Scuola
Internazionale
Superiore di
Studi Avanzati

Mathematics Area - PhD course in
Geometry and Mathematical Physics

TOPOLOGICAL STABILITY OBSTRUCTIONS AND GEOMETRY OF ALGEBRAIC SURFACES

Academic Year 2021-22

A thesis submitted in partial fulfilment of the requirement for the degree of Philosophiae Doctor in Geometry \& Mathematical Physics, equivalent to the title of Dottore di Ricerca in Matematica, under the supervision of Professor Fedor Bogomolov and Professor Lothar Göttsche

Copyright © 2022 by Elena Lukzen
All Rights Reserved

Acknowledgements

First, and most important I would like to thank my advisor Prof. Fedor Bogomolov for guiding me through the Ph.D. studies along these 4 years, for interesting problems, his kindness and constant support not only in scientific field, but also on many other occasions. I am very grateful to my co-advisor Prof. Lothar Göttsche for useful discussions and support during my Ph.D. studies. I am indebted to my referees who have kindly agreed to review the thesis. I would like to express my sincere gratitude to SISSA, which granted me a fellowship and has surrounded with a friendly international environment. I would like to thank SISSA for giving me a possibility to have an external supervisor and also for sponsoring my visits to New York and other locations outside Italy. Additionally, I would like to thank SISSA for a comfortable office space and computer equipment. Next, I would like to thank all the organizers of the conferences at (CIRM, Palazzo Feltrinelli (Gargnano del Garda), Institute Fourier, ICMAT Madrid, Fondazione CIME (Cetraro), Scuole Normale Superiore (Cortona),POMI RAS (St.Petersburg), Steklov Institute, HSE, NYU) for an opportunity to participate which allowed me to get acquainted more broadly with the Mathematical Community. I would like to express my deepest thanks to Prof. Jacopo Stoppa for much help and support. I would like to pay special regards to Nina Sakharova and Katya Stuken for their friendly support prior my Ph.D.
My Ph.D. studies was certainly an exciting adventure, and of course I would miss all the members of Geometry group in SISSA, wonderful nature of Italy and, surely, the Wild Boars in the SISSA Garden.

Finally, I want to express my gratitude to my family, which was always supportive and all the people who were constantly supporting and inspiring me to continue the studies.

Abstract

In this thesis we study a few topics in the field of complex differential and algebraic geometry. In the first part it suggests a new interpretation of a vector bundle on a families of algebraic varieties (or any structures) as an object in the corresponding moduli spaces. Further, we find a new simple expression for the $(2,2)$-form $c_{2}(E)$, in terms of $\partial^{2} h_{i j}$, for a vector bundle E of an arbitrary rank on the one-dimensional family of Riemann surfaces, and as a consequence show that $c_{2}(E)>0$ (Bogomolov \& Lukzen, 2022). Thus it gives a new way to prove the Chen-Donaldson-Sun theorem. Next, using the operation of elementary transformation along the curve, we show that $c_{2}(E)$ can be itself interpreted as a cycle in the moduli space of vector bundles on the arbitrary algebraic surface. In the case of absence of singularities, we show that $c_{2}(E)>0$. When the bundle E inherits certain singularities (of the number N), we use the classical BottBaum formula and prove $c_{2}(E)=N^{2}-F$. Moving the Lefschetz pencil of curves on a surface and observing how does the cycle, which corresponds to $c_{2}(E)$, change, we calculate the corresponding monodromy.

The next topic of the thesis is "curves on the algebraic surfaces". Brunebarbe-KlingerTotaro theorem asserts that X has a nonzero symmetric differential if there is a finitedimensional representation of $\pi_{1}(X)$ with infinite image. We give a proof of the bound $h_{L}(P) \leq A d(P)+O(1)$ for such X.

The last topic concerns the deformation theory of surfaces of general type. We prove the Severi inequality $c_{1}(X)^{2}<3 c_{2}(X)$ for a X^{2} a complex projective surface with an ample canonical class K which generates $\operatorname{Pic} X^{2}=\mathbb{Z}$.

Keywords- Vector bundle - Stability - Families of curves- Surface of general type-Bogomolov-Miyaoka-Yau inequality-Deformation theory-Families of curves on a surface with symmetric differential

Table of Contents

1 Introduction 5
1.1 Summary of results 1
1.2 Future directions 11
1.3 Thesis Outline 11
2 Preliminaries:
Vector bundles and its' interpretations 13
2.0.1 The sheaf interpretation of a vector bundle 13
2.0.2 The geometric interpretation 14
2.0.3 The arithmetic interpretation 14
2.0.4 The analytic interpretation 15
2.1 Properties of vector bundles on curves 16
2.1.1 Parabolic bundles on the curves with nodes 17
2.1.2 Serre duality for vector bundles 17
3 Preliminaries: Holomorphic tensors and Vector bundles 18
3.0.1 Cocycles associated to vector bundles. 18
3.0.2 Group of characters of G. 19
3.0.3 Representations and invariant theory 20
3.0.4 Parabolic and character groups for $\mathrm{G}=\mathrm{GL}(\mathbf{n}), \mathrm{SL}(\mathbf{n})$ 23
3.0.5 T-stability 27
3.0.6 Bogomolov's effective restriction theorem 30
4 Bogomolov's effective restriction and Mehta-Ramanathan theorems 33
4.0.1 Result of Mehta-Ramanathan 33
4.0.2 Mehta-Ramanathan theorem as corollary of Bogomolov's effective restriction theorem 34
5 Overview of the concepts of stability 35
6 Preliminaries:
Atiyah class of a vector bundle 42
6.0.1 Rank 2 Higgs bundles 42
6.0.2 The Atiyah class of a vector bundle 43
6.0.3 Atiyah class and curvature 43
6.0.4 C̆ech model 43
6.0.5 Dolbeault model 44
6.0.6 Atiyah class and Chern classes. 45
6.0.7 The Atiyah class of a principal bundle. 46
6.0.8 Atiyah class via curvature tensor 46
6.0.9 Weak Lie algebra in Kähler geometry 46
6.0.10 Companion theorem for vector bundles 48
7 Algebro-Analytic dictionary:
Vector bundles 49
8 Results 53
8.1 Vector bundle as a section of family of Moduli spaces 53
8.2 Second chern class as a cycle in the moduli space 55
8.2.1 Optimal choice of the curve C and the bundle F_{C} 58
8.3 Stability of bundles on smooth projective surfaces 61
8.4 Stability in the case we have no singular fibers 63
8.5 Monodromy along singular fibers 65
8.5.1 Gauss-Manin connection and quadratic Hitchin map 65
8.5.2 Monodromy from differential-geometric perspective 67
8.6 Relation between the fundamental groups 69
8.6.1 Monodromy from group-theoretic perspective 70
8.6.2 Action of the Galois group on the singular points 72
8.7 Geometry of the Second Chern class 73
8.7.1 Geometry of the cycle $\mathscr{C}_{c_{2}(\mathcal{E})}$ and associated invariants 73
8.7.2 Vector bundles on the product of curves and the curvature 73
8.8 Curvature matrix on hermitian vector bundles 75
8.8.1 Connection on a vector bundle E 75
8.8.2 Hermitian metric on E 76
8.9 Curvature of $E \rightarrow C_{1} \times C_{2}$ 78
8.9.1 $r k E=2$ 78
8.9.2 $r k E>2$ 79
8.10 Ehressman-induced connection on $E \rightarrow \mathcal{C}$ 80
8.11 Calculation of the Second Chern class 82
8.11.1 Curvature of $E \rightarrow \mathcal{C}$ 83
8.11.2 Second chern class for a $E \rightarrow \mathcal{C}$ 84
9 Results: Stability for vector bundles with singularities 87
9.1 Bott-Baum argument 87
9.2 Stability of Projective varieties 90
10 Bounds for a curves on the surfaces of general type 91
10.1 Preliminaries 91
10.1.1 A few details of the proof of Bogomolov's finitness theorem 92
10.1.2 Bogomolov's finitness theorem and result of Moriwaki 93
10.1.3 Moriwaki's model of the projective variety 94
10.1.4 Brunebarbe- Klingler-Totaro theorem 95
10.2 Proof of the bound 95
11 Deformations of surfaces of general type 97
11.1 Preliminaries: Almost complex structures and symmetric tensors on cotangent bundles 97
11.1.1 Kuranishi map and almost complex structures 97
11.1.2 Bogomolov subsheaves and Bogomolov-Miyaoka-Yau in- equality 102
11.2 Inequalities and deformation theory 110
12 A particular examples of vector bundles on families 112
12.0.1 Case of ruled surfaces $B=\mathbb{P}^{1} \times C$ 112
12.0.2 Example: $B=C_{1} \times C_{2}$ 114
Bibliography 115

1| Introduction

Stability of vector bundles on different geometric spaces has been an object of study for a long time deriving from work in algebraic geometry. The concept of stability arose naturally from the question of whether a space which could parameterize all bundles of a given rank exists, moreover, a subsequent question was if there is a special class of vector bundles which could be naturally parametrized in the same way.

André Weil was a first who has introduced a language of "matrix-valued divisors" which allowed to give a possible description of vector bundles on curves. Other results known at that time were the classification of vector bundles on curves of $g=0$ by Grothedieck and $g=1$ by Atiyah (Atiyah, 1957b).
One of the main achievements in the area was the notion of stable vector bun$d l e$, which originates with Hilbert. Tyurin (A. N. Tyurin, 1965) proved that, for bundles over a curve of fixed rank and fixed degree of their determinant, if the rank and the degree are coprime, the moduli space of these bundles determines the original curve uniquely. A little later, Mumford, Newstead, Ramanan and Seshadri have obtained the similar results independently (Ramanan, 1973; Newstead, 1968, 1967; Seshadri, 1967; Deligne \& Mumford, 1969).

The general question was if it was possible to parametrize bundles in such way that the set of bundles formed an algebraic variety. It was shown that such bundles would satisfy the so-called stability condition which turned out to be a reasonable direction for a further exploration. As known, one of the most famous results belongs to (Narasimhan \& Seshadri, 1965), which states that one can build any stable vector bundle on a Riemann surface using the unitary representation $\pi_{1}(C) \rightarrow U(n)$ of the fundamental group of the surface. Thus a set of stable
vector bundles forms an algebraic family. Notable contribution to the notion of stability have been made by Takemoto (Takemoto, 1972), Maruyama (Maruyama, 1977, 1978, 1975) and Mumford (Mumford, Fogarty, \& Kirwan, 1994; Mumford, 1977).

It was reasonable to study vector bundles on algebraic surfaces, restricting it to embedded curves and applying already discovered results afterwards. But first one had to understand the structure of the curves lying on algebraic surfaces.

In his work "Families of curves on a surface of general type" (Bogomolov, 1977)
Fedor Bogomolov has proved that on any surface of general type with $c_{1}^{2}>c_{2}$ there are only a finite number of curves of a given genus.

In work (Bogomolov, 1979) it was shown that the notion of T-stability,-polystability is equivalent to Takemoto's stability. T-stability allows one to use symmetric tensors on vector bundles and the theory of algebraic reductive groups (see [2] for more details) to make a conclusion if a particular bundle is stable or not.

Another important theorem obtained by F. Bogomolov is the effective stability restricton theorem of vector bundles: any stable vector bundle $E \rightarrow X$ on a smooth projective surface X restricts to a stable bundle on any ample curve belonging to sufficiently big class. Let $N u m$ denote numerical equivalence and K_{+}a positive cone (see (Bogomolov, 1994; Huybrechts \& Lehn, 2010)). Then

Theorem 1. (Bogomolov's restriction theorem) Let F be a locally free sheaf of rank $r \geq 2$. Assume that F is μ-stable with respect to an ample class $H \in$ $K^{+} \cap$ Num. Let $C \subset X$ be a smooth curve with $[C]=n H$. If $2 n \geq \frac{R}{r} \Delta(F)+1$, then $\left.F\right|_{C}$ is a stable sheaf.

As it follows from the theorem, the restriction of a bundle is stable on the singular fibers with relatively small number of singularities and on normalizations of singular curves. This result is the strongest and we show that Mehta-Ramanathan's
theorem [4] follows from it (see [30] for the detailed proof). After Yau's proof (Yau, 1978) of Calabi (Calabi, 2015) conjecture it was proved that Hermitian-Yang-Mills connections are related to an algebraic property of the holomorphic vector bundle of being stable which is known as Donaldson-Uhlenbeck-Yau theorem, see (Uhlenbeck \& Yau, 1986; S. K. Donaldson, 1985). Later on the significant contributions have been made by Hitchin (Hitchin, 1987), Corlette (Corlette, 1988), Simpson (Simpson, 1992) and others.

We should note that nowadays there exist many different notions of stability. We give an overview in [5]. We also provide a reader with a comprehensive AlgebroAnalytic dictionary [7].

There are several results concerning the existence of special metrics on stable bundles over complex projective manifolds. One of the recent improvements in this question is Chen-Donaldson-Sun theorem (X. Chen, Donaldson, \& Sun, 2015a, 2015b, 2015c) which claims the existence of flat unitary metric on a stable bundle with Chern classes c_{1}, c_{2} equal zero. It was obtained by considering a special Futaki-type functional on the space of Hermitian metrics and proving the existence of a metric with a minimal value of the functional. The resulting metric happens to be flat in case of $c_{2} \geq 0$ which implied the result, see (X. Chen et al., 2015a, 2015b, 2015c) for more details.

Recall that all Kähler metrics in class [ω] can be parametrized by smooth functions in the space of Kähler potentials $\mathcal{H}_{\omega}=\left\{\varphi \in C^{\infty}(M): \omega_{\varphi}=\omega+\sqrt{-1} \partial \bar{\partial} \varphi>0\right\}$. Then, for $\varphi \in \mathcal{H}_{\omega}$, the scalar curvature is $R_{\varphi}=-g_{\varphi}^{i \bar{j}} \partial_{i} \partial_{\bar{j}} \log \left(\operatorname{det}\left(g_{i \bar{j}}+\varphi_{i \bar{j}}\right)\right)$ and the constant scalar curvature equation reads as $R_{\varphi}=R^{\prime}$ (S. K. Donaldson, 2005), where R^{\prime} is a constant depending only on manifold, class and a complex structure $(M,[\omega], J)$.

Conjecture 2. (Yau-Tian-Donaldson conjecture) YTD conjecture is that (X,L) ad-
mits a CSCK metric if and only if it is K-stable.
YTD conjecture is proven for Fanos and Tropical varieties.

1.1 Summary of results

In our thesis, we show how one-dimensional cycles in the moduli space of vector bundles on curves are associated to bundles on families of curves which are stable on the restriction to every curve of the family. We present a connection between existence of a special metric on a class of surfaces formed by the families of curves and its' natural relation to one-dimensional cycles in the moduli space of stable bundles on curves.

Suppose that B is a family of curves, $B=\left\{C_{\lambda}\right\}_{\lambda \in \Lambda}$, where Λ is a parameter set. Assume that vector bundle E on B has a stable restriction on any curve C_{λ}. If, in addition, the first Chern class of the restriction E_{λ} of E on any curve C_{λ} is trivial, then by (Narasimhan \& Seshadri, 1965) there is a flat hermitian metric $h_{i, j}$ on E_{λ} which is unique modulo multiplication by a constant. Thus, it defines the unique flat hermitian connection on E_{λ} and the unique modulo conjugation irreducible unitary representation $\rho_{\lambda}: \pi_{1}\left(C_{\lambda}\right) \rightarrow U(n)$.

The choice of the flat hermitian metrics $h_{i, j}$ on E_{λ} for any $\lambda \in B$ defines hermitian metric h on E over B. The metric h is not unique, but depends on a real-valued invertible function of Λ corresponding to the choice of actual hermitian metric on E_{λ}. Hence we obtain a family of such metrics on E and corresponding Hermitian connections Θ_{h}. The latter defines Chern forms representing all Chern classes of E. We are particularly interested in the local properties of (2,2)-form on B representing the second Chern class $c_{2}(E)$ obtained from Θ_{h} when B is a twodimensional complex surface. We can express the second Chern class through the
curvature of the cycle \mathscr{S} in the moduli space of vector bundles, which corresponds to a particular vector bundle E on the base B.

$$
c_{2}(E)=\frac{\operatorname{tr}\left(\Theta(\mathscr{S})^{2}\right)-t^{2}(\Theta(\mathscr{S}))}{8 \pi^{2}}
$$

The following result can be obtained by a direct calculation [8.11.2]. The second Chern class is represented locally by the formula (53)

$$
c_{2}(E)=\sum_{i, j}-\frac{\operatorname{det}\left(D_{i j}\right) \operatorname{det}\left(\bar{D}_{i j}\right)}{\operatorname{det}\left(h_{i j}\right)} d z^{1} \wedge d \bar{z}^{1} \wedge d z^{2} \wedge d \bar{z}^{2}
$$

Corollary 1. The form which represents a second chern class $c_{2}(E)$ on B is nonnegative since $\frac{\operatorname{det}\left(D_{i j}\right) \operatorname{det}\left(\bar{D}_{i j}\right)}{\operatorname{det}\left(h_{i j}\right)} \geq 0$.

Corollary 2. Assume that $\left(-\operatorname{det}^{2} h_{i, j}\right)$ is nonzero somewhere on B then $c_{2}(E)$ is semipositive. In particular, if the base Λ is a compact curve and the representation ρ_{λ} varies modulo conjugation on Λ then $c_{2}(E)$ has a representative which is a semipositive (2, 2)-form

This fact yields a possibility for a constructive approach to the proof of Chen-Donaldson-Sun theorem for a projective surface X. The theorem claims that $c_{2}(E)>0$ for a stable vector bundle with $c_{1}(E)=0$ unless it is induced from a unitary representation of $\pi_{1}(B)$. Our explicit local calculation implies this result for a compact surface $f: B \rightarrow C$ fibered with all smooth fibres $f^{-1}(c), c \in C$ over a smooth curve and a bundle E which has stable restrictions on the fibers $f^{-1}(c)$.

Corollary 3. We should note that the theorem [1.1] holds not only for stable bundles $E \rightarrow B$ on our class of surfaces. In particular, if the bundle E is not stable, but restricts to a stable one to a curve $C \subset B$, this result [1.1] holds as
well.

We also discuss other possible applications and generalizations of the above approach.

One of the key ingridients of the proof of the formula (53) is a special geometric cycle which corresponds to every vector bundle on the families of curves. We construct a method of its' interpretation in the algebraic way via unitary representations and demonstrate how to analyze the notion of stability of a vector bundle on the complex projective algebraic surface. The scheme of the proof is the following:

FIND A DESCRIPTION OF VECTOR BUNDLES ON THE FAMILIES OF CURVES.

 In [8.1] we introduce an object, which corresponds to a certain class of vector bundles on the families of curves (or any varieties/structures).Theorem 3 (40). Every vector bundle E on B, which is stable on the restriction to every non-singular curve and a curve with relatively small number of singularities $\left.E\right|_{C_{\lambda}}\left(\right.$ from our family $\left.B=\left\{C_{\lambda}\right\}\right)$ is a smooth moduli section $\mathscr{S} \in \Gamma\left(M_{\lambda}\right)_{\lambda \in \Lambda}$ of the family of Moduli spaces $M_{C_{\lambda}}, \lambda \in \Lambda$.

Corollary 4. If $C_{\lambda}=C$ is a constant curve, then all moduli spaces are the same $M_{C_{\lambda}}=M_{C}=M$, thus a vector bundle on B is decoded by a moduli section $\mathscr{S} \subset M$ in the moduli space $M:$

$$
\mathscr{S}=\left\{m_{\lambda} \in M, \lambda \in \Lambda\right\}
$$

Corollary 5. Moduli space M_{B} of all vector bundles on B, whose restriction to any curve of the family is stable, consist of all moduli sections \mathscr{S} of family of the
corresponding moduli spaces $M_{C_{\lambda}}$.

$$
M_{B}=\left\{\mathscr{S} \mid \mathscr{S} \in \Gamma\left(\left(M_{C_{\lambda}}\right)_{\lambda \in \Lambda}\right)\right\}
$$

Corollary 6. If $C_{\lambda}=C_{1}$ and $\Lambda=C_{2}$, thus we have a vector bundle on the $C_{1} \times C_{2}$. Then every subset $\mathscr{S} \subset M$ will form a cycle in the moduli space of vector bundles $\mathscr{S}=\mathscr{C}_{2} \subset M_{C_{1}}$ or $\mathscr{C}_{1} \subset M_{C_{2}}$.

Actually more general theorem holds true:
Theorem 4. Every vector bundle \mathcal{V} on the family of algebraic varieties $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$, which is stable on the restriction to every $\left.\right|_{X_{\lambda}}$ is a smooth moduli section \mathscr{S} of the family of Moduli spaces $\left\{M_{X_{\lambda}}\right\}, \lambda \in \Lambda$.

Or
Theorem 5. (General principle) Let $\left\{Q_{\lambda}\right\}$ be a family of sets, which parametrizes objects on family of spaces $\mathcal{B}=X_{\lambda}$. Then a set, which parametrizes objects on \mathcal{B} is $\Gamma\left(\left\{Q_{\lambda}\right\}_{\lambda \in \Lambda}\right)$.

Find an interpretation of $c_{2}(\mathcal{E})$ ON THE FAMILIES of CURVES

The next goal is to find a suitable interpretation of the second chern class as a particular moduli section of families of moduli spaces $\left\{M_{C_{\lambda}}\right\}$. We perform an operation of elementary transformation on a trivial bundle E [8.2]. We have to choose a curve $C^{\prime} \subset B$ in a way which allows to interpret $c_{2}(E)$ as a moduli section [8.2.1]. Afterwards we obtain a formula for the second chern class of the bundle W which is the result of an elementary transformation procedure [42, 8.7]:

$$
\begin{equation*}
c_{2}(W)=c_{1}\left(F_{C}\right)-\frac{r(k-r)}{2 k} C^{2} \tag{1.1}
\end{equation*}
$$

where F_{C} is a stable bundle on a curve $C \subset B$.

Then the following theorem holds true:
Theorem 6. The second chern class $c_{2}(W)$ is represented by a moduli section in $M_{C_{\lambda}}$ for some $\lambda \in \Lambda$, depending on the choice of a curve C; since $\Delta(W)=$ $-c_{2}(W)$, if a bundle W is semistable, then

$$
c_{2}(W)>0 .
$$

Criteria for stability. The expression for $\Delta(E)$.

The next goal is to find a criteria for stability for a vector bundle \mathcal{E} over smooth projective surface X [8.3]. The idea is to expose all possible embedded curves to a surface passing through a fixed point $x \in X$ and to reveal the restrictions of vector bundles to these curves. The major problem which arises in the course of procedure of restriction of vector bundle is a presence of the singular points $X^{\text {sing }}$ in X and hence of the corresponding singular fibers of vector bundles $\mathcal{E}^{\text {sing }}$. To resolve it, we have to suppose that we are in conditions of Bogomolov's effective restriction theorem.

Theorem 7. (Bogomolov's effective restriction) Let W be a locally free sheaf of rank $r \geqslant 2$ on a family of curves with $c_{1}(W)=0$. Assume that W is μ-stable with respect to an ample class $H \in K^{+} \cap N u m$ and $C \subset X$ be a smooth curve with $[C]=n H$. Let $2 n \geqslant \frac{R}{r} \Delta(F)+1$. Then $\left.F\right|_{C}$ is a stable sheaf.

Let X be a smooth projective surface. Consider very ample line bundle H on a surface X^{2} and the space $H^{0}\left(X^{2}, H\right)$. Then $\mathbb{P}\left(H^{0}\left(X^{2}, H\right)\right)=\mathbb{P}_{H}$ is a projective space parametrizing curves in class H. Assume that X satisfies a stability inequality of the Bogomolov's effective restriction theorem so there is an open subset U in the class $P\left(H^{0}\left(X^{2}, H\right)\right)=\mathbb{P}_{H}$ such that we obtain a section s_{E} over
U. Notice that the codimension of $P(H)-U_{s} \subset P(H)$ grows if the class H becomes larger and therefore for a generic pencil $\mathbb{P}_{t}^{1} \subset P(H)$ of such curves we can define a one-dimensional algebraic class which is given by the intersection of a section $s(E)$ with a moduli section $\mathscr{S}_{\mathbb{P}_{s}^{1}}$ which corresponds to a vector bundle over a pencil \mathbb{P}_{s}^{1}.

Theorem 8. (44) Intersection of a section $s(E)$ and a moduli section $\mathscr{S}_{P_{s}^{1}}$ is given by one-dimesional algebraic cycle [8.16],

$$
\begin{equation*}
\varkappa=s(E) \cap \mathscr{S}_{P_{s}^{1}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varkappa=\left(\mathscr{L} . \Delta_{P}\right) \tag{1.3}
\end{equation*}
$$

where \mathscr{L} is a line bundle which corresponds to $s(E)$ on the families of moduli spaces of vector bundles and Δ_{P} coincides with $\mathscr{S}_{\mathbb{P}_{s}^{1}}$ in this model. It holds if a moduli section $\mathscr{S}_{P_{s}^{1}}$ has a natural polarizatoion \mathscr{L}^{\prime}. In particular, since $c_{2}(\mathcal{E})$ is represented by some moduli section $\mathscr{S}_{c_{2}(\mathcal{E})}$, then locally on the open subset U the intersection is equal to our one-dimesional cycle:

$$
\left.\left(2 r c_{2}(\mathcal{E}) \cap[B]\right)\right|_{U}=\varkappa
$$

for a polarization \mathscr{L} on the families of moduli spaces of vector bundles.
By (Moriwaki, 1995) for a map $f: B \rightarrow X$, where B is a union of all curves passing through all points in X,

$$
\left.\operatorname{dis}_{X / Y}(E)\right|_{U}=f_{*}\left(\left.\varkappa\right|_{U}\right)
$$

and in (46) we obtain

$$
\left.\operatorname{dis}_{X / Y}(E)\right|_{U}>0
$$

Corollary 7. If $\varkappa=0$, then $\operatorname{dis}_{X / Y}(E)=0$ and therefore we obtain a flat bundle E on a surface X. So $\varkappa=0$ sections correspond to a bundles which are given by the same representation - invariant under the monodromy of the family of curves.

Corollary 8. If we work over a field k, then $\varkappa=h_{L}(P)$. Note that $G a l(\bar{k} / k)$ acts as a monodromy operator on $h_{L}(P)$. As the geometric height is invariant under the action of Galois group, we have

$$
\sigma(\varkappa)=h_{L}(\sigma(P))=h_{L}(P)=\varkappa, \sigma \in \operatorname{Gal}(\bar{k} / k) .
$$

Number of singular points and representations In 8.6 we give an expression of the number of singular points of X.

Lemma 9. (50) Let N_{P} be the total number of singular points $X^{\text {Sing }}$. Then it is given by the Euler charactrestics formula for a surface X blown up at the H^{2} intersection points of curves parametrized by $\mathbb{P}_{C_{t}}^{1}$.

$$
N_{p}=\chi(X)+H^{2}+2 H(K+H)
$$

Lemma 10 (51). Assume that we have a family of representations $\rho_{E, t}: \pi_{1}\left(C_{t}\right) \rightarrow$ $U(n)$ over C_{t} defined by a stable bundle E. If this representation extends to a representation of at least one singular curve $C_{s}, s \in X^{\text {sing }}$ then it extends to X and hence the bundle E is defined by the representation $\rho_{E}: \pi_{1}(X) \rightarrow U(n)$.

Monodromy

The action of the monodromy m on the unitary representation can be described
[8.17] group-theoretically as:

$$
m_{\eta}^{\gamma}: A_{1} \rightarrow A_{1}, A_{1} \rightarrow A_{1} A_{2}, A_{i} \rightarrow A_{1} A_{i} A_{1}^{-1}
$$

For each unitary representation of a fundamental group of a given surface X_{t} we have a normal subgroup N_{t} generated by g_{1}^{t} which is a kernel of projection of $\pi_{1}\left(X_{t}\right)$ to $\pi_{1}\left(X_{0}\right)$. If we consider all unitary representations of groups N_{t} denoted by N_{t}^{U} then the monodromy operator m_{η}^{γ} acts on each of the corresponding groups N_{t}^{U}. For a loop Γ of nonsingular curves X_{t} we can take $\Pi_{\gamma \in \Gamma} N_{\gamma}^{U}$ and the corresponding action of m on it.

GALOIS GROUP ACTING ON SINGULAR POINTS

Assume [8.6.2] that a surface X is defined over a number field $[K: \mathbb{Q}]<\infty$ as well as the pencil $f: X \rightarrow \mathbb{P}^{1}$ and the bundle E. The union of singular fibers in this case is also defined over K. Monodromy group T of the fibration $X^{b} \rightarrow \mathbb{P}^{1}$ permutes vanishing cycles c_{s} of different fibers transitively in the fundamental group of the complementary of X to all singular fibers $\pi_{1}\left(X-X^{\text {sing }}\right)$.

The action of the Galois group $\operatorname{Gal}(\bar{K} / K)$ approximates the action of monodromy T on the vanishing cycles $\left\{c_{s}\right\}$.

In particular, if there is only one orbit of the $\operatorname{Gal}(\bar{K} / K)$ on the vanishing cycles in a completion of $\hat{\pi}_{1}\left(X_{t}\right)$ then either the family of representations is obtained from the representation $\pi_{1}(X)$ or any fiber X_{t} with a singular point has the latter as singular point of the family of partial connection.

Stability of vector bundles with singularities

In [9.1] we find an expression for $c_{2}(E)$ for a bundle which has some number of singular points.

Theorem 11. (55) For a vector bundle $E \rightarrow X$, where $X^{\text {sing }}$ is the set of singular
points of X, as $c_{1}(E)=0$, the second chern class is given by (9.1)

$$
c_{2}(E)=c_{2}\left(\mathbb{P}\left(T_{E}\right)\right)=\Delta=\sum_{p} \operatorname{Res}_{p}\binom{\phi(A) d z_{k} . . d z_{n}}{a_{k}, \ldots, a_{n}}-F^{2}=N-F^{2}
$$

Since $c_{1}(F)>0$, it implies that $c_{2}(E)=N-F^{2}$.
Corollary 9. If the number of points N grows sufficiently fast and F is small we get that $c_{2}>0$, i.e. $N>F^{2}$.

Bounds for a curves on the surfaces X of general type

It is known by [10.1,61] and (Bogomolov, 1977) that if the canonical class of X is very ample, for except a finite number of curves, there is a linear estimate from below for a genus of the curve inside each cone $K_{D, \varepsilon}^{C}$ (see 10.1). By the result of [62] (see also (Brunebarbe, Klingler, \& Totaro, 2013)) there are nontrivial symmetric tensors on a surface X if it has a finite-dimensional representation with an infinite image. We prove that

Theorem 12. (10.2) Let X be a compact Kähler manifold. Suppose that there is a finite-dimensional representation of $\pi_{1}(X)$ over some field with infinite image. Then

$$
h_{L}(P) \leq A \cdot d(P)+O(1)
$$

DEFORMATIONS OF THE SURFACES OF GENERAL TYPE

Denote by $T\left(M^{n}\right)=T$ the tangent bundle to M^{n}, a projective manifold. Then, following [11.1.2] and (Bogomolov, 1978), define $\mathcal{F}^{k} \subset \mathcal{O}(T)$ be a k-dimensional coherent subsheaf of $\mathcal{O}(T)$. An embedding $r: \mathcal{F}^{k} \hookrightarrow \mathcal{O}(T) \rightsquigarrow$ a map of one-dimensional bundles $r_{(k)}: \operatorname{det} \mathcal{F}^{k} \rightarrow \bigwedge^{k} T$. If one uses the isomorphism $\bigwedge^{n-1} \Omega^{1} \otimes-K \simeq T \rightsquigarrow$ a map $r_{(k)}^{\odot}: \operatorname{det} \mathcal{F}^{k} \otimes-k K \rightarrow \Omega^{n-k}$. This way, one can study subbundles in $T\left(M^{n}\right)$ just considering one-dimensional subbundles in
$\Omega^{i}\left(M^{n}\right)$. The following condition holds:
Theorem 13. (Bogomolov, 1978) Let M^{n} be a projective variety, $\Omega^{i}=\Omega^{i}\left(M^{n}\right)$, the $i^{\text {th }}$ wedge power of the cotangent bundle $\Omega^{1}=\Omega^{1}\left(M^{n}\right), L \rightarrow M^{n}$ be the one-dimensional bundle on M^{n} and $h: L \rightarrow \Omega^{i}$ - a non-trivial homomorphism. Then \exists constants c_{M}^{L}, β such that

$$
\operatorname{dim} H^{0}\left(M^{n}, s L\right)<c_{M}^{L} s^{i}+\beta, \forall s>0
$$

Another useful theorem which will be used is
Theorem 14. (70) Let $E \rightarrow X$ be a vector bundle of $\operatorname{dim} E=n$ and suppose that $c_{2}-\frac{n-1}{2 n} c_{1}^{2}>0 \Rightarrow \exists$ a subbundle $F \subset E$, $\operatorname{dim} F=k$ and a homomorphism $h: F \rightarrow E:$

1. $h: \mathcal{O}(F) \rightarrow \mathcal{O}(E)$ is a monomorphism;
2. $\left(c_{1}(F)-\frac{k}{n} c_{1}(E)\right)^{2}>-c_{2}\left(E_{0}\right), E_{0}=E \otimes \frac{d e t E}{n}$;
3. some multiplicity of the bundle ($n \operatorname{det} F-k \operatorname{det} E$) has a section; i.e. there exists $\exists s \in H^{0}(X, l(n d e t F-k \operatorname{det} E))$ for some l

In[11.1.2, 11.2] we prove our main result:
Theorem 15. (72) Let X^{2} be a complex projective surface with an ample canonical class K which generates Pic $X^{2}=Z$ and assume that $H^{1}(X, T) \neq 0$ where T is the tangent bundle and $H^{1}(X, T) \neq 0$. Then we have Severi inequality $c_{1}^{2}(X)<3 c_{2}(X)$.

1.2 Future directions

1. One of our future projects (joint with Fedor Bogomolov) concerns the questions about the metric expressions on the vector bundles over surfaces. Let M^{n} be a compact smooth projective manifold with trivial canonical class. Then there is a Calabi-Yau Kähler metric with a corresponding (1, 1)-form in each Kähler class it is a well known Yau theorem. It is essentially existence theorem and no good formula for Kähler metrics exist even for $K 3$ surfaces.

We plan to find and write down an explicit formula for the Calabi-Yau metric on a vector bundle $E \rightarrow X$ over the complex surface X.
2. A big variety of a more concrete applications of the results obtained in the thesis (some particular cases of algebraic surfaces, vector bundles, etc.)

1.3 Thesis Outline

The thesis is organised as follows:
Chapter 2 - Introduces the concept of vector bundle and discusses its' properties and interpretations;

Chapter 3 - Studies the holomorphic tensors on vector bundles and the notions of T - and H-stability;

Chapter 4 - Gives an overview on Atiyah classes;
Chapter 5 - Provides a useful dictionary of terms in the theory of vector bundles and algebraic curves from the algebraic and analytic perspectives;

Chapter 6 - Discusses results on the expression of $c_{2}(E)$, stability of vector bundles without singular fibers and monodromy along singular fibers from both algebraic and differential-geometric points of view;

Chapters 7 - Suggests an expression for $c_{2}(E)$ when the bundle E has certain singular fibers;

Chapter 9 - Introduces a bound for a curves on a surface with symmetric tensors;

Chapter 10 - proves the Severi inequality $c_{1}^{2}(X)<3 c_{2}(X)$ for a X^{2} be a complex projective surface with an ample canonical class K which generates $\operatorname{Pic} X^{2}=\mathbb{Z}$.

Chapter 10 - Offers a possible description of vector bundles on particular families of curves.

$2 \mid$ Preliminaries: Vector bundles and its' interpretations

We first start with the concept of Vector bundles. There are different styles to work with these objects, and here we are collecting some preliminaries of different points of view. The main references therein are (A. N. Tyurin, 1992; A. Tyurin, 1997, 2008). The Basic theory is provided by (Shafarevich, 1988a, 1988b; Iskovskikh \& Shafarevich, 1989; Shokurov, 1998; Shokurov, 1988).

One can associate to each vector bundle $\pi: E \rightarrow X$ of dimension n on a manifold X an element (called cocycle) $\rightsquigarrow h \in H^{1}(X, \mathbf{G L}(\mathbf{n}))$ in the first cohomology group with values in the sheaf of germs of mappings of $f: X \rightarrow G L(n)$ to a full linear group $G L(n)$.

For a $h \in H^{1}(X, \mathbf{G L}(\mathbf{n})) \rightsquigarrow$ an affine covering $X \subset\left\{U_{i}\right\}_{i \in I}$. A set $\left\{h_{i j}\right\}$ of matrix functions such that $h_{i j}$ is regular and regularly invertible on $U_{i} \cap U_{j}$ and $h_{i j} h_{j k} h_{k i}=1$ on triple intersections $U_{i j k}:=U_{i} \cap U_{j} \cap U_{k}$ allows us to glue a vector bundle.

More concretely, if V_{0} is an n-dimensional vector space, then the matrix functions $h_{i j}$ can help to glue the sets $V_{0} \times U_{i}$ in such a way that $\pi^{-1}\left(U_{i}\right)=V_{0} \times U_{i}$. The triple (V, π, X) is called a vector bundle. In algebraic geometry vector bundle has four different interpretations.

2.0.1 The sheaf interpretation of a vector bundle

Vector bundle $E \rightarrow X$ can be seen as a locally free sheaf on X.
\Rightarrow : Let us associate to $E \rightsquigarrow \Gamma(\mathbf{E})$ - its' sheaf of germs of sections.
\Leftarrow : Each locally free sheaf is in fact a sheaf of germs $\boldsymbol{\Gamma}(\mathbf{E})$ of a unique bundle E.

The rank of the locally free sheaf is the dimension of the bundle.

2.0.2 The geometric interpretation

A vector bundle $E \rightarrow X, \pi^{-1}(x)=V_{0}$ as a variety itself is neither affine nor complete. To turn it to a complete one, we have to projectivize it. Let $\mathbb{P}\left(V_{0}\right)$ be a projectivization of a fiber V_{0}, then, just gluing the spaces $\mathbb{P}\left(V_{0}\right) \times U_{i}$ all together with the same matrices $\left\{h_{i j}\right\}_{i, j \in I}$ we will get a projective variety $\pi: \mathbb{P}(E) \rightarrow$ X with the same projection map π. It is now a complete variety, a geometrical object. If we tensor E by any line bundle $E \otimes L$ the projectivizations will coincide $\mathbb{P}(E)=\mathbb{P}(E \otimes L)$.

The bundle $\pi^{*}(E) \rightarrow \mathbb{P}(E)$ has a one-dimensional subbundle $L \subset \pi^{*}(E)$, which is called tautological and has a property, that its' fiber $L_{p}=\ell_{p}$ defines the same one-dimensional subspace which defines the point of the projectivization $\mathbb{P}(E)$. A bundle $\tau=L^{*}$ is called antitautological on $\mathbb{P}(E)$. The pair $(\mathbb{P}(E), \tau)$ uniquely determines the bundle V on X (in fact, constructively, by $\left.E=\left(R^{0} \pi(\tau)\right)^{*}\right)$.

2.0.3 The arithmetic interpretation

A vector bundle E as a class of matrix divisors. If X is a curve, then a matrix bundle on X is the following data: for a $x \in X \rightsquigarrow M_{x}$, where M_{x} is a functional matrix, in such a way, that there are only finitely many points $x \in X$ at which M_{x} is not regular and regularly invertible at x.

Two assignments $M \sim M^{\prime}$ are called equivalent if the expression $M_{x}{ }^{-1} M_{x}^{\prime}$ is regular and regularly invertible at $x, \forall x \in X$. A class of matrix assignments \mathbf{M}_{x} is called a matrix divisor.
 of rational functions on X not depending on the point $x \in X$. The concept of
a matrix divisor is analogous to that of a divisor, and the connection between matrix divisors and vector bundles is the same as that between divisors and onedimensional (linear) bundles.

2.0.4 The analytic interpretation.

There is a class of bundles on X which is reasonable to distinguish, the so-called flat bundles, which one can get from the representation $\rho: \pi_{1}(X) \rightarrow G L(n)$.

Holonomy of a connection and representation of a fundamental group $\pi_{1}(X)$ In fact, we can say that an element of a fundamental group corresponds to a certain loop, and the representation of a certain loop to a linear group $G L(n)$ obviously gives an action of a holonomy on a vector bundle: while we are moving around the loop on the manifold X, at the same time we are moving along the fibers of a vector bundle E, starting from the initial vector v_{0}, using the certain connection ∇_{E}. Thus when we return to the same fiber,(i.e. the same point of the beginning of the loop x_{0} on X), the vector changes to another one v_{o}^{\prime}. Thus it defines the action of the holonomy connection ∇_{E}. It is clear, that the vector will move to some $v_{0}^{\prime}=A \cdot v_{o}, A \in G L(n)$. Thus, this loop will give us an element of a group $G L(n)$ through the action of the holonomy of connection. Hence, it is clear why every representation $\rho: \pi_{1}(X) \rightarrow G L(n)$ is equivalent to set an action of a certain connection and thus defines a bundle.

The precise construction is the following: let $\rho: \pi_{1}(X) \rightarrow G L(n)$ be a representation of the fundamental group, \widetilde{X} the universal covering manifold of X, and V an n-dimensional vector space. Then $\pi_{1}(X)$ acts diagonally on $\widetilde{X} \times V$, that is, $g(u, v)=(g(u), \rho g(v))$ and $\widetilde{X} \times V / \pi_{1}(X)=E$ is a bundle on X. The condition for a bundle to be flat is purely algebraic and for curves is very simple.

We can illustrate those four interpretations of a vector bundle in the one-dimensional
case. The equivalence of a divisor class $\operatorname{Div}(X)$ with a locally free sheaf of rank one $\mathcal{F} \rightarrow X$. Recall that the equivalence of a divisor class with a locally free sheaf of rank 1 provides the divisors with higher cohomology; in fact, cohomology first entered into arithmetic through this equivalence. it is known that one-dimensional bundle can be obtained from a representation of the fundamental group \Leftrightarrow its Chern class is 0 . Hence we get the analytic construction of the Picard variety: Pic $X=\left\{\right.$ set of unitary characters of $\left.\pi_{1}(X)\right\}$.

2.1 Properties of vector bundles on curves

Let X be an algebraic curve. For a line bundle $L \rightarrow X$ one can associate a degree of a corresponding divisor D_{L}, which is called $\operatorname{deg} L$. For a higher-dimensional bundle $E \rightarrow X$, the degree is defined as $\operatorname{deg} E=\operatorname{deg} \operatorname{det} E$.

This invariant allows us to split vector bundles in classes and define the notion of stability of vector bundles, i.e. to distiguish the components of the highest dimension.

Definition 1. A bundle $E \rightarrow X$ on a curve X is called stable, if for any proper subbundle $V \subset E, \frac{\operatorname{deg} V}{\operatorname{dimV}}<\frac{\operatorname{deg} E}{\operatorname{dim} E}$

Note that $E n d V$ is the direct sum of the trivial bundle I and $a d V$. Consequently, for sections we have: $H^{0}(X, E n d V)=I \oplus H^{0}(X, a d V)$. The sections of the sheaf $a d V$ are those endomorphisms of V for which the image is a proper subbundle in V; such endomorphisms are also called non-trivial. Notice that we can represent every vector bundle as an extension for $e \in H^{0}(X, a d V)$,

$$
e \stackrel{\leftrightarrow}{ }) 0 \rightarrow \text { kere } \rightarrow E \rightarrow \text { Ime } \rightarrow 0,
$$

here $\operatorname{deg} E=\operatorname{deg}(\operatorname{kere})+\operatorname{deg}(\operatorname{Ime})$ and $\operatorname{dim} E=\operatorname{dim}(\operatorname{ker}(e))+\operatorname{dim}(\operatorname{Im}(e))$.Then
the fraction $\frac{\text { degE }}{\text { dimE }}$ lies between $\frac{\text { degkere }}{\text { dimkere }}$ and $\frac{\text { degIme }}{\text { dimIme }}$ and is less than one of them, violating the inequality above. Hence stable bundles have no non-trivial endomorphisms.

2.1.1 Parabolic bundles on the curves with nodes

Definition 2. Let X be a compact Riemann surface with a finite set of points $P_{1}, . ., P_{n}$ and W a vector bundle on X. By (Bhosle, 1996), a parabolic structure on W is giving at each P_{i},
a) a flag $W_{p}=F_{1} W_{p} \supset F_{2} W_{p} \supset \ldots \supset F_{r} W_{p}$,
b)The system of weights $\alpha_{1}, . ., \alpha_{r}$, attached to $F_{1} W_{p}, . ., F_{r} W_{P}$ such that $0 \leq \alpha_{1}<$ $\alpha_{2}<. .<\alpha_{r}<1$

We call $k_{1}=\operatorname{dim} F_{1} W_{p}-\operatorname{dim} F_{2} W_{P}, k_{r}=\operatorname{dim} F_{r} W_{P}$ the multiplicities of $\alpha_{1}, . ., \alpha_{r}$.

2.1.2 Serre duality for vector bundles

Following [wikipedia] and (Serre, 1955, 1956), let X be a smooth variety of dimension n over a field k. Define the canonical line bundle K_{X} to be the bundle of on X, the top exterior power of the cotangent bundle: : $K_{X}=\Omega_{X}^{n}=\bigwedge^{n}\left(T^{*} X\right)$. Suppose in addition that X is proper morphism over k. Then Serre duality says: for an algebraic vector bundle E on X and an integer i, there is a natural isomorphism : $H^{i}(X, E) \cong H^{n-i}\left(X, K_{X} \otimes E^{*}\right)^{*}$ of finite-dimensional k-vector spaces. Here \otimes denotes the tensor product of vector bundles. It follows that the dimensions of the two cohomology groups are equal: : $h^{i}(X, E)=h^{n-i}\left(X, K_{X} \otimes E^{*}\right)$. As in Poincaré duality, the isomorphism in Serre duality comes from the cup product in sheaf cohomology. Namely, the composition of the cup product with a natural trace map on $H^{n}\left(X, K_{X}\right)$ is a perfect pairing: : $H^{i}(X, E) \times H^{n-i}\left(X, K_{X} \otimes\right.$ $\left.E^{*}\right) \rightarrow H^{n}\left(X, K_{X}\right) \rightarrow k$. The trace map is the analogue for coherent sheaf cohomology of integration in de Rham cohomology.

$3 \mid$ Preliminaries: Holomorphic tensors and Vector bundles

In this chapter we are fully following a fundamental work (Bogomolov, 1978), where all the concepts have appeared at first time.

The idea of Holomorphic tensors is the following: For a $\left(E,\left\{\varphi_{i j}\right\} \in \Gamma_{G}\right) \rightarrow$ X vector bundle over X, the cocycles $\Gamma_{G} \rightarrow G L(V)$ define a vector bundle. Thus, one studies the group G and its' representations and associated important subgroups and charaters. In more details,
$\left(E, \Gamma_{G}\right) \rightsquigarrow$ parabolic subgroup $P \subset G$, torus $T \subset G, Z(T)$ center of T and a Weyl group $W(G) \rightsquigarrow$ a root system $R \subset \chi(T): T \rightarrow k^{*}$, Weyl chambers $K_{S} \subset \chi(T)$ and metric on $\chi(T) \Rightarrow$ it allows to define special one-dimensional bundles $E(-\chi)=G \otimes k(-\chi)$, and the set of models $A_{\chi}:=\operatorname{Im}(\phi: G \otimes k(-\chi) \rightarrow$ $\left.H^{0}\left(G / P_{\pi}, E(-\chi)\right)\right)$, which classify unstable points of X. All of it is achieved using the theory of representations of reductive groups and, in particular, the $\chi(T)$. Applying all this theory to groups $S L(n), G L(n)$ one gets the stability results for vector bundles which are familiar to most of us.

3.0.1 Cocycles associated to vector bundles.

Every vector bundle E_{γ} corresponds to a cocycle $\gamma \in H^{1}\left(X, \Gamma_{G}\right)$. A group homomorphism $G \rightarrow H$ in turn induces a homomorphism of the sheaves $\Gamma_{G} \rightarrow \Gamma_{H} \rightsquigarrow$ and hence a map $\rho: H^{1}\left(X, \Gamma_{G}\right) \rightarrow H^{1}\left(X, \Gamma_{H}\right)$.

It is the same as a fiberwise map of vector bundles $\hat{\rho}_{*}: E_{\gamma} \rightarrow E_{\hat{c} \gamma} \rightsquigarrow \hat{\rho}_{*}(g x)=$ $\rho(g) \hat{\rho}_{*}(x)$. A bundle E_{γ} is said to be isomorphic to a direct product $X \times G$ iff

$G \subset G L(r ; k)$ is an algebraic subgroup. Principal bundle, associated with E^{r} is built via cocyle $\gamma \in H^{1}(X, \mathcal{O}(G))$.

3.0.2 Group of characters of G.

Consider the group of characters of a group $G, \chi(G):\left\{\rho: G \rightarrow k^{*}\right\}$. One can represent $\chi(G)=\bigoplus\{$ infinite cyclic groups $\}$, if G is connected.
Let k^{n} be an affine G-space and f be a semiinvariant $(f(g x)=\chi(g) f(x))$ regular function on k^{n} for a certain character $\chi(G)$. Then, one can associate to $f \rightsquigarrow \mathrm{a}$ holomorphic map $E_{\gamma}^{N} \rightarrow k_{\gamma}(\chi)$, where $k_{\gamma}(\chi)$ is a one-dimensional bundle. In this way, we get a non-linear map $f: H^{\rho}\left(X, E_{\gamma}^{N}\right) \rightarrow H^{0}\left(X, k_{\gamma}(\chi)\right)$.
A subgroup $P \subset G$ is called parabolic, if G / P is complete. $\operatorname{Rad} G$ is a connected component of $\bigcap_{P \subset G} P$ of all parabolic subgroups in G. In particular, RadG is a normal subgroup in G. The unipotent part of $\operatorname{Rad} G, U(G) \ltimes G$. G is called semisimple (or reductive) if $\operatorname{Rad} G=0$. Commutative reductive group is called torus. Any reductive group is isogenic to a $T \times Q$, where T is a torus and Q is a semisimple group. Let $T \subset G$ be a maximal torus in G. Any parabolic subgroup H contains a maximal torus T in $G . Z(T)$ is a center of a torus $T, N(T)$ is a normalizator of a torus T. The group $W(G):=N(T) / Z(T)$ is finite and called a Weyl group of G. $W(G) \curvearrowright T$ by conjugation and hence acts on the lattice of characters $\chi(T) . W(G)=\left\{\right.$ reflections $\left.s_{\alpha}, s_{\alpha}^{2}=1\right\}$.

A reductive group G can be described in terms of a finite set $R \subset \chi(T)$, which is called a root system. Consider an action of $G \curvearrowright G$ on itself by conjugation \rightsquigarrow we get an action $\left.G \curvearrowright \mathfrak{g}\right|_{T}$, restricted to a torus T. One can write $\left.G \curvearrowright \mathfrak{g}\right|_{T}=\bigoplus\{$ representations, corresponding to $\chi(T)\}=\bigoplus \mathfrak{g}_{x}$. A root is $\alpha \neq 0, \alpha \in \chi(T)$ such that $\mathfrak{g}_{\alpha} \neq 0$. The space \mathfrak{g}_{α} is one-dimesional. $\mathfrak{g}_{0} \simeq$ Lie algebra of a torus T. There exist a connected T-invariant unipotent subgroup $U_{\alpha} \subset G$ for each root $\alpha \in R$.

A subset S is a basis or the system of simple roots if

- elements of S are linearly independent;
- $R \subset N S \cap(-N S)$, where $N S=\sum n_{i} s_{i}, s_{i} \in S, n_{i} \geq 0$
$W \curvearrowright S$ acts transitively on the sets of bases R.
Definition 3. A Weyl chamber K_{S} w.r.t. basis S is a cone in $\chi(T)_{R}=\chi(T)_{Z} \otimes R$. $K_{S} \subset \chi(T)_{R}, y \in K_{S} \Leftrightarrow(y, \pi) \geqslant 0 \forall \pi \in S$.
K_{S} is a fundamental domain in $\chi(T)_{R}$ w.r.t. action of W.
Definition 4. A dual basis Ω to S is described as: $\omega_{\alpha} \in \Omega, 2 \frac{\left(\omega_{\alpha, \beta)}\right.}{(\beta, \beta)}=\delta_{\alpha, \beta}$
Among invariant metrics on $\chi(T)_{R}$ for a reductive G, there exists a unique one, such that $\chi(T)=\left\{\xi \in \chi(T)_{R}, 2 \frac{(\xi, \alpha)}{(\alpha, \alpha)} \in Z(T) \forall \alpha \in R\right\}$
Description of parabolic subgroups Let $\pi \subset R$. Then:
- π contains a certain basis
- π is closed under addition, i.e. $(\pi+\pi) \cap R=\pi$

Consider $P_{\pi}=<T, U_{\alpha}, \alpha \in \pi>$. Then P_{π} is a parabolic subgroup. Using this procedure, one can get any parabolic subgroup P, which contains a torus T. In case π is a basis, P_{π} is a Borel subgroup. Bruhat decomposition is defined as follows. Let P be a parabolic with an unipotent radical $U(P), T \subset P$. Then $G=\bigcup_{w \in W} U(P) w P=\bigcup P w U(P)$. If $P=P_{\pi}$, where $\pi \subset R$, then w can be extracted from W / W_{π}.

3.0.3 Representations and invariant theory

Let $\rho: G \rightarrow G L(V)$ be a linear representation of a group G. Restricting it to a maximal torus, we get a decomposition w.r.t. weights: $V=\bigoplus_{\chi \in \chi(T)} V_{\chi}$.

DESCRIPTION OF REPRESENTATIONS OF THE REDUCTIVE GROUPS As is well-known, any finite-dimensional representation splits into a sum of irreducible representations. Any irreducible representation is uniquely defined by its' character trg.

Correspondence between the characters of a maximal torus T and irreducible representations of a group G

Let $\chi \in \chi(T) ; \pi \subset R, \pi=\{\alpha \in R,(\alpha, \chi) \geqslant 0\}$. Let P_{π} be a parabolic subgroup, defined via π. As $\chi \perp$ the root system G_{π} hence χ is a character for P_{π}.

One can get a one-dimensional vector bundle $E(-\chi)$ with a base G / P_{π} by twisting a representation $k(-\chi)$ of P_{π} via principal P_{π}-bundle $G \rightarrow G / P_{\pi}$, where $E(-\chi)=G \otimes_{P} k(-\chi)$. As $G \curvearrowright E(-\chi) \rightsquigarrow$ it acts on a space of sections of $E(-\chi): G \curvearrowright H^{0}\left(G / P_{\pi}, E(-\chi)\right)$. Some properties of $E(-\chi)$ are:

- If $i>0$, then $H^{i}\left(G / P_{\pi}, E(-\chi)\right)=0$
- $\left.H^{0}\left(G / P_{\pi}, E(-\chi)\right)\right|_{c \in G / P_{\pi}} \rightsquigarrow$ a surjective homomorphism of P - representations $\varphi: H^{0}\left(G / P_{\pi}, E(-\chi)\right) \rightarrow k(-\chi)$
- Denote $V_{\chi}:=H^{0}\left(G / P_{\pi}, E(-\chi)\right)^{*}$, i.e. linear functionals on sections of $E(-\chi)$. Dualizing φ, we get a map $k(\chi) \rightarrow H^{0}\left(G / P_{\pi}, E(-\chi)\right)^{*}$. Thus we get a representation $V_{\chi} \leftrightarrow \chi$
- $V_{\chi} \simeq V_{\chi^{\prime}} \Leftrightarrow \chi^{\prime}=\omega \chi$, where $\omega \in W$.

The class of models \mathbf{A}_{χ}. Let us associate to a character $\chi \leftrightarrow$ a manifold A_{χ} which is a G-orbit of $k(\chi)$ in the space V_{χ}, χ is a character of P. A model is defined as $A \chi:=\operatorname{Im}\left(\phi: G \otimes_{P} k(\chi) \rightarrow V(\chi)\right)$. This map is an embedding for $x \notin s^{-1}(0)$ for points not lying on the zero section of $E(\chi)$. It also contracts to 0 the zero section of $E(\chi) . A_{\chi}$ is closed.
$\mathbf{M}_{\mathbf{H}}$. Consider a reductive subgroup $H \subset G$ and a manifold $G / H:=M_{H}$, which
we shall call an M_{H}-model.
There are 3 classes of models: $\mathbf{A}_{\chi}, \mathbf{M}_{\mathbf{H}}$ and \mathbf{C}.
Lemma 16. Let V be a representation of $G, V_{0} \subset V$ be a subspace, invariant under $P \subset G$ a parabolic subgroup. Then the set $G V_{0}$, which consists of shifts of V_{o}, is closed in V.

Let us classify all points under the action of a reductive group G over \mathbb{C} and its' representation $\rho: G \rightarrow G L(N, \mathbb{C})$.
For a $x \in \mathbb{C}^{N} \rightsquigarrow$ a manifold of a $G x$-orbit. The points of $G x$ can be classified as:

- Unstable: $0 \in \overline{G x}$
- Stable: $G x=\overline{G x}$ and $\operatorname{dim} G x$ is maximal, i.e. for any $y \in \mathbb{C}^{N}$, $\operatorname{dim} G y \leq$ $\operatorname{dim} G x$
- Polystable:
- Points x, which have a closed orbit $G x$ of a non-maximal dimension, which does not coincide with 0 ;
- Points x, which have a non-closed orbit, i.e. $\bar{G} x \neq G x$, but $0 \notin \bar{G} x$.
G-invariant polynomials help us to differ the closed orbits of G in \mathbb{C}^{N}. If X, Y are the closed orbits of G, then there exists a polynomial h on $\mathbb{C}^{N}: h(g x)=$ $h(x), x \in \mathbb{C}^{N}$ and $h(X)=1, h(Y)=0$.

The representation theory of reductive algebraic groups allows us to give a geometric description of the manifold of unstable points W_{0}^{G}. Namely, it strongly depends on the isomophism $W_{0}^{G} \simeq G\left(W_{0}^{T}\right)$ (T is a maximal torus) and relies on the description of W_{0}^{T}. A representation $\rho: T \rightarrow \mathbb{C}^{N}$ splits into direct sum of weighted representations $C_{\chi} ; \mathbb{C}^{N}=\sum C \chi$, where $C \chi:=\left\{v \in \mathbb{C}^{N}: T \curvearrowright \mathbb{C}^{N}\right.$ via $\chi(T)\}$.

Definition 5. A support of a vector $v \in \mathbb{C}^{N}, \operatorname{Supp}(v) \subset \chi(T)$ is a subset in the lattice of characters of T. $\alpha \in \operatorname{Supp}(v) \Leftrightarrow$ for a projection $P: V \rightarrow C \chi$,
$P(v)=v_{\alpha} \neq 0$.
One can consider a convex set of $L(\operatorname{Supp}(v))$ in the space of $\chi(T)_{\mathbb{Q}}=\chi(T)_{\mathbb{Z}} \otimes \mathbb{Q}$. The support of a set $X \subset \mathbb{C}^{N}=\{\bigcup \operatorname{Supp}(x), x \in X\}$. The following two Lemmas are in particular interest for us.

Lemma 17. $v \in \mathbb{C}^{N}$ is unstable w.r.t. $T \Leftrightarrow 0 \notin L(\operatorname{Supp}(v))$.
Denote W_{0}^{G} a manifold of unstable points.
Theorem 18. For any closed G-submanifolds of $X \subset W_{0}^{G}$ there exists a filtration of G-invariant submanifolds $X=X_{0} \supset X_{1} \supset X_{2} . . \supset X_{N}=0$ which is dual to a system of regular mappings $f_{i}: X_{i} \rightarrow A \chi_{i}, X_{i+1}=f_{i}^{-1}(0), 0 \in A_{\chi_{i}}$.

Thus, the set of unstable points is determined by the models \mathbf{A}_{χ}.

3.0.4 Parabolic and character groups for $G=G L(n), S L(n)$.

Definition 6. For E a vector space, $\operatorname{dim} E=n$ and a sequence of integer numbers $n_{1}, . ., n_{r} \leq n$, a flag of type $\pi=\left(n_{1}, . ., n_{r}\right)$ in E is a set $F_{1} \subset F_{2} \subset \ldots \subset F_{r} \subset E$, $\operatorname{dim} E_{i}=n_{i}$. The set of all flags $\Phi_{\pi}(E)$ of type π forms an algebraic variety.
$G L(E) \curvearrowright \Phi_{\pi}$ transitively. A Stabilizer $F_{n}=\operatorname{Stab}(G L(E)):=P_{\pi}$ is a parabolic subgroup in $G L(E)$. A group P_{π} uniquelly defines a flag, whose stabilizer represents itself. P_{π} consists of block-diagonal matrices of a known form.

Consider a maximal torus $T \subset G L(E), T=\left\{\operatorname{diag}\left(\lambda_{1}, . ., . \lambda_{n}\right), \lambda_{i} \in k^{*}\right\}, \chi(T) \simeq$ \mathbb{Z}^{n}. For a $\left(m_{1}, . ., m_{n}\right) \in \mathbb{Z}^{n}, \chi\left(\operatorname{diag}\left(\lambda_{1}, . ., . \lambda_{n}\right)\right)=\lambda_{1}^{m_{1}} . . \lambda_{n}^{m_{n}}$. Note that $\{$ Characters of group $G L(E)\} \leftrightarrow_{1: 1}\{$ Characters of torus T of type $(r, . ., r)\}$.

Let $s \in H^{0}\left(X, \hat{E}^{\rho}\right)$ be a non-zero section. Suppose there exists a non-zero $G L-$
map $f_{\alpha}: E^{\rho} \rightarrow C, f_{\alpha}\left(s_{x}\right) \neq 0, f_{\alpha}(0)=0 ; f_{\alpha}(s)$ is a section of trivial bundle $\Rightarrow f_{\alpha}(s)=$ const $\neq 0$ Then for any $x \in X s_{x} \neq 0$. Moreover, s_{x} is not an unstable point of a fiber E_{x}^{ρ} w.r.t. $G L(E)$.

Consider a full system of a $G L$-invariant regular functions on E^{ρ}. Note that for any $x, y \in X, f_{\alpha}\left(s_{x}\right)=f_{\alpha}\left(s_{y}\right)$ and it implies that $\overline{G L} s_{x}$ and $\overline{G L} s_{y}$ are adjoint to the same closed $G L$-orbit in the space E^{ρ}.

There are two cases to keep in mind:

- The point s_{x} is stable, but then s_{y} is stable as well $\Rightarrow G L s_{x}=G L s_{y}$, i.e. $s \in$ subbundle $G L s_{x} \otimes E_{\gamma} \subset \hat{E}^{\rho}$. The fiber of this bundle is a homogeneous space $G L / H$, where $H \subset G L(E)$ is a reductive group.
- $H=S L(n), \rho=\operatorname{det} E$
- $H=S p(n), \rho=\Lambda^{2} E$
- $H=S O(n), \rho=S^{2} E$
- H is a finite group, ρ is a mult.
- If s_{x} is polystable, let $s_{x} \in W_{s} \subset E^{\rho}$, for any x, W_{s} are the points adjoint to the closed orbit S

Consider a bundle $E_{\gamma}, G=G L(k)$. Let ρ be a representation of $G L(k)$ and $\rightsquigarrow E^{\rho}$. Note that $\rho_{1}+\rho_{2} \rightsquigarrow E^{\rho_{1}} \oplus E^{\rho_{2}}$ and $\rho_{1} \otimes \rho_{2} \rightsquigarrow E^{\rho_{1}} \otimes E^{\rho_{2}}$. Thus, we get a monoid of representations $R(G L(k))$ to which one can associate $\rightsquigarrow A(E)=\sum E^{\rho}, \rho \in$ $R(G L(k))$.

Definition 7. An associative algebra of sections $A(M, E)=\sum_{\rho \subset R(G L(k))} H^{0}\left(M, E^{\rho}\right)$ is called a tensor algebra of fibration.

Irreducible representations of $G L(k, \mathbb{C})$ are represented by its' highest weight.

Let us fix the following subalgebras in $A(E)$ and $A(M, E)$.
Among all $\rho \in R(G L(k))$ let us take the ones which are trivial on the center $C^{*} \subset G L(k, \mathbb{C})$. They form a subalgebra $R(P G L) \subset R(G L)$. Note that $\left\{E^{\rho}, \rho \in\right.$ $\left.R(P G L): \operatorname{det} E^{\rho}=0\right\} . \operatorname{det} E$ is associated with a principal bundle C_{γ}^{*} with a fiber C^{*} over M via a character $\chi\left(C^{*}\right)=\operatorname{det} \gamma$.
$\operatorname{det} E^{\rho} \rightsquigarrow$ via the character $\left.\operatorname{det} \rho\right|_{C^{*}}$, but it is trivial if $\rho \in R(P G L)$. Let us define a few natural subalgebras:

- Consider subalgebras defined via $R(P G L): A_{0}(M, E)=\sum H^{0}\left(M, E^{\rho}\right), \rho \in$ $R(P G L)$ and $A_{0}^{H}(M, E)=\sum_{\rho \subset R(P G L)} H^{0}\left(M, E^{\rho} \otimes H\right)$
- Consider a subalgebra $R^{+}(G L):\left.\rho\right|_{C^{*}} \in Z^{+} \subset Z \simeq \chi\left(C^{*}\right)$ - is a character of a standard representation to which a bundle E_{γ} is associated.
- R_{p} are strictly positive representations: they are the components of tensor powers of representation $\gamma^{\otimes k}, k \in Z^{+}$. The corresponding subalgebra is denoted by $A_{R}(M, E) \subset \sum_{\rho \in R_{\rho}} H^{0}\left(M, E^{\rho}\right)$.
- One can also associate to γ a subalgebra $\sum \bigoplus S^{m} \gamma$ and an algebra of symmetric tensors $A_{S}(M, E)=\sum_{m>0} H^{0}\left(M, S^{m} E\right) . A_{S}(M, E)$ is commutative.
- For an algebra $S^{m n} \gamma \otimes-$ mdet $\gamma \rightsquigarrow$ an algebra of tensors $A_{0 s}(M, E)=$ $\sum H^{0}\left(M, S^{m n} E \otimes-m \operatorname{det} E\right)$

Definition 8. The cone of the positive characters K_{T} of a maximal torus $T \subset$ $G L(K, \mathbb{C}), K_{T}:=K_{T(P G L)} \times Z$, where Z is a representation of the center C^{*}.

Recall that if ω is a representation, then supp $\omega=\cup \chi, R(\omega)=\bigoplus R(\chi), \chi \in K_{T}$ for the irreducible components of $R(\omega)$.

Lemma 19. These assertions hold true:

1. $\operatorname{Supp} A^{+}=\{(x, y), y>0\}, x \in K_{T(P G L)}, y \in Z$
2. $\operatorname{Supp} A_{0}=\{(x, 0)\}$
3. Supp $_{s}=n \chi(\gamma)$
4. $\operatorname{Supp} A_{0, s}=\{m k \chi(\gamma)-m \operatorname{det} \gamma\}$

To a Flag bundle $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset . . \subset \mathcal{F}_{k}=\mathcal{F}$ one can associate a one-dimensional bundle $F\left(n_{1}, . ., n_{k}\right)=\sum_{i} n_{i}\left(\operatorname{dim} \mathcal{F} \operatorname{det} \mathcal{F}_{i}-\operatorname{dim} \mathcal{F}_{i} \operatorname{det} \mathcal{F}\right)$ on X.
Set of flag tensors, which one can build using a fixed tensor $s \in C^{N}$: consider $\left\{s_{\alpha}\right\}$ such that

1. $s_{\alpha}, s_{\beta} \in\{s\} \Leftrightarrow s_{\alpha} \otimes s_{\beta} \in\{s\}$
2. $\lambda_{1} s_{\alpha}+\lambda_{2} s_{\beta} \in\{s\}$
3. For $\forall G$-map of $f: G s \rightarrow C^{i}, C^{i}$ is a G-module, $f(0)=0, f(s) \in\{s\}$

Remark 1. 1. If $\lim _{n \rightarrow \infty} g_{n} s=0, g_{n} \in G$, then $\lim _{n \rightarrow \infty} g_{n} s_{\alpha}=0, \forall s_{\alpha} \in\{s\}$
2. If s is stable and has a trivial stabilizer in G, then $\forall s_{\beta} \in\{s\}$. Indeed, in this case, $\bar{G} s \simeq G$ and $\forall s_{\beta}$ there exists a G-map $f: G \rightarrow G s_{\beta}$ such that $f(s)=s_{\beta}$.

Let us reiterate it using language of supports. Fix a maximal torus T. Then, if s is polystable and has a closed orbit G / H, a support Supphs ${ }_{\alpha}$ for some $h \in G$ also lies in the subspace $L_{\chi},\{\chi(T \cap H)=1\}$ and any s^{\prime} with support in a lattice with a finite index in $L_{\chi}, s^{\prime} \in\{h s\}$. For an algebra, generated via unstable tensor s the following statement holds.

Theorem 20. There exists a cone $R_{s} \subset \chi_{R}(T)$, for a certain maximal torus T: $A_{s^{-}}$algebra, generated by elements s, has R_{s} as a support. \{set of flag tensors $\left.f_{n \alpha}\right\} \in A_{s}$, where $\alpha \notin \partial R_{s}, \partial R_{s}$ is a boundary, $n \in Z, n \gg 0$.

Stability of bundles $\mathbf{E} \rightarrow \mathrm{M}$

Let us fix a number of conditions:

1. $\forall \mathcal{F} \subset \mathcal{O}(E)$ coherent subsheaves
2. Fix a direction of polarization of M, i.e. a line of curves $\{n H\} \subset P i c M \otimes$ $R, n>0$.

Modifying a bit Takemoto's stability definition, we get

H-stability

We call a coherent sheaf $\mathcal{O}(E) H$-stable if for any $\mathcal{F} \subset \mathcal{O}(E), \operatorname{dim} \mathcal{F}>0$ the inequality holds $\operatorname{dim} E \wedge H^{n-1}<\operatorname{dimF} c_{1}(E) \wedge H^{n-1} . c_{1}(\mathcal{F})$ is a divisor of 1dimensional bundle $\operatorname{det} \mathcal{F}$.

If $\exists \mathcal{F} \subset \mathcal{O}(E)$, for which the other inequality holds: $\operatorname{dimEc}(\mathcal{F}) \wedge H^{n-1}>$ $\operatorname{dimF} c_{1}(\mathcal{E}) \wedge H^{n-1}$, then $\mathcal{O}(E)$ is H-non-stable.

Let us introduce the notion of T-stability, which is equivalent to H-stability, but uses the language of symmetric tensors.

3.0.5 T-stability

A vector bundle E (corr. $\mathcal{O}(E)$) is called T-stable if \forall flag of subsheaves $\mathcal{F}_{1} \subset$ $\mathcal{F}_{2} \subset . . \subset \mathcal{F}_{k} \simeq \mathcal{O}(E)$ and \forall positive vector $\left(n_{1}, . ., n_{k}\right), H^{0}\left(M^{n}, F_{\chi}\left(n_{1}, . ., n_{k}\right)\right)=$ $0, \forall \chi, F_{\chi}\left(n_{1}, . ., n_{k}\right)=F\left(n_{1}, . ., n_{k}\right) \otimes L_{\chi}, L_{\chi} \in \operatorname{Pic}^{0}(M)$.

A vector bundle E is called T-polystable if $H^{0}\left(M^{n}, F_{\chi}\left(n_{1}, . ., n_{k}\right)\right)>0 \Rightarrow$ $F_{\chi}\left(n_{1}, . ., n_{k}\right)=0$. The others are unstable.

Definition 9. A vector bundle E is called T-unstable if \exists a flag of coherent submodules $\mathcal{F}_{1} \subset^{n_{1}} \mathcal{F}_{1} \subset . . \subset \mathcal{F}_{k} \simeq \mathcal{O}(E)$ such that for a certain positive $n=\left(n_{1}, . ., n_{k}\right)$ the divisor $F_{\chi}\left(n_{1}, . ., n_{k}\right)$ and $L_{\chi} \in \operatorname{Pic}^{0}(M)$ is effective.

Definition 10. A vector bundle E on M is α-unstable if \exists a free submodule $\mathcal{F} \subset$ $\mathcal{O}(E)$: the divisor $(\operatorname{dimEdet} \mathcal{F}-\operatorname{dim} \mathcal{F} \operatorname{det} E)$ has a square >0 and lies in the positive component of the cone $\left\{x^{2}>0\right\}$ in a group $\operatorname{Pic}_{R} V=\operatorname{PicV} \otimes R$.

The notion of H-stability is equivalent to T-stability. The main point is that we can extract the information about stability of E from the algebra $A_{0}^{H}(E)$ as one can do it using the description of E^{ρ} via unitary representation.

Lemma 21. A bundle E is called polystable, if for $\forall H \subset P i c^{0} X$ holds that:

1. $\exists s \in A_{0}^{H}(E): s_{x}$ is unstable at least at one point x w.r.t. group $G L(E)_{x}$
2. $\forall s \in A_{0}^{H}(E): s \neq 0 \Rightarrow s_{x} \neq 0$ for any point $x \in X$

Knowing the existence of a non-trivial unstable section $s \in A_{0}^{H}$ and using the family of G-maps to the cones A_{χ}, one can build a section $s_{\chi, \gamma}$ of the bundle $A_{\chi, \gamma} \otimes n H \rightsquigarrow$ we have a flag of bundles $E_{1} \subset . . \subset E_{k} \simeq E$ and non-zero section $\hat{s} \in H^{0}\left(F\left(n_{1}, . ., n_{k}\right) \otimes n H\right), \hat{s} \neq 0$, thence $F\left(n_{1}, . ., n_{k}\right) \otimes n H \simeq 0$, i.e. $\forall E_{i} \subset E, \operatorname{deg}\left(\operatorname{dim} E \operatorname{det} E_{i}-\operatorname{dim} E_{i} \operatorname{det} E\right)=0$, otherwise E is unstable bundle.

Lemma 22. If E is stable, then $A_{0}(E)$ is isomorphic to th algebra of invariants for a reductive group $H_{E} \subset P G L$, which is an iso to the image of the structure group E in the bundle $E_{\gamma} / C^{*} \simeq P G L$.

Lemma 23. The following are equivalent:

1. $\exists s \in A_{0}^{H}(E) s \neq 0, s_{x}=0$ for some $x \in X, H \in \operatorname{Pic}^{0}(X)$
2. Vector bundle E is T-unstable on the blow-up \hat{X}

Lemma 24. If E is T-unstable on $X \Rightarrow$ it is unstable w.r.t. $\forall H$ polarization.
$s \in K_{F} \rightsquigarrow$ an effective divisor in $\operatorname{Pic}_{R} V$. Then there exists a non-zero tensor $\hat{s}=L_{\chi} \sum_{i} n_{i} \operatorname{det} F_{H} \oplus \operatorname{det} E\left(-\frac{\sum n_{i} \operatorname{dim} F_{H}}{\operatorname{dim} E}\right) \in \bigotimes_{i} S^{n_{i}} E_{0} \otimes L_{\chi}, L_{\chi} \in P i c^{0} V, \hat{s} \in$
$A_{0}^{L_{\chi}}(E),\left.\hat{s}\right|_{D}=0, D$ is an effective divisor.
Consider $K_{D} \subset P i c_{R} V, K_{D}$ is closed and generated by effective divisors.
Lemma 25. Let $\bar{K}_{D}=K_{D}$ and vector bundle E is H-unstable for \forall polarizations H. Then E is T-unstable.

Proof. Consider a cone K_{F} generated by the elements $f_{H}=\left\{\frac{\operatorname{det} F_{H}}{\operatorname{dim} F_{H}}-\frac{\operatorname{detE}}{\operatorname{dimE}}\right\} \in$ $\operatorname{Pic}_{R} V, F \subset E$ is a subbundle of $E . \bar{K}_{D} \cap \bar{K}_{F}=K_{D} \cap K_{F} \neq \emptyset$. Let us choose a H-polarization: C is a curve on $M,[C] \in H .\left.E\right|_{X} \rightsquigarrow$ a number $m_{e}(X)=\max \left\{\frac{\operatorname{det} F}{\operatorname{dimF}}-\frac{\operatorname{det} E}{\operatorname{dimE}}\right\}$. If $F \subset E$ is a subbundle, then $\forall f_{H}$, it is true that $\left\{f_{H}, H\right\} \leq m_{e}(X)$. If we consider a cone K_{R}^{H} with an axis $\{H\}$ in $\operatorname{Pic}_{R} V, K_{R}^{H} \subset K_{D}$, then $\#\left\{f_{H} \subset K_{R}^{H}\right\}<\infty$, because $f_{H^{\prime}} \in Z\left[\frac{1}{n!}\right]$-lattice in $\operatorname{Pic}_{R} V, n=\operatorname{dim} E$ and $\left\{f_{H^{\prime}}, H\right\} \leq m_{e}(X)$. It implies that $\bar{K}_{F} \cap K_{D}=K_{F} \cap K_{D}$. On the contrary, if $K_{F} \cap K_{D} \neq 0 \Rightarrow \exists$ an integers $n_{i}>0: \sum_{i} n_{i} f_{H} \in K_{D}$ and $\sum_{i} n_{i} f_{H} \otimes L_{\chi}$ is an effective for some $L_{\chi} \in P i c^{0} V \Rightarrow T$-unstable bundle E.

Remark 2. Takemoto's stability is equivalent to T-stability if X is compact, so that we can cover it with a locally finite covering (locally) and thus one gets a finite linear combinations of "lines of curves $[H]$ " inside the cones.

For a coherent sheaf F on X, denote $\Delta(F)=2 r c_{2}(F)-(r-1) c_{1}{ }^{2} . \Delta(F)$ is called discriminant.

The following theorem holds true (Huybrechts \& Lehn, 2010), [page 72]:
Theorem 26. (Bogomolov's theorem) Let X be a smooth projective variety of dimension n and H an ample divisor on X. If F is a semistable torsion free sheaf, then

$$
\Delta(F) \cdot H^{n-1} \geq 0
$$

3.0.6 Bogomolov's effective restriction theorem

It was asked, what are the particular requirements for the restriction of a bundle $E \rightarrow X$ on a surface X to a curve $C \subset X$ to remain $\left.E\right|_{C}$ stay stable. The answer to this question is provided by the Bogomolov's effective restriction theorem (Bogomolov, 1978; Bogomolov, 1994; Huybrechts \& Lehn, 2010). Here we are mostly following the exposition presented in the book (Huybrechts \& Lehn, 2010).

An important notion in algebraic geometry plays the concept of rearrangement of a vector bundle along a curve or elementary transformations. In the case of smooth projective surfaces we have a non-degenerate hyperbolic scalar product on the group $\mathrm{Pic}_{R} V$ and duality between the cone of polarizations and the cone of effective divisors. Let $N u m$ denote the free Z-module $\operatorname{Pic}(X) / \equiv$, where \equiv means numerical equivalence. Its rank ρ is called the Picard number of X. The intersection product defines an integral quadratic form on Num. The Hodge Index Theorem says, that, over \mathbb{R}, the positive definite part is 1 -dimensional. In other words, $N u m_{\mathbb{R}}$ carries the Minkowski metric. For any class $u \in N u m_{R}$ let $|u|=\left|u^{2}\right|^{1 / 2}$. Actually it is not a norm.

Denote as A a subcone consisting of all ample divisors. A polarization of X is a ray $R_{>0} . H$, where $H \in A$. Let \mathcal{H} denote the set of rays in K_{+}(Barth, Hulek, Peters, \& Van de Ven, 2004).

This set can be identified with the hyperbolic manifold $\left\{H \in K_{+} \| H \mid=1\right\}$.
The hyperbolic metric β is defined as follows:
for points $[H],\left[H^{\prime}\right] \in \mathcal{H}$ let

$$
\beta\left([H],\left[H^{\prime}\right]\right)=\operatorname{arcosh}\left(\frac{H \cdot H^{\prime}}{|H| \cdot\left|H^{\prime}\right|}\right)
$$

Denote the open cone $K^{+}=\left\{D \in \operatorname{Num}_{R} \mid D^{2}>0, D . H>0\right.$ for all ample divisors $H\}$. Note that the second condition is added only to pick one of the two connected components of the set of all D with $D^{2}>0$. This cone contains the cone of ample divisors and in turn is contained in the cone of effective divisors. K^{+}satisfies the property: $D \in K^{+} \Longleftrightarrow D . L>0$ for all $L \in \overline{K^{+}} \backslash\{0\}$. For any pair of sheaves G, G^{\prime} with nonzero rank let

$$
\xi_{G^{\prime}, G}:=\left(\frac{c_{1}\left(G^{\prime}\right)}{r k\left(G^{\prime}\right)}-\frac{c_{1}(G)}{r k(G)}\right) \in N u m_{R}
$$

This invariant in the case of destabilizing sheaf plays role as "destabilizing" point in the corresponding cone and defines kind of "class of curve" which we cannot take as one for elementary transformation.

Suppose W_{1} is a bundle on X such that $c_{1}\left(W_{1}\right)=0$.

- Every vector bundle E of rank r can be obtained by an elementary transformation of $\mathcal{O}_{X}^{\oplus r}(n H)$ with $n \gg 0$ along a line bundle on a smooth curve $C \subset X$.
- For a given $\alpha \in \operatorname{Pic}(X), r \geq 2$ ample divisor H and integer $c_{0} \in Z$ there exists a μ-stable vector bundle E with $\operatorname{det} E \cong \alpha, r k E=r$ and $c_{2}(E) \geq c_{0}$.

Let us analyze a bundle which we get on a curve, restricting initial one to C. We want it to stay stable under restriction $\left.\right|_{C}, C \subset X$. This condition is given by the Bogomolov‘s effective restriction theorem.

Theorem 27. (Bogomolov's effective restriction) Let F be a locally free sheaf of rank $r \geqslant 2$. Assume that F is μ-stable with respect to an ample class $H \in$ $K^{+} \cap$ Num. Let $C \subset X$ be a smooth curve with $[C]=n H$. If $2 n \geqslant \frac{R}{r} \Delta(F)+1$, then $\left.F\right|_{C}$ is a stable sheaf.

Suppose that F_{C} has a destabilizing quotient N of rank s. Following (Huybrechts
\& Lehn, 2010) we can change a condition $2 n \geqslant \frac{R}{r} \Delta(F)+1$ to the following two conditions in assumption that $F_{C} \rightarrow E$ is a destabilizing quotient of rank one:

$$
\begin{gathered}
2 n \geq \Delta\left(\wedge^{s} F\right)+1 \\
n^{2} H^{2}=C^{2}>\Delta\left(\wedge^{s} F\right)
\end{gathered}
$$

We have a following theorem:
Theorem 28. Let F be a μ-semistable vector bundle and $\wedge^{s} F \rightarrow M$ be a rank one torsion free quotient with $\mu\left(\wedge^{s} F\right)=\mu(M)$. If the restriction $\left.\wedge^{s} F\right|_{C} \rightarrow M_{C}$ to a curve C is the s-th power of a locally free quotient $\left.F\right|_{C} \rightarrow E$ of rank s, then $\wedge^{s} F \rightarrow M$ is induced by a torsion free quotient $F \rightarrow E^{\star}$ of rank s. In particular, if F is μ-stable, then $s=r k F$.

4 Bogomolov's effective restriction and MehtaRamanathan theorems

Generally, there are several restrictions theorems in algebraic geometry which deal with vector bundles. It is reasonable to understand what each of them asserts and which one is better to use in our situation.

4.0.1 Result of Mehta-Ramanathan

By (Mehta \& Ramanathan, 1984), let X be a projective non-singular algebraic variety of dimension $n \geq 2$ over an algebraically closed field k. Let H be a given very ample line bundle on X corresponding to a projectively normal embedding $X \subset \mathbb{P}^{N}$. Consider the projective set of lines in the vector space $H^{0}\left(X, H^{m}\right)$, $m=\left(m_{1}, \ldots, m_{t}\right)$ is a multivector and let

$$
H^{0}\left(X, H^{m_{1}}\right) \times H^{0}\left(X, H^{m_{2}}\right) . . \times H^{0}\left(X, H^{m_{t}}\right) \times X \supset Z_{m} \rightarrow X
$$

a projection, where the correspondence variety $Z_{m}=\left\{\left(x, s_{1}, . ., s_{t}\right) \in X \times\right.$ $\left.S_{m} \mid s_{i}(x)=0,1 \leq i \leq t\right\}$. The projection is a fibration with the fibre over $x \in X$ being identified with the product of hyperplanes $H_{1} \times \ldots \times H_{t}, H_{i}=\{s \in$ $\left.H^{0}\left(X, H^{m_{i}}\right) \mid s(x)=0\right\}$.

Consider the other projection: $q_{m}: Z_{m} \rightarrow H^{0}\left(X, H^{m_{1}}\right) \times H^{0}\left(X, H^{m_{2}}\right) . . \times$ $\left.H^{0}\left(X, H^{m t}\right)\right)$. Let Y_{m} be a generic fiber of q_{m}. Note that Y_{m} are irreducible and nonsingular. Denote $\varphi_{m}: Y_{m} \rightarrow Z_{m}$.

Theorem 29. (Mehta \& Ramanathan, 1984) Let V be a semistable torsion free sheaf on X (with respect to the polarisation H). Let Y_{m} be the generic curve of type (m). Then there is an m_{0} such that for $m \geq m_{0}$ the restriction of V to Y_{m} (i.e.
$\left.\phi_{(m)}^{*} p_{(m)}^{*} V\right)$ is semistable, or equivalently for $m \geq m_{0}$ and for s in a nonempty open subset of $S_{(m)},\left.V\right|_{q_{(m)}^{-1}(s)}$ is semistable.

4.0.2 Mehta-Ramanathan theorem as corollary of Bogomolov's effective restriction theorem

The following theorem holds true:
Theorem 30. Mehta-Ramanathan theorem follows from Bogomolov's effective restriction theorem.

Proof. We want to show that Mehta-Ramanathan theorem follows from Bogomolov's restriction theorem. If X^{n} is a projective manifold then for any algebraic family of bundle F_{s} we have $H^{0}\left(X, F_{s}\right)=H^{0}\left(X_{H}, F_{s}\right)$ for a sufficiently ample line bundle H and X_{H} a hyperplane section of H if $\operatorname{dim} X_{H} \geq 1$ since $H^{1}\left(X, F_{s} \times O(-H)\right)=0$ for sufficiently big H.

If $F_{X_{H}}$ is destabilizing subsheaf E on X_{H} then we can extend this sheaf to X if $\operatorname{dim} X_{H} \geq 2$ (isomorphism for H^{1}). Note that if $F^{r} \subset E$ is a destabilizing subsheaf then $\operatorname{det} F^{r} \rightarrow \Lambda^{r} E$ is a destabilzing line bundle and vice versa. Since the line bundles on X and X_{H} are the same we obtain the result.

5 Overview of the concepts of stability

There are many notions of stability that have been introduced. Here we list a few of them. Sometimes we follow the relevant formulations from [wikipedia].

1. Takemoto, Maruyama T-stability (Takemoto, 1972; Maruyama, 1977; Maruyama, 1976; Maruyama, 1975)

Let E be a coherent sheaf on a scheme X and $H^{i}(X, E)$ be its' sheaf cohomology. Holomorphic Euler characteristic is $\chi(X, E)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H^{i}(X, E)$. Let H be an ample line bundle on X. A Hilbert polynomial in n is $p_{H}(E, n)=$ $\chi\left(x, E \otimes H^{\otimes n}\right)$.

Definition 11. (Maruyama, 1976) A coherent sheaf E on X is called semistable if for all subsheaves

$$
\frac{p_{H}(F, n)}{r k(F)} \leq \frac{p_{H}(E, n)}{r k(E)}, n \gg 0
$$

Theorem 31. (Maruyama, 1976) There exists a moduli space $M_{S}^{H}\left(r, c_{1}, c_{2}\right)$ of H-semistable coherent sheaves of rkr with chern classes c_{1}, c_{2}. There is an open subset $M_{S}^{H}\left(r, c_{1}, c_{2}\right)^{\text {st }}$ parametrizing stable bundles.

2. Gieseker stability (Gieseker, 1977)

A slope of a holomorphic vector bundle W over a nonsingular algebraic curve (or over a Riemann surface) is a rational number $\mu(W)=\frac{\operatorname{deg}(W)}{\operatorname{rank}(W)}$. A bundle W is stable if and only if $\mu(V)<\mu(W)$ for all proper non-zero subbundles $V \subset W$ and is semistable if $\mu(V) \leq \mu(W)$ for all proper nonzero subbundles $V \subset W$. Informally this says that a bundle is stable if it is "more ample" than any proper subbundle, and is unstable if it contains a "more ample" subbundle.

Definition 12. (Gieseker, 1977) If W and V are semistable vector bundles and $\mu(W)>\mu(V)$, then there are no nonzero maps $W \rightarrow V$. If X is a smooth projective variety of dimension m and H is a hyperplane section, then a vector bundle W is called stable (or sometimes Gieseker- stable (Gieseker, 1977)) if:

$$
\frac{\chi(V(n H))}{\operatorname{rank}(V)}<\frac{\chi(W(n H))}{\operatorname{rank}(W)} \text { for } n \text { large }
$$

for all proper non-zero subbundles (or subsheaves) $V \subset W$, where χ denotes the Euler characteristic of an algebraic vector bundle and the vector bundle $V(n H)$ means the n-th Serre twist of V by H, i.e. $V \otimes H^{\otimes n} . W$ is called semistable if the above holds with $<$ replaced by \leq.

3. T-STABILITY VIA SYMMETRIC TENSORS AND REPRESENTATIONS OF

 REDUCTIVE GROUPS (Bogomolov, 1978) and [3.0.4], [3.0.5]. Let us classify all points under the action of a reductive group G over \mathbb{C} and its' representation $\rho: G \rightarrow G L(N, \mathbb{C})$.For a $x \in \mathbb{C}^{N} \rightsquigarrow$ a manifold of a $G x$-orbit. The points of $G x$ can be classified as:

- Unstable: $0 \in \bar{G} x$
- Stable: $G x=\overline{G x}$ and $\operatorname{dim} G x$ is maximal, i.e. for any $y \in \mathbb{C}^{N}, \operatorname{dim} G y \leq$ $\operatorname{dim} G x$
- Polystable:
- Points x, which have a closed orbit $G x$ of a non-maximal dimension, which does not coincide with 0 ;
- Points x, which have a non-closed orbit, i.e. $\bar{G} x \neq G x$, but $0 \notin$ $\bar{G} x$.
G-invariant polynomials help us to differ the closed orbits of G in \mathbb{C}^{N}. If X, Y are the closed orbits of G, then there exists a polynomial h on \mathbb{C}^{N} : $h(g x)=h(x), x \in \mathbb{C}^{N}$ and $h(X)=1, h(Y)=0$.
The representation theory of reductive algebraic groups allows us to give a geometric description of the manifold of unstable points W_{0}^{G}. Namely, it strongly depends on the isomophism $W_{0}^{G} \simeq G\left(W_{0}^{T}\right)$ (T is a maximal torus) and relies on the description of W_{0}^{T}. A representation $\rho: T \rightarrow \mathbb{C}^{N}$ splits into direct sum of weighted representations $C_{\chi} ; \mathbb{C}^{N}=\sum C \chi$, where $C \chi:=\left\{v \in \mathbb{C}^{N}: T \curvearrowright \mathbb{C}^{N}\right.$ via $\left.\chi(T)\right\}$.

Definition 13. A support of a vector $v \in \mathbb{C}^{N}, \operatorname{Supp}(v) \subset \chi(T)$ is a subset in the lattice of characters of T. $\alpha \in \operatorname{Supp}(v) \Leftrightarrow$ for a projection $P: V \rightarrow$ $C \chi, P(v)=v_{\alpha} \neq 0$.

One can consider a convex set of $L(\operatorname{Supp}(v))$ in the space of $\chi(T)_{\mathbb{Q}}=$ $\chi(T)_{\mathbb{Z}} \otimes \mathbb{Q}$. The support of a set $X \subset \mathbb{C}^{N}=\{\bigcup \operatorname{Supp}(x), x \in X\}$. The following two Lemmas are in particular interest to us.

Lemma 32. $v \in \mathbb{C}^{N}$ is unstable w.r.t. $T \Leftrightarrow 0 \notin L(\operatorname{Supp}(v))$.
Denote W_{0}^{G} a manifold of unstable points.
Theorem 33. For any closed G-submanifolds of $X \subset W_{0}^{G}$ there exists a filtration of G-invariant submanifolds $X=X_{0} \supset X_{1} \supset X_{2} . . \supset X_{N}=0$ which is dual to a system of regular mappings $f_{i}: X_{i} \rightarrow A \chi_{i}, X_{i+1}=$ $f_{i}^{-1}(0), 0 \in A_{\chi_{i}}$.

T-stability

A vector bundle E (corr. $\mathcal{O}(E)$) is called T-stable if \forall flag of subsheaves $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset . . \subset \mathcal{F}_{k} \simeq \mathcal{O}(E)$ and \forall positive vector $\left(n_{1}, . ., n_{k}\right), H^{0}\left(M^{n}, F_{\chi}\left(n_{1}, . ., n_{k}\right)\right)=$ $0, \forall \chi, F_{\chi}\left(n_{1}, . ., n_{k}\right)=F\left(n_{1}, . ., n_{k}\right) \otimes L_{\chi}, L_{\chi} \in \operatorname{Pic}^{0}(M)$.

A vector bundle E is called T-polystable if $H^{0}\left(M^{n}, F_{\chi}\left(n_{1}, . ., n_{k}\right)\right)>0 \Rightarrow$ $F_{\chi}\left(n_{1}, . ., n_{k}\right)=0$. The others are unstable.

Definition 14. A vector bundle E is called T-unstable if \exists a flag of coherent submodules $\mathcal{F}_{1} \subset^{n_{1}} \mathcal{F}_{1} \subset . . \subset \mathcal{F}_{k} \simeq \mathcal{O}(E)$ such that for a certain positive $n=\left(n_{1}, . ., n_{k}\right)$ the divisor $F_{\chi}\left(n_{1}, . ., n_{k}\right)$ and $L_{\chi} \in \operatorname{Pic}^{0}(M)$ is effective.

Definition 15. A vector bundle E on M is α-unstable if \exists a free submodule $\mathcal{F} \subset \mathcal{O}(E):$ the divisor $(\operatorname{dimEdet} \mathcal{F}-\operatorname{dim} \mathcal{F} \operatorname{det} \mathrm{E})^{2}>\mathbf{0}$ and lies in the positive component of the cone $\left\{x^{2}>0\right\}$ in a group $\operatorname{Pic}_{R} V=P i c V \otimes R$. The notion of H-stability is equivalent to T-stability. The main point is that we can extract the information about stability of E from the algebra $A_{0}^{H}(E)$ as one can do it using the description of E^{ρ} using unitary representation.

Theorem 34. (Bogomolov's effective restriction) (Huybrechts \& Lehn, 2010) Let W be a locally free sheaf of rank $r \geqslant 2$ on a family of curves with $c_{1}(W)=0$. Assume that W is μ-stable with respect to an ample class $H \in K^{+} \cap N u m$ and $C \subset X$ be a smooth curve with $[C]=n H$. Let $2 n \geqslant \frac{R}{r} \Delta(F)+1$. Then $\left.F\right|_{C}$ is a stable sheaf.
4. Kempf-Ness theorem, Git and slope-stability (Kempf, , \& Ness, 1979), (Mumford et al., 1994), (Gieseker, 1979) The KempfNess theorem (Kempf et al., 1979), gives a criterion for the stability of a vector v in a representation ρ of a complex reductive group G. If the complex vector space is given a norm that is invariant under a maximal compact subgroup of the reductive group, then the Kempf-Ness theorem states that a vector is stable if and only if the norm attains a minimum value on the orbit of the vector.

Theorem 35. (Kempf et al., 1979) Let G be a reductive algebraic group
acting linearly on a projective variety X. A point $x \in X$ is polystable if and only if the orbit $G x$ contains a zero of the moment map. If x is polystable, the intersection $\mu^{-1}(0) \cap G x$ is a unique K-orbit. The inclusion $\mu_{K}^{-1}(0) \subset M^{s s}$ induces the homeomorphism $\mu_{K}(0) \rightarrow M / / G$

For bundles on curves the stability defined by slopes and by growth of Hilbert polynomial coincide. In higher dimensions, these two notions are different and have different advantages. Gieseker stability has an interpretation in terms of geometric invariant theory.

Let X be a smooth projective variety of dimension n, H its hyperplane section. A slope of a vector bundle E with respect to H is a rational number defined as:

$$
\mu(E):=\frac{c_{1}(E) \cdot H^{n-1}}{\operatorname{rk}(E)}
$$

where c_{1} is the first Chern class. A torsion-free coherent sheaf E is μ semistable if for any nonzero subsheaf $F \subseteq E$ the slopes satisfy the inequality $\mu(F) \leq \mu(E)$. It's μ-stable if, in addition, for any nonzero subsheaf $F \subseteq E$ of smaller rank the strict inequality $\mu(F)<\mu(E)$ holds. This notion of stability may be called slope stability.

For a vector bundle E the following chain of implications holds: E is μ stable $\Rightarrow E$ is stable $\Rightarrow E$ is semistable $\Rightarrow E$ is μ-semistable.

5. K-Stability,-POLYSTABILITY

The Hilbert-Mumford criterion shows that to test the stability of a point x in a projective algebraic variety $X \subset \mathbb{C P}^{N}$ under the action of a reductive algebraic group $G \subset \mathrm{GL}(N+1, \mathbb{C})$, it is enough to consider the one parameter subgroups 1-PS of G. To proceed, one takes a 1-PS of G, say $\lambda: \mathbb{C}^{*} \hookrightarrow G$, and looks at the limiting point: $x_{0}=\lim _{t \rightarrow 0} \lambda(t) \cdot x$.

This is a fixed point of the action of the 1-PS λ, and so the line over x in the affine space \mathbb{C}^{N+1} is preserved by the action of λ. An action of the multiplicative group \mathbb{C}^{*} on a one dimensional vector space comes with a weight, an integer we label $\mu(x, \lambda)$, with the property that: $\lambda(t) \cdot \tilde{x}=t^{\mu(x, \lambda)} \tilde{x}$ for any \tilde{x} in the fibre over x_{0}. The Hilbert-Mumford criterion says:

- The point x is "'semistable"' if $\mu(x, \lambda) \leq 0$ for all 1-PS $\lambda<G$.
- The point x is "stable" if $\mu(x, \lambda)<0$ for all 1-PS $\lambda<G$.
- The point x is "'unstable"' if $\mu(x, \lambda)>0$ for any 1-PS $\lambda<G$.

For a definition of test-configuration we refer reader to a Algebro-Analytic dictionary [7].

We follow (Stoppa, 2011; Ross \& Dervan, 2017; Székelyhidi, 2014).
Definition 16. (Slope of a polarized variety, projective case) Define a slope of (X, L) of a polarized variety to be

$$
\mu(X, L):=\frac{-K_{X} \cdot L^{n-1}}{L^{n}}=\frac{-\int_{X} c_{1}\left(K_{X}\right) \cdot c_{1}(L)^{n-1}}{\int_{X} c_{1}(L)^{n}}
$$

Definition 17. (Donaldson-Futaki invariant) D-F invariant of a test configuration $(\mathcal{X}, \mathcal{L})$ for (X, L) of the exponent r is

$$
D F(\mathcal{X}, \mathcal{L}):=\frac{n}{n+1} \mu\left(X, L^{\otimes r}\right) \mathcal{L}^{n+1}+\mathcal{L}^{n} . K_{\mathcal{X} / P}
$$

Definition 18. (K-stability for projective varieties) We say a polarized variety (X, L) is

- K-semistable if $D F(\mathcal{X}, \mathcal{L}) \geqslant 0$ for t.c. $(\mathcal{X}, \mathcal{L})$
- K-stable if $D F(\mathcal{X}, \mathcal{L})>0$ for t.c. $(\mathcal{X}, \mathcal{L})$ with $\|(\mathcal{X}, \mathcal{L})\|_{m}>0$
- uniformly K-stable if \exists an $\varepsilon>0$ s.t. $D F(\mathcal{X}, \mathcal{L}) \geqslant \varepsilon\|(\mathcal{X}, \mathcal{L})\|_{m} \forall$ test-configurations $(\mathcal{X}, \mathcal{L})$ for (X, L)

6 Preliminaries:

Atiyah class of a vector bundle

6.0.1 Rank 2 Higgs bundles

Higgs bundle for the basic representation of \mathbb{C}^{2} is the rank 2 holomorphic vector bundle with a symplectic form and trace zero Higgs field $\phi \in H^{0}(\Sigma, E n d V \otimes K)$. Characteristic equation

$$
\operatorname{det}(x-\phi)=x^{2}-q=0
$$

defines a curve in the total space of canonical bundle $\pi: K \rightarrow \Sigma$.
Let $L \subset E$ be a ϕ-invariant line bundle. Then near a zero of $\operatorname{det} \phi$, which has only simple zeroes we can find a holomorphic trivialization of E w.r.t. which

$$
\phi=\left[\begin{array}{cc}
a(z) & b(z) \\
0 & -a(z)
\end{array}\right] d z
$$

ϕ takes values at trace-free $E n d E$ for holomorphic functions a, b.
$\operatorname{det} \phi$ is a holomorphic quadratic differential in this case. We obtain a Hitchin fibration

$$
\begin{gathered}
\mathcal{M}_{d}^{s} \rightarrow Q D(\Sigma) \\
(A, \phi) \rightarrow \operatorname{det} \phi
\end{gathered}
$$

This map is surjective with fibres $\operatorname{det}^{-1}(q)$ diffeomorphic to a compact tori.

6.0.2 The Atiyah class of a vector bundle

We mostly follow (Kapranov, 1999). Let X be a complex analytic manifold. Let E be a holomorphic vector bundle on X, and $J^{1}(E)$ be the bundle of first jets of sections of E. By (Atiyah, 1957a) it fits into an exact sequence

$$
\begin{equation*}
0 \rightarrow \Omega_{1} \otimes E \rightarrow J^{1}(E) \rightarrow E \rightarrow 0 \tag{6.1}
\end{equation*}
$$

which therefore gives rise to the extension class $\alpha_{E} \in \operatorname{Ext} t^{1} X\left(E, \Omega_{1} \otimes E\right)=$ $H^{1}\left(X, \Omega_{1} \otimes E n d(E)\right)$ known as the Atiyah class of E. An equivalent way of getting α_{E} is as follows. Let $\operatorname{Conn}(E)$ be the sheaf on X whose sections over $U \subset X$ are holomorphic connections in $\left.E\right|_{U}$. As well known, the space of such connections is an affine space over $\Gamma\left(U, \Omega_{1} \otimes \operatorname{End}(E)\right)$, so $\operatorname{Conn}(E)$ is a sheaf of $\Omega_{1} \otimes \operatorname{End}(E)$ torsors. Sheaves of torsors over any sheaf A of Abelian groups are classified by elements of $H^{1}(X, A)$, and α_{E} is the element classifying $\operatorname{Conn}(E)$. So α_{E} is an obstruction to the existence of a global holomorphic connection

6.0.3 Atiyah class and curvature

The class α_{E} can be easily calculated both in Cech and Dolbeault models for cohomology.

6.0.4 C̆ech model

In the C ech model, we take an open covering $X=\cup U_{i}$ and pick connections ∇_{i} in $\left.E\right|_{U_{i}}$. Then the differences $\varphi_{i j}=\nabla_{i}-\nabla_{j} \in \Gamma\left(U_{i} \cap U_{j}, \Omega_{1} \otimes \operatorname{End}(E)\right)$ form a Cech cocycle representing α_{E}.

6.0.5 Dolbeault model

In the Dolbeault model, we pick a C^{∞}-connection in E of type (1,0), i.e., a differential operator $\nabla: E \rightarrow \Omega^{1,0} \otimes E, \nabla(f s)=\partial(f) s+f(\nabla s)$. Let $\bar{\nabla}=\nabla+\bar{\partial}$ where $\bar{\nabla}$ is the (0,1)-connection deï \neg ningtheholomorphicstructure.Thecurvature $\mathrm{F}_{\bar{\nabla}}$ splits into the sum $F_{\bar{\nabla}}=F_{\vec{\nabla}}^{2,0}+F_{\vec{\nabla}}^{1,1}$ according to the number of antiholomorphic differentials. Then

Theorem 36. If ∇ is any smooth connection in E of type $(1,0)$, then $F_{\bar{\nabla}}$ is a Dolbeault representative of α_{E}.

Remark 3. Holomorphic connections in E can be identified with holomorphic sections of a natural holomorphic fiber bundle $C(E)$, which is an affine bundle over $\Omega^{1} \otimes E n d(E)$. The fiber $C(E)_{x}$ of $C(E)$ at $x \in X$ is the space of first jets of fiberwise linear isomorphisms $E_{x} \times X \rightarrow E$ defined near and identical on $E_{x} \times x$. Clearly, this is an affine space over $T_{x} X \otimes \operatorname{End}\left(E_{x}\right)$. Now, $(1,0)$-connections ∇ in E are in natural bijection with arbitary C^{∞} sections σ of $C(E)$. Since $C(E)$ is a holomorphic affine bundle, every such σ has a well defined antiholomorphic derivative $\bar{\partial} \sigma$ which is a $(0,1)$-form with values in the corresponding vector bundle, i.e., $\bar{\partial} \sigma \in \Omega^{0,1} \otimes \Omega^{1,0} \otimes \operatorname{End}(E)=\Omega^{1,1} \otimes \operatorname{End}(E)$. If σ corresponds to ∇, then $\bar{\partial} \sigma=F_{\bar{\nabla}}^{1,1}$.

Recall that a Hermitian metric in a holomorphic vector bundle E gives rise to a unique connection $\bar{\nabla}=\nabla+\bar{\partial}$ of the above type which preserves the metric. This connection is called the canonical connection of the hermitian holomorphic bundle. It is known that $F_{\bar{\nabla}}$ in this case is of type $(1,1)$. It implies at once the following

Proposition If E is equipped with a Hermitian metric and ∇ is its canonical con-
nection, then $F_{\bar{\nabla}}$ is a Dolbeault representative of α_{E}.

6.0.6 Atiyah class and Chern classes.

If X is Kähler, then $c_{m}(E) \in H^{2 m}(X, C)$, the m-th Chern class of E, can be seen as lying in $H^{m}\left(X, \Omega^{m}\right)$, and it follows that it is recovered from the Atiyah class as follows:

$$
c_{m}(E)=\operatorname{Alt}\left(\operatorname{tr}\left(\alpha_{E}^{m}\right)\right)
$$

Here α_{E}^{m} is an element of $H^{m}\left(E,\left(\Omega^{1}\right)^{\otimes m} \otimes E n d E\right)$ obtained using the tensor product in the tensor algebra and the associative algebra structure in $\operatorname{End}(E)$, while Alt is the antisymmetrization $\left(\Omega^{1}\right)^{\otimes m} \rightarrow \Omega^{m}$. Note that the antisymmetrization constitutes in fact an extra step which disregards a part of information: without it, we get an element

$$
\overline{c_{m}^{-}}=\operatorname{tr}\left(\alpha_{E}^{m}\right) \in H^{m}\left(x,\left(\Omega^{1}\right)^{\otimes m}\right)
$$

. For a vector space V let us denote by $C y c^{m}(V)$ the cyclic antisymmetric tensor power of V, i.e.,

$$
C y c^{m}(V)=\left\{a \in V^{\otimes m}: t a=(1)^{m+1} a\right\}, t=(12 \ldots m),
$$

where t is the cyclic permutation. Then, the cyclic invariance of the trace implies that

$$
\left.c_{m} \overline{(} E\right) \in H^{m}\left(X, C y c^{m}\left(\Omega^{1}\right)\right),
$$

but it is not, in general, totally antisymmetric. We will call $\overline{c_{m}^{-}}(E)$ the big Chern class of E; the standard Chern class is obtained from it by total antisymmetrization.

6.0.7 The Atiyah class of a principal bundle.

Let G be a complex Lie group with Lie algebra g and $P \rightarrow G$ be a principal G-bundle on X. Let $a d(P)$ be the vector bundle on X associated with the adjoint representation of G. By considering connections in P, we obtain, similarly to the above, its Atiyah class $\alpha_{P} \in H^{1}\left(X, \Omega^{1} \otimes a d(P)\right)$. All the above properties of Atiyah classes are obviously generalized to this case.

6.0.8 Atiyah class via curvature tensor

As we have observed before, $\alpha_{E}:=\bar{\partial} \sigma$, where σ is a C^{∞}-section of $C(E)$, where $C(E)_{x}:=J^{1}\left(E_{x} \times X \rightarrow E\right)$, where $E_{x} \times X \rightarrow E$ are fiberwise linear isomorphisms defined near and identical on $E_{x} \times\{x\}$.

$$
\bar{\partial} \sigma \in \Omega^{1,1} \otimes E n d E,
$$

at the same time,

$$
\bar{\partial} \sigma=F_{\bar{\nabla}}^{1,1},
$$

where $F_{\bar{\nabla}}^{1,1}$ is a $(1,1)$-part $F_{\bar{\nabla}}=F_{\bar{\nabla}}^{2,0}+F_{\bar{\nabla}}^{1,1}$ of the curvature of connection $\bar{\nabla}=$ $\nabla+\bar{\partial}$, where ∇ is (1,0)-type connection

6.0.9 Weak Lie algebra in Kähler geometry

Suppose that X is equipped with a Kaehler metric h. Let ∇ be the canonical (1, 0)-connection in $T X$ associated with h, so that

$$
[\nabla, \nabla]=0 \in \Omega^{2,0}(\operatorname{End}(T)) .
$$

Set $\bar{\nabla}=\nabla+\bar{\partial}$, where $\bar{\partial}$ is the $(0,1)$-connection defining the complex structure.

The curvature of $\bar{\nabla}$ is just

$$
R=[\bar{\partial}, \nabla] \in \Omega^{1,1}(\operatorname{End}(T))=\Omega^{0,1}(\operatorname{Hom}(T \otimes T, T))
$$

This is a Dolbeault representative of the Atiyah class $\alpha_{T} X$, in particular, $\bar{\partial} R=0$ in $\Omega^{0,2}(\operatorname{Hom}(T \otimes T, T))$ (Bianchi identity). Further, the condition for h to be Kaehler is equivalent, as it is well known, to torsion-freeness of ∇, so actually $R \in \Omega^{0,1}\left(\operatorname{Hom}\left(S^{2} T, T\right)\right)$.

Let us now define tensor fields $R_{n}, n \leq 2$, as higher covariant derivatives of the curvature: $\left.R_{n} \in \Omega^{0,1}\left(\operatorname{Hom}\left(S^{2} T\right) \otimes T^{\otimes(n-2)}, T\right)\right), R_{2}:=R, R_{i+1}=\nabla R_{i}$.

Lemma 37. Each R_{n} is totally symmetric, i.e., $R_{n} \in \Omega^{0,1}\left(\operatorname{Hom}\left(S^{n} T, T\right)\right)$.

Proof. Except for $R_{2}=R$ the forms R_{n} are not, in general, $\bar{\partial}$-closed. Let $\Omega^{0, \bullet}(T)$ be the Dolbeault complex of global smooth $(0, i)$-forms with values in T, and $\Omega^{0, \bullet-1}(T)$ be the shifted complex.

Theorem 38. The maps

$$
R_{n}: \Omega^{0, j_{1}}(T) \otimes \ldots \otimes \Omega^{0, j_{n}}(T) \rightarrow \Omega^{0, j_{1}+\ldots+j_{n}+1}(T), n \leq 2,
$$

given by composing the wedge product (with values in ${ }^{0, \bullet}\left(T^{\otimes n}\right)$) with $R_{n} \in$ $\Omega^{0,1}\left(\operatorname{Hom}\left(T^{\otimes n}, T\right)\right)$, make the shifted Dolbeault complex $\Omega^{0, \bullet 1}(T)$ into a weak Lie algebra.

If X is a Hermitian symmetric space, then R makes $\Omega^{0, \bullet 1(T)}$ into a genuine Lie $d g$-algebra.

6.0.10 Companion theorem for vector bundles

Let now $\left(E, h_{E}\right)$ be a Hermitian holomorphic vector bundle on a Kähler manifold X, and let ∇_{E} be its canonical $(0,1)$-connection, so that

$$
\left[\nabla_{E}, \nabla_{E}\right]=0 \in \Omega^{2,0}(\operatorname{End}(E)) .
$$

Let $F=\left[\bar{\partial}, \nabla_{E}\right] \in \Omega^{1,1}(E n d(E))=\Omega^{0,1}(\operatorname{Hom}(T \otimes E))$ be the total curvature of ∇_{E}. Then $\bar{\partial} F=0$ in $\Omega^{2,0}(\operatorname{Hom}(T \otimes E, E))$, and F is the Dolbeault representative of the Atiyah class α_{E}. Define the tensor fields $F_{n} \in \Omega^{0,1}\left(\operatorname{Hom}\left(S^{n-1} T \otimes E, E\right)\right)$ by setting $F_{2}=F, F_{n}=\nabla F_{n 1}, n \leq 3$. As before, the required symmetry of F follows from.

Theorem 39. The maps

$$
c_{n}:\left(\Omega^{0, \bullet-1}(T)^{\otimes(n-1)}\right) \otimes \Omega^{0, \bullet-1}(E) \rightarrow \Omega^{0, \bullet-1}
$$

given by composing the wedge product with F_{n}, make the Dolbeault complex $\Omega^{0, \bullet-1}(E)$ into a weak module over the weak Lie algebra $\Omega^{0, \bullet-1}(T)$.

Corollary 10. If $\left(E, h_{E}\right)$ is a homogeneous Hermitian bundle over a Hermitian symmetric space X, then F makes $\Omega^{0, \bullet-1}(E)$ into a dg-module over the dg-Lie algebra $\Omega^{0, \bullet-1}(T)$.

7| Algebro-Analytic dictionary:
 Vector bundles

Algebraic side

Unitary representation ρ

$\rho: \pi_{1}(X) \rightarrow U(n) \rightsquigarrow$ stable bundle E_{ρ}

1. (Narasimhan \& Seshadri, 1965): A vector bundle $E \rightarrow X, X$ is a Riemann surface is stable if and only if it comes from the unitary representation $\rho: \pi_{1}(X) \rightarrow U(n)$.
ε-subcones in the cones of effective
divisors see [10.1] and (Bogomolov, 1977): Let us define a subcone $K_{D, \varepsilon}^{C}$ in the cone of effective divisors
$K_{D} \subset \operatorname{Pic}\left(V_{R}^{2}\right)$ as
$K_{D, \varepsilon}^{C}:=$ will be a set of such
$\left\{x \in K_{D}, x^{2} \geq \frac{\alpha-\varepsilon}{K^{2}}\left(K . \Delta_{P}\right)^{2}\right\}$
where $\varepsilon \geq 0, \alpha=\frac{3 K^{2}}{4 \chi-K^{2}}$ and α measures the "inclination" of the cone $K_{D, \varepsilon}^{C}$ inside K_{D}.
a
[^0]
Analytic side

Unitary connection ∇_{E} on X
having constant central curvature $* F=-2 \pi \mu(E)$, whose holonomy corresponds to the representation ρ.

1. (S. K. Donaldson, 1983): An indecomposable holomorphic bundle $E \rightarrow X$ over X is stable if and only if there is a unitary connection ∇_{E} on X having constant central curvature $* F=-2 \pi \mu(E)$. Such a connection is unique up to isomorphism.
Kähler cone (Demailly \& Paun, 2004)
X is a compact Kähler manifold $H^{1,1}(X, R)$ the space of real $(1,1)$ cohomology classes. Then the Kähler cone K of $X, K \subset H^{1,1}(X, R)$ is one of the connected components of the set P of real $(1,1)$-cohomology classes α which are numerically positive on analytic cycles Y, i.e. such that $\int_{Y} \alpha_{P} \geq 0$ for every irreducible analytic set Y in $X, p=\operatorname{dim} Y$.

Algebraic side

Model of the smooth projective variety According to (Moriwaki, 1995), also see [10.1, 10.1.2] and (Bogomolov, 1977),

Let X be a geometrically irreducible smooth projective variety over F. Let X and C be smooth projective varieties over k, and $f: \mathcal{X} \rightarrow C$ a k-morphism such that the function field of C is F and the generic fiber of f is X, i.e. $\mathcal{X}=X \otimes F$.
X is said to be non-isotrivial if there is a non-empty open set C_{0} of C such that, for all $t \in C_{0}$, the KodairaSpencer map is not zero. Let \bar{F} be the algebraic closure of F. For a point $P \in X(F)$, let us denote by Δ_{P} the corresponding integral curve on X. We fix a line bundle L on X. Let \mathscr{L} be a line bundle on \mathcal{X} with $\mathscr{L} \otimes F=L$.

Definition 19. The pair $(f: \mathcal{X} \rightarrow$ $C, \mathscr{L})$ is called a model of (X, L). A geometric height $h_{L}(P)$ of P with respect to L is defined by

Analytic side

Test-configuration (S. Donaldson, 2002), [pages 5-6]

A t.c. for a polarised variety (X, L) is a pair $(\mathcal{X}, \mathcal{L})$ where \mathcal{X} is a Scheme with a flat morphism $\pi: \mathcal{X} \rightarrow \mathbb{C}$ and \mathcal{L} is a relatively ample line bundle for the morphism π, such that: For every $t \in \mathbb{C}$, the Hilbert polynomial of the fibre $\left(\mathcal{X}_{t}, \mathcal{L}_{t}\right)$ is equal to the Hilbert polynomial $\mathcal{P}(k)$ of (X, L). This is a consequence of the flatness of π. There is an action of \mathbb{C}^{*} on the family $(\mathcal{X}, \mathcal{L})$ covering the standard action of \mathbb{C}^{*} on \mathbb{C}. For any (and hence every) $t \in \mathbb{C}^{*},\left(\mathcal{X}_{t}, \mathcal{L}_{t}\right) \cong$ (X, L) as polarised varieties. In particular away from $0 \in \mathbb{C}$, the family is trivial: $\left(\mathcal{X}_{t \neq 0}, \mathcal{L}_{t \neq 0}\right) \cong(X \times$ $\left.\mathbb{C}^{*}, \operatorname{pr}_{1}^{*} L\right)$ where $\operatorname{pr}_{1}: X \times \mathbb{C}^{*} \rightarrow$ X is projection onto the first factor. We say that a test configuration $(\mathcal{X}, \mathcal{L})$ is a product configuration if $\mathcal{X} \cong X \times \mathbb{C}$, and a 'trivial configuration' if the \mathbb{C}^{*}-action on $\mathcal{X} \cong X \times \mathbb{C}$ is trivial on the first factor.

$$
h_{L}(P)=\frac{\left(\mathscr{L} \cdot \Delta_{P}\right)}{[F(P): F]}
$$

Algebraic side

Moriwaki constant (Moriwaki, 1995), also see [10.1.2] and (Bogomolov, 1977)

The pair $(f: \mathcal{X} \rightarrow C, \mathscr{L})$ is called a model of (X, L). A geometric height $h_{L}(P)$ of P with respect to L is defined by

$$
h_{L}(P)=\frac{\left(\mathscr{L} \cdot \Delta_{P}\right)}{[F(P): F]}
$$

Define a geometric logarithmic discriminant as

$$
d(P)=\frac{2 g\left(\Delta_{P}^{\sim}\right)-2}{[F(P): F]}
$$

where Δ_{P}^{\sim} is a normalization of Δ_{P}.

Theorem (Moriwaki, 1995)
If the cotangent bundle to X is very ample, the following holds:

$$
h_{L}(P) \leq A \cdot d(P)+O(1)
$$

Analytic side

Seshadri constant (Demailly, 1992) Let X be a smooth projective variety, L an ample line bundle on it, x a point of $X, \mathcal{C}_{x}=$ all irreducible curves passing through x.

$$
\epsilon(L, x):=\inf _{C \in \mathcal{C}_{x}} \frac{L \cdot C}{\operatorname{mult}_{x}(C)}
$$

Here, $L \cdot C$ denotes the intersection number of L and $C, \operatorname{mult}_{x}(C)$ measures how many times C passing through x.
Definition: One says that $\epsilon(L, x)$ is the Seshadri constant of L at the point x, a real number. When X is an abelian variety, it can be shown that $\epsilon(L, x)$ is independent of the point chosen, and it is written simply $\epsilon(L)$.

8| Results

8.1 Vector bundle as a section of family of Moduli spaces

Let us introduce a new object, arising from every vector bundle on particular families. Suppose we have B a family of curves and \mathcal{E} a vector bundle on it. We can say that $\left.\mathcal{E}\right|_{C_{\lambda}}$ restricted to a point of the family, i.e. a curve C_{λ}, is a bundle on a Riemann surface with the corresponding unitary connection A. The information of stability of \mathcal{E} is contained in its second chern class $c_{2}(\mathcal{E})$.

Theorem 40. Every vector bundle \mathcal{E} on B, which is stable on the restriction to any curve of the family B, is a smooth section of the family of moduli spaces of vector bundles $M_{C_{\lambda}}, \lambda \in \Lambda$.

$$
\mathcal{E} \in \Gamma\left(M_{C_{\lambda}}\right)_{\lambda \in \Lambda}
$$

Proof. Vector bundle \mathcal{E} on the family of curves B on the restriction to the point $\left.\mathcal{E}\right|_{C_{\lambda_{0}}}$, i.e. a particular curve $C_{\lambda_{0}}$, is a vector bundle, arising from the representation of the fundamental group of $\pi_{1}\left(C_{\lambda_{0}}\right)$ (by the Narasimhan-Seshadri theorem). Therefore we can simply consider the following fibration on B : the fiber on every curve C_{λ} corresponds to its‘ moduli space $M_{C_{\lambda}}$. Consequently, to "fix a vector bundle on the family $B^{\prime \prime}$ simply means that on each fiber, i.e. on the corresponding moduli space, we have to choose one element. It precisely repeats the statement of the proposition.

Remark 4. To supplement our definition we should note that stable bundles come from

- Stable bundles on the normalizations of singular curves: $\mathcal{E} \rightarrow \hat{C}$, where ν : $\hat{C} \rightarrow C$ is a normalizarion. These bundles one can get from representations of a fundametal group of the normalization $\pi_{1}(\hat{C})$ and thus destabilizing sheaf is not induced on the initial curve C
- Bundles which are unstable on the normalization \hat{C}, but are stable on the singular curve C (parabolic semistable vector bundles). They appear in the following way: we can take an unstable bundle $\hat{\mathcal{E}}$ (i.e. with destabilizing subsheaf \mathscr{F}) on the normalization \hat{C}. When we arrive to a base C it transforms to a point $\mathcal{E}^{\text {sing }}$. In such way we obtain the identification of the parameters of the destabilizing sheaf \mathscr{F} with the structure of the parabolic bundle on C. It means that on $\hat{\mathcal{E}} \rightarrow \hat{X}$, where $\hat{\mathcal{E}}$ is an unstable bundle at the point on the normalization \hat{X} (\hat{X} denotes X blown-up in a a node of a singular curve $C, \nu: \hat{C} \rightarrow C$). Then it has a normal destabilizing subsheaf $\mathscr{F} \subset \hat{\mathcal{E}}$ such that $c_{1}(\mathscr{F})-\left(\frac{r k \mathscr{F}}{k}\right) c_{1}(\mathcal{E}) \in K^{+}$.
A blow-down map $\hat{\nu}$ induces a morphism:

$$
\hat{\nu}: \mathscr{F} \rightarrow \mathcal{E}_{p}
$$

where \mathcal{E}_{p} is a flag variety of type determined by a fixed quasiparabolic structure i.e. a flag $\mathcal{E}_{p}=F_{1} \mathcal{E}_{p} \supset F_{2} \mathcal{E}_{p} \supset \ldots \supset F_{r} \mathcal{E}_{p}$ and weights $\alpha_{1}, . ., \alpha_{r}$ attached to $F_{1} \mathcal{E}_{p}, . ., F_{r} \mathcal{E}_{P}$ such that $0 \leq \alpha_{1}<\alpha_{2}<\ldots<\alpha_{r}<1$, $k_{1}=\operatorname{dim} F_{1} \mathcal{E}_{p}-\operatorname{dimF} F_{2} \mathcal{E}_{p}, k_{r}=\operatorname{dim} F_{r} \mathcal{E}_{P}$ the multiplicities of $\alpha_{1}, . ., \alpha_{r}$.

These are parabolic bundles. Thus we get a strata, which is glued to our families of moduli spaces of vector bundles. It is known that the set of all parabolic semistable bundles is an open subset of a suitable Hilbert Scheme, which has the usual properties, i.e. non-singular, irreducible and of a given dimension. This open set could be mapped to a product of Grassmannians and Flag varieties.

Corollary 11. If $C_{\lambda}=C$ is a constant curve, then all the moduli spaces are the same $M_{C_{\lambda}}=M_{C}=M$, thus every vector bundle on B is decoded by the subset $\mathscr{S} \subset M$ in the moduli space $M: \mathscr{S}=\left\{m_{\lambda} \in M, \lambda \in \Lambda\right\}$

Corollary 12. Moduli space M_{B} of all the vector bundles on B consist of all the sections S of family of the corresponding moduli spaces $M_{C_{\lambda}}$.

Corollary 13. If $C_{\lambda}=C_{1}$ and $\Lambda=C_{2}$, thus we have a vector bundle on the $C_{1} \times C_{2}$. Then every subset $\mathscr{C}_{1} \subset M_{C_{2}}$ or $\mathscr{C}_{2} \subset M_{C_{1}}$ will form a cycle in the corresponding Moduli space of vector bundles.

8.2 Second chern class as a cycle in the moduli space

Suppose, as above \mathcal{E} be a vector bundle on B and $C \subset B$ is some other smooth projective curve. Let $F_{C} \rightarrow C$ be an arbitrary stable vector bundle on C. $\mathcal{O}(\mathcal{E})$ will denote the space of smooth sections of vector bundle \mathcal{E} and $\left.\mathcal{O}(\mathcal{E})\right|_{C}$ its restriction to a curve C. Therefore we obtain a diagram which describes the operation of elementary transformation $T_{C, F}$:

$$
\begin{equation*}
T_{C, F}:\left.\mathcal{O}(\mathcal{E}) \longrightarrow \mathcal{O}(\mathcal{E})\right|_{C} \xrightarrow{\mathfrak{G}} F_{C} \longrightarrow 0 \tag{8.1}
\end{equation*}
$$

This way we get a bundle $W=: T_{C, F}(\mathcal{E})=\operatorname{ker}(\mathfrak{S})$. We can take the inverse of the map \mathfrak{S}.

Following work (Bogomolov, 1994), we obtain the formulae for the change of Chern classes under the operation of elementary transformation:

$$
\begin{equation*}
c_{1}(W)=c_{1}(\mathcal{E})-r C \tag{8.2}
\end{equation*}
$$

$$
\begin{equation*}
c_{2}(W)=c_{2}(\mathcal{E})+\frac{\left(r^{2}-r\right)}{2} C^{2}-r C c_{1}(\mathcal{E})+\operatorname{det} F_{C} \tag{8.3}
\end{equation*}
$$

where $c_{1}(\mathcal{E})$ and $c_{2}(\mathcal{E})$ are the chern classes of the initial bundle. One can start performing elementary transformation procedure assuming that the initial bundle \mathcal{E} is trivial.

Thus we can rewrite a map \mathfrak{S} on the level of sections of moduli spaces.
By Theorem (40) any vector bundle on family of curves is a smooth section of families of moduli spaces of vector bundles. Rewrite a diagram as:

$$
\begin{equation*}
\Gamma\left(\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}\right) \longrightarrow \Gamma\left(\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}^{\left.\right|_{C}}\right) \xrightarrow{\mathfrak{G}} \Gamma\left(M_{C}\right) \longrightarrow 0 \tag{8.4}
\end{equation*}
$$

where $\Gamma(-)$ denotes taking the corresponding sections. Let us mention that the kernel of the first map is a locally free sheaf and is isomorphic to $\mathcal{O}(\mathcal{E} \otimes-C)$. It is natural to take the inverse of the map \mathfrak{S}. It will act just as a tensor product to \otimes $\mathcal{O}(C)=\mathfrak{S}^{-1}$.
\mathfrak{S}^{-1} induces a morphism from the curve lying in the base space $C \subset B$ to the space of unitary bundles.

Now we should understand how to choose a curve $C \subset B$ and a bundle F_{C} on it to remain a bundle $W=\operatorname{ker} \mathfrak{S}$ stay stable.

Let us count the second chern class of a bundle $W^{\prime}=W \otimes \frac{1}{r} \mathcal{O}(C)$.

Before we proceed let us count the determinant bundle for L_{1}.

$$
\begin{equation*}
\operatorname{det} W^{\prime}=\operatorname{det} W \otimes \frac{1}{r} \mathcal{O}(C)=\operatorname{det} \mathcal{E} \otimes \mathcal{O}_{X}(-r C) \otimes \frac{1}{r} \mathcal{O}(C)=\operatorname{det} \mathcal{E} \tag{8.5}
\end{equation*}
$$

Thus the determinant bundle does not change in our case. Simple calculation also shows that $c_{1}\left(W^{\prime}\right)=0$.

Now we can start counting the second Chern class of the bundle W^{\prime}. Recall that the discriminant of a bundle does not change under multiplication to any line bundle.

Thus,

$$
\begin{gathered}
\Delta\left(W^{\prime}\right)=\Delta(W) \\
\Delta(W)=\Delta(\mathcal{E})+\frac{r}{k} c_{1}(\mathcal{E}) C-c_{1}\left(F_{C}\right)+\frac{r(k-r)}{2 k} C^{2}
\end{gathered}
$$

since $c_{1}\left(W^{\prime}\right)=0$,
it implies that

$$
-c_{2}(W)=\Delta(\mathcal{E})+\frac{r}{k} c_{1}(\mathcal{E}) C-c_{1}\left(F_{C}\right)+\frac{r(k-r)}{2 k} C^{2}
$$

and since initial \mathcal{E} was a trivial bundle, we get:

$$
\begin{equation*}
-c_{2}\left(W^{\prime}\right)=-c_{1}\left(F_{C}\right)+\frac{r(k-r)}{2 k} C^{2} \tag{8.6}
\end{equation*}
$$

The question of stability of a vector bundle on a family of curves reduces to a much simplier notion of stability for particular curve and bundle on it. Our observations result to a theorem which states that:

Theorem 41. Let W be a locally free sheaf of rank $r \geqslant 2$ on family of curves
with $c_{1}(W)=0$. Assume that W is μ-stable with respect to an ample class $H \in K^{+} \cap N u m$ and $C \subset X$ be a smooth curve with $[C]=n H$.
Let $2 n \geqslant \frac{R}{r} \delta(F)+1$. Then if a bundle W is stable it implies that

$$
\begin{equation*}
c_{2}(W)=c_{1}\left(F_{C}\right)-\frac{r(k-r)}{2 k} C^{2}, \tag{8.7}
\end{equation*}
$$

where F_{C} is a bundle on a curve C;
since $\delta(W)=-c_{2}(W)$, it follows that

$$
c_{2}(W)>0
$$

Below we will modify our theorem according to the interpretation of second chern class as a cycle in the moduli space of vector bundles on a curve C_{λ} for some $\lambda \in \Lambda$.

8.2.1 Optimal choice of the curve C and the bundle F_{C}

The purpose of this section is to interpret $c_{2}(\mathcal{E})$ as a cycle in a moduli space $M_{C_{\lambda}}$ for some $\lambda \in \Lambda$ and prove

Theorem 42. Operation of the elementary transformation works on any algebraic surface. In particular, for a family of curves B. For example, we can perform an elementary transformation along a curve C_{λ}. Therefore the second chern class is indeed represented by some moduli section $\mathscr{S}_{c_{2}(\mathcal{E})}$ for B in some of moduli spaces $M_{C_{\lambda}}$. Moreover, it is given by a formula:

$$
\begin{equation*}
\mathscr{S}_{c_{2}(\mathscr{E})}=c_{2}(W)=c_{1}\left(F_{C}\right)-\frac{r(k-r)}{2 k} C^{2} \tag{8.8}
\end{equation*}
$$

Proof. Let us consider a map in a more detailed way:

$$
\begin{equation*}
\mathfrak{S}^{-1}: M_{C} \rightarrow\left\{M_{C_{\lambda}}\right\}^{\mid c}{ }_{\lambda \in \Lambda} \tag{8.9}
\end{equation*}
$$

Let us analyze in detail the sense of elementary transformation.

$$
\begin{equation*}
\Gamma\left(\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}\right) \xrightarrow{\phi} \Gamma\left(\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}^{\mid c}\right) \xrightarrow{\mathfrak{G}} \Gamma\left(M_{C}\right) \longrightarrow 0 \tag{8.10}
\end{equation*}
$$

or corresponding diagram:

$$
\begin{equation*}
\mathrm{E} \xrightarrow{\phi} \mathrm{El}_{C} \xrightarrow{\mathfrak{G}} \mathrm{~F}_{C} \longrightarrow 0 \tag{8.11}
\end{equation*}
$$

Take $F_{C} \in \Gamma\left(M_{C}\right), E \in \Gamma\left(\left\{M_{C^{1}}^{t}\right\}_{t \in C_{2}}\right)$, where E is the initial trivial bundle.
The new bundle W which we get is a kernel of a composite of all the maps on the diagram. When one uses an operation of elementary transformation, a curve $C \subset B$ is embedded to B. We can think of a curve C as a sum of divisors along each curve C_{λ} for a family B. Assume that C intersects each curve C_{λ} only at one point. Put $C \cap C_{\lambda}=D_{\lambda}$. Clearly, the restrictions $\left.E\right|_{D_{\lambda}}=\left.V\right|_{D_{\lambda}}$, where $V \in M_{C_{\lambda}}$, coincide.

Consider a map $\mathfrak{S}:\left.E\right|_{C} \rightarrow F_{C}$ and take its kernel: $W:=\operatorname{Ker}\left(\left.E\right|_{C} \rightarrow F_{C}\right)=$ $\operatorname{ker} \mathfrak{S}$ we obtain a bundle which shows how do not coincide these two bundles (the set where they coincide maps surjectively). Composing with ϕ we obtain a new bundle on a surface X. Note that ϕ is just a restriction map. From definition of $T_{F, C}$ follows that $\operatorname{Im} \phi \subset W$.

$$
\begin{equation*}
\mathrm{E} \xrightarrow{\phi} \mathrm{~W} \longrightarrow 0 \tag{8.12}
\end{equation*}
$$

To get a fiberwise non-trivial bundle W, elementary transformation should be performed on each fiber, as we have started from the trivial one E. Therefore a curve C should be chosen in a way that it intersects each fiber C_{λ}. Therefore our initial choice of a curve C was a right one. To conclude, we have to analyze a restriction map $\phi: E \rightarrow W$. Note that the bundle W depends on a bundle F_{C}. And we should choose a bundle F_{C} in a special way. Let us note that at the end of this procedure our goal is to get a new bundle on $\left\{C_{\lambda}\right\}_{\lambda \in \Lambda}$ which is an element $Q \in \Gamma\left(\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}\right)$. W should be such bundle along the curve, that at each fiber D_{λ}, the kernel of a morphism $\phi:\left.\left.E\right|_{D_{\lambda}} \rightarrow W\right|_{D_{\lambda}}$ is exactly a bundle, which we want to get after elementary transformation procedure, i.e. Q. Let us consider the case when the elementary transformation is being performed along a curve C_{λ}. We can choose a bundle F_{C} as:

$$
\begin{equation*}
\left.F_{C}\right|_{D_{\lambda}}=\left.E\right|_{C_{\lambda}} /\left.Q\right|_{C_{\lambda}} \tag{8.13}
\end{equation*}
$$

Note that $\left.Q\right|_{C_{\lambda}} \in M_{C_{\lambda}}$ is just an element of the moduli space of vector bundles over curve C_{λ}. Thus we get a map

$$
\begin{aligned}
& \mathfrak{S}^{-1}:\left.M_{C} \rightarrow\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}\right|_{C}, \text { for a } F_{C} \in M_{C} \text {, the map is defined as } \\
& \qquad\left.\mathfrak{S}^{-1}\right|_{D_{\lambda}}:\left.\left.F_{C}\right|_{D_{\lambda}} \rightarrow E\right|_{C_{\lambda}} /\left\{\text { some } \alpha \in M_{C_{\lambda}}\right\}
\end{aligned}
$$

The rank of the bundle $r k F_{C}=r$ depends on the rank of the chosen bundle $\alpha \in M_{C_{\lambda}}$.

It means that F_{C} maps a curve $C=C_{\lambda}$ to a moduli space $M_{C_{\lambda}}$. Thus we obtain a moduli cycle in the moduli space $M_{C_{\lambda}}$, corresponding to a bundle F_{C}.

If a curve C is arbitrary then λ will vary and F_{C} will map a curve C to a moduli section \mathscr{S}.

Consequently, chern class $c_{2}(W)$ will be itself a cycle (or section) in the families of moduli spaces of vector bundles $\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}$. Denote a map [8.13] as F_{C} : $C \rightarrow\left\{M_{C_{\lambda}}\right\}_{\lambda \in \Lambda}$. If we look carefully, we will deduce that the maps \mathfrak{S}^{-1} and F_{C} coincide by definition. Now we had above:

$$
\begin{equation*}
c_{2}(W)=c_{1}\left(F_{C}\right)-\frac{r(k-r)}{2 k} C^{2}, \tag{8.14}
\end{equation*}
$$

We have to understand what is c_{1} of a moduli cycle F_{C}. Since F_{C} is a stable bundle on a curve C it follows that $c_{1}\left(F_{C}\right)>0$. This way a question of positivity of $c_{2}(W)$ reduces to an apropriate choice of a curve C. But if we choose a curve C as C_{λ} we will get a cycle in the Moduli space $M_{C_{\lambda}}$.

8.3 Stability of bundles on smooth projective surfaces

By the effective stability restricton result (Bogomolov, 1994; Huybrechts \& Lehn, 2010) any stable vector bundle on a smooth projective surface restricts to a stable bundle on any ample curve belonging to sufficiently big class. More precisely:

Theorem 43. Let F be a locally free sheaf of rank $r \geqslant 2$. Assume that F is μ-stable with respect to an ample class $H \in K^{+} \cap N u m$. Let $C \subset X$ be a smooth curve with $[C]=n H$. If $2 n \geqslant \frac{R}{r} \delta(F)+1$, then $\left.F\right|_{C}$ is a stable sheaf.

In particular the restriction is stable on the singular fibers with relatively small
number of singularities and on normalizations of such curves. Hence we obtain a section s_{E} over an open subset of $U_{s} \subset P(H)$. Note that the codimension of $P(H)-U_{s} \subset P(H)$ grows if the class H becomes larger and therefore for a generic pencil $P_{t}^{1} \subset P(H)$ of such curves we can define a one-dimensional algebraic class which is given by the intersection of a section $s(E)$ with a moduli section $\mathscr{S}_{P_{s}^{1}}$ which corresponds to a vector bundle over a pencil \mathbb{P}_{s}^{1}.

We want to adress first the relation of this class with an invariant δ defined for vector bundles on surfaces.

Lemma 44. Intersection of a section $s(E)$ and a moduli section $\mathscr{S}_{\mathbb{P}_{s}}$ is indeed given by one-dimensional algebraic class, which is given by $\left(\mathscr{L} . \Delta_{P}\right)$, where \mathscr{L} is a line bundle, corresponding to a divisor $s(E)$ and Δ_{P} is an integral curve, corresponding to a moduli section $\mathscr{S}_{\mathbb{P}_{s}^{1}}$, if a moduli section $\mathscr{S}_{P_{s}^{1}}$ has a natural polarizatoion \mathscr{L}^{\prime}.

$$
\begin{equation*}
\varkappa:=s(E) \cap \mathscr{S}_{\mathbb{P}_{s}^{1}}=\left(\mathscr{L} \cdot \Delta_{P}\right) \tag{8.15}
\end{equation*}
$$

Proof. Take as a model \mathcal{X} a family of moduli spaces of vector bundles $\left\{M_{t}\right\}, t \in \mathbb{P}_{s}^{1}$ for the curves in the pencil \mathbb{P}_{s}^{1}. Then the section $s(E)$ corresponds to a divisor on $\left\{M_{t}\right\}$ and we can find a line bundle \mathscr{L} which corresponds to it. Integral curve Δ_{P} is the same as a moduli section $\mathscr{S}_{\mathbb{P}_{s}^{1}}$ by definition.

Note that as we have already observed $c_{2}(\mathcal{E})$ is represented by a particular moduli section $\mathscr{S}_{c_{2}(\mathcal{E})}$. In this case a class \varkappa up to a constant is equal to a discriminant Δ.

$$
\varkappa=A \cdot \Delta
$$

Locally, the section $s(E)$ represents a family of curves in the class $[H]$.

8.4 Stability in the case we have no singular fibers

We are going to find a description of stability of a vector bundle on Y through stability of vector bundle $f_{*}(\mathcal{E})$ induced from vector bundle on families of curves B.

A good candidate for a family of curves B is a family, obtained in the following way: take a point $x \in X$ and consider all possible embedded curves. They are parametrized by a set which can be described in the following way. Consider very ample line bundle H on a surface X^{2} and the space $H^{0}\left(X^{2}, H\right)$. Then $\mathbb{P}\left(H^{0}\left(X^{2}, H\right)\right)=\mathbb{P}_{H}$ is a projective space parametrizing the curves in the class H. For any $x \in X^{2}$ there is a subspace \mathbb{P}_{x} parametrzing all such x. Therefore a family of all such curves will be parametrized by a bigger projective space P^{N}. What we have discussed so far is essentially the same families of curves in the class H. The following theorem (?, ?) gives us a positive answer whether the bundle obtained in the way written in the previous section is stable:

Theorem 45. (Moriwaki, 1997)
Let $f: X \rightarrow Y$ be a surjective and projective morphism of quasi-projective varieties over k with $\operatorname{dim} f=1$. Let E be a vector bundle of rank r on X. Then, we define the discriminant divisor of E with respect to $f: X \rightarrow Y$ to be

$$
\left.d i s_{X / Y}(E)=f_{*}\left(2 r c_{2}(E)-(r-1) c_{1}(E)^{2}\right) \cap[X]\right)
$$

Let E be a locally free sheaf on X and y a point of Y.
If f is flat over y, the geometric fiber X_{y} over y is reduced and Gorenstein, and E is strongly semistable on each connected component of the normalization of X_{y}, then $\operatorname{dis}_{X / Y}(E)$ is weakly positive at y.

In our case, $f: B \rightarrow X, c_{1}(\mathcal{E})=0$, thus $\operatorname{dis}_{X / Y}(\mathcal{E})=f_{*}\left(2 r c_{2}(\mathcal{E}) \cap[B]\right)$. Notice that $2 r c_{2}(\mathcal{E}) \cap[B]$ is an intersection of 2 cycles in the families of moduli spaces of vector bundles $\left\{M_{C_{\lambda}}\right\}$. Locally, we can assume that a section $s(E)$ represents a class $[B]$. It implies that, since $c_{2}(\mathcal{E})$ is represented by some moduli section $\mathscr{S}_{c_{2}(\mathcal{E})}$, then locally on the open subset U the intersection is equal to a kappa-class:

$$
\begin{equation*}
\left.\left(2 r c_{2}(\mathcal{E}) \cap[B]\right)\right|_{U}=\varkappa_{\mathscr{L}} \tag{8.16}
\end{equation*}
$$

The only thing is that we should find a polarization \mathscr{L} for a moduli section \mathscr{S}. It is given by a polarization \mathscr{L} on the families of moduli spaces. Let us recall some facts from (Beauville, 2006):

Suppose J^{k} is a Jacobian variety parametrizing line bundles of degree k on a curve C. Let us fix a line bundle $L \in J^{k}$ and consider a set

$$
\Delta_{L}:=\left\{E \in M_{r} \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

Δ_{L} is a Cartier divisor on M_{r}. The line bundle $\mathscr{L}=\mathcal{O}_{M_{r}}\left(\Delta_{L}\right)$ is called a determinant line bundle. In our observations, we can take $\mathscr{L}=\mathcal{O}_{M_{r}}\left(\Delta_{L}\right)$ as a polarization we need above.

So, we have a theorem
Theorem 46. In the assumptions of Theorem(45), it is true that for a map
$f: B \rightarrow X$

$$
\left.\operatorname{dis}_{X / Y}(E)\right|_{U}=f_{*}\left(\left.h_{\mathscr{L}}\right|_{U}\right)
$$

and

$$
\left.\operatorname{dis}_{X / Y}(E)\right|_{U}>0,
$$

where the polarization $\mathscr{L}=\mathcal{O}_{M_{r}}\left(\Delta_{L}\right)$.

8.5 Monodromy along singular fibers

8.5.1 Gauss-Manin connection and quadratic Hitchin map

We are recalling a number of facts of non-abelian Hodge theory, following (T. Chen, 2012) and (Donagi \& Pantev, 2009).

Denote $\mathfrak{H i g g s}_{X}$ the moduli space of principal G-bundles over X together with a Higgs field. Bun $_{X}$ is denoted a coarse moduli space of regular stable G-bundles on X.
$\mathfrak{H i g g}{ }_{X}$ has a symplectic structure because it is equal to $T^{*} B u n_{X}$.
Let \mathfrak{g} be a Lie algebra of a group G and $<,>$ is a corresponding Killing form. Then the quadratic Hitchin map is defined as

$$
\begin{gathered}
q h: \mathfrak{H i g g}_{X} \rightarrow H^{0}\left(X, \Omega^{\otimes 2}\right) \\
(P, \theta) \rightarrow<\theta, \theta>
\end{gathered}
$$

where $\theta \in H^{0}\left(X, a d P \otimes \Omega_{X}^{1}\right)$ is a Higgs field.
We can define a lifting of tangent vectors associated with this map:

$$
\begin{gathered}
L_{q h}: T_{X} \mathscr{M}_{g} \rightarrow T_{(P, \theta)} \mathfrak{H i g g} \mathfrak{G}_{X} \\
\left.f \mapsto H_{q h^{*}}\right|_{(P, \theta)}
\end{gathered}
$$

where $f \in T_{X} \mathscr{M}_{g} \cong H^{1}(X, T X)$ is viewed as a linear function on $H^{0}\left(X, \Omega^{\otimes 2}\right)$ by Serre duality, and $H_{q h^{*} f}$ is a hamiltonian vector field of $q h^{*} f$ on $\mathfrak{H i g g}_{X}$. The following theorem holds true:

Theorem 47. The limit lifting of tangent vectors L_{0} associated to the isomon-
odromy lifting L is equal to $\frac{1}{2} L_{q h}$; or,equivalently,
the lifting of tangent vectors on $\mathfrak{H i g g s} \rightarrow \mathscr{M}_{g}$ is representing the associated map of the non-abelian Gauss-Manin connection is equal up to a constant multiple to the lifting of tangent vectors induced from the quadratic Hitchin map.

Let E be a vector bundle on X of degree d and rank n. Recall that in our case the restriction of a bundle $\left.E\right|_{C_{t}}$ to any curve $C_{t} \in X^{b}$ is stable, then, as it is well-known, we have a flat unitary connection $\nabla_{E \mid C_{t}}$ along the fibers C_{t} in X^{b}. Therefore we have a family of such "fiberwise" connections $\left\{\nabla_{E \mid C_{t}}\right\}:=T_{E}$. Also, we can find the projective connections along the singular fibers in a natural way: we can assume the existence of connections on the smooth normalized curves X_{s}^{\prime} with a singularity for a corresponding connection $\nabla_{X_{s}}$ over the points $x_{s} \in X^{\text {sing }}$. Those are called parabolic connections and are constructed in the following way: if we have a non-singular curve with points x_{i} corresponding to the singularities one can define λ-connections(logarithmic connections), which have the poles along a divisor $D=\sum x_{i}$. We can take the residues along these singular points and put an order on it. In particular, they should satisfy the Fuchs relation. Then one can define Parabolic connections:

1) taking logarithmic connections singular over $X^{\text {sing }}$, i.e. a \mathbb{C}-linear maps

$$
D: E \rightarrow E \otimes \Omega_{X}^{1}\left(\log X^{s i n g}\right)=E \otimes \Omega_{X}^{1} \otimes \mathcal{O}_{X}\left(X^{s i n g}\right)
$$

which satisfy the Leibniz identity.
The fiber $\Omega_{X}^{1} \otimes \mathcal{O}_{X}\left(X^{\text {sing }}\right)\left(x_{\beta}\right)$ is canonically identified with \mathbb{C} by sending a meromorphic form to its residue at x_{β}. In particular, $\operatorname{Res} D\left(x_{\beta}\right) \in \operatorname{End}(E)\left(x_{\beta}\right)$
2) forming a full flag of subspaces on each fiber of $\left.E\right|_{x_{i}}$,
3)Let D be a logarithmic connection on X. Let $\operatorname{Res}\left(D, x_{i}\right)=\lambda_{i} I d_{E\left(x_{i}\right)}, x_{i} \in$
$X^{\text {sing }}, i=1, \ldots, m$. Then it follows that

$$
d+n \sum_{j=1}^{m} \lambda_{i}=0
$$

Lemma 48. Smooth deformation between the Higgs bundles and connections is given by the deformation of the λ-connections.

8.5.2 Monodromy from differential-geometric perspective

Stable vector bundles of degree 0 on curves have a special flat hermitian metrics. We can reduce our study to this case for now.

Notice that if we have a moduli space of vector bundles M_{C}, coming from unitary representation from one curve C it is topologically isomorphic to a moduli space coming from unitary representations from any the other curve $M_{C^{\prime}}$. Thus we have a locally topologically constant family of the moduli spaces M_{H} := $\left\{M_{t}\right\}_{t \in P_{t}^{1}-X^{\text {sing }}}^{H}$ over each pencil of curves $P_{t}^{1}-X^{\text {sing }}$ in the class H with the same degenerate fibers corresponding to a finite number $X^{\text {sing }}$ of points in P_{t}^{1} where the curves have singular points. Denote $T:=\left\{C_{t}, t \in \mathbb{P}_{t}^{1}-X^{\text {sing }}\right\} \subset[H]$.

$$
M_{H} \rightarrow T \subset \mathscr{M}_{g}
$$

We can assume that all degenerate curves have exactly one singular point. Consequently, we obtain a family with a monodromy. Regarded as a family of smooth manifolds over T this is a locally trivial fibration by a theorem of Ehresmann. In particular, the fibres are diffeomorphic, but the complex structure may vary. However, the symplectic structure does not vary: it is a symplectic fibre bundle. By taking the annihilator (with respect to the symplectic form) of $T_{M_{H} / T}$ we obtain
a connection (horizontal subbundle of $T M_{H}$) on M_{H} over T. The parallel transport map associated to a path in T is a symplectomorphism, and for loops we in particular obtain the monodromy representation

$$
\text { Mon : } \pi_{1}(T, t) \rightarrow \operatorname{Aut}\left(M_{t}\right)
$$

Collecting it for all $t \in T$, we conclude that we can take a loop around a singular curve, which consists of a non-singular curves and hence obtain a monodromy which will correspond to some automorphism of a moduli section $\phi \in \operatorname{Aut}\left(\mathscr{S}_{P_{t}^{1}}\right)$. Recall that the space of sections $\Gamma\left(M_{H}\right)$ is exactly the space of vector bundles which are stable on the restriction to the curve of the family. We can consider a \mathscr{C} onn $\rightarrow M_{g}$, where \mathscr{C} onn is a nonabelian cohomology space for X. Then there exists a Gauss-Manin $\nabla_{G M}$ connection on this bundle.

We can differentiate any element of $\Gamma\left(M_{H}\right)$ using Gauss-Manin connection $\nabla_{G M}$. Thus a monodromy of a moduli section will correspond to a $\nabla_{G M}(\gamma(t))$, where $\gamma(t)$ is a loop, consisting of non-singular curves, taken around a curve with singularity $\gamma(t) \subset T$.

The tangent space to a moduli space at a regular point is identified with the infinitesimal deformations of the object corresponding to that point. In fact, tangent space to a $B u n_{X}$ at a point P is naturally isomorphic to $H^{1}(X, a d P)$.

In our case, it holds that
Theorem 49. The operator Mon acts as

$$
\text { Mon : }\left.f \mapsto H_{q h^{*} f}\right|_{(P, \theta)},
$$

where $f \in T_{X} \mathscr{M}_{g} \cong H^{1}(X, T X)$ is viewed as a linear function on $H^{0}\left(X, \Omega^{\otimes 2}\right)$ by Serre duality, and $H_{q h^{*} f}$ is a hamiltonian vector field of $q h^{*} f$ on $\mathfrak{H i g g s}_{X}$.

8.6 Relation between the fundamental groups

Consider a pencil $\mathbb{P}_{C_{t}}^{1}$ of curves $\left\{C_{t}\right\}$ on a surface X corresponding to a polarization $\mathscr{L}=H$ on X. We can assume that:

1. The corresponding curves are smooth over $\mathbb{P}_{C_{t}}^{1}-X^{\text {sing }}$ and have exactly one quadratic singular point p_{s} over the set $X^{\text {sing }}$
2. The kernel of the map $\pi_{1}\left(C_{t}\right) \rightarrow \pi_{1}(X)$ is normally generated by a vanishing cycle c_{s} at any point p_{s}
3. The fundamental group $\pi_{1}(X)$ is a quotient of $\pi_{1}\left(C_{t}\right)$ by a normal subgroup containing a subgroup normally generated by an arbitary vanishing cycle c_{s}

Both are standard assumptions on the generic pencil of curves.
Lemma 50. Let N_{P} be the total number of singular points $X^{\text {Sing }}$. Then it is given by the Euler charactrestics formula for a surface X blown up at the H^{2} intersection points of curves parametrized by $\mathbb{P}_{C_{t}}^{1}$.

Proof. Indeed, after blowing up X^{b} at all intersection points, the pencil defines a projection map $X^{b} \rightarrow \mathbb{P}_{C_{t}}^{1}$ with curves C_{t} as fibers. Thus, by the changing Euler characteristic (Hirzebruch, 1962) under blow up, we have

$$
\chi\left(X^{b}\right)=\chi(X)+H^{2}
$$

on the other hand,

$$
\chi\left(X^{b}\right)=\left(2-2 g\left(C_{t}\right)\right)\left(2-N_{P}\right)+N_{P}\left(\left(2-2 g\left(C_{t}\right)+1\right)\right.
$$

and

$$
2 g\left(C_{t}\right)-2=H(K+H)
$$

and thus we have the formula of number N_{P} through $K H, \chi(X), H^{2}$

$$
N_{p}=\chi(X)+H^{2}+2 H(K+H)
$$

Lemma 51. Assume that we have a family of representations $\rho_{E, t}: \pi_{1}\left(C_{t}\right) \rightarrow$ $U(n)$ over C_{t} defined by a stable bundle E. If this representation extends to a representation of at least one singular curve $C_{s}, s \in X^{\text {sing }}$ then it extends to X and hence the bundle E is defined via representation $\rho_{E}: \pi_{1}(X) \rightarrow U(n)$.

Proof. Indeed the representaion $\rho_{E, s}$ is defined if $\pi_{1}\left(X_{t}\right)\left(c_{s}\right)=0$ for all vanishing cycles c_{s}. Since by our assumption any c_{s} normally generates the kernel of $\pi_{1}\left(X_{t}\right) \rightarrow \pi_{1}(X)$ any representation $\rho_{E, t}$ comes from a representation $\rho_{E}: \pi_{1}(X) \rightarrow U(n)$ hence the result.

Corollary 14. The bundle E is not induced from a representation only if we have a singularity for fiberwise unitary connection on E over any singular point p_{s}.

8.6.1 Monodromy from group-theoretic perspective

Recall that in the situation above the monodromy operator m acts via Dehn twist on each bond around each vanishing cycle c_{s} (for details see (Bogomolov \& Katzarkov, 1998) and (Bogomolov \& Katzarkov, 1999)). The composition of all monodromies which correspond to a loop Γ consisting of non-singular curves X_{s} around a singular curve X_{0} is given by composition of all corresponding Dehn twists $T_{c_{s}}$ of bonds around each vanishing cycle c_{s} corresponding to a singular point in each fiber X_{s}.

$$
m=\Pi_{\gamma \in \Gamma} m_{c_{s \gamma}},
$$

Assume that X_{0} is a fiber with a singular point and generic fiber has fundamental group generated by g_{i} with standard commutator relation $<\Pi_{i}\left[g_{i}, g_{i+1}\right]=1>$. Then we have the monodromy automorphism (standart action on the fundamental group $\pi_{1}\left(X_{t}\right)$ induced by the action of Dehn twist around $\left.g_{1}\right)$

$$
m: g_{1} \rightarrow g_{1}, g_{2} \rightarrow g_{1} g_{2}
$$

and their commutator $\left[g_{1}, g_{2}\right]$ maps to $g_{1}^{2} g_{2} g_{1}^{-1} g_{2}^{-1} g_{1}^{-1}$, i.e. $g_{1}\left[g_{1}, g_{2}\right] g_{1}^{-1}$. Thus if m maps $g_{i} \rightarrow g_{1} g_{i} g_{1}^{-1}, i>1$ then the product of commutators $m\left(\Pi_{i}\left[g_{2 i-1}, g_{2 i}\right]\right)=$ 1.

The kernel of projection $\pi_{1}\left(X_{t}\right)$ to $\pi_{1}\left(X_{0}\right)$ is generated by g_{1} as a normal subgroup of $\pi_{1}\left(X_{t}\right)$.

Now we have to understand how does monodromy operator for each vanishing cycle g_{1} act on the unitary representation of its' fundametal group, which corresponds to a concrete vector bundle E.

Recall the basic construction of unitary representations of fundametal groups of Riemann surfaces.

Consider a set $\Omega=U(n) \times \ldots \times U(n)$ of $2 g$ copies of Unitary group and canonical projections: $p_{i}: \Omega \rightarrow X_{i}$ and $q_{i}: \Omega \rightarrow Y_{i}$. Consider the condition $\Pi_{i} A_{i} B_{i} A_{i}^{-1} B_{i}^{-1}=I$. There exists a unique homomorphism $\eta: \pi_{1} \rightarrow U(n)$ such that $\eta\left(g_{i}\right) \rightarrow A_{i}$ and $\eta\left(g_{i+1}\right) \rightarrow B_{i}$.
Recall that if we have a map $f: \Omega \rightarrow S U(n)$ such that

$$
f:\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}\right) \rightarrow A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} . . A_{g} B_{g} A_{g}^{-1} B_{g}^{-1}
$$

it is known that

$$
\operatorname{Hom}\left(\pi_{1}\left(X_{t}\right), U(n)\right) \simeq f^{-1}(I)
$$

Therefore the action of the monodromy m on the unitary representation is grouptheoretically the same:

$$
\begin{equation*}
m_{\eta}^{\gamma}: A_{1} \rightarrow A_{1}, A_{1} \rightarrow A_{1} A_{2}, A_{i} \rightarrow A_{1} A_{i} A_{1}^{-1} \tag{8.17}
\end{equation*}
$$

For each unitary representation of a fundamental group of a given surface X_{t} we have a normal subgroup N_{t} generated by g_{1}^{t} which is a kernel of projection of $\pi_{1}\left(X_{t}\right)$ to $\pi_{1}\left(X_{0}\right)$. If we consider all unitary representations of groups N_{t} denoted by N_{t}^{U} then the monodromy operator m_{η}^{γ} acts on each of the corresponding groups N_{t}^{U}. For a loop Γ of nonsingular curves X_{t} we can take $\Pi_{\gamma \in \Gamma} N_{\gamma}^{U}$ and the corresponding action of m on it.

8.6.2 Action of the Galois group on the singular points

To understand our problem better, we will treat it extending our arguments to the case when we have our constructions over a field K.

Assume that a surface X is defined over a number field $[K: \mathbb{Q}]<\infty$ as well as the pencil $f: X \rightarrow \mathbb{P}^{1}$ and the bundle E. The union of singular fibers in this case is also defined over K. Note that monodromy group T of the fibration $X^{b} \rightarrow \mathbb{P}^{1}$ permutes vanishing cycles c_{s} of different fibers transitively in the fundamental group of the complementary of X to all singular fibers $\pi_{1}\left(X-X^{\text {sing }}\right)$.
Additionally, the action of Galois group $\operatorname{Gal}(\bar{K} / K)$ approximates the action of monodromy T on the vanishing cycles $\left\{c_{s}\right\}$.

In particular, if there is only one orbit of the $\operatorname{Gal}(\bar{K} / K)$ on the vanishing cycles in a completion of $\hat{\pi}_{1}\left(X_{t}\right)$ then either the family of representations is obtained from the representation $\pi_{1}(X)$ or any fiber X_{t} with a singular point has the latter as singular point of the family of partial connection.

8.7 Geometry of the Second Chern class

Recall, as we have already observed, for a vector bundle $\mathcal{E} \rightarrow X$ on a surface we can consider its' restriction to a pencil of curves in the class $[H]$, which is $\mathcal{E} \rightarrow \mathbb{P}_{C_{t}}^{1}$.

For every such restriction, we have an associated second chern class $c_{2}(\mathcal{E})$.
As we already know by Theorem (42), $c_{2}(\mathcal{E})$ is represented by a cycle $\mathscr{C}_{c_{2}(\mathcal{E})}$ in the moduli space of vector bundles $M_{c_{\lambda}}$ for some $\lambda \in \mathbb{P}^{1}$.
Notice that when the pencil of curves $\mathbb{P}_{C_{t}}^{1}$ is moving on the surface, the associated cycle $\mathscr{C}_{c_{2}(\mathcal{E})}$ is also changing.

8.7.1 Geometry of the cycle $\mathscr{C}_{c_{2}(\mathcal{E})}$ and associated invariants

We want to find an invariant associated to a cycle $\mathscr{C}_{c_{2}(\mathcal{E})}(\mathscr{C}$ for short), which does not change in course of moving of pencil of curves $\mathbb{P}_{C_{t}}^{1}$ on a surface. As $c_{2}(\mathcal{E})$ is represented by a cycle \mathscr{C} in some moduli space $M_{C_{\lambda}}$ we can regard this cycle as a vector bundle on a product of curves $C_{\lambda} \times C$, where C is a curve along those we have performed an operation of elementary transformation. As we have noticed before we can use Gauss-Manin $\nabla_{G M}$ connection to deal with moduli sections and cycles.

8.7.2 Vector bundles on the product of curves and the curvature

Here we are following (Bogomolov \& Lukzen, 2022). Let $\mathcal{E} \rightarrow C_{1} \times C_{2}$ be a vector bundle such that $\left.\mathcal{E}\right|_{C_{1}}$ and $\left.\mathcal{E}\right|_{C_{2}}$ stable. Coordinates on $\mathcal{E} \rightarrow C_{1} \times C_{2}$ could be described as a pair of representations (τ, ρ), where τ corresponds to a horizontal bundle and ρ corresponds to a vertical bundle. The fiber is equal to
$\left.\mathcal{E}\right|_{(x, y)}=E_{\rho} \cap E_{\tau}=\left.E\right|_{(\rho, \tau)}$
As is well-known along E_{ρ}, E_{τ} exist an Ehresmann connections which can be viewed as horizontal subbundles H_{ρ}, H_{τ} :

$$
T E_{\rho}=H_{\rho} \oplus V_{\rho}, T E_{\tau}=H_{\tau} \oplus V_{\tau} .
$$

Thus we have two families of Ehresmann connections: $\left\{H_{\rho}, \rho \in \mathscr{C}_{1}\right\},\left\{H_{\tau}, \tau \in\right.$ $\left.\mathscr{C}_{2}\right\}$, where $\mathscr{C}_{1}, \mathscr{C}_{2}$ are the moduli cycles.

We are seeking for the connection H on the bundle \mathcal{E} such that $T \mathcal{E}=H \oplus V$, where V is a tangent space to a fiber. Note that $V=T\left(E_{\rho} \cap E_{\tau}\right)=\left(H_{\rho} \oplus V_{\rho}\right) \cap$ $\left(H_{\tau} \oplus V_{\tau}\right)$.

The tangent to $T \mathcal{E}$ is a tangent bundle of a moduli cycle \mathscr{C}_{1}.
Locally $T \mathcal{E}=T E_{\rho} \oplus T E_{\tau}$, therefore set-theoretically a possible connection is

$$
H=\left(H_{\rho} \oplus V_{\rho}\right) \oplus\left(H_{\tau} \oplus V_{\tau}\right) /\left\{\left(H_{\rho} \oplus V_{\rho}\right) \cap\left(H_{\tau} \oplus V_{\tau}\right)\right\}
$$

Theorem 52. Denote Θ_{E} a curvature of connection ∇_{E}. The obstruction to Jordan property - failure for the tangent fields V, W to connection to generate a Lie algebra- is exactly the curvature $\Theta_{\mathcal{E}}$.

Proof. Our goal, in general, is to find an expression for the curvature tensor Θ of the connection on the vector bundle \mathcal{E}. Therefore we would be able to express the second Chern class $c_{2}(\mathcal{E})$ explicitly, depending on a moduli cycle \mathscr{S} :

$$
\begin{equation*}
c_{2}(\mathcal{E})=\frac{\operatorname{tr}\left(\Theta(\mathscr{S})^{2}\right)-\operatorname{tr}^{2}(\Theta(\mathscr{S}))}{8 \pi^{2}} \tag{8.18}
\end{equation*}
$$

Notice that there exist only two "directions" on the base space B : a direction along a curve C_{λ} and a direction along a curve C, which parameterizes the family.

When we lift vector fields from the base B to a vector bundle, we get the vector fields V, W along the "cycle/section" \mathscr{C}_{1} and along the curve $C . V$ and W induce diffeomorphisms φ_{V}, ψ_{W} on a vector bundle \mathcal{E}, which act on particular sections $s \in \Gamma(\mathcal{E})$. If we differentiate the result twice $\partial^{2} \varphi_{V} \psi_{W}^{-1} \varphi_{V}^{-1} \psi_{W}(s)$, we will get $\Theta(s)$ a value of curvature on s. If we take a corresponding basis of sections of \mathcal{E} and lift the basis of vector fields V, W from the base to our cycle C in the moduli space of vector bundles and look how do the diffeomorphisms act on the basis of sections, we would be able to count $\Theta_{\mathcal{E}}$ explicitly. As is well-known in this case, the obstruction to Jordan property - failure for the tangent fields V, W to connection to generate a Lie algebra- is the curvature $\Theta_{\mathcal{E}}$.

Note that we can use Gauss-Manin connection which acts as $\nabla_{G M}: T \mathscr{C} \rightarrow V$ (by the reason that $\nabla_{G M}$ is flat), where V, as above, is a tangent space to a fiber.

Recall that by non-abelian Hodge theory, the tangent space at the point (C, U) which is equal to $M_{d R}\left(C_{u}\right)$ is cannonically identified with $H_{d R}^{1}\left(C_{u}, E n d E\right)$.

Therefore a Gauss-Manin connection computes the derivative of our section S. $c_{2}(E)>0$, because the corresponding curvature matrix has a block-diagonal form and positive determinant as we will show below in more details.

8.8 Curvature matrix on hermitian vector bundles

8.8.1 Connection on a vector bundle E

Let D be a connection on a vector bundle acting on the local basis of sections $s=\left(s_{1}, . ., s_{n}\right)$. Then, following (Kobayashi, 2014),

$$
D s_{i}=\sum s_{j} \omega_{i}^{j},
$$

where $\Omega=\left(\omega_{i}^{j}\right)$ is a matrix of connection form. If $\xi=\xi^{i} s_{i}$ is an arbitrary section, then

$$
D \xi=d \xi+\omega \xi
$$

Recall that $\Omega=d \omega+\omega \wedge \omega$.
A bundle is called flat if $D s=0$.
For a complex vector bundle E, a connection is decomposed as $D=D^{\prime}+D^{\prime \prime}$, $D^{\prime}: A^{p, q}(E) \rightarrow A^{p+1, q}(E), D^{\prime \prime}: A^{p, q}(E) \rightarrow A^{p, q+1}(E)$

Thus we can write in local coordinates:

$$
\omega=\omega^{0,1}+\omega^{1,0}
$$

and

$$
\Omega=\Omega^{2,0}+\Omega^{1,1}+\Omega^{0,2}
$$

8.8.2 Hermitian metric on E

Recall if we have a vector bundle $E \rightarrow M$ consider a Hermitian metric h in E which is a C^{∞} field of Hermitian inner products in the fibers of E.

$$
h(\xi, \eta)=\bar{h}(\eta, \xi), \xi, \eta \in E_{x}
$$

Let ξ and η be a C^{∞}-section and $s_{U}=\left(s_{1}, . ., s_{r}\right)$ is a local frame field of E over U, we set

$$
h_{i j}=h\left(s_{i}, s_{j}\right)
$$

and denote $H_{U}=\left(h_{i \bar{j}}\right)$ is a positive definite Hermitian matrix at every point of U. Recall that for a curvature form Ω we write

$$
\Omega_{j}^{i}=\sum R_{j \alpha \bar{\beta}}^{i} d z^{\alpha} \wedge d \bar{z}^{\beta}
$$

so that

$$
R_{j \bar{k} \alpha \bar{\beta}}=\sum h_{i \bar{k}} R_{j \alpha \bar{\beta}}^{i}=-\partial_{\bar{\beta}} \partial_{\alpha} h_{j \bar{k}}+\sum h^{a \bar{b}} \partial_{\alpha} h_{j \bar{b}} \partial_{\bar{\beta}} h_{a \bar{k}},
$$

where $\partial_{\alpha}=\partial / \partial z_{\alpha}$ and $\partial_{\bar{\beta}}=\partial / \partial \bar{z}_{\beta}$
We say that holomorphic normal frame field is normal at $x_{0} \in M$ if

$$
\begin{gathered}
h_{i \bar{j}}=\delta_{i j} \\
\omega_{j}^{i}=\sum h^{i \bar{k}} d^{\prime} h_{j \bar{k}}=0
\end{gathered}
$$

at x_{0}.
In matrix notation we have $d H={ }^{t} \omega H+H \bar{\omega}$ and subsequently,

$$
{ }^{t} \Omega H+H \bar{\Omega}=0
$$

It leads that ω and Ω are skew-symmetric.
So the curvature form is

$$
\Omega=d^{\prime \prime} \omega
$$

For the line bundle $\operatorname{det} E=\wedge^{r} E$ we have

$$
D\left(s_{1} \wedge . . \wedge s_{r}\right)=\left(\sum \omega_{i}^{j}\right) s_{1} \wedge . . \wedge s_{r}
$$

i.e. the connection form for D in $\operatorname{det}(E)$ is given by the trace of ω

$$
\operatorname{tr} \omega=\sum \omega_{i}^{i},
$$

similarly, its' curvature is given by

$$
\operatorname{tr} \Omega=\sum \Omega_{i}^{i}
$$

We have a Ricci form

$$
\operatorname{tr} \Omega=\sum R_{\alpha \bar{\beta}} d z^{\alpha} d \overline{z^{\beta}},
$$

where

$$
R_{\alpha \bar{\beta}}=\sum R_{i \alpha \bar{\beta}}^{i}=-\partial_{\alpha} \partial_{\bar{\beta}} \operatorname{det}(h i \bar{j})
$$

8.9 Curvature of $E \rightarrow C_{1} \times C_{2}$

Let $E \rightarrow C_{1} \times C_{2}$ is a bundle, which is stable on $C_{1} \times\{x\}$ and $C_{2} \times\{y\}$ for any $x, y \in C_{1}, C_{2}$.

8.9.1 $r k E=2$

In the case $C_{1} \times C_{2}$ and the bundle is of rank 2 we consider a connection defined by unitary flat connections in both directions. (can define at least set-theoretically) We can take a basis of sections which is given by basis of sections on $\left.E\right|_{C_{1}}$ which we denote as $\left(s_{1}, s_{2}\right)$ and $\left.E\right|_{C_{2}}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$, thus a local basis of sections is $\left(s_{1}, s_{2}, s_{1}^{\prime}, s_{2}^{\prime}\right)$.

If we consider a curvature matrix R of second derivatives $d^{2} h_{i, k} / d z_{i} d z_{k}$ (we differentiate also by $\bar{d} z_{i}$). As curvature vanishes on $\left.E\right|_{C_{1}}$ and on $\left.E\right|_{C_{2}}$ we have van-
ishing of the corresponding second derivatives of $h_{12}, h_{11}, h_{21}, h_{22}$ and $h_{12}^{\prime}, h_{11}^{\prime}, h_{21}^{\prime}, h_{22}^{\prime}$. Then by hermitian condition in our 4×4 matrix 2×2 diagonal squares are zero and antidiagonal matrices are conjugated. We will act on each $h_{i j}$ by an operator matrix which is 4×4 matrix, schematically depicted as :

$$
\begin{gather*}
\partial^{2}=\left(\begin{array}{llll}
\partial z_{1} \partial z_{1} & \partial z_{1} \partial \overline{z_{1}} & \partial z_{1} \partial z_{2} & \partial z_{1} \partial \overline{z_{2}} \\
\partial \bar{z}_{1} \partial z_{1} & \partial \overline{z_{1}} \partial \overline{z_{1}} & \partial \overline{z_{1}} \partial z_{2} & \partial \overline{z_{1}} \partial \overline{z_{2}} \\
\partial z_{2} \partial z_{1} & \partial z_{2} \partial \overline{z_{1}} & \partial z_{2} \partial z_{2} & \partial z_{2} \partial \overline{z_{2}} \\
\partial \overline{z_{2}} \partial z_{1} & \partial \overline{z_{2}} \partial \overline{z_{1}} & \partial \overline{z_{2}} \partial z_{2} & \partial \overline{z_{2}} \partial \overline{z_{2}}
\end{array}\right) \\
\partial^{2}\left(h_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & \overline{a_{i, i}} & a_{i, j}^{-} \\
0 & 0 & \overline{j_{j, i}} & a_{j, j} \\
a_{i, i} & a_{i, j} & 0 & 0 \\
a_{i, j} & a_{j, j} & 0 & 0
\end{array}\right) \tag{8.19}
\end{gather*}
$$

8.9.2 $r k E>2$

In the higher rank bundles we have the same situation for some 2-minors. The curvature matrix is expressed through the second derivatives and so the above inequality (if true) should also tell about the class c_{2}.

As the basis of a local frame field is $s_{U}=\left(s_{1}, . ., s_{r}, s_{1}^{\prime}, . ., s_{l}^{\prime}\right)$ then analogously on $\left.E\right|_{C_{1}}$ and $\left.E\right|_{C_{2}}$ a connection D is flat therefore the curvature vanishes and second derivatives of $h_{11}, h_{12} . . h_{r 1} . ., h_{r r}$ and $h_{11}^{\prime}, h_{12}^{\prime} . . h_{r 1}^{\prime} . ., h_{r r}^{\prime}$ as well. Only in the mixed directions (i.e. s_{i}, s_{j}^{\prime}) the mixed derivatives would not vanish, i.e. $\partial_{i} \partial_{j}, \partial_{i} \bar{\partial}_{j}$ etc. I.e. denote $h_{i j}=h\left(s_{i}, s_{j}\right), h_{i j}^{\prime}=h\left(s_{i}, s_{j}^{\prime}\right), h_{i j}^{\prime \prime}=h\left(s_{i}^{\prime}, s_{j}^{\prime}\right)$.

8.10 Ehressman-induced connection on $E \rightarrow \mathcal{C}$

Let $\varphi: \mathcal{C} \rightarrow C$ be a fibration of curves over a curve. Then we can again form a frame of sections lifting vector fields from a curve C and every curve $\varphi^{-1}(c), c \in$ \mathcal{C}. Thus when we are differentiating a section of a bundle E using connection D induced from flat connections from both directions. We have a vector fields along $\varphi^{-1}(c)$ and vector fields along C. As D is flat in both directions, we will get only action of vertical connection along horizontal vector fields and horizontal connection along vertical vector fields.
Thus action $D(s)=\nabla_{\varphi^{-1}(c)}\left(s^{h o r}\right)+\nabla_{C}\left(s^{v e r t}\right)$. We can consider a matrix of the second derivatives of the metric $h_{i \bar{j}}$. Since the basis of a local frame field $s_{U}=\left(s_{1}, . ., s_{r}, s_{1}^{\prime}, . ., s_{l}^{\prime}\right)$, where $s=\left(s_{1}, . ., s_{r}\right)$ is a frame field along $\left.E\right|_{\varphi^{-1}(c)}$ and $s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{l}^{\prime}\right)$ is a local frame field along $\left.E\right|_{C}$. Thus

$$
D(s)=\nabla_{\varphi^{-1}(c)}(s)+\nabla_{C}\left(s^{\prime}\right)
$$

Therefore we can form a corresponding matrix of an action of connection D on the local frame section. It is if we will write $D(s)=\left(\nabla_{\varphi^{-1}(c)}+\nabla_{C}\right)\left(s_{1}, . ., s_{r}, s_{1}^{\prime}, . ., s_{r}^{\prime}\right)$. The action of the Ehresmann-induced connection is

$$
\left\{\begin{array}{l}
D s_{1}=0 s_{1}+. .+0 s_{r}+a_{11} s_{1}^{\prime}+. .+a_{1 r} s_{r}^{\prime} \\
D s_{2}=0 s_{1}+. .+0 s_{r}+a_{21} s_{1}^{\prime}+. .+a_{2 r} s_{r}^{\prime} \\
\vdots \\
D s_{1}^{\prime}=a_{11}^{\prime} s_{1}+. .+a_{1 r}^{\prime} s_{r}+0 s_{1}^{\prime}+. .+0 s_{r}^{\prime} \\
D s_{2}^{\prime}=a_{21}^{\prime} s_{1}+. .+a_{2 r}^{\prime} s_{r}+0 s_{1}^{\prime}+. .+0 s_{r}^{\prime} \\
\vdots
\end{array}\right.
$$

Let us consider the coordinates: $\left(z_{1}, \bar{z}_{1}, z_{2}, \bar{z}_{2}\right)$. The first part of coordinates correspond to coordinates on a curve C and the second on the curve $\varphi^{-1}(c)$.

Thus we have $s_{U}=\left(s_{1}, . ., s_{r}, s_{1}^{\prime}, . ., s_{r}^{\prime}\right)$. Again denote $h_{i j}=h\left(s_{i}, s_{j}\right), h_{i j}^{\prime}=$ $h\left(s_{i}, s_{j}^{\prime}\right), h_{i j}^{\prime \prime}=h\left(s_{i}^{\prime}, s_{j}^{\prime}\right)$.

Notice that

$\partial^{2} h_{i j}$ vanishes along directions (z_{1}, \bar{z}_{1}) and does not vanish along z_{2} 's
$\partial^{2} h_{i j}^{\prime}$ does not vanish
$\partial^{2} h_{i j}^{\prime \prime}$ vanishes along $\left(z_{2}, \bar{z}_{2}\right)$ and does not vanish along z 's
Again we will act on each $h_{i j}$ by an operator matrix which is 4×4 matrix, schematically :

$$
\partial^{2}=\left(\begin{array}{llll}
\partial z_{1} \partial z_{1} & \partial z_{1} \partial \overline{z_{1}} & \partial z_{1} \partial z_{2} & \partial z_{1} \partial \overline{z_{2}} \\
\partial \bar{z}_{1} \partial z_{1} & \partial \bar{z}_{1} \partial \overline{z_{1}} & \partial \bar{z}_{1} \partial z_{2} & \partial \bar{z}_{1} \partial \overline{z_{2}} \\
\partial z_{2} \partial z_{1} & \partial z_{2} \partial \bar{z}_{1} & \partial z_{2} \partial z_{2} & \partial z_{2} \partial \overline{z_{2}} \\
\partial \bar{z}_{2} \partial z_{1} & \partial \overline{z_{2}} \partial \bar{z}_{1} & \partial \bar{z}_{2} \partial z_{2} & \partial \overline{z_{2}} \partial \overline{z_{2}}
\end{array}\right)
$$

Then the matrix of the second derivatives \mathcal{D}^{2} of a metric is

$$
\mathcal{D}^{2}=\left(\begin{array}{cccc}
0 & 0 & a_{2, n-1} & a_{1, n-1} \\
0 & 0 & a_{2, n-1} & a_{2, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{1, n-1} \\
a_{2,1} & a_{2,2} & a_{2, n-1} & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, n-1} & a_{n, n-1} \\
a_{n, 1} & a_{n, 2} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & 0 & 0
\end{array}\right)
$$

8.11 Calculation of the Second Chern class

Recall that the Dolbeaut representative of the Atiyah class is given by $[\bar{\partial}, \Omega]$, where Ω is a curvature tensor on the vector bundle E. In coordinates, $\Omega_{j}^{i}=$ $\sum R_{j \alpha \bar{\beta}}^{i} d z^{\alpha} \wedge d \bar{z}^{\beta}$, therefore, for $C=\Omega \wedge \Omega=\sum_{k}\left(\Omega_{k}^{i} \wedge \Omega_{j}^{k}\right)$. As every $\Omega_{i j}$ has a form $\Omega_{j}^{i}=\sum R_{j \alpha \bar{\beta}}^{i} d z^{\alpha} \wedge d \bar{z}^{\beta}$, one has

$$
\begin{aligned}
C_{i j}= & \sum \Omega_{k}^{i} \wedge \Omega_{j}^{k}=\sum R_{k \alpha \bar{\beta}}^{i} d z^{\alpha} \wedge d \bar{z}^{\beta} \wedge \sum R_{j \alpha \bar{\beta}}^{k} d z^{\alpha} \wedge d \bar{z}^{\beta}= \\
& =\sum_{k} \sum_{\alpha, \beta, \gamma, \theta} \sum_{\sigma \in S_{4}}(-1)^{\sigma} R_{k \sigma(\alpha \bar{\beta})}^{i} R_{j \sigma(\gamma \bar{\theta})}^{k} d z^{\alpha} \wedge d z^{\beta} \wedge d \bar{z}^{\gamma} \wedge d \bar{z}^{\theta}
\end{aligned}
$$

Denote $(\alpha)=(\alpha, \beta, \gamma, \theta)$ a multindex consisting of 4 variables. Then,

$$
\begin{gathered}
\left(\Omega^{4}\right)_{i i}=\sum_{j}\left(\Omega^{2}\right)_{i j} \wedge\left(\Omega^{2}\right)_{j i}=\sum_{j} \sum_{(\alpha)}\left[\sum_{k} \sum_{\sigma \in S_{4}}(-1)^{\sigma} R_{k \sigma^{\prime} \cdot \sigma(\alpha \bar{\beta})}^{i} R_{j \sigma^{\prime} \cdot \sigma(\gamma \bar{\theta})}^{k}\right] . \\
{\left[\sum_{k} \sum_{\sigma \in S_{4}}(-1)^{\sigma} R_{k \sigma^{\prime} \cdot \sigma\left(\alpha^{\prime} \bar{\beta}^{\prime}\right)}^{j} R_{i \sigma^{\prime} \cdot \sigma\left(\gamma^{\prime} \overline{\theta^{\prime}}\right)}^{k}\right] d z^{\alpha} \wedge d z^{\beta} \wedge d \bar{z}^{\gamma} \wedge d \bar{z}^{\theta}}
\end{gathered}
$$

Recall that

$$
R_{j \bar{k} \alpha \bar{\beta}}=\sum h_{i \bar{k}} R_{j \alpha \bar{\beta}}^{i}=-\partial_{\bar{\beta}} \partial_{\alpha} h_{j \bar{k}}+\sum h^{a \bar{b}} \partial_{\alpha} h_{j \bar{b}} \partial_{\bar{\beta}} h_{a \bar{k}}
$$

Recall that $\left(h^{\beta \gamma}\right)=h^{-1}$ and

$$
R_{i \bar{j} \alpha}^{\beta}=-h^{\beta \gamma}\left(\partial^{2} \frac{h_{\alpha \bar{\gamma}}}{\partial z^{i} \partial \bar{z}^{j}}-h^{\delta \mu} \frac{\partial h_{\alpha \mu}}{\partial z^{i}} \frac{\partial h_{\delta \bar{\gamma}}}{\partial \bar{z}^{j}}\right)
$$

And the curvature

$$
\Omega=\sum R_{i \bar{j} \alpha}^{\beta} d z^{i} \wedge d \bar{z}^{j} \otimes e^{* \alpha} \otimes e_{\beta}
$$

For our expression we would need:

$$
R_{\sigma^{\prime}(k) \cdot \sigma(\alpha \bar{\beta})}^{j}=h^{j k}\left(-\partial_{\sigma^{\prime} \cdot \sigma(\bar{\beta})} \partial_{\sigma^{\prime} \cdot \sigma(\alpha)} h_{i \bar{k}}+\sum h^{a \bar{b}} \partial_{\sigma^{\prime} \cdot \sigma(\alpha)} h_{i \bar{b}} \partial_{\sigma^{\prime} \cdot \sigma \beta} h_{a \bar{k}}\right)
$$

Then we will have:

$$
\begin{aligned}
\left(\Omega^{4}\right)_{i i}= & \sum_{j} \sum_{\alpha}\left[\sum_{k} \sum_{\sigma \in S_{4}}(-1)^{\sigma} h^{i k} h^{k j} h^{j k} h^{k i}\left(-\partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{i \bar{k}}+\sum h^{a \bar{b}} \partial_{\sigma(\alpha)} h_{i \bar{b}} \partial_{\sigma \beta} h_{a \bar{k}}\right) .\right. \\
& \left.\cdot\left(-\partial_{\sigma(\bar{\theta})} \partial_{\sigma(\gamma)} h_{k \bar{j}}+\sum h^{a \bar{b}} \partial_{\sigma(\gamma)} h_{k \bar{b}} \partial_{\sigma \theta} h_{a \bar{j}}\right)\right] \\
\cdot & {\left[\sum_{k} \sum_{\sigma \in S_{4}}(-1)^{\sigma}\left(-\partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{j \bar{k}}+\sum h^{a \bar{b}} \partial_{\sigma(\alpha)} h_{j \bar{b}} \partial_{\sigma \beta} h_{a \bar{k}}\right) .\right.} \\
& \left.\cdot\left(-\partial_{\sigma(\bar{\theta})} \partial_{\sigma(\gamma)} h_{k \bar{i}}+\sum h^{a \bar{b}} \partial_{\sigma(\gamma)} h_{k \bar{b}} \partial_{\sigma \theta} h_{a \bar{i}}\right)\right] d z^{\alpha} \wedge d z^{\beta} \wedge d \bar{z}^{\gamma} \wedge d \bar{z}^{\theta}
\end{aligned}
$$

8.11.1 Curvature of $E \rightarrow \mathcal{C}$

Again, return to the case when $\varphi: \mathcal{C} \rightarrow C$ be a fibration of curves over a curve and, using the induced connection D bearing it from $\left.E\right|_{C}$ and every curve $\left.E\right|_{\varphi^{-1}(c)}, c \in \mathcal{C}$ we can differentiate a section of a bundle E. Consider a matrix of the second derivatives of the metric $h_{i \bar{j}}$. Notice that $\partial^{2} h_{i j}, \partial^{2} h_{i j}^{\prime}, \partial^{2} h_{i j}^{\prime \prime}$ vanish along $\left(z_{1}, \bar{z}_{1}\right)$ and nowhere else.

Consequently, we will have

$$
\partial^{2}\left(h_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & \overline{a_{i, i}} & \overline{a_{i, j}} \tag{8.20}\\
0 & 0 & \overline{a_{j, i}} & \overline{a_{j, j}} \\
a_{i, i} & a_{i, j} & * & * \\
a_{i, j} & a_{j, j} & * & *
\end{array}\right)
$$

8.11.2 Second chern class for $\operatorname{a} \rightarrow \mathcal{C}$

To analyze a formula for Ω^{4} we have to understand how do the first derivatives $\partial h_{i j}$ involved in the expression

$$
\begin{aligned}
\left(\Omega^{4}\right)_{i i} & =\sum_{j} \sum_{\alpha}\left[\sum_{k} \sum_{\sigma \in S_{4}}(-1)^{\sigma}\left(-\partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{i \bar{k}}+\sum h^{a \bar{b}} \partial_{\sigma(\alpha)} h_{i \bar{b}} \partial_{\sigma \beta} h_{a \bar{k}}\right) \cdot\right. \\
\cdot & \left.\left(-\partial_{\sigma(\bar{\theta})} \partial_{\sigma(\gamma)} h_{k \bar{j}}+\sum h^{a \bar{b}} \partial_{\sigma(\gamma)} h_{k \bar{b}} \partial_{\sigma \theta} h_{a \bar{j}}\right)\right] \\
\cdot & {\left[\sum_{k} \sum_{\sigma \in S_{4}}(-1)^{\sigma}\left(-\partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{j \bar{k}}+\sum h^{a \bar{b}} \partial_{\sigma(\alpha)} h_{j \bar{b}} \partial_{\sigma \beta} h_{a \bar{k}}\right) .\right.} \\
\cdot & \left.\left(-\partial_{\sigma(\bar{\theta})} \partial_{\sigma(\gamma)} h_{k \bar{i}}+\sum h^{a \bar{b}} \partial_{\sigma(\gamma)} h_{k \bar{b}} \partial_{\sigma \theta} h_{a \bar{i}}\right)\right] d z^{\alpha} \wedge d z^{\beta} \wedge d \bar{z}^{\gamma} \wedge d \bar{z}^{\theta}
\end{aligned}
$$

behave in this case. It is clear that $\partial_{z_{1}} h_{i j}=0, \partial_{\bar{z}_{1}} h_{i j}=0$, meanwhile the derivatives from the other direction may not be zero (i.e. $\partial_{z} h_{i j}$ is not zero, $z \in C$). If we look at the expression above, it could be deduced that the first derivatives are included in the expression $\sum h^{a \bar{b}} \partial_{\partial_{z_{i}}} h_{k \bar{b}} \partial_{z_{j}} h_{a \bar{i}}$ in pairs (so that at least one of them is always zero as the connection is flat in one direction and hence the first derivative is zero) therefore the terms involving it go to zero and what lasts are the only expressions for the second derivatives. If we permute the columns or rows of the matrix , while working with the expression for Ω^{4}, the essential form will stay
the same. This way we will get an expression

$$
\begin{aligned}
\kappa=\sum_{i}\left(\Omega^{4}\right)_{i i} & =\sum_{i, j, \alpha, \sigma \in S_{4}} \partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{i \bar{k}} \cdot \partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{j \bar{k}} . \\
& \cdot \partial_{\sigma(\bar{\theta})} \partial_{\sigma(\gamma)} h_{k \bar{j}} \cdot \partial_{\sigma(\bar{\beta})} \partial_{\sigma(\alpha)} h_{j \bar{k}} d z^{\alpha} \wedge d z^{\beta} \wedge d \bar{z}^{\gamma} \wedge d \bar{z}^{\theta}= \\
& =\sum_{i, j} \operatorname{det}\left(\partial^{2} h_{i j}\right) d z^{1} \wedge d \bar{z}^{1} \wedge d z^{2} \wedge d \bar{z}^{2}
\end{aligned}
$$

If all the expressions with the first derivatives go to zero, we will get:

$$
\partial^{2}\left(h_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & \overline{a_{i, i}} & \overline{a_{i, j}} \tag{8.21}\\
0 & 0 & \overline{a_{j, i}} & \overline{a_{j, j}} \\
a_{i, i} & a_{i, j} & * & * \\
a_{i, j} & a_{j, j} & * & *
\end{array}\right)
$$

We denote by $*$ the elements of derivatives of metric $h_{i j}$ not in the mixed directions. Denote the matrices corresponding to the mixed directions as

$$
D_{i j}=\left(\begin{array}{cc}
a_{i, i} & a_{i, j} \\
a_{i, j} & a_{j, j}
\end{array}\right)
$$

and $\bar{D}_{i j}$ correspondingly. In general, for $E \rightarrow \mathcal{C}, \operatorname{det}\left(\partial^{2}\left(h_{i j}\right)\right)=\operatorname{det}\left(D_{i j}\right) \operatorname{det}\left(\bar{D}_{i j}\right)$ (in the second case the additional minor doesn't influence on the expression of determinant by the Linear Algebra rules).

Theorem 53. The resulting formula for $E \rightarrow \mathcal{C}$ is

$$
c_{2}(E)=\sum_{i}\left(\Omega^{4}\right)_{i i}=\sum_{i, j} \frac{\operatorname{det}\left(\partial^{2} h_{i j}\right)}{\operatorname{det}\left(h_{i j}\right)} d z^{1} \wedge d \bar{z}^{1} \wedge d z^{2} \wedge d \bar{z}^{2}=\sum_{i, j} \frac{\operatorname{det}\left(D_{i j}\right) \operatorname{det}\left(\bar{D}_{i j}\right)}{\operatorname{det}\left(h_{i j}\right)} d z^{1} \wedge d \bar{z}^{1} \wedge d z^{2} \wedge d \bar{z}^{2}
$$

Thus from the last theorem follows the stability result:

Corollary 15. As we have for $E \rightarrow \mathcal{C}$

$$
\begin{equation*}
c_{2}(E)=\sum_{i, j} \frac{\operatorname{det}\left(D_{i j}\right) \operatorname{det}\left(\bar{D}_{i j}\right)}{\operatorname{det}\left(h_{i j}\right)} d z^{1} \wedge d \bar{z}^{1} \wedge d z^{2} \wedge d \bar{z}^{2} \tag{8.22}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
c_{2}(E)>0 \tag{8.23}
\end{equation*}
$$

Remark 5. Local positivity of c_{2}-form holds outside of singular points and in fact, the impact of singular point depends on the dilation (distance on symmetric space $\left.G L(n, C) / R^{*} U(n C)\right)$-two points corresponding to unitary structures from different branches of the singular curve.

9| Results: Stability for vector bundles with singularities

9.1 Bott-Baum argument

Recall that if we have a sequence

$$
0 \rightarrow \underline{L} \rightarrow \underline{T} \rightarrow Q \rightarrow 0
$$

where \underline{L} is a space of sections of a line bundle L on X, \underline{T} is a space of sections of a tangent bundle to X and $Q=\underline{T} / \xi$, where $\xi=\underline{T} / \underline{\eta}(\underline{L})$, where $\underline{\eta}: \underline{L} \rightarrow \underline{T}$. It implies that $c_{i}(Q)=c_{i}(T-L), i=1, . ., n$.

Therefore the following classical formula holds true

$$
\phi(Q)[M]=\sum_{p \in \operatorname{Zero}(\eta)} \phi(\eta, p)=\sum_{p \in \operatorname{Zero}(\eta)} \operatorname{Res}_{\phi}(\xi, p)
$$

So we can conclude that the formula above computes the Chern numbers of Q in terms of local information at the singularities of the foliation. Indeed, written in a slightly different way, the following holds:

$$
\phi(Q)=\sum_{Z} \mu_{*} \operatorname{Res}_{\phi}(\xi, Z)
$$

where $\mu_{*}: H_{j}(Z ; C) \rightarrow H^{2 n-j}(M, C)$ a map, induced by the inclusion of a singular set $Z \hookrightarrow M$ and the classical Poincare duality map on the homologies, $\phi(Q)$ is a given symmetric polynomial of the Chern classes.

Bott and Baum had also noticed that one can think of

$$
\operatorname{Res}_{\phi}(\xi, Z)=\sum_{i=1}^{s} \#\left(\phi, \xi, Z_{i}\right)\left[Z_{i}\right]
$$

as a sum of quantities $\#\left(\phi, \xi, Z_{i}\right)=\operatorname{Res}_{p}\binom{\phi(A) d z_{k} . . d z_{n}}{a_{k}, \ldots, a_{n}}$,
which are not difficult to count in the local coordinates.
Let E be a vector bundle on X of degree d and rank n. Recall that in our case the restriction of a bundle $\left.E\right|_{C_{t}}$ to any curve $C_{t} \in X^{b}$ is stable, then, as it is well-known, we have a flat unitary connection $\nabla_{\left.E\right|_{C_{t}}}$ along the fibers C_{t} in X^{b}. Therefore we have a family of such "fiberwise" connections $\left\{\nabla_{\left.E\right|_{C_{t}}}\right\}:=T_{E}$. Also, we can find projective connections along the singular fibers in this natural way: we can assume the existence of connections on the smooth normalized curves X_{s}^{\prime} with a singularity for a corresponding connection $\nabla_{X_{s}}$ over the points $x_{s} \in X^{\text {sing }}$. They are called parabolic connections. They are constructed in the following way: if we have a non-singular curve with points x_{i} corresponding to the singularities we can define λ-connections(logarithmic connections), which have the poles along a divisor $D=\sum x_{i}$. We can take the residues along these singular points and put an order on it. They should satisfy in particular Fuchs relation. Then we can define Parabolic connections:

1) taking logarithmic connections singular over $X^{\text {sing }}$, i.e. a \mathbb{C}-linear maps

$$
D: E \rightarrow E \otimes \Omega_{X}^{1}\left(\log X^{\text {sing }}\right)=E \otimes \Omega_{X}^{1} \otimes \mathcal{O}_{X}\left(X^{\text {sing }}\right)
$$

which satisfy Leibniz identity.
The fiber $\Omega_{X}^{1} \otimes \mathcal{O}_{X}\left(X^{\text {sing }}\right)\left(x_{\beta}\right)$ is canonically identified with \mathbb{C} by sending a meromorphic form to its residue at x_{β}. In particular, $\operatorname{Res} D\left(x_{\beta}\right) \in \operatorname{End}(E)\left(x_{\beta}\right)$
2) forming a full flag of subspaces on each fiber of $\left.E\right|_{x_{i}}$,
3)Let D be a logarithmic connection on X. Let $\operatorname{Res}\left(D, x_{i}\right)=\lambda_{i} I d_{E\left(x_{i}\right)}, x_{i} \in$ $X^{\text {sing }}, i=1, \ldots, m$. Then it follows that

$$
d+n \sum_{j=1}^{m} \lambda_{i}=0
$$

Lemma 54. Smooth deformation between the Higgs bundles and connections is given by the deformation of the λ-connections.

Additionally, if we restrict the set of connections to some subspace from a flag, we will get a partial connection.

A consequence of the lemma is that instead of studying a bundle E itself we can restrict our studies to a space of λ-connections. Thus the foliation $P\left(T_{E}\right)$ on the projectivization $\mathbb{P}(E)$ over X acquires a standard singular points.

Put $T=T_{E}$ and let L be the one-dimensional torsion-free subsheaf, such that the morphism $\eta: L \rightarrow T_{E}$ has zeroes at the singular points $X^{\text {sing }}$.

Although the constructed foliation is not holomorphic but the presence of the standard singular points provides us the following general Bott-Baum formulas (Baum \& Bott, 1972) of the Δ-class of E :

Theorem 55. As $c_{1}(E)=0$,

$$
c_{2}(E)=c_{2}\left(\mathbb{P}\left(T_{E}\right)\right)=\Delta=\sum_{p} \operatorname{Res}_{p}\binom{\phi(A) d z_{k} . . d z_{n}}{a_{k}, \ldots, a_{n}}-F^{2}=N-F^{2}
$$

Since $c_{1}(F)>0$, it implies that $c_{2}(E)=N-F^{2}$.
If the number of points N grows fast and F is small we get that $c_{2}>0$, i.e. $N>F^{2}$.

9.2 Stability of Projective varieties

Let Y be a smooth projective variety with trivial canonical class.
Without loss of generality, we can consider a fibration $B \rightarrow Y$, where B, as above, is a family of curves, embedded to Y.
(Bogomolov \& de Oliveira, 2005; Bogomolov, Cascini, \& de Oliveira, 2006) The line of arguments could be repeated identically as in the case of smooth projective complex surfaces.

10| Bounds for a curves on the surfaces of general type

10.1 Preliminaries

Consider a families of curves of a fixed genus g, lying on the surface of general type (Bogomolov, 1977). Suppose that the rank of Picard group of a surface $V^{2} \geqslant 0, K^{2} \geqslant 0$ (i.e. the canonical class is very ample). Let Δ_{P} be a smooth curve of genus g and $f: \Delta_{P} \rightarrow V^{2}$ a regular map which induces an epimorphism of function fields: $f^{*}: C\left(V^{2}\right) \rightarrow C\left(\Delta_{P}\right)$. Let us define a subcone $K_{D} \subset \operatorname{Pic}\left(V_{R}^{2}\right)$ in the cone of effective divisors

$$
K_{D, \epsilon}^{C}=\left\{x \in K_{D}, x^{2} \geq \frac{\alpha-\epsilon}{K^{2}}\left(K . \Delta_{P}\right)^{2}, \alpha=\frac{3 K^{2}}{4 \chi-K^{2}}\right\}, \epsilon \geq 0
$$

The following theorem holds true:

Theorem 56. (Bogomolov's finitness theorem, (Bogomolov, 1977)) The set of genus g curves such that the image of their fundamental cycle $f\left(\Delta_{P}\right) \notin K_{D, \epsilon}^{C}$ form an algebraic family. In particular, the number of classes such that $f\left(\Delta_{P}\right) \in$ $\operatorname{Pic} V_{R}^{2} \backslash K_{D, \epsilon}^{C}$ for the curves of genus g is finite.

Denote $h_{L}(P)=\frac{\alpha-\epsilon}{K^{2}}\left(K . \Delta_{P}\right)^{2}$ Let us reformulate a theorem in a more convenient form:

Theorem 57. (Bogomolov's finitness theorem, (Bogomolov, 1977)) For except a finite number of curves, there is a linear estimate from below for a genus of the curve inside each cone:

$$
h_{L}(P) \leq A \cdot d(P)+O(1)
$$

10.1.1 A few details of the proof of Bogomolov's finitness theorem

Recall that the proof of Theorem(10.1.2) is based on the properties of symmetric differential $s \in H^{0}\left(V^{2}, S^{i} \Omega^{1} \otimes i F\right), F \subset P i c V$ is a one-dimensional fibration. Note that $H^{0}\left(V^{2}, S^{i} \Omega^{1} \otimes i F\right)=H^{0}(\mathbb{P}(T), i D+i F), D$ is a Grothendieck fibration on $\mathbb{P}(T)$. It means that there exists a sheaf D on $\mathbb{P}(T)$ whose sections coincide with the sections of $S^{i} \Omega^{1}$. For a big i the map $\nu_{i}: \mathbb{P}(T) \rightarrow \mathbb{P}^{N}$ given by linear series $|i D+i F|$ is a birational embedding (Iitaka, 1971). The main idea is to observe a set $\{s(x)=0\}:=\mathcal{S}$ as a surface in $\mathbb{P}(T)$. For a curve X, a map $t f$: $X \rightarrow \mathbb{P}(T)$. One can take a composition $\nu_{i} t f: X \rightarrow \mathbb{P}^{N}$. Let $F^{2}<0, K F>0 ;$ Let us take such curves that $F X<0$; They lie in a subcone $\left\{K_{D}{ }^{F} \subset K_{D}\right.$, $F X \leq 0\}$. Let $K^{2}-\chi+3 K F+3 F^{2}>0$ and $H^{0}\left(V^{2}, S^{i} \Omega^{1} \otimes i F\right) \sim c i^{3}$ (shows how the number of symmetric tensors grows). In this case the base subvariety of ν_{i} is defined $B_{F} \subset \mathbb{P}(T)$. We say X is F-regular if $t f(X) \nsubseteq B_{F}$.

Lemma 58. F-regular curves of genus g form an algebraic family.
Its' proof first uses that the divisor of intersection $\left.(i D+i F) \cap t f(X)\right|_{X}$ on a curve X coincides with zero divisor of the symmetric tensor $s^{\prime} \in H^{0}\left(S^{i} K(X) \otimes\right.$ $i F)$ which takes values in F and appears as a restriction of $s \in S^{i} \Omega^{1} \otimes i F$ to a curve X, i.e. \mathcal{S}. As $F X \leq 0$, the degree of $s^{\prime} \leq 2 i g(x)$. By this reason, the degree of a curve $\nu_{i} t f(x) \leq 2 i g$ but the curves of the bounded degree form an algebraic family in \mathbb{P}^{N}. Notice that the bound depends on F (which could be not a sheaf apriori). The condition $X \subset \nu_{i} P(T)$ is given by some number of algebraic conditions. Curves of the small genus satisfy algebraic differential equations. In our case we have one-dimensional families therefore the equations are of the first order. In general case, one gets differential equations of the higher order. It is reasonable to study curves as subvarieties of $\mathbb{P}(T)$. Let us recall some properties
of the base manifold for $\nu_{i}: B_{F}=\cup_{i} B_{i}$. Let p denote a projection $p: \mathbb{P}(T) \rightarrow V$. Let p denote a projection $p: \mathbb{P}(T) \rightarrow V$. As $p t f(X)=f(X)$, the curves whose image under the tangent map lie in one of the components $B_{i} \subset B_{F}, p\left(B_{i}\right)$ is a proper subvariety of V, constitute a finite set.

Now let $p\left(B_{i}\right)=V$ and $t f(X) \subset B_{j}$. The component $B_{j} \subset \mathbb{P}(T)$ corresponds to a one-dimensional field of directions in $T\left(B_{j}\right)$ if $t f(X) \subset B_{j}$, then $f(X)$ is the image of the curve on B_{j} tangent to the field of directions B_{j} on B_{j} under the projection $p: B_{j} \rightarrow V$. Thus, F-irregular curves are images of integral curves of a finite set of foliations on branched covers of $B_{j} \rightarrow V$. Further, we will denote $\tau(C):=t f(X)$.

10.1.2 Bogomolov's finitness theorem and result of Moriwaki

Our goal is to generalize result of Moriwaki using Bogomolov's finitness theorem and Brunebarbe- Klingler-Totaro's theorem. Let us recall one more time both theorems:

Theorem 59. (Bogomolov's finitness theorem, (Bogomolov, 1977)) If the canonical class of X is very ample, for except a finite number of curves, there is a linear estimate from below for a genus of the curve inside each cone:

$$
h_{L}(P) \leq A \cdot d(P)+O(1)
$$

Theorem 60. (Moriwaki, 1995) If the canonical class of X is very ample, the following holds:

$$
h_{L}(P) \leq A \cdot d(P)+O(1)
$$

10.1.3 Moriwaki's model of the projective variety

Here we are recalling a number of facts due to A. Moriwaki (Moriwaki, 1995).
Let X be a geometrically irreducible smooth projective variety over F. Let X and C be smooth projective varieties over k, and $f: \mathcal{X} \rightarrow C$ a k-morphism such that the function field of C is F and the generic fiber of f is X, i.e. $\mathcal{X}=X \otimes F$.
X is said to be non-isotrivial if there is a non-empty open set C_{0} of C such that, for all $t \in C_{0}$, the Kodaira-Spencer map is not zero. Let \bar{F} be the algebraic closure of F. For a point $P \in X(F)$, let us denote by Δ_{P} the corresponding integral curve on X. We fix a line bundle L on X. Let \mathscr{L} be a line bundle on \mathcal{X} with $\mathscr{L} \otimes F=L$.

Definition 20. The pair $(f: \mathcal{X} \rightarrow C, \mathscr{L})$ is called a model of (X, L). A geometric height $h_{L}(P)$ of P with respect to L is defined by

$$
h_{L}(P)=\frac{\left(\mathscr{L} \cdot \Delta_{P}\right)}{[F(P): F]}
$$

Define a geometric logarithmic discriminant as

$$
d(P)=\frac{2 g\left(\Delta_{P}^{\sim}\right)-2}{[F(P): F]}
$$

where Δ_{P}^{\sim} is a normalization of Δ_{P}.
Theorem 61. (Moriwaki, 1995) If the cotangent bundle to X is very ample, the
following holds:

$$
h_{L}(P) \leq A \cdot d(P)+O(1)
$$

10.1.4 Brunebarbe- Klingler-Totaro theorem

It was reasonable to ask whether a smooth complex projective variety X with infinite fundamental group $\pi_{1}(X)$ must have a nonzero symmetric differential, meaning that $H^{0}\left(X, S^{i} \Omega^{1} X\right) \neq 0$ for some $i>0$. The following theorem gives the answer to this question.

Theorem 62. (Brunebarbe et al., 2013) Let X be a compact Kähler manifold. Suppose that there is a finite-dimensional representation of $\pi_{1}(X)$ over some field with infinite image. Then X has a nonzero symmetric differential.

All known varieties with infinite fundamental group have a finite-dimensional complex representation with infinite image, and so the theorem applies to them. Depending on what we know about the representation, the proof gives more precise lower bounds on the ring of symmetric differentials. The theorem is highly non-trivial, because there are many varieties X of general type which have many sections of the line bundles $K_{X}^{\otimes j}$, so of the bundles $\left(\Omega_{X}^{1}\right)^{\otimes i}$ which have no symmetric differentials. For example, Schneider showed that a smooth subvariety $X \subset \mathbb{P}^{N}$ with $\operatorname{dim}(X)>N / 2$ has no symmetric differentials. Most such varieties are of general type.

10.2 Proof of the bound

By result of Brunebarbe-Klinger-Totaro there are nontrivial symmetric tensors on a surface X. If the zero set of symmetric tensors defines a rational map which is an embedding at general point $\psi: \mathbb{P}^{1}(T(X)) \rightarrow \mathbb{P}^{m}$ then the curves of degree
$\tau(C)=d$ have geometric genus $\leq 2 d-2$. Thus for exceptional curves $\tau(C)$ are tangent to a zero subset $S \subset \mathbb{P}^{1}(T)$. Thus the curves with this property constitute either a one-dimensional family (of the same geometric genus) $+\mathrm{a} \psi$-finite number of curves. So we have Moriwaki estimate in this case.

If the map $\psi: \mathbb{P}^{1}(T(X)) \rightarrow \mathbb{P}^{m}$ has generically one-dimensional fiber then there are two options:

1) ψ is induced from $X \rightarrow C$ and so there is a one-dimensional subbundle $F \subset \Omega^{1}$ with many sections in F^{n}.(on further slides more details). Thus except from onedimensional family of curves with trivial restriction of F we have a linear bound on genus with respect to the degree (F, C)
2) If the map ψ is not induced from X then the images of different curves are different under tau (except for a one-dimensional family) (If C_{t} is one-dimensional family of curves in X then the map ψ is nontrivial on C_{t} and so curves have bounded genus on the whole family by the bound on generic member.)

If the image of ψ is a curve C then if genus of C is >1 then it is clear. If genus is smaller then there is family of surfaces $S_{t} \subset P(T)$ which are preimages of points in C. Then for any such surface which surjects on X we obtain a one-dimensional family for each S_{t}. Each S_{t} provides at least one-dimensional family. Thus we may have either a two dimensional family of curves of the same genus tangent to S_{t} or a discrete set of one-dimensional families.

11 Deformations of surfaces of general type

11.1 Preliminaries: Almost complex structures and symmetric tensors on cotangent bundles

11.1. Kuranishi map and almost complex structures

We follow mainly (Hironaka et al., 2013) and (Kodaira \& Spencer, 1958b, 1958a; Huybrechts, 2005; Arbarello \& Cornalba, 2009).

Definition 21. A complex structure on a manifold M is a collection of complexvalued charts $\Phi:=\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow U_{\alpha}^{\prime}\right\}$, where φ_{α} is a diffeomorphism and $U_{\alpha} \subset M, U \subset \mathbf{C}^{N}$ such that

1. For $\varphi_{\alpha}, \varphi_{\beta} \in \Phi$ their composition $\varphi_{\alpha} \circ \varphi_{\beta}$ is complex analytic
2. The union of the domains of charts in $\bigcup U_{\alpha}=M$
3. If u is a complex valued chart of M such that $u \circ \varphi_{\alpha}{ }^{-1}$ is complex analytic for all φ_{α} in Φ, then $u \in \Phi$.

Recall that $\mathbf{C} T M=T M \oplus i T_{x} M$. Denoting by $T^{\prime \prime} M_{x}$ the set of all $L \in \mathbf{C} T_{x} M$: $L f=0, f \in F_{x}$ which annihilate all germs of holomorphic functions on neighborhoods of x, we can say that $\mathbf{C} T_{x} M=T_{x}^{\prime} M \oplus T_{x}^{\prime \prime} M$, where T^{\prime} and $T^{\prime \prime}$ are complex conjugate to each other.

We define families of analytic charts over the parameter spaces of analytic sets. More concretely,

Definition 22. Let S be an analytic subset, our parameter set for families of a complex charts. Let $S^{\prime} \subset S$. Then, for a $U \subset M$, by a family of complex charts
on M we mean a map

$$
\varkappa: U \times S^{\prime} \rightarrow \mathbf{C}^{N},
$$

where $\varkappa(s)$ is a complex analytic chart for M for any fixed $s \in S^{\prime}$.

A collection of families of complex analytic charts, satisfying Properties (21) is called complex analytic families of complex structures on M.

An isomorphism of two complex structures of M is a diffeomorphism which sends charts of one structure to those of another. Hence it is natural to define an isomorphism of families as a family of diffeomorphisms satisfying conditions we naturally expect. To be more precise, let $\hat{\theta}$ and $\hat{\varphi}$ be complex analytic families over an analytic set B. Denote by f a family of diffeomorphisms of M parametrized by $B\left\{f^{b}: b \in B\right\}$.

In the following we fix a complex structure M on M and we are interested in how we can so to speak deform M locally. To be more precise, by "deforming $M^{"}$ we mean that we consider an analytic set S together with a reference point s_{0} and a complex analytic family \mathcal{J} of complex structures on M over S such that the complex structure in \mathcal{J} over s_{0} is equal to the given M. In this case we say that \mathcal{J}, is a complex analytic family of deformations of M with a parameter in $\left(S, s_{0}\right)$ (or, over $\left(S, s_{0}\right)$). By "deforming locally M " we mean that we consider the germ of such \mathcal{J}_{s} over neighborhoods of reference points. Our main aim is to construct a complex analytic family of deformations of M which is complete.

Definition 23. Let $M^{\prime \prime}$ be an almost complex structure on M . We say that it is of finite distance from a complex structure M on \mathbf{M} when $\rho^{\prime \prime}: \mathbf{C} T M \rightarrow T^{\prime \prime} M$, such that $k e r \rho^{\prime \prime}=T^{\prime}$ induces an isomorphism of $T^{\prime \prime}$ to $T^{\prime \prime} M$.

Let $M:=\left\{M_{t}\right\}_{t \in T}$ be a family of compact complex manifolds, parametrized by the set T. For every $J_{t}: t \in T \rightsquigarrow M_{t}$ we have an assignment of a complex
analytic structure. For a $\tau: S \rightarrow T$ with $\tau\left(s_{0}\right)=t_{0}$ we associate an assignment $s \rightarrow M_{\tau(s)}$ which is a family of deformations of M. So we have germs of deformations of M at the reference points. Note that 1-dimensional cohomology group with coefficients in the sheaf of germs of holomorphic vector fields does not change on a neighborhood of the reference point.

Let us represent the complex analytic structure on M by differential forms

where $T^{\prime \prime}\left(M^{\prime}\right)=\left\{-\omega_{M^{\prime}}(X)+X: X \in T^{\prime \prime}\right\}$. Define a set $A^{p}=\left\{\right.$ set of C^{∞} - diff. forms of type $(0, p)$ of complex analytic structures M with values in $\left.T^{\prime}\right\}$. We have an operator $\bar{\partial}: A^{p} \rightarrow A^{p+1}, \phi \in A^{p}, \psi \in A^{q}$. Consider a complex-analytic local coordinates $\left(z^{1}, \ldots, z^{n}\right)$ of M and express $\phi=$ $X_{\alpha_{1} \ldots \alpha_{p}} d \bar{z}^{\alpha_{1}} \ldots d \bar{z}^{\alpha_{p}}$ and $\psi=Y_{\beta_{1} \ldots \beta_{p}} d \bar{z}^{\beta_{1}} \ldots d \bar{z}^{\beta_{p}} . X_{\alpha_{1} \ldots \alpha_{p}}$ and $Y_{\beta_{1} \ldots \beta_{p}}$ are complex vector fields of type $(0,1)$, antisymmetric w.r.t. indices. Locally, one has $[\varphi, \psi]_{l o c}:=\left[X_{\alpha_{1} \ldots \alpha_{p}}, Y_{\beta_{1} \ldots \beta_{p}}\right] d \bar{z}^{\alpha_{1}} \ldots d \bar{z}^{\alpha_{p}} d \bar{z}^{\beta_{1}} \ldots d \bar{z}^{\beta_{p}}$

Let M^{\prime} be a complex structure such that $T_{x}^{\prime \prime}\left(M^{\prime}\right)$ is very close to $T_{x}^{\prime \prime}$ so the $C^{\infty}{ }_{-}$ fiber mapping $\omega_{M^{\prime}}: T^{\prime \prime} \rightarrow T^{\prime}, T^{\prime \prime}\left(M^{\prime}\right)=\left\{-\omega_{M^{\prime}}(X)+X: X \in T^{\prime \prime}\right\}$. Therefore, M^{\prime} is completely determined by $\omega_{M^{\prime}}$. We say that M^{\prime} has finite distance to M when we can find $\omega_{M^{\prime}}$ as above.

Definition 24. An almost complex structure M_{ω} is integrable $\Leftrightarrow \omega$ satisfies the PDE: $\bar{\partial} \omega-[\omega, \omega]=0$

Almost complex structure is integrable, when it comes from a complex analytic structure. Set of almost complex structures on \mathbf{M} having finite distance to M \leftrightarrow^{1-1} with a set of fiber mappings $\varphi: T^{\prime \prime} \rightarrow T^{\prime}$.
A^{p} is a space of C^{∞}-differential forms of type $(0, p)$ of the complex analytic structure M with values in T^{\prime}. Hence, A^{1} is a space of fiber mappings $T^{\prime \prime} \rightarrow T^{\prime}$, thence the set of almost complex structures on \mathbf{M} having finite distance to M is indexed by elements of A^{1}.

Given any linear map A on each tangent space of M i.e., A is a tensor field of rank $(1,2)$ then the Nijenhuis tensor is a tensor field of rank $(1,2)$ given by

$$
N_{A}(X, Y)=-A^{2}[X, Y]+A([A X, Y]+[X, A Y])-[A X, A Y],
$$

or, for the usual case of an almost complex structure $A=J$ such that $J^{2}=-I d$,

$$
N_{J}(X, Y)=[X, Y]+J([J X, Y]+[X, J Y])-[J X, J Y]
$$

The Newlander-Nirenberg theorem states that an almost complex structure J is integrable if and only if $N_{J}=0$. The compatible complex structure is unique. Since the existence of an integrable almost complex structure is equivalent to the existence of a complex structure, this is sometimes taken as the definition of a complex structure.

FAMILIES OF DEFORMATIONS MODULO DIFFEOMORPHISMS

Let $f: \mathbf{M} \rightarrow \mathbf{M}$ be a diffeomorphism. Take $\omega \in A^{1}$. Then there exists unique complex structure M^{\prime} on M s.t. f induces an isomorphism $f: M^{\prime} \rightarrow M_{\omega} . M^{\prime}$ has again a finite distance to M. There exists a unique $\theta \in A^{1}: M^{\prime}=M_{\theta}$. In this case, we set $\theta=\omega \circ f$. For a given ω it is clear that $\omega \circ f$ is defined for f sufficiently close (in the 1-jets topology) to the identity mapping.
Let U be a domain of a local corrdinate (z). Let $f\left(U_{1}\right) \subset U$ for an open $U_{1} \subset U$.

Then $\theta=\omega \circ f$ is given by

$$
\frac{\partial f^{\alpha}}{\partial \bar{z}^{\beta}}+\omega_{\gamma}^{\alpha}\left(f(z)\left(\frac{\partial \bar{f}^{\nu}}{\partial \bar{z}^{\beta}}\right)=\left(\frac{\partial f^{\alpha}}{\partial \bar{z}^{\delta}}+\omega_{\gamma}^{\alpha}(f(z))\left(\frac{\partial \bar{f}^{\nu}}{\partial \bar{z}^{\delta}}\right) \cdot \theta_{\beta}^{\delta}(z),\right.\right.
$$

where $\omega=X_{\alpha} d \bar{z}^{\alpha}, X_{\alpha}=\omega_{\alpha}{ }^{\beta}(z) \frac{\partial}{\partial z^{\beta}}$ and similarly for θ.
$\omega \circ f$ is defined when the matrix $\frac{\partial f^{\alpha}}{\partial z^{\beta}}+\omega_{\gamma}^{\alpha}(f(z))\left(\frac{\partial \bar{f}^{\nu}}{\partial z^{\beta}}\right)$ is non-singular. Let us index f near the identity mapping by elements in A^{0}, i.e. complex vector fields of type (1,0). Let X be a vector field on M and $\left(e^{\prime}(X)\right)(x)$ be the end point of the geodesic from x moved by the initial velocity X_{x} after the time interval 1. $e^{\prime}(X): M \rightarrow M$ is a C^{∞} - geodesic mapping. If X is sufficiently small, then $e^{\prime}(X)$ is a diffeomorphism of \mathbf{M}. For a $\xi \in A^{0} \rightsquigarrow \xi+\iota(\xi)$ is a real vector field on M .
$e(\xi)(x)=B\left(\xi_{x}\right)$, and say $B: T \rightarrow M$. In terms of local coordinates, $\left.\left(\frac{\partial B^{\alpha}(\xi)}{\partial \xi^{\beta}}\right)\right|_{\xi=0}=$ $\delta_{\beta}{ }^{\alpha},\left.\left(\frac{\partial B^{\alpha}(\xi)}{\partial \xi^{\beta}}\right)\right|_{\xi=0}=\delta_{\beta}{ }^{\alpha} \rightsquigarrow \omega \circ e(\xi)=\omega+\bar{\partial} \xi+R(\omega, \xi)$, where $R(t \omega, t \xi)=$ $t^{2} R(\omega, \xi, t)$.

Lemma 63. Given a 1-parameter group of diffeomorphisms $\left\{\psi_{t}:=\exp (t(\theta+\right.$ $\bar{\theta})) \mid t \in \mathbb{R}\},\left(\frac{d}{d t}\right)_{t=0}\left(\psi_{t}{ }^{*}\left(J_{0}\right)\right)$ corresponds to the small variation $\bar{\partial}(\theta)$.
$\operatorname{Dif} f^{0}(M) \curvearrowright\{M\}$ on the set of complex structures. Locally, at each point J the orbit of diffeomorphisms in $\operatorname{Dif} f^{0}(M)$ contains a submanifold having a tangent space, consisting of forms $T S \subset$ TDiff $f^{0}(M) J, T S:=$ forms of the Dolbeaut cohomology class of $0, T S \subset T R(T S$ has a finite codimension in $T R), T R:=$ space of $\bar{\partial}$-closed forms ϕ.
Set $F(\phi)=\left(\bar{\partial}+\frac{1}{2}[\phi, \phi]\right) . F$ is a map of degree 2 between ∞-dimensional spaces: the space of $(0,1)$-forms with values in the bundle $T M^{1,0}$ and the space of $(0,2)$ forms with values in $T M^{1,0}$. Note that $\left.F\right|_{\{\bar{\partial}(\phi)=0\}}$ takes values in the space of $\bar{\partial}$-closed forms. Therefore, we can reduce an equation $\{F=0\} \rightsquigarrow$ to an equation
$k=0$, for a map

$$
k: H^{1}\left(\Theta_{Y}\right) \rightarrow H^{2}\left(\Theta_{Y}\right)
$$

called the Kuranishi map, which is a finite-dimensional problem.
Theorem 64. (Kuranishi) see (Catanese, 2011) Let X be a compact complex manifold. Then:

1. The Kuranishi family $\pi:\left(\mathbf{X}, X_{0}\right) \rightarrow(B(X), 0)$ is semiuniversal;
2. $(B(X), 0)$ is unique up to isomorphism and as a germ of analytic subspace of the v.s. $H^{1}\left(Y, \Theta_{Y}\right)$ inverse image of the origin under Kuranishi map k, whose differential vanishes at the origin. A quadratic term in the Taylor development of the Kuranishi map is given by a bilinear map $H^{1}\left(Y, \Theta_{Y}\right) \times$ $H^{1}\left(Y, \Theta_{Y}\right) \rightarrow H^{2}\left(Y, \Theta_{Y}\right)$, called the Schouten bracket (Schouten, 1954), which is the composition of the cup product followed by Lie bracket of vector fields.
3. The Kuranishi family is a versal deformation of Y_{t} for $t \in B(X)$.
4. The Kuranishi family is a universal if $B(M)$ is reduced and $h^{0}\left(X_{t}, \Theta_{t}\right):=$ $\operatorname{dim} H^{0}\left(X_{t}, \Theta_{Y_{t}}\right)$ is constant in a suitable neighborhood of 0 .

11.1.2 Bogomolov subsheaves and Bogomolov-Miyaoka-Yau inequality

Denote $T\left(M^{n}\right)=T$ the tangent bundle to M^{n}. Let $\mathcal{F}^{k} \subset \mathcal{O}(T)$ be a k-dimensional coherent subsheaf of $\mathcal{O}(T)$. An embedding $r: \mathcal{F}^{k} \hookrightarrow \mathcal{O}(T) \rightsquigarrow$ a map of one-dimensional bundles $r_{(k)}: \operatorname{det} \mathcal{F}^{k} \rightarrow \Lambda^{k} T$. If one uses the isomorphism $\Lambda^{n-1} \Omega^{1} \otimes-K \simeq T \rightsquigarrow \operatorname{a~map} r_{(k)}^{\odot}: \operatorname{det} \mathcal{F}^{k} \otimes-k K \rightarrow \Omega^{n-k}$. This way, one can study subbundles in $T\left(M^{n}\right)$ just considering one-dimensional subbundles in
$\Omega^{i}\left(M^{n}\right)$.
Theorem 65. Let M^{n} be a projective variety, $\Omega^{i}=\Omega^{i}\left(M^{n}\right)$, the $i^{\text {th }}$ wedge power of the cotangent bundle $\Omega^{1}=\Omega^{1}\left(M^{n}\right), L \rightarrow M^{n}$ be the one-dimensional bundle on M^{n} and $h: L \rightarrow \Omega^{i}$ - a non-trivial homomorphism. Then \exists constants c_{M}^{L}, β such that

$$
\operatorname{dim} H^{0}\left(M^{n}, s L\right)<c_{M}^{L} s^{i}+\beta, \forall s>0
$$

Its' proof will be interesting for us. It splits into a few Lemmas.
Lemma 66. (Induction on dimension of a manifold) Suppose the theorem holds for $\forall M$, s.t. $\operatorname{dim} M \leq(i+1)$, then it holds for projective variety X of any dimension.

Proof. Suppose that for $\operatorname{dim} M \leq(i+1)$ the theorem holds. Now consider a projective variety of dimension $n=\operatorname{dim} M>i+1$ and that the theorem does not hold for M^{n}. Let us find a projective projective variety V s.t. $\operatorname{dim} V=i+1$, for those the theorem does not hold.

Consider a graded canonical ring associated to $M: \sum_{s>0} H^{0}\left(M^{n}, s E\right) \rightsquigarrow V^{r}$ a projective variety. By Iitaka (Iitaka, 1971), \exists a rational epimorphism $h: M^{n} \rightarrow$ V^{r}, whose fiber $h^{-1}(v)$ is a connected variety.

Let us build up a projective subvariety $V^{i+1} \subset M^{n}$ s.t.

1. V^{i+1} doesn't lie $V^{i+1} \nsubseteq B_{h}$ in the base subvariety of a map $h: M^{n} \rightarrow V^{r}$;
2. The dimension of an image $\operatorname{dimh}\left(V^{i+1} \backslash\left(V^{i+1} \cap B_{h}\right)\right)=i+1$;
3. The composition of the maps $j^{*} r^{*}$

$$
r^{*}: L \rightarrow \Omega^{i}\left(M^{n}\right), j^{*}: \Omega^{i}\left(M^{n}\right) \rightarrow \Omega^{i}\left(V^{i+1}\right)
$$

is non-trivial.

For this, let us consider an arbitrary point $x \in M^{n} \backslash B_{h} \rightsquigarrow$ a map $r_{x}: L_{x} \rightarrow$ $\Omega^{i}(M) \neq 0, r k d h_{x}=r$. Consider a subspace $Q_{x} \subset T_{x}\left(M^{n}\right), \operatorname{dim} Q_{x}=(i+$ 1), $Q_{x} \pitchfork \operatorname{kerdh} h_{x}$ and $j_{*} r_{*}: L_{x} \rightarrow \bigwedge^{i} Q^{*}$ is a non-zero map. This condition is satisfied by almost all $(i+1)$-dimensional subspaces of T_{x}.

Consider an arbitrary submanifold $V^{i+1} \subset_{i} M^{n}$ s.t. $x \in V^{i+1}$ is non-special and $i_{*} T_{x}\left(V^{i+1}\right)=Q_{x}$. Then the manofold V^{i+1} satisfies the conditions (11.1.2). Note that as $\operatorname{dimh}\left(V^{i+1}\right)=i+1$, then $\operatorname{dim} H^{0}\left(V^{i+1}, s E\right)>\alpha s^{i+1}+\beta$ for some $\alpha>0$, and, therefore, if Lemma (66) does not hold for $M^{n} \Rightarrow$ it does not hold for V^{i+1} as well.

Let now $\operatorname{dim} M=n+1$. Then the subsheaf $\mathcal{O}(L) \subset \Omega^{i}\left(M^{i+1}\right)$ induces a onedimensional foliation \mathscr{L}_{s} on M^{i+1}. In more details, from the iso $\Omega^{i}\left(M^{i+1}\right) \simeq$ $T\left(M^{i+1}\right) \otimes K \rightsquigarrow$ the homomorphism $r: L \rightarrow \Omega^{i}\left(M^{i+1}\right)$ corresponds to onedimensional subsheaf $r(L \otimes-K) \subset T\left(M^{i+1}\right)$. It is an integrable subsheaf if M^{i+1} is a complex projective manifold (in this case vector fields are always integrable). Thus L corresponds to the one-dimensional foliation \mathscr{L}_{s}. It has special points on the submanofold $V_{s}, \operatorname{codim} V_{s} \geqslant 2$.

In a neighborhood of a point x, where \mathscr{L}_{s} is non-special, one can write a foliation as $\left(z_{1}=c_{1}, . ., z_{i}=c_{i}\right)$, where $z_{1}, . ., z_{i+1}$ are the local holomorphic functions. Then $\left(z_{1}, . ., z_{i}\right)$ are called the normal coordinates of the foliation. Sections $r H^{0}(V, s L)$ could be locally expressed as $\hat{s}=f\left(z_{1}, . ., z_{i+1}\right)\left(d z_{1} \wedge . . \wedge d z_{i}\right)^{\otimes s}$.

Lemma 67. $\hat{s} \in H^{0}(V, s L)$ is locally given by $\hat{s}=f\left(z_{1}, . ., z_{i+1}\right)\left(d z_{1} \wedge . . \wedge d z_{i}\right)^{\otimes s}$. Then $\frac{\partial f}{\partial z_{i+1}}=0$.

Proof. Lemma(67) is equivalent to the statement of f being constant along the
fibers \mathscr{L}_{s} and does not depend on the chosen coordinate system.

- Consider a case when $s \in r\left(H^{0}\left(M^{n}, L\right)\right) \subset H^{0}\left(M^{n}, \Omega^{i}\right)$. Then \hat{s} is a holomorphic form on M^{i+1}. Holomorphic form of codimension 1 on the arbitrary compact complex manifold is closed, i.e. $d \hat{s}=0$. Consider a condition of being closed in a neighborhood of a special point x of a foliation induced via form s. The form could be written as $\hat{s}=f\left(z_{1}, . ., z_{i+1}\right) d z_{1} \wedge . . \wedge d z_{i}, d \hat{s}=$ $\frac{\partial f}{\partial z_{i+1}} d z_{1} \wedge . . \wedge d z_{i+1}$ and $d \hat{s}=0$ is equivalent to the condition $\frac{\partial f}{\partial z_{i+1}}=0$.
- For a general case, one wishes to find a holomorphic form on some variety $\widetilde{V^{i+1}}$, which corresponds to a tensor $\hat{s} \in r\left(H^{0}(s E)\right)$. Let $\hat{s} \in H^{0}(M, n E)$. Consider a non-linear map of the bundles $n: E \rightarrow n E$ which is given by fiberwise raising to the power $n, E_{x} \rightarrow n E_{x}$. The preimage of a section $n^{-1}(s)$ is a subvariety $n^{-1}(s)=W^{i+1} \subset L$, which is an n-fold covering of $V^{i+1}, n^{-1}(s)=W^{i+1} \rightarrow_{n: 1} V^{i+1}$. For a section $s \in H^{0}\left(V^{i+1}, n E\right) \rightsquigarrow$ a section $\tilde{s} \in H^{0}\left(W^{i+1}, p^{*} E\right)$: to every point s_{x} in the fiber of the bundle $(n E)_{x}$ and the chosen point $(\sqrt[n]{s})_{x, i} \subset E_{x} \rightsquigarrow$ a point $(\sqrt[n]{s})_{x, i} \in$ fiber $p^{*} E_{x}$ via the isomorphism $p^{*} E_{x} \simeq E_{x}$. This way we get a section $s \in$ $H^{0}\left(W^{i+1}, p^{*} E\right)$ such that $\widetilde{s}^{n} \in H^{0}\left(W^{i+1}, p^{*} n E\right)$ and $\widetilde{s}^{n}=p^{*} s$. Consider now one of the irreducible components W_{θ}^{i+1} and let us now build a resolution of singularities $h: \widetilde{W}^{i+1} \rightarrow W_{0}^{i+1}$ and the projection p; The composition $p h: \widetilde{W}^{i+1} \rightarrow V^{i+1} \rightsquigarrow$ a homomorphism of the bundles $p^{*} h^{*}$: $\Omega^{i}\left(V^{i+1}\right) \rightarrow^{£} \Omega^{i}\left(\widetilde{W^{i+1}}\right) \sim \operatorname{a} \operatorname{map} £ \widetilde{r} p^{*}: h^{*} p^{*} E \rightarrow p^{*} h^{*} \Omega^{i}\left(V^{i+1}\right) \rightarrow^{\tilde{E}}$ $\Omega^{i}\left(\widetilde{W}^{i+1}\right)$. Note that $£ \widetilde{r} p^{*}=£ \widetilde{r} \widetilde{s}^{n}$. Thus, one can extract the n-th root from the tensor form $\hat{s}^{n} \in r\left(H^{0}\left(\widetilde{W}^{i+1}, n E\right)\right)$. Note that in the neighborhood of the non-special point of the foliation \mathscr{L}_{s} on \widetilde{W}^{i+1}, one can rewrite \widetilde{s}^{n} as $\left.\widetilde{s}^{n}\right|_{x \in U, x \in E_{s}}=f\left(z_{1}, . ., z_{i+1}\right)\left(d z_{1} \wedge . . \wedge d z_{i}\right)^{\otimes n}$, therefore $\widetilde{s}=$ $\sqrt[n]{f} d z_{1} \wedge . . \wedge d z_{i}$, where $\sqrt[n]{f}$ denotes some fixed branch of the multivalued
function, s is a holomorphic form and so $\frac{\partial \sqrt[n]{f}}{\partial z_{i+1}}=0$. It means that the statement holds for non-special points x of the foliation \mathscr{L}_{s} on V^{i+1}, where the map $p^{*} h: \widetilde{W}^{i+1} \rightarrow V^{i+1}$ has rank $i+1$ and $r k p^{*} h=(i+1)$. Hence, everywhere outside the branch divisor $p h \frac{\partial f}{\partial z_{i+1}}=0$. But the condition $\frac{\partial f}{\partial z_{i+1}}=0$ is closed and it implies that it it holds everywhere.

Now, to prove a theorem, consider an arbitrary submanifold $V_{r}^{i} \subset V^{i+1}$ which is transversal to our foliation $V_{r}^{i} \pitchfork \mathscr{L}_{s}$ in a general point x.

Lemma 68. A restriction homomorphism $r: H^{0}\left(V^{i+1}, n E\right) \rightarrow H^{0}\left(V^{i}, n E\right)$ is a monomorphism.

Proof. Take $s_{1} \in \operatorname{kerr}$. Let $x \in V^{i}, T_{x}\left(V^{i}\right)$ and L_{x}^{s} are transversal and the foliation \mathscr{L}_{s} is non-special at the point x. Then the normal coordinates of the foliation $\mathscr{L}_{s}: z_{1}, . ., z_{i}$ in the neighborhood of x give the coordinates on V^{i} and $z_{i+1}\left(V^{i}\right)=$ 0 . Locally, in $U(x), s_{1}$ can be written as $s_{1}=f\left(z_{1}, . ., z_{i}, z_{i+1}\right)\left(d z_{1} \wedge . . \wedge d z_{i}\right)^{\otimes n}$. The equality $\left.s_{1}\right|_{V_{i}}=0$ means that $f\left(z_{1}, . ., z_{i}, 0\right)=0$ but from the property $\frac{\partial f}{\partial z_{i+1}}=0$ follows that then $f \equiv 0$ and, hence, $s_{1}=0$ in $U(x) \subset V^{i+1}$. So, any section $s_{1} \in \operatorname{kerr}$ is identically equal to zero $(\equiv 0)$, so r is a monomorphism.

Corollary 16. $\operatorname{dim} H^{0}\left(V^{i+1}, n E\right) \leq \operatorname{dim} H^{0}\left(V^{i}, n E\right) \leq c_{M} n^{i}+\beta$ as it holds true for an arbitrary one-dimensional bundle on V^{i}. Thus the theorem holds in case $\operatorname{dim} V=i+1$ and \Rightarrow it holds true for a variety of an arbitrary dimension.

Remark 6. The statement of the theorem (65) can be specified in the case when $\operatorname{dim} H^{0}\left(M^{n}, k E\right)>c_{1} k^{\alpha}+\beta_{1}, \alpha>0, c_{1}>0, L \hookrightarrow^{h} \Omega^{i}\left(M^{n}\right)$. Then \exists a projective manifold V^{α} and a rational epimorphism $f_{\alpha}: M^{n} \rightarrow V^{\alpha}$ such that the image $h \mathcal{O}(E)$ belongs to the ideal $\mathcal{I} \subset$ in the sheaf of exterior algebras $\sum \mathcal{O}\left(\Omega^{i}\left(M^{n}\right)\right)$,
spanned on the integer closure $f_{\alpha}^{*} \mathcal{O}\left(K\left(V^{\alpha}\right)\right) \subset \mathcal{O}\left(\Omega^{\alpha}\left(M^{n}\right)\right.$, i.e. $h(\mathcal{O}(E)) \subset$ $\left.f_{\alpha}^{*} \mathcal{O} \widehat{\left(K\left(V^{\alpha}\right)\right.}\right) \wedge \Omega^{i-\alpha}\left(M^{n}\right)$

Remark 7. By $\left.f_{\alpha}^{*} \mathcal{O} \widehat{\left(K\left(V^{\alpha}\right)\right.}\right)$ we mean a maximal one-dimensional submodule in $\mathcal{O}\left(\Omega^{\alpha}\left(M^{n}\right)\right)$, whose sections are $f_{\alpha}^{*}\left(\mathcal{O}\left(K\left(V^{\alpha}\right)\right)\right)$ up to mult.to a function.

Proof. Let us build up a manifold V^{α} and a rational epimorphic map $f: M^{n} \rightarrow$ V^{α} with a connected general fiber. Similarly, the restriction of L to the general $(i+1)$-submanifold defines a one-dimensional foliation L_{s}^{V}. The fraction $\frac{s}{s^{\prime}}$ of the sections $s, s^{\prime} \in H^{0}(M, n L)$ is a rational function on M^{n}, which when restricted to V, has a form $\frac{f\left(z_{1}, . ., z_{i}\right)}{g\left(z_{1}, ., z_{i}\right)}=\frac{s}{s^{\prime}}$, where $z_{1}, . ., z_{i}$ are the normal coordinates of a foliation L_{s}^{V}. This function is constant on the fibers of the foliation L_{s}^{V} on V^{i+1}, as f and φ are both constant on L_{s}^{V}. On the other hand, taking n sufficiently big, we will get a homogeneous map via the linear series $H^{0}(M, n L)$: $h_{\alpha}: M^{n} \rightarrow V^{\alpha} ;\left(s_{1}, . ., s_{m}\right) \in H^{0}(M, n L)$, where $\left.s_{i}\right|_{V}=f_{i}\left(d z_{1} \wedge . . \wedge d z_{i}\right)^{\otimes n}$. Thus if we consider a fiber of the foliation $L_{s}^{V} \subset V^{i+1}$, it fully belongs to the submanifold $Q_{x}=h_{\alpha}^{-1}(h(x))$, where $x \in L_{s, x}^{V}$. Thus the fibers of a map $\left.h_{\alpha}\right|_{V^{i+1}} \rightarrow V^{\alpha}$ contain the fibers of a foliation L_{s}^{V}. It means that in the neighborhood of a point $x \in V^{i+1}$, where $\operatorname{rank} d h=\alpha$ and L_{s}^{V} is α-non-special, the form $\sqrt[n]{f} d z_{1} \wedge . . \wedge d z_{i}$, which locally gives L_{s}^{V}, belongs to the ideal of the form $\operatorname{det}(d h) .\left(z_{1}, . ., z_{\alpha}\right)$ coordinates on $V^{\alpha} \rightsquigarrow \operatorname{adding}(i+1-\alpha)$ local derivatives of the coordinates from the set $\left\{v_{1}, . ., v_{n}\right\}$ on M^{n}, we get that our form $s \in H^{0}(U(x), r \mathcal{O}(L)), s=\sum_{\omega=(1, . ., \gamma, 1, \ldots, \beta)} f \omega d z_{1} \wedge . . \wedge d z_{\gamma} \wedge d v_{1} \wedge . . \wedge d v_{\beta}$, can be written as $f \omega=0$, if the polynomial ω does not contain $(1, \ldots, \alpha)$. Consider the case when $\alpha=i, \mathcal{O}(E) \simeq f_{\alpha}^{*}\left(K\left(V^{\alpha}\right)\right)$. Interchanging varieties M^{n} and V^{α} to birationally equivalent ones, we can consider that $h: M^{n} \rightarrow V^{\alpha}$ is a holomorphic map, whose general fiber is connected. At points $x \in M^{n}$, where the $\operatorname{rank} d f_{\alpha}=\operatorname{dim} V^{\alpha}=i$, we can define a trace of any tensor $\forall s \in H^{0}\left(M^{n}, n E\right)$.

Indeed, the restriction $\left.E\right|_{h^{-1}(x)}$ is trivial and one can build $\operatorname{tr} s_{f(x)}$ and if $s_{x} \neq 0$, then $\operatorname{trs}_{f(x)} \neq 0$. The tensor $\operatorname{tr} s_{f(x)}$ will be a section of a bundle $n K\left(V_{\alpha}\right)$ holomorphic at all points $x \in V^{\alpha}$ for those $\exists y \in h^{-1}(x), r k d h_{y}=\operatorname{dim} V^{\alpha}=i$. If $\forall y \in h^{-1}(x), d h_{y}<\operatorname{dim} V_{\alpha}$, then the point y corresponds to a multiple fiber of a map h. Such points always form a divisor $D \subset V^{\alpha}$, or an empty set \emptyset. The section $\operatorname{trs}_{f(x)}$ can have singularities of the pole type along $h(D)$ on V^{α}, if $h(D)$ is a divisor on V^{α}.

Example. Let V^{n} be an arbitrary projective manifold of dimension n and $E \hookrightarrow$ Ω^{1} is a one-dimensional subbundle such that $H^{0}\left(V^{n}, n E\right)>c n+\beta, c>0$. Then \exists a rational map $h_{1}: V^{n} \rightarrow X$, where X is a non-special curve. If h_{1} doesn't have multiple fibers, then the genus of the curve $g\left(X^{1}\right)>1$ as $t r_{h} s \in$ $H^{0}\left(X^{1}, n K\left(X^{1}\right)\right)$ and, hence, $\operatorname{dim} H^{0}\left(X^{1}, n K\right)>c n+\beta$. Thus h_{1} authomatically becomes a regular map. Suppose now that h_{1} has multiple fibers.

Lemma 69. \exists a canonical non-ramified covering $\widetilde{X^{1}} \rightarrow X^{1}$ such that the induced map $\widetilde{h_{1}}: \widetilde{M^{n}} \rightarrow \widetilde{X^{1}}$, where $\widetilde{M^{n}} \simeq M \times \widetilde{X^{1}}$ doesn't have multiple fibers, i.e. $\forall x \in \widetilde{X^{1}}$, among components $\widetilde{{h_{1}}^{-1}(x), \exists \text { one } \mathcal{U} \subset \widetilde{{h_{1}}^{-1}}(x) \text {, such that } \mathcal{U} \in h^{-1}(x), ~(x)}$ with multiplicity 1.

Proof. Indeed, the divisor on X^{1} is a set of points p_{i} with multiplicities n_{i}, where n_{i} is a minimal multiplicity among the fiber components. Then consider a covering $\widetilde{X^{1}} \rightarrow X^{1}$ with multiplicities n_{i} at the points p_{i}. We will call it $\widetilde{X^{1}}$. It \exists !, if:

1. $g\left(X^{1}\right) \geqslant 0$ and n_{i} are arbitrary
2. $g\left(X^{1}\right)=0$, number of ramification points $\geqslant 3, n_{i}$ are arbitrary.
$\widetilde{X^{1}}$ satisfies Lemma(68) conditions. We have to show that if $g(X)=0 \Rightarrow$ $\#\left\{p_{i}\right.$ which correspond to the multiple fibers $\} \geqslant 3$.

For that, consider a holomorphic tensor s on M^{n} and a form $\operatorname{tr}_{h} s . \operatorname{tr}_{h} s \in n K\left(\mathbb{P}^{1}\right)$ and locally is given by $f(z) d z^{n}$. Note that at the point p_{i} the order of the pole $f(z), \operatorname{ordf}(x)<n$, as $s=f(z) d z^{n}$ is resolved, i.e. via a substitution $q^{p}=z$ it becomes holomorphic and \Rightarrow if $\operatorname{trs}=\frac{d z^{n}}{z^{r}}+\ldots$, then $\frac{z^{n(p-1)}}{z^{p r}}$ is a holomorphic function, $(p-1) n>r$ and $r<n$. Hence as the sum over all points $\sum \operatorname{ord}_{p} f(z)>$ $2 n, 2 n=-\operatorname{degn} K\left(P^{1}\right)$, then $\operatorname{ord}_{p} f<n$ for \forall point p_{i} and we get that $\#$ of multiple points $\geqslant 3$.

Remark 8. If the local covering, induced via $\sqrt[n_{i}]{z}$ in the neighborhood of p_{i} is not ramified on $h^{-1}\left(U\left(p_{i}\right)\right)$ in M, then $f: \widetilde{M}^{n} \rightarrow M^{n}$ is non-ramified as well.

Theorem 70. (Bogomolov, 1978) Let $E \rightarrow X$ be a vector bundle of $\operatorname{dim} E=n$ and suppose that $c_{2}-\frac{n-1}{2 n} c_{1}^{2}>0 \Rightarrow \exists a$ subbundle $F \subset E, \operatorname{dim} F=k$ and a homomorphism $h: F \rightarrow E$:

1. $h: \mathcal{O}(F) \rightarrow \mathcal{O}(E)$ is a monomorphism;
2. $\left(c_{1}(F)-\frac{k}{n} c_{1}(E)\right)^{2}>-c_{2}\left(E_{0}\right), E_{0}=E \otimes \frac{\operatorname{det} E}{n}$;
3. some multiplicity of the bundle ($n \operatorname{det} F-k \operatorname{det} E$) has a section; i.e. there exists $\exists s \in H^{0}(X, l(n d e t F-k d e t E))$ for some l

Theorem 71. (BOGOMOLOV-MIYAOKA-YAU INEQUALITY WITH CONST. 4)

For an arbitrary projective surface of general type $/ \mathbb{C}$ the following inequality holds $\mathbf{c}_{1}{ }^{2} \leq 4 \mathbf{c}_{2}$.

Proof. Let V be a projective surface of general type. Then $\operatorname{dim} H^{0}(V, n K)<$ $c n^{2}+\beta, c>0$. By Theorem[70] the inequality $c_{1}{ }^{2}>4 c_{2}$ is equivalent to \exists of
one-dimensional subbundle $h: \mathcal{F} \rightarrow \Omega^{1}$ such that $H^{0}(V, n(2 \mathcal{F}-K))>0$ for some $n>0$. Then $H^{0}(V, m \mathcal{F})>\frac{c}{4} m^{2}+\beta$ and it contradicts Theorem (65).

11.2 Inequalities and deformation theory

It is interesting to point out that a presence of nontrivial infinitesimal deformations provides another way to obtain strong inequalities obtained by Yau for some classes of manifolds of general type.

Here we proof our main result:

Theorem 72. Let X^{2} be a complex projective surface which ample canonical class K which generates Pic $X^{2}=Z$ and assume that $H^{1}(X, T) \neq 0$ where T is the tangent bundle. Then we have Severi inequality $c_{1}^{2}(X)<3 c_{2}(X)$.

Proof. Let X be an algebraic surface. We follow notations in (Déev, 2021). Denote $C_{X}(X):=\left\{\right.$ the set of tensors $\left.I \in C^{\infty}\left(T^{*} X \otimes T X\right): I^{2}=-I d_{T X}\right\}$ and $\mathcal{T}(X)=C_{X}(X) / D i f f^{0}(X)$ a Teichmüller space. The tangent space to Teichmüller space is $T_{I} \mathcal{T} \simeq H^{1}(X, T X)$: take a first order deformation $\mathfrak{X} \rightarrow \Delta$ with $\mathfrak{X}_{0} \simeq X$. We have a short exact sequence $\left.T X \rightarrow T \mathfrak{X}\right|_{X} \rightarrow \mathcal{O}_{X}$. The short exact sequences of the isomorphism classes of such extensions are classified by $H^{1}(X, T X)$. Further, denote $T^{\prime}:=T \mathfrak{X}$. Indeed, consider the extension \tilde{T} obtained from exact sequence $0 \rightarrow T \rightarrow \tilde{T} \rightarrow O \rightarrow 0$. Then if \tilde{T} we obtain Severi inequality $c_{1}^{2}<3 c_{2}$ since \tilde{T} has rank 3 . If \tilde{T} is unstable then we have a destabilizing subbundle $F^{l} \subset \tilde{T}, l=1,2$, with $\operatorname{det} F^{l} \geq(-l) / 3 K$ If $l=1$ and $F^{1} \subset T$ then $F \times K \subset \Omega^{1}$ is ample contracting the absence of ample subsheafs in Ω^{1}

If F^{1} is not contained in T then $F^{1} \leq-K$ since it maps to O and hence can not be destabilizing.

If we have destabilizing F^{2} then we have that determinant $\operatorname{det} F^{2}=\operatorname{detFT}+$ $\operatorname{det} F^{2} / F T$ where $F T$ is the intersection of F^{2} and $T \subset \tilde{T}$. Thus $F T \geq-2 / 3 K$ if $F^{2} / F T$ is trivial and we get contradiction as above. Otherwise $F^{2} / F T \leq-K$ and $F T \times K \subset \Omega^{1}$ is also ample. This result can be extended to other classes of surfaces and higher dimensional manifolds.

12 A particular examples of vector bundles on families

Here we observe some descriptions of vector bundles on certain families of curves following the survey (Beauville, 1994).

12.0.1 Case of ruled surfaces $B=\mathbb{P}^{1} \times C$

Consider a vector bundle \mathcal{E} on a family B, where a curve C is of arbitrary genus. Then by the Grothendieck theorem, $\left.\mathcal{E}\right|_{x} \simeq \mathcal{O}\left(r_{1}(x)\right) \oplus . . \oplus \mathcal{O}\left(r_{k}(x)\right)$, where $x \in C$ and $\sum_{i} r_{i}(x)=n, n=\operatorname{rank}(\mathcal{E})$. But the only stable ones are those which are represented as a sum of a two line bundles.

We can say that a moduli space of vector bundles over \mathbb{P}^{1} is

$$
M_{\mathbb{P}^{1}}=\bigoplus_{l} \mathcal{O}\left(l_{1}\right) \oplus \mathcal{O}\left(l_{2}\right)
$$

Then $\mathcal{E} \simeq C \subset M_{\mathbb{P}^{1}}$ and $M_{B} \simeq\left\{C \subset M_{\mathbb{P}^{1}}\right\}$
From the other point of view $\left\{\mathcal{E} \simeq \mathbb{P}^{1} \subset M_{C}\right\}$.
Additionally, there is a correspondence between bundles. Namely, they coincide (or are isomorphic) on the restrictions.

Let us treat it in a few well-studied cases, by (Beauville, 1994):
Let J be a jacobian variety of a curve C. Denote by J^{k} its' Jacobian variety of degree k line bundles. Let us fix some $L \in J^{g-1}$. Consider a reduced subvariety

$$
\Delta_{L}=\left\{E \in \mathcal{M}_{r} \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

Then Δ_{L} is a Cartier divisor in \mathcal{M}_{r}. The line bundle $\mathcal{L}=\mathcal{O}_{\mathcal{M}_{r}}\left(\Delta_{L}\right)$ is called a determinant line bundle and is independent of the choice of L and generates $\operatorname{Pic}\left(\mathcal{M}_{r}\right)$.

For a vector bundle $E \in \mathcal{M}_{r}$ consider the locus

$$
\Theta_{E}:=\left\{L \in J^{g-1} \mid H^{0}(C, E \otimes L) \neq \emptyset\right\}
$$

If it is nonempty we can say that E admits a theta-divisor. This divisor belongs to a linear system $|r \Theta|$, where Θ is a canonical Theta-divisor in J^{g-1}. Thus we got a map:

$$
\theta: \mathcal{M}_{2} \rightarrow|r \Theta|
$$

Let us observe more carefully a few cases:

- $\operatorname{rank} \mathcal{E}=2$, genus $g=2$:

A map θ is a finite morphism in this case and \mathcal{M}_{2} is isomorphic to \mathbb{P}^{3},

$$
i: \mathcal{M}_{2} \rightarrow \mathbb{P}^{3}
$$

Thus vector bundles on $\mathbb{P}^{1} \times C$ are isomorphic to $i^{-1}\left(\mathbb{P}^{1}\right), \mathbb{P}^{1} \subset \mathbb{P}^{3}$

- genus $g \geq 3, C$ is hyperelliptic in this case, a map

$$
i: \mathcal{M}_{2} /<i^{*}>\hookrightarrow|2 \Theta|
$$

is embedding, where i^{*} is an envolution. There is an explicit geometric description (will write it later), thus vector bundles on $\mathbb{P}^{1} \times C$ are isomorphic to $i^{-1}\left(\mathbb{P}^{1}\right), \mathbb{P}^{1} \subset|2 \Theta|$

- If a curve C is not hyperelliptic, the map θ is again an embedding $i: \mathcal{M}_{2} \rightarrow$
$|2 \Theta|$. Recall that $|2 \Theta|$ is isomorphic to $\mathbb{P}^{2^{g}-1}$. Thus $i\left(\mathcal{M}_{2}\right)$ to a subvariety of $\mathbb{P}^{2^{g}-1}$ of dimension $3 g-3$. $\operatorname{Sing}\left(\mathcal{M}_{2}\right)=K$, where K is a Kummer variety.

Thus every vector bundle is $\mathbb{P}^{1} \subset i\left(\mathcal{M}_{2}\right)$

- In genus $g=3, i$ identifies \mathcal{M}_{2} with a Coble quartic hypersurface. This every preimage of $\mathbb{P}^{1} \subset$ Coble quartic hypersurface describes our vector bundle. [write Coble quartic hypersurface in coordinates...]
- In genus $4, \mathcal{M}_{2}$ is a variety of dimension 9 and degree 96 in \mathbb{P}^{15}. Oxbury and Pauly have observed that there exists a unique $J[2]$-invariant quartic hypersurface singular along \mathcal{M}_{2}. A geometric interpretation of this quartic is not known. In arbitrary genus, the quartic hypersurfaces in $|2 \Theta|$ containing \mathcal{M}_{2} have been studied in [vG] and [vG-P]. Here is one sample of their results: Assume that C has no vanishing thetanull. A $J[2]$ invariant quartic form F on $|2 \Theta|$ vanishes on \mathcal{M}_{2} if and only if the hypersurface $F=0$ is singular along K.
12.0.2 Example: $B=C_{1} \times C_{2}$

In this case, some amount of bundles are coming from $\left\{C_{1} \subset M_{C_{2}}\right\} \simeq$ $\left\{C_{2} \subset M_{C_{1}}\right\}$. And similarly they coincide on the restrictions. Also, $C_{1} \otimes C_{2}$. To get a more general picture recall that

$$
\operatorname{Pic}\left(C_{1} \times C_{2}\right)=\operatorname{Pic}\left(C_{1}\right) \oplus \operatorname{Pic}\left(C_{2}\right) \oplus \operatorname{Hom}\left(J_{C_{1}}, J_{C_{2}}\right)
$$

And for some curve C we can get any vector bundle on $C_{1} \times C_{2}$ using the procedure of elementary transformation along C.

Bibliography

Arbarello, E., \& Cornalba, M. (2009). Teichmüller space via Kuranishi families. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V,Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 8(1), 89-116. doi: 10.2422/2036-2145.2009.1.05

Atiyah, M. F. (1957a). Complex analytic connections in fibre bundles. Transactions of the American Mathematical Society, 85(1), 181-207. Retrieved from http://www.jstor.org/stable/1992969

Atiyah, M. F. (1957b). Vector bundles over an elliptic curve. Proceedings of the London Mathematical Society, s3-7(1), 414-452. Retrieved from https://londmathsoc.onlinelibrary .wiley.com/doi/abs/10.1112/plms/s3-7.1.414 doi: https://doi.org/10.1112/plms/s3-7.1.414

Barth, W. P., Hulek, K., Peters, C. A. M., \& Van de Ven, A. (2004). Compact complex surfaces. Ergeb. Math. Grenzgeb., 3. Folge, 4, xii + 436.

Baum, P., \& Bott, R. (1972). Singularities of holomorphic foliations. J. Differential Geometry, 7, 279-342. Retrieved from http:// projecteuclid.org/euclid.jdg/1214431158

Beauville, A. (1994). Vector bundles on curves and generalized theta functions: recent results and open problems.

Beauville, A. (2006). Vector bundles on curves and theta functions. In Moduli spaces and arithmetic geometry (Vol. 45, pp. 145-156). Math. Soc. Japan, Tokyo. Retrieved from https://doi.org/ $10.2969 / \mathrm{aspm} / 04510145$ doi: 10.2969/aspm/04510145

Bhosle, U. N. (1996). Generalized parabolic bundles and applications-II.

Mathematical Sciences, 106, 403-420. Retrieved from https:// doi.org/10.1007/BF02837696

Bogomolov, F. (1977). Families of curves on a surface of general type. Doklady - Akademiya Nauk SSSR, Earth Science Sections, 236(5), 1041-1044.

Bogomolov, F. (1978). Holomorphic tensors and vector bundles on projective manifolds. (russian). Izv. Akad. Nauk SSSR Ser. Mat, 42(1), 1227-1287. Retrieved from http://mi.mathnet.ru/ izv1965,https://mathscinet.ams.org/mathscinet -getitem?mr=522939

Bogomolov, F. (1994). Stable vector bundles on projective surfaces. Russ. Acad. Sci., Sb., Math., 81(2), 1. doi: 10.1070/ SM1995v081n02ABEH003544

Bogomolov, F., \& de Oliveira, B. (2005). Holomorphic functions and vector bundles on coverings of projective varieties. Asian J. Math., 9(3), 295-314. doi: 10.4310/AJM.2005.v9.n3.a1

Bogomolov, F., \& Katzarkov, L. (1998). Complex projective surfaces and infinite groups. Geom. Funct. Anal., 8(2), 243-272. Retrieved from https://doi.org/10.1007/s000390050055 doi: 10.1007/s000390050055

Bogomolov, F., \& Katzarkov, L. (1999). Infinite groups in Projective and Symplectic geometry. In Groups st. andrews 1997 in bath. selected papers of the international conference, bath, uk, july 26-august 9, 1997. vol. 1 (pp. 85-123). Cambridge: Cambridge University Press.

Bogomolov, F., \& Lukzen, E. (2022). Stable vector bundles on the families of curves. European Journal of Mathematics, 81(2), 1. Retrieved from https://doi.org/10.1007/s40879-021-00527-z
doi: 10.1007/s40879-021-00527-z
Bogomolov, F. A. (1978). Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat., 42(6), 12271287, 1439.

Bogomolov, F. A. (1979). Holomorphic tensors and vector bundles on projective varieties. Math. USSR, Izv., 13, 499-555. doi: 10.1070/ IM1979v013n03ABEH002076

Bogomolov, F. A. (1994). Stable vector bundles on projective surfaces. Mat. Sb., 185(4), 3-26. Retrieved from https://doi .org/10.1070/SM1995v081n02ABEH003544 doi: 10.1070/ SM1995v081n02ABEH003544

Bogomolov, F. A., Cascini, P., \& de Oliveira, B. (2006). Singularities on complete algebraic varieties. Cent. Eur. J. Math., 4(2), 194-208. doi: 10.2478/s $11533-006-0005-x$

Brunebarbe, Y., Klingler, B., \& Totaro, B. (2013). Symmetric differentials and the fundamental group. Duke Mathematical Journal, 162(14), 2797 - 2813. Retrieved from https://doi.org/10.1215/ 00127094-2381442 doi: 10.1215/00127094-2381442

Calabi, E. (2015). On Kähler manifolds with vanishing canonical class. Algebraic Geometry and Topology: A Symposium in Honor of Solomon Lefschetz, 78-89. Retrieved from https: / / doi.org/10.1515/9781400879915-006 doi: doi:10.1515/ 9781400879915-006

Catanese, F. (2011). A Superficial Working Guide to Deformations and Moduli. Retrieved from https://arxiv.org/abs/1106 .1368

Chen, T. (2012, Aug 01). The associated map of the nonabelian

Gauss-Manin connection. Central European Journal of Mathematics, 10(4), 1407-1421. Retrieved from https://doi.org/10 .2478/s11533-011-0110-3 doi: 10.2478/s11533-011-0110 -3

Chen, X., Donaldson, S., \& Sun, S. (2015a). Kähler-Einstein metrics on Fano manifolds. I. J. Amer. Math. Soc., 28. Retrieved from https://doi.org/10.1090/S0894-0347 -2014-00799-2 doi: 10.1090/S0894-0347-2014-00799-2

Chen, X., Donaldson, S., \& Sun, S. (2015b). Kähler-Einstein metrics on Fano manifolds. II. J. Amer. Math. Soc., 28. Retrieved from https://doi.org/10.1090/S0894-0347 -2014-00800-6 doi: 10.1090/S0894-0347-2014-00800-6

Chen, X., Donaldson, S., \& Sun, S. (2015c). Kähler-Einstein metrics on Fano manifolds. III. J. Amer. Math. Soc., 28. Retrieved from https://doi.org/10.1090/S0894-0347 -2014-00801-8 doi: 10.1090/S0894-0347-2014-00801-8

Corlette, K. (1988). Flat G-bundles with canonical metrics. Journal of Differential Geometry, 28(3), 361 - 382. Retrieved from https://doi.org/10.4310/jdg/1214442469 doi: 10 .4310/jdg/1214442469
Déev, R. N. (2021). Haupt-Kapovich theorem revisited. arXiv:2010.15359v2 [math.AG]. Retrieved from https:// arxiv.org/abs/2010.15359

Deligne, P., \& Mumford, D. (1969). The irreducibility of the space of curves of given genus. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 36(1). Retrieved from https://doi.org/ 10.1007/BF02684599 doi: 10.1007/BF02684599

Demailly, J.-P. (1992). Singular hermitian metrics on positive line bundles. in Complex Algebraic Varieties, Springer Berlin Heidelberg, 87-104. Retrieved from https://link.springer.com/ chapter/10.1007/BFb0094512 doi: https://doi.org/10.1007/ BFb0094512

Demailly, J.-P., \& Paun, M. (2004). Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2), 159(3), 1247-1274. Retrieved from https://annals.math .princeton.edu/2004/159-3/p05 doi: https://doi.org/10 .4007/annals.2004.159.1247

Donagi, R., \& Pantev, T. (2009). Geometric Langlands and non-abelian Hodge theory. In Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry (Vol. 13, pp. 85-116). Int. Press, Somerville, MA. Retrieved from https://doi.org/10.4310/SDG. 2008 .v13.n1.a3 doi: 10.4310/SDG.2008.v13.n1.a3

Donaldson, S. (2002). Scalar Curvature and Stability of Toric Varieties. Journal of Differential Geometry, 62(2), 289 - 349. Retrieved from https://doi.org/10.4310/jdg/1090950195 doi: 10.4310/jdg/1090950195

Donaldson, S. K. (1983). A new proof of a theorem of Narasimhan and Seshadri. Journal of Differential Geometry, 18(2), 269 - 277. Retrieved from https://doi.org/10.4310/jdg/1214437664 doi: 10.4310/jdg/1214437664

Donaldson, S. K. (1985). Anti Self-Dual Yang-Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles. Proceedings of the London Mathematical Society, s3-50(1), 1-
26. Retrieved from https://londmathsoc.onlinelibrary .wiley.com/doi/abs/10.1112/plms/s3-50.1.1 doi: https://doi.org/10.1112/plms/s3-50.1.1
Donaldson, S. K. (2005). Scalar curvature and projective embeddings. II. Q. J. Math., 56(3), 345-356. Retrieved from https://doi.org/ 10.1093/qmath/hah044 doi: 10.1093/qmath/hah044

Gieseker, D. (1977). On the moduli of vector bundles on an algebraic surface. Annals of Mathematics, 106(1), 45-60. Retrieved from http://www.jstor.org/stable/1971157

Gieseker, D. (1979). On a theorem of Bogomolov on Chern Classes of Stable Bundles. American Journal of Mathematics, 101(1), 77-85. Retrieved from http://www.jstor.org/stable/2373939

Hironaka, H., Akahori, T., Komatsu, G., Miyajima, K., Namba, M., Phong, D. H., \& Yamaguchi, K. (2013). Selected Papers of Masatake Kuranishi. WORLD SCIENTIFIC. Retrieved from https://www .worldscientific.com/doi/abs/10.1142/8801 doi: 10.1142/8801

Hirzebruch, F. (1962). Neue topologische Methoden in der algebraischen Geometrie. (New topological methods in algebraic geometry). 2. erg. Aufl. Ergeb. Math. Grenzgeb., 9.

Hitchin, N. (1987). Stable bundles and integrable systems. Duke Mathematical Journal, 54(1), 91 - 114. Retrieved from https://doi .org/10.1215/S0012-7094-87-05408-1 doi: 10.1215/ S0012-7094-87-05408-1

Huybrechts, D. (2005). Complex geometry. An introduction. Universitext, xii +309 . doi: $10.1007 / b 137952$

Huybrechts, D., \& Lehn, M. (2010). The geometry of moduli
spaces of sheaves (Second ed.). Cambridge University Press, Cambridge. Retrieved from https://doi.org/10.1017/ CB09780511711985 doi: 10.1017/CBO9780511711985

Iitaka, S. (1971). On D-dimensions of algebraic varieties. Journal of the Mathematical Society of Japan, 23(2), 356-373. Retrieved from https://doi.org/10.2969/jmsj/02320356 doi: 10.2969/jmsj/02320356

Iskovskikh, V. A., \& Shafarevich, I. R. (1989). Algebraic surfaces in Algebraic geometry II. Cohomology of algebraic varieties. Algebraic surfaces. Transl. from the Russian by R. Treger. Berlin: SpringerVerlag.
Kapranov, M. (1999). Rozansky-Witten invariants via Atiyah classes. Compositio Mathematica, 115(1), 71-113. doi: \{10.1023/A: 1000664527238\}
Kempf, G., , \& Ness, L. (1979). The length of vectors in representation spaces. in "Algebraic geometry", Springer Berlin Heidelberg, 233243.

Kobayashi, S. (2014). Differential geometry of complex vector bundles. Retrieved from https://doi.org/10.1515/9781400858682 doi: doi:10.1515/9781400858682

Kodaira, K., \& Spencer, D. C. (1958a). On deformations of complex analytic structures, i. Annals of Mathematics, 67(2), 328-401. Retrieved from http://www.jstor.org/stable/1970009

Kodaira, K., \& Spencer, D. C. (1958b). On deformations of complex analytic structures, ii. Annals of Mathematics, 67(3), 403-466. Retrieved from http://www.jstor.org/stable/1969867

Maruyama, M. (1975). Stable vector bundles on an algebraic surface.

Nagoya Math. J., 58, 25-68. doi: 10.1017/S0027763000016688
Maruyama, M. (1976). Openness of a family of torsion free sheaves. Journal of Mathematics of Kyoto University, 16(3), 627 - 637. Retrieved from https://doi.org/10.1215/kjm/1250522875 doi: 10.1215/kjm/1250522875

Maruyama, M. (1977). Moduli of stable sheaves. I. J. Math. Kyoto Univ., 17, 91-126. doi: $10.1215 / \mathrm{kjm} / 1250522815$

Maruyama, M. (1978). Moduli of stable sheaves. II. J. Math. Kyoto Univ, 18, 557-614. doi: $10.1215 / \mathrm{kjm} / 1250522511$

Mehta, V. B., \& Ramanathan, A. (1984). Restriction of stable sheaves and representations of the fundamental group. Inventiones mathematicae, 77, 163-172.

Moriwaki, A. (1995). Geometric height inequality on varieties with ample cotangent bundles. J. Algebraic Geom., 4(2), 385-396.
Moriwaki, A. (1997). Bogomolov conjecture over function fields for stable curves with only irreducible fibers. Compositio Math., 105(2), 125-140. Retrieved from https://doi.org/10.1023/A: 1000139117766 doi: $10.1023 / \mathrm{A}: 1000139117766$

Mumford, D. (1977). Stability of projective varieties. Algebraic geometry. The Johns Hopkins centen. Lect., Symp. Baltimore/Maryland 1976, 6-8 (1977)..

Mumford, D., Fogarty, J., \& Kirwan, F. (1994). Geometric invariant theory. Ergeb. Math. Grenzgeb., 34, 320. doi: 10.1007/978-3-642-57916-5

Narasimhan, M. S., \& Seshadri, C. S. (1965). Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. (2), 82, 540567. Retrieved from https://doi.org/10.2307/1970710 doi: 10.2307/1970710

Newstead, P. (1967). Topological properties of some spaces of stable bundles. Topology, 6(2), 241-262.

Newstead, P. (1968). Periods of a moduli space of bundles on a curve. Amer. J. Math, 90, 1201-1208.

Ramanan, S. (1973). The moduli spaces of vector bundles over an algebraic curve. Mathematische Annalen, 200, 69-84. Retrieved from http://eudml.org/doc/162339

Ross, J. A., \& Dervan, R. (2017). K-stability for Kähler manifolds.
Schouten, J. A. (1954). On the differential operators of first order in tensor calculus. Convegno Internaz. Geometria Differenz., Italia, 20-26 Settembre 1953, 1-7 (1954).

Serre, J.-P. (1955). Faisceaux algebriques coherents. Annals of Mathematics, 61(2), 197-278. Retrieved from http://www.jstor.org/ stable/1969915

Serre, J.-P. (1956). Géométrie algébrique et géométrie analytique. Annales de l'Institut Fourier, 6, 1-42. Retrieved from http: / / www .numdam.org/articles/10.5802/aif.59/ doi: 10.5802/ aif. 59

Seshadri, C. S. (1967). Space of unitary vector bundles on a compact riemann surface. Annals of Mathematics, 303-336.

Shafarevich, I. R. (1988a). Basic algebraic geometry. (Osnovy algebraicheskoj geometrii.) Vol. 1: Algebraic manifolds in projective space. (Tom 1: Algebraicheskie mnogoobraziya v proektivnom prostranstve). Vol. 2: Schemes. Complex manifolds. (Tom 2: Skhemy. Kompleksnye mnogoobraziya). 2nd ed., rev. and compl. Moskva: Nauka. Vol. 1: 352 p. R. 3.00; Vol. 2: 304 p. R. 2.50 (1988).

Shafarevich, I. R. (1988b). Basic algebraic geometry. (Osnovy alge-
braicheskoj geometrii.) Vol. 1: Algebraic manifolds in projective space. (Tom 1: Algebraicheskie mnogoobraziya v proektivnom prostranstve). Vol. 2: Schemes. Complex manifolds. (Tom 2: Skhemy. Kompleksnye mnogoobraziya). 2nd ed., rev. and compl. Moskva: Nauka. Vol. 1: 352 p. R. 3.00; Vol. 2: 304 p. R. 2.50 (1988).

Shokurov, V. V. (1988). Riemann surfaces and algebraic curves. Berlin: Springer-Verlag.

Shokurov, V. V. (1998). Algebraic curves and their jacobians in algebraic geometry 3: Complex algebraic varieties algebraic curves and their jacobians., 219-261. Retrieved from https://doi.org/ 10.1007/978-3-662-03662-4_2 doi: 10.1007/978-3-662 -03662-4_2

Simpson, C. (1992). Higgs bundles and local systems. Publications Mathématiques de l'IHÉS, 75, 5-95. Retrieved from http:// www.numdam.org/item/PMIHES_1992__75__5_0/

Stoppa, J. (2011). A note on the definition of K-stability. Retrieved from https://arxiv.org/abs/1111.5826

Székelyhidi, G. (2014). An introduction to extremal Kähler metrics. Grad. Stud. Math., 152, xvi + 192.

Takemoto, F. (1972). Stable vector bundles on algebraic surfaces. Nagoya Mathematical Journal, 47(none), 29 - 48. Retrieved from https://doi.org/ doi: nmj/1118798682

Tyurin, A. (1997). The classical geometry of vector bundles. In Algebraic geometry. proceedings of the bilkent summer school, ankara, turkey, august 7-19, 1995 (pp. 347-378). New York, NY: Marcel Dekker.

Tyurin, A. (2008). Vector bundles. Collected works. Volume I. Edited by Fedor Bogomolov, Alexey Gorodentsev, Victor Pidstrigach, Miles Reid
and Nikolay Tyurin. Göttingen: Universitätsverlag Göttingen.
Tyurin, A. N. (1965). Classification of vector bundles over an algebraic curve of arbitrary genus. Transl., Ser. 2, Am. Math. Soc., 63, 245279. doi: 10.1090/trans2/063/07

Tyurin, A. N. (1992). The geometry of the special components of moduli space of vector bundles over algebraic surfaces of general type. In Complex algebraic varieties. proceedings of a conference, held in bayreuth, germany, april 2-6, 1990 (pp. 166-175). Berlin etc.: Springer-Verlag.

Uhlenbeck, K., \& Yau, S. T. (1986). On the existence of hermitian-yang-mills connections in stable vector bundles. Communications on Pure and Applied Mathematics, 39(S1), S257-S293. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10 $.1002 /$ cpa. 3160390714 doi: https://doi.org/10.1002/cpa . 3160390714
Yau, S.-T. (1978). On the Ricci curvature of a compact Kähler manifold and the Complex Monge-Ampére equation, I. Communications on Pure and Applied Mathematics, 31(3), 339-411. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10 $.1002 / \mathrm{cpa} .3160310304$ doi: https://doi.org/10.1002/cpa . 3160310304

[^0]: ${ }^{a}$ We should note that in the case of algebraic surface X the elements of K_{D} exactly correspond to the elements of $H^{1,1}(X, R)$ and the positivity condition of the intersection a certain elements reads as an integration over a certain cycle in differentialgeometrical language, so the correspondence becomes evident.

