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The Berezinskii-Kostelitz-Thouless (BKT) transition is the paradigmatic example of a topological
phase transition without symmetry-breaking, where a quasi-ordered phase, characterized by a power
law scaling of the correlation functions at low temperature, is disrupted by the proliferation of
topological excitations above the critical temperature TBKT. In this letter, we consider the effect
of long-range decaying couplings ∼ r−2−σ on this phenomenon. After pointing out the relevance of
this non trivial problem, we discuss the phase diagram, which is far richer than the corresponding
short-range one. It features – for 7/4 < σ < 2 – a quasi ordered phase in a finite temperature range
Tc < T < TBKT, which occurs between a symmetry broken phase for T < Tc and a disordered phase
for T > TBKT. The transition temperature Tc displays unique universal features quite different from
those of the traditional, short-range XY model. Given the universal nature of our findings, they
may be observed in current experimental realizations in 2D atomic, molecular and optical quantum
systems.

INTRODUCTION

Two-dimensional interacting systems are well known not to display conventional symmetry breaking transitions at
finite temperature, due to the Hohenberg-Mermin-Wagner theorem [1]. Yet, a phase transition may appear driven by
topological defects, according to the celebrated Berezinskii-Kosterlitz-Thouless (BKT) mechanism [2]. In the presence
of long-range interactions the Hohenberg-Mermin-Wagner theorem no longer holds and local order parameters, such as
the magnetization [3], may have a non-zero expectation value. The general question addressed by this Letter is the fate
of the BKT transition when the range of the interactions is increased. The Sak’s criterion [4] provides an argument for
understanding whether the long-range, power law coupling ∼ 1/rd+σ in the classical O(N) model affects criticality. It
can be formulated as follows: at low momenta the short-range (SR) and long-range (LR) critical two-points functions
behave as

p−2+ηsr vs p−σ (1)

respectively, where ηsr is the anomalous dimension of the SR limit. Therefore, one can define a critical value of the
range of the interactions, σ∗ = 2−ηsr, such that, for σ > σ∗, the critical behavior is not affected by LR. The validity of
Sak’s criterion for the classical O(N) models has been the subject of considerable scrutiny. Indeed, numerical evidences
supporting (or rejecting) the Sak’s result are notoriously hard to obtain [5–7]. Intense theoretical investigations both
via MC simulations [5, 8, 9], renormalization group (RG) theory [10–12] and conformal bootstrap [13] appeared all to
confirm the validity of Sak’s conjecture for the LR-SR crossover so that it is fair to conclude that the criterion has
been a useful tool to understand the critical behaviour of LR interacting systems [14–17]. The criterion, is believed to
apply to all symmetry breaking transition in d ≥ 2. The status of the d = 2 classical XY model is rather different,
and only few results (later commented) are known. The main reasons are
i) The Sak criterion cannot be straightforwardly applied, since in the SR limit the critical behavior is not described

by a single RG fixed point, but rather by a whole line of fixed points with a temperature-dependent exponent ηsr.
ii) Numerically, the large number of non-vanishing couplings, coming form the LR nature of the interaction, along

with the logarithmic scaling typical of 2D systems (the so-called “Texas state argument” [18]) make the study of the
2D XY universality notoriously challenging.
iii) In the nearest-neighbours 2D XY model, the classical treatment takes advantage of the duality construction [19],

through which one can famously relate the model to the Coulomb gas [20, 21] or the sine-Gordon model [21, 22]. How-
ever, this is no longer the case already for next-to-nearest-neighbors couplings.
iv) It is known that in the SR limit, the physics of the 2D classical XY model can be related to the one of the 1D
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quantum XXZ model via its transfer matrix [23].
This approach is based on the mapping to hard-core bosons, and therefore to the XXZ model, and cannot be straight-
forwardly applied to the the case of XY LR interactions, as one should show the RG irrelevance of terms violating the
hard-core condition. Moreover, let us remark that 2D boson gas at finite temperature with (isotropic) 1/r3 density-
density interaction do exhibit a BKT transition [24]; but this interaction corresponds to a quantum 1D XXZ in which
only in the z − z interaction is long range.
v) Finally, we observe that the treatment of the SR XY model in 2D is very much simplified by the introduction

of the Villain model, [25, 26], which can be mapped exactly onto the Coulomb gas, and shares the same universality
class of the SR XY model. The physical reason of their connection in the SR regime, is that the (gapped) amplitude
fluctuations of the corresponding O(2) action are irrelevant [27]. Thus, once the periodic nature of the phase is taken
care of, all the relevant information is present in the theory. However, in the LR regime the interplay between am-
plitude and phase fluctuations cannot be neglected and it is not known whether they still share the same universality
class.
Despite these difficulties, the study of LR XY model is of great interest: first, since its introduction, the BKT mech-
anism [28–31] has been found to quantitatively describe the universal scaling appearing in several 2D systems with
U(1) symmetry, ranging from thin 4He films [32] to quasi-2D layered superconductors [33–37], exciton-polariton sys-
tems [38], cold atoms in 2D traps [39, 40] and 2D electron gases at the interface between insulating oxides in artificial
heterostructures [41–43]. Apart from these experimental realizations, topological defects are expected to be relevant
in several natural phenomena outside the condensed matter realm, such as DNA tangling or stripe formation [44–46].
To understand how σ∗ is modified, is then a crucial question in all the cases in which a LR tail of the interaction can
be added or tuned, especially because the spin-wave interaction term, already present in the SR case, may destroy,
partially or totally, the topological nature of the phase transition. Moreover, the physics of LR interacting systems
has recently experienced a new wave of interest, due to the current experimental realizations on atomic, molecular and
optical (AMO) systems. In particular, trapped ions [47, 48], Rydberg gases [49] and optical cavities [50, 51] allowed the
observation of plenty of exotic equilibrium and dynamical phenomena induced by LR interactions, including entangle-
ment and correlations propagation [52, 53], dynamical phase transitions [54, 55], time crystals [54, 56, 57] and defect
scaling [58, 59]. These experimental results stimulated an impressive theoretical activity to characterize the equilibrium
and dynamical critical scaling induced by LR interactions in a wide variety of different systems [17, 60–65].Despite this
outpouring theoretical activity and the long-standing relation between topological scaling and LR interactions, the
possible corrections induced by power-law decaying couplings to the topological BKT scaling remain an open question,
testable in experiments.

MODEL & PRELIMINARIES

We consider a system of planar rotators on a 2D lattice of spacing a, described by the Hamiltonian:

βH =
1

2

∑
i,j

J|i−j| [1− cos(θj − θi)] (2)

where i, j ∈ Z2 and J|i−j| has a power-law tail: J|i−j| ∼ g
|i−j|2+σ for |i− j| � 1. The exponent σ is assumed positive in

order to ensure additivity of the thermodynamic quantities [66]. For the following arguments the specific form of the
couplings is not important, as long as that there are no frustration effects nor competing interactions.

Let us now summarize what we do know for sure about the LR XY model (2):
a) For σ < 2, at low enough temperatures, the system magnetizes, as rigorously proven in [3]. MC simulations at

σ = 1 indicate an order-disorder transition and no BKT phase at finite temperature [67]. Moreover,one could expect
that For σ ≤ 1 the critical exponents of the ferro-paramagnetic transition are expected to be mean-field [11].
b) In agreement with a), the spin-wave theory in which the cosine is expanded to the quadratic order, without

imposing the periodicity, as in the original Berezinskii calculation [28], does also magnetize for σ < 2, since the
contribution of the spin fluctuations is of the form

∫
d2q/qσ and thus infrared finite.

c) An upper bound for σ∗ has to be σ∗ = 2, i.e. for sure there is BKT for σ > 2, as one can deduce even from
the Sak’s argument since η is positive. This result is supported by the self-consistent harmonic calculation recently
presented in [68], which anyway is unable to make even qualitative predictions for σ < 2.

EFFECTIVE MODEL

We decompose the coupling as J|i−j| = JS|i−j| + g|i − j|−(2+σ) where JS is a SR term taking into account the small-
distances behavior of the coupling. At low temperatures, the spin direction varies smoothly from site to site and, as a
consequence, we can expand the SR term for small phase differences as cos(θ(x+ r)− θ(x)) ∼ 1− |∇θ|2/2. The same,
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however, it is not automatically true for the LR term, since far-away pairs, whose phase difference is not necessarily
small, give a significant contribution to the Hamiltonian.

These considerations allow us to write a continuous version of the Hamiltonian in Eq. (2) in terms of the field θ(x),
namely the Euclidean action

S[θ] =
J

2

∫
d2x|∇θ|2 + SLR, (3)

where the LR part can be written as

SLR = − g

2γ2,σ

∫
d2x(cos θ∇σ cos θ + sin θ∇σ sin θ), (4)

with γ2,σ = 2σΓ( 1+σ
2 )π−1|Γ(−σ2 )|−1, by using the definition of (bulk) fractional derivative given in Appendix A. The

first and the second term in Eq. (3) account for the short- and long-range contributions respectively, with J ∼ 1/T
and g ∼ 1/T being the temperature dependent couplings. Notice that the result would be different for a quantum 1D
chain with LR interactions, where interactions are still SR along the imaginary time axis [69].

If g = 0, by following the usual duality procedure [26], one can take into account the periodic nature of the field θ
in Eq. (3) by isolating the topological configurations and introducing the vortex fugacity y = exp(−εc), being εc the
corresponding core energy. This, in turn, leads to the Kosteritz-Thouless RG equations [26, 29, 30, 70] (see [71, 72]
for textbook presentations) which feature a line of stable Gaussian fixed points for y = 0 and J > 2

π , describing
the power-law scaling observed in the low-temperature BKT phase. For g small enough, we expect to have then a
continuum theory described by the three parameters J , g and y.

In order to explore the effects of LR interactions, we deform the traditional BKT fixed-points theory with the
non-local operator in the second term of Eq. (3). Since only those fixed-points which are stable under topological
perturbation correspond to an infra-red (IR) limit of the SR BKT theory, we can restrict ourselves to the region in
which the topological excitations are irrelevant (J > 2

π ). The relevance of the LR perturbation depends on the scaling
dimension ∆g of the coupling g, which is defined according to the asymptotic behavior g` ≈ exp(∆g`) for `� 1, where
as usual in the BKT literature, we put ` = ln(r/a). On the other hand, due to the Gaussian nature of the measure,

〈cos (θ(x)− θ(x′))〉 = e
− 1

2

〈
(θ(x)−θ(x′))

2
〉

= |x− x′|−ηsr(J), (5)

where ηsr(J) = 1
2πJ is the exponent of the SR two-point function, [26, 29, 30]. Following Eq. (5), the scaling dimension

of the LR term reads

∆g = 2− σ − ηsr(J) (6)

so that the LR perturbation becomes relevant only if σ < 2−ηsr(J), similarly to the traditional spontaneous symmetry
breaking (SSB) case [11], but with a temperature-dependent anomalous dimension. This confirms that for σ > 2 the
LR perturbation is always irrelevant, as expected.

Let us now consider the case σ < 2. There, the LR perturbation becomes relevant at small temperatures, since
ηsr ' 0 for T ' 0. Since ηsr in Eq. (6) is the one of the SR unperturbed theory, we can apply the results of the
traditional BKT theory [73] as long as the LR perturbation is not relevant. In particular we know that topologicaly
excitations are irrelevant for ηsr < 1/4, so that in the range 7/4 < σ < 2, a subset of the BKT fixed points remains
stable and we have quasi-long-range order (qlro) for a certain temperature window. This result is rather non trivial,
since in SSB transitions the traditional Sak’s result [4] predicts the irrelevance of LR couplings at all temperatures for
σ > 2− ηsr.

RG FLOW

These results may be confirmed by deriving the flow equations for the LR term at the leading order in g for y = 0,
obtaining (see Appendix B):

dg`
d`

=
(

2− σ − ηsr(J`)
)
g`

dJ`
d`

= cσηsr(J`)g`

(7)

where cσ = π
2 a

2−σ ∫∞
1
du u1−σJ0(2πu) and J0(x) is the zeroth order Bessel function of the first kind. As shown in

Appendix B the above result is reliable as long as a2−σg` � J` or, equivalently, as long as dJ
d` � J`. As expected, we

see that the flow equations (29) support a line of SR fixed points g = 0 which becomes unstable for ηsr(J) < 2 − σ.
As long as our hypothesis of small g holds, we can explicitly identify the form of the flow trajectories of Eqs. (29):

g`(J) =
π(2− σ)

cσ

[
(J` − Jσ)

2
+ k
]
, (8)
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Figure 1: Sketch of the RG flow lines for 7
4 < σ < 2 in the y = 0 plane. The dashed red line is a possible realization

of the physical parameters line, from which the flow starts, as the temperature is varied. On the right/left of the gray
dotted line the vortex fugacity y is irrelevant/relevant (ẏ`/y` ≷ 0). The two separatrices (bold black lines) divide the
flow in three regions: a high-temperature region (orange, the flow ends up in the disordered phase), an intermediate
one (blue, the flow reaches a g = 0 fixed point) and the low-temperature region (green, the LR perturbation brings
the system away from the critical line).

where k is a real number and Jσ = 1
2π(2−σ) . The sign of k divides the trajectories which met the fixed point g = 0

and those which do not, the first ones ending at (starting from) the fixed point line for J ≤ Jσ (J > Jσ). The
separatrix corresponds to the semi-parabola with k = 0, J ≤ Jσ. For k > 0 g → ∞, showing the existence of a new
low-temperature phase, where LR interactions are relevant. The critical temperature Tc, below which this new phase
appears, is such that ηsr(Jc) > 2− σ .

Since, as in the traditional BKT calculation [29], Eqs. (29) were derived for small g and y, its use for T < Tc is in
principle not justified, since LR interactions are relevant and g` grows indefinitely. However, let us notice that the
scaling of g` with T for T → T−c can be reliably predicted from Eqs. (29), since in this limit the flow spends a divergent
amount of RG time ` in the vicinity of the line of fixed points g = 0. This scaling is derived in Appendix C. Moreover,
we can guess the infrared form of the action in the low temperature phase by observing that the rigorous result of
Ref. [3] implies that for T < Tc the system displays finite magnetization and, then, phase fluctuations are limited even
at large distances. Therefore, the expansion of the trigonometric function in Eq. (3) is justified leading to an action of
the form

Sg = − ḡ
2

∫
d2x θ∇σθ, (9)

where ḡ = gγ−1
2,σ. Being the above action quadratic, the properties of this exotic low temperature phase can be worked

out: in particular the scaling of the magnetization for T → T−c is found to be (see Appendix C for details)

lnm ∼ −eB(Tc−T )−1/2

(10)

where B is a non universal constant. Since all the derivatives of m with respect to T vanish at T = Tc (essential
singularity), and since m is linked to the derivative of the free energy with respect to the external field, we have that
the phase transition between the ordered and disordered phase is actually of infinite order. Moreover, the connected
correlation functions have a power-law decay for T < Tc given by 〈S(r) · S(0)〉c ∼

1
r2−σ , where S(r) = (cos θr, sin θr).

We have so far assumed y = 0; let us now consider the effect of topological excitations. At leading order in both g
and y the two perturbations remain independent and, since the vortices contribute to the J` flow only beyond leading
order in y, Eqs.(29) are unchanged. Moreover, one has dy`

d` = (2 − πJ`)y` valid up to second order terms in y` and
g`. Then, in agreement with what we stated above, as long as 7

4 < σ < 2, the temperature range T between Tc
and TBKT of the line of fixed points g = y = 0 remains stable under both topological and LR perturbations. In the
low-temperature phase instead, it is natural to suppose y to be irrelevant, due to the fact that a non-negligible LR
coupling increases the cost of, highly non-local topological excitations. This idea is made rigorous in Appendix D
where the interaction energy between vortices in the low temperature phase is computed, and it is shown that they
cannot proliferate.

Summarizing, for σ ∈ (7/4, 2) we find three phases: i) an ordered phase for T < Tc with finite magnetization and
temperature independent power-law correlation functions ii) an intermediate BKT phase for Tc < T < TBKT, where
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Figure 2: Sketch of the possible phases of the model: ordered with magnetization (solid black), BKT qlro (dashed light
gray), disordered (dashed dark gray). If σ > 2 we find the usual SR phenomenology with a BKT phase transition.
For σ < 2 an ordered phase appears at low-temperatures, the BKT qlro phase disappearing for σ < 7

4 .

the magnetization vanishes and the exponent of the two-point correlation function depends on T iii) a disordered
phase for T > TBKT. Due to the LR character of the interactions, also the high-temperature phase displays power-
law decaying two-point functions 〈S(r) · S(0)〉 ∼ r−2−σ,[74–76]. As σ → 7/4+ the critical temperature Tc reaches
TBKT from below. Therefore, for σ < 7/4, the whole BKT line fixed points becomes unstable either with respect to
topological or LR perturbations and the intermediate phase vanishes, leaving only a SSB phase transition. However,
our approach cannot reliably be used to fully characterize this transition: as T approaches Tc from below, the RG
flow slows down close to the g = 0, J = Jσ fixed point. Since for σ < 7

4 Jσ < JBKT, y grows indefinitely, away from
the y � 1 regime. Our results are summarized in Fig. 2.

CONCLUSIONS

We have shown that the introduction of long-range (LR) power decaying couplings in the 2D XY model Hamiltonian
produces a rich phase diagram, different from the short-range (SR) case [29] and from the one of O(N) LR systems [4].
Remarkably, for 7/4 < σ < 2, the system displays both BKT qlro in the temperature interval Tc < T < TBKT and
actual long-range order for T < Tc.

The introduction of complex interaction patterns in systems with U(1) symmetry is known to generate exotic
critical features, as in the anisotropic 3D XY model [77], coupled XY planes [78], 2D systems with anisotropic dipolar
interactions [79, 80] or four-body interactions [81], and high-dimensional systems with Lifshitz criticality [82, 83] The
present work constitutes a further milestone along this path, as it identifies a peculiar critical behavior, namely a
non-analytic exponential vanishing of the order parameter, that eludes the current classification of universal scaling
behaviors [84].

Our predictions may be tested in several low dimensional AMO systems. It would be interesting to perform extensive
numerical simulations in order to observe the scaling of the critical quantities, and especially the magnetization, close
to the low-temperature endpoint of the BKT line in the regime 7/4 < σ < 2. These simulations will be useful to classify
this unprecedented transition and to investigate possible corrections near the σ = 7/4 endpoint due to higher-order
effects caused by spin-wave excitations [85]. Further investigation is also needed to compare our results with the LR
diluted model studied in [86, 87]. In this model, at σ = 1.875, the numerical simulations presented in [87] do not
find any intermediate BKT region, but the general question whether the 2D LR diluted XY model and the 2D LR
non-diluted one have the same phase diagram remains open.

Our results have also implications for LR quantum XXZ chains [69, 88, 89]. One would need to perform the exact
mapping of the classical 2D LR XY model to an effective 1D quantum model, following the calculation presented in
[23] and valid for the classical 2D SR XY model. If the non-local/LR terms violating the hard-core boson condition
can be shown to be irrelevant, then one could put in correspondence our phase diagram with that of the LR quantum
XXZ chains having LR couplings both for x − y and z − z terms [69]. This seems to be confirmed by the similar
structure of the RG flow equations of [69] with our Eqs.(29) taken at low temperatures. If this is the case, then the
two lines, black and white, of Fig.1 of [69] would merge in a point, with the XY phase disappearing, corresponding to
our σ = 7/4 point. Finally, we mention that it would be interesting to study in detail the phase diagram of the 2D
LR Villain model for σ < 2.
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APPENDIX

A. Defintion of the fractional Laplacian

Given a real parameter σ ∈ (0, 2), one can define the fractional Laplacian of order σ of a function f(x) : Rd → R as:

∇σf(x) ≡ γd,σ
∫
ddr

f(x + r)− f(x)

rd+σ
, (11)

where γd,σ =
2σΓ( d+σ2 )

πd/2|Γ(−σ2 )| and r =| r |. Another expression for this quantity can be derived in terms of the Fourier

transform, f(q), of f(x):

∇σf(x) = −γd,σ
∫
ddq f(q) eiq·x

∫
ddr

1− eiq·r

rd+σ
. (12)

Since ∫
ddr

1− eiq·r

rd+σ
= γ−1

d,σ q
σ, (13)

we find the alternative definition:

∇σf(x) = −
∫
ddq qσf(q)eiq·x. (14)

In our case d = 2 and we have to evaluate the quantity:∫
d2x

∫
r>a

d2r

r2+σ
[1− cos (θ(x)− θ(x + r))] (15)

For σ < 2, one can actually disregard the contribution coming from the lattice spacing a, since it would just result
in a correction of the short-range term. Then, through trivial trigonometric manipulations we can write the above
expression as: ∫

d2x cos θ(x)

∫
d2r

r2+σ
[cos θ(x)− cos θ(x + r)]

+

∫
d2x sin θ(x)

∫
d2r

r2+σ
[sin θ(x)− sin θ(x + r)].

(16)

Finally, using the definition (11) of the fractional derivative, we get

− γ−1
2,σ

∫
d2x (cos θ∇σ cos θ + sin θ∇σ sin θ) (17)

which justifies the alternative form of the long-range term given in the main text as Eq.(4).

B. Renormalization group for y = 0

We will now derive the set of RG equations (7) given in the main text, valid for y = 0. We then start form the action
written in the form

S[θ] =

∫
d2x

(
J`
2
|∇θ|2 +

g`
2

∫
r>a

d2r

r2+σ
[1− cos (∆rθ(x))]

)
(18)
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where, as in the main text, ∆rθ(x) = θ(x + r)− θ(x), and compute the flux perturbatively around g = 0. The field is
split into fast and slow modes with respect to the momentum cutoff Λ = 2π

a , namely θ = θ> + θ< with

θ<(x) =

∫
q<Λe−d`

d2q

(2π)2
θ(q)eiq·x

θ>(x) =

∫
Λ>q>Λe−d`

d2q

(2π)2
θ(q)eiq·x,

(19)

where ` = ln(r/a). If we assume the interacting long-range term in Eq. (18) to be small with respect to the quadratic
one, we can perform the integration perturbatively. It is easy to see that this is possible if ga2−σ << J . Under this
assumption then we integrate out the fast modes, expanding the partition function in cumulants of the non-Gaussian
part Sg:

Seff [θ<] = S0[θ<] + 〈Sg〉> +O(g2). (20)

Writing cos(∆rθ) = cos(∆rθ
>) cos(∆rθ

<) + sin(∆rθ
>) sin(∆rθ

<), one sees that only the first term will give a contri-
bution. Then, up to additive constants we have:

〈Sg〉> =
g`
2

∫
d2x

∫
d2r

r2+σ

〈
cos(∆rθ

>)
〉
>

[
1− cos

(
∆rθ

<
)]

(21)

(from now on we omit the r > a condition in the integral over r). On the other hand, 〈cos(∆rθ
>)〉> = e

− 1
2 〈(θ(r)−θ(0))2〉

>

and

1

2

〈
(θ(r)− θ(0))

2
〉
>

=

∫
Λ>q>Λe−d`

d2q

(2π)2

1− cos(q · r)

J`q2
=

d`

2πJ`

(
1− J0(Λr)

)
, (22)

where J0(x) is the zeroth-order Bessel function of the first kind. Then, introducing ηsr(J) = 1
2πJ`

, the exponent of
the correlations at the cutoff scale `, we have:〈

cos(∆rθ
>)
〉
>

= e−ηsr(J`)d`(1−J0(Λr))

= 1− ηsr(J`)d`+ ηsr(J`)d`J0(Λr)
(23)

up to second order corrections. The first two terms provide an anomalous dimension of the coupling g`+d` =
g`e
−ηsr(J`)d`, as expected, while the last one modifies the power-law dependence on r of the long-range term:

〈Sg〉> =
1

2

∫
d2x

{∫
d2r

r2+σ
ge−ηsr(J`)d`

[
1− cos

(
∆rθ

<
)]

+gηsr(J`)d`

∫
d2r

r2+σ
J0(Λr)

[
1− cos

(
∆rθ

<
)]}

.

(24)

Let us now examine the last term of the above equation. This can be seen as an interaction term of the original
XY form. Since J0(x) ∼ x−1/2 cos(x− π/4) for large x, the new coupling decays faster than the original and has an
oscillating behavior, which provides a natural cutoff for r ∼ Λ−1. It is then reasonable to approximate this with a
short-range coupling of the form |∇θ|2. The simplest way is to replace 1− cos(∆rθ) ≈ 1

2 (r · ∇xθ)
2 and observe that∫

d2r

r2+σ
J0(Λr)(r · ∇xθ

<)2 = π|∇xθ
<|2
∫ Λ−1

a

drr1−σJ0(Λr). (25)

For σ > 1
2 , we can neglect the cutoff and, with the substitution r = au, we can express the correction in the action as

cσ
2

(g`a
2−σ)ηsr(J`)d`

∫
d2x|∇xθ

<|2, (26)

where cσ = π
2

∫∞
1
duu1−σJ0(2πu) > 0. The integral is actually ill-defined for σ < 1

2 signaling that our approximation
breaks down. Let us notice however that the precise value of the coefficient is not important for our analysis. Moreover,
it should be noticed that this entire procedure is only reliable for σ > 7/4, where part of the BKT fixed points line
remains stable and furnishes a viable expansion point, see the discussion in the main text. Up to the first order in g,
then the integration of the fast modes gives the corrections:

dg = −ηsr(J`)g`d`

dJ = cσηsr(J`)(g`a
2−σ)d`.

(27)
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In order to obtain a theory with the same cutoff scale, we have to do the replacement x→ xe−d` in the action. This
modifies the couplings g, J by their own bare length dimension, i.e. 2− σ and 0 respectively:

dg = (2− σ − ηsr(J`))g`d`

dJ = cσηsr(J`)(g`a
2−σ
0 )d`.

(28)

In turn, one finally obtains the RG equations:

dg

d`
= (2− σ − ηsr(J`)) g`

dJ

d`
= cσηsr(J`)g`,

(29)

i.e. Eqs. (7) of the main text (we absorbed the constant ultraviolet cutoff a2−σ in the definition of cσ).

C. Magnetization in the low-temperature phase

We will now derive the scaling behavior (10) given in the main text for the magnetization near Tc, for T → T−c . We
start from the Gaussian theory, Eq. (9) of the main text, describing the low temperature phase of the theory in the

infrared (IR). Being the theory Gaussian, it is m = 〈cos θ(x)〉 = e−
1
2 〈θ2(x)〉. Being

〈
θ2(x)

〉
=

∫
q<2π/a

d2q

(2π2)

1

ḡqσ
∼ 1

ḡaσ−2
. (30)

we find

m = e−A/ḡ, (31)

where A is a non-universal constant. Now, from the flow equations (29), we find:

g` = ge(2−σ)`e−
∫
ηsr(J`)d`, (32)

which is reliable as long as g` is small. Let us consider a trajectory which runs very close to the separatrix which,

according to Eq. (8) of the main text, is described by the trajectory g = π(2−σ)
cσ

[
(J − Jσ)2 + k

]
with k → 0+. Let us

consider a point in the flow `∗ such that g(`∗) is small and J(`∗) > Jσ. Then:∫ `∗

0

ηsr(J`)d` =

∫ `∗

J0

ηsr(J)
dJ

J̇
= c−1

σ

∫ `∗

J0

dJ

g(J)
= π(2− σ)

∫ J(`∗)

J0

dJ

(J − Jσ)
2

+ k
(33)

By changing the value of the temperature, we have that J0 crosses the separatrix (k → 0+) for some Jc < Jσ that
corresponds to the critical temperature Tc, and consequently k ∼ Tc − T . Since in this case the integration interval
on J contains the second order singularity Jσ, we have that the integral diverges as k−1/2 as k → 0+. Then we have

g`∗ ∼ e−B(T−Tc)−1/2

(34)

where B is a non universal constant. Since, as k → 0+, the trajectories corresponding to different values of k run
close in the parameter space, for large g as well, we do not expect this scaling to be modified in the non-perturbative
region. Finally, exploiting Eq. (31), one has the scaling:

lnm ∼ −AeB(T−Tc)−1/2

(35)

D. Irrelevance of topological excitations in the low-temperature phase

We start from the quadratic action of Eq. (9) of the main text, which describes the low temperature phase, we express
it in terms of the Fourier transform of v(x) = ∇θ

Sg = ḡ

∫
d2q

(2π)2
qσ |θ(q)|2 = ḡ

∫
d2q

(2π)2
qσ−2 |v(q)|2 (36)

We notice that circling around a topologically non-trivial region we have∮
∇θ · dr =

∮
v · dr = 2πmenc (37)
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were menc is the sum of all the topological charges mi enclosed in the integration contour. This can be rephrased by
saying that ∇×v(x) = 2πn(x), where n(x) =

∑
jmjδ(x−xj) is the vortex-density and xj correspond to the positions

of the vortices. This can be further simplified if we introduce the dual u(x) of v(x), defined as uj = εjkvk where εjk
is the fully antisymmetric tensor of rank 2. We then find the condition

∇ · u(x) = 2πn(x) (38)

In turn, this can be solved in the Fourier space:

u(q) =
2πq

q2
n(q) + u⊥(q) (39)

where u⊥(q) is a generic function such that q · u⊥(q) = 0 and which represent the topologically-trivial component of
the field θ. Now, since

|v(q)|2 = |u(q)|2 =
(2π)2

q2
|n(q)|2 + |u⊥(q)|2 (40)

we have that the action Sg splits into the sum on the non-topological and topological part, the latter being:

Stop = ḡ

∫
d2q qσ−4|n(q)|2 (41)

Coming back to the real space we have:

Stop = ḡ
∑
ij

mimjG(ri − rj) (42)

with G(x) =
∫
d2q qσ−4eiq·x ∼ L2−σ − x2−σ, L being the system size. The first term in G gives raise to a term

proportional to L2−σ∑
i,jmimj = L2−σ (

∑
imi)

2
which, in the thermodynamic limit, ensures the neutrality of the

gas of charges. We find then

Stop ∼ −ḡ
∑
ij

mimj |xi − xj |2−σ (43)

As expected, this interaction is more binding than the logarithmic one for the short-range case. A simple entropy-
energy argument shows that the charges will never unbound at any temperature: indeed the energetic cost of creating
two far apart vortices grows like ḡL2−σ while the entropy as lnL so that the free energy

F ∼ lnL− ḡTL2−σ (44)

is always dominated by the interaction term for large enough L.
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