current

The code outputs a trivial but useful current defined for each atomic species as

JCM
S =

∑
t∈S

Vt, (5.74)

where S is the atomic species index. The sum is over all atoms of kind S. This
current can be used both for data analysis or for computing the Charge current
together with Eq. (5.73):

JQ = −eJ el +
∑
t

vteZt = −eJ el + e
∑
S

ZSJ
CM
S (5.75)

where eZS is the pseudo-potential charge of the atom of species S, and J el is the
Electronic density current computed by the code, defined in Eq. (5.73).

Divergences

In this section, we discuss the divergences arisen in the computations of Ewald
sums in Section 5.2.1. First of all, we note that J0

div + Jn
div = 0, showing that the

expression for the total MUB flux is free of any divergent term, as we already
stated in Section 5.1. We highlight that any divergent term, being J0

div, J
nB
div or
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energy_current

delta_t = 1.000,

file_output = ’current_hz’,

eta = 0.100,

n_max = 5,

trajdir = ’traj/cp’,

first_step = 1,

vel_input_units = ’CP’

/

Figure 5.1: Example of the energy current namelist. delta t is the time used for
numerical derivatives. eta and n max are the parameters used to converge Ewald
sums. trajdir is the prefix of the trajectory files. In this example, the program reads
the files ”traj/cp.pos” and ”traj/cp.vel”. first step tell the program the first step id
to compute. The step ids are part of the trajectory file format. After this namelist
the full pw.x input is required. A full example of the input and the documentation
of the keywords can be found at https://gitlab.com/QEF/q-e/-/tree/master/
QEHeat/Doc. See also Section 5.2.3.

JnC
div , it can be written as a sum of terms depending only on the atomic species,

precisely as JnB
div . Thus, invoking the same invariance principles that allowed us

to neglect JnB
div , we can state that any divergent contribution is non diffusive and

would not contribute to the transport coefficient.

5.2.2 Code structure

We start by describing the strategy implemented to compute numerical derivatives
of quantities appearing in Eqs. (5.11), (5.14), and (5.15), like ṅ and v̇H , since they
require a special treatment. Quite generally, one needs to evaluate terms of the
type ḟ({Rs(t)}), where the function f can be a scalar function, which depends on
time only through the set of the instantaneous ionic positions {Rs(t)}, evolving
according to Hamilton’s equations of motion. QEHeat implements a finite-difference
scheme, using by default a symmetric numerical differentiation formula:

ḟ({Rs}) ≈
f({Rs + Vsdt/2})− f({Rs − Vsdt/2})

dt
(5.76)

The small parameter dt is an input of the computation. In such a scheme quan-
tities that are not differentiated are evaluated at time t, so three wave-functions
are required to be kept in memory at the same time. QEHeat performs therefore
for each step two additional self-consistent-field (SCF) DFT calculations, using
the same DFT solver of the Quantum ESPRESSO distribution, at slightly dis-
placed positions, i.e. {Rs−Vsdt/2} and {Rs+Vsdt/2} along the AIMD trajectory.

https://gitlab.com/QEF/q-e/-/tree/master/QEHeat/Doc
https://gitlab.com/QEF/q-e/-/tree/master/QEHeat/Doc
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The wave-functions of the previous calculation are used as a starting point for the
next one, which require much less iterations to converge. We note that QEHeat

gives the user also the possibility to use a non-symmetric differentiation scheme,
which is shown in 5.2.6. This scheme is computationally cheaper. Nevertheless,
for differentiable functions, the order of convergence of the symmetric scheme is
quadratic in dt, whereas the non-symmetric one is linear. Accordingly, the sta-
bility is improved with the default symmetric scheme. We recommend therefore
the latter and use it for all calculations here presented. See also the dedicated 5.2.6.

The trajectory data is managed by the Fortran derived data type
cpv_trajectory defined in the file cpv_traj.f90, while the orbitals and the
associated atomic position are managed by the derived type scf_result, im-
plemented in scf_result.f90. The most relevant subroutine that acts on this
object is scf_result_set_from_global_variable, that copies the eigenfunc-
tions, the eigenvalues, the potential and the atomic positions from the Quantum
ESPRESSO’s global variables to the instance of scf_result. The results for each
of the three (or two) wave-functions that are required by the computation routines
are stored in the variable scf_all, defined in the main program routine.

The code starts by reading the input “namelists”: first the energy_current

namelist, then all the pw.x namelists. Then it calls all the pw.x-related initializa-
tion routines. After eventually reading the previously generated output file that
allows the program to set the correct starting timestep, it enters the main loop
over the input trajectory timesteps. The trajectory files have the same format of
Quantum ESPRESSO’s cp.x code output files.

The most important routines, where the above mentioned data structures are
used, are the following:

• SUBROUTINE current_zero (module zero_mod)
Carries out the computation of Eq. (5.12). This routine is called in the middle
of the computation using the same timestep t of the positions stored in the
input trajectory, so that the result does not depend on dt.

• SUBROUTINE current_ionic (module ionic_mod)
Computes all parts of Eq. (5.13), and it is called as current_zero at the same
timestep of the input trajectory

• SUBROUTINE current_hartree_xc (module hartree_xc_mod)
Computes (5.14) and (5.15). Since a numerical derivative is needed, this routine
reads the wave-functions from the global type scf_all and it is run at the end
of all necessary run_pwscf calls.

• SUBROUTINE current_kohn_sham (module kohn_sham_mod)
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Computes (5.11). As current_hartree_xc, it needs all the wave-functions cal-
culated by the DFT solver for this step.

• SUBROUTINE run_pwscf

Uses Quantum ESPRESSO’s routines to solve the DFT problem for the
atomic positions stored in the global array tau. Equivalent (but the starting
wave-function and potential, that can be the last computed one) to a stan-
dard call to the pw.x program with the input stripped of the ENERGY_CURRENT

namelist. The result is stored in the Quantum Espresso’s global arrays (evc)

• SUBROUTINE prepare_next_step

This routine is used to change the global array tau to tau + vel·dt·ipm, where
ipm is the argument of the subroutine that can be -1,0,1. After doing that it
calls the necessary routines to prepare the potential for run_pwscf.

The 4 modules, one for each part of the MUB current, are completely independent
of one another. The structure of the main loop over the trajectory’s time steps is
summarized in Algorithm 1.

Algorithm 1 Workflow of all currents.f90.

1: Quantum ESPRESSO initialization (plane waves, pseudo-potentials,...)
2: Reading of Restart
3: for each snapshot do
4: call run_pwscf with positions displaced at t− dt/2
5: call run_pwscf with non-displaced positions at t
6: call current_zero, evaluate currents derived from the pseudo-potential
7: call current_ionic, evaluate the electrostatic and kinetic Ionic current
8: call run_pwscf with positions displaced at t+ dt/2
9: call current_hartree_xc, evaluate Excange and Hartree currents

10: call current_kohn_sham, evaluate Kohn-Sham current

Steps 6 and 7 do not require any finite differences, while steps 9 and 10 do. Step 10 is

the most expensive.

As every big computational code an extended test suite is needed to safeguard
the correctness of the calculation after every source code modification. We imple-
mented small tests that are able to run on a single core of a cheap laptop that
check against changes in the numerical output of many parts of the code, using
the standard Quantum ESPRESSO’s test suite framework.

To conclude the section we want to do some remarks on the code and its
interactivity with others typical ab initio simulations tools. In principle the wave-
functions computed on-the fly by cp.x during the AIMD run could be used, but
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we preferred to implement a workflow where the computation of the currents is
completely decoupled from the AIMD engine, thus the wave-functions are always
recomputed by pw.x. The chosen approach allows the user to run the calculation
in post-processing mode, thus using the preferred code to generate the dynamics,
not to be limited to those in the QE packages. This way it allows, also, a trivial
and powerful per-snaphot parallelization.

5.2.3 Input description

The input is organized in a traditional Fortran namelist input file, similar to the
input files of many Quantum Espresso’s programs, and an optional trajectory file
(that is a file for the atomic velocities and a file for atomic positions) if the user
wants to compute the energy current for more than one snapshot with a single run.
A full example of the input can be found at https://gitlab.com/QEF/q-e/-/

tree/master/QEHeat/examples. Before running QEHeat it is necessary to obtain
velocities and positions from a different code, for a complete description of the
units of measure see Table 1. If the Quantum Espresso’s cp.x program is used
for this purpose, its output trajectory files can be recycled as input trajectory
files without any modification. The program’s mandatory input is organized into
an ENERGY_CURRENT namelist and all the usual pw.x namelists. We remind the
user that, up to the present version, only norm conserving pseupotentials and
the PBE exchange correlation functional are supported. At the end of the input
file the ATOMIC_VELOCITIES card is required. In the IONS namelists the value
ion_velocities = ’from_input’ is required, since the program must read the
atomic velocities to compute the energy current. An extensive input description
can be found in the documentation, inside the Doc folder of the code repository [82]
. Here we remark the most important parameters of the ENERGY_CURRENT namelist:

• delta_t : time in PW’s atomic unit used to compute all the numerical deriva-
tives like the one in Eq. (5.76);

• trajdir : prefix of the cp-formatted trajectory. Optional: if not setted, only
the positions and the velocities of the input file are read;

• n_max : number of periodic images along the directions of each basis cell vector
to converge Ewald sums. This fixes the range of L in Eq. (5.13) ;

• eta : convergence parameter of the Ewald sums needed in the computation of
Jn, for more details see Section 5.2.1.

An example of the namelist is provided in Fig. 5.1. An additional output file is
written and updated at the end of each step in the folder where the program is

https://gitlab.com/QEF/q-e/-/tree/master/QEHeat/examples
https://gitlab.com/QEF/q-e/-/tree/master/QEHeat/examples
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parameter units

INPUT

dt τa.u.

eta 1/a2
0

velocities a0/τa.u. (CP units can be specified)

positions a0

OUTPUT

energy current Ry · a0/τa.u.

electronic density current a0/τa.u.

center of mass currents a0/τa.u.

Table 5.1: Units used for the input and the output, where Ry = 2.1799 ·10−18J =
13.606eV, a0 = 5.2918 · 10−11m, τa.u. = 4.8378 · 10−17s are the Rydberg units
of energy, the Bohr radius and the time unit in Rydberg atomic units. The pro-
gram assumes the input velocities to be in Rydberg atomic units, the standard for
pw.x, unless specified otherwise with vel input units=’CP’ in the energy current
namelist. In that case it assumes Hartree atomic units, the standard for cp.x.
cp.x’s unit of time is 2.4189 · 10−17s.

run. All the currents are printed in a column format, ready to be analyzed by an
external post-processing tool.

As discussed in Section 5.2.6, CONTROL’s conv_thr and ENERGY_CURRENT’s
delta_t have a profound link and influence heavily each other, and despite we
think the default value of delta_t=1.0 is safe enough, they must be carefully
tested, veryfing that the standard deviation of the result is low enough.

The standard deviation of the output energy current can be estimated
by repeating the same calculation for every step, many different times, set-
ting for each repetition a random starting potential and a random start-
ing wave-function. The input options re_init_wfc_1 = .true. together with
n_repeat_every_step = 20, for example, do 20 repetition of every timestep, re-
setting the starting wave-functions/potential before the first scf calculation. The
pw.x’s input option startingwfc = ’random’ is suggested, to obtain a faithful
error estimation. If more reinitializations are desired, the options re_init_wfc_2

and re_init_wfc_3 can control the randomness of the starting wfc and potential
of every of the 3 (or 2) wave-functions needed to perform the numerical derivatives,
as explained in Section 5.2.2. Note that when the wave-function is reinitialized from
scratch, the computation time raises since more scf cycles are required to reach
the target convergence threshold. When n_repeat_every_step is greater than 1,
an additional column formatted output file with the averages and the standard
deviations is produced.
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5.2.4 Implementation checks: Finite systems translating at constant speed
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Figure 5.2: Proof that the behaviour of the code is correct for systems translating
at equilibrium and constant velocity. In this setting, the output of QEHeat can be
exactly compared with the known theoretical value, indicated with Jtheory, in the
large cell limit. Indeed the plot shows that the ratio J/Jtheory goes to one increasing
the simulation cell. This test can be performed for J equal to the electronic density
current (dotted), that is used to calculate a part of the energy current, and for the
energy current itself (not dotted). Tests are performed for a single relaxed water
molecule (H2O) and a single argon atom (Ar). The electronic current should be,
in the infinite cell limit, Jeltheory = Nel × v, where Nel is the number of electrons

and the energy flux should be, in the infinite cell limit, equal to Jenetheory = Etot×v,

Etot being the total energy.

The Green-Kubo current associated with a localized energy density ε(r, t)
rigidly translating with constant velocity v, is equal to Etot × v. One possi-
ble way to show this is to consider ε(r, t) = ε(r − vt, 0) ≡ ε0(r − vt), thus
Ja =

∫
ε̇radr = −vb

∫
(∂bε

0)radr = va
∫
ε0dr = Etotva. Note that we used the

fact that ε0 can be taken identically equal to zero at the boundary of the integra-
tion volume, to remove boundary contributions from the integration by parts. The
identity requires therefore the energy density to be localized and this condition
can be mimicked in PBC considering a large enough supercell. We used this prop-
erty to check the correctness of our implementation for each individual current in



DFT energy current 47

Eq. (5.10). We simulate a single Argon atom and a water molecule at equilibrium,
both translating at constant speed. We then compare JMUB output from QEHeat

and Etotv, where Etot is evaluated using an independent computation from the
QE code. As discussed, the resulting currents need to be equal only in the limit
of large cells, where boundary effects can be neglected, i.e. the energy density is
truly localized, and under tight convergence criteria. In Fig. 5.2, we report the
ratio between the computed and theoretical values as a function of the cell param-
eter, showing that the correct limit behaviour is recovered. For this calculation we
used a cutoff of 120 Ry and econv = 10−14 Ry. In the same figure, using the same
approach, we tested the electronic density current defined in Eq. (5.73) as well.
In the infinite cell limit the electron density current of a system translating at a
constant speed v is J el = Nev where Ne is the number of electrons. It is possible
to see in Fig. 5.2 that the correct limit is obtained, validating the implementation
of the code.

5.2.5 Implementation check of individual currents

In the case of a finite system at equilibrium translating at constant speed v,
the current JMUB must be equal to Etot × v. In Fig. 5.3 we report the mod-
ulus of JMUB − Etotv, normalized by the module of Etotv and indicated with
REF ERROR. In order to check the correct implementation of each individual
current, we also report values of ∆X , which represent the same quantity after the
substitution JMUB → JMUB − JX , X ∈ {XC, IONIC,ZERO,KOHN}. If the cur-
rent X is correctly computed, the error with respect to the reference value Etotv
should increase, as is indeed observed. For Argon, we used the QE parameters
ecut = 160 Ry and econv = 10−16 Ry. For water ecut = 120 Ry, econv = 10−14 Ry.
We used a cubic simulation cell of 20 and 30 Å for Argon and water respectively.

5.2.6 Numerical stability of QEHeat

In the following subsection, we show the stability and convergence properties of a
QEHeat calculation on a snapshot of 125 water molecules.

Fig. 5.4 reports a scaled version of the three Cartesian components of the
MUB energy flux Ji(dt), i ∈ {x, z, y}, as a function of the time-discretization pa-
rameter dt. The x−axis is in units of the Car-Parinello MD simulation timestep,
indicated with ∆t. For each Cartesian coordinate, the behaviour of the error
(Ji(dt) − JREF,i)/JREF, considering a reference and scale values, is reported, thus
showing possible non-linear contributions due to the choice of a large dt. The ref-
erence value JREF,i is evaluated for each coordinate at the smallest value of dt
available and JREF = |JREF|.

Fig. 5.4 shows the presence of small non-linear effects for higher values of dt,
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Figure 5.3: In the case of a finite system at equilibrium translating at constant
speed v, the current JMUB must be equal to J theory ≡ Etot×v. We report in the
picture on the leftmost histogram REF ERROR = |JMUB − J theory|/|J theory| in
the case of an Argon atom and a water molecule translating at constant speed.
Ideally REF ERROR should be identically zero, but for numerical reasons it can
be just a small value. To check that REF ERROR is indeed small and at the
same time to validate the correct implementation of each individual current, ∆X

represents the same quantity after the substitution, in the numerator of the frac-
tion, JMUB → JMUB − JX , X ∈ {XC, IONIC,ZERO,KOHN}. Since removing
a current component increases the error w.r.t. the expected value significantly,
this proves the correct implementation of each individual current. See text for the
parameters used in the computations.

and that, at least for the presented system, nonlinear effects do not take off sub-
stantially up to dt = 2∆t. At this value of dt, even reducing it by a factor of 10
would change the component of the current by less than 0.001%, a negligible error
given that a typical value of the thermal transport coefficient has an accuracy of
10% [8, 12, 83]. Moreover dt = 2∆t would be beneficial in an on-the-fly computa-
tion, allowing to reuse the same wavefunctions computed in the MD simulation,
neglecting the need for the recomputation of the scf cycles. The errorbars in the
figure are computed using the testing feature, provided with QEHeat, presented
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Figure 5.4: The behaviour of (Ji(dt)−JREF,i)/JREF as a function of the timestep
dt used in the symmetric derivative for a snapshot of H2O, where JREF = |JREF|
and i ∈ {x, y, z}. The symbol Ji(dt) refers to a component of the MUB flux com-
puted with a discretization step dt, as reported in the x-axis. The reference value
JREF,i is evaluated for each coordinate at the smallest value of dt available, in the
example taken to be with dt/∆t = 0.13. The x-axis is in units of the simulation
step ∆t. The picture shows that the code can handle correctly even small values of
dt. At the same time, it shows that the non-linear effects due to high values of dt are
negligible up to the range of dt explored, and in particular negligible at dt = 2∆t.
The errorbar are an estimate of the statistical uncertainty computed using the
testing feature presented in Section 5.2.3 and using 20 different initialization of
the wavefunctions.

in Section 5.2.3 and averaging 20 fluxes obtained from different initial random
wave-functions.

The previous calculations were performed with the self-consistent threshold
econv equal to 10−14 Ry. The lower, the better the quality of the wavefunctions
calculated. In order to further test and prove the stability of the MUB current,
we used again the aforementioned testing feature to compute the dt dependence
of the statistical uncertainty of the MUB current, at different values of econv.
Fig. 5.5 shows the percentage error of the x-component of the flux for a specific
snapshot of 125 molecule. Even though the dependence on dt is similar for the
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Figure 5.5: Percentage error on the x component of the total energy flux for
a selected snapshot of H2O . The source of error here considered is due to the
inherent noise on the wave-functions computed by Quantum ESPRESSO and
was estimated restarting QEHeat 20−times with different seeds. The error is plotted
for different values of econv as function of the timestep dt used in the symmetric
derivative. Note that the error decreases decreasing econv, as expected, but also
increasing dt. Not shown here is the onset of the non-linear behavior due to a
too large dt, visible, instead, in Fig. 5.4. (see also Section 5.2.6). Different colors
represent different values of econv.

two values of econv, it is clear that increasing econv, at a fixed dt, increases the
statistical error by orders of magnitude, three orders when econv is changed from
10−14 Ry to 10−08 Ry and at any fixed dt. Note also that the variance decreases
when increasing dt, in an exponential way. It must be stated that the errors in
Fig. 5.5 do not include the effect of the non-linearity due to a too large dt, bringing
a (small) bias to the estimation of the MUB flux which can be seen, for example,
in Fig. 5.4.

In Section 5.2.2 we showed how QEHeat implements numerical derivatives
with the symmetric approach. The code allows also, simply changing the
three_point_derivative keyword to false, to compute the derivative within
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a non-symmetric approach. In this case the implemented expression is:

ḟ({Rs}) ≈
f({Rs})− f({Rs − Vsdt})

dt
, (5.77)

removing one scf computation with respect to the symmetric derivative scheme.
Quantities that are not numerically time-derived are evaluated with atoms at po-
sitions {Rs}. For the same snapshot of water of Fig. 5.5 and ecut = 85 Ry,
econv = 10−14 Ry, we computed the energy current with both the non and sym-
metric derivative approaches. Figure 5.6 shows that the latter returns an energy
flux by far more numerically stable with dt. However, in both cases, the values
of the current only slowly deviate from a constant behaviour, after increasing dt.
Even the 2-point derivative gives results that differ of few percentage points.
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Figure 5.6: The behaviour of Ji(dt)/JREF as function of the timestep dt used
in the numerical derivative. The three panels compare the results obtained with
the non and symmetric derivative, each panel shows a different component of the
energy current Ji. JREF, taken as reference, is the modulus of MUB flux computed
for dt = 0.66∆t and the symmetric derivative approach. The errorbars are obtained
repeating the computation of the current with a different initial wave-function. The
picture also shows that for the non-symmetric derivative there are only slightly
stronger non-linear behavior on the current for large dt.
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5.2.7 Example of a thermal conductivity calculation

Our system contains 64 molecules water system at 600 K and at PBE level of
theory and we performed a ab initio MD trajectory using a cubic box with size
of 12.43Å and an integration timestep ∆t = 3 in Hartree atomic units, for a total
simulation length of 240ps. For these calculations, we first investigated two val-
ues of econv, namely 10−8 and 10−11 Ry with a rather small dt = 0.5 Rydberg
atomic units. The final result of the computation, i.e. the thermal conductivity
coefficient, is affected very weakly by this parameter, that on the contrary changes
in a noticeable way the computational cost. In this case both computations gave
(1.07±0.09)W/mK. Moreover we checked that using a dt that is equal to the inte-
gration timestep of the Car-Parrinello simulation and econv = 10−8 produces the
same spectrum with no noticeable differences and the same thermal conductivity
coefficient: in this case we had (0.98± 0.09)W/mK.

According to our experience, the overall cost of a QEHeat calculation is often of
the same order of magnitude of the full Car Parrinello molecular dynamics simula-
tion even if the QEHeat computation can be trivially parallelized. The data analysis
with SPORTRAN adds a negligible computational cost. The total computational time
can be also reduced choosing an appropriate length of the simulation, according
to the desired precision.

Fig. 5.7 show the dependence of κ from the simulation length both for our
water system (upper panel) and a solid ice X structure from Ref. [83] (lower panel),
where the oxygen are packed in a BBC lattice and tetrahedrally coordinated to
hydrogen atoms located exactly midway between two neighbouring oxygen atoms.
In the present didactic work we choose a very long simulation time of 240 ps but
from the figure is it clear that a simulation length around 100 ps can provide a
reasonable estimate. Depending on the system, even shorter simulations lengths
could suffice: the lower panel of Fig. 5.7 presents the same data of ice X from Ref.
[83], where a simulation of 20− 30 ps proved to be sufficient.

5.2.8 Computational Cost

In order to evaluate the computational cost of a QEHeat calculation consider a
test systems of 64 molecules water system at 600 K and at PBE level of theory. We
performed a molecular dynamics trajectory with the cp.x code using a cubic box
with size of 12.43Å and an integration timestep ∆t = 3 in Hartree atomic units,
with a total length of 240ps.

The actual cost of a calculation depends on several factors that one should take
into consideration, e.g.:

• Typical decaying times. Decaying times, defined as time lengths when the rel-
evant autocorrelation functions become negligible, can vary a lot according to
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Figure 5.7: The dependence of κ with respect to the trajectory length for 64
molecules of water system at 600K and for the ice X system in [83]. The orange
line correspond to the values with the longest trajectory possible, κ = 1.07 ±
0.09 W/(mK) and κ = 16.1 ± 1.1 W/(mK) for water and ice X respectively. The
data for the ice X system are taken from the Material Cloud repository [84]

the system. Longer decaying times require longer simulations to acquire enough
statistics. Typically, liquid materials show smaller decaying times. Other con-
venient situations are solids at high pressures and temperatures, or glasses.

• Sampling frequency. It is not necessary to compute the energy flux for every
single step of the molecular dynamics trajectory, in order to avoid unneeded
wastes of computer time. The optimal sampling frequency can depend on the
chosen methodology to extract the thermal conductivity coefficient from the
time series of the energy flux. More information about the data analysis in
Chapter 4. We evaluated the heat flux every 60 units of time in Hartree atomic
unit, i.e. 20 Car-Parrinello molecular dynamics steps in our simulation.

• Simulation cell sizes. One has to take into account that strongly harmonic
systems, like crystalline solids at ambient temperature, may require large sim-
ulation cells to remove boundary effects. For high temperature or high pressure
solids this should be a smaller issue. Anharhmonic effects in disordered sys-
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tems or glasses can also reduce the typical path lengths and reduce therefore
boundary effects.

• Required accuracy. All settings should be tuned according to the desired accu-
racy on the thermal conductivity coefficient, which may vary according to the
application.

We provide here the overall computational cost of the computation presented in
section 5.2.7 for liquid water, as a guideline, even if system specific setups are
suggested. For this test, we chose conservative parameters and the default sym-
metric derivative scheme. We ran the MD calculations with 4 nodes, 192 processors,
whereas the QEHeat calculations, being trivially parallelizable, where each run on
1 node and 48 processors. All times here reported are multiplied by the number of
processors and identify therefore the total cost of the computation.
For the 64-water molecules system of Section 5.2.7, a general MD step costs
≈ 1.2 × 102s of cpu time (average over ≈ 2.5 × 105 steps, leading to a trajectory
240ps long). The cost of evaluating JMUB for a single snapshot was ≈ 1.5× 103s
of cpu time, in which 84% of the time is reserved to the solution of the linear
system in Eq. (5.11) during the evaluation of JKS. The 3 minimizations needed
for the symmetric derivative scheme cost all together ≈ 2.2× 103s (mean over all
PW calculations). Evaluating JMUB every 20 MD timesteps, the overall overhead
becomes around 1.5 times the cost of the whole ab initio molecular dynamics sim-
ulation.
To conclude, at the present state our code recomputes the self-consistent cycles for
each step, adding some extra time that we considered in this analysis. There are
undergoing work trying to use a more on-the-fly approach, directly taking advan-
tage of the wafefunctions provided during the Car-Parrinello MD simulation. A
promising feature considering that our analysis on the dt dependence implies that
the discretization step can be chosen equal to the MD time step, and it will be
available in a future releases. All the computations are done on the Tier-0 system
called Marconi CINECA, which have 3188 nodes equipped with 2 Intel Xeon 8160
(SkyLake) at 2.10 GHz with 24-cores each [85].
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Ab initio simulations of thermal transport: results

In the following chapter, we will present the results for thermal conductivity of
water from AIMD simulations from Ref. [86].

We performed four AIMD simulations of water, corresponding to different
temperatures and phases, using the PBE functional approximation of DFT, the
plane-wave pseudopotential method, and periodic boundary conditions. Hamann-
Schlüter-Chiang-Vanderbilt norm-conserving pseudopotentials [87] were used with
a kinetic-energy cutoff of 85 Ry. All the simulations were performed with the Car-
Parrinello extended-Langrangian method [7] using the cp.x component of Quan-
tum ESPRESSO [73–75] and setting the fictitious electronic mass to 25 physical
masses and the timestep to dt = 0.073 fs. Liquid water simulations were done
with 125 water molecules inside a cubic computational box of side l = 15.52 Å,
hexagonal ice-Ih simulations used 128 water molecules inside an orthogonal cell,
with sides: l1 = 18.084 Å, l2 = 15.664 Å and l3 = 14.724 Å. It is known that within
the PBE XC functional approximation, liquid water exhibits enhanced short-range
order [35, 36] and a melting temperature that is more than 100 K higher than in
experiment [88, 89], while solid ice has higher density than liquid water at co-
existence. In order to compensate for this shortfall, it is customary to offset the
simulation conditions by increasing the temperature by ≈ 100 K. We performed
simulations of the liquid at three temperatures (521 K, 431 K and 409 K), and of
ice in the hexagonal Ih structure at 260 K. Each simulation was 100 ps long. Then,
using the QEHeat [43] code, we computed the MUB flux every 3.1 fs. The statistical
noise affecting the estimates of the GK integrals is larger when the spectral power of
the flux time series is larger. Because of gauge invariance, different representations
of the energy current may carry a very different spectral power, and still yield the
same conductivity, which is the zero-frequency limit of the flux power spectrum.
The MUB energy flux turns out to carry an impractically large spectral power,
cause by non-diffusive signals, which can be tamed to some extent by leveraging
gauge and convective invariance. Gauge invariance is first exploited by the velocity
renormalization technique of Ref. [70]. In a nutshell, it can be demonstrated that
subtracting to each atomic velocity the average velocity of all the atoms of the
same chemical species, results in a current with a much reduced spectral weight
but the same conductivity. Further spectral weight can be subtracted by adding
to the resulting effective flux any linear combination of non-diffusive fluxes. This
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Figure 6.1: Comparison of the (window-filtered) spectrum of the velocity renor-
malized MUB flux (orange) and of the velocity renormalized MUB flux decorrelated
with the adiabatic electronic flux (blue). Both spectrum are filtered with a moving
average of 0.1 THz. The renormalized MUB flux has a higher power but close to
zero the two spectra converge to the same value. The two dashed lines in the inset
represent the cepstral filters of the power spectra.

can be effectively done by treating the (possibly renormalized) energy current as
one component of an Q-component system, where all the other currents are non-
diffusive ones [12], as in Fig. 4.3. Here, we choose Q = 2 and take the electronic
adiabatic current as the auxiliary non-diffusive one. In all cases, the transport
coefficients are obtained from the cepstral analysis of the power spectrum of the
relevant currents, using the SporTran [68] code.

Fig. 6.1 displays the (window-filtered) power spectrum of the MUB flux from
one of our Car-Parrinello MD simulations of liquid water at an average temperature
of 431 K, using renormalized velocities (orange line), and further removing the
contribution of the adiabatic electron current from the energy flux (blue line). In
the inset we see that the two spectra converge to the same value when ω = 0. The
decorrelation decreases the power of the spectrum and flattens the spectrum near
ω = 0 facilitating data analysis by reducing the number of the required cepstral
coefficients.
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phase T κ f ∗ P ∗

K W/(mK) THz

liquid 521 0.98± 0.19 20.7 55

liquid 431 1.06± 0.11 20.1 17

liquid 409 1.12± 0.17 45.9 33

ice Ih 260 1.8± 0.4 30.3 53

Table 6.1: Properties of water from AIMD. All liquid simulations used 125 H2O
molecules inside a cubic box of side l = 15.52 Å. The ice Ih simulations used
128 H2O molecules inside an orthogonal cell with sides: l1 = 18.084 Å, l2 =
15.664 Å and l3 = 14.724 Å. T is the mean temperature of the simulations and κ
is the thermal transport coefficient. The lasts two columns contain the values of
f∗ and P ∗ used for the ceptral analysis.

Table 6.1 contains the thermal conductivities computed from AIMD using
QEHeatand DPMD for all the simulations that we performed. The results differ
substantially from experiment (κexpt ≈ 0.6 W/(mK) vs. κPBE ≈ 1 W/(mK) for
liquid water at near ambient conditions [90]). This discrepancy might be ascribed
mostly to inaccuracies of the PBE functional, which is known to not provide a
correctly structured water[35, 36, 88]. In Chapter 8 we will use neural-network
potentials to extend our study with a more advanced functional approximation,
the strongly constrained and appropriately normed (SCAN) meta-GGA [39].
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Deep Potential model

The neural-network potentials (NNP) based on the deep potential (DP) framework
uses a local decomposition of the total potential energy of the system in terms
of atomic contributions, which makes straightforward to define the energy flux
from which to compute the heat conductivity via the GK theory. Deep potential
molecular dynamics (DPMD) simulations have been used successfully to study
bulk thermodynamic properties beyond the reach of direct DFT calculations [19–
25] as well as dynamic properties like mass diffusion in solid state electrolytes [26,
27], infrared spectra of water and ice [28] and Raman spectra of water [91].

7.1 Deep Neural Networks

For a first introduction to the concept of deep neural networks (DNN) we follow
chapter 6 of Ref. [92]. The goal of a neural network is to approximate some func-
tion f ? [92]. They are called networks because they are typically represented by
composing together many different (non linear) functions. We can consider three
functions f (1), f (2), f (3) connected in a chain, to form f (x) = f (3)

(
f (2)

(
f (1) (x)

))
.

In this case, f (1) is called first layer, f (2) is called the second layer and so on.
The number of functions chained gives the depth of the network. The final layer
is called the output layer. During the training, we provide approximate examples
of f ?((x) evaluated for different values of x, thus driving f(x) to match f ?(x).
The training data specify what the output layer must do for each input, but do
not specify what any other intermediate layer should do, leaving this decision to
the optimization algorithm. For that reason, they are called hidden layers. The
elements of the layers are called neurons and, in most neural network, their func-
tional form is a linear transformation defined by learned parameters followed by a
fixed non linear function, called activation function:

f
(1)
j = σ

(
b

(1)
j +W

(1)
i,j Ii

)
, (7.1)

where bj are called biases, Wij weights and σ, the activation function. A general
neural network with L hidden layers can be written as:
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y(I;W ) = f (L)
(
f (L−1)

(
· · ·f (1) (I)

))
(7.2)

= σ
(
b(L) + W (L) · σ

(
b(L−1) + W (L−1) · σ

(
· · ·σ(b(1) + W (1) · I)

)))
,

(7.3)

where the symbol W denotes a dependence from both the weights W (l) and the
biases b(l).

Fig. 7.1 shows a pictorial representation of a DNN, where in green is reported
the input vector, in blue the output, the hidden layers are in orange and the grey
lines represent the weights.

Figure 7.1: A pictorial representation of a DNN with two hidden layers, the
grey lines correspond to the weight and biases that form the connection inside the
network. The input I (green circles) is a vector of dimension 5, the output (blue)
has dimension 4 and the 2 hidden layers (orange) have 7 neurons each.

The model is usually optimized minimizing a loss function L in the set of
parameters W , using standard algorithms like the the stochastic gradient descent
[92] or Adam [93]. In many applications L takes the following form:

L(W ) =
1

B

B∑
b=1

|y(Ib;W )− f ?(Ib)|2 , (7.4)

where f ? is the target function and b is summed over a batch of B training data
set.
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7.2 Construction of neural-network potentials

Descriptor

In order to construct a NNP, the first step is to build a descriptor that encodes
each atomic environment. Consider a system of N atoms, whose configurations
are represented by the set of atomic positions, {R1,R2, . . . ,RN} ∈ R3N . For each
atom, n, we consider only the neighbours, {q}, such that Rqn < Rc, where Rqn is
the modulus of the vector Rqn = [xqn, yqn, zqn]

.
= Rq−Rn, and Rc is a pre-defined

cut-off radius. Denoting with Nn the number of neighbours of n within the cutoff
radius, we define the local environment matrices K̃n ∈ RNn×4 to encode the local
environment:

K̃n =


σ(R1n)
R1n

σ(R1n)x1n

R2
1n

σ(R1n)y1n

R2
1n

σ(R1n)z1n
R2

1n
σ(R2n)
R2n

σ(R2n)x2n

R2
2n

σ(R2n)y2n

R2
2n

σ(R2n)z2n
R2

2n
...

...
...

...

 , (7.5)

where σ(Rqn) is the smoothing function:

σ(Rqn) =


1 Rqn < Rc1

−6Θ5 + 15Θ4 − 10Θ3 + 1 Rc1 < Rqn < Rc

0 Rc < Rqn

(7.6)

where Θ = Rqn−Rc1
Rc−Rc1 and Rc1 is the smoothing cut-off radius, that switch the interac-

tion smoothly to zero. The model encode the local environments within the cutoff
Rc, thus it assumes that all the important interaction can be described within. We
want our descriptor to preserve the natural symmetries of our system: rotation,
translational invariance and invariance exchanging two atoms of the same species.
We want to transform each K̃n in a symmetry-preserving input for neural network.
The first point is to define a local embedding network Gn = G(σ(Rqn)

Rqn
) as a neural

network mapping, depending only on the atomic species of atom n and its neigh-
bour m, from a scalar value σ(Rqn)

Rqn
to a vector of size M1. As last ingredient, let’s

take the first M2 columns of Gi and constructing the matrix Gn2 ∈ RNn×M2 . Fi-
nally, the symmetry-preserving descriptors (called encoded feature matrix in Ref.
[18]) Dn ∈ RM1×M2 of atom n can be defined:

Dn = (Gn)T K̃n(K̃n)TGn2. (7.7)

Every Dn is, then, reshaped into a vector and fed to a ”fitting” DNN which returns
the ”atomic contributions”, wn, to the energy. A more direct derivation of the
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symmetries of Dn can be found in the Supplemental material of Ref. [18]. The most
distinctive feature of DP-based models reside within the embedding matrix. The
symmetry preserving features functions are learned on-the-fly during the training
process, while, for example, the popular Behler-Parrinello approach [13] requires
a list of pre-defined parameters, that require human intervention.

Energy, forces and stress

We denote by W the full set of parameters that define the total potential energy,
E. Thus, as illustrated in Ref. [18], the extensive property of E is ensured by its
decomposition into ”atomic contributions”, wn:

EW ({K̃}) =
∑
n

wWαn (K̃n) ≡
∑
n

wn (7.8)

where αn denotes the chemical species of atom n. We use the notation (. . . )Wαn to
indicate that the parameters used to represent the ”atomic energy” only depend on
the chemical species αn of the n-th atom [18]. Being wn a well defined and easy to
compute function of the atomic positions, the atomic forces and their breakup into
individual atomic contributions, ∂wm

∂Rn
(needed in the definition of the energy flux ),

can be easily computed as the gradients of E and wn, respectively. In particular,
the computation of the latter can be divided into two contributions by applying
the chain rule:

Fn = ∇RnE
W ({K̃}) =

∑
m

∇Rnwm (7.9)

∇Rnwm =
∂wm
∂Rn

=
∑
i,j

∂wm

∂K̃ij
m

∂K̃ij
m

∂Rn

(7.10)

where i, j identifies an element of the matrix K̃m. The first terms can be easily
computed with TensorFlow [94], while the second must be handled separately
and coded explicitly [16, 18]. A more detailed description of the calculation can
be found in Section 7.3. Beside energies and forces, the neural-network potential
(NNP) predicts also the virial, Ξαβ, of the system defined as in Eq. (9.3). Using
Eq. (7.8) one can write[95]:

Ξαβ =
∑
n

RnαFnβ = −
∑
n6=m

Rnmα
∂EW

∂Rnmβ

, (7.11)

where the second term can be further be split in two contribution as previously
shown for the forces.
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The W parameters contained in the networks are optimized minimizing the fol-
lowing family of loss functions using the Adam stochastic gradient descent method
[93]:

L = pE∆E2 +
pf
3N

∑
n

∆F 2
n (7.12)

where ∆E2 and ∆F 2
n are the squared deviations of the potential energy and atomic

forces, respectively, between the reference DFT model and the NNP predictions.
The two prefactors, pE and pf , are needed to optimize the training efficiency and
to account for the difference in the physical dimensions of energies and forces. The
DeepMD-kit [95], also, allows to introduce inside the loss a term that depends on
the virial, that, since we didn’t used, is not reported in present work.

7.3 Heat trasport with DeepMD

The NNP, based on DP models, give an easy access to local energies, wn, that
directly enter in the equation of the energy current Eq. (3.27). An other key com-
ponent of Eq. (3.27) is the derivative of the local energy, ∂wm

∂Rn
. It is composed of

two terms, i.e., ∂wm
∂K̃m

and ∂K̃m
∂Rn

. Since wn is a well defined and easy to compute

function of the local environment matrices K̃m [18], the first term can be easily
obtained from TensorFlow [94] using the same back-propagation approach that
is commonly used during the training of a NNP [92, 96]. The second term must,
instead, be computed explicitly [16, 18]. Given the definition in Eq. (7.5) and the
smoothing function in Eq. (7.6), applying the chain rule we get:

∂K̃m

∂Rα
n

=
∂K̃m

∂Rβ
ql

∂Rβ
ql

∂Rα
n

(7.13)

where sums on repeated indices are implied, and α, β = 1, 2, 3 ≡ x, y, z denote
Cartesian coordinates. We find:

∂Rβ
ql

∂Rα
n

= δβ,α(δn,q − δn,l) (7.14)

∂K̃m

∂Rβ
ql

=
∂K̃m

∂Rβ
qm

δl,m +
∂K̃m

∂Rβ
ml

δq,m (7.15)

where δnm is the Kronecker delta.
Using i, j to represent line and column indices of the element of K̃m to be
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differentiated, a general element of
[
∂K̃m
∂Rβqm

]
ij

is non-zero only if atom q is the i-th

neighbour of m in the matrix K̃m:

[
∂K̃m

∂Rβ
qm

]
i,j

=



Rβqm
R2
qm

(
∂σqm
∂Rqm

− σqm
Rqm

)
if j = 1

∂σqm
∂Rqm

Rβ
qmR

j−1
qm

R3
qm

− 2σ
Rβ
qmR

j−1
qm

R4
qm

+ δβ,j−1
σqm
R2
qm

if j 6= 1

(7.16)

where σnm = σ(Rnm). With the same approach a similar expression for
[
∂K̃m
∂Rβml

]
i,j

can be obtained.
An implementation of the heat current with the DeepMD as presented in this

chapter ( and in [86]), has been released with the the latest versions of DeePMD-kit
[95]. This code extends the LAMMPS [97–99] interface of DeePMD-kit allowing
the computation of the heat current via the command compute heat/flux. For
more info see the documentation on DeePMD-kit [100].

In our DNN model only the forces and the total potential energy are fixed
by the training, the local distribution of the energy is freely left to the DNN to
learn during the training. Different models might give the same energy and forces
but different atomic energies. This ill-definition of atomic energy is not surprising
and arises in all classical force field and the invariances principles [8, 9, 12] (see
Section 3.3) insure us that the thermal transport coefficient is well defined. In
the next section, we will better state the problem and we will perform a small
numerical experiment to see the effects of having a batch of models trained over
the same data but with different initial conditions.

7.4 Gauge invariance and neural-network potential

In a DNN, the loss function is a highly nonconvex function of the weights [101–
103]. Its landscape presents many equivalent minima, thus models initialised with
different initial conditions might reach different minima.

We trained four different models on the same training data set of DFT-PBE
water configurations extracted from AIMD trajectories in the [400K – 600K] tem-
perature range. We label the models as: REF, A, B and C. At the end of the
training, we test them on a set of snapshots not present in the original training
set and they all reach a root mean square error (RMSE) equal to 0.4 meV/atom.
Using the REF-NNP, we performed a 100 ps NVE simulation of 125 molecule of
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liquid water at 400 K. Then, for every snapshot in the trajectory, we computed
the total potential energy, the local energies and energy fluxes with each of the
four models. To estimate the relative accuracy of A-, B- and C-NNP with respect
to the REF-NNP that generated the trajectory, we introduce:

∆i
E = max

t

(∣∣Ei
t − EREF

t

∣∣
Na

)
, (7.17)

where Na is the number of atoms, t is a snapshot in the trajectory, i = A, B,
C labels the model and E represents the total potential energy. In our numerical
experiment ∆i

E < RMSE = 0.4 meV/atom for any i.
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Figure 7.2: The time series of the atomic energy of two atoms, an hydrogen in
the upper panel a oxygen in the lower, computed with the different models.

In Fig. 7.2, we can compare the time series of the local energy of two atoms,
hydrogen in the upper panel and oxygen in the lower panel. The A- and B-NNP
predict similar w, but with the C- and REF-NNP we obtain much larger absolute
values. We can conclude that even though the four NNP predict very similar total
potential energies, the local decomposition in atomic energies is different.

In Fig. 7.3, we show the power spectrum obtained with each model. Since the
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atomic decomposition of the energy is not the same all the spectra are different for
ω = 0, but thanks to the invariance principles, the thermal transport coefficient is
the same. In the inset the dashed lines represent the ceptral filters, that for all the
models converge to consistent values of κ at ω = 0: κREF = 1.04± 0.07 W/(mK) ,
κA = 1.05± 0.07 W/(mK), κB = 1.06± 0.07 W/(mK), κC = 1.05± 0.07 W/(mK).
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Figure 7.3: The (window-filtered) power spectra of the energy flux computed
with the different models. In the inset the dashed lines represent the cepstral filter
computed with the different models, that even if at ω > 0 are not the same they
all collapse at zero to the same transport coefficient.
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Thermal transport in water via neural-network
molecular dynamics

In this chapter we present the results of the computation of thermal transport co-
efficient from DPMD simulations. Section 8.2 contains the benchmark of our DNN
methodology against the results from AIMD at PBE level. Having proved that
DPMD trustfully reproduces ab initio results, in Section 8.3, we take advantage of
the simple DNN expression for the heat current to compute the thermal transport
coefficients of liquid water at the SCAN meta-GGA level of theory. All the results
have been reported in Ref. [86]

8.1 Training parameters and test

We trained a DP model on a set of DFT-PBE data extracted from Car-Parrinello
trajectories at different temperatures in the [400K – 1000K] temperature range. In
the definition of the local environment matrices, the two radii inside the smoothing
function in Eq. (7.6) are Rc1 = 3.50 Å and Rc = 7.00 Å. The embedding network
has three layers with 25, 50 and 100 neurons respectively, whereas the fitting
network has three layers with 240 neurons each. The loss function is optimized
using the Adam stochastic gradient descent method [93], with a learning rate
starting at 0.005 and exponentially decaying, with a decay rate of 0.98, every 105

training step for a total of 1.5 · 106 training steps. In order to optimize training
the coefficients pE and pf in Eq. (7.12) were adjusted, respectively, from 0.05 to
1, and from 1000 to 1, during training.

The PBE neural network was tested against a set of Nv = 800 independent
snapshots of 125 molecules of water at temperatures in the range [400 K – 1000K],
obtaining a root-mean-square error of the forces of 0.05 eV/Å. Fig. 8.1 shows a
direct comparison between the α component of the ab initio force for the s-th atoms
in the b-th snapshot and the corresponding NN prediction. The red dashed line
correspond to FNN = FDFT, that fits the data with a coefficient of determination

67
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R2 = 0.998. R2 is computed with the usual formula for linear regression [104]:

R2 = 1−
∑

i(F
DFT
i − FNN

i )2∑
i(F

DFT
i − F̄DFT )2

, (8.1)

where F̄DFT is the average of all the force components in the dataset.

5 0 5
FNNP(eV/Å)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

FD
FT

(e
V/

Å)

R2 = 0.998

Figure 8.1: Direct comparison between the ab initio force components and the
corresponding NN prediction. The indexes b, s, α (see main text) label, respectively,
the snapshot, the atom, and the Cartesian coordinate of the force. The red dashed
line represent FDFT

b,s,α = FNN
b,s,α, that fits the data with R2 = 0.998.

Radial distribution function

To estimate the quality of the trained DP model we compared some simple static
properties of the model with their ab initio counterparts. We ran DPMD simula-
tions of water at the same thermodynamic conditions of the ab initio simulations
reported in Chapter 6. Fig. 8.2 compares the oxygen radial distribution functions,
g(r), from DP and ab initio simulations of liquid water (at ≈ 430 K), and of ice-Ih
(at ≈ 260 K). Both structures are well described by the DP model. This is true also
for the ice-structure even though no ice-snapshots were included in the training
data set, in agreement to recent discovery of the building blocks of ice structure
inside liquid water [105, 106].
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Figure 8.2: Comparison of the radial distribution functions of liquid water, ≈ 423
K, (left column) and ice Ih, ≈ 260 K, (right column) from ab initio (continuous
blue line) and DP (dashed orange line) simulations, respectively. More details on
the simulations can be found in the main text.

8.2 DPMD benchmark vs. GGA results: thermal conductivity

The energy flux can be computed using the standard equation for classical force
field, Eq. (3.27), combined with Eq. (7.10) for the derivative of the local energies.
One of the resulting energy-flux power spectra is displayed in Fig. 8.4 (orange),
together with the corresponding ab initio spectrum (blue). The thermal conduc-
tivities corresponding to the two spectra are obtained as before through cepstral
analysis. Notice that, in spite of the much larger weight of the ab initio spectrum
relative to that of the DNN model, the two spectra have the same low-frequency
limit, indicating that the two simulations predict the same conductivity within
statistical errors. The difference between the two spectra stems much more from
the different local representations of the potential energy than from a different
dynamics. The latter is, in fact, very well mimicked by the DNN potential, which
gives forces in close agreement with those of the ab initio model (see Section 8.1).

In Table 8.1 we display the thermal conductivities computed from ab initio MD
and DPMD for all the simulations that we performed, together with the atomic
diffusivities, DH and DO. The latter are computed from the ω = 0 value of the
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Figure 8.3: Comparison of the oxygen and hydrogen velocity power spectra of liq-
uid water from ab initio (blue line) and DP (orange line) simulations, respectively.
The simulations used the same periodic cubic cell with density ρ = 1.00 g/cm3

containing 125 water molecules, at ≈ 410K. The inset shows the region near ω = 0
used to estimate the diffusivity.

power spectrum of the velocity:

D̄α(ω) =
1

6Nα

Nα∑
n

∫ ∞
−∞
〈Vn(0) · Vn(t)〉 eiωtdt (8.2)

where α represents the atomic species (oxygen and hydrogen here) and n runs over
all the atoms of species α. The diffusivities are obtained from a block analysis of a
100 ps long trajectory and Fig. 8.3 shows the power spectra of liquid water systems
at 410 K. The DP model was capable of reproducing accurately the three transport
coefficients. In particular, it allowed us to perform longer simulations in order to
reduce the statistical uncertainty on κ. While ≈ 100 ps long trajectories suffice
for errors of about 10% in liquid water and of about 20% in ice Ih, we found that
≈ 360 ps long trajectories with the DP model reduced these errors to 5% and 8%,
respectively. These errors could be reduced even further because trajectories lasting
tens of ns or more would be possible with DPMD. All the thermal conductivities,
and corresponding statistical uncertainties, have been computed via the cepstral
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Figure 8.4: Power spectrum of a water simulation. The orange line is obtained
from 360 ps of DPMD simulation of a periodic cubic cell containing 125 water
molecules at 407 K. The blue line is obtained from an ab initio MD simulation of
125 water molecules with the same cubic box and an average temperature of 409 K.
Both spectra are filtered with a moving average of 0.1 THz. The dashed lines in
the inset represent the cepstral-filtered spectra. Even though the two spectra have
very different intensities the values at zero frequency are the same.

analysis using the SporTran code [68]. The last two columns of Table 8.1 contains
the values of the effective Nyquist frequency, f ∗, used to limit the analysis to a
properly defined low-frequency window, and the number P ∗ of cepstral coefficients.

The calculated heat conductivities with DPMD and ab initio MD, based on
PBE-DFT, agree closely among them, but differ substantially from experiment
(κexpt ≈ 0.6 W/(mK) vs. κPBE ≈ 1 W/(mK) for water at near ambient conditions
[90]), indicating that the distribution of the energy density resulting from the PBE
functional adopted here is likely inadequate to accurately describe adiabatic energy
transport in water. This prompted us to try more advanced functional approxima-
tions, like the meta-GGA SCAN framework, to cope with this shortcoming.
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phase T DH DO κ f ∗ P ∗

K Å2/ps Å2/ps W/(mK) THz

DPMD

liquid 516 1.07± 0.05 1.08± 0.05 0.99± 0.05 9.9 11

liquid 423 0.41± 0.02 0.42± 0.02 1.03± 0.05 17.8 12

liquid 408 0.29± 0.02 0.32± 0.02 1.11± 0.05 36.7 17

ice Ih 270 - - 1.9± 0.2 25 93

ab initio

liquid 521 1.13± 0.05 1.11± 0.05 0.98± 0.19 20.7 55

liquid 431 0.45± 0.03 0.45± 0.03 1.06± 0.11 20.1 17

liquid 409 0.325± 0.018 0.29± 0.02 1.12± 0.17 45.9 33

ice Ih 260 - - 1.8± 0.4 30.3 53

Table 8.1: Comparison of some properties of water from ab initio MD and DPMD
simulations based on PBE-DFT. All liquid simulations used 125 H2O molecules
inside a cubic box of side l = 15.52 Å. The ice Ih simulations used 128 H2O
molecules inside an orthogonal cell with sides: l1 = 18.084 Å, l2 = 15.664 Å and
l3 = 14.724 Å. T is the mean temperature of the simulations; DH and DO are the
diffusivities of hydrogen and oxygen, respectively; while κ is the thermal transport
coefficient. The diffusivities of ice Ih are compatible with zero and are not reported.
The lasts two columns contain the values of f∗ and P ∗ used for the ceptral analysis.

8.3 Extended simulations with a SCAN based deep potential model

Meta-GGA functionals like SCAN depend on the electronic kinetic energy density,
in addition to the density and its gradient, making significantly more complicated
than in the PBE case the derivation of an analytic expression for the energy flux
to use in ab initio MD studies of heat transport. However, this is not necessary, as
the DPMD methodology not only gives us a framework for molecular simulations
having quantum-mechanical accuracy at a cost close to that of empirical force
fields, but also offers us the capability of easily deriving a practical expression for
the energy flux, in situations where it would be difficult to obtain it directly from
first principles. To follow this route, we trained a DP model using the SCAN-DFT
dataset of Ref. [108]. The thermal conductivity predicted by this model, at T ≈
430 K and at the same density used in our previous PBE simulations, is κ = 0.88±
0.05W/(mK), which is closer to experiment, but still not in perfect agreement with
it. Recent studies [19, 109] found that the melting temperature of SCAN-DP ice Ih
models is around 310 K, a value very close to the corresponding DFT temperature,
according to perturbative estimates [109]. While still not perfect, this result is far
superior to PBE, whose estimated ice Ih melting temperature should be around
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Figure 8.5: Temperature dependence of the thermal conductivity κ of water be-
tween 300 K and 500 K. The blue line represents the experimental data from
the NIST website [107]. The orange and green lines result from (classical) DPMD
simulations trained on PBE and SCAN data, respectively. The simulations use a
periodically repeated cubic box with 128 water molecules. In the simulations the
box size is fixed to the experimental density [107] at each given temperature. Rela-
tive to PBE, SCAN overestimates less the experimental values, and varies less with
temperature, consistent with experiment. PBE exhibits a relatively sharp conduc-
tivity maximum at around 360 K, whereas experiment shows a broad maximum at
≈ 400 K. The sharp PBE maximum may be an artifact of imperfect equilibration
in a metastable liquid. The continuous line connects data points below the freezing
temperature at ≈ 400 K, where the PBE liquid is metastable.

400 K or higher [88, 89]. Thus, one might argue that the 100 K temperature offset
used in our PBE-DFT simulations would be inappropriate here, but the rather
broad temperature range displayed in Fig. 8.5 shows that the thermal conductivity
of water is rather insensitive to temperature at near ambient pressure.

The simulations reported in Fig. 8.5 have been performed by fixing the size of
the simulation-box in order to match the experimental density [107] at each re-
ported temperature. At each temperature, we first performed an NVT simulation
lasting for a few dozen ps, in which the system was coupled to a Nosé-Hoover ther-
mostat, followed by a 880 ps long NVE simulation, in order to compute the thermal
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transport coefficient. The solid line in Fig. 8.5 connects PBE data at temperatures
below 400 K, i.e., below the estimated freezing temperature of this model [88, 89].
At these temperatures PBE water is sluggish and difficult to equilibrate.

SCAN overestimates κ less than PBE, consistent with the better representation
of the covalent bond length of the water molecule in the liquid provided by this
functional [39]. The experimental data show a broad maximum around 400 K,
while PBE exhibits a sharp maximum around 360 K, i.e., below the estimated
freezing point of this model. The SCAN results are closer to experiment and are
consistent with a broad maximum of the thermal conductivity in the explored
region. Whether the residual discrepancy between DFT-SCAN simulations and
experiment is due to a residual inaccuracy of the XC functional or to neglect of
quantum effects on the nuclear motion is an issue that would require further work
to be clarified.

Size scaling for SCAN neural network potential

Size effects may affect the transport properties calculated in numerical simulations
[110, 111]. In order to quantify these effects, we run 2 ns long NVE simulations at
≈ 407 K of SCAN-DP water at fixed density and increasingly larger cells (with up
to 1000 molecules). The results, reported in Fig. 8.6, suggest that κ shows no size
dependence within the error bars of the simulation.
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Figure 8.6: The size dependence of the thermal transport coefficient κ for simu-
lation with the SCAN neural network potential. The test shows that no relevant
size scale dependence is observed. All the quantities are evaluated from ≈ 2ns long
trajectories.





9

Viscosity from ab initio and neural-network simulations

Shear viscosity is one of the most important transport properties governing the
macroscopic flow of liquids. As such, it plays a fundamental role in various fields
of science and technology, such as, e.g., chemical and mechanical engineering or
earth and planetary sciences, to name but a few. For instance, the viscosity of a
solvent crucially affects the dynamics of solutes and the reactions rates, in biolog-
ical processes and chemical reactions [112–114]. An accurate determination of the
temperature and pressure profile of the viscosity is also essential for the correct
modelling of tidal interactions in the planets’ interior, in particular in the presence
of icy layers [115, 116].

In spite of the great importance of water and the large number of studies based
on density-functional theory and ab initio molecular dynamics (AIMD) devoted
to it [34–42], all of these efforts have always dodged its viscous properties, because
an accurate computation of the viscosity of water would require exceedingly long
first-principles simulations [40]. A number of studies based on classical force fields
exists [117–120], but the poor transferability of these models sets a limit to their
predictive power. An attempt to estimate the viscosity of water from first princi-
ples was made with an indirect approach relying on the Stokes-Einstein relation
[42], which, however, does not hold over all the phase diagram for liquid water,
particularly in the supercooled regime [121–123].

A rigorous microscopic description of the shear viscosity of liquids, η, is pro-
vided by the GK theory of linear response, according to which its value is pro-
portional to the integral of the time auto-correlation function (tACF) of the off-
diagonal matrix elements of the stress tensor. In the following chapter, we will
present the results of the viscosity of liquid water from Ref. [124].

9.1 Green-Kubo simulation of viscosity in liquids

In Chapter 2 we went through the GK theory of linear response [1, 2] obtaining
general equations to relate the transport coefficient, in the form of Onsager’s coef-
ficients, to the correlation of corresponding current, Eqs. (2.28) and (2.30). In the

77
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case of the viscosity, the transported quantity is the momentum and the ”current”
components are the off-diagonal element of the stress tensor.

η =
Lσσ

T
=

Ω

kBT

∫ ∞
0

〈σs (Γt)σs (Γ0) 〉 dt, (9.1)

where, with the same notation of Chapter 2, Ω is the volume of the system, T
its temperature, kB the Boltzmann’s constant, σs is any of the three independent
off-diagonal elements of the stress tensor, (σs ∈ {σxy, σxz, σyz}), and Γt indicates
the time evolution of a point in phase diagram from the initial condition Γ0. In
practice, the value of the integral in Eq. (9.1) is averaged over the three pairs of
Cartesian indices. Lσσ is the Onsager’s coefficients, as defined in Eq. (2.30), where
the stress is the only relevant current.

Expression of stress tensor

The thermodynamic stress tensor is the equilibrium average, σ̄, of a microscopic
estimator, σ, defined as:

σαβ =
1

Ω

[ N∑
i=1

piαpiβ
mi

+ Ξαβ

]
, (9.2)

where α, β represent Cartesian coordinates, piα is the α component of the mo-
mentum of the i-th atom, mi its mass, while Ξ is the virial term, defined as the
derivative of the system’s potential energy, E, with respect to an uniform scale
transformation of the system (rα → rα +

∑
β εαβrβ, ε being the strain tensor):

Ξαβ = − 1

Ω

∂E

∂εαβ
. (9.3)

The expression of the virial term depends on the approach one adopts to per-
form the simulations: explicit formulas in the classical case are given, e.g., in Refs.
[125], for pair-wise potentials, and [59], for general many-body potentials, while the
quantum-mechanical case is thoroughly covered within DFT in Refs. [126, 127].
The expression of the virial stress using Deep Potential models has been given in
Eq. (7.11), and it is here reported for clarity:

Ξαβ =
∑
n

RnαFnβ = −
∑
n6=m

Rnmα
∂EW

∂Rnmβ

, (9.4)



Viscosity from ab initio and neural-network simulations 79

Data Analysis

Even for the viscosity, we can apply the same data analysis techniques illustrated
in Chapter 4, defining the power spectrum Sσ(ω) of the stress time series according
to the Wiener-Khintchine theorem [61, 62] as:

Sσ(ω) =

∫ +∞

−∞
〈σs (t)σs (0)〉eiωtdt. (9.5)

Combining Eq. (9.5) with Eq. (9.1):

η =
Ω

2kBT
Sσ (ω = 0) . (9.6)

Sσ (ω = 0) can be estimated with the cepstral analysis, using SporTran [68].

9.2 Ab initio Molecular Dynamics

We performed AIMD simulations of liquid water at near-ambient conditions using
the PBE [44] XC functional, the plane-wave pseudopotential method, Hamann-
Schluter-Chiang-Vanderbilt norm-conserving pseudopotentials [87], and a kinetic-
energy cutoff of 85 Ry. The simulated system was made of 64 molecules at the
standard density of 1 gr/cm3, corresponding to a cubic box of edge l = 12.43 Å.
All the simulations were carried out with the Car-Parrinello extended-Langrangian
method [7] using the cp.x component of the Quantum ESPRESSO distribu-
tion [73–75] and setting the fictitious electronic mass to 25 physical masses and
the timestep to dt = 0.073 fs. We performed two simulations aimed at ambient
temperature and somewhat above. As PBE is known to enhance the short-range
structure of water and to overestimate the melting temperature by ≈ 140 K [88,
89], we set the target temperatures of the two simulations to 450 and 600 K. Both
trajectories where first equilibrated in the NVT ensemble using a Nosé-Hoover
thermostat [128] at the target temperature, followed by long production NVE
runs of 400 ps. Finally, the shear viscosity is obtained from the cepstral analysis of
the power spectrum of the off-diagonal elements of the stress, using the SporTran

[68] code.
In Fig. 9.1 we display the (moving averages [129] of the) power spectra of

the stress-tensor time series resulting from our two simulations. While showing
similar features at high frequency, the two spectra differ substantially approaching
ω = 0. In particular, lower temperatures see the appearance of sharp peaks near
ω = 0, which requires a greater care in the cepstral analysis of the data, which is
based on a low-pass filter of the (logarithm of) the power spectra. In the inset we



80 Green-Kubo simulation of transport properties

0 25 50 75 100 125 150
/2  (THz)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
S

 (c
P)

454 K
600 K

0 2 4 6 8 100.0

0.1

0.2

0.3

0.4

Figure 9.1: Power spectra of the off-diagonal elements of the stress in water at
454 K (blue) and 600 K (orange), obtained from AIMD simulations (see text). The
spectra are filtered by a moving average with a window of 0.05 THz. The thick
solid lines in the inset represent the cepstral-filtered spectra whose zero-frequency
value gives an estimate of the shear viscosity.

display the low-frequency region of the spectra together with the results carried
out by the cepstral analysis, i.e. by applying a low-pass filter to the logarithm
of the raw spectra. The filtered spectra are represented by thick solid lines whose
zero-frequency value is a fair and accurate estimate the shear viscosity we are after:

η =

{
0.383± 0.023 cP at 454 K,

0.178± 0.005 cP at 600 K.
(PBE)

It is often assumed that the predictions of ab initio simulations should be com-
pared with experiment upon shifting the simulated temperature by the offset be-
tween the theoretical and experimental melting temperatures, which, in the case
of PBE, amounts to Tm(PBE) − Tm(expt) ≈ 140 K [89]. We thus compare our
value predicted by PBE at T = 454 K with the experimental value measured at
T = 313 ≈ 454 − 140 K, ηexpt(T = 313 K) = 0.653 cP. The agreement is fair, on
account of both the uncertainties related to the empirical temperature shift and
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Figure 9.2: Dependency of the shear viscosity η on the length of the simulation,
estimated by AIMD (a) at 454 K and (b) 600 K . Different colors refer to different
simulation times.

the very sensitive dependence of the viscosity upon temperature near melting. For
a more in depth study of the meaning of the residual disagreement see Section 9.5.

In Fig. 9.2 we display how the prediction of the shear viscosity in water de-
pends on the length of the simulation. In order to highlight the impact of possibly
long relaxation times on the estimate of the transport coefficient, we have split our
400-ps trajectories into segments of 100, 200, and 300-ps (in the latter case the two
segments were overlapping). If the stress correlation time were much shorter that
the length of the segments, the estimates from different segments would coincide
within the statistical errors evaluated within each of them. By and large, this is so
at 600 K, but not quite so at 454 K. This indicates that, as the freezing tempera-
ture is approached, the stress correlation time increases and make it necessary to
rely on correspondingly longer trajectories. All these considerations suggest that
near freezing the computation of the shear viscosity requires long simulation runs,
and longer runs would be required for a fair evaluation of the statistical uncertain-
ties, indicating that AIMD may not be the most efficient approach to explore a
broad range of thermodynamic conditions. In the following we show that neural-
network models of inter-atomic interactions trained on ab initio data provide a
valid alternative to direct AIMD simulations, yielding results of similar quality at
a much lower computational cost.
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Figure 9.3: Scatter plot of the NNP forces (a) and off-diagonal elements of the
virial per atom (b) vs. DFT data, for a dataset of 10000 configurations. The cor-
responding correlation coefficients are R2

a = 0.998 and R2
b = 0.995.

9.3 PBE NNP

In order to appraise the ability of NNP to accurately predict shear viscosity, we
have generated one such model, by training it on a set of DFT-PBE data. The
training dataset is prepared via a recently proposed “on-the-fly” learning proce-
dure called Deep Potential Generator (DP-GEN) [103, 130] and it consists of the
energies and atomic forces of 4000 configurations of water generated by the DP-
GEN from NPT MD trajectories at different temperatures in the [300-700 K] range
and for pressures up to 50 kbar. The PBE-NNP is then constructed and trained
with the DeePMD-kit. The cutoff radius is set to 6 Å. The size of the embedding
and fitting nets is (50, 50, 50) and (250, 250, 250), respectively. The model was
trained by minimizing the loss function in Eq. (7.12) with 2 million steps of Adam
stochastic gradient descent [93]. We tried to include the values of the virial in the
definition of the loss function, but we found no improvement with respect to the
standard definition of Eq. (7.12), and thus decided not to modify it.

Fig. 9.3 shows a scatter plot of the NNP predictions for atomic forces and stress
vs. PBE-DFT data, evaluated over a set of 10000 configurations, not included
in the training dataset. The average error on the forces and on the off-diagonal
elements of the virial are σF = 40 meV/Å and σΞ = 1.4 meV/atom, respectively,
corresponding to correlation coefficients [104] of 0.998 and 0.995, respectively.

In order to validate our neural-network methodology for the prediction of the
shear viscosity, we performed DPMD simulations in the NVE ensemble for the
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Figure 9.4: Comparison between the shear viscosity predicted by 400-ps long DFT
AIMD simulations (horizontal blue and orange bands, 454 and 600 K, respectively)
and by ab initio DPMD simulations of the same length (black symbols).

same model of liquid water described above. Simulations of 20-ns were run at two
different temperatures, 454 K and 600 K, using our NNP trained to PBE water.
All simulations were carried out using the LAMMPS code [98] interfaced with
DeepMD-kit. In Figure 9.4 we display the results obtained by analysing indepen-
dently each one of the 50 400-ps segments in which we have partitioned the whole
20-ns trajectory. The shear viscosity of each segment is obtained again by cepstral
analysis using the SporTran and it is represented by black triangles and dots, for
the 454 K and 600 K trajectories, respectively. Each result is displayed with its
estimated statistical error. The blue and orange regions represent respectively the
estimate of the shear viscosity given in Section 9.2 from ab initio MD simulations
at 454 K and 600 K. We observe good compatibility between the two different
approaches, concluding that our NNP is capable of predicting correctly the shear
viscosity of water at the given pT conditions.

In Table 9.1 we report our results for the viscosity of water computed at two
different temperatures with DPMD and NNP trained on PBE-DFT data, obtained
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Figure 9.5: Normalized distributions of the logarithm of the shear viscosities,
log(η), estimated over multiple MD segments (blue: 100 ps; orange: 200 ps; green:
400 ps) extracted from a 20-ns trajectory at 454 K (left) and 600 K (right). The
reported data are referred to the average, η̄. We remind that the absolute error
on log(η) is the relative error on η. The shaded area denote the average standard
deviation of the shear viscosities, as estimated by cepstral analysis within each
individual segment.

from very long (20-ns) trajectories, and compare them with the AIMD data of Sec.
9.2.

T = 454 K T = 600 K

AIMD 0.383 ± 0.023 0.178 ± 0.005

DPMD 0.402 ± 0.005 0.184 ± 0.001

Table 9.1: Viscosity of water [cP] computed from AIMD or DPMD performed at
two different temperatures using the PBE XC functional.
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Figure 9.6: Correlation between the cepstral estimates of the standard deviations
of the viscosity of water from trajectories of different lengths and temperatures,
σcep, vs. the spread of the distribution of their values resulting from different
trajectories, σref (see text).

9.4 Statistical analysis and finite-size scaling

We are now ready to investigate the statistical behaviour of the shear viscosity for
different simulation lengths. To this end, we slice our 20-ns simulations in segments
of smaller lengths (100, 200, and 400 ps) and analyze them independently. The
distributions of the results are shown in Fig. 9.5 for both temperatures. We observe
that: i) the width of the distributions of the viscosity estimated at different lengths
is larger than the standard deviation estimated within each segment by cepstral
analysis; ii) this difference decreases as the length of the segments increases, until
it roughly vanishes at 400-ps; iii) this difference also decreases by increasing the
temperature. This observation is made more quantitative in Fig. 9.6, which shows
the correlation between the standard deviations of the cepstral estimates of the
viscosity from trajectories of different lengths and temperatures, vs. the spread
of the distribution of their values resulting from different trajectories. The former
quantity is itself affected by a statistical uncertainty because cepstral analysis
returns different standard deviations for different trajectories of a same length.
Fig. 9.6 indicates that as the system approaches freezing from above and the
viscosity increases, the low-frequency components of the virial fluctuations become
increasingly important, and simulations of increasing length become necessary to
cope with them. This is confirmed in Fig. 9.7 that displays the low-frequency
portion of the power spectrum of the off-diagonal elements of the stress in water
at different temperatures, and shows that as the system approaches freezing from
above, a narrow peak develops at ω = 0, as a consequence of the onset of long-lived
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relaxation modes. In the present case, it appears that at 450 K trajectories as long
as 400-ps are needed to get a reliable estimate of the statistical error affecting the
estimate of the PBE-DFT viscosity. More generally, it seems that the flexibility
offered by NNP and the long simulations they can afford are instrumental not only
in exploring broad regions of the phase diagram of a material, but also in providing
a reliable estimate of the statistical accuracy of individual simulations.
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Figure 9.7: Moving average of the low-frequency region of the power spectrum
of the off-diagonal elements of the stress tensor in water at different temperatures,
as obtained from DPMD simulations trained on PBE DFT data. An averaging
window of 0.05 THz was used. Simulations were run at the fixed density of 1
gr/cm3.

Finite-size effects may affect the transport properties calculated in numerical
simulations. In order to quantify these effects in the present case, we run up to 5
ns long NVE simulations at 454 K and 600 K of PBE-NNP water at fixed density
and increasingly larger cells (with up to 4096 molecules). The results, reported in
Tab. 9.2, indicate that η shows no evident size dependence within the error bars
of our simulations.
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size (number of molecules)

T [K] 64 512 4096

454 0.402 ± 0.005 0.402 ± 0.005 0.417 ± 0.007

600 0.184 ± 0.001 0.186 ± 0.002 0.186 ± 0.002

Table 9.2: Shear viscosity [cP] computed for water at different temperatures with
PBE-NNP force fields and using simulation boxes of different size.

9.5 SCAN NNP

The SCAN meta-GGA XC functional has demonstrated the ability to predict
well several properties of water over a broad range of thermodynamic conditions,
whose exploration was made possible by NNP techniques [19, 23, 39, 40, 109]. In
Section 8.3 we already saw how a combination of AIMD and NNP techniques,
based on the SCAN XC functional, can successfully predict the heat transport
properties of liquid water [86]. In the following section we report an extension to
the computation of the shear viscosity.

Accurate DPMD simulations were performed using NNP force fields trained on
both PBE and SCAN DFT data [86] and the same software setup as in Sec. 9.3.
Our simulated systems consist of 512 water molecules. With systems of this size,
temperature fluctuations are smaller than 1K. We first perform NVT simulations
at the target temperature, followed by NVE production runs, up to 5-ns long.The
volume was fixed to the value corresponding to the equilibrium densities evaluated
in Ref. [109] via enhanced-sampling simulations for SCAN, while for PBE it is
computed from direct DPMD NPT simulations at ambient pressure, whose results
are in agreement with previous calculations [38, 131].

In the left panel of Fig. 9.8 we compare our SCAN-NNP and PBE-NNP results
with each other and with experimental data [132, 133]. Results below the melting
temperature, Tm, refer to the undercooled fluid, which becomes increasingly vis-
cous as the temperature decreases. Remarkably, when temperatures are referred
to the theoretical melting one, the SCAN predictions for the viscosity are in close
agreement with experiment at melting (and above, as we will discuss shortly).
This is not so for PBE. One could argue that PBE yields too low a viscosity as a
consequence of the too low equilibrium density (0.77 v.s. ≈ 1 gr/cm3 at melting).
This is not the case, however, because repeating the simulations at the density of
1 gr/cm3 (dashed lines) results in only a marginal increase in the predicted viscos-
ity. We conclude that the common wisdom according to which the properties of
PBE water would match those of real water at a simulation temperature & 100 K
above the experimental one is likely too simplistic: PBE water not only freezes at
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Figure 9.8: Comparison between the shear viscosities of water computed via
DPMD simulations using NNP force fields trained to different DFT data sets
and with experiments [132, 133]. When not visible, the error bars are smaller
than the dots. Continuous lines refer to simulations performed at the equilibrium
density corresponding to each temperature. PBE data marked with a dashed line
are obtained at the density of 1 gr/cm3. The thin vertical and horizontal lines
mark the melting temperature and the corresponding viscosities. The right panel
show only the SCAN predictions v.s. the experimental values. The temperature
scale for SCAN data has been offset by the difference between the theoretical and
experimental melting temperatures, Tm (see text).

too high temperature, but its dynamics is way too fast at melting, as confirmed
by the too-high self-diffusivity predicted by PBE, with respect to SCAN and ex-
periment, when all the simulations are performed at the same temperature offset
from Tm as experiment. For instance, the self-diffusivity of PBE water computed
at a temperature ≈ 20 K higher than Tm(PBE) ≈ 417K [89] (T ≈ 20 + 410 = 430
K) is 0.45 Å2/ps [86], to be compared with 0.19 Å2/ps at T ≈ 20 + 310 = 430
K for SCAN (Tm(SCAN) ≈ 312K [19, 109]) and a same value for experiment,
measured at T = 20 C. In a model where the dependence of the self-diffusivity on
temperature were Arrhenius-like, this behaviour would be consistent a too small
pre-exponential factor as predicted by PBE with respect to SCAN and experiment.
Further insight into the dynamics of the water hydrogen-bond network at melting
certainly deserves further investigation.

In the right panel of Fig. 9.8 we compare with experiment the SCAN-NNP
predictions for the viscosity of water, on a temperature scale that has been offset
by the difference between the predicted melting temperature and the observed one,
∆T = 312− 273 = 39 K. One observes that, while the agreement between theory
and experiment is excellent above the melting temperature, SCAN consistently
overestimates the viscosity in the undercooled regime. Interestingly, a crossover
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between the predicted and observed densities occurs at the melting temperature:
SCAN slightly overestimates the density of water for T > Tm, while it under-
estimates it in the undercooled regime. We hypothesize that the too large SCAN
predictions for the viscosity below freezing may be related to a propensity of SCAN
to overestimate the strength of the hydrogen bonds. In turn, this would lead to
overestimate low-density (LD) over high-density (HD) fluctuations upon cooling,
corresponding to configurations that underlie the structure of amorphous ices and
water. At very deep undercooling they may lead to phase separation between an
LD and a HD liquid [23, 134, 135]. The stronger local structure of LD water with
respect to HD water seems compatible with a more marked solid-like behavior
[136–138] and, hence, with a larger viscosity.
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Long-Range electrostatic interactions

Water has a rich and complex phase diagram [33]. Inside the ice giants, Uranus
and Neptune, it is thought to appear at its superionic (SI) phase, where oxygen
ions are arranged in a crystalline lattice and protons diffuse freely like in a fluid
[33, 139]. Partially-dissociated, liquid (PDL) water may, instead, be confined to
the outermost third of the interior, where the magnetic field is generated [140].
The transport properties of such phases of water are of great importance for any
attempt at a quantitative planetary model of rich icy planets. Experimental inves-
tigation of transport properties of materials at such conditions is still challenging.
Molecular simulations are the only tool to estimate the values of transport coeffi-
cients a such extreme conditions. Recently Grasselli et al. [83] computed the elec-
trical of water at inner planets conditions via AIMD simulations. A neural-network
potential would allow to extend such studies to a large number of temperatures
and pressures. In this chapter we show our attempt to construct a NNP that can
predict accurately the electrical conductivity of water at high pT condition.

10.1 Electrical conductivity

Levering the combination of gauge invariance of transport coefficients and topo-
logical quantization of adiabatic charge transport [141], the electrical conductivity
(γ) can be computed using ions carry an integer charge whose magnitudes equal
their formal oxidation numbers (qH = +1 and qO = −2 for water), obtaining the
same conductivity obtained from the exact quantum-mechanical expression of the
electric current, based on Born’s effective charges. In particular, γ can be written
as the Green-Kubo integral of the electrical flux, JZ :

γ =
Ω

3kBT

∫ +∞

0

〈JZ (Γt) · JZ (Γ0)〉 dt, (10.1)

JZ =
1

Ω

(
qH
∑
n∈H

Vn + qO
∑
n∈O

Vn

)
, (10.2)
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where Ω is the volume, kB the Boltzmann’s constant and Vn are the velocities of
the atoms. γ can be computed with the data analysis techniques in Chapter 4 [9,
11].

10.2 Deep Potential model: first attempt
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Figure 10.1: Radial distribution functions computed using the DP model (dashed
orange line) and AIMD (blue line). Each column correspond to a different system:
partially dissociated liquid (left), super ionic water with oxygen in a BCC lattice
(center) and in a FCC lattice (right).

We trained a DP model over 3000 snapshots extracted from the simulations in
Ref. [83]. For the descriptor in Eq. (7.7) we used a local embedding network with
three layers of 25, 50, 100 neurons respectively and the while for cutoff radii of
the smoothing function, Eq. (7.6), were respectively: Rc1 = 0.50 Å and Rc = 4.80
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Å. The fitting network had three layers of 240 neurons each. Once the model
is trained, we can test it on a set of new snapshots that were not included in
the training set. The obtained root mean square error (RMSE) for energy and
forces is respectively: 3.1 meV per atom and 0.30 eV/Å. With such model, we
performed DPMD simulations at the same conditions of Ref. [83]. For each system,
we first perform a NVT simulation at the target temperature, followed by a NVE
production run, up to 800 ps long. We consider the same simulation boxes as in
Ref. [83], and we run few simulations for temperatures around the one of AIMD
simulations. Figure 10.1 compare the radial distribution functions from DP and
ab initio simulations. Our model is able to reproduce well the structures of PDL
(first column) and SI, with the oxygen arranged in a BCC lattice (second colum)
or FCC (third column). Then, we moved to study the electrical conductivity. For
each system we performed few DPMD simulations in a range of temperature close
to those in Ref. [83].
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Figure 10.2: Comparison of the electrical conductivity, γ, at high-pT conditions
obtained with the AIMD [83] and DPMD. All the simulations are run at the
conditions of Ref. [83] with 128 water molecules for SI-BCC and PDL systems,
and 108 molecules for SI-FCC system.

Fig. 10.2 shows the comparison between the γ obtained from DPMD (orange)
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and AIMD (blue). The DP model fails to obtain compatible results for all the
systems. We hypothesised that this discrepancy might be ascribed to long-range
charge fluctuations that cannot be described within the cutoff of the DP descriptor.

10.3 Deep Potential Long-Range

L. Zhang et al. [142] have proposed a new approach to expand the DP model to
incorporate explicit long-range interaction. In this new model, called deep potential
long-range (DPLR), the short-range contribution retains the standard form of the
DP model, while the long-range contribution is the electrostatic energy of a system
of spherical Gaussian charges centered at the atomic positions and the position
of the so-called wannier centroids (WC) [28]. The WCs are defined by average
positions of the centers of the maximally localized Wannier functions (MLWF)
[143, 144]. In a water system, we can always associate each oxygen to the four
closest Wannier centers. The position of the WC is then defined by:

WI =
1

4

4∑
i=1

Si
n (10.3)

where Si
n is the position of the i-th Wannier center associated to the oxygen n. For

each water molecule, there is a one-to-one correspondence to a WC and its closest
oxygen at Rn. Due to the nearsightedness of the electronic matter [145, 146], the
positions of the WCs can be computed from a local environment encoded in a
descriptor like Dn in Eq. (7.7) [28]. Zhang et al. [28] developed a neural-network
model, called Deep Wannier (DW), that, once properly trained, can predict the
positions of the WCs in a water system.

Potential energy surface with DPLR

The total electrostatic energy can be approximated by the electrostatic energy of
a system of spherical Gaussian charge distributions centered at Rn and WI sites,
respectively, and can be computed with standard techniques [147–151]:

EG =
1

2πΩ

∑
G 6=0,|m|≥L

exp(−π2G2/β)

G2
f 2(G) (10.4)

f(G) =
∑
n

qne
−2πiG·Rn +

∑
I

qIe
−2πiG·WI (10.5)

where f(G) is the structure factor, Ω is the volume, β is the spread of the Gaussian
distributions and qn and qI are the charges associated, respectively, to the atoms
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and to the WC. In water qn = 6e or 1e depending if the atom n is a oxygen or
hydrogen, respectively, while qI = −8e, with e equal the absolute value of the
electron charge.

The total DFT energy, EDFT directly includes the total electrostatic inter-
actions in addition to all the short-range contributions. The DPLR total energy
EDPLR is composed of two terms:

EDPLR = Esr + EG. (10.6)

EG takes into account the long-range contribution to the energy, while Esr take
into account the short range contribution. Esr can be represented by a ”short-
range” DP model, like Eq. (7.8), with a target energy equal to EDFT − EG.
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Figure 10.3: Radial distribution functions computed using the DP (orange dashed
line), DPLR (green dashed line) models and AIMD (blue line). Each column cor-
respond to a different system: partially dissociated liquid (left), super ionic water
with oxygen in a BCC lattice (center) and in a FCC lattice (right).
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10.4 Results with long-range interactions

In order to investigate the effects of long-range interactions in the computation of
electrical conductivity, we trained a DPLR model. The DW model that computes
the positions of the WC has an embedding network with three layers of 25, 50,
100 neurons respectively, while the fitting network has three layers of 100 neurons
each. The cutoff radii in Eq. (7.6) are respectively: Rc1 = 0.50 and Rc = 4.80.
The short-range energy model has a local descriptor with the same parameters
as the DW model but the three layers of the fitting network contain 240 neurons
each, instead. We trained the DPLR model on the same dataset used for the
DP model in Fig. 10.2. For each training snapshot, we computed the positions
of the centers of the MLWF with wannier90 [152–154] combined with Quantum
ESPRESSO. The MLWF were generated with the selected columns of the density
matrix algorithm [155, 156].
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Figure 10.4: Comparison of the electrical conductivity, γ, at high-pT conditions
obtained with the AIMD [83], DP and DPLR models. All the simulations are run at
the conditions of Ref. [83] with 128 water molecules for SI-BCC and PDL systems,
and 108 molecules for SI-FCC system.
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We tested the DPLR model on the same test set used in Section 10.2. The new
model performed slightly better than the previous one with a RMSE for energy
and forces equal to 2.5 meV per atom and 0.24 eV/Å, respectively. In Fig. 10.3 we
tested that our DPLR model could predict the structural properties of the water
system, comparing the radial distribution function with those from Fig. 10.1.

At last, Fig. 10.4 presents the results for the electrical conductivity computed
with the DP, the DPLR model and AIMD [83]. The DP and DPLR model seems
to obtain similar results for all the SI systems. Only for the PDL system, the
prediction capability of the NNP seems to be enhanced by the introduction of
the explicit long-range interactions. We do not have a definitive answer for this
behaviour and it requires further study.
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Conclusion

In this work, we have shown that neural-network potentials (NNP) generated ac-
cording to the DP framework and properly trained on DFT data are a powerful
tool to study the transport properties of water, and likely of other material sys-
tems, with quantum-mechanical accuracy at a nearly empirical force field cost.
Leveraging the invariance principles of the thermal transport coefficient we show
that the values of κ is not influenced by the degree of arbitrariness of the atomic
decomposition given by a NNP, which depends on the specific training procedure.
An important byproduct of our neural-network approach is that it allows one to
derive numerically practical expressions for the energy current, even in cases where
analytical derivations from the DFT functional would be hard, as in the case of
the SCAN functional. This is quite important since our results show that simpler
approximations, like the PBE-GGA, cannot reproduce the transport properties of
water accurately. For example, PBE overestimates the thermal conductivity by ap-
proximately 60%, while it deeply underestimates the viscosity close to the melting
temperature. Both in the case of thermal conductivity and viscosity in water, we
have confirmed the ability of the SCAN exchange-correlation density functional to
predict a broad array of properties of water over a wide range of thermodynamic
conditions. The residual discrepancies might be reduced in the future by training
the NNP over more sophisticated functionals, e.g. hybrids. Further outlooks of the
work might also include the study of the behaviour of the transport coefficients
approaching the Widom line [32, 157].

In the last chapter, we showed that the DP model fails to correctly reproduce
the transport properties of water at high pressures and temperatures. We tried
to overcome these limitations by training a new model with explicit electrostatic
long-range interactions. In our first simulations, the DPLR model improves the
results only for the partially dissociated liquid and not for the super-ionic water.
A definitive answer to this question requires further investigation.
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Appendix

A.1 Notation for Chapter 5

Notations and definitions used throughout the text in particular Chapter 5 :

• e : electron charge ;

• e0
s : ionic energy, equal to 1

2
Msv

2
s + ws, where ws is the electrostatic energy.

• εXC : local XC energy per particle, defined by the relation: EXC =∫
εXC [n](r)n(r)dr. “LDA” and “GGA” in Eq. (5.15) indicate the local-density

and generalized-gradient approximations to the XC energy functional ;

• εv : electronic eigenvalues ;

• f̃(G) : Fourier transform of periodic functions. Given a function f(r) periodic
with respect to the unit cell, the Fourier transform f̃(G), evaluated at the
reciprocal lattice vector G is defined by the convention:

f̃(G) ≡ 1

Ω

∫
Ω

f(r)e−iG·rdr; (A.1)

• F [f ](G) : Fourier transform of non periodic and localized functions. Given a
function f(r) smooth enough and localized (hence not periodic), its Fourier
transform is defined for every value of G (hence not only for reciprocal lattice
vectors), by the convention:

F [f ](G) ≡ 1

Ω

∫
R3

f(r)e−iG·rdr, (A.2)

where a convenient normalization factor Ω has been introduced ;

• ĤKS : instantaneous Kohn-Sham (KS) Hamiltonian ;

• L : lattice vector, as defined by the unit cell ;

• Ms : atomic mass of atomic s ;

• n(r) : ground-state electron-density distribution, defined as n(r) =
∑

v |φv|2 ;
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• vH : Hartree potential, defined as:

vH(r) =

∫
R3

e2n(r′)

|r − r′|
dr′. (A.3)

Note that if n(r) is periodic, also the Hartree potential is periodic;

• r̂ : multiplicative position operator or versor along direction pointed by vector
r. The meaning should be clear from the context.

• v̂ : unit versor along the direction of v

• v̂0 : ionic (pseudo-) potential acting on the electrons ;

• wZs : electrostatic energy, equal to wZs = e2

2

∑
t6=s
∑

L
ZtZs

|Rs−Rt−L|+
1
2
e2Z2

s

∑
L6=0

1
L

;

• Zs : atomic charge of atom s, expressed in units of the elementary electronic
charge ;

• φ, |φ〉 : a generic normalized wave-function. With brackets, the same wave-
function is considered as a vector of a Hilbert space with a scalar product 〈 〉
;

• Ω : volume of the unit cell ;

• ∂εGGA : derivative of the GGA XC local energy per particle with respect to
density gradients. It is a vector whose component along direction i is explicitly
given by ∂εGGA/∂(∇ni) ,

• ∇ : gradient with respect to the spatial coordinate r ;

• 〈 〉 : standard scalar product between wave-functions ;

• ˙[ ] : derivative with respect to time ;

A.2 Reciprocal space computation of the SAij and SB

In the following appendix we show explicitly the computation of SAij , S
B. SC and

SDij can be computed applying more straightforwardly standard Ewald techniques
[80], then the full derivation is left to reader. Following the notation of Chapter 5
the indices i and j correspond to the Cartesian coordinates.

Recalling the definition of SAij from Eq. (5.56):
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SAij = lim
x→0

∂xj
∑
L6=0

(x−L)if(|x−L|)

= lim
x→0

∂xj
∑
L6=0

(x−L)if(|x−L|)
(

erf(
√
η|x−L) + erfc(

√
η|x−L)

)
.

(A.4)

The term containing erfc(
√
η|x−L|) can be simply computed in real space:

lim
x→0

∂xj
∑
L6=0

(x−L)if(|x−L|)erfc(
√
η|x−L|) = −

∑
L6=0

LiLj
L2

(
erfc(
√
ηL)

L
+ 2

√
η

π
e−ηL

2

)
+

+ δij
∑
L6=0

erfc(
√
ηL)

L
,

(A.5)
while:

lim
x→0

∂xj
∑
L6=0

(x−L)if(|x−L|)erf(
√
η|x−L|) =

lim
x→0

∂xj
∑
L

(x−L)if(|x−L|)erf(
√
η|x−L|)

− lim
x→0

∂xj (xierf(
√
ηx)f(x)) .

(A.6)

The first term of Eq. (A.6) can be easily computed in reciprocal space, while it
can be demonstrated that limx→0 ∂xj

(
xi)erf(

√
ηx)f(x)

)
= 2δij

√
η
π
. Summing all

these pieces together we get the expression in Eq. (5.65):

SAij =−
∑
L6=0

LiLj
L2

[
erfc(
√
ηL)

L
+ 2

√
η

π
e−ηL

2

]
− 2δij

√
η

π

+ δij
∑
L6=0

erfc(
√
ηL)

L
+
∑
G 6=0

4π

Ω

GiGj

G2

exp(−G
2

4η
)

G2

[
2 +

G2

2η

]
. (A.7)

SB is, instead, defined as:

SB =
∑
L 6=0

f(L), (A.8)

introducing a functional dependence on x:
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SB = lim
x→0

∑
L 6=0

f(|x−L|) =

= lim
x→0

∑
L 6=0

f(|x−L|)erf(
√
η|x−L|) + lim

x→0

∑
L6=0

f(|x−L|)erfc(
√
η|x−L|).

(A.9)
The second expression can be computed in direct space as it is, while the first
requires some further work:

lim
x→0

∑
L6=0

f(|x−L|)erf(
√
η|x−L|) = lim

x→0

∑
L

f(|x−L|)erf(
√
η|x−L|)− lim

x→0
f(x)erf(

√
ηx)

= lim
x→0

∑
L

f(|x−L|)erf(
√
η|x−L|)− 2

√
η

π
.

(A.10)

Now the first term of Eq. (A.10) can be computed in reciprocal space, thus, sum-
ming all the contributions, we can regain the expression in Eq. (5.66) for SB:

SB =
∑
L 6=0

f(L)erfc(
√
ηL)− 2

√
η

π
+

4π

Ω

∑
G 6=0

exp(−G
2

4η
)

G2
+

4π

Ω

(
1

µ2
− 1

4η

)
. (A.11)

Finally we remark that the two terms computed in this Appendix are general and
work for generic cells. However, since JnB does not contribute to the value of ther-
mal transport coefficient, up to the present version of QEHeat we only implemented
the simpler expression for cubic cells:

JnB =
∑
s

VsZ
2
s e

2(SB − 1

2
SA) =

∑
s

VsZ
2
s e

2

(
2

3

∑
L6=0

f(L)erfc(
√
ηL) +

8π

3Ω

∑
G 6=0

exp(−G
2

4η
)

G2

−4

3

√
η

π
− 2π

3ηΩ
+

4π

Ωµ2

)
,

(A.12)

where we defined:

SA ≡1

3
Tr[SAij ], (A.13)

Tr[·] indicating the trace of a matrix. The following identity can be used to recover
the formula for cubic systems from the general one:∑

L

e−ηL
2

=

√
π3

Ω
√
η3

∑
G

exp

(
−G2

4η

)
(A.14)
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[38] M. J. Gillan, D. Alfè, and A. Michaelides, “Perspective: How good is DFT
for water?”, The Journal of Chemical Physics 144, 130901 (2016) 10.1063/
1.4944633 (cit. on pp. 2, 77, 87).

[39] M. Chen, H.-Y. Ko, R. C. Remsing, M. F. Calegari Andrade, B. Santra, Z.
Sun, A. Selloni, R. Car, M. L. Klein, J. P. Perdew, and X. Wu, “Ab initio
theory and modeling of water”, Proceedings of the National Academy of
Sciences 114, 10846 (2017) 10.1073/pnas.1712499114 (cit. on pp. 2, 57,
74, 77, 87).

https://doi.org/https://doi.org/10.1016/j.plrev.2018.09.004
https://doi.org/https://doi.org/10.1016/j.plrev.2018.09.004
https://doi.org/https://doi.org/10.1016/j.plrev.2018.09.004
https://doi.org/10.1021/acs.chemrev.5b00750
https://doi.org/10.1021/acs.chemrev.5b00750
https://doi.org/10.1021/acs.chemrev.5b00750
https://doi.org/10.1126/science.283.5398.44
https://doi.org/10.1126/science.283.5398.44
https://doi.org/10.1126/science.283.5398.44
https://doi.org/10.1021/jp047788i
https://doi.org/10.1021/jp047788i
https://doi.org/10.1021/jp047788i
https://doi.org/10.1063/1.1630560
https://doi.org/10.1063/1.1630560
https://doi.org/10.1063/1.1630560
https://doi.org/10.1063/1.1782074
https://doi.org/10.1063/1.1782074
https://doi.org/10.1021/jp055127v
https://doi.org/10.1021/jp055127v
https://doi.org/10.1063/1.4944633
https://doi.org/10.1063/1.4944633
https://doi.org/10.1063/1.4944633
https://doi.org/10.1073/pnas.1712499114
https://doi.org/10.1073/pnas.1712499114
https://doi.org/10.1073/pnas.1712499114


Bibliography 109

[40] M. D. LaCount and F. Gygi, “Ensemble first-principles molecular dynamics
simulations of water using the SCAN meta-GGA density functional”, The
Journal of Chemical Physics 151, 164101 (2019) 10.1063/1.5124957 (cit.
on pp. 2, 77, 87).

[41] L. Zheng, M. Chen, Z. Sun, H.-Y. Ko, B. Santra, P. Dhuvad, and X. Wu,
“Structural, electronic, and dynamical properties of liquid water by ab initio
molecular dynamics based on scan functional within the canonical ensem-
ble”, The Journal of Chemical Physics 148, 164505 (2018) 10.1063/1.

5023611 (cit. on pp. 2, 77).

[42] T. D. Kühne, M. Krack, and M. Parrinello, “Static and dynamical properties
of liquid water from first principles by a novel Car-Parrinello-like approach”,
Journal of Chemical Theory and Computation 5, 235 (2009) 10.1021/

ct800417q (cit. on pp. 2, 77).

[43] A. Marcolongo, R. Bertossa, D. Tisi, and S. Baroni, “QEHeat: an open-
source energy flux calculator for the computation of heat-transport co-
efficients from first principles”, Computer Physics Communications 269,
108090 (2021) https://doi.org/10.1016/j.cpc.2021.108090 (cit. on
pp. 2, 27, 55).

[44] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient ap-
proximation made simple”, Phys. Rev. Lett. 77, 3865 (1996) 10.1103/

PhysRevLett.77.3865 (cit. on pp. 3, 29, 79).

[45] L. Onsager, “Reciprocal relations in irreversible processes. i.”, Phys. Rev.
37, 405 (1931) 10.1103/PhysRev.37.405 (cit. on pp. 5, 8).

[46] L. Onsager, “Reciprocal relations in irreversible processes. ii.”, Phys. Rev.
38, 2265 (1931) 10.1103/PhysRev.38.2265 (cit. on pp. 5, 8).

[47] H. B. G. Casimir, “On onsager’s principle of microscopic reversibility”, Rev.
Mod. Phys. 17, 343 (1945) 10.1103/RevModPhys.17.343 (cit. on p. 8).

[48] J. B. J. Fourier, The analytical theory of heat (Cambridge University Press,
1878) (cit. on p. 8).

[49] R. Kubo, M. Yokota, and S. Nakajima, “Statistical-mechanical theory of
irreversible processes. ii. response to thermal disturbance”, Journal of the
Physical Society of Japan 12, 1203 (1957) 10.1143/JPSJ.12.1203 (cit. on
p. 9).

https://doi.org/10.1063/1.5124957
https://doi.org/10.1063/1.5124957
https://doi.org/10.1063/1.5124957
https://doi.org/10.1063/1.5023611
https://doi.org/10.1063/1.5023611
https://doi.org/10.1063/1.5023611
https://doi.org/10.1021/ct800417q
https://doi.org/10.1021/ct800417q
https://doi.org/10.1021/ct800417q
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108090
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108090
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108090
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203


110 Bibliography

[50] R. Peierls, “Zur kinetischen theorie der wärmeleitung in kristallen”, Annalen
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