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Abstract

In this thesis we study a few topics in the field of complex differential and algebraic

geometry. In the first part it suggests a new interpretation of a vector bundle on a families

of algebraic varieties (or any structures) as an object in the corresponding moduli spaces.

Further, we find a new simple expression for the (2, 2)-form c2(E) , in terms of ∂2hij ,

for a vector bundle E of an arbitrary rank on the one-dimensional family of Riemann

surfaces, and as a consequence show that c2(E) > 0 (Bogomolov & Lukzen, 2022).

Thus it gives a new way to prove the Chen-Donaldson-Sun theorem. Next, using the

operation of elementary transformation along the curve, we show that c2(E) can be itself

interpreted as a cycle in the moduli space of vector bundles on the arbitrary algebraic

surface. In the case of absence of singularities, we show that c2(E) > 0. When the

bundle E inherits certain singularities (of the number N ), we use the classical Bott-

Baum formula and prove c2(E) = N2 − F . Moving the Lefschetz pencil of curves on

a surface and observing how does the cycle , which corresponds to c2(E), change, we

calculate the corresponding monodromy.

The next topic of the thesis is "curves on the algebraic surfaces". Brunebarbe-Klinger-

Totaro theorem asserts that X has a nonzero symmetric differential if there is a finite-

dimensional representation of π1(X) with infinite image. We give a proof of the bound

hL(P ) ≤ Ad(P ) +O(1) for such X .

The last topic concerns the deformation theory of surfaces of general type. We prove

the Severi inequality c1(X)2 < 3c2(X) for a X2 a complex projective surface with an

ample canonical class K which generates PicX2 = Z.

Keywords— Vector bundle - Stability - Families of curves- Surface of general type-

Bogomolov-Miyaoka-Yau inequality-Deformation theory-Families of curves on a sur-

face with symmetric differential
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1 | Introduction

Stability of vector bundles on different geometric spaces has been an object of

study for a long time deriving from work in algebraic geometry. The concept of

stability arose naturally from the question of whether a space which could param-

eterize all bundles of a given rank exists, moreover, a subsequent question was if

there is a special class of vector bundles which could be naturally parametrized in

the same way.

André Weil was a first who has introduced a language of "matrix-valued divisors"

which allowed to give a possible description of vector bundles on curves. Other

results known at that time were the classification of vector bundles on curves of

g = 0 by Grothedieck and g = 1 by Atiyah (Atiyah, 1957b).

One of the main achievements in the area was the notion of stable vector bun-

dle, which originates with Hilbert. Tyurin (A. N. Tyurin, 1965) proved that, for

bundles over a curve of fixed rank and fixed degree of their determinant, if the

rank and the degree are coprime, the moduli space of these bundles determines

the original curve uniquely. A little later, Mumford, Newstead, Ramanan and

Seshadri have obtained the similar results independently (Ramanan, 1973; New-

stead, 1968, 1967; Seshadri, 1967; Deligne & Mumford, 1969).

The general question was if it was possible to parametrize bundles in such way

that the set of bundles formed an algebraic variety. It was shown that such bun-

dles would satisfy the so-called stability condition which turned out to be a rea-

sonable direction for a further exploration. As known, one of the most famous

results belongs to (Narasimhan & Seshadri, 1965), which states that one can build

any stable vector bundle on a Riemann surface using the unitary representation

π1(C) → U(n) of the fundamental group of the surface. Thus a set of stable
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vector bundles forms an algebraic family. Notable contribution to the notion of

stability have been made by Takemoto (Takemoto, 1972), Maruyama (Maruyama,

1977, 1978, 1975) and Mumford (Mumford, Fogarty, & Kirwan, 1994; Mumford,

1977).

It was reasonable to study vector bundles on algebraic surfaces, restricting it to

embedded curves and applying already discovered results afterwards. But first

one had to understand the structure of the curves lying on algebraic surfaces.

In his work "Families of curves on a surface of general type" (Bogomolov, 1977)

Fedor Bogomolov has proved that on any surface of general type with c21 > c2

there are only a finite number of curves of a given genus.

In work (Bogomolov, 1979) it was shown that the notion of T -stability,-polystability

is equivalent to Takemoto’s stability. T -stability allows one to use symmetric ten-

sors on vector bundles and the theory of algebraic reductive groups (see [2] for

more details) to make a conclusion if a particular bundle is stable or not.

Another important theorem obtained by F. Bogomolov is the effective stability re-

stricton theorem of vector bundles: any stable vector bundle E → X on a smooth

projective surface X restricts to a stable bundle on any ample curve belonging to

sufficiently big class. Let Num denote numerical equivalence and K+ a positive

cone (see (Bogomolov, 1994; Huybrechts & Lehn, 2010)). Then

Theorem 1. (Bogomolov’s restriction theorem) Let F be a locally free sheaf of

rank r ≥ 2 . Assume that F is µ-stable with respect to an ample class H ∈

K+ ∩Num. Let C ⊂ X be a smooth curve with [C] = nH . If 2n ≥ R
r
∆(F ) + 1

, then F |C is a stable sheaf.

As it follows from the theorem, the restriction of a bundle is stable on the singular

fibers with relatively small number of singularities and on normalizations of sin-

gular curves. This result is the strongest and we show that Mehta-Ramanathan’s
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theorem [4] follows from it ( see [30] for the detailed proof). After Yau’s proof

(Yau, 1978) of Calabi (Calabi, 2015) conjecture it was proved that Hermitian-

Yang-Mills connections are related to an algebraic property of the holomorphic

vector bundle of being stable which is known as Donaldson-Uhlenbeck-Yau the-

orem, see (Uhlenbeck & Yau, 1986; S. K. Donaldson, 1985). Later on the signifi-

cant contributions have been made by Hitchin (Hitchin, 1987), Corlette (Corlette,

1988), Simpson (Simpson, 1992) and others.

We should note that nowadays there exist many different notions of stability. We

give an overview in [5]. We also provide a reader with a comprehensive Algebro-

Analytic dictionary [7].

There are several results concerning the existence of special metrics on stable bun-

dles over complex projective manifolds. One of the recent improvements in this

question is Chen-Donaldson-Sun theorem (X. Chen, Donaldson, & Sun, 2015a,

2015b, 2015c) which claims the existence of flat unitary metric on a stable bun-

dle with Chern classes c1, c2 equal zero. It was obtained by considering a special

Futaki-type functional on the space of Hermitian metrics and proving the exis-

tence of a metric with a minimal value of the functional. The resulting metric

happens to be flat in case of c2 ≥ 0 which implied the result, see (X. Chen et al.,

2015a, 2015b, 2015c) for more details.

Recall that all Kähler metrics in class [ω] can be parametrized by smooth functions

in the space of Kähler potentials Hω = {φ ∈ C∞(M) : ωφ = ω+
√
−1∂∂̄φ > 0}.

Then, for φ ∈ Hω, the scalar curvature is Rφ = −gij̄φ ∂i∂j̄log(det(gij̄ + φij̄)) and

the constant scalar curvature equation reads as Rφ = R′ (S. K. Donaldson, 2005),

where R′ is a constant depending only on manifold, class and a complex structure

(M, [ω], J).

Conjecture 2. (Yau-Tian-Donaldson conjecture) YTD conjecture is that (X,L) ad-
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mits a CSCK metric if and only if it is K-stable.

YTD conjecture is proven for Fanos and Tropical varieties.

1.1 Summary of results

In our thesis, we show how one-dimensional cycles in the moduli space of vector

bundles on curves are associated to bundles on families of curves which are stable

on the restriction to every curve of the family. We present a connection between

existence of a special metric on a class of surfaces formed by the families of curves

and its’ natural relation to one-dimensional cycles in the moduli space of stable

bundles on curves.

Suppose that B is a family of curves, B = {Cλ}λ∈Λ , where Λ is a parameter set.

Assume that vector bundle E on B has a stable restriction on any curve Cλ. If, in

addition, the first Chern class of the restriction Eλ of E on any curve Cλ is trivial,

then by (Narasimhan & Seshadri, 1965) there is a flat hermitian metric hi,j on Eλ

which is unique modulo multiplication by a constant. Thus, it defines the unique

flat hermitian connection on Eλ and the unique modulo conjugation irreducible

unitary representation ρλ : π1(Cλ) → U(n).

The choice of the flat hermitian metrics hi,j onEλ for any λ ∈ B defines hermitian

metric h on E over B. The metric h is not unique, but depends on a real-valued

invertible function of Λ corresponding to the choice of actual hermitian metric on

Eλ. Hence we obtain a family of such metrics on E and corresponding Hermitian

connections Θh. The latter defines Chern forms representing all Chern classes

of E. We are particularly interested in the local properties of (2, 2)-form on B

representing the second Chern class c2(E) obtained from Θh when B is a two-

dimensional complex surface. We can express the second Chern class through the
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curvature of the cycle S in the moduli space of vector bundles, which corresponds

to a particular vector bundle E on the base B.

c2(E) =
tr(Θ(S )2)− tr2(Θ(S ))

8π2

The following result can be obtained by a direct calculation [8.11.2]. The second

Chern class is represented locally by the formula (53)

c2(E) =
∑
i,j

−det(Dij)det(D̄ij)

det(hij)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

Corollary 1. The form which represents a second chern class c2(E) on B is non-

negative since det(Dij)det(D̄ij)

det(hij)
≥ 0.

Corollary 2. Assume that (−det∂2hi,j) is nonzero somewhere on B then c2(E) is

semipositive. In particular, if the base Λ is a compact curve and the representation

ρλ varies modulo conjugation on Λ then c2(E) has a representative which is a

semipositive (2, 2)- form

This fact yields a possibility for a constructive approach to the proof of Chen-

Donaldson-Sun theorem for a projective surface X . The theorem claims that

c2(E) > 0 for a stable vector bundle with c1(E) = 0 unless it is induced from a

unitary representation of π1(B). Our explicit local calculation implies this result

for a compact surface f : B → C fibered with all smooth fibres f−1(c), c ∈ C

over a smooth curve and a bundle E which has stable restrictions on the fibers

f−1(c).

Corollary 3. We should note that the theorem [1.1] holds not only for stable

bundles E → B on our class of surfaces. In particular, if the bundle E is not

stable, but restricts to a stable one to a curve C ⊂ B, this result [1.1] holds as
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well.

We also discuss other possible applications and generalizations of the above ap-

proach.

One of the key ingridients of the proof of the formula (53) is a special geometric

cycle which corresponds to every vector bundle on the families of curves. We

construct a method of its’ interpretation in the algebraic way via unitary represen-

tations and demonstrate how to analyze the notion of stability of a vector bundle

on the complex projective algebraic surface. The scheme of the proof is the fol-

lowing:

FIND A DESCRIPTION OF VECTOR BUNDLES ON THE FAMILIES OF CURVES.

In [8.1] we introduce an object, which corresponds to a certain class of vector bun-

dles on the families of curves (or any varieties/structures).

Theorem 3 (40). Every vector bundle E onB, which is stable on the restriction to

every non-singular curve and a curve with relatively small number of singularities

E|Cλ
(from our family B = {Cλ}) is a smooth moduli section S ∈ Γ(Mλ)λ∈Λ of

the family of Moduli spaces MCλ
, λ ∈ Λ.

Corollary 4. If Cλ = C is a constant curve, then all moduli spaces are the same

MCλ
= MC = M , thus a vector bundle on B is decoded by a moduli section

S ⊂M in the moduli space M :

S = {mλ ∈M,λ ∈ Λ}

Corollary 5. Moduli space MB of all vector bundles on B, whose restriction to

any curve of the family is stable, consist of all moduli sections S of family of the
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corresponding moduli spaces MCλ
.

MB = {S |S ∈ Γ((MCλ
)λ∈Λ)}

Corollary 6. If Cλ = C1 and Λ = C2, thus we have a vector bundle on the

C1 × C2. Then every subset S ⊂ M will form a cycle in the moduli space of

vector bundles S = C2 ⊂MC1 or C1 ⊂MC2 .

Actually more general theorem holds true:

Theorem 4. Every vector bundle V on the family of algebraic varieties {Xλ}λ∈Λ,

which is stable on the restriction to every |Xλ
is a smooth moduli section S of the

family of Moduli spaces {MXλ
}, λ ∈ Λ.

Or

Theorem 5. (General principle) Let {Qλ} be a family of sets, which parametrizes

objects on family of spaces B = Xλ. Then a set, which parametrizes objects on B

is Γ({Qλ}λ∈Λ).

FIND AN INTERPRETATION OF c2(E) ON THE FAMILIES OF CURVES

The next goal is to find a suitable interpretation of the second chern class as a

particular moduli section of families of moduli spaces {MCλ
}. We perform an

operation of elementary transformation on a trivial bundle E [8.2]. We have to

choose a curve C ′ ⊂ B in a way which allows to interpret c2(E) as a moduli

section [8.2.1]. Afterwards we obtain a formula for the second chern class of the

bundleW which is the result of an elementary transformation procedure [42, 8.7]:

c2(W ) = c1(FC)−
r(k − r)

2k
C2 (1.1)
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where FC is a stable bundle on a curve C ⊂ B.

Then the following theorem holds true:

Theorem 6. The second chern class c2(W ) is represented by a moduli section

in MCλ
for some λ ∈ Λ, depending on the choice of a curve C; since ∆(W ) =

−c2(W ), if a bundle W is semistable, then

c2(W ) > 0.

CRITERIA FOR STABILITY. THE EXPRESSION FOR ∆(E).

The next goal is to find a criteria for stability for a vector bundle E over smooth

projective surface X [8.3]. The idea is to expose all possible embedded curves

to a surface passing through a fixed point x ∈ X and to reveal the restrictions of

vector bundles to these curves. The major problem which arises in the course of

procedure of restriction of vector bundle is a presence of the singular points Xsing

in X and hence of the corresponding singular fibers of vector bundles Esing. To

resolve it, we have to suppose that we are in conditions of Bogomolov’s effective

restriction theorem.

Theorem 7. (Bogomolov’s effective restriction) Let W be a locally free sheaf of

rank r ⩾ 2 on a family of curves with c1(W ) = 0. Assume that W is µ-stable with

respect to an ample class H ∈ K+ ∩ Num and C ⊂ X be a smooth curve with

[C] = nH . Let 2n ⩾ R
r
∆(F ) + 1. Then F |C is a stable sheaf.

Let X be a smooth projective surface. Consider very ample line bundle H on a

surface X2 and the space H0(X2, H). Then P(H0(X2, H)) = PH is a projec-

tive space parametrizing curves in class H . Assume that X satisfies a stability

inequality of the Bogomolov’s effective restriction theorem so there is an open

subset U in the class P (H0(X2, H)) = PH such that we obtain a section sE over
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U . Notice that the codimension of P (H) − Us ⊂ P (H) grows if the class H

becomes larger and therefore for a generic pencil P1
t ⊂ P (H) of such curves we

can define a one-dimensional algebraic class which is given by the intersection of

a section s(E) with a moduli section SP1
s

which corresponds to a vector bundle

over a pencil P1
s.

Theorem 8. (44) Intersection of a section s(E) and a moduli section SP 1
s

is given

by one-dimesional algebraic cycle [8.16],

κ = s(E) ∩ SP 1
s

(1.2)

and

κ = (L .∆P ) (1.3)

where L is a line bundle which corresponds to s(E) on the families of moduli

spaces of vector bundles and ∆P coincides with SP1
s

in this model. It holds if a

moduli section SP 1
s

has a natural polarizatoion L ′. In particular, since c2(E) is

represented by some moduli section Sc2(E), then locally on the open subset U the

intersection is equal to our one-dimesional cycle:

(2rc2(E) ∩ [B])|U = κ

for a polarization L on the families of moduli spaces of vector bundles.

By (Moriwaki, 1995) for a map f : B → X , where B is a union of all curves

passing through all points in X ,

disX/Y (E)|U = f∗(κ|U)
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and in (46) we obtain

disX/Y (E)|U > 0

Corollary 7. If κ = 0, then disX/Y (E) = 0 and therefore we obtain a flat bundle

E on a surface X . So κ = 0 sections correspond to a bundles which are given by

the same representation - invariant under the monodromy of the family of curves.

Corollary 8. If we work over a field k, then κ = hL(P ). Note that Gal(k̄/k) acts

as a monodromy operator on hL(P ). As the geometric height is invariant under

the action of Galois group, we have

σ(κ) = hL(σ(P )) = hL(P ) = κ, σ ∈ Gal(k̄/k).

NUMBER OF SINGULAR POINTS AND REPRESENTATIONS In 8.6 we give an

expression of the number of singular points of X .

Lemma 9. (50) Let NP be the total number of singular points XSing. Then it

is given by the Euler charactrestics formula for a surface X blown up at the H2

intersection points of curves parametrized by P1
Ct

.

Np = χ(X) +H2 + 2H(K +H)

Lemma 10 (51). Assume that we have a family of representations ρE,t : π1(Ct) →

U(n) over Ct defined by a stable bundle E. If this representation extends to a

representation of at least one singular curve Cs, s ∈ Xsing then it extends to X

and hence the bundle E is defined by the representation ρE : π1(X) → U(n).

MONODROMY

The action of the monodromy m on the unitary representation can be described
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[8.17] group-theoretically as:

mγ
η : A1 → A1, A1 → A1A2, Ai → A1AiA1

−1

For each unitary representation of a fundamental group of a given surface Xt we

have a normal subgroup Nt generated by gt1 which is a kernel of projection of

π1(Xt) to π1(X0). If we consider all unitary representations of groups Nt de-

noted by NU
t then the monodromy operator mγ

η acts on each of the corresponding

groups NU
t . For a loop Γ of nonsingular curves Xt we can take Πγ∈ΓN

U
γ and the

corresponding action of m on it.

GALOIS GROUP ACTING ON SINGULAR POINTS

Assume [8.6.2] that a surface X is defined over a number field [K : Q] < ∞ as

well as the pencil f : X → P1 and the bundle E. The union of singular fibers in

this case is also defined over K. Monodromy group T of the fibration Xb → P1

permutes vanishing cycles cs of different fibers transitively in the fundamental

group of the complementary of X to all singular fibers π1(X −Xsing).

The action of the Galois groupGal(K̄/K) approximates the action of monodromy

T on the vanishing cycles {cs}.

In particular, if there is only one orbit of the Gal(K̄/K) on the vanishing cycles

in a completion of π̂1(Xt) then either the family of representations is obtained

from the representation π1(X) or any fiber Xt with a singular point has the latter

as singular point of the family of partial connection.

STABILITY OF VECTOR BUNDLES WITH SINGULARITIES

In [9.1] we find an expression for c2(E) for a bundle which has some number of

singular points.

Theorem 11. (55) For a vector bundleE → X , whereXsing is the set of singular
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points of X , as c1(E) = 0, the second chern class is given by (9.1)

c2(E) = c2(P(TE)) = ∆ =
∑
p

Resp

 ϕ(A)dzk..dzn

ak, ..., an

− F 2 = N − F 2

Since c1(F ) > 0, it implies that c2(E) = N − F 2 .

Corollary 9. If the number of points N grows sufficiently fast and F is small we

get that c2 > 0, i.e. N > F 2.

BOUNDS FOR A CURVES ON THE SURFACES X OF GENERAL TYPE

It is known by [10.1,61] and (Bogomolov, 1977) that if the canonical class of

X is very ample, for except a finite number of curves, there is a linear estimate

from below for a genus of the curve inside each cone KC
D,ε (see 10.1). By the

result of [62] (see also (Brunebarbe, Klingler, & Totaro, 2013)) there are nontrivial

symmetric tensors on a surfaceX if it has a finite-dimensional representation with

an infinite image. We prove that

Theorem 12. (10.2) Let X be a compact Kähler manifold. Suppose that there is

a finite-dimensional representation of π1(X) over some field with infinite image.

Then

hL(P ) ≤ A · d(P ) +O(1)

DEFORMATIONS OF THE SURFACES OF GENERAL TYPE

Denote by T (Mn) = T the tangent bundle to Mn, a projective manifold. Then,

following [11.1.2] and (Bogomolov, 1978), define Fk ⊂ O(T ) be a k-dimensional

coherent subsheaf of O(T ). An embedding r : Fk ↪→ O(T ) ⇝ a map of

one-dimensional bundles r(k) : detFk →
∧k T . If one uses the isomorphism∧n−1Ω1 ⊗ −K ≃ T ⇝ a map r⊙(k) : detFk ⊗ −kK → Ωn−k. This way, one

can study subbundles in T (Mn) just considering one-dimensional subbundles in
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Ωi(Mn). The following condition holds:

Theorem 13. (Bogomolov, 1978) Let Mn be a projective variety, Ωi = Ωi(Mn),

the ith wedge power of the cotangent bundle Ω1 = Ω1(Mn), L → Mn be the

one-dimensional bundle on Mn and h : L → Ωi- a non-trivial homomorphism.

Then ∃ constants cLM , β such that

dimH0(Mn, sL) < cLMs
i + β, ∀s > 0

Another useful theorem which will be used is

Theorem 14. (70) Let E → X be a vector bundle of dimE = n and suppose

that c2 − n−1
2n
c1

2 > 0 ⇒ ∃ a subbundle F ⊂ E, dimF = k and a homomorphism

h : F → E :

1. h : O(F ) → O(E) is a monomorphism;

2. (c1(F )− k
n
c1(E))

2 > −c2(E0), E0 = E ⊗ detE
n

;

3. some multiplicity of the bundle (ndetF − kdetE) has a section; i.e. there

exists ∃s ∈ H0(X, l(ndetF − kdetE)) for some l

In[11.1.2, 11.2] we prove our main result:

Theorem 15. (72) Let X2 be a complex projective surface with an ample canon-

ical class K which generates PicX2 = Z and assume that H1(X,T ) ̸= 0 where

T is the tangent bundle and H1(X,T ) ̸= 0. Then we have Severi inequality

c21(X) < 3c2(X).
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1.2 Future directions

1. One of our future projects (joint with Fedor Bogomolov) concerns the questions

about the metric expressions on the vector bundles over surfaces. Let Mn be a

compact smooth projective manifold with trivial canonical class. Then there is a

Calabi-Yau Kähler metric with a corresponding (1, 1)-form in each Kähler class -

it is a well known Yau theorem. It is essentially existence theorem and no good

formula for Kähler metrics exist even for K3 surfaces.

We plan to find and write down an explicit formula for the Calabi-Yau metric on

a vector bundle E → X over the complex surface X .

2. A big variety of a more concrete applications of the results obtained in the

thesis (some particular cases of algebraic surfaces, vector bundles, etc.)

1.3 Thesis Outline

The thesis is organised as follows:

Chapter 2 — Introduces the concept of vector bundle and discusses its’

properties and interpretations;

Chapter 3 — Studies the holomorphic tensors on vector bundles and the

notions of T - and H-stability;

Chapter 4 — Gives an overview on Atiyah classes;

Chapter 5 — Provides a useful dictionary of terms in the theory of vector

bundles and algebraic curves from the algebraic and analytic perspectives;

Chapter 6 — Discusses results on the expression of c2(E), stability of vec-

tor bundles without singular fibers and monodromy along singular fibers

from both algebraic and differential-geometric points of view;
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Chapters 7 — Suggests an expression for c2(E) when the bundle E has

certain singular fibers;

Chapter 9 — Introduces a bound for a curves on a surface with symmetric

tensors;

Chapter 10 — proves the Severi inequality c21(X) < 3c2(X) for a X2

be a complex projective surface with an ample canonical class K which

generates PicX2 = Z.

Chapter 10 — Offers a possible description of vector bundles on particular

families of curves.
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2 | Preliminaries:

Vector bundles and its’ interpretations

We first start with the concept of Vector bundles. There are different styles to

work with these objects, and here we are collecting some preliminaries of dif-

ferent points of view. The main references therein are (A. N. Tyurin, 1992;

A. Tyurin, 1997, 2008). The Basic theory is provided by (Shafarevich, 1988a,

1988b; Iskovskikh & Shafarevich, 1989; Shokurov, 1998; Shokurov, 1988).

One can associate to each vector bundle π : E → X of dimension n on a manifold

X an element (called cocycle) ⇝ h ∈ H1(X,GL(n)) in the first cohomology

group with values in the sheaf of germs of mappings of f : X → GL(n) to a full

linear group GL(n).

For a h ∈ H1(X,GL(n)) ⇝ an affine covering X ⊂ {Ui}i∈I . A set {hij} of

matrix functions such that hij is regular and regularly invertible on Ui ∩ Uj and

hijhjkhki = 1 on triple intersections Uijk := Ui ∩ Uj ∩ Uk allows us to glue a

vector bundle.

More concretely, if V0 is an n-dimensional vector space, then the matrix functions

hij can help to glue the sets V0 × Ui in such a way that π−1(Ui) = V0 × Ui . The

triple (V, π,X) is called a vector bundle. In algebraic geometry vector bundle has

four different interpretations.

2.0.1 The sheaf interpretation of a vector bundle

Vector bundle E → Xcan be seen as a locally free sheaf on X .

⇒: Let us associate to E ⇝ Γ(E)- its’ sheaf of germs of sections.

⇐: Each locally free sheaf is in fact a sheaf of germs Γ(E) of a unique bundle E.
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The rank of the locally free sheaf is the dimension of the bundle.

2.0.2 The geometric interpretation

A vector bundle E → X , π−1(x) = V0 as a variety itself is neither affine nor

complete. To turn it to a complete one, we have to projectivize it. Let P(V0) be a

projectivization of a fiber V0, then, just gluing the spaces P(V0) × Ui all together

with the same matrices {hij}i,j∈I we will get a projective variety π : P(E) →

X with the same projection map π. It is now a complete variety, a geometrical

object. If we tensorE by any line bundleE⊗L the projectivizations will coincide

P(E) = P(E ⊗ L).

The bundle π∗(E) → P(E) has a one-dimensional subbundle L ⊂ π∗(E), which

is called tautological and has a property, that its’ fiber Lp = ℓp defines the same

one-dimensional subspace which defines the point of the projectivization P(E).

A bundle τ = L∗ is called antitautological on P(E). The pair (P(E), τ) uniquely

determines the bundle V on X (in fact, constructively, by E = (R0π(τ))∗).

2.0.3 The arithmetic interpretation

A vector bundle E as a class of matrix divisors. If X is a curve, then a matrix

bundle on X is the following data: for a x ∈ X ⇝ Mx, where Mx is a functional

matrix, in such a way, that there are only finitely many points x ∈ X at which Mx

is not regular and regularly invertible at x.

Two assignments M ∼ M ′ are called equivalent if the expression Mx
−1M ′

x is

regular and regularly invertible at x, ∀x ∈ X . A class of matrix assignments Mx

is called a matrix divisor.

The matrix divisors Mx ∼ M′
x are equivalent if MxṀ ′

x
−1

= G is a matrix

of rational functions on X not depending on the point x ∈ X . The concept of
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a matrix divisor is analogous to that of a divisor, and the connection between

matrix divisors and vector bundles is the same as that between divisors and one-

dimensional (linear) bundles.

2.0.4 The analytic interpretation.

There is a class of bundles on X which is reasonable to distinguish, the so-called

flat bundles, which one can get from the representation ρ : π1(X) → GL(n).

Holonomy of a connection and representation of a fundamental group π1(X)

In fact, we can say that an element of a fundamental group corresponds to a certain

loop, and the representation of a certain loop to a linear group GL(n) obviously

gives an action of a holonomy on a vector bundle: while we are moving around

the loop on the manifold X , at the same time we are moving along the fibers of

a vector bundle E, starting from the initial vector v0, using the certain connection

∇E . Thus when we return to the same fiber,(i.e. the same point of the beginning

of the loop x0 on X), the vector changes to another one v′o. Thus it defines the

action of the holonomy connection ∇E . It is clear, that the vector will move to

some v′0 = A · vo, A ∈ GL(n). Thus, this loop will give us an element of a group

GL(n) through the action of the holonomy of connection. Hence, it is clear why

every representation ρ : π1(X) → GL(n) is equivalent to set an action of a certain

connection and thus defines a bundle.

The precise construction is the following: let ρ : π1(X) → GL(n) be a represen-

tation of the fundamental group, X̃ the universal covering manifold of X , and V

an n-dimensional vector space. Then π1(X) acts diagonally on X̃ × V , that is,

g(u, v) = (g(u), ρg(v)) and X̃ × V/π1(X) = E is a bundle on X . The condition

for a bundle to be flat is purely algebraic and for curves is very simple.

We can illustrate those four interpretations of a vector bundle in the one-dimensional
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case. The equivalence of a divisor class Div(X) with a locally free sheaf of rank

one F → X . Recall that the equivalence of a divisor class with a locally free sheaf

of rank 1 provides the divisors with higher cohomology; in fact, cohomology first

entered into arithmetic through this equivalence. it is known that one-dimensional

bundle can be obtained from a representation of the fundamental group ⇔ its

Chern class is 0. Hence we get the analytic construction of the Picard variety:

PicX = {set of unitary characters of π1(X)}.

2.1 Properties of vector bundles on curves

Let X be an algebraic curve. For a line bundle L→ X one can associate a degree

of a corresponding divisor DL, which is called degL. For a higher-dimensional

bundle E → X , the degree is defined as degE = degdetE.

This invariant allows us to split vector bundles in classes and define the notion

of stability of vector bundles, i.e. to distiguish the components of the highest

dimension.

Definition 1. A bundle E → X on a curve X is called stable, if for any proper

subbundle V ⊂ E, degV
dimV

< degE
dimE

Note that EndV is the direct sum of the trivial bundle I and adV . Consequently,

for sections we have: H0(X,EndV ) = I ⊕ H0(X, adV ). The sections of the

sheaf adV are those endomorphisms of V for which the image is a proper sub-

bundle in V ; such endomorphisms are also called non-trivial. Notice that we can

represent every vector bundle as an extension for e ∈ H0(X, adV ),

e↭ 0 → kere→ E → Ime→ 0,

here degE = deg(kere)+deg(Ime)and dimE = dim(ker(e))+dim(Im(e)).Then
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the fraction degE
dimE

lies between degkere
dimkere

and degIme
dimIme

and is less than one of them,

violating the inequality above. Hence stable bundles have no non-trivial endo-

morphisms.

2.1.1 Parabolic bundles on the curves with nodes

Definition 2. Let X be a compact Riemann surface with a finite set of points

P1, .., Pn and W a vector bundle on X . By (Bhosle, 1996), a parabolic structure

on W is giving at each Pi,

a) a flag Wp = F1Wp ⊃ F2Wp ⊃ ... ⊃ FrWp,

b)The system of weights α1, .., αr, attached to F1Wp, .., FrWP such that 0 ≤ α1 <

α2 < .. < αr < 1

We call k1 = dimF1Wp−dimF2WP , kr = dimFrWP the multiplicities of α1, .., αr.

2.1.2 Serre duality for vector bundles

Following [wikipedia] and (Serre, 1955, 1956), let X be a smooth variety of di-

mension n over a field k. Define the canonical line bundle KX to be the bundle of

on X , the top exterior power of the cotangent bundle: :KX = Ωn
X =

∧n(T ∗X).

Suppose in addition that X is proper morphism over k. Then Serre duality says:

for an algebraic vector bundle E on X and an integer i, there is a natural isomor-

phism :H i(X,E) ∼= Hn−i(X,KX ⊗ E∗)∗ of finite-dimensional k-vector spaces.

Here ⊗ denotes the tensor product of vector bundles. It follows that the dimen-

sions of the two cohomology groups are equal: :hi(X,E) = hn−i(X,KX ⊗ E∗).

As in Poincaré duality, the isomorphism in Serre duality comes from the cup prod-

uct in sheaf cohomology. Namely, the composition of the cup product with a nat-

ural trace map on Hn(X,KX) is a perfect pairing: :H i(X,E) ×Hn−i(X,KX ⊗

E∗) → Hn(X,KX) → k. The trace map is the analogue for coherent sheaf coho-

mology of integration in de Rham cohomology.
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3 | Preliminaries: Holomorphic tensors

and Vector bundles

In this chapter we are fully following a fundamental work (Bogomolov, 1978),

where all the concepts have appeared at first time.

The idea of Holomorphic tensors is the following: For a (E, {φij} ∈ ΓG) →

X vector bundle over X , the cocycles ΓG → GL(V ) define a vector bundle.

Thus, one studies the group G and its’ representations and associated important

subgroups and charaters. In more details,

(E,ΓG) ⇝ parabolic subgroup P ⊂ G, torus T ⊂ G, Z(T ) center of T and

a Weyl group W (G) ⇝ a root system R ⊂ χ(T ) : T → k∗, Weyl chambers

KS ⊂ χ(T ) and metric on χ(T ) ⇒ it allows to define special one-dimensional

bundlesE(−χ) = G⊗k(−χ), and the set of modelsAχ := Im(ϕ : G⊗k(−χ) →

H0(G/Pπ, E(−χ))), which classify unstable points of X . All of it is achieved

using the theory of representations of reductive groups and, in particular, the χ(T ).

Applying all this theory to groups SL(n), GL(n) one gets the stability results for

vector bundles which are familiar to most of us.

3.0.1 Cocycles associated to vector bundles.

Every vector bundleEγ corresponds to a cocycle γ ∈ H1(X,ΓG). A group homo-

morphism G→ H in turn induces a homomorphism of the sheaves ΓG → ΓH ⇝

and hence a map ρ : H1(X,ΓG) → H1(X,ΓH).

It is the same as a fiberwise map of vector bundles ρ̂∗ : Eγ → Eĉγ ⇝ ρ̂∗(gx) =

ρ(g)ρ̂∗(x). A bundle Eγ is said to be isomorphic to a direct product X × G iff

there exists a ΓG-section s: s|U i ∈ ΓG(U
i), U i ∈ X,Eγ|U i ≃ U i × G, where
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G ⊂ GL(r; k) is an algebraic subgroup. Principal bundle, associated with Er is

built via cocyle γ ∈ H1(X,O(G)).

3.0.2 Group of characters of G.

Consider the group of characters of a group G, χ(G) : {ρ : G → k∗}. One can

represent χ(G) =
⊕

{infinite cyclic groups}, if G is connected.

Let kn be an affineG- space and f be a semiinvariant (f(gx) = χ(g)f(x)) regular

function on kn for a certain character χ(G). Then, one can associate to f ⇝ a

holomorphic map EN
γ → kγ(χ), where kγ(χ) is a one-dimensional bundle. In this

way, we get a non-linear map f : Hρ(X,EN
γ ) → H0(X, kγ(χ)).

A subgroup P ⊂ G is called parabolic, if G/P is complete. RadG is a connected

component of
⋂

P⊂G P of all parabolic subgroups in G. In particular, RadG is

a normal subgroup in G. The unipotent part of RadG, U(G) ⋉ G. G is called

semisimple (or reductive) if RadG = 0. Commutative reductive group is called

torus. Any reductive group is isogenic to a T × Q, where T is a torus and Q is a

semisimple group. Let T ⊂ G be a maximal torus in G. Any parabolic subgroup

H contains a maximal torus T in G. Z(T ) is a center of a torus T , N(T ) is a

normalizator of a torus T . The group W (G) := N(T )/Z(T ) is finite and called

a Weyl group of G. W (G) ↷ T by conjugation and hence acts on the lattice of

characters χ(T ). W (G) = {reflections sα, s2α = 1}.

A reductive group G can be described in terms of a finite set R ⊂ χ(T ), which

is called a root system. Consider an action of G ↷ G on itself by conjugation⇝

we get an action G↷ g|T , restricted to a torus T . One can write G↷ g|T =
⊕

{

representations, corresponding to χ(T )} =
⊕

gx. A root is α ̸= 0, α ∈ χ(T )

such that gα ̸= 0. The space gα is one-dimesional. g0 ≃ Lie algebra of a torus

T . There exist a connected T -invariant unipotent subgroup Uα ⊂ G for each root

α ∈ R.
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A subset S is a basis or the system of simple roots if

• elements of S are linearly independent;

• R ⊂ NS ∩ (−NS), where NS =
∑
nisi, si ∈ S, ni ≥ 0

W ↷ S acts transitively on the sets of bases R.

Definition 3. A Weyl chamber KS w.r.t. basis S is a cone in χ(T )R = χ(T )Z⊗R.

KS ⊂ χ(T )R, y ∈ KS ⇔ (y, π) ⩾ 0 ∀π ∈ S.

KS is a fundamental domain in χ(T )R w.r.t. action of W .

Definition 4. A dual basis Ω to S is described as: ωα ∈ Ω, 2 (ωα,β)
(β,β)

= δα,β

Among invariant metrics on χ(T )R for a reductive G, there exists a unique one,

such that χ(T ) = {ξ ∈ χ(T )R, 2
(ξ,α)
(α,α)

∈ Z(T ) ∀α ∈ R}

DESCRIPTION OF PARABOLIC SUBGROUPS Let π ⊂ R. Then:

• π contains a certain basis

• π is closed under addition, i.e. (π + π) ∩R = π

Consider Pπ =< T,Uα, α ∈ π >. Then Pπ is a parabolic subgroup. Using this

procedure, one can get any parabolic subgroup P , which contains a torus T . In

case π is a basis, Pπ is a Borel subgroup. Bruhat decomposition is defined as

follows. Let P be a parabolic with an unipotent radical U(P ), T ⊂ P . Then

G =
⋃

w∈W U(P )wP =
⋃
PwU(P ). If P = Pπ, where π ⊂ R, then w can be

extracted from W/Wπ.

3.0.3 Representations and invariant theory

Let ρ : G → GL(V ) be a linear representation of a group G. Restricting it to a

maximal torus, we get a decomposition w.r.t. weights: V =
⊕

χ∈χ(T ) Vχ.
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DESCRIPTION OF REPRESENTATIONS OF THE REDUCTIVE GROUPS As is

well-known, any finite-dimensional representation splits into a sum of irreducible

representations. Any irreducible representation is uniquely defined by its’ charac-

ter trg.

Correspondence between the characters of a maximal torus T and irreducible

representations of a group G

Let χ ∈ χ(T );π ⊂ R, π = {α ∈ R, (α, χ) ⩾ 0}. Let Pπ be a parabolic subgroup,

defined via π. As χ ⊥ the root system Gπ hence χ is a character for Pπ.

One can get a one-dimensional vector bundle E(−χ) with a base G/Pπ by twist-

ing a representation k(−χ) of Pπ via principal Pπ-bundle G → G/Pπ, where

E(−χ) = G ⊗P k(−χ). As G ↷ E(−χ) ⇝ it acts on a space of sections of

E(−χ) : G↷ H0(G/Pπ, E(−χ)). Some properties of E(−χ) are:

• If i > 0, then H i(G/Pπ, E(−χ)) = 0

• H0(G/Pπ, E(−χ))|c∈G/Pπ ⇝ a surjective homomorphism of P - represen-

tations φ : H0(G/Pπ, E(−χ)) → k(−χ)

• Denote Vχ := H0(G/Pπ, E(−χ))∗, i.e. linear functionals on sections of

E(−χ). Dualizing φ , we get a map k(χ) → H0(G/Pπ, E(−χ))∗. Thus we

get a representation Vχ ↔ χ

• Vχ ≃ Vχ′ ⇔ χ′ = ωχ, where ω ∈ W .

THE CLASS OF MODELS Aχ. Let us associate to a character χ ↔ a manifold

Aχ which is a G-orbit of k(χ) in the space Vχ, χ is a character of P . A model is

defined as Aχ := Im(ϕ : G ⊗P k(χ) → V (χ)). This map is an embedding for

x /∈ s−1(0) for points not lying on the zero section of E(χ). It also contracts to 0

the zero section of E(χ). Aχ is closed.

MH. Consider a reductive subgroup H ⊂ G and a manifold G/H :=MH , which
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we shall call an MH-model.

There are 3 classes of models: Aχ,MH and C.

Lemma 16. Let V be a representation of G, V0 ⊂ V be a subspace, invariant

under P ⊂ G a parabolic subgroup. Then the set GV0, which consists of shifts of

Vo, is closed in V .

Let us classify all points under the action of a reductive group G over C and its’

representation ρ : G→ GL(N,C).

For a x ∈ CN ⇝ a manifold of a Gx-orbit. The points of Gx can be classified as:

• Unstable: 0 ∈ Ḡx

• Stable: Gx = Ḡx and dimGx is maximal, i.e. for any y ∈ CN , dimGy ≤

dimGx

• Polystable:

– Points x, which have a closed orbit Gx of a non-maximal dimension,

which does not coincide with 0;

– Points x, which have a non-closed orbit, i.e. Ḡx ̸= Gx, but 0 /∈ Ḡx.

G-invariant polynomials help us to differ the closed orbits of G in CN . If X, Y

are the closed orbits of G, then there exists a polynomial h on CN : h(gx) =

h(x), x ∈ CN and h(X) = 1, h(Y ) = 0.

The representation theory of reductive algebraic groups allows us to give a ge-

ometric description of the manifold of unstable points WG
0 . Namely, it strongly

depends on the isomophism WG
0 ≃ G(W T

0 ) (T is a maximal torus) and relies on

the description of W T
0 . A representation ρ : T → CN splits into direct sum of

weighted representations Cχ; CN =
∑
Cχ, where Cχ := {v ∈ CN : T ↷ CN

via χ(T )}.
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Definition 5. A support of a vector v ∈ CN , Supp(v) ⊂ χ(T ) is a subset in the

lattice of characters of T . α ∈ Supp(v) ⇔ for a projection P : V → Cχ,

P (v) = vα ̸= 0.

One can consider a convex set of L(Supp(v)) in the space of χ(T )Q = χ(T )Z⊗Q.

The support of a set X ⊂ CN = {
⋃
Supp(x), x ∈ X}. The following two

Lemmas are in particular interest for us.

Lemma 17. v ∈ CN is unstable w.r.t. T ⇔ 0 /∈ L(Supp(v)).

Denote WG
0 a manifold of unstable points.

Theorem 18. For any closed G-submanifolds of X ⊂ WG
0 there exists a filtration

of G-invariant submanifolds X = X0 ⊃ X1 ⊃ X2.. ⊃ XN = 0 which is dual to

a system of regular mappings fi : Xi → Aχi, Xi+1 = f−1
i (0), 0 ∈ Aχi

.

Thus, the set of unstable points is determined by the models Aχ.

3.0.4 Parabolic and character groups for G = GL(n),SL(n).

Definition 6. ForE a vector space, dimE = n and a sequence of integer numbers

n1, .., nr ≤ n, a flag of type π = (n1, .., nr) inE is a set F1 ⊂ F2 ⊂ ... ⊂ Fr ⊂ E,

dimEi = ni. The set of all flags Φπ(E) of type π forms an algebraic variety.

GL(E) ↷ Φπ transitively. A Stabilizer Fn = Stab(GL(E)) := Pπ is a parabolic

subgroup in GL(E). A group Pπ uniquelly defines a flag, whose stabilizer repre-

sents itself. Pπ consists of block-diagonal matrices of a known form.

Consider a maximal torus T ⊂ GL(E), T = {diag(λ1, .., .λn), λi ∈ k∗}, χ(T ) ≃

Zn. For a (m1, ..,mn) ∈ Zn, χ(diag(λ1, .., .λn)) = λm1
1 ..λmn

n . Note that

{Characters of group GL(E)} ↔1:1 {Characters of torus T of type (r, .., r)}.

Let s ∈ H0(X, Êρ) be a non-zero section. Suppose there exists a non-zero GL-
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map fα : Eρ → C, fα(sx) ̸= 0, fα(0) = 0; fα(s) is a section of trivial bundle

⇒ fα(s) = const ̸= 0 Then for any x ∈ Xsx ̸= 0. Moreover, sx is not an

unstable point of a fiber Eρ
x w.r.t. GL(E).

Consider a full system of a GL-invariant regular functions on Eρ. Note that for

any x, y ∈ X, fα(sx) = fα(sy) and it implies that ḠLsx and ḠLsy are adjoint to

the same closed GL-orbit in the space Eρ.

There are two cases to keep in mind:

• The point sx is stable, but then sy is stable as well ⇒ GLsx = GLsy , i.e.

s ∈ subbundleGLsx⊗Eγ ⊂ Êρ. The fiber of this bundle is a homogeneous

space GL/H , where H ⊂ GL(E) is a reductive group.

– H = SL(n), ρ = detE

– H = Sp(n), ρ =
∧2E

– H = SO(n), ρ = S2E

– H is a finite group, ρ is a mult.

• If sx is polystable, let sx ∈ Ws ⊂ Eρ, for any x, Ws are the points adjoint

to the closed orbit S

Consider a bundleEγ, G = GL(k). Let ρ be a representation ofGL(k) and⇝ Eρ.

Note that ρ1+ρ2 ⇝ Eρ1 ⊕Eρ2 and ρ1⊗ρ2 ⇝ Eρ1 ⊗Eρ2 . Thus, we get a monoid

of representations R(GL(k)) to which one can associate⇝ A(E) =
∑
Eρ, ρ ∈

R(GL(k)).

Definition 7. An associative algebra of sectionsA(M,E) =
∑

ρ⊂R(GL(k))

H0(M,Eρ)

is called a tensor algebra of fibration.

Irreducible representations of GL(k,C) are represented by its’ highest weight.
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Let us fix the following subalgebras in A(E) and A(M,E).

Among all ρ ∈ R(GL(k)) let us take the ones which are trivial on the center

C∗ ⊂ GL(k,C). They form a subalgebraR(PGL) ⊂ R(GL). Note that {Eρ, ρ ∈

R(PGL) : detEρ = 0}. detE is associated with a principal bundleC∗
γ with a fiber

C∗ over M via a character χ(C∗) = detγ.

detEρ ⇝ via the character detρ|C∗ , but it is trivial if ρ ∈ R(PGL). Let us define

a few natural subalgebras:

• Consider subalgebras defined viaR(PGL) : A0(M,E) =
∑
H0(M,Eρ), ρ ∈

R(PGL) and AH
0 (M,E) =

∑
ρ⊂R(PGL)

H0(M,Eρ ⊗H)

• Consider a subalgebra R+(GL) : ρ|C∗ ∈ Z+ ⊂ Z ≃ χ(C∗)- is a character

of a standard representation to which a bundle Eγ is associated.

• Rp are strictly positive representations: they are the components of tensor

powers of representation γ⊗k, k ∈ Z+. The corresponding subalgebra is

denoted by AR(M,E) ⊂
∑

ρ∈Rρ
H0(M,Eρ).

• One can also associate to γ a subalgebra
∑⊕

Smγ and an algebra of sym-

metric tensors AS(M,E) =
∑

m>0H
0(M,SmE). AS(M,E) is commuta-

tive.

• For an algebra Smnγ ⊗ −mdetγ ⇝ an algebra of tensors A0s(M,E) =∑
H0(M,SmnE ⊗−mdetE)

Definition 8. The cone of the positive characters KT of a maximal torus T ⊂

GL(K,C), KT := KT (PGL) × Z, where Z is a representation of the center C∗.

Recall that if ω is a representation, then suppω = ∪χ,R(ω) =
⊕

R(χ), χ ∈ KT

for the irreducible components of R(ω).

Lemma 19. These assertions hold true:
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1. SuppA+ = {(x, y), y > 0}, x ∈ KT (PGL), y ∈ Z

2. SuppA0 = {(x, 0)}

3. SuppAs = nχ(γ)

4. SuppA0,s = {mkχ(γ)−mdetγ}

To a Flag bundle F1 ⊂ F2 ⊂ .. ⊂ Fk = F one can associate a one-dimensional

bundleF (n1, .., nk) =
∑

i ni(dimFdetFi − dimFidetF) on X .

Set of flag tensors, which one can build using a fixed tensor s ∈ CN : consider

{sα} such that

1. sα, sβ ∈ {s} ⇔ sα ⊗ sβ ∈ {s}

2. λ1sα + λ2sβ ∈ {s}

3. For ∀G-map of f : Ḡs→ Ci, Ci is a G-module , f(0) = 0, f(s) ∈ {s}

Remark 1. 1. If lim
n→∞

gns = 0, gn ∈ G, then lim
n→∞

gnsα = 0,∀sα ∈ {s}

2. If s is stable and has a trivial stabilizer in G, then ∀sβ ∈ {s}. Indeed, in

this case , Ḡs ≃ G and ∀sβ there exists a G-map f : G → Gsβ such that

f(s) = sβ .

Let us reiterate it using language of supports. Fix a maximal torus T . Then, if s is

polystable and has a closed orbit G/H , a support Supphsα for some h ∈ G also

lies in the subspace Lχ, {χ(T ∩H) = 1} and any s′ with support in a lattice with

a finite index in Lχ, s′ ∈ {hs}. For an algebra, generated via unstable tensor s the

following statement holds.

Theorem 20. There exists a cone Rs ⊂ χR(T ), for a certain maximal torus

T : As- algebra, generated by elements s, has Rs as a support. {set of flag

tensorsfnα} ∈ As, where α /∈ ∂Rs, ∂Rs is a boundary , n ∈ Z, n >> 0.
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STABILITY OF BUNDLES E → M

Let us fix a number of conditions:

1. ∀F ⊂ O(E) coherent subsheaves

2. Fix a direction of polarization of M , i.e. a line of curves {nH} ⊂ PicM ⊗

R, n > 0.

Modifying a bit Takemoto’s stability definition, we get

H-STABILITY

We call a coherent sheaf O(E) H-stable if for any F ⊂ O(E), dimF > 0 the

inequality holds dimE ∧ Hn−1 < dimFc1(E) ∧ Hn−1. c1(F) is a divisor of 1-

dimensional bundle detF .

If ∃F ⊂ O(E), for which the other inequality holds: dimEc1(F) ∧ Hn−1 >

dimFc1(E) ∧Hn−1, then O(E) is H-non-stable.

Let us introduce the notion of T -stability, which is equivalent to H- stability, but

uses the language of symmetric tensors.

3.0.5 T-stability

A vector bundle E (corr. O(E)) is called T -stable if ∀ flag of subsheaves F1 ⊂

F2 ⊂ .. ⊂ Fk ≃ O(E) and ∀ positive vector (n1, .., nk),H0(Mn, Fχ(n1, .., nk)) =

0,∀χ, Fχ(n1, .., nk) = F (n1, .., nk)⊗ Lχ, Lχ ∈ Pic0(M).

A vector bundle E is called T -polystable if H0(Mn, Fχ(n1, .., nk)) > 0 ⇒

Fχ(n1, .., nk) = 0. The others are unstable.

Definition 9. A vector bundle E is called T -unstable if ∃ a flag of coherent

submodules F1 ⊂n1 F1 ⊂ .. ⊂ Fk ≃ O(E) such that for a certain positive

n = (n1, .., nk) the divisor Fχ(n1, .., nk) and Lχ ∈ Pic0(M) is effective.
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Definition 10. A vector bundle E on M is α-unstable if ∃ a free submodule F ⊂

O(E) : the divisor (dimEdetF − dimFdetE) has a square > 0 and lies in the

positive component of the cone {x2 > 0} in a group PicRV = PicV ⊗R.

The notion of H-stability is equivalent to T -stability. The main point is that we

can extract the information about stability of E from the algebra AH
0 (E) as one

can do it using the description of Eρ via unitary representation.

Lemma 21. A bundle E is called polystable, if for ∀H ⊂ Pic0X holds that:

1. ∃s ∈ AH
0 (E) : sx is unstable at least at one point x w.r.t. group GL(E)x

2. ∀s ∈ AH
0 (E) : s ̸= 0 ⇒ sx ̸= 0 for any point x ∈ X

Knowing the existence of a non-trivial unstable section s ∈ AH
0 and using the

family of G-maps to the cones Aχ, one can build a section sχ,γ of the bundle

Aχ,γ ⊗ nH ⇝ we have a flag of bundles E1 ⊂ .. ⊂ Ek ≃ E and non-zero

section ŝ ∈ H0(F (n1, .., nk) ⊗ nH), ŝ ̸= 0, thence F (n1, .., nk) ⊗ nH ≃ 0, i.e.

∀Ei ⊂ E, deg(dimEdetEi − dimEidetE) = 0, otherwise E is unstable bundle.

Lemma 22. If E is stable, then A0(E) is isomorphic to th algebra of invariants

for a reductive group HE ⊂ PGL, which is an iso to the image of the structure

group E in the bundle Eγ/C
∗ ≃ PGL.

Lemma 23. The following are equivalent:

1. ∃s ∈ AH
0 (E)s ̸= 0, sx = 0 for some x ∈ X,H ∈ Pic0(X)

2. Vector bundle E is T -unstable on the blow-up X̂

Lemma 24. If E is T -unstable on X ⇒ it is unstable w.r.t. ∀H polarization.

s ∈ KF ⇝ an effective divisor in PicRV . Then there exists a non-zero tensor

ŝ = Lχ

∑
i nidetFH ⊕ detE(−

∑
nidimFH

dimE
) ∈

⊗
i

SniE0 ⊗ Lχ, Lχ ∈ Pic0V, ŝ ∈
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A
Lχ

0 (E), ŝ|D = 0, D is an effective divisor.

Consider KD ⊂ PicRV,KD is closed and generated by effective divisors.

Lemma 25. Let K̄D = KD and vector bundleE isH-unstable for ∀ polarizations

H . Then E is T -unstable.

Proof. Consider a cone KF generated by the elements fH = { detFH

dimFH
− detE

dimE
} ∈

PicRV, F ⊂ E is a subbundle of E. K̄D ∩ K̄F = KD ∩ KF ̸= ∅. Let us

choose a H-polarization: C is a curve on M, [C] ∈ H . E|X ⇝ a number

me(X) = max{ detF
dimF

− detE
dimE

}. If F ⊂ E is a subbundle, then ∀fH , it is

true that {fH , H} ≤ me(X). If we consider a cone KH
R with an axis {H} in

PicRV,K
H
R ⊂ KD, then #{fH ⊂ KH

R } < ∞, because fH′ ∈ Z[ 1
n!
]-lattice in

PicRV, n = dimE and {fH′ , H} ≤ me(X). It implies that K̄F ∩KD = KF ∩KD.

On the contrary, if KF ∩KD ̸= 0 ⇒ ∃ an integers ni > 0 :
∑
i

nifH ∈ KD and∑
i

nifH ⊗ Lχ is an effective for some Lχ ∈ Pic0V ⇒ T -unstable bundle E.

Remark 2. Takemoto’s stability is equivalent to T-stability if X is compact, so

that we can cover it with a locally finite covering (locally) and thus one gets a

finite linear combinations of "lines of curves [H]" inside the cones.

For a coherent sheaf F on X , denote ∆(F ) = 2rc2(F ) − (r − 1)c1
2. ∆(F ) is

called discriminant.

The following theorem holds true (Huybrechts & Lehn, 2010), [page 72]:

Theorem 26. (Bogomolov’s theorem) Let X be a smooth projective variety of

dimension n and H an ample divisor on X . If F is a semistable torsion free

sheaf, then

∆(F ).Hn−1 ≥ 0
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3.0.6 Bogomolov’s effective restriction theorem

It was asked, what are the particular requirements for the restriction of a bundle

E → X on a surface X to a curve C ⊂ X to remain E|C stay stable. The

answer to this question is provided by the Bogomolov’s effective restriction theo-

rem (Bogomolov, 1978; Bogomolov, 1994; Huybrechts & Lehn, 2010). Here we

are mostly following the exposition presented in the book (Huybrechts & Lehn,

2010).

An important notion in algebraic geometry plays the concept of rearrangement

of a vector bundle along a curve or elementary transformations. In the case of

smooth projective surfaces we have a non-degenerate hyperbolic scalar product

on the group PicRV and duality between the cone of polarizations and the cone

of effective divisors. Let Num denote the free Z-module Pic(X)/ ≡, where ≡

means numerical equivalence. Its rank ρ is called the Picard number of X . The

intersection product defines an integral quadratic form on Num. The Hodge In-

dex Theorem says, that, over R, the positive definite part is 1-dimensional. In

other words, NumR carries the Minkowski metric. For any class u ∈ NumR let

|u| = |u2|1/2. Actually it is not a norm.

Denote as A a subcone consisting of all ample divisors. A polarization of X is

a ray R>0.H , where H ∈ A. Let H denote the set of rays in K+ (Barth, Hulek,

Peters, & Van de Ven, 2004).

This set can be identified with the hyperbolic manifold {H ∈ K+||H| = 1}.

The hyperbolic metric β is defined as follows:

for points [H], [H ′] ∈ H let

β([H], [H ′]) = arcosh(
H.H ′

|H|.|H ′|
)

30



Denote the open cone K+ = {D ∈ NumR|D2 > 0, D.H > 0 for all ample

divisorsH}. Note that the second condition is added only to pick one of the two

connected components of the set of all D with D2 > 0. This cone contains the

cone of ample divisors and in turn is contained in the cone of effective divisors.

K+ satisfies the property: D ∈ K+ ⇐⇒ D.L > 0 for all L ∈ K+ \ {0}.

For any pair of sheaves G,G′ with nonzero rank let

ξG′,G :=

(
c1(G

′)

rk(G′)
− c1(G)

rk(G)

)
∈ NumR

This invariant in the case of destabilizing sheaf plays role as "destabilizing" point

in the corresponding cone and defines kind of "class of curve" which we cannot

take as one for elementary transformation.

Suppose W1 is a bundle on X such that c1(W1) = 0.

• Every vector bundle E of rank r can be obtained by an elementary trans-

formation of O⊕r
X (nH) with n >> 0 along a line bundle on a smooth curve

C ⊂ X .

• For a given α ∈ Pic(X), r ≥ 2 ample divisor H and integer c0 ∈ Z there

exists a µ-stable vector bundle E with detE ∼= α, rkE = r and c2(E) ≥ c0.

Let us analyze a bundle which we get on a curve, restricting initial one to C. We

want it to stay stable under restriction |C , C ⊂ X . This condition is given by the

Bogomolov‘s effective restriction theorem.

Theorem 27. (Bogomolov’s effective restriction) Let F be a locally free sheaf of

rank r ⩾ 2 . Assume that F is µ-stable with respect to an ample class H ∈

K+ ∩Num. Let C ⊂ X be a smooth curve with [C] = nH . If 2n ⩾ R
r
∆(F ) + 1

, then F |C is a stable sheaf.

Suppose that FC has a destabilizing quotient N of rank s. Following (Huybrechts
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& Lehn, 2010) we can change a condition 2n ⩾ R
r
∆(F ) + 1 to the following two

conditions in assumption that FC → E is a destabilizing quotient of rank one:

2n ≥ ∆(∧sF ) + 1

n2H2 = C2 > ∆(∧sF )

We have a following theorem:

Theorem 28. Let F be a µ-semistable vector bundle and ∧sF → M be a rank

one torsion free quotient with µ(∧sF ) = µ(M). If the restriction ∧sF |C → MC

to a curve C is the s-th power of a locally free quotient F |C → E of rank s, then

∧sF → M is induced by a torsion free quotient F → E‘ of rank s. In particular,

if F is µ-stable, then s = rkF .
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4 | Bogomolov’s effective restriction and Mehta-

Ramanathan theorems

Generally, there are several restrictions theorems in algebraic geometry which

deal with vector bundles. It is reasonable to understand what each of them asserts

and which one is better to use in our situation.

4.0.1 Result of Mehta-Ramanathan

By (Mehta & Ramanathan, 1984), let X be a projective non-singular algebraic

variety of dimension n ≥ 2 over an algebraically closed field k. Let H be a given

very ample line bundle on X corresponding to a projectively normal embedding

X ⊂ PN . Consider the projective set of lines in the vector space H0(X,Hm),

m = (m1, ...,mt) is a multivector and let

H0(X,Hm1)×H0(X,Hm2)..×H0(X,Hmt)×X ⊃ Zm → X,

a projection, where the correspondence variety Zm = {(x, s1, .., st) ∈ X ×

Sm|si(x) = 0, 1 ≤ i ≤ t}. The projection is a fibration with the fibre over

x ∈ X being identified with the product of hyperplanes H1 × ...×Ht, Hi = {s ∈

H0(X,Hmi)|s(x) = 0}.

Consider the other projection: qm : Zm → H0(X,Hm1) × H0(X,Hm2).. ×

H0(X,Hmt)). Let Ym be a generic fiber of qm. Note that Ym are irreducible and

nonsingular. Denote φm : Ym → Zm.

Theorem 29. (Mehta & Ramanathan, 1984) Let V be a semistable torsion free

sheaf on X (with respect to the polarisation H). Let Ym be the generic curve of

type (m). Then there is anm0 such that form ≥ m0 the restriction of V to Ym (i.e.
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ϕ∗
(m)p

∗
(m)V ) is semistable, or equivalently for m ≥ m0 and for s in a nonempty

open subset of S(m), V |q−1
(m)

(s) is semistable.

4.0.2 Mehta-Ramanathan theorem as corollary of Bogomolov’s

effective restriction theorem

The following theorem holds true:

Theorem 30. Mehta-Ramanathan theorem follows from Bogomolov’s effective

restriction theorem.

Proof. We want to show that Mehta-Ramanathan theorem follows from Bogo-

molov’s restriction theorem. If Xn is a projective manifold then for any alge-

braic family of bundle Fs we have H0(X,Fs) = H0(XH , Fs) for a sufficiently

ample line bundle H and XH a hyperplane section of H if dimXH ≥ 1 since

H1(X,Fs ×O(−H)) = 0 for sufficiently big H .

If FXH
is destabilizing subsheaf E on XH then we can extend this sheaf to X

if dimXH ≥ 2 ( isomorphism for H1). Note that if F r ⊂ E is a destabilizing

subsheaf then detF r → ΛrE is a destabilzing line bundle and vice versa. Since

the line bundles on X and XH are the same we obtain the result.
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5 | Overview of the concepts of stability

There are many notions of stability that have been introduced. Here we list a few

of them. Sometimes we follow the relevant formulations from [wikipedia].

1. TAKEMOTO, MARUYAMA T-STABILITY (TAKEMOTO, 1972; MARUYAMA,

1977; MARUYAMA, 1976; MARUYAMA, 1975)

Let E be a coherent sheaf on a scheme X and H i(X,E) be its’ sheaf coho-

mology. Holomorphic Euler characteristic is χ(X,E) =
n∑

i=0

(−1)idimH i(X,E).

LetH be an ample line bundle onX . A Hilbert polynomial in n is pH(E, n) =

χ(x,E ⊗H⊗n).

Definition 11. (Maruyama, 1976) A coherent sheafE onX is called semistable

if for all subsheaves

pH(F, n)

rk(F )
≤ pH(E, n)

rk(E)
, n >> 0

Theorem 31. (Maruyama, 1976) There exists a moduli space MH
S (r, c1, c2)

of H-semistable coherent sheaves of rkr with chern classes c1, c2. There is

an open subset MH
S (r, c1, c2)

st parametrizing stable bundles.

2. GIESEKER STABILITY (GIESEKER, 1977)

A slope of a holomorphic vector bundle W over a nonsingular algebraic

curve (or over a Riemann surface) is a rational number µ(W ) = deg(W )
rank(W )

.

A bundle W is stable if and only if µ(V ) < µ(W ) for all proper non-zero

subbundles V ⊂ W and is semistable if µ(V ) ≤ µ(W ) for all proper non-

zero subbundles V ⊂ W . Informally this says that a bundle is stable if it

is "more ample" than any proper subbundle, and is unstable if it contains a

"more ample" subbundle.
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Definition 12. (Gieseker, 1977) If W and V are semistable vector bun-

dles and µ(W ) > µ(V ), then there are no nonzero maps W → V . If X

is a smooth projective variety of dimension m and H is a hyperplane sec-

tion, then a vector bundleW is called stable (or sometimes Gieseker- stable

(Gieseker, 1977)) if:

χ(V (nH))

rank(V )
<
χ(W (nH))

rank(W )
for n large

for all proper non-zero subbundles (or subsheaves) V ⊂ W , where χ de-

notes the Euler characteristic of an algebraic vector bundle and the vector

bundle V (nH) means the n-th Serre twist of V by H , i.e. V ⊗H⊗n. W is

called semistable if the above holds with < replaced by ≤.

3. T-STABILITY VIA SYMMETRIC TENSORS AND REPRESENTATIONS OF

REDUCTIVE GROUPS (BOGOMOLOV, 1978) AND [3.0.4] , [3.0.5]. Let

us classify all points under the action of a reductive group G over C and its’

representation ρ : G→ GL(N,C).

For a x ∈ CN ⇝ a manifold of a Gx-orbit. The points of Gx can be

classified as:

• Unstable: 0 ∈ Ḡx

• Stable: Gx = Ḡx and dimGx is maximal, i.e. for any y ∈ CN , dimGy ≤

dimGx

• Polystable:

– Points x, which have a closed orbit Gx of a non-maximal dimen-

sion, which does not coincide with 0;

– Points x, which have a non-closed orbit, i.e. Ḡx ̸= Gx, but 0 /∈

Ḡx.
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G-invariant polynomials help us to differ the closed orbits of G in CN . If

X, Y are the closed orbits of G, then there exists a polynomial h on CN :

h(gx) = h(x), x ∈ CN and h(X) = 1, h(Y ) = 0.

The representation theory of reductive algebraic groups allows us to give

a geometric description of the manifold of unstable points WG
0 . Namely,

it strongly depends on the isomophism WG
0 ≃ G(W T

0 ) (T is a maximal

torus) and relies on the description of W T
0 . A representation ρ : T → CN

splits into direct sum of weighted representations Cχ; CN =
∑
Cχ, where

Cχ := {v ∈ CN : T ↷ CN via χ(T )}.

Definition 13. A support of a vector v ∈ CN , Supp(v) ⊂ χ(T ) is a subset

in the lattice of characters of T . α ∈ Supp(v) ⇔ for a projection P : V →

Cχ, P (v) = vα ̸= 0.

One can consider a convex set of L(Supp(v)) in the space of χ(T )Q =

χ(T )Z ⊗ Q. The support of a set X ⊂ CN = {
⋃
Supp(x), x ∈ X}. The

following two Lemmas are in particular interest to us.

Lemma 32. v ∈ CN is unstable w.r.t. T ⇔ 0 /∈ L(Supp(v)).

Denote WG
0 a manifold of unstable points.

Theorem 33. For any closed G-submanifolds of X ⊂ WG
0 there exists a

filtration of G-invariant submanifolds X = X0 ⊃ X1 ⊃ X2.. ⊃ XN = 0

which is dual to a system of regular mappings fi : Xi → Aχi, Xi+1 =

f−1
i (0), 0 ∈ Aχi

.

T-STABILITY

A vector bundle E (corr. O(E)) is called T -stable if ∀ flag of subsheaves

F1 ⊂ F2 ⊂ .. ⊂ Fk ≃ O(E) and ∀ positive vector (n1, .., nk),H0(Mn, Fχ(n1, .., nk)) =

0,∀χ, Fχ(n1, .., nk) = F (n1, .., nk)⊗ Lχ, Lχ ∈ Pic0(M).
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A vector bundle E is called T -polystable if H0(Mn, Fχ(n1, .., nk)) > 0 ⇒

Fχ(n1, .., nk) = 0. The others are unstable.

Definition 14. A vector bundleE is called T -unstable if ∃ a flag of coherent

submodules F1 ⊂n1 F1 ⊂ .. ⊂ Fk ≃ O(E) such that for a certain positive

n = (n1, .., nk) the divisor Fχ(n1, .., nk) and Lχ ∈ Pic0(M) is effective.

Definition 15. A vector bundle E on M is α-unstable if ∃ a free submodule

F ⊂ O(E) : the divisor (dimEdetF − dimFdetE)2 > 0 and lies in the

positive component of the cone {x2 > 0} in a group PicRV = PicV ⊗R.

The notion of H-stability is equivalent to T -stability. The main point is that

we can extract the information about stability of E from the algebra AH
0 (E)

as one can do it using the description of Eρ using unitary representation.

Theorem 34. (Bogomolov’s effective restriction) (Huybrechts & Lehn, 2010)

Let W be a locally free sheaf of rank r ⩾ 2 on a family of curves with

c1(W ) = 0. Assume that W is µ-stable with respect to an ample class

H ∈ K+ ∩ Num and C ⊂ X be a smooth curve with [C] = nH . Let

2n ⩾ R
r
∆(F ) + 1. Then F |C is a stable sheaf.

4. KEMPF-NESS THEOREM, GIT AND SLOPE-STABILITY (KEMPF, , &

NESS, 1979), (MUMFORD ET AL., 1994), (GIESEKER, 1979) The Kempf-

Ness theorem (Kempf et al., 1979), gives a criterion for the stability of a

vector v in a representation ρ of a complex reductive group G. If the com-

plex vector space is given a norm that is invariant under a maximal compact

subgroup of the reductive group, then the Kempf-Ness theorem states that a

vector is stable if and only if the norm attains a minimum value on the orbit

of the vector.

Theorem 35. (Kempf et al., 1979) Let G be a reductive algebraic group
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acting linearly on a projective variety X . A point x ∈ X is polystable

if and only if the orbit Gx contains a zero of the moment map. If x is

polystable, the intersection µ−1(0) ∩Gx is a unique K-orbit. The inclusion

µ−1
K (0) ⊂M ss induces the homeomorphism µK(0) →M//G

For bundles on curves the stability defined by slopes and by growth of

Hilbert polynomial coincide. In higher dimensions, these two notions are

different and have different advantages. Gieseker stability has an interpre-

tation in terms of geometric invariant theory.

Let X be a smooth projective variety of dimension n, H its hyperplane

section. A slope of a vector bundle E with respect toH is a rational number

defined as:

µ(E) :=
c1(E) ·Hn−1

rk(E)

where c1 is the first Chern class. A torsion-free coherent sheaf E is µ-

semistable if for any nonzero subsheaf F ⊆ E the slopes satisfy the in-

equality µ(F ) ≤ µ(E). It’s µ-stable if, in addition, for any nonzero sub-

sheaf F ⊆ E of smaller rank the strict inequality µ(F ) < µ(E) holds. This

notion of stability may be called slope stability.

For a vector bundle E the following chain of implications holds: E is µ-

stable ⇒ E is stable ⇒ E is semistable ⇒ E is µ-semistable.

5. K-STABILITY,-POLYSTABILITY

The Hilbert-Mumford criterion shows that to test the stability of a point x

in a projective algebraic variety X ⊂ CPN under the action of a reduc-

tive algebraic group G ⊂ GL(N + 1,C), it is enough to consider the one

parameter subgroups 1-PS of G. To proceed, one takes a 1-PS of G, say

λ : C∗ ↪→ G, and looks at the limiting point: x0 = limt→0 λ(t) · x.
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This is a fixed point of the action of the 1-PS λ, and so the line over x in

the affine space CN+1 is preserved by the action of λ. An action of the

multiplicative group C∗ on a one dimensional vector space comes with a

weight, an integer we label µ(x, λ), with the property that:λ(t) · x̃ = tµ(x,λ)x̃

for any x̃ in the fibre over x0. The Hilbert-Mumford criterion says:

• The point x is ”’semistable”’ if µ(x, λ) ≤ 0 for all 1-PS λ < G.

• The point x is ”’stable”’ if µ(x, λ) < 0 for all 1-PS λ < G.

• The point x is ”’unstable”’ if µ(x, λ) > 0 for any 1-PS λ < G.

For a definition of test-configuration we refer reader to a Algebro-Analytic

dictionary [7].

We follow (Stoppa, 2011; Ross & Dervan, 2017; Székelyhidi, 2014).

Definition 16. (Slope of a polarized variety, projective case) Define a slope

of (X,L) of a polarized variety to be

µ(X,L) :=
−KX .L

n−1

Ln
=

−
´
X
c1(KX).c1(L)

n−1´
X
c1(L)n

Definition 17. (Donaldson-Futaki invariant) D-F invariant of a test config-

uration (X ,L) for (X,L) of the exponent r is

DF (X ,L) := n

n+ 1
µ(X,L⊗r)Ln+1 + Ln.KX/P

Definition 18. (K-stability for projective varieties) We say a polarized va-

riety (X,L) is

• K-semistable if DF (X ,L) ⩾ 0 for t.c. (X ,L)

• K-stable if DF (X ,L) > 0 for t.c. (X ,L) with ||(X ,L)||m > 0
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• uniformly K-stable if ∃ an ε > 0 s.t. DF (X ,L) ⩾ ε||(X ,L)||m∀

test-configurations (X ,L) for (X,L)
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6 | Preliminaries:

Atiyah class of a vector bundle

6.0.1 Rank 2 Higgs bundles

Higgs bundle for the basic representation of C2 is the rank 2 holomorphic vector

bundle with a symplectic form and trace zero Higgs field ϕ ∈ H0(Σ, EndV ⊗K).

Characteristic equation

det(x− ϕ) = x2 − q = 0

defines a curve in the total space of canonical bundle π : K → Σ.

Let L ⊂ E be a ϕ-invariant line bundle. Then near a zero of detϕ, which has only

simple zeroes we can find a holomorphic trivialization of E w.r.t. which

ϕ =

a(z) b(z)

0 −a(z)

 dz
ϕ takes values at trace-free EndE for holomorphic functions a, b.

detϕ is a holomorphic quadratic differential in this case. We obtain a Hitchin

fibration

Ms
d → QD(Σ)

(A, ϕ) → detϕ

This map is surjective with fibres det−1(q) diffeomorphic to a compact tori.
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6.0.2 The Atiyah class of a vector bundle

We mostly follow (Kapranov, 1999). Let X be a complex analytic manifold. Let

E be a holomorphic vector bundle on X , and J1(E) be the bundle of first jets of

sections of E. By (Atiyah, 1957a) it fits into an exact sequence

0 → Ω1 ⊗ E → J1(E) → E → 0, (6.1)

which therefore gives rise to the extension class αE ∈ Ext1X(E,Ω1 ⊗ E) =

H1(X,Ω1 ⊗ End(E)) known as the Atiyah class of E. An equivalent way of

getting αE is as follows. Let Conn(E) be the sheaf on X whose sections over

U ⊂ X are holomorphic connections in E|U . As well known, the space of such

connections is an affine space over Γ(U,Ω1⊗End(E)), so Conn(E) is a sheaf of

Ω1 ⊗End(E) torsors. Sheaves of torsors over any sheaf A of Abelian groups are

classified by elements of H1(X,A), and αE is the element classifying Conn(E).

So αE is an obstruction to the existence of a global holomorphic connection

6.0.3 Atiyah class and curvature

The class αE can be easily calculated both in Cech and Dolbeault models for

cohomology.

6.0.4 C̆ech model

In the C̆ech model, we take an open covering X = ∪Ui and pick connections ∇i

in E|Ui
. Then the differences φij = ∇i −∇j ∈ Γ(Ui ∩Uj,Ω1 ⊗End(E)) form a

Cech cocycle representing αE .
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6.0.5 Dolbeault model

In the Dolbeault model, we pick a C∞-connection inE of type (1, 0), i.e., a differ-

ential operator ∇ : E → Ω1,0⊗E,∇(fs) = ∂(f)s+f(∇s). Let ∇̄ = ∇+∂̄ where

∇̄ is the (0, 1)-connection deï¬ningtheholomorphicstructure.ThecurvatureF∇̄

splits into the sum F∇̄ = F 2,0

∇̄ +F 1,1

∇̄ according to the number of antiholomorphic

differentials. Then

Theorem 36. If ∇ is any smooth connection in E of type (1, 0), then F∇̄ is a

Dolbeault representative of αE .

Remark 3. Holomorphic connections in E can be identified with holomorphic

sections of a natural holomorphic fiber bundle C(E), which is an affine bundle

over Ω1⊗End(E). The fiber C(E)x of C(E) at x ∈ X is the space of first jets of

fiberwise linear isomorphismsEx×X → E defined near and identical onEx×x.

Clearly, this is an affine space over TxX ⊗ End(Ex). Now, (1, 0)-connections ∇

in E are in natural bijection with arbitary C∞ sections σ of C(E). Since C(E)

is a holomorphic affine bundle, every such σ has a well defined antiholomorphic

derivative ∂̄σ which is a (0, 1)-form with values in the corresponding vector bun-

dle, i.e., ∂̄σ ∈ Ω0,1 ⊗ Ω1,0 ⊗ End(E) = Ω1,1 ⊗ End(E). If σ corresponds to ∇,

then ∂̄σ = F 1,1

∇̄ .

Recall that a Hermitian metric in a holomorphic vector bundle E gives rise to a

unique connection ∇̄ = ∇ + ∂̄ of the above type which preserves the metric.

This connection is called the canonical connection of the hermitian holomorphic

bundle. It is known that F∇̄ in this case is of type (1, 1). It implies at once the

following

Proposition If E is equipped with a Hermitian metric and ∇̄ is its canonical con-
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nection, then F∇̄ is a Dolbeault representative of αE .

6.0.6 Atiyah class and Chern classes.

If X is Kähler, then cm(E) ∈ H2m(X,C), the m-th Chern class of E, can be seen

as lying in Hm(X,Ωm), and it follows that it is recovered from the Atiyah class

as follows:

cm(E) = Alt(tr(αm
E ))

Here αm
E is an element ofHm(E, (Ω1)⊗m⊗EndE) obtained using the tensor prod-

uct in the tensor algebra and the associative algebra structure in End(E), while

Alt is the antisymmetrization (Ω1)⊗m → Ωm. Note that the antisymmetrization

constitutes in fact an extra step which disregards a part of information: without it,

we get an element

c̄m = tr(αm
E ) ∈ Hm(x, (Ω1)⊗m)

. For a vector space V let us denote by Cycm(V ) the cyclic antisymmetric tensor

power of V , i.e.,

Cycm(V ) = {a ∈ V ⊗m : ta = (1)m+1a}, t = (12...m),

where t is the cyclic permutation. Then, the cyclic invariance of the trace implies

that
¯cm(E) ∈ Hm(X,Cycm(Ω1)),

but it is not, in general, totally antisymmetric. We will call c̄m(E) the big Chern

class of E; the standard Chern class is obtained from it by total antisymmetriza-

tion.
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6.0.7 The Atiyah class of a principal bundle.

Let G be a complex Lie group with Lie algebra g and P → G be a principal

G-bundle on X . Let ad(P ) be the vector bundle on X associated with the adjoint

representation of G. By considering connections in P , we obtain, similarly to the

above, its Atiyah class αP ∈ H1(X,Ω1 ⊗ ad(P )). All the above properties of

Atiyah classes are obviously generalized to this case.

6.0.8 Atiyah class via curvature tensor

As we have observed before, αE := ∂̄σ, where σ is a C∞-section of C(E), where

C(E)x := J1(Ex ×X → E) , where Ex ×X → E are fiberwise linear isomor-

phisms defined near and identical on Ex × {x}.

∂̄σ ∈ Ω1,1 ⊗ EndE,

at the same time,

∂̄σ = F 1,1

∇̄ ,

where F 1,1

∇̄ is a (1, 1)-part F∇̄ = F 2,0

∇̄ + F 1,1

∇̄ of the curvature of connection ∇̄ =

∇+ ∂̄, where ∇ is (1, 0)-type connection

6.0.9 Weak Lie algebra in Kähler geometry

Suppose that X is equipped with a Kaehler metric h. Let ∇ be the canonical

(1, 0)-connection in TX associated with h, so that

[∇,∇] = 0 ∈ Ω2,0(End(T )).

Set ∇̄ = ∇ + ∂̄, where ∂̄ is the (0, 1)-connection defining the complex structure.
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The curvature of ∇̄ is just

R = [∂̄,∇] ∈ Ω1,1(End(T )) = Ω0,1(Hom(T ⊗ T, T ))

This is a Dolbeault representative of the Atiyah class αTX , in particular, ∂̄R = 0

in Ω0,2(Hom(T ⊗ T, T )) (Bianchi identity). Further, the condition for h to be

Kaehler is equivalent, as it is well known, to torsion-freeness of ∇, so actually

R ∈ Ω0,1(Hom(S2T, T )).

Let us now define tensor fields Rn, n ≤ 2, as higher covariant derivatives of the

curvature: Rn ∈ Ω0,1(Hom(S2T )⊗ T⊗(n−2), T )),R2 := R,Ri+1 = ∇Ri.

Lemma 37. Each Rn is totally symmetric, i.e., Rn ∈ Ω0,1(Hom(SnT, T )).

Proof. Except forR2 = R the formsRn are not, in general, ∂̄-closed. Let Ω0,•(T )

be the Dolbeault complex of global smooth (0, i)-forms with values in T , and

Ω0,•−1(T ) be the shifted complex.

Theorem 38. The maps

Rn : Ω0,j1(T )⊗ ..⊗ Ω0,jn(T ) → Ω0,j1+...+jn+1(T ), n ≤ 2,

given by composing the wedge product (with values in 0,•(T⊗n)) with Rn ∈

Ω0,1(Hom(T⊗n, T )), make the shifted Dolbeault complex Ω0,•1(T ) into a weak

Lie algebra.

If X is a Hermitian symmetric space, then R makes Ω0,•1(T ) into a genuine Lie

dg-algebra.
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6.0.10 Companion theorem for vector bundles

Let now (E, hE) be a Hermitian holomorphic vector bundle on a Kähler manifold

X , and let ∇E be its canonical (0, 1) -connection, so that

[∇E,∇E] = 0 ∈ Ω2,0(End(E)).

Let F = [∂̄,∇E] ∈ Ω1,1(End(E)) = Ω0,1(Hom(T ⊗E)) be the total curvature of

∇E . Then ∂̄F = 0 in Ω2,0(Hom(T⊗E,E)), and F is the Dolbeault representative

of the Atiyah class αE . Define the tensor fields Fn ∈ Ω0,1(Hom(Sn−1T ⊗E,E))

by setting F2 = F, Fn = ∇Fn1, n ≤ 3. As before, the required symmetry of F

follows from.

Theorem 39. The maps

cn : (Ω0,•−1(T )⊗(n−1))⊗ Ω0,•−1(E) → Ω0,•−1

given by composing the wedge product with Fn, make the Dolbeault complex

Ω0,•−1(E) into a weak module over the weak Lie algebra Ω0,•−1(T ).

Corollary 10. If (E, hE) is a homogeneous Hermitian bundle over a Hermitian

symmetric space X , then F makes Ω0,•−1(E) into a dg-module over the dg-Lie

algebra Ω0,•−1(T ).
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7 | Algebro-Analytic dictionary:

Vector bundles

Algebraic side

Unitary representation ρ

ρ: π1(X) → U(n) ⇝ stable bundle

Eρ

1. (Narasimhan & Seshadri,

1965): A vector bundle

E → X , X is a Riemann sur-

face is stable if and only if it

comes from the unitary repre-

sentation ρ : π1(X) → U(n).

ε-subcones in the cones of effective

divisors see [10.1] and (Bogomolov,

1977): Let us define a subcone

KC
D,ε in the cone of effective divisors

KD ⊂ Pic(V 2
R) as

KC
D,ε := will be a set of such

{x ∈ KD, x
2 ≥ α−ε

K2 (K.∆P )
2}

where ε ≥ 0, α = 3K2

4χ−K2 and α mea-

sures the "inclination" of the cone

KC
D,ε inside KD.

a

aWe should note that in the case of alge-
braic surface X the elements of KD exactly
correspond to the elements of H1,1(X,R)
and the positivity condition of the intersec-
tion a certain elements reads as an inte-
gration over a certain cycle in differential-
geometrical language, so the correspon-
dence becomes evident.

Analytic side

Unitary connection ∇E on X

having constant central curvature

∗F = −2πµ(E), whose holonomy

corresponds to the representation ρ.

1. (S. K. Donaldson, 1983): An

indecomposable holomorphic

bundle E → X over X is sta-

ble if and only if there is a uni-

tary connection ∇E on X hav-

ing constant central curvature

∗F = −2πµ(E). Such a con-

nection is unique up to isomor-

phism.

Kähler cone (Demailly & Paun,

2004)

X is a compact Kähler manifold

H1,1(X,R) the space of real (1, 1)-

cohomology classes. Then the Käh-

ler coneK ofX ,K ⊂ H1,1(X,R) is

one of the connected components of

the set P of real (1, 1)-cohomology

classes α which are numerically pos-

itive on analytic cycles Y , i.e. such

that
´
Y
αP ≥ 0 for every irreducible

analytic set Y in X , p = dimY .
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Algebraic side

Model of the smooth projective

variety According to (Moriwaki,

1995), also see [10.1, 10.1.2] and

(Bogomolov, 1977),

Let X be a geometrically irreducible

smooth projective variety over F .

Let X and C be smooth projective

varieties over k, and f : X → C

a k-morphism such that the function

field of C is F and the generic fiber

of f is X , i.e. X = X ⊗ F .

X is said to be non-isotrivial if there

is a non-empty open setC0 ofC such

that, for all t ∈ C0, the Kodaira-

Spencer map is not zero. Let F̄ be

the algebraic closure of F . For a

point P ∈ X(F ), let us denote by

∆P the corresponding integral curve

on X . We fix a line bundle L on X .

Let L be a line bundle on X with

L ⊗ F = L.

Definition 19. The pair (f : X →

C,L ) is called a model of (X,L).

A geometric height hL(P ) of P with

respect to L is defined by

hL(P ) =
(L ·∆P )

[F (P ) : F ]

Analytic side

Test-configuration (S. Donaldson,

2002), [pages 5-6]

A t.c. for a polarised variety (X,L)

is a pair (X ,L) where X is a Scheme

with a flat morphism π : X → C and

L is a relatively ample line bundle

for the morphism π, such that: For

every t ∈ C, the Hilbert polynomial

of the fibre (Xt,Lt) is equal to the

Hilbert polynomial P(k)of (X,L).

This is a consequence of the flatness

of π. There is an action of C∗on the

family (X ,L) covering the standard

action of C∗ on C. For any (and

hence every) t ∈ C∗, (Xt,Lt) ∼=

(X,L) as polarised varieties. In par-

ticular away from 0 ∈ C, the fam-

ily is trivial: (Xt̸=0,Lt̸=0) ∼= (X ×

C∗, pr∗1 L) where pr1 : X × C∗ →

Xis projection onto the first factor.

We say that a test configuration

(X ,L)is a product configuration if

X ∼= X×C, and a ’trivial configura-

tion’ if the C∗-action on X ∼= X×C

is trivial on the first factor.

51



Algebraic side

Moriwaki constant (Moriwaki,

1995), also see [10.1.2] and

(Bogomolov, 1977)

The pair (f : X → C,L ) is called

a model of (X,L). A geometric

height hL(P ) of P with respect to L

is defined by

hL(P ) =
(L · ∆P )

[F (P ) : F ]

Define a geometric logarithmic dis-

criminant as

d(P ) =
2g(∆∼

P )− 2

[F (P ) : F ]

where ∆∼
P is a normalization of ∆P .

Theorem (Moriwaki, 1995)

If the cotangent bundle to X is very

ample, the following holds:

hL(P ) ≤ A · d(P ) +O(1)

Analytic side

Seshadri constant (Demailly, 1992)

Let X be a smooth projective vari-

ety, L an ample line bundle on it, x

a point of X , Cx = all irreducible

curves passing through x .

ϵ(L, x) := inf
C∈Cx

L · C
multx(C)

Here, L · C denotes the intersection

number of L and C, multx(C) mea-

sures how many times C passing

through x.

Definition: One says that ϵ(L, x) is

the Seshadri constant of L at the

point x, a real number. WhenX is an

abelian variety, it can be shown that

ϵ(L, x) is independent of the point

chosen, and it is written simply ϵ(L).
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8 | Results

8.1 Vector bundle as a section of family of Moduli

spaces

Let us introduce a new object, arising from every vector bundle on particular fam-

ilies. Suppose we have B a family of curves and E a vector bundle on it. We can

say that E|Cλ
restricted to a point of the family, i.e. a curve Cλ, is a bundle on a

Riemann surface with the corresponding unitary connection A. The information

of stability of E is contained in its second chern class c2(E).

Theorem 40. Every vector bundle E on B, which is stable on the restriction to

any curve of the family B, is a smooth section of the family of moduli spaces of

vector bundles MCλ
, λ ∈ Λ.

E ∈ Γ(MCλ
)λ∈Λ

Proof. Vector bundle E on the family of curves B on the restriction to the point

E|Cλ0
, i.e. a particular curve Cλ0 , is a vector bundle , arising from the representa-

tion of the fundamental group of π1(Cλ0) (by the Narasimhan-Seshadri theorem).

Therefore we can simply consider the following fibration on B: the fiber on every

curve Cλ corresponds to its‘ moduli space MCλ
. Consequently, to "fix a vector

bundle on the family B " simply means that on each fiber, i.e. on the corre-

sponding moduli space, we have to choose one element. It precisely repeats the

statement of the proposition.

Remark 4. To supplement our definition we should note that stable bundles come

from
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• Stable bundles on the normalizations of singular curves: E → Ĉ, where ν :

Ĉ → C is a normalizarion. These bundles one can get from representations

of a fundametal group of the normalization π1(Ĉ) and thus destabilizing

sheaf is not induced on the initial curve C

• Bundles which are unstable on the normalization Ĉ, but are stable on the

singular curve C (parabolic semistable vector bundles). They appear in

the following way: we can take an unstable bundle Ê (i.e. with destabiliz-

ing subsheaf F ) on the normalization Ĉ. When we arrive to a base C it

transforms to a point Esing. In such way we obtain the identification of the

parameters of the destabilizing sheaf F with the structure of the parabolic

bundle on C. It means that on Ê → X̂ , where Ê is an unstable bundle at

the point on the normalization X̂ ( X̂ denotes X blown-up in a a node of a

singular curve C, ν : Ĉ → C). Then it has a normal destabilizing subsheaf

F ⊂ Ê such that c1(F )− ( rkF
k

)c1(E) ∈ K+.

A blow-down map ν̂ induces a morphism:

ν̂ : F → Ep,

where Ep is a flag variety of type determined by a fixed quasiparabolic struc-

ture i.e. a flag Ep = F1Ep ⊃ F2Ep ⊃ ... ⊃ FrEp and weights α1, .., αr

attached to F1Ep, .., FrEP such that 0 ≤ α1 < α2 < ... < αr < 1,

k1 = dimF1Ep − dimF2Ep, kr = dimFrEP the multiplicities of α1, .., αr.

These are parabolic bundles. Thus we get a strata, which is glued to our families

of moduli spaces of vector bundles. It is known that the set of all parabolic semi-

stable bundles is an open subset of a suitable Hilbert Scheme, which has the usual

properties, i.e. non-singular, irreducible and of a given dimension. This open set

could be mapped to a product of Grassmannians and Flag varieties.
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Corollary 11. If Cλ = C is a constant curve, then all the moduli spaces are the

same MCλ
= MC = M , thus every vector bundle on B is decoded by the subset

S ⊂M in the moduli space M : S = {mλ ∈M,λ ∈ Λ}

Corollary 12. Moduli space MB of all the vector bundles on B consist of all the

sections S of family of the corresponding moduli spaces MCλ
.

Corollary 13. If Cλ = C1 and Λ = C2, thus we have a vector bundle on the

C1 × C2. Then every subset C1 ⊂ MC2 or C2 ⊂ MC1 will form a cycle in the

corresponding Moduli space of vector bundles.

8.2 Second chern class as a cycle in the moduli space

Suppose, as above E be a vector bundle on B and C ⊂ B is some other smooth

projective curve. Let FC → C be an arbitrary stable vector bundle on C. O(E)

will denote the space of smooth sections of vector bundle E and O(E)|C its restric-

tion to a curve C. Therefore we obtain a diagram which describes the operation

of elementary transformation TC,F :

TC,F : O(E) −−−→ O(E)|C
S−−−→ FC −−−→ 0 (8.1)

This way we get a bundle W =: TC,F (E) = ker(S). We can take the inverse of

the map S.

Following work (Bogomolov, 1994), we obtain the formulae for the change of

Chern classes under the operation of elementary transformation:

c1(W ) = c1(E)− rC (8.2)
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c2(W ) = c2(E) +
(r2 − r)

2
C2 − rCc1(E) + detFC , (8.3)

where c1(E) and c2(E) are the chern classes of the initial bundle. One can start

performing elementary transformation procedure assuming that the initial bundle

E is trivial.

Thus we can rewrite a map S on the level of sections of moduli spaces.

By Theorem (40) any vector bundle on family of curves is a smooth section of

families of moduli spaces of vector bundles. Rewrite a diagram as:

Γ({MCλ
}λ∈Λ) −−−→ Γ({MCλ

}|Cλ∈Λ)
S−−−→ Γ(MC) −−−→ 0 (8.4)

where Γ(−) denotes taking the corresponding sections. Let us mention that the

kernel of the first map is a locally free sheaf and is isomorphic to O(E ⊗ −C). It

is natural to take the inverse of the map S. It will act just as a tensor product to ⊗

O(C)=S−1.

S−1 induces a morphism from the curve lying in the base space C ⊂ B to the

space of unitary bundles.

Γ({MCλ
}|C
λ ∈ Λ

) Γ(MC)

S−1

C

π s

Now we should understand how to choose a curve C ⊂ B and a bundle FC on it

to remain a bundle W = kerS stay stable.

Let us count the second chern class of a bundle W ′ = W ⊗ 1
r
O(C).
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Before we proceed let us count the determinant bundle for L1.

detW ′ = detW ⊗ 1

r
O(C) = detE ⊗ OX(−rC)⊗

1

r
O(C) = detE (8.5)

Thus the determinant bundle does not change in our case. Simple calculation also

shows that c1(W ′) = 0.

Now we can start counting the second Chern class of the bundle W ′. Recall that

the discriminant of a bundle does not change under multiplication to any line

bundle.

Thus,

∆(W ′) = ∆(W )

∆(W ) = ∆(E) + r

k
c1(E)C − c1(FC) +

r(k − r)

2k
C2,

since c1(W ′) = 0,

it implies that

−c2(W ) = ∆(E) + r

k
c1(E)C − c1(FC) +

r(k − r)

2k
C2

and since initial E was a trivial bundle, we get:

− c2(W
′) = −c1(FC) +

r(k − r)

2k
C2 (8.6)

The question of stability of a vector bundle on a family of curves reduces to a

much simplier notion of stability for particular curve and bundle on it. Our obser-

vations result to a theorem which states that:

Theorem 41. Let W be a locally free sheaf of rank r ⩾ 2 on family of curves
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with c1(W ) = 0. Assume that W is µ-stable with respect to an ample class

H ∈ K+ ∩Num and C ⊂ X be a smooth curve with [C] = nH .

Let 2n ⩾ R
r
δ(F ) + 1. Then if a bundle W is stable it implies that

c2(W ) = c1(FC)−
r(k − r)

2k
C2, (8.7)

where FC is a bundle on a curve C;

since δ(W ) = −c2(W ), it follows that

c2(W ) > 0

Below we will modify our theorem according to the interpretation of second chern

class as a cycle in the moduli space of vector bundles on a curve Cλ for some

λ ∈ Λ.

8.2.1 Optimal choice of the curve C and the bundle FC

The purpose of this section is to interpret c2(E) as a cycle in a moduli space MCλ

for some λ ∈ Λ and prove

Theorem 42. Operation of the elementary transformation works on any algebraic

surface. In particular, for a family of curves B. For example, we can perform an

elementary transformation along a curve Cλ. Therefore the second chern class is

indeed represented by some moduli section Sc2(E) for B in some of moduli spaces

MCλ
. Moreover, it is given by a formula:

Sc2(E ) = c2(W ) = c1(FC)−
r(k − r)

2k
C2, (8.8)
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Proof. Let us consider a map in a more detailed way:

S−1 :MC → {MCλ
}|C
λ ∈ Λ

(8.9)

Let us analyze in detail the sense of elementary transformation.

Γ({MCλ
}λ∈Λ)

ϕ−−−→ Γ({MCλ
}|Cλ∈Λ)

S−−−→ Γ(MC) −−−→ 0 (8.10)

or corresponding diagram:

E
ϕ−−−→ E|C

S−−−→ FC −−−→ 0 (8.11)

Take FC ∈ Γ(MC), E ∈ Γ({M t
C1}t∈C2), where E is the initial trivial bundle.

The new bundle W which we get is a kernel of a composite of all the maps on

the diagram. When one uses an operation of elementary transformation, a curve

C ⊂ B is embedded to B. We can think of a curve C as a sum of divisors along

each curve Cλ for a family B. Assume that C intersects each curve Cλ only at one

point. Put C ∩Cλ = Dλ. Clearly, the restrictions E|Dλ
= V |Dλ

, where V ∈MCλ
,

coincide.

Consider a map S : E|C → FC and take its kernel: W := Ker(E|C → FC) =

kerS we obtain a bundle which shows how do not coincide these two bundles

(the set where they coincide maps surjectively). Composing with ϕ we obtain a

new bundle on a surface X . Note that ϕ is just a restriction map. From definition

of TF,C follows that Imϕ ⊂ W .

E
ϕ−−−→ W −−−→ 0 (8.12)
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To get a fiberwise non-trivial bundle W , elementary transformation should be

performed on each fiber, as we have started from the trivial one E. Therefore a

curve C should be chosen in a way that it intersects each fiber Cλ. Therefore our

initial choice of a curve C was a right one. To conclude, we have to analyze a

restriction map ϕ : E → W . Note that the bundle W depends on a bundle FC .

And we should choose a bundle FC in a special way. Let us note that at the end

of this procedure our goal is to get a new bundle on {Cλ}λ∈Λ which is an element

Q ∈ Γ({MCλ
}λ∈Λ). W should be such bundle along the curve, that at each fiber

Dλ, the kernel of a morphism ϕ : E|Dλ
→ W |Dλ

is exactly a bundle, which we

want to get after elementary transformation procedure, i.e. Q. Let us consider the

case when the elementary transformation is being performed along a curve Cλ.

We can choose a bundle FC as:

FC |Dλ
= E|Cλ

/Q|Cλ
(8.13)

Note that Q|Cλ
∈ MCλ

is just an element of the moduli space of vector bundles

over curve Cλ. Thus we get a map

S−1 :MC → {MCλ
}λ∈Λ|C , for a FC ∈MC , the map is defined as

S−1|Dλ
: FC |Dλ

→ E|Cλ
/{ some α ∈MCλ

}

The rank of the bundle rkFC = r depends on the rank of the chosen bundle

α ∈MCλ
.

It means that FC maps a curve C = Cλ to a moduli space MCλ
. Thus we obtain a

moduli cycle in the moduli space MCλ
, corresponding to a bundle FC .

If a curve C is arbitrary then λ will vary and FC will map a curve C to a moduli

section S .
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Consequently, chern class c2(W ) will be itself a cycle (or section) in the families

of moduli spaces of vector bundles {MCλ
}λ∈Λ . Denote a map [8.13] as FC :

C → {MCλ
}λ∈Λ. If we look carefully, we will deduce that the maps S−1 and FC

coincide by definition. Now we had above:

c2(W ) = c1(FC)−
r(k − r)

2k
C2, (8.14)

We have to understand what is c1 of a moduli cycle FC . Since FC is a stable

bundle on a curve C it follows that c1(FC) > 0. This way a question of positivity

of c2(W ) reduces to an apropriate choice of a curve C.But if we choose a curve

C as Cλ we will get a cycle in the Moduli space MCλ
.

8.3 Stability of bundles on smooth projective sur-

faces

By the effective stability restricton result (Bogomolov, 1994; Huybrechts & Lehn,

2010) any stable vector bundle on a smooth projective surface restricts to a stable

bundle on any ample curve belonging to sufficiently big class. More precisely:

Theorem 43. Let F be a locally free sheaf of rank r ⩾ 2 . Assume that F is

µ-stable with respect to an ample classH ∈ K+∩Num. Let C ⊂ X be a smooth

curve with [C] = nH . If 2n ⩾ R
r
δ(F ) + 1 , then F |C is a stable sheaf.

In particular the restriction is stable on the singular fibers with relatively small
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number of singularities and on normalizations of such curves. Hence we obtain

a section sE over an open subset of Us ⊂ P (H). Note that the codimension

of P (H) − Us ⊂ P (H) grows if the class H becomes larger and therefore for

a generic pencil P 1
t ⊂ P (H) of such curves we can define a one-dimensional

algebraic class which is given by the intersection of a section s(E) with a moduli

section SP 1
s

which corresponds to a vector bundle over a pencil P1
s.

We want to adress first the relation of this class with an invariant δ defined for

vector bundles on surfaces.

Lemma 44. Intersection of a section s(E) and a moduli section SP1
s

is indeed

given by one-dimensional algebraic class, which is given by (L .∆P ), where L

is a line bundle, corresponding to a divisor s(E) and ∆P is an integral curve,

corresponding to a moduli section SP1
s
, if a moduli section SP 1

s
has a natural

polarizatoion L ′.

κ := s(E) ∩ SP1
s
= (L .∆P ) (8.15)

Proof. Take as a model X a family of moduli spaces of vector bundles {Mt}, t ∈ P1
s

for the curves in the pencil P1
s. Then the section s(E) corresponds to a divisor on

{Mt} and we can find a line bundle L which corresponds to it. Integral curve ∆P

is the same as a moduli section SP1
s

by definition.

Note that as we have already observed c2(E) is represented by a particular moduli

section Sc2(E). In this case a class κ up to a constant is equal to a discriminant ∆.

κ = A ·∆

Locally, the section s(E) represents a family of curves in the class [H].
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8.4 Stability in the case we have no singular fibers

We are going to find a description of stability of a vector bundle on Y through

stability of vector bundle f∗(E) induced from vector bundle on families of curves

B.

A good candidate for a family of curves B is a family, obtained in the follow-

ing way: take a point x ∈ X and consider all possible embedded curves. They

are parametrized by a set which can be described in the following way. Con-

sider very ample line bundle H on a surface X2 and the space H0(X2, H). Then

P(H0(X2, H)) = PH is a projective space parametrizing the curves in the class

H . For any x ∈ X2 there is a subspace Px parametrzing all such x. Therefore a

family of all such curves will be parametrized by a bigger projective space PN .

What we have discussed so far is essentially the same families of curves in the

class H . The following theorem (?, ?) gives us a positive answer whether the

bundle obtained in the way written in the previous section is stable:

Theorem 45. (Moriwaki, 1997)

Let f : X → Y be a surjective and projective morphism of quasi-projective

varieties over k with dimf = 1. Let E be a vector bundle of rank r on X . Then,

we define the discriminant divisor of E with respect to f : X → Y to be

disX/Y (E) = f∗(2rc2(E)− (r − 1)c1(E)
2) ∩ [X])

Let E be a locally free sheaf on X and y a point of Y .

If f is flat over y, the geometric fiber Xy over y is reduced and Gorenstein, and E

is strongly semistable on each connected component of the normalization of Xy,

then disX/Y (E) is weakly positive at y.
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In our case, f : B → X , c1(E) = 0, thus disX/Y (E) = f∗(2rc2(E) ∩ [B]).

Notice that 2rc2(E) ∩ [B] is an intersection of 2 cycles in the families of moduli

spaces of vector bundles {MCλ
}. Locally, we can assume that a section s(E)

represents a class [B]. It implies that, since c2(E) is represented by some moduli

section Sc2(E), then locally on the open subset U the intersection is equal to a

kappa-class:

(2rc2(E) ∩ [B])|U = κL (8.16)

The only thing is that we should find a polarization L for a moduli section S . It

is given by a polarization L on the families of moduli spaces. Let us recall some

facts from (Beauville, 2006):

Suppose Jk is a Jacobian variety parametrizing line bundles of degree k on a curve

C. Let us fix a line bundle L ∈ Jk and consider a set

∆L := {E ∈Mr|H0(C,E ⊗ L) ̸= 0}

∆L is a Cartier divisor on Mr. The line bundle L = OMr(∆L) is called a de-

terminant line bundle. In our observations, we can take L = OMr(∆L) as a

polarization we need above.

So, we have a theorem

Theorem 46. In the assumptions of Theorem(45), it is true that for a map

f : B → X

disX/Y (E)|U = f∗(hL |U)

and

disX/Y (E)|U > 0,

where the polarization L = OMr(∆L).
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8.5 Monodromy along singular fibers

8.5.1 Gauss-Manin connection and quadratic Hitchin map

We are recalling a number of facts of non-abelian Hodge theory, following (T. Chen,

2012) and (Donagi & Pantev, 2009).

Denote HiggsX the moduli space of principal G-bundles over X together with a

Higgs field. BunX is denoted a coarse moduli space of regular stable G-bundles

on X .

HiggsX has a symplectic structure because it is equal to T ∗BunX .

Let g be a Lie algebra of a group G and <,> is a corresponding Killing form.

Then the quadratic Hitchin map is defined as

qh : HiggsX → H0(X,Ω⊗2)

(P, θ) →< θ, θ >

where θ ∈ H0(X, adP ⊗ Ω1
X) is a Higgs field.

We can define a lifting of tangent vectors associated with this map:

Lqh : TXMg → T(P,θ)HiggsX

f 7→ Hqh∗f |(P,θ)

where f ∈ TXMg
∼= H1(X,TX) is viewed as a linear function on H0(X,Ω⊗2)

by Serre duality, and Hqh∗f is a hamiltonian vector field of qh∗f on HiggsX .

The following theorem holds true:

Theorem 47. The limit lifting of tangent vectors L0 associated to the isomon-
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odromy lifting L is equal to 1
2
Lqh; or,equivalently,

the lifting of tangent vectors on Higgs → Mg is representing the associated map

of the non-abelian Gauss-Manin connection is equal up to a constant multiple to

the lifting of tangent vectors induced from the quadratic Hitchin map.

Let E be a vector bundle on X of degree d and rank n. Recall that in our case

the restriction of a bundle E|Ct to any curve Ct ∈ Xb is stable, then, as it is

well-known, we have a flat unitary connection ∇E|Ct
along the fibers Ct in Xb.

Therefore we have a family of such "fiberwise" connections {∇E|Ct
} := TE . Also,

we can find the projective connections along the singular fibers in a natural way:

we can assume the existence of connections on the smooth normalized curves X ′
s

with a singularity for a corresponding connection ∇Xs over the points xs ∈ Xsing.

Those are called parabolic connections and are constructed in the following way:

if we have a non-singular curve with points xi corresponding to the singulari-

ties one can define λ-connections(logarithmic connections), which have the poles

along a divisor D =
∑
xi. We can take the residues along these singular points

and put an order on it. In particular, they should satisfy the Fuchs relation. Then

one can define Parabolic connections:

1) taking logarithmic connections singular over Xsing, i.e. a C-linear maps

D : E → E ⊗ Ω1
X(logX

sing) = E ⊗ Ω1
X ⊗OX(X

sing),

which satisfy the Leibniz identity.

The fiber Ω1
X ⊗ OX(X

sing)(xβ) is canonically identified with C by sending a

meromorphic form to its residue at xβ . In particular, ResD(xβ) ∈ End(E)(xβ)

2) forming a full flag of subspaces on each fiber of E|xi
,

3)Let D be a logarithmic connection on X . Let Res(D, xi) = λiIdE(xi), xi ∈
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Xsing, i = 1, ...,m. Then it follows that

d+ n
m∑
j=1

λi = 0

Lemma 48. Smooth deformation between the Higgs bundles and connections is

given by the deformation of the λ-connections.

8.5.2 Monodromy from differential-geometric perspective

Stable vector bundles of degree 0 on curves have a special flat hermitian metrics.

We can reduce our study to this case for now.

Notice that if we have a moduli space of vector bundles MC , coming from uni-

tary representation from one curve C it is topologically isomorphic to a moduli

space coming from unitary representations from any the other curve MC′ . Thus

we have a locally topologically constant family of the moduli spaces MH :=

{Mt}Ht∈P 1
t −Xsing over each pencil of curves P 1

t − Xsing in the class H with the

same degenerate fibers corresponding to a finite number Xsing of points in P 1
t

where the curves have singular points. Denote T := {Ct, t ∈ P1
t −Xsing} ⊂ [H].

MH → T ⊂ Mg,

We can assume that all degenerate curves have exactly one singular point. Conse-

quently, we obtain a family with a monodromy. Regarded as a family of smooth

manifolds over T this is a locally trivial fibration by a theorem of Ehresmann. In

particular, the fibres are diffeomorphic, but the complex structure may vary. How-

ever, the symplectic structure does not vary: it is a symplectic fibre bundle. By

taking the annihilator (with respect to the symplectic form) of TMH/T we obtain
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a connection (horizontal subbundle of TMH) on MH over T . The parallel trans-

port map associated to a path in T is a symplectomorphism, and for loops we in

particular obtain the monodromy representation

Mon : π1(T, t) → Aut(Mt)

Collecting it for all t ∈ T , we conclude that we can take a loop around a singular

curve, which consists of a non-singular curves and hence obtain a monodromy

which will correspond to some automorphism of a moduli section ϕ ∈ Aut(SP 1
t
).

Recall that the space of sections Γ(MH) is exactly the space of vector bundles

which are stable on the restriction to the curve of the family. We can consider a

C onn→Mg , where C onn is a nonabelian cohomology space for X . Then there

exists a Gauss-Manin ∇GM connection on this bundle.

We can differentiate any element of Γ(MH) using Gauss-Manin connection ∇GM .

Thus a monodromy of a moduli section will correspond to a ∇GM(γ(t)), where

γ(t) is a loop , consisting of non-singular curves, taken around a curve with sin-

gularity γ(t) ⊂ T .

The tangent space to a moduli space at a regular point is identified with the in-

finitesimal deformations of the object corresponding to that point. In fact, tangent

space to a BunX at a point P is naturally isomorphic to H1(X, adP ).

In our case, it holds that

Theorem 49. The operator Mon acts as

Mon : f 7→ Hqh∗f |(P,θ),

where f ∈ TXMg
∼= H1(X,TX) is viewed as a linear function on H0(X,Ω⊗2)

by Serre duality, and Hqh∗f is a hamiltonian vector field of qh∗f on HiggsX .
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8.6 Relation between the fundamental groups

Consider a pencil P1
Ct

of curves {Ct} on a surface X corresponding to a polariza-

tion L = H on X . We can assume that:

1. The corresponding curves are smooth over P1
Ct

− Xsing and have exactly

one quadratic singular point ps over the set Xsing

2. The kernel of the map π1(Ct) → π1(X) is normally generated by a vanish-

ing cycle cs at any point ps

3. The fundamental group π1(X) is a quotient of π1(Ct) by a normal subgroup

containing a subgroup normally generated by an arbitary vanishing cycle cs

Both are standard assumptions on the generic pencil of curves.

Lemma 50. Let NP be the total number of singular points XSing. Then it is

given by the Euler charactrestics formula for a surface X blown up at the H2

intersection points of curves parametrized by P1
Ct

.

Proof. Indeed, after blowing up Xb at all intersection points, the pencil defines a

projection map Xb → P1
Ct

with curves Ct as fibers. Thus, by the changing Euler

characteristic (Hirzebruch, 1962) under blow up, we have

χ(Xb) = χ(X) +H2

on the other hand,

χ(Xb) = (2− 2g(Ct))(2−NP ) +NP ((2− 2g(Ct) + 1)

and

2g(Ct)− 2 = H(K +H)
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and thus we have the formula of number NP through KH,χ(X), H2

Np = χ(X) +H2 + 2H(K +H)

Lemma 51. Assume that we have a family of representations ρE,t : π1(Ct) →

U(n) over Ct defined by a stable bundle E. If this representation extends to a

representation of at least one singular curve Cs, s ∈ Xsing then it extends to X

and hence the bundle E is defined via representation ρE : π1(X) → U(n).

Proof. Indeed the representaion ρE,s is defined if π1(Xt)(cs) = 0 for all van-

ishing cycles cs. Since by our assumption any cs normally generates the ker-

nel of π1(Xt) → π1(X) any representation ρE,t comes from a representation

ρE : π1(X) → U(n) hence the result.

Corollary 14. The bundle E is not induced from a representation only if we have

a singularity for fiberwise unitary connection on E over any singular point ps.

8.6.1 Monodromy from group-theoretic perspective

Recall that in the situation above the monodromy operator m acts via Dehn twist

on each bond around each vanishing cycle cs (for details see (Bogomolov &

Katzarkov, 1998) and (Bogomolov & Katzarkov, 1999)). The composition of

all monodromies which correspond to a loop Γ consisting of non-singular curves

Xs around a singular curve X0 is given by composition of all corresponding Dehn

twists Tcs of bonds around each vanishing cycle cs corresponding to a singular

point in each fiber Xs.

m = Πγ∈Γmcsγ ,
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Assume that X0 is a fiber with a singular point and generic fiber has fundamental

group generated by gi with standard commutator relation < Πi[gi, gi+1] = 1 >.

Then we have the monodromy automorphism (standart action on the fundamental

group π1(Xt) induced by the action of Dehn twist around g1)

m : g1 → g1, g2 → g1g2

and their commutator [g1, g2] maps to g21g2g
−1
1 g−1

2 g−1
1 , i.e. g1[g1, g2]g−1

1 .

Thus ifmmaps gi → g1gig
−1
1 , i > 1 then the product of commutatorsm(Πi[g2i−1, g2i]) =

1.

The kernel of projection π1(Xt) to π1(X0) is generated by g1 as a normal sub-

group of π1(Xt).

Now we have to understand how does monodromy operator for each vanishing

cycle g1 act on the unitary representation of its’ fundametal group, which corre-

sponds to a concrete vector bundle E.

Recall the basic construction of unitary representations of fundametal groups of

Riemann surfaces.

Consider a set Ω = U(n) × .. × U(n) of 2g copies of Unitary group and canon-

ical projections: pi : Ω → Xi and qi : Ω → Yi. Consider the condition

ΠiAiBiA
−1
i B−1

i = I . There exists a unique homomorphism η : π1 → U(n)

such that η(gi) → Ai and η(gi+1) → Bi.

Recall that if we have a map f : Ω → SU(n) such that

f : (A1, B1, ..., Ag, Bg) → A1B1A
−1
1 B−1

1 ..AgBgA
−1
g B−1

g

it is known that

Hom(π1(Xt), U(n)) ≃ f−1(I).
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Therefore the action of the monodromy m on the unitary representation is group-

theoretically the same:

mγ
η : A1 → A1, A1 → A1A2, Ai → A1AiA1

−1 (8.17)

For each unitary representation of a fundamental group of a given surface Xt we

have a normal subgroup Nt generated by gt1 which is a kernel of projection of

π1(Xt) to π1(X0). If we consider all unitary representations of groups Nt de-

noted by NU
t then the monodromy operator mγ

η acts on each of the corresponding

groups NU
t . For a loop Γ of nonsingular curves Xt we can take Πγ∈ΓN

U
γ and the

corresponding action of m on it.

8.6.2 Action of the Galois group on the singular points

To understand our problem better, we will treat it extending our arguments to the

case when we have our constructions over a field K.

Assume that a surface X is defined over a number field [K : Q] < ∞ as well as

the pencil f : X → P1 and the bundle E. The union of singular fibers in this case

is also defined over K. Note that monodromy group T of the fibration Xb → P1

permutes vanishing cycles cs of different fibers transitively in the fundamental

group of the complementary of X to all singular fibers π1(X −Xsing).

Additionally, the action of Galois group Gal(K̄/K) approximates the action of

monodromy T on the vanishing cycles {cs}.

In particular, if there is only one orbit of the Gal(K̄/K) on the vanishing cycles

in a completion of π̂1(Xt) then either the family of representations is obtained

from the representation π1(X) or any fiber Xt with a singular point has the latter

as singular point of the family of partial connection.
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8.7 Geometry of the Second Chern class

Recall, as we have already observed, for a vector bundle E → X on a surface

we can consider its’ restriction to a pencil of curves in the class [H], which is

E → P1
Ct

.

For every such restriction, we have an associated second chern class c2(E).

As we already know by Theorem (42) , c2(E) is represented by a cycle Cc2(E) in

the moduli space of vector bundles Mcλ for some λ ∈ P1.

Notice that when the pencil of curves P1
Ct

is moving on the surface, the associated

cycle Cc2(E) is also changing.

8.7.1 Geometry of the cycle Cc2(E) and associated invariants

We want to find an invariant associated to a cycle Cc2(E) (C for short), which does

not change in course of moving of pencil of curves P1
Ct

on a surface. As c2(E) is

represented by a cycle C in some moduli space MCλ
we can regard this cycle as a

vector bundle on a product of curves Cλ × C, where C is a curve along those we

have performed an operation of elementary transformation. As we have noticed

before we can use Gauss-Manin ∇GM connection to deal with moduli sections

and cycles.

8.7.2 Vector bundles on the product of curves and the curva-

ture

Here we are following (Bogomolov & Lukzen, 2022). Let E → C1 × C2 be

a vector bundle such that E|C1 and E|C2 stable. Coordinates on E → C1 × C2

could be described as a pair of representations (τ, ρ), where τ corresponds to a

horizontal bundle and ρ corresponds to a vertical bundle. The fiber is equal to
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E|(x,y) = Eρ ∩ Eτ = E|(ρ,τ)

As is well-known along Eρ, Eτ exist an Ehresmann connections which can be

viewed as horizontal subbundles Hρ,Hτ :

TEρ = Hρ ⊕ Vρ, TEτ = Hτ ⊕ Vτ .

Thus we have two families of Ehresmann connections: {Hρ, ρ ∈ C1}, {Hτ , τ ∈

C2}, where C1,C2 are the moduli cycles.

We are seeking for the connection H on the bundle E such that TE = H ⊕ V ,

where V is a tangent space to a fiber. Note that V = T (Eρ ∩ Eτ ) = (Hρ ⊕ Vρ) ∩

(Hτ ⊕ Vτ ).

The tangent to TE is a tangent bundle of a moduli cycle C1.

Locally TE = TEρ ⊕ TEτ , therefore set-theoretically a possible connection is

H = (Hρ ⊕ Vρ)⊕ (Hτ ⊕ Vτ )/{(Hρ ⊕ Vρ) ∩ (Hτ ⊕ Vτ )}

Theorem 52. Denote ΘE a curvature of connection ∇E . The obstruction to Jor-

dan property - failure for the tangent fields V,W to connection to generate a Lie

algebra- is exactly the curvature ΘE .

Proof. Our goal, in general, is to find an expression for the curvature tensor Θ of

the connection on the vector bundle E . Therefore we would be able to express the

second Chern class c2(E) explicitly, depending on a moduli cycle S :

c2(E) =
tr(Θ(S )2)− tr2(Θ(S ))

8π2
(8.18)

Notice that there exist only two "directions" on the base space B: a direction

along a curve Cλ and a direction along a curve C, which parameterizes the family.
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When we lift vector fields from the base B to a vector bundle, we get the vector

fields V,W along the "cycle/section" C1 and along the curve C. V and W induce

diffeomorphisms φV , ψW on a vector bundle E , which act on particular sections

s ∈ Γ(E). If we differentiate the result twice ∂2φV ψ
−1
W φ−1

V ψW (s) , we will get

Θ(s) a value of curvature on s. If we take a corresponding basis of sections of E

and lift the basis of vector fields V,W from the base to our cycle C in the moduli

space of vector bundles and look how do the diffeomorphisms act on the basis

of sections, we would be able to count ΘE explicitly. As is well-known in this

case, the obstruction to Jordan property - failure for the tangent fields V,W to

connection to generate a Lie algebra- is the curvature ΘE .

Note that we can use Gauss-Manin connection which acts as ∇GM : TC → V

(by the reason that ∇GM is flat), where V , as above, is a tangent space to a fiber.

Recall that by non-abelian Hodge theory, the tangent space at the point (C,U)

which is equal to MdR(Cu) is cannonically identified with H1
dR(Cu, EndE).

Therefore a Gauss-Manin connection computes the derivative of our section S.

c2(E) > 0, because the corresponding curvature matrix has a block-diagonal form

and positive determinant as we will show below in more details.

8.8 Curvature matrix on hermitian vector bundles

8.8.1 Connection on a vector bundle E

Let D be a connection on a vector bundle acting on the local basis of sections

s = (s1, .., sn). Then, following (Kobayashi, 2014),

Dsi =
∑

sjω
j
i ,
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where Ω = (ωj
i ) is a matrix of connection form. If ξ = ξisi is an arbitrary section,

then

Dξ = dξ + ωξ

Recall that Ω = dω + ω ∧ ω.

A bundle is called flat if Ds = 0.

For a complex vector bundle E, a connection is decomposed as D = D′ + D′′,

D′ : Ap,q(E) → Ap+1,q(E), D′′ : Ap,q(E) → Ap,q+1(E)

Thus we can write in local coordinates:

ω = ω0,1 + ω1,0

and

Ω = Ω2,0 + Ω1,1 + Ω0,2

8.8.2 Hermitian metric on E

Recall if we have a vector bundle E → M consider a Hermitian metric h in E

which is a C∞ field of Hermitian inner products in the fibers of E.

h(ξ, η) = h̄(η, ξ), ξ, η ∈ Ex

Let ξ and η be a C∞-section and sU = (s1, .., sr) is a local frame field of E over

U , we set

hij = h(si, sj)
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and denote HU = (hij̄) is a positive definite Hermitian matrix at every point of U .

Recall that for a curvature form Ω we write

Ωi
j =

∑
Ri

jαβ̄dz
α ∧ dz̄β

so that

Rjk̄αβ̄ =
∑

hik̄R
i
jαβ̄ = −∂β̄∂αhjk̄ +

∑
hab̄∂αhjb̄∂β̄hak̄,

where ∂α = ∂/∂zα and ∂β̄ = ∂/∂z̄β

We say that holomorphic normal frame field is normal at x0 ∈M if

hij̄ = δij

ωi
j =

∑
hik̄d′hjk̄ = 0

at x0.

In matrix notation we have dH = tωH +Hω̄ and subsequently,

tΩH +HΩ̄ = 0

It leads that ω and Ω are skew-symmetric.

So the curvature form is

Ω = d′′ω

For the line bundle detE = ∧rE we have

D(s1 ∧ .. ∧ sr) = (
∑

ωj
i )s1 ∧ .. ∧ sr,
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i.e. the connection form for D in det(E) is given by the trace of ω

trω =
∑

ωi
i,

similarly, its’ curvature is given by

trΩ =
∑

Ωi
i

We have a Ricci form

trΩ =
∑

Rαβ̄dz
αdz̄β,

where

Rαβ̄ =
∑

Ri
iαβ̄ = −∂α∂β̄det(hij̄)

8.9 Curvature of E → C1 × C2

Let E → C1 ×C2 is a bundle , which is stable on C1 ×{x} and C2 ×{y} for any

x, y ∈ C1, C2.

8.9.1 rkE = 2

In the case C1 × C2 and the bundle is of rank 2 we consider a connection defined

by unitary flat connections in both directions. (can define at least set-theoretically)

We can take a basis of sections which is given by basis of sections on E|C1

which we denote as (s1, s2) and E|C2 (s′1, s
′
2), thus a local basis of sections is

(s1, s2, s
′
1, s

′
2).

If we consider a curvature matrix R of second derivatives d2hi,k/dzidzk ( we dif-

ferentiate also by d̄zi ). As curvature vanishes on E|C1 and on E|C2 we have van-
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ishing of the corresponding second derivatives of h12, h11, h21, h22 and h′12, h
′
11, h

′
21, h

′
22.

Then by hermitian condition in our 4 × 4 matrix 2 × 2 diagonal squares are zero

and antidiagonal matrices are conjugated. We will act on each hij by an operator

matrix which is 4× 4 matrix, schematically depicted as :

∂2 =


∂z1∂z1 ∂z1∂z̄1 ∂z1∂z2 ∂z1∂z̄2

∂z̄1∂z1 ∂z̄1∂z̄1 ∂z̄1∂z2 ∂z̄1∂z̄2

∂z2∂z1 ∂z2∂z̄1 ∂z2∂z2 ∂z2∂z̄2

∂z̄2∂z1 ∂z̄2∂z̄1 ∂z̄2∂z2 ∂z̄2∂z̄2



∂2(hij) =


0 0 āi,i āi,j

0 0 āj,i āj,j

ai,i ai,j 0 0

ai,j aj,j 0 0

 (8.19)

8.9.2 rkE > 2

In the higher rank bundles we have the same situation for some 2-minors. The

curvature matrix is expressed through the second derivatives and so the above

inequality (if true) should also tell about the class c2.

As the basis of a local frame field is sU = (s1, .., sr, s
′
1, .., s

′
l) then analogously on

E|C1 and E|C2 a connection D is flat therefore the curvature vanishes and second

derivatives of h11, h12..hr1.., hrr and h′11, h
′
12..h

′
r1.., h

′
rr as well. Only in the mixed

directions (i.e. si, s′j) the mixed derivatives would not vanish, i.e. ∂i∂j , ∂i∂̄j etc.

I.e. denote hij = h(si, sj), h′ij = h(si, s
′
j),h

′′
ij = h(s′i, s

′
j).

79



8.10 Ehressman-induced connection on E → C

Let φ : C → C be a fibration of curves over a curve. Then we can again form a

frame of sections lifting vector fields from a curve C and every curve φ−1(c), c ∈

C. Thus when we are differentiating a section of a bundle E using connection

D induced from flat connections from both directions. We have a vector fields

along φ−1(c) and vector fields along C. As D is flat in both directions, we will

get only action of vertical connection along horizontal vector fields and horizontal

connection along vertical vector fields.

Thus action D(s) = ∇φ−1(c)(s
hor) + ∇C(s

vert). We can consider a matrix of

the second derivatives of the metric hij̄ . Since the basis of a local frame field

sU = (s1, .., sr, s
′
1, .., s

′
l), where s = (s1, .., sr) is a frame field along E|φ−1(c) and

s′ = (s′1, .., s
′
l) is a local frame field along E|C . Thus

D(s) = ∇φ−1(c)(s) +∇C(s
′)

Therefore we can form a corresponding matrix of an action of connectionD on the

local frame section. It is if we will writeD(s) = (∇φ−1(c)+∇C)(s1, .., sr, s
′
1, .., s

′
r).

The action of the Ehresmann-induced connection is

Ds1 = 0s1 + ..+ 0sr + a11s
′
1 + ..+ a1rs

′
r

Ds2 = 0s1 + ..+ 0sr + a21s
′
1 + ..+ a2rs

′
r

...

Ds′1 = a′11s1 + ..+ a′1rsr + 0s′1 + ..+ 0s′r

Ds′2 = a′21s1 + ..+ a′2rsr + 0s′1 + ..+ 0s′r

...
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Let us consider the coordinates: (z1, z̄1, z2, z̄2). The first part of coordinates cor-

respond to coordinates on a curve C and the second on the curve φ−1(c).

Thus we have sU = (s1, .., sr, s
′
1, .., s

′
r). Again denote hij = h(si, sj), h′ij =

h(si, s
′
j),h

′′
ij = h(s′i, s

′
j).

Notice that

∂2hij vanishes along directions (z1, z̄1) and does not vanish along z2’s

∂2h′ij does not vanish

∂2h′′ij vanishes along (z2, z̄2) and does not vanish along z’s

Again we will act on each hij by an operator matrix which is 4× 4 matrix,

schematically :

∂2 =


∂z1∂z1 ∂z1∂z̄1 ∂z1∂z2 ∂z1∂z̄2

∂z̄1∂z1 ∂z̄1∂z̄1 ∂z̄1∂z2 ∂z̄1∂z̄2

∂z2∂z1 ∂z2∂z̄1 ∂z2∂z2 ∂z2∂z̄2

∂z̄2∂z1 ∂z̄2∂z̄1 ∂z̄2∂z2 ∂z̄2∂z̄2



Then the matrix of the second derivatives D2 of a metric is

D2 =



0 0 a2,n−1 a1,n−1

0 0 a2,n−1 a2,n−1

...
... . . . ...

0 0 · · · a1,n−1

a2,1 a2,2 a2,n−1 a2,n
...

... . . . ...

an,1 an,2 an,n−1 an,n−1

an,1 an,2 0 0
...

... . . . ...

an,1 an,2 0 0


81



8.11 Calculation of the Second Chern class

Recall that the Dolbeaut representative of the Atiyah class is given by [∂̄,Ω],

where Ω is a curvature tensor on the vector bundle E. In coordinates, Ωi
j =∑

Ri
jαβ̄
dzα ∧ dz̄β , therefore, for C = Ω ∧ Ω =

∑
k(Ω

i
k ∧ Ωk

j ). As every Ωij has

a form Ωi
j =

∑
Ri

jαβ̄
dzα ∧ dz̄β , one has

Cij =
∑

Ωi
k ∧ Ωk

j =
∑

Ri
kαβ̄dz

α ∧ dz̄β ∧
∑

Rk
jαβ̄dz

α ∧ dz̄β =

=
∑
k

∑
α,β,γ,θ

∑
σ∈S4

(−1)σRi
kσ(αβ̄)R

k
jσ(γθ̄)dz

α ∧ dzβ ∧ dz̄γ ∧ dz̄θ

Denote (α) = (α, β, γ, θ) a multindex consisting of 4 variables. Then,

(Ω4)ii =
∑
j

(Ω2)ij ∧ (Ω2)ji =
∑
j

∑
(α)

[∑
k

∑
σ∈S4

(−1)σRi
kσ′·σ(αβ̄)R

k
jσ′·σ(γθ̄)

]
·

[∑
k

∑
σ∈S4

(−1)σRj

kσ′·σ(α′β̄′)
Rk

iσ′·σ(γ′θ̄′)

]
dzα ∧ dzβ ∧ dz̄γ ∧ dz̄θ

Recall that

Rjk̄αβ̄ =
∑

hik̄R
i
jαβ̄ = −∂β̄∂αhjk̄ +

∑
hab̄∂αhjb̄∂β̄hak̄

,

Recall that (hβγ) = h−1 and

Rβ
ij̄α

= −hβγ
(
∂2

hαγ̄
∂zi∂z̄j

− hδµ
∂hαµ
∂zi

∂hδγ̄
∂z̄j

)
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And the curvature

Ω =
∑

Rβ
ij̄α
dzi ∧ dz̄j ⊗ e∗α ⊗ eβ

For our expression we would need:

Rj

σ′(k)·σ(αβ̄) = hjk(−∂σ′·σ(β̄)∂σ′·σ(α)hik̄ +
∑

hab̄∂σ′·σ(α)hib̄∂σ′·σβhak̄)

Then we will have:

(Ω4)ii =
∑
j

∑
α

[∑
k

∑
σ∈S4

(−1)σhikhkjhjkhki(−∂σ(β̄)∂σ(α)hik̄ +
∑

hab̄∂σ(α)hib̄∂σβhak̄)·

· (−∂σ(θ̄)∂σ(γ)hkj̄ +
∑

hab̄∂σ(γ)hkb̄∂σθhaj̄)
]

·
[∑

k

∑
σ∈S4

(−1)σ(−∂σ(β̄)∂σ(α)hjk̄ +
∑

hab̄∂σ(α)hjb̄∂σβhak̄)·

· (−∂σ(θ̄)∂σ(γ)hkī +
∑

hab̄∂σ(γ)hkb̄∂σθhāi)
]
dzα ∧ dzβ ∧ dz̄γ ∧ dz̄θ

8.11.1 Curvature of E → C

Again, return to the case when φ : C → C be a fibration of curves over a

curve and, using the induced connection D bearing it from E|C and every curve

E|φ−1(c), c ∈ C we can differentiate a section of a bundle E. Consider a matrix

of the second derivatives of the metric hij̄ . Notice that ∂2hij, ∂2h′ij, ∂
2h′′ij vanish

along (z1, z̄1) and nowhere else.
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Consequently, we will have

∂2(hij) =


0 0 āi,i āi,j

0 0 āj,i āj,j

ai,i ai,j ∗ ∗

ai,j aj,j ∗ ∗

 (8.20)

8.11.2 Second chern class for a E → C

To analyze a formula for Ω4 we have to understand how do the first derivatives

∂hij involved in the expression

(Ω4)ii =
∑
j

∑
α

[
∑
k

∑
σ∈S4

(−1)σ(−∂σ(β̄)∂σ(α)hik̄ +
∑

hab̄∂σ(α)hib̄∂σβhak̄)·

· (−∂σ(θ̄)∂σ(γ)hkj̄ +
∑

hab̄∂σ(γ)hkb̄∂σθhaj̄)]

· [
∑
k

∑
σ∈S4

(−1)σ(−∂σ(β̄)∂σ(α)hjk̄ +
∑

hab̄∂σ(α)hjb̄∂σβhak̄)·

· (−∂σ(θ̄)∂σ(γ)hkī +
∑

hab̄∂σ(γ)hkb̄∂σθhāi)]dz
α ∧ dzβ ∧ dz̄γ ∧ dz̄θ

behave in this case. It is clear that ∂z1hij = 0, ∂z̄1hij = 0, meanwhile the deriva-

tives from the other direction may not be zero (i.e. ∂zhij is not zero, z ∈ C).

If we look at the expression above, it could be deduced that the first derivatives

are included in the expression
∑
hab̄∂∂zihkb̄∂z̄jhāi in pairs (so that at least one of

them is always zero as the connection is flat in one direction and hence the first

derivative is zero) therefore the terms involving it go to zero and what lasts are the

only expressions for the second derivatives. If we permute the columns or rows of

the matrix , while working with the expression for Ω4, the essential form will stay
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the same. This way we will get an expression

κ =
∑
i

(Ω4)ii =
∑

i,j,α,σ∈S4

∂σ(β̄)∂σ(α)hik̄ · ∂σ(β̄)∂σ(α)hjk̄·

· ∂σ(θ̄)∂σ(γ)hkj̄ · ∂σ(β̄)∂σ(α)hjk̄dzα ∧ dzβ ∧ dz̄γ ∧ dz̄θ =

=
∑
i,j

det(∂2hij)dz
1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

If all the expressions with the first derivatives go to zero, we will get:

∂2(hij) =


0 0 āi,i āi,j

0 0 āj,i āj,j

ai,i ai,j ∗ ∗

ai,j aj,j ∗ ∗

 (8.21)

We denote by ∗ the elements of derivatives of metric hij not in the mixed direc-

tions. Denote the matrices corresponding to the mixed directions as

Dij =

ai,i ai,j

ai,j aj,j


and D̄ij correspondingly. In general, forE → C , det(∂2(hij)) = det(Dij)det(D̄ij)

(in the second case the additional minor doesn’t influence on the expression of de-

terminant by the Linear Algebra rules).

Theorem 53. The resulting formula for E → C is

c2(E) =
∑
i

(Ω4)ii =
∑
i,j

det(∂2hij)

det(hij)
dz1∧dz̄1∧dz2∧dz̄2 =

∑
i,j

det(Dij)det(D̄ij)

det(hij)
dz1∧dz̄1∧dz2∧dz̄2

Thus from the last theorem follows the stability result:
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Corollary 15. As we have for E → C

c2(E) =
∑
i,j

det(Dij)det(D̄ij)

det(hij)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 (8.22)

therefore,

c2(E) > 0 (8.23)

Remark 5. Local positivity of c2-form holds outside of singular points and in

fact, the impact of singular point depends on the dilation (distance on symmetric

spaceGL(n,C)/R∗U(nC)) –two points corresponding to unitary structures from

different branches of the singular curve.
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9 | Results: Stability for vector bundles with

singularities

9.1 Bott-Baum argument

Recall that if we have a sequence

0 → L→ T → Q→ 0

where L is a space of sections of a line bundle L on X , T is a space of sections

of a tangent bundle to X and Q = T/ξ, where ξ = T/η(L), where η : L → T . It

implies that ci(Q) = ci(T − L), i = 1, .., n.

Therefore the following classical formula holds true

ϕ(Q)[M ] =
∑

p∈Zero(η)

ϕ(η, p) =
∑

p∈Zero(η)

Resϕ(ξ, p)

So we can conclude that the formula above computes the Chern numbers of Q in

terms of local information at the singularities of the foliation. Indeed, written in a

slightly different way, the following holds:

ϕ(Q) =
∑
Z

µ∗Resϕ(ξ, Z),

where µ∗ : Hj(Z;C) → H2n−j(M,C) a map, induced by the inclusion of a

singular set Z ↪→ M and the classical Poincare duality map on the homologies,

ϕ(Q) is a given symmetric polynomial of the Chern classes.

Bott and Baum had also noticed that one can think of
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Resϕ(ξ, Z) =
s∑

i=1

#(ϕ, ξ, Zi)[Zi]

as a sum of quantities #(ϕ, ξ, Zi) = Resp

 ϕ(A)dzk..dzn

ak, ..., an

,
which are not difficult to count in the local coordinates.

Let E be a vector bundle on X of degree d and rank n. Recall that in our case

the restriction of a bundle E|Ct to any curve Ct ∈ Xb is stable, then, as it is

well-known, we have a flat unitary connection ∇E|Ct
along the fibers Ct in Xb.

Therefore we have a family of such "fiberwise" connections {∇E|Ct
} := TE . Also,

we can find projective connections along the singular fibers in this natural way:

we can assume the existence of connections on the smooth normalized curves X ′
s

with a singularity for a corresponding connection ∇Xs over the points xs ∈ Xsing.

They are called parabolic connections. They are constructed in the following way:

if we have a non-singular curve with points xi corresponding to the singulari-

ties we can define λ-connections(logarithmic connections), which have the poles

along a divisor D =
∑
xi. We can take the residues along these singular points

and put an order on it. They should satisfy in particular Fuchs relation. Then we

can define Parabolic connections:

1) taking logarithmic connections singular over Xsing, i.e. a C-linear maps

D : E → E ⊗ Ω1
X(logX

sing) = E ⊗ Ω1
X ⊗OX(X

sing),

which satisfy Leibniz identity.

The fiber Ω1
X ⊗ OX(X

sing)(xβ) is canonically identified with C by sending a

meromorphic form to its residue at xβ . In particular, ResD(xβ) ∈ End(E)(xβ)

2) forming a full flag of subspaces on each fiber of E|xi
,
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3)Let D be a logarithmic connection on X . Let Res(D, xi) = λiIdE(xi), xi ∈

Xsing, i = 1, ...,m. Then it follows that

d+ n

m∑
j=1

λi = 0

Lemma 54. Smooth deformation between the Higgs bundles and connections is

given by the deformation of the λ-connections.

Additionally, if we restrict the set of connections to some subspace from a flag,

we will get a partial connection.

A consequence of the lemma is that instead of studying a bundle E itself we can

restrict our studies to a space of λ-connections. Thus the foliation P (TE) on the

projectivization P(E) over X acquires a standard singular points.

Put T = TE and let L be the one-dimensional torsion-free subsheaf, such that the

morphism η : L→ TE has zeroes at the singular points Xsing.

Although the constructed foliation is not holomorphic but the presence of the stan-

dard singular points provides us the following general Bott-Baum formulas (Baum

& Bott, 1972) of the ∆-class of E:

Theorem 55. As c1(E) = 0,

c2(E) = c2(P(TE)) = ∆ =
∑
p

Resp

 ϕ(A)dzk..dzn

ak, ..., an

− F 2 = N − F 2

Since c1(F ) > 0, it implies that c2(E) = N − F 2.

If the number of points N grows fast and F is small we get that c2 > 0, i.e.

N > F 2.
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9.2 Stability of Projective varieties

Let Y be a smooth projective variety with trivial canonical class.

Without loss of generality, we can consider a fibrationB → Y , whereB, as above,

is a family of curves, embedded to Y .

(Bogomolov & de Oliveira, 2005; Bogomolov, Cascini, & de Oliveira, 2006) The

line of arguments could be repeated identically as in the case of smooth projective

complex surfaces.
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10 | Bounds for a curves on the surfaces of

general type

10.1 Preliminaries

Consider a families of curves of a fixed genus g, lying on the surface of general

type (Bogomolov, 1977). Suppose that the rank of Picard group of a surface

V 2 ⩾ 0, K2 ⩾ 0 (i.e. the canonical class is very ample). Let ∆P be a smooth

curve of genus g and f : ∆P → V 2 a regular map which induces an epimorphism

of function fields: f ∗ : C(V 2) → C(∆P ). Let us define a subconeKD ⊂ Pic(V 2
R)

in the cone of effective divisors

KC
D,ϵ = {x ∈ KD, x

2 ≥ α− ϵ

K2
(K.∆P )

2, α =
3K2

4χ−K2
}, ϵ ≥ 0

The following theorem holds true:

Theorem 56. (Bogomolov’s finitness theorem, (Bogomolov, 1977)) The set of

genus g curves such that the image of their fundamental cycle f(∆P ) /∈ KC
D,ϵ

form an algebraic family. In particular, the number of classes such that f(∆P ) ∈

PicV 2
R \KC

D,ϵ for the curves of genus g is finite.

Denote hL(P ) = α−ϵ
K2 (K.∆P )

2 Let us reformulate a theorem in a more convenient

form:

Theorem 57. (Bogomolov’s finitness theorem, (Bogomolov, 1977)) For except a

finite number of curves, there is a linear estimate from below for a genus of the

curve inside each cone:

hL(P ) ≤ A · d(P ) +O(1)
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10.1.1 A few details of the proof of Bogomolov’s finitness the-

orem

Recall that the proof of Theorem(10.1.2) is based on the properties of symmetric

differential s ∈ H0(V 2, SiΩ1 ⊗ iF ) , F ⊂ PicV is a one-dimensional fibration.

Note thatH0(V 2, SiΩ1⊗iF ) = H0(P(T ), iD+iF ),D is a Grothendieck fibration

on P(T ). It means that there exists a sheaf D on P(T ) whose sections coincide

with the sections of SiΩ1. For a big i the map νi : P(T ) → PN given by linear

series |iD + iF | is a birational embedding (Iitaka, 1971). The main idea is to

observe a set {s(x) = 0} := S as a surface in P(T ). For a curve X , a map tf :

X → P(T ). One can take a composition νitf : X → PN . Let F 2 < 0, KF > 0;

Let us take such curves that FX < 0; They lie in a subcone {KD
F ⊂ KD,

FX ≤ 0}. Let K2 − χ+3KF +3F 2 > 0 and H0(V 2, SiΩ1 ⊗ iF ) ∼ ci3 (shows

how the number of symmetric tensors grows). In this case the base subvariety of

νi is defined BF ⊂ P(T ). We say X is F -regular if tf(X) ⊈ BF .

Lemma 58. F -regular curves of genus g form an algebraic family.

Its’ proof first uses that the divisor of intersection (iD + iF ) ∩ tf(X)|X on a

curve X coincides with zero divisor of the symmetric tensor s′ ∈ H0(SiK(X)⊗

iF ) which takes values in F and appears as a restriction of s ∈ SiΩ1 ⊗ iF to a

curve X , i.e. S. As FX ≤ 0, the degree of s′ ≤ 2ig(x). By this reason, the

degree of a curve νitf(x) ≤ 2ig but the curves of the bounded degree form an

algebraic family in PN . Notice that the bound depends on F (which could be not

a sheaf apriori). The conditionX ⊂ νiP (T ) is given by some number of algebraic

conditions. Curves of the small genus satisfy algebraic differential equations. In

our case we have one-dimensional families therefore the equations are of the first

order. In general case, one gets differential equations of the higher order. It is

reasonable to study curves as subvarieties of P(T ). Let us recall some properties
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of the base manifold for νi: BF = ∪iBi. Let p denote a projection p : P(T ) → V .

Let p denote a projection p : P(T ) → V . As ptf(X) = f(X), the curves whose

image under the tangent map lie in one of the components Bi ⊂ BF , p(Bi) is a

proper subvariety of V , constitute a finite set.

PN

P(T ) V

X

νi(F )

tf(X)

p

f

Now let p(Bi) = V and tf(X) ⊂ Bj . The component Bj ⊂ P(T ) corresponds

to a one-dimensional field of directions in T (Bj) if tf(X) ⊂ Bj , then f(X) is

the image of the curve on Bj tangent to the field of directions Bj on Bj under the

projection p : Bj → V . Thus, F -irregular curves are images of integral curves of

a finite set of foliations on branched covers of Bj → V . Further, we will denote

τ(C) := tf(X).

10.1.2 Bogomolov’s finitness theorem and result of Moriwaki

Our goal is to generalize result of Moriwaki using Bogomolov’s finitness theorem

and Brunebarbe- Klingler-Totaro’s theorem. Let us recall one more time both

theorems:

Theorem 59. (Bogomolov’s finitness theorem, (Bogomolov, 1977)) If the canon-

ical class of X is very ample, for except a finite number of curves, there is a linear

estimate from below for a genus of the curve inside each cone:

hL(P ) ≤ A · d(P ) +O(1)
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Theorem 60. (Moriwaki, 1995) If the canonical class of X is very ample, the

following holds:

hL(P ) ≤ A · d(P ) +O(1)

10.1.3 Moriwaki’s model of the projective variety

Here we are recalling a number of facts due to A. Moriwaki (Moriwaki, 1995).

Let X be a geometrically irreducible smooth projective variety over F . Let X and

C be smooth projective varieties over k, and f : X → C a k-morphism such that

the function field of C is F and the generic fiber of f is X , i.e. X = X ⊗ F .

X is said to be non-isotrivial if there is a non-empty open setC0 ofC such that, for

all t ∈ C0, the Kodaira-Spencer map is not zero. Let F̄ be the algebraic closure

of F . For a point P ∈ X(F ), let us denote by ∆P the corresponding integral

curve on X . We fix a line bundle L on X . Let L be a line bundle on X with

L ⊗ F = L.

Definition 20. The pair (f : X → C,L ) is called a model of (X,L). A geometric

height hL(P ) of P with respect to L is defined by

hL(P ) =
(L · ∆P )

[F (P ) : F ]

Define a geometric logarithmic discriminant as

d(P ) =
2g(∆∼

P )− 2

[F (P ) : F ]

where ∆∼
P is a normalization of ∆P .

Theorem 61. (Moriwaki, 1995) If the cotangent bundle to X is very ample, the
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following holds:

hL(P ) ≤ A · d(P ) +O(1)

10.1.4 Brunebarbe- Klingler-Totaro theorem

It was reasonable to ask whether a smooth complex projective variety X with

infinite fundamental group π1(X) must have a nonzero symmetric differential,

meaning that H0(X,SiΩ1X) ̸= 0 for some i > 0. The following theorem gives

the answer to this question.

Theorem 62. (Brunebarbe et al., 2013) Let X be a compact Kähler manifold.

Suppose that there is a finite-dimensional representation of π1(X) over some field

with infinite image. Then X has a nonzero symmetric differential.

All known varieties with infinite fundamental group have a finite-dimensional

complex representation with infinite image, and so the theorem applies to them.

Depending on what we know about the representation, the proof gives more pre-

cise lower bounds on the ring of symmetric differentials. The theorem is highly

non-trivial, because there are many varieties X of general type which have many

sections of the line bundles K⊗j
X , so of the bundles (Ω1

X)
⊗i which have no sym-

metric differentials. For example, Schneider showed that a smooth subvariety

X ⊂ PN with dim(X) > N/2 has no symmetric differentials. Most such vari-

eties are of general type.

10.2 Proof of the bound

By result of Brunebarbe-Klinger-Totaro there are nontrivial symmetric tensors on

a surface X . If the zero set of symmetric tensors defines a rational map which is

an embedding at general point ψ : P1(T (X)) → Pm then the curves of degree

95



τ(C) = d have geometric genus ≤ 2d− 2. Thus for exceptional curves τ(C) are

tangent to a zero subset S ⊂ P1(T ). Thus the curves with this property constitute

either a one-dimensional family (of the same geometric genus) + a ψ-finite num-

ber of curves. So we have Moriwaki estimate in this case.

If the map ψ : P1(T (X)) → Pm has generically one-dimensional fiber then there

are two options:

1) ψ is induced fromX → C and so there is a one-dimensional subbundle F ⊂ Ω1

with many sections in F n.(on further slides more details). Thus except from one-

dimensional family of curves with trivial restriction of F we have a linear bound

on genus with respect to the degree (F,C)

2) If the map ψ is not induced from X then the images of different curves are dif-

ferent under tau (except for a one-dimensional family) (If Ct is one-dimensional

family of curves in X then the map ψ is nontrivial on Ct and so curves have

bounded genus on the whole family by the bound on generic member.)

If the image of ψ is a curve C then if genus of C is > 1then it is clear. If genus is

smaller then there is family of surfaces St ⊂ P (T ) which are preimages of points

in C. Then for any such surface which surjects onX we obtain a one-dimensional

family for each St. Each St provides at least one-dimensional family. Thus we

may have either a two dimensional family of curves of the same genus tangent to

St or a discrete set of one-dimensional families.
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11 | Deformations of surfaces of general type

11.1 Preliminaries: Almost complex structures and

symmetric tensors on cotangent bundles

11.1.1 Kuranishi map and almost complex structures

We follow mainly (Hironaka et al., 2013) and (Kodaira & Spencer, 1958b, 1958a;

Huybrechts, 2005; Arbarello & Cornalba, 2009).

Definition 21. A complex structure on a manifold M is a collection of complex-

valued charts Φ := {φα : Uα → U ′
α}, where φα is a diffeomorphism and

Uα ⊂M,U ⊂ CN such that

1. For φα, φβ ∈ Φ their composition φα ◦ φβ is complex analytic

2. The union of the domains of charts in
⋃
Uα =M

3. If u is a complex valued chart of M such that u ◦ φα
−1 is complex analytic

for all φα in Φ, then u ∈ Φ.

Recall that CTM = TM ⊕ iTxM . Denoting by T ′′Mx the set of all L ∈ CTxM :

Lf = 0, f ∈ Fx which annihilate all germs of holomorphic functions on neigh-

borhoods of x, we can say that CTxM = T ′
xM ⊕ T ′′

xM , where T ′ and T ′′ are

complex conjugate to each other.

We define families of analytic charts over the parameter spaces of analytic sets.

More concretely,

Definition 22. Let S be an analytic subset, our parameter set for families of a

complex charts. Let S ′ ⊂ S. Then, for a U ⊂ M , by a family of complex charts
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on M we mean a map

κ : U × S ′ → CN ,

where κ(s) is a complex analytic chart for M for any fixed s ∈ S ′.

A collection of families of complex analytic charts, satisfying Properties (21) is

called complex analytic families of complex structures on M .

An isomorphism of two complex structures ofM is a diffeomorphism which sends

charts of one structure to those of another. Hence it is natural to define an isomor-

phism of families as a family of diffeomorphisms satisfying conditions we natu-

rally expect. To be more precise, let θ̂ and φ̂ be complex analytic families over an

analytic set B. Denote by f a family of diffeomorphisms of M parametrized by

B {f b : b ∈ B}.

In the following we fix a complex structure M on M and we are interested in how

we can so to speak deform M locally. To be more precise, by "deforming M"

we mean that we consider an analytic set S together with a reference point s0 and

a complex analytic family J of complex structures on M over S such that the

complex structure in J over s0 is equal to the given M . In this case we say that

J , is a complex analytic family of deformations of M with a parameter in (S, s0)

(or, over (S, s0)). By "deforming locally M" we mean that we consider the germ

of such Js over neighborhoods of reference points. Our main aim is to construct

a complex analytic family of deformations of M which is complete.

Definition 23. Let M ′′ be an almost complex structure on M . We say that it is of

finite distance from a complex structure M on M when ρ′′ : CTM → T ′′M , such

that kerρ′′ = T ′ induces an isomorphism of T ′′ to T ′′M .

Let M := {Mt}t∈T be a family of compact complex manifolds, parametrized by

the set T . For every Jt : t ∈ T ⇝ Mt we have an assignment of a complex
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analytic structure. For a τ : S → T with τ(s0) = t0 we associate an assign-

ment s → Mτ(s) which is a family of deformations of M . So we have germs of

deformations of M at the reference points. Note that 1-dimensional cohomology

group with coefficients in the sheaf of germs of holomorphic vector fields does

not change on a neighborhood of the reference point.

Let us represent the complex analytic structure on M by differential forms

T ′′ −−−→
ωM′

T ′y y
M ′ M

where T ′′(M ′) = {−ωM ′(X) +X : X ∈ T ′′}. Define a set

Ap = {set of C∞- diff. forms of type (0, p) of complex analytic structures M

with values in T ′}. We have an operator ∂̄ : Ap → Ap+1, ϕ ∈ Ap, ψ ∈ Aq.

Consider a complex-analytic local coordinates (z1, .., zn) of M and express ϕ =

Xα1...αpdz̄
α1 ...dz̄αp and ψ = Yβ1...βpdz̄

β1 ...dz̄βp . Xα1...αp and Yβ1...βp are com-

plex vector fields of type (0, 1), antisymmetric w.r.t. indices. Locally, one has

[φ, ψ]loc := [Xα1...αp , Yβ1...βp ]dz̄
α1 ...dz̄αpdz̄β1 ...dz̄βp

Let M ′ be a complex structure such that T ′′
x (M

′) is very close to T ′′
x so the C∞-

fiber mapping ωM ′ : T ′′ → T ′, T ′′(M ′) = {−ωM ′(X)+X : X ∈ T ′′}. Therefore,

M ′ is completely determined by ωM ′ . We say that M ′ has finite distance to M

when we can find ωM ′ as above.

Definition 24. An almost complex structure Mω is integrable ⇔ ω satisfies the

PDE: ∂̄ω − [ω, ω] = 0

Almost complex structure is integrable, when it comes from a complex analytic

structure. Set of almost complex structures on M having finite distance to M

↔1−1 with a set of fiber mappings φ : T ′′ → T ′.
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Ap is a space ofC∞-differential forms of type (0, p) of the complex analytic struc-

tureM with values in T ′. Hence, A1 is a space of fiber mappings T ′′ → T ′, thence

the set of almost complex structures on M having finite distance to M is indexed

by elements of A1.

Given any linear mapA on each tangent space ofM i.e., A is a tensor field of rank

(1, 2) then the Nijenhuis tensor is a tensor field of rank (1, 2) given by

NA(X, Y ) = −A2[X, Y ] + A([AX, Y ] + [X,AY ])− [AX,AY ],

or, for the usual case of an almost complex structure A = J such that J2 = −Id,

NJ(X, Y ) = [X, Y ] + J([JX, Y ] + [X, JY ])− [JX, JY ]

The Newlander-Nirenberg theorem states that an almost complex structure J is

integrable if and only if NJ = 0. The compatible complex structure is unique.

Since the existence of an integrable almost complex structure is equivalent to the

existence of a complex structure, this is sometimes taken as the definition of a

complex structure.

FAMILIES OF DEFORMATIONS MODULO DIFFEOMORPHISMS

Let f : M → M be a diffeomorphism. Take ω ∈ A1. Then there exists unique

complex structure M ′ on M s.t. f induces an isomorphism f : M ′ → Mω. M ′

has again a finite distance to M . There exists a unique θ ∈ A1 : M ′ = Mθ. In

this case, we set θ = ω ◦ f . For a given ω it is clear that ω ◦ f is defined for f

sufficiently close (in the 1-jets topology) to the identity mapping.

Let U be a domain of a local corrdinate (z). Let f(U1) ⊂ U for an open U1 ⊂ U .
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Then θ = ω ◦ f is given by

∂fα

∂z̄β
+ ωγ

α(f(z)
(∂f̄ ν

∂z̄β

)
=
(∂fα

∂z̄δ
+ ωγ

α(f(z)
)(∂f̄ ν

∂z̄δ

)
·θβδ(z),

where ω = Xαdz̄
α, Xα = ωα

β(z) ∂
∂zβ

and similarly for θ.

ω ◦ f is defined when the matrix ∂fα

∂z̄β
+ ωγ

α(f(z))
(

∂f̄ν

∂z̄β

)
is non-singular. Let us

index f near the identity mapping by elements in A0, i.e. complex vector fields of

type (1, 0). Let X be a vector field on M and (e′(X))(x) be the end point of the

geodesic from x moved by the initial velocity Xx after the time interval 1.

e′(X) : M → M is a C∞- geodesic mapping. If X is sufficiently small , then

e′(X) is a diffeomorphism of M. For a ξ ∈ A0 ⇝ ξ + ι(ξ) is a real vector field

on M.

e(ξ)(x) = B(ξx), and sayB : T →M . In terms of local coordinates,
(

∂Bα(ξ)
∂ξβ

)
|ξ=0 =

δβ
α,

(
∂Bα(ξ)

∂̄ξβ

)
|ξ=0 = δβ

α ⇝ ω ◦ e(ξ) = ω + ∂̄ξ + R(ω, ξ), where R(tω, tξ) =

t2R(ω, ξ, t).

Lemma 63. Given a 1-parameter group of diffeomorphisms {ψt := exp(t(θ +

θ̄))|t ∈ R}, ( d
dt
)t=0(ψt

∗(J0)) corresponds to the small variation ∂̄(θ).

Diff 0(M) ↷ {M} on the set of complex structures. Locally, at each point J the

orbit of diffeomorphisms in Diff 0(M) contains a submanifold having a tangent

space, consisting of forms TS ⊂ TDiff 0(M)J , TS := forms of the Dolbeaut

cohomology class of 0, TS ⊂ TR (TS has a finite codimension in TR), TR :=

space of ∂̄-closed forms ϕ.

Set F (ϕ) = (∂̄+ 1
2
[ϕ, ϕ]). F is a map of degree 2 between ∞-dimensional spaces:

the space of (0, 1)-forms with values in the bundle TM1,0 and the space of (0, 2)-

forms with values in TM1,0. Note that F |{∂̄(ϕ)=0} takes values in the space of

∂̄-closed forms. Therefore, we can reduce an equation {F = 0}⇝ to an equation
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k = 0, for a map

k : H1(ΘY ) → H2(ΘY ),

called the Kuranishi map, which is a finite-dimensional problem.

Theorem 64. (Kuranishi) see (Catanese, 2011) Let X be a compact complex

manifold. Then:

1. The Kuranishi family π : (X, X0) → (B(X), 0) is semiuniversal;

2. (B(X), 0) is unique up to isomorphism and as a germ of analytic subspace

of the v.s. H1(Y,ΘY ) inverse image of the origin under Kuranishi map k,

whose differential vanishes at the origin. A quadratic term in the Taylor

development of the Kuranishi map is given by a bilinear map H1(Y,ΘY )×

H1(Y,ΘY ) → H2(Y,ΘY ), called the Schouten bracket (Schouten, 1954),

which is the composition of the cup product followed by Lie bracket of vector

fields.

3. The Kuranishi family is a versal deformation of Yt for t ∈ B(X).

4. The Kuranishi family is a universal if B(M) is reduced and h0(Xt,Θt) :=

dimH0(Xt,ΘYt) is constant in a suitable neighborhood of 0.

11.1.2 Bogomolov subsheaves and Bogomolov-Miyaoka-Yau in-

equality

Denote T (Mn) = T the tangent bundle toMn. Let Fk ⊂ O(T ) be a k-dimensional

coherent subsheaf of O(T ). An embedding r : Fk ↪→ O(T ) ⇝ a map of

one-dimensional bundles r(k) : detFk →
∧k T . If one uses the isomorphism∧n−1Ω1 ⊗ −K ≃ T ⇝ a map r⊙(k) : detFk ⊗ −kK → Ωn−k. This way, one

can study subbundles in T (Mn) just considering one-dimensional subbundles in
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Ωi(Mn).

Theorem 65. Let Mn be a projective variety, Ωi = Ωi(Mn), the ith wedge power

of the cotangent bundle Ω1 = Ω1(Mn), L → Mn be the one-dimensional bundle

on Mn and h : L → Ωi- a non-trivial homomorphism. Then ∃ constants cLM , β

such that

dimH0(Mn, sL) < cLMs
i + β, ∀s > 0

Its’ proof will be interesting for us. It splits into a few Lemmas.

Lemma 66. (Induction on dimension of a manifold) Suppose the theorem holds

for ∀M , s.t. dimM ≤ (i + 1), then it holds for projective variety X of any

dimension.

Proof. Suppose that for dimM ≤ (i + 1) the theorem holds. Now consider a

projective variety of dimension n = dimM > i+1 and that the theorem does not

hold for Mn. Let us find a projective projective variety V s.t. dimV = i + 1, for

those the theorem does not hold.

Consider a graded canonical ring associated to M :
∑
s>0

H0(Mn, sE) ⇝ V r a

projective variety. By Iitaka (Iitaka, 1971), ∃ a rational epimorphism h : Mn →

V r, whose fiber h−1(v) is a connected variety.

Let us build up a projective subvariety V i+1 ⊂Mn s.t.

1. V i+1 doesn’t lie V i+1 ⊈ Bh in the base subvariety of a map h :Mn → V r;

2. The dimension of an image dimh(V i+1 \ (V i+1 ∩Bh)) = i+ 1;

3. The composition of the maps j∗r∗

r∗ : L→ Ωi(Mn), j∗ : Ωi(Mn) → Ωi(V i+1)
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is non-trivial.

For this, let us consider an arbitrary point x ∈ Mn \ Bh ⇝ a map rx : Lx →

Ωi(M) ̸= 0, rkdhx = r. Consider a subspace Qx ⊂ Tx(M
n), dimQx = (i +

1), Qx ⋔ kerdhx and j∗r∗ : Lx →
∧iQ∗ is a non-zero map. This condition is

satisfied by almost all (i+ 1)−dimensional subspaces of Tx.

Consider an arbitrary submanifold V i+1 ⊂i M
n s.t. x ∈ V i+1 is non-special and

i∗Tx(V
i+1) = Qx. Then the manofold V i+1 satisfies the conditions (11.1.2). Note

that as dimh(V i+1) = i+1, then dimH0(V i+1, sE) > αsi+1+β for some α > 0,

and, therefore, if Lemma (66) does not hold for Mn ⇒ it does not hold for V i+1

as well.

Let now dimM = n + 1. Then the subsheaf O(L) ⊂ Ωi(M i+1) induces a one-

dimensional foliation Ls on M i+1. In more details, from the iso Ωi(M i+1) ≃

T (M i+1) ⊗ K ⇝ the homomorphism r : L → Ωi(M i+1) corresponds to one-

dimensional subsheaf r(L ⊗ −K) ⊂ T (M i+1). It is an integrable subsheaf if

M i+1 is a complex projective manifold (in this case vector fields are always inte-

grable). Thus L corresponds to the one-dimensional foliation Ls. It has special

points on the submanofold Vs, codimVs ⩾ 2.

In a neighborhood of a point x, where Ls is non-special, one can write a foli-

ation as (z1 = c1, .., zi = ci), where z1, .., zi+1 are the local holomorphic func-

tions. Then (z1, .., zi) are called the normal coordinates of the foliation. Sections

rH0(V, sL) could be locally expressed as ŝ = f(z1, .., zi+1)(dz1 ∧ .. ∧ dzi)⊗s.

Lemma 67. ŝ ∈ H0(V, sL) is locally given by ŝ = f(z1, .., zi+1)(dz1∧ ..∧dzi)⊗s.

Then ∂f
∂zi+1

= 0.

Proof. Lemma(67) is equivalent to the statement of f being constant along the
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fibers Ls and does not depend on the chosen coordinate system.

• Consider a case when s ∈ r(H0(Mn, L)) ⊂ H0(Mn,Ωi). Then ŝ is a holo-

morphic form on M i+1. Holomorphic form of codimension 1 on the arbi-

trary compact complex manifold is closed, i.e. dŝ = 0. Consider a condition

of being closed in a neighborhood of a special point x of a foliation induced

via form s. The form could be written as ŝ = f(z1, .., zi+1)dz1∧..∧dzi, dŝ =
∂f

∂zi+1
dz1 ∧ .. ∧ dzi+1 and dŝ = 0 is equivalent to the condition ∂f

∂zi+1
= 0.

• For a general case, one wishes to find a holomorphic form on some variety

Ṽ i+1, which corresponds to a tensor ŝ ∈ r(H0(sE)). Let ŝ ∈ H0(M,nE).

Consider a non-linear map of the bundles n : E → nE which is given by

fiberwise raising to the power n,Ex → nEx. The preimage of a section

n−1(s) is a subvariety n−1(s) = W i+1 ⊂ L, which is an n-fold covering

of V i+1, n−1(s) = W i+1 →n:1 V
i+1. For a section s ∈ H0(V i+1, nE) ⇝

a section s̃ ∈ H0(W i+1, p∗E): to every point sx in the fiber of the bun-

dle (nE)x and the chosen point ( n
√
s)x,i ⊂ Ex ⇝ a point ( ñ

√
s)x,i ∈ fiber

p∗Ex via the isomorphism p∗Ex ≃ Ex. This way we get a section s ∈

H0(W i+1, p∗E) such that s̃n ∈ H0(W i+1, p∗nE) and s̃n = p∗s. Consider

now one of the irreducible components W i+1
θ and let us now build a reso-

lution of singularities h : W̃ i+1 → W i+1
0 and the projection p; The com-

position ph : W̃ i+1 → V i+1 ⇝ a homomorphism of the bundles p∗h∗ :

Ωi(V i+1) →£ Ωi(W̃ i+1) ; a map £r̃p∗ : h∗p∗E → p∗h∗Ωi(V i+1) →£̃

Ωi(W̃ i+1). Note that £r̃p∗ = £r̃s̃n. Thus, one can extract the n-th root

from the tensor form ŝn ∈ r(H0(W̃ i+1, nE)). Note that in the neigh-

borhood of the non-special point of the foliation Ls on W̃ i+1, one can

rewrite s̃n as s̃n|x∈U,x∈Es = f(z1, .., zi+1)(dz1 ∧ .. ∧ dzi)
⊗n, therefore s̃ =

n
√
fdz1 ∧ .. ∧ dzi, where n

√
f denotes some fixed branch of the multivalued
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function, s is a holomorphic form and so ∂ n√f
∂zi+1

= 0. It means that the state-

ment holds for non-special points x of the foliation Ls on V i+1, where the

map p∗h : W̃ i+1 → V i+1 has rank i+1 and rkp∗h = (i+1). Hence, every-

where outside the branch divisor ph ∂f
∂zi+1

= 0. But the condition ∂f
∂zi+1

= 0

is closed and it implies that it it holds everywhere.

Now, to prove a theorem, consider an arbitrary submanifold V i
r ⊂ V i+1 which is

transversal to our foliation V i
r ⋔ Ls in a general point x.

Lemma 68. A restriction homomorphism r : H0(V i+1, nE) → H0(V i, nE) is a

monomorphism.

Proof. Take s1 ∈ kerr. Let x ∈ V i, Tx(V
i) and Ls

x are transversal and the folia-

tion Ls is non-special at the point x. Then the normal coordinates of the foliation

Ls : z1, .., zi in the neighborhood of x give the coordinates on V i and zi+1(V
i) =

0. Locally, in U(x), s1 can be written as s1 = f(z1, .., zi, zi+1)(dz1 ∧ .. ∧ dzi)⊗n.

The equality s1|Vi
= 0 means that f(z1, .., zi, 0) = 0 but from the property

∂f
∂zi+1

= 0 follows that then f ≡ 0 and, hence, s1 = 0 in U(x) ⊂ V i+1. So, any

section s1 ∈ kerr is identically equal to zero (≡ 0), so r is a monomorphism.

Corollary 16. dimH0(V i+1, nE) ≤ dimH0(V i, nE) ≤ cMn
i+β as it holds true

for an arbitrary one-dimensional bundle on V i. Thus the theorem holds in case

dimV = i+ 1 and ⇒ it holds true for a variety of an arbitrary dimension.

Remark 6. The statement of the theorem (65) can be specified in the case when

dimH0(Mn, kE) > c1k
α+β1, α > 0, c1 > 0, L ↪→h Ωi(Mn). Then ∃ a projective

manifold V α and a rational epimorphism fα : Mn → V α such that the image

hO(E) belongs to the ideal I ⊂ in the sheaf of exterior algebras
∑

O(Ωi(Mn)),
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spanned on the integer closure f ∗
αO(K(V α)) ⊂ O(Ωα(Mn), i.e. h(O(E)) ⊂

f ∗
α

̂O(K(V α)) ∧ Ωi−α(Mn)

Remark 7. By f ∗
α

̂O(K(V α)) we mean a maximal one-dimensional submodule in

O(Ωα(Mn)), whose sections are f ∗
α(O(K(V α))) up to mult.to a function.

Proof. Let us build up a manifold V α and a rational epimorphic map f : Mn →

V α with a connected general fiber. Similarly, the restriction of L to the general

(i + 1)-submanifold defines a one-dimensional foliation LV
s . The fraction s

s′
of

the sections s, s′ ∈ H0(M,nL) is a rational function on Mn, which when re-

stricted to V , has a form f(z1,..,zi)
g(z1,..,zi)

= s
s′

, where z1, .., zi are the normal coordinates

of a foliation LV
s . This function is constant on the fibers of the foliation LV

s on

V i+1, as f and φ are both constant on LV
s . On the other hand, taking n suffi-

ciently big, we will get a homogeneous map via the linear series H0(M,nL) :

hα : Mn → V α; (s1, .., sm) ∈ H0(M,nL), where si|V = fi(dz1 ∧ .. ∧ dzi)
⊗n.

Thus if we consider a fiber of the foliation LV
s ⊂ V i+1, it fully belongs to

the submanifold Qx = h−1
α (h(x)), where x ∈ LV

s,x. Thus the fibers of a map

hα|V i+1 → V α contain the fibers of a foliation LV
s . It means that in the neigh-

borhood of a point x ∈ V i+1, where rankdh = α and LV
s is α-non-special,

the form n
√
fdz1 ∧ .. ∧ dzi, which locally gives LV

s , belongs to the ideal of the

form det(dh). (z1, .., zα) coordinates on V α ⇝ adding (i + 1 − α) local deriva-

tives of the coordinates from the set {v1, .., vn} on Mn, we get that our form

s ∈ H0(U(x), rO(L)), s =
∑

ω=(1,..,γ,1,..,β)

fωdz1 ∧ .. ∧ dzγ ∧ dv1 ∧ .. ∧ dvβ, can

be written as fω = 0, if the polynomial ω does not contain (1, .., α). Consider

the case when α = i,O(E) ≃ f ∗
α(K(V α)). Interchanging varieties Mn and V α

to birationally equivalent ones, we can consider that h : Mn → V α is a holo-

morphic map, whose general fiber is connected. At points x ∈ Mn, where the

rankdfα = dimV α = i, we can define a trace of any tensor ∀s ∈ H0(Mn, nE).

107



Indeed, the restriction E|h−1(x) is trivial and one can build trsf(x) and if sx ̸= 0,

then trsf(x) ̸= 0. The tensor trsf(x) will be a section of a bundle nK(Vα) holo-

morphic at all points x ∈ V α for those ∃y ∈ h−1(x), rkdhy = dimV α = i. If

∀y ∈ h−1(x), dhy < dimVα, then the point y corresponds to a multiple fiber of

a map h. Such points always form a divisor D ⊂ V α, or an empty set ∅. The

section trsf(x) can have singularities of the pole type along h(D) on V α, if h(D)

is a divisor on V α.

Example. Let V n be an arbitrary projective manifold of dimension n and E ↪→

Ω1 is a one-dimensional subbundle such that H0(V n, nE) > cn + β, c > 0.

Then ∃ a rational map h1 : V n → X , where X is a non-special curve. If h1

doesn’t have multiple fibers, then the genus of the curve g(X1) > 1 as trhs ∈

H0(X1, nK(X1)) and, hence, dimH0(X1, nK) > cn + β. Thus h1 authomati-

cally becomes a regular map. Suppose now that h1 has multiple fibers.

Lemma 69. ∃ a canonical non-ramified covering X̃1 → X1 such that the induced

map h̃1 : M̃n → X̃1, where M̃n ≃ M × X̃1 doesn’t have multiple fibers, i.e.

∀x ∈ X̃1, among components h̃1−1(x),∃ one U ⊂ h̃1
−1(x), such that U ∈ h−1(x)

with multiplicity 1.

Proof. Indeed, the divisor on X1 is a set of points pi with multiplicities ni, where

ni is a minimal multiplicity among the fiber components. Then consider a cov-

ering X̃1 → X1 with multiplicities ni at the points pi. We will call it X̃1. It ∃!,

if:

1. g(X1) ⩾ 0 and ni are arbitrary

2. g(X1) = 0, number of ramification points ⩾ 3, ni are arbitrary.

X̃1 satisfies Lemma(68) conditions. We have to show that if g(X) = 0 ⇒

#{pi which correspond to the multiple fibers } ⩾ 3.
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For that, consider a holomorphic tensor s on Mn and a form trhs. trhs ∈ nK(P1)

and locally is given by f(z)dzn. Note that at the point pi the order of the pole

f(z), ordf(x) < n, as s = f(z)dzn is resolved, i.e. via a substitution qp = z

it becomes holomorphic and ⇒ if trs = dzn

zr
+ .., then zn(p−1)

zpr
is a holomorphic

function, (p−1)n > r and r < n. Hence as the sum over all points
∑
ordpf(z) >

2n, 2n = −degnK(P 1), then ordpf < n for ∀ point pi and we get that # of

multiple points ⩾ 3.

Remark 8. If the local covering, induced via ni
√
z in the neighborhood of pi is not

ramified on h−1(U(pi)) in M , then f : M̃n →Mn is non-ramified as well.

Theorem 70. (Bogomolov, 1978) Let E → X be a vector bundle of dimE = n

and suppose that c2 − n−1
2n
c1

2 > 0 ⇒ ∃ a subbundle F ⊂ E, dimF = k and a

homomorphism h : F → E :

1. h : O(F ) → O(E) is a monomorphism;

2. (c1(F )− k
n
c1(E))

2 > −c2(E0), E0 = E ⊗ detE
n

;

3. some multiplicity of the bundle (ndetF − kdetE) has a section; i.e. there

exists ∃s ∈ H0(X, l(ndetF − kdetE)) for some l

Theorem 71. (BOGOMOLOV-MIYAOKA-YAU INEQUALITY WITH CONST. 4)

For an arbitrary projective surface of general type /C the following inequality

holds c12 ≤ 4c2.

Proof. Let V be a projective surface of general type. Then dimH0(V, nK) <

cn2 + β, c > 0. By Theorem[70] the inequality c12 > 4c2 is equivalent to ∃ of
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one-dimensional subbundle h : F → Ω1 such that H0(V, n(2F − K)) > 0 for

some n > 0. Then H0(V,mF) > c
4
m2 + β and it contradicts Theorem (65).

11.2 Inequalities and deformation theory

It is interesting to point out that a presence of nontrivial infinitesimal deforma-

tions provides another way to obtain strong inequalities obtained by Yau for some

classes of manifolds of general type.

Here we proof our main result:

Theorem 72. Let X2 be a complex projective surface which ample canonical

class K which generates PicX2 = Z and assume that H1(X,T ) ̸= 0 where T is

the tangent bundle. Then we have Severi inequality c21(X) < 3c2(X).

Proof. Let X be an algebraic surface. We follow notations in (Déev, 2021). De-

note CX(X) := {the set of tensors I ∈ C∞(T ∗X ⊗ TX) : I2 = −IdTX} and

T (X) = CX(X)⧸Diff 0(X) a Teichmüller space. The tangent space to Teich-

müller space is TIT ≃ H1(X,TX): take a first order deformation X → ∆ with

X0 ≃ X . We have a short exact sequence TX → TX|X → OX . The short

exact sequences of the isomorphism classes of such extensions are classified by

H1(X,TX). Further, denote T ′ := TX. Indeed, consider the extension T̃ ob-

tained from exact sequence 0 → T → T̃ → O → 0. Then if T̃ we obtain Severi

inequality c21 < 3c2 since T̃ has rank 3. If T̃ is unstable then we have a destabi-

lizing subbundle F l ⊂ T̃ , l = 1, 2, with detF l ≥ (−l)/3K If l = 1 and F 1 ⊂ T

then F ×K ⊂ Ω1 is ample contracting the absence of ample subsheafs in Ω1

If F 1 is not contained in T then F 1 ≤ −K since it maps to O and hence can not

be destabilizing.
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If we have destabilizing F 2 then we have that determinant detF 2 = detFT +

detF 2/FT where FT is the intersection of F 2 and T ⊂ T̃ . Thus FT ≥ −2/3K

if F 2/FT is trivial and we get contradiction as above. Otherwise F 2/FT ≤ −K

and FT ×K ⊂ Ω1 is also ample. This result can be extended to other classes of

surfaces and higher dimensional manifolds.
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12 | A particular examples of vector bundles

on families

Here we observe some descriptions of vector bundles on certain families of curves

following the survey (Beauville, 1994).

12.0.1 Case of ruled surfaces B = P1 × C

Consider a vector bundle E on a family B, where a curve C is of arbitrary genus.

Then by the Grothendieck theorem, E|x ≃ O(r1(x))⊕..⊕O(rk(x)), where x ∈ C

and
∑

i ri(x) = n, n = rank(E). But the only stable ones are those which are

represented as a sum of a two line bundles.

We can say that a moduli space of vector bundles over P1 is

MP1 =
⊕
l

O(l1)⊕O(l2),

Then E ≃ C ⊂MP1 and MB ≃ {C ⊂MP1}

From the other point of view {E ≃ P1 ⊂MC}.

Additionally, there is a correspondence between bundles. Namely, they coincide

(or are isomorphic) on the restrictions.

Let us treat it in a few well-studied cases, by (Beauville, 1994):

Let J be a jacobian variety of a curve C. Denote by Jk its’ Jacobian variety of

degree k line bundles. Let us fix some L ∈ Jg−1. Consider a reduced subvariety

∆L = {E ∈ Mr|H0(C,E ⊗ L) ̸= 0}
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Then ∆L is a Cartier divisor in Mr. The line bundle L = OMr(∆L) is called

a determinant line bundle and is independent of the choice of L and generates

Pic(Mr).

For a vector bundle E ∈ Mr consider the locus

ΘE := {L ∈ Jg−1|H0(C,E ⊗ L) ̸= ∅}

If it is nonempty we can say that E admits a theta-divisor. This divisor belongs to

a linear system |rΘ|, where Θ is a canonical Theta-divisor in Jg−1. Thus we got

a map:

θ : M2 → |rΘ|

Let us observe more carefully a few cases:

• rank E = 2 , genus g = 2:

A map θ is a finite morphism in this case and M2 is isomorphic to P3,

i : M2 → P3

Thus vector bundles on P1 × C are isomorphic to i−1(P1), P1 ⊂ P3

• genus g ≥ 3, C is hyperelliptic in this case, a map

i : M2/<i
∗> ↪→ |2Θ|

is embedding, where i∗ is an envolution. There is an explicit geometric

description (will write it later), thus vector bundles on P1×C are isomorphic

to i−1(P1), P1 ⊂ |2Θ|

• If a curve C is not hyperelliptic, the map θ is again an embedding i : M2 →
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|2Θ|. Recall that |2Θ| is isomorphic to P2g−1. Thus i(M2) to a subvariety

of P2g−1 of dimension 3g − 3. Sing(M2) = K, where K is a Kummer

variety.

Thus every vector bundle is P1 ⊂ i(M2)

• In genus g = 3, i identifies M2 with a Coble quartic hypersurface. This

every preimage of P1 ⊂ Coble quartic hypersurface describes our vector

bundle. [write Coble quartic hypersurface in coordinates...]

• In genus 4, M2 is a variety of dimension 9 and degree 96 in P15. Oxbury

and Pauly have observed that there exists a unique J [2]-invariant quartic hy-

persurface singular along M2. A geometric interpretation of this quartic is

not known. In arbitrary genus, the quartic hypersurfaces in |2Θ| containing

M2 have been studied in [vG] and [vG-P]. Here is one sample of their re-

sults: Assume that C has no vanishing thetanull. A J [2] invariant quartic

form F on |2Θ| vanishes on M2 if and only if the hypersurface F = 0 is

singular along K.

12.0.2 Example: B = C1 × C2

In this case, some amount of bundles are coming from {C1 ⊂ MC2} ≃

{C2 ⊂MC1}.And similarly they coincide on the restrictions. Also,C1⊗C2.

To get a more general picture recall that

Pic(C1 × C2) = Pic(C1)⊕ Pic(C2)⊕Hom(JC1 , JC2)

And for some curve C we can get any vector bundle on C1 × C2 using the

procedure of elementary transformation along C.
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