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Abstract

The research included in the present thesis investigates how statistical

learning mechanisms relate to the early stages of visual word recognition in

skilled reading. Particularly, we ask whether the lifelong experience with tex-

tual regularities can provide a source of information for readers to exploit,

and whether it can account for some of the fundamental skilled reading phe-

nomena reported in the literature. Chapter 2 assesses the role of letter chunk

frequency in morpho-orthographic processing, by comparing suffixes to highly

frequent word endings in a masked priming lexical decision study. Chapter

3 includes this comparison as part of a hierarchy of contrasts, each of which

tackles a linguistic feature potentially relevant for skilled reading. Selective

discrimination responses are here captured through the adoption of the Fast

Periodic Visual Stimulation paradigm (FPVS), coupled with MEG recordings.

The FPVS technique also features the study described in Chapter 4, which

reveals how the hidden regularities exhibited by a visual stream can inform

the emergence of neural discrimination responses in skilled readers. Chapter

5 includes three experiments investigating whether the letter co-occurrence

regularities inherent in the language can aid letter processing within briefly

presented strings of consonants. Cumulatively, the evidence collected suggests

that the knowledge of the statistical regularities that characterize the written

input supports early orthographic processes in skilled reading.



Chapter 1

General Introduction

For skilled readers, the processing of written input unfolds rapidly and

effortlessly. It is a precisely calibrated integration of processes, uniquely mas-

tered by the human brain, that allows it to efficiently handle texts that range

from items on a shopping list to Shakespeare’s sonnets. Even reading these

lines is extremely natural: each written word is swiftly identified with remark-

able accuracy, and meaning unravels while the reader’s eyes glide over the

text.

Such a seemingly simple, natural skill is rather remarkable. Compared to

spoken words, which develop over time, under typical reading conditions the

visual information associated with printed words is immediately available to

the reader, and remains stable over time. Within a few hundred milliseconds,

skilled readers can access their knowledge of pronunciation and meaning – they

can, in a nutshell, read. For this to happen, strings of letters need to be recog-

nized as known word units. Visual word identification is indeed paramount in

reading, and understanding the mechanisms and building blocks that underpin

it has been in the limelight of cognitive science for over a century (Huey, 1908).

Together with offering a model system in cognitive psychology, serving as

test bench for theoretical constructs like serial search (Forster & Davis, 1984)

or rule-based computations (Coltheart, 1978), visual word recognition is still a
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tantalizing phenomenon in its own right. Behavioral and neuroimaging data,

alongside with theoretical and computational models, attest the long history of

attempts and efforts in trying to address the interplay of visual and linguistic

factors at the basis of the processing of written words. A unified understanding

of such early stages of reading is however still far from grasp: what are the

relevant units taken into consideration by the reading brain? And how are

they assembled to achieve recognition? What are the neural bases of such

process(es), and to what extent can they be considered language-specific? The

work herein described attempts to shed some light on some of these open

questions by assessing the role of written regularities in skilled reading.

1.2 Part-based and Holistic Processes

in Visual Word Identification

Early accounts of visual word identification focused on whether printed

words are recognized holistically or through their constituents (i.e., letters), a

fundamental question connecting literacy with the domain of object recogni-

tion (I. Biederman, 1987; Pelli & Tillman, 2007; Treisman & Schmidt, 1982).

In the seminal work of Cattell (1886), words appear to transcend the sum of

their parts. Tachistoscopic presentations of real words yielded faster and more

accurate responses than their anagrams, leading to the idea that words might

be recognized on the basis of their visual shapes (such as the pattern that re-

sults from a specific combination of letters; Bouma, 1973). Additional evidence

in this direction came from letter search experiments showing better perfor-

mances in reporting individual letters when embedded in a lexical context, as

compared to random strings of consonants or even in isolation (Carr et al.,

1979; Reicher, 1969; Wheeler, 1970). Taken together, these investigations set
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forth the so-called word superiority conundrum (Grainger & Hannagan, 2014),

leading to theorizing words as the minimal processing units in reading.

Word recognition as a holistic process is however extremely inefficient.

From a computational point of view, solving shape invariance for individual let-

ters is clearly more efficient than for whole words (Grainger, 2008; Grainger,

Dufau, et al., 2012; Grainger & Hannagan, 2014). For the average English

reader, recognizing words on the basis of the 26 letters in the alphabet pro-

vides a rather parsimonious strategy, if compared to storing and accessing

over 30 thousand abstract word-shape representations. Additionally, recogni-

tion by word-shape cannot easily accommodate findings indicating that neither

case nor font manipulations disrupt the initial stage of letter processing (e.g.,

Chauncey et al., 2008; Paap et al., 1984), even if visual familiarity affects

performance in later stages (e.g., Perea et al., 2015; Perea & Rosa, 2002).

From a perceptual point of view, and as for any other visual object, recog-

nizing words is inevitably affected by perceptual bottlenecks. As masterfully

illustrated by Pelli et al. (2003), if individual letters do not reflect enough

contrast energy (i.e., the amount of energy needed for distinguishing a known

signal from noise), they become too weak to be detected, thus succumbing to

squelching and rendering text overall illegible. If filtering out word components

makes reading words impossible, it becomes undeniable that words must be

identified on the basis of their constituent letters. Nevertheless, this evidence

stands in contradiction with the contextual facilitation observed for letters in

words.

Several models attempted to reconcile a part-to-whole mapping with word

superiority effects. Special consideration has to be given to the Interactive

Activation Model (IAM, McClelland & Rumelhart, 1981; Rumelhart & Mc-

Clelland, 1982), that posits three levels of representations, comprising letter-
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features, letters and visual word forms, linked through facilitatory and in-

hibitory connections. Visual input activates feature detectors, leading to let-

ter identification; once case and size-invariant, abstract letter identities have

been activated, they can map onto compatible lexical representations, which

in turn provide top-down feedback along the hierarchy, thus boosting single

letter representations. Many notable variants followed (e.g., Coltheart et al.,

2001; Grainger & Jacobs, 1994, 1996; Jacobs & Grainger, 1992), extending the

scope of the model and increasing its explanatory power towards other reading

phenomena, so that nowadays virtually all theories of visual word identification

agree on access through constituents.

In the context of a part-to-whole framework, letters are not the only ele-

ments that can mediate lexical recognition. From letter features to letters to

meaningful letter chunks, fundamental units are indeed identified and exploited

to achieve word recognition and, finally, comprehension; understanding the na-

ture and the granularity of such building blocks still poses a major challenge

to any unified theory of reading. Following empirical findings encompassing

orthographic, phonological and morphological factors, supra-letter, sub-word

access units (Taft, 1986) took the form of syllables (Carreiras & Perea, 2002;

Spoehr & Smith, 1973), syllabic units (Taft, 1992) and morphemes (Rastle

et al., 2004).

A radically different approach is to avoid an explicit definition of interme-

diate units, a stand taken by distributed connectionist models (e.g., Plaut et

al., 1996; Seidenberg, 1987, 2005). Connectionist accounts of reading fueled a

fruitful debate on the nature of processes and representations at play in visual

word identification (Coltheart, 2006; Rastle & Coltheart, 2006). Critically,

these models rely on the idea that orthography-to-meaning, as well as orthog-

raphy-to-phonology mappings can be discovered through a learning device that
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capitalizes on the statistical structure of written information. Devoid of ex-

plicit representations and rules, complex mappings between input and output

layers are mediated by hidden units that allow learning, resulting in a flexible

sensitivity to distributional regularities embedded in the language.

1.3 Thriving on Regularities

The notion that skilled readers might strongly rely on statistical regulari-

ties is consistent with a more general cognitive ability to extract probabilistic

patterns from the input. A large body of phenomena, including but not limited

to literacy, demonstrates that the human brain thrives on regularity detection,

an aptitude broadly labeled statistical learning. Postulated to be at the core of

uncertainty reduction (Gibson, 1971) and extraction of relevant information,

statistical learning is the ability to capture the distributional properties of the

input, generally without awareness and/or overt intention to learn (an aspect

that has been extensively discussed, e.g., Perruchet and Pacton, 2006), and

constitutes an extremely powerful cognitive resource recruited in information

processing (for some recent reviews, see Armstrong et al., 2017; Aslin, 2017;

Christiansen, 2019; R. Frost et al., 2019; R. Frost et al., 2015; Thiessen et al.,

2013).

In a noisy, overwhelming environment, agents make sense of the overabun-

dant input by looking for consistent associations, co-occurrences and cues,

displaying an appetite for regularities that has been observed in a wide va-

riety of experimental settings. A classic illustration comes from Fiser and

Aslin (2001), a study involving a set of twelve unfamiliar and highly complex

two-dimensional shapes. Participants were passively exposed to a series of vi-

sual scenes comprising six of the available items, arranged in strictly controlled
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three-by-three grids so that elements were consistently presented in pairs, while

the probability of each individual element was kept at chance. Without any

supervision or feedback, participants familiarized themselves with the hidden

regularities in the input, and learned to tease apart elements on the basis

of their co-occurrences, thus extrapolating higher-order statistics from the si-

multaneous display of artificial shapes. Comparable testaments to the brain’s

tuning to patterns encompass visual (e.g., Fiser & Aslin, 2002), as well as tac-

tile (Conway & Christiansen, 2005) and auditory regularities (Saffran et al.,

1999), all of which have been expressed in terms of a domain general mech-

anism that has been extensively investigated across several fields of inquiry,

including memory (Kóbor et al., 2017), object representation (Lengyel et al.,

2019), predictive processing (Morgan et al., 2019), and language acquisition

(Saffran & Kirkham, 2018).

It is nearly undeniable that statistical learning mechanisms can be as-

sociated with skilled reading. Effects of orthographic redundancy (i.e., co-

occurrence of letters and letter chunks e.g., D’ydewalle & Auwers, 1994), con-

stitute the bedrock of visual word identification (Massaro et al., 1981; see,

e.g., Chetail, 2015 for a recent review). A clear example comes from word

frequency effects (Monsell et al., 1989; Preston, 1935; for a recent review, see

Brysbaert et al., 2018): word frequency alone can account for about 40% of

the variance in lexical decision times (Brysbaert & New, 2009), and has been

considered a proxy for how experience can modulate word representations and

recognition. Word frequency effects have also been investigated in relation to

sublexical factors, for instance through the modulation of stem frequency (e.g.,

Baayen et al., 1997; Burani et al., 1984; Colé et al., 1989; Giraudo et al., 2016;

Taft, 1979). Previous experience with the regularities embedded in the lan-

guage is also attested as frequency effects for single letters (Mason, 1978; New
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& Grainger, 2011), and letter transitional probabilities (Rumelhart & Siple,

1974; Smith, 1969).

Supra-letter, sub-word units yield a more inconsistent set of experimen-

tal results, as emblematically exemplified by the case of bigrams. Frequently

co-occurring pairs of letters have been controversially associated with facili-

tatory (e.g., G. B. Biederman, 1966), inhibitory (e.g., Owsowitz, 1943) and

null effects (e.g., Andrews, 1992). Such a complex pattern of results has been

recently revisited by Schmalz and Mulatti (2017) in a Bayesian analysis of

large-scale databases. If highly frequent bigrams weakly inhibited visual word

identification latencies from the English Lexicon Project (Balota et al., 2007),

they had a no effect in data from the British Lexicon Project (Keuleers et al.,

2012), a general picture that casts serious doubts on the role of bigram fre-

quency in letter string processing. A different view is offered by Chetail (2015),

which instead focuses on the relation between co-occurrence regularities and

sub-lexical information (in keeping with, e.g., Crepaldi et al., 2010; R. Frost,

2012). Both the nature and the grain size of letter patterns can only be infor-

mative if considered in tandem with the structure of a given language, with its

ortho-phono-morphological associations. Beyond any language-agnostic defi-

nition of potentially relevant units like bigrams and trigrams, the statistical

properties of written input hold cardinal information for skilled readers to

utilize, and might influence several key aspects of visual word identification.

Further evidence in this direction comes from the statistical learning liter-

ature. In addition to studies connecting literacy acquisition and second lan-

guage learning with statistical learning abilities (e.g., Arciuli & Simpson, 2012;

R. Frost et al., 2013), learning experiments with skilled readers successfully

replicate some key findings in visual word recognition, across lexical and sub-

lexical dimensions. For example, Chetail (2017) exposed readers to a lexicon
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of pseudo-characters, in which some pairs of symbols occurred with a high

frequency. As a result, when participants were exposed to novel items, they

judged the stimuli comprising high-frequency bigrams to be more word-like.

This finding replicates a pattern attested in developing readers, with studies

such as Pacton et al. (2001) showing that French-speaking first-graders tend to

judge items that better represent real words’ distributional statistics as more

plausible.

A similar contribution comes from another learning study, conducted by

Lelonkiewicz et al. (2020). Participants familiarized themselves with non-al-

phabetic stimuli comprising affix-like chunks, defined as frequently co-occur-

ring clusters of symbols consistently appearing either at the beginning or at

the end of strings. A following testing phase showed an emerging sensitivity to

the presence of “affixes” in novel strings, particularly if appearing in the same

position as during familiarization. Position-specificity is a crucial feature of

affix processing in skilled reading, as clearly attested by Crepaldi et al. (2010),

which showed that suffixed nonwords are rejected more slowly only if the suffix

appears in it typical position (i.e., ful-gas and fil-gas are equally easy to reject,

while gas-ful is markedly harder to reject than gas-fil).

For these and many more pieces of evidence, sensitivity to patterns of

regularity should amount to a linchpin of any account of reading (R. Frost,

2012), so that our understanding of visual word recognition can be informed

by the fundamental cognitive mechanisms subsumed under the umbrella of

statistical learning.
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1.4 Statistical Learning and

Domain-Generality in Visual Word

Processing

The promise of a simple, general and universal mechanism that could tune

visual word processing abilities is consistent with the fact that, astonishingly,

literacy is a relatively recent cultural invention, first emerged around five thou-

sand years ago (Carr, 1999) and independently achieved by different human

cultures. As a consequence, reading constitutes an expert system that is likely

to rely on cortical architectures deputed to other skills, such as learning, mem-

ory and visual recognition (Dehaene & Cohen, 2007).

From a neurobiological point of view, visual word identification could defi-

nitely be supported by general-purpose mechanisms that are closely related to

sensitivity to statistical regularities. Particularly, as postulated by the Local

Combination Detector model (LCD, Dehaene et al., 2005) visual word recog-

nition processes would be governed by the same principles that organize the

primate ventral visual system, with progressively larger visual receptor fields

tuned to respond to increasingly complex visual objects (a structure that has

also been attested in the macaque brain, Baker et al., 2002). In the case of

reading material, the exposure to linguistic patterns would result in familiar-

ity with letter co-occurrence regularities, on the basis of which a hierarchy

of neuronal units would acquire preference to letters, letter-chunks and even-

tually whole words. Such a cascade of statistically coherent, familiar visual

objects amounts to the visual word-form system, which indeed shows a graded

preference for increasingly familiar stimuli, from false-font strings to frequent

quadrigrams, in an anterior-to-posterior progression of selectivity within the
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occipitotemporal cortex (Vinckier et al., 2007).

Experiments with non-human species made a decisive contribution towards

linking visual word processing and perceptual abilities under the umbrella of

statistical learning. In a study by Grainger et al. (2012), baboons were ex-

posed to orthographic material, comprising four-letter English words along

with carefully structured nonword stimuli. In less than two months, the pri-

mates learned to correctly discriminate lexical items. More importantly, they

began to generalize their knowledge to novel stimuli, showing that they success-

fully extracted and internalized the statistical structure of the language they

had been exposed to. Similar results have been achieved in pigeons (Scarf et

al., 2016), a species with a visual system that is markedly more distant from

the human one, both phylogenetically and organizationally.

The idea that the reading system exploits a deeper and more ancestral set

of visual statistical learning mechanisms is also supported by a recent study

conducted by Y. Vidal et al. (2021), in which (human) skilled readers were

presented with strings of letter-like symbols exhibiting a reliable regularity

(i.e., frequent bigrams). As a result, participants implicitly picked up co-oc-

currences between symbols, and constructed an expectation towards the ‘well-

formedness’ of the items they had been passively exposed to. Notably, this

finding is not only reminiscent of the animal literature, but it also replicates

the aforementioned pattern attested in developing readers (Cassar & Treiman,

1997; Pacton et al., 2001). Crucially, the the work by Vidal and colleagues

suggests that the scope of such sensitivity extends even beyond language and

language-like material, as pairs of co-occurring features are exploited also in

three-dimensional objects and sinusoidal gratings, in which the hidden regu-

larity was realized through frequent pairs of specific levels of contrast, spatial

frequency and orientation.
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1.5 What (else) can Statistical Learning offer

to Reading?

In a wealth of investigations, the reading literature, and more generally the

study of language processing, have greatly benefited from the statistical learn-

ing framework. Historically, domain-specificity and innate knowledge have

been preeminent topics of debate in linguistic research (Chomsky, 1980, 2011;

Gallistel, 2011). Experimental findings supporting an experience-dependent

mechanism that is intimately tuned to regularities induced a pronounced em-

phasis on learning per se, in what amounts to an authentic theoretical shift in

the approach to language processing. Nevertheless, surprisingly little is known

as to how this pervasive sensitivity to the statistical structure in the (textual)

environment informs visual word identification and reading.

As critically noted by R. Frost et al. (2019), most of the research on how

organisms detect and encode regularities has been somewhat circular, with ex-

perimental and computational evidence “[. . . ] offering yet again an existence

proof that regularities can be learned” (R. Frost et al., 2019, p. 1135). In a

way, our understanding of such a crucial phenomenon has been confined to a

relatively narrow set of rather artificial experimental paradigms, such as Ar-

tificial Grammar Learning (AGL, Reber, 1967) and Serial Recall Task (SRT,

Karpicke & Pisoni, 2004). Additionally, most investigations exhibit little vari-

ation in the kind of regularities manipulated, which tend to be rather simple

and based on fully deterministic rules, as illustriously exemplified in the work

by Saffran et al. (1996). In this study, infants were shown to segment contin-

uous speech streams on the basis of transition probabilities between syllables;

particularly, within-word transitions of subsequent syllables would be perfectly

systematic (100% probability), hence providing a powerful cue if compared to
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the much more unlikely between-word transitions (33%). Several investigations

followed throughout the years, leading to a somewhat consolidated practice of

adopting similar materials and methods. Notwithstanding all the decisive sci-

entific advancements achieved, this approach risks to severely reduce the kind

of phenomena that can be ascribed to statistical learning. Consequently, and

together with the substantial lack of an uncontroversial definition, such a cru-

cial cognitive mechanism is sometimes confined to mere sensitivity to transition

probabilities.

From the lack of a clear definition stems another possible path that leads

the opposite extreme, that is, reducing everything to statistical learning mech-

anisms. While it is plausible that sensitivity to quantifiable regularities plays

a major role in several cognitive functions, rendering statistical learning a cog-

nitive passe-partout can cause its predictive value to drop dangerously, and

with it the chance of gaining a deeper understanding of other phenomena that

might be linked to it to some extent.

Both reductionist (i.e., confining statistical learning to a specific set of ex-

perimental manipulations) and holistic (i.e., assuming everything is informed

by statistical learning) views of this mechanism substantially affect any chance

of assessing its prospective implications in visual word identification. The com-

plexity of real languages cannot be fully captured by the carefully controlled

artificial grammars created in the statistical learning research, which generally

focus on a finite and well-defined set of regularities (as dutifully noted in, e.g.,

Bogaerts et al., 2020). Alternatively, a broader view of statistical learning

contributes to a domain-generality (even if applied within the boundaries of

modality-specificity, R. Frost et al., 2015) that allows reconciling the young

reading system to more ancestral, perceptual skills. But can this framework

foster novel insights into visual word recognition, specifically? Or should read-
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ing be framed simply as a manifestation of the brain’s visual statistical learning

capacities? The tight connection between textual and statistical regularities,

investigated and reported yet again in years of research, does indeed raise the

question of where (and whether) to draw the line between linguistic knowledge

and familiarity with textual statistics. Plausible word forms, but also legal

ortho-phonotactic patterns, syllables and morphemes, are all examples of sig-

nificant linguistic regularities that are also rich in statistical cues for the brain

to exploit. What can be labeled as implicit statistical learning (Christiansen,

2019) could be the key to unlocking some of the fundamental open questions

in visual word identification, such as what the minimal information units in

language might be and how they should be defined, in the interplay of visual,

statistical and linguistic factors.

In keeping with these considerations, the present work intends to look at

reading through the lenses of statistical learning while steering away from

both reductionist and holistic accounts of this indubitably fundamental cogni-

tive resource. Particularly, (implicit) statistical learning and statistical learn-

ing mechanisms are terms here adopted to refer to the general sensitivity to

statistically quantifiable regularities. Different patterns of regularity were con-

sidered within the scope of linguistic phenomena pertaining early visual word

recognition (such as morphological and orthographic processing), with the aim

of offering a window into skilled reading.

1.6 Research Questions and Roadmap

The overarching question addressed in the present thesis is how statisti-

cal learning and regularity detection relate to visual word identification. In

particular, we asked whether a lifelong experience with the hidden, recurrent
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structures in the language affects the earliest stages of visual word identifica-

tion, and whether some of the fundamental skilled reading phenomena reported

in the literature are rooted in visual statistical learning mechanisms. Struc-

turally, this thesis is composed as a collection of manuscripts, with each chapter

independently detailing a study tackling specific experimental questions.

Chapter 2 describes a behavioral study of morpho-orthographic regulari-

ties, an extensively researched topic in the field of visual word identification

(Amenta & Crepaldi, 2012; Rastle & Davis, 2008). Morphemes are recurrent

letter chunks that convey a fairly predictable form-to-meaning mapping, and

as such they are considered islands of regularity (Rastle et al., 2000) that

could efficiently mediate lexical access. Masked priming lexical decision stud-

ies (Forster & Davis, 1984) provide evidence for morpheme identification in

complex words, such as sing-er, and nonwords, like basket-y. Curiously, a

consistent set of experiments indicates that morphemes are recognized even

in contexts that lack morphological complexity, such as corn-er, where -er is

not conveying any meaning, and there is no semantic relation between the

words corner and corn. Why would the reading system exploit the mere ap-

pearance of morphological complexity in achieving word identification? In

search of an explanation for such counter-intuitive phenomenon, we investi-

gated whether morpheme recognition could actually be rooted in the visual

system’s sensitivity to statistics of letter co-occurrences. To this aim, we as-

sessed masked priming as induced by nonword primes obtained by combining a

stem (e.g., bulb) with (i) naturally frequent, derivational suffixes (e.g., -ment),

(ii) non-morphological, equally frequent word endings (e.g., -idge), and (iii)

non-morphological, infrequent word endings (e.g., -kle). In two additional

tasks, we collected interpretability and word-likeness measures for morpholog-

ically structured nonwords, to investigate whether priming can be modulated
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by such factors. We observed a statistically comparable facilitation elicited by

the three nonword types, suggesting that neither frequency nor morphological

status of word-endings affects masked morphological priming with nonword

primes, a pattern that was not affected by interpretability nor word-likeness.

This result was replicated in a second masked priming experiment with a new

set of items including corner-corn prime-target pairs, and is in line with mod-

els of early visual processing based on automatic stem/word extraction (e.g.,

Grainger & Beyersmann, 2017).

The study described in Chapter 3 was designed to further attempt a qualifi-

cation of the respective contributions of form and meaning-based regularities.

We exposed skilled readers to both suffixes (e.g., ment) and frequent word

endings (e.g., idge) in isolation, in a Fast Periodic Visual Stimulation (FPVS,

Rossion, 2014) design. FPVS is a behavior-free paradigm that combines elec-

trophysiological recordings with oddball presentation sequences, to provide ob-

jective neural signatures of discrimination processes. Streams of visual stimuli

(i.e., base stimuli, e.g., consonant strings) that are presented at a frequency

rate F are interleaved with oddballs (i.e., stimuli from another category, e.g.,

words), which are periodically inserted at fixed intervals (every n items), thus

appearing at a slower frequency rate (i.e., F/n). A general neural entrainment

to the periodic visual stimulation is indexed by a response at the base stimula-

tion frequency F. Of particular interest is the presence of a neural response at

the predefined oddball stimulation frequency F/n, as it can be taken to reflect

the brain’s ability to discriminate between the two types of stimulus categories,

and is selective to the dimension that differentiates the oddball from the base

stimuli. Our study adopted magnetoencephalography (MEG) with FPVS se-

quences carefully constructed to reveal selective discrimination responses for

specific linguistic features, to assess their relevance in skilled reading. We in-
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vestigated the presence of an Alphabetic response, by comparing strings of

artificial characters (rendered through the BACS-2 font, C. Vidal & Chetail,

2017), with strings of consonants (e.g., sfcl). The same strings of consonants

were then contrasted with readable, but non-existing strings (e.g., amsi), to

test the relevance of Readability. Readable items were pitted against meaning-

less word endings that are highly frequent in the written language (e.g., enso,

comparable to the English idge), to investigate the impact of Familiarity. Fre-

quent units were then set against suffixes, (e.g., eria, similar to the English

ment), so that we could assess the role of Meaningfulness. Finally, suffixes

were compared with words (e.g., idea), to obtain a purely lexical response, in

that the two classes differ solely on their lexical status. Non-parametric cluster

permutation tests (Maris & Oostenveld, 2007) at sensor level indicated a clear

discrimination for alphabetic (i.e., strings of consonants compared to pseudo-

characters) and lexical items (i.e., words, as opposed to suffixes). Source level

investigations on a predefined set of regions revealed a more complex picture.

All of the more subtle differences along our stimulus hierarchy led to clear neu-

ral responses, with the sole exception of suffixes compared to highly frequent

endings. This null result was further investigated through a Bayes Factor anal-

ysis, which moderately supported the lack of a distinction between suffixes and

highly frequent, meaningless word-endings, at least as captured in the context

of the FPVS paradigm.

From the work described in Chapter 3 emerged the auxiliary hypothesis at

the core of Chapter 4. An FPVS stimulation stream, with its rigid structure

and periodic rhythm, is potentially rich in statistical cues to uncover. Since the

very nature of the paradigm requires oddballs to deviate from a standard, in

each sequence tokens belonging to one category might be presented relatively

less often compared to the other. This difference in the number of repetitions
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induces a regularity that could be implicitly captured by the brain, elicit-

ing the emergence of visual discrimination responses. Chapter 4 describes a

study that tested this conjecture by collecting electroencephalography (EEG)

recordings while skilled readers were exposed to sequences of items belong-

ing to the same category (e.g., words in streams of words). We manipulated

the relative frequency of individual tokens in the presentation stream, which

allowed us to study whether neural responses can be induced by incidental

statistical learning within a short presentation, for stimuli belonging to the

same category. With this logic, we constructed homogeneous sequences of four

types of linguistic items with decreasing familiarity (from pseudo-characters to

words), thus aiming at investigating how different levels of orthographic struc-

ture (i.e., whole-word level, co-occurring letter clusters, letters, letter features)

would impact learning. Both region-of-interest and cluster-permutation based

frequency-domain analyses in sensor space revealed robust neural responses at

the oddball presentation rate in all conditions, reflecting the discrimination be-

tween two locally emerged groups of items purely informed by token frequency.

These results provide evidence for a fundamental frequency-tuned mechanism

that operates under high temporal constraints, and that could underpin the

bootstrapping of linguistic categories (Ellis, 2002; Maye et al., 2002).

Chapter 5 presents a collection of experiments investigating whether the

statistical regularities inherent in the natural language can influence letter per-

ception. Orthographic processing comprises the set of operations by which the

reading brain capitalizes on letter identity and position to derive larger linguis-

tic units (e.g., morphemes, words), and as such it involves a close interaction of

linguistic and perceptual processes (Grainger, Dufau, & Ziegler, 2016). Higher

level knowledge plays a pivotal role in this phenomenon, with top-down, lex-

ical representations inducing letter perception enhancement (Heilbron et al.,
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2020). One largely unexplored hypothesis is for such facilitation to interact

with letter co-occurrences as expressed in the language. Particularly, we built

on the perceptual effects of absolute position within letter-strings (Castet et

al., 2017; Stevens & Grainger, 2003; Tydgat & Grainger, 2009) to test whether

statistical regularities can improve performance in spite of visual bottlenecks

(e.g., crowding, Pelli et al., 2004; Pelli et al., 2007). Skilled readers were

briefly exposed to strings of five consonants; critically, letters in position 2

and 4 were embedded in transitional probability triplets that could either be

high (e.g., GLVTZ) or low (e.g., NLRTZ) as quantified in an Italian corpus.

When presented with two strings differing by the critical letter (GLVTZ vs.

GRVTZ, in a task similar to Adelman et al., 2010), participants identified the

correct option more often in triplets that reflected the language’s distributional

properties. The introduction of response time constraints caused the effect to

disappear entirely when the task required identifying single letters, in a more

traditional Reicher-Wheeler task (Reicher, 1969; Wheeler, 1970). Facilita-

tory patterns induced by high transition triplets survived in a Same-Different

matching task, as faster correct responses for position 2. This shows that let-

ter identification is affected by letter co-occurrence statistics, but only when

the task emphasizes string rather than letter processing, and coherently with

a rapid deployment of spatial attention towards the beginning of letter strings

(Aschenbrenner et al., 2017). The genuine orthographic nature of this effect

was further corroborated by a lack of facilitation when the same matching task

was performed on strings of non–alphabetic characters sharing low-level visual

features with letters (i.e., symbols from the BACS-2 font, C. Vidal & Chetail,

2017).



Chapter 2

Study I: Letter Chunk Frequency in

Morphological Masked Priming∗

Reading is a critical skill in our everyday life, and for skilled readers the

processing of linguistic input unfolds rapidly and effortlessly. In search of

the building blocks at the basis of such phenomenon, the literature is rich

in studies placing special consideration on morphemes, the smallest meaning-

bearing units in language (Bloomfield, 1933). Morphemes introduce a fairly

regular form-to-meaning mapping, and thus provide predictable patterns that

could be efficiently exploited for lexical processing (e.g., Bybee, 1988; Castles

et al., 2018; Taft & Forster, 1976).

Consistent evidence encompassing many languages and experimental pa-

radigms suggests that morphology does indeed play a role during the earliest

stages of visual word identification (for reviews, see Giraudo & Voga, 2014;

Rastle & Davis, 2008), even if there is little consensus on the fundamental

mechanisms that are in place at such level of processing (Amenta & Crepaldi,

2012). Specifically, results from masked priming studies (Forster & Davis,

1984) indicate that embedded stems are indeed recognized within their derived
∗From De Rosa, M., & Crepaldi, D. (2021). Letter chunk frequency does not explain morphological

masked priming. Manuscript accepted for publication in Psychonomic bulletin & review.
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forms (e.g., sing in singer). The strong and consistent facilitation elicited by

such prime-target pairs is larger than the priming elicited by pairs that merely

share some orthographic overlap (e.g., twin and twinkle), suggesting a mor-

phological locus for the effect. Notably, a more controversial contrast is of-

fered by words like corner, which under specific experimental conditions seem

to undergo morphological analysis, leading to the somewhat counter-intuitive

recognition of an embedded “stem” (i.e., corn within corner, Longtin et al.,

2003; Rastle et al., 2004).

The existence of such “morpho-orthographic” effects has been theoretically

interpreted under two main types of conceptual framework. An intriguing

proposal came from computational work (e.g., Baayen et al., 2011), which

capitalizes on discriminative learning in the context of a mapping effort be-

tween orthography and semantics, and provides evidence for morphological ef-

fects without explicit morpheme representations (i.e., -er). Crucially, morpho-

orthographic effects are here considered a by-product of residual morpheme

interpretability in opaque words, which is often supported by diachronically

genuine relationships (e.g., archer and arch, from the Latin arcus) that could

carry some degree of semantic transparency. Nevertheless, this account has

been experimentally challenged by data exhibiting morpho-orthographic ef-

fects in unambiguously semantically opaque prime-target pairs (Beyersmann,

Ziegler, Castles, et al., 2016).

Alternatively, several theoretical accounts postulate morpho-orthographic

processing to depend on explicit levels of representation, with earlier proposals

offering morphology itself as a primary organizational principle (e.g., Rastle &

Davis, 2003; Taft, 1994). However, most of these models do not reckon with

recent evidence coming from nonword primes, which produce strong facilitation

even without a complete morphological structure (e.g., Beyersmann, Casalis,
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et al., 2015; Beyersmann, Cavalli, et al., 2016; Grainger & Beyersmann, 2020;

Hasenäcker et al., 2016).

More recently, the emphasis switched away from morphology per se and

more attention was put on letter statistics (e.g., Crepaldi et al., 2010; Grainger

& Ziegler, 2011). The key insight in this respect is that morphemes also

constitute recurrent letter strings in the written language: because they carry

some meaning, morphological stems and chunks like -ment, -ness or -er occur

relatively frequently across several different words, and therefore might become

fairly salient units also from a merely orthographic, statistical point of view.

In support of this conjecture, sensitivity to statistical regularities is known

to be an extremely powerful cognitive resource recruited in information pro-

cessing in general (for recent reviews, see Armstrong et al., 2017; Aslin, 2017;

Christiansen, 2019; R. Frost et al., 2019; Thiessen et al., 2013), and in reading

in particular (e.g., Arciuli & Simpson, 2012; Chetail, 2015; Sawi & Rueckl,

2019; Schubert et al., 2020; Treiman et al., 2014). Recent experimental evi-

dence in the context of the statistical learning framework substantiated the re-

lationship between sublexical units and statistical patterns (e.g., Chetail, 2017;

Lelonkiewicz et al., 2020). In particular, Lelonkiewicz et al. (2020) modelled

morpheme learning in an artificial lexicon where the only possible cues were

characters’ statistics. When passively exposed to strings of pseudo-characters,

skilled readers rapidly developed sensitivity to patterns of affixation on the ba-

sis of their frequency of occurrence. Crucially, the carved prefix and suffix-like

units could not benefit from phonological or semantic information, and yet they

exhibited some typical aspects of affix processing (i.e., positional constraints,

Crepaldi et al., 2010). Frequency of occurrence is indeed a pivotal feature for

language learning (e.g., Ellis, 2002), and frequency effects have often been con-

sidered proxies of learned representations in lexical decision studies (Baayen
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et al., 2007; Burani & Thornton, 2003; Colé et al., 1989; Taft, 1979, 2004).

These considerations strengthen the idea that the “corner-corn” effect – and,

more generally, morpho-orthographic chunking – might be based on the letter

statistics that morphemes typically show, and particularly their frequency of

occurrence. Some investigation of this hypothesis was carried out by Beyers-

mann, Ziegler, and Grainger (2015), who failed to observe a cluster frequency

effect in a letter search task. This clearly speaks against the idea that the fre-

quency of letter chunks is a primary driver during visual word identification.

However, letter search is not the paradigm where morpho-orthographic effects

are typically found, and the efficacy of this task in addressing morphological

processing has been recently questioned (Hasenäcker et al., 2021).

To address these issues, we carried out a masked priming, lexical deci-

sion experiment with nonword primes. Specifically, we assessed the facilita-

tion elicited by morphologically structured primes (e.g., bulb-er), and by non-

morphologically structured nonwords whose endings were either as frequent

(e.g., bulb-le) or consistently less frequent (e.g., bulb-ew) than suffixes. This

manipulation allowed us to determine whether morpho-orthographic analysis

stems from written frequency, or is rather subordinate to word-endings’ mor-

phological status.

Morphologically structured nonwords may lend themselves to some plausi-

ble semantic interpretation (e.g., idealike, heroable; Günther & Marelli, 2020),

which could in turn influence masked priming (e.g., Heathcote et al., 2018). To

test for such a possibility, after the main task participants were asked to provide

interpretability ratings for the morphologically structured nonword primes. If

facilitation could be explained by such interpretability ratings, this would sug-

gest a role for the genuine morphological status of the suffixes/word-endings,

rather than for their frequency.
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Additionally, on the grounds of their structure, morphological nonwords can

trigger activation into the lexical-semantic system, as indexed by the difficulty

with which they are rejected in lexical decision tasks (morpheme interference

effect ; Beyersmann et al., 2020; Crepaldi et al., 2010; Taft & Forster, 1975;

Yablonski & Ben-Shachar, 2016) and by their speed of processing in reading

aloud (Burani et al., 2006). Therefore, an additional task was devised to

estimate the interference induced by each morphological nonword, which could

also affect masked priming; such eventual correlation might shed some light

on how the masked priming results relate to the lexical-semantic system in its

entirety.

2.2 Experiment I: Materials and Methods

Participants

Fifty-six Italian native speakers (19 males; age: M=24.86, SD=3.59) took

part in the study after giving written informed consent. All participants had

normal or corrected-to-normal vision and no history of linguistic or neuro-

logical impairment. They were compensated for their time, effort and travel

expenses with a monetary reimbursement. The study was approved by the

Ethics Committee at the International School for Advanced Studies, where

participants were tested.

Masked Priming Lexical Decision Task

Materials Twenty-nine derivational Italian suffixes (e.g., -mento, English: -

ment) were selected to have a fairly high token frequency (M=4.84, SD=0.61;

length, M=3.82, SD=0.86). Meaningless word-endings (e.g., -erso) of com-
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parable length (M=3.87, SD=0.33) were selected to construct a group of

highly frequent (HF, M=4.94, SD=0.67) and one of infrequent (LF, M=2.33,

SD=0.31) letter clusters, resulting in three sets of existing word-endings. Cru-

cially, suffixes and highly frequent word-endings were of comparable token

frequency, and differed solely on the basis of their morphological status; con-

versely, the low-frequency set of letter chunks consistently differed in terms of

written frequency from the other two groups.

Seventy-eight nouns (e.g., radio, length: M=5.81; SD=1.12) were then se-

lected as target words. The set of items was constructed to be fairly homo-

geneous in terms of written frequency (M=2.82, SD=0.45) and orthographic

neighborhood size (OLD20, Yarkoni et al., 2008; M=1.36, SD=0.31). The

stem of each target word was then combined with one letter cluster from each

group of word-endings, thus resulting in 78 primes in each of three condi-

tions: morphologically complex (Morph, length: M=8.70, SD=1.28; OLD20:

M=2.60, SD=0.49; e.g., radieria), orthographic - high frequency (HF, length:

M=8.75, SD=1.13; OLD20: M=2.90, SD=0.49; e.g., radierso) and ortho-

graphic - low frequency (LF, length: M=8.87, SD=1.08; OLD20: M=3.14,

SD=0.44; e.g., radieffa). For each prime in each condition, an unrelated prime

was obtained by combining the same ending to an unrelated stem (e.g., bombe-

ria-radio acted as a control for radieria-radio). The unrelated primes were

matched for both length and orthographic neighborhood size (Morph, length:

M=8.70, SD=1.27; OLD20: M=2.61, SD=0.51; e.g., bomberia), orthographic

- high frequency (HF, length: M=8.73, SD=1.13; OLD20: M=2.88, SD=0.51;

e.g., bomberso); orthographic - low frequency (LF, length: M=8.87, SD=1.08;

OLD20: M=3.14, SD=0.44; e.g., bombeffa). Seventy-eight nonword targets

were then obtained by substituting one consonant from an Italian existing

simple word and were adopted as filler items (e.g., tafolo from the word tavolo,
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table). Each nonword target was matched with a prime, constructed by adding

the three-conditions clusters to a related or unrelated nonword base (e.g., tafol-

mento-tafolo, taflement-tafle, or ritelmento-tafolo, retelment-tafle).

The overall stimulus set was split into six sublists, following a within-item,

within-subject Latin Square design, hence guaranteeing that participants were

exposed to all conditions without seeing any target more than once.

Procedure Each trial began with a 500-ms string of hash marks, followed

by the lowercase prime (50 ms) and the uppercase target, which remained on

screen for 1500 ms or until response. Consecutive trials were separated by an

interval jittered around 1500 ms. Sessions also comprised two examples, 12

practice and four warm-up trials, which were all excluded from the analyses.

Subsidiary tasks

Materials Morphological nonword primes, both related and unrelated, were

further investigated through (i) an overt rating and (ii) an unprimed lexical

decision task. These tasks were conceived to estimate any specific processing

induced by the morphological nonword primes, either at an explicit level (i.e.,

through overt rating) or implicitly, via the delay on correct rejections in a lex-

ical decision (morpheme interference effect ; Beyersmann et al., 2020; Crepaldi

et al., 2010; Taft & Forster, 1975; Yablonski & Ben-Shachar, 2016).

The rating task included for each participant the set of 26 nonwords that

served as primes in the main task for that given participant; no filler items

were used. Participants were asked to judge how easily they would be able

to attribute a meaning to each nonword on a 1 (not interpretable at all) to 7

(easily interpretable) scale.

For the lexical decision task, each participant was shown the same 26 non-
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words that served as primes in the main task. We additionally selected 26

derived Italian words to match the features and the structure of the mor-

phological nonwords (e.g., amicizia, friendship; length: M=8.72, SD=1.27;

OLD20: M=2.32, SD=0.54; written frequency: M=1.83, SD=0.87). The

stimulus set comprised also 13 morphologically simple Italian words (e.g., an-

guria, watermelon; length: M=8.77, SD=1.83; OLD20: M=2.00, SD=0.69;

written frequency: M=2.64, SD=0.61), and 13 nonwords obtained by substi-

tuting one consonant from an Italian existing simple word (e.g., pafola, from

parola, word ; length: M=8.46, SD=1.56; OLD20: M=2.55, SD=0.55).

Procedure The lexical decision trials began with a central fixation cross

presented for 500 ms, followed by the uppercase target stimulus presented for

2000 ms or until response; consecutive trials were separated by a jittered inter-

val of 1500 ms. In the rating task, the morphologically structured nonwords

were presented one at a time in lowercase, and remained on the screen until

response, without time constraints.

Apparatus

Participants were run individually in a soundproof experimental booth,

seated at approximately 80 cm in front of a BenQ XL2720Z monitor (27”,

1920x1080 pixels, 144 Hz). They provided YES responses with their dominant

hand (7 left-handed) through a Cedrus Response Pad RB-730. The experiment

was administered via PsychToolbox-3 (Brainard, 1997; http://psychtoolbox.org/)

on MATLAB R2015b (The Mathworks) in a Windows environment; stimuli

were rendered as strings of Arial characters (32 pt), presented in white over a

black background at the center of the screen.
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Data Analysis

Main task (masked priming)

One target with an overall error rate over 30% was excluded from the anal-

ysis (prua, prow). One subject was below 80% in accuracy on nonword trials

and was thus discarded. Anticipatory responses of less than 200 ms (1.66%),

no-response trials (1.65%) and incorrect responses (3.64%) were also removed.

Linear mixed-effects models with crossed random intercepts for subjects and

target words (Baayen et al., 2008), as implemented in lme4 (Bates et al.,

2007) and lmerTest (Kuznetsova et al., 2017), were employed as the primary

statistical tool.

The main analysis for the masked priming task was performed on inverse-

transformed reaction times. The effects of interest were Relatedness (i.e., re-

lated vs. unrelated primes) and Condition (i.e., affixes, high-frequency endings

and low-frequency endings), as well as their mutual interaction. In addition,

we tested whether Relatedness interacted with the item-level metrics for inter-

pretability and morpheme interference (see below); as non-morphemic primes

do not have these metrics at all, this further analysis was carried out only on

morphological primes. Other fixed effects were included if they significantly

improved the model’s goodness of fit in a backward step-wise model selection

procedure, resulting in the inclusion of log-transformed target frequency, as

well as accuracy and reaction time on the preceding trial.

Non-significant effects were further explored through Bayes Factor (BF)

analyses (Dienes, 2014) as implemented in the R package BayesFactor (Morey

et al., 2015). In particular, the preferred model (that is, the one expressing

the hypothesis under study) was compared against models without the effects

of interest, thus providing quantifiable evidence in support of H1 or H0.
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Subsidiary tasks (ratings and morpheme interference)

Rating scores for the morphologically complex nonwords were transformed

into within-subject z-scores:

zij =
rij −M(rj)

SD(rj)

where rij is the rating given to item i by subject j, and M(rj) and SD(rj) are

the mean and standard deviation across all ratings offered by subject j. These

z-scores were then averaged across participants for each item, thus generating

an item-specific metric for interpretability.

Reaction times for correct nonword rejections in the lexical decision task

were again analyzed through linear mixed models, with Condition, target

length and OLD20 as fixed effects, and crossed random intercepts for items and

participants. Before modelling, we removed data from one participant with ac-

curacy below 60%, no-response trials (0.36%) and incorrect responses (11.19%

of total). Because all the other main sources of variance across nonwords were

taken up by the fixed effects (e.g., length, orthographic neighborhood size), the

random intercept for items was taken as an index of how much more (or less)

morpheme interference any given nonword brings about. These two indices

were used to model reaction times in the masked priming task for morpholog-

ically complex primes.

2.3 Experiment I: Results

The pattern of results in the main priming task is illustrated in Figure 2.1.

The analysis of response times in the masked priming task resulted in a main

effect of Relatedness (χ2=46.926, p<0.001), indicating that related primes

induced faster responses compared to their unrelated baseline. However, we
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Figure 2.1: Model estimates of reaction times in the masked priming lexical decision task.

Error bars depict 95% confidence intervals.

observe no effect of Condition (χ2=0.313, p=0.855) nor an interaction between

Condition and Relatedness (χ2=0.547, p=0.761). A Bayes Factor analysis pro-

vided strong evidence against a model including an interaction (0.006±2.28%)

or a main effect of Condition (0.002±2.5%). Therefore, the strong priming

hereby observed is not influenced by either the frequency or the morphological

status of the word-endings. Instead, the mere presence of the target stem in

the prime seems enough to result in a consistent facilitation.

The morpheme interference task revealed a strong effect of Condition (χ2=

12.576, p=0.0004), with morphological nonwords eliciting longer reaction times

for correct rejections. The index obtained from this task yielded a rather
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moderate, albeit significant, correlation with the explicit ratings (r=0.23,

t(152)=2.881, p=0.004, Figure 2.2A), thus indicating that both indices pin-

point distinct, although somewhat related phenomena. However, neither index

affected priming (Figure 2.2B). The analysis of reaction times induced by mor-

phologically complex primes showed a non-significant main effect of Morpheme

Interference (χ2=0.449, p=0.502), and a lack of interaction with Relatedness

(χ2=0.059, p= 0.806). A similar pattern was yielded by the model consider-

ing Explicit Interpretability (χ2=2.088, p=0.148, interaction with Relatedness:

χ2=0.215, p= 0.642). Once again, these null results were corroborated through

Bayes Factor analyses (Morpheme Interference: 0.042±2.09%; Explicit Inter-

pretability: 0.022±1.71%).

2.4 Ad interim Discussion

The present experiment aimed at disentangling the role of co-occurrence

regularities in morpho-orthographic effects. We combined existing Italian

stems with genuine suffixes, high-frequency and low-frequency word-endings,

and examined the facilitation elicited by each type of nonword in a masked

priming, lexical decision study. A strong priming effect emerged independently

of either frequency or the morphological nature of word-endings. Coherently,

the facilitation elicited by morphological nonwords (e.g., heroable) did not de-

pend on rating-based semantic interpretability nor on how much morpheme

interference effect they caused in a plain lexical decision task.

Following the suggestion of an anonymous reviewer, we tried to replicate

these results in a second masked priming experiment that also included corner-

corn prime-target pairs. The aim was twofold: to offer a self-replication, and to

assess whether the inclusion of lexical primes could affect the observed pattern
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Figure 2.2: (A) Correlation between Morpheme Interference and Explicit Interpretability

indices; (B) Estimated effect of both indices on masked priming reaction times. RTs in-

crease slightly with growing Morpheme Interference/Interpretability (although the effect

doesn’t reach significance), but priming remains clearly constant. Shaded areas depict 95%

confidence intervals.
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of facilitation.

2.5 Experiment II: Materials and Methods

Participants

Forty-five Italian native speakers (14 males; age: M=26.08, SD=4.18) took

part in the study after giving written informed consent. All participants had

normal or corrected-to-normal vision and no history of linguistic or neurological

impairment.

Materials

In addition to the three conditions explored in Experiment I, we included

prime-target pairs of pseudo-derived words (e.g., corner) priming their pseudo-

stem (e.g., corn) – the classic morpho-orthographic priming condition (Longtin

et al., 2003; Rastle et al., 2004). The inclusion of word primes did not allow to

construct a stimulus set that would satisfy all the relevant formal constraints

in a within-item design; consequently, we made use of different target words

in the four conditions. More specifically, 40 words (e.g., rosa, English: rose)

were selected for each condition, matched for length, frequency and ortho-

graphic neighborhood size (Table 2.1). The sets of targets were different but

comparable across experiments.

Each target word was then paired with both a related and an unrelated

prime, coherently with the assigned condition. Targets in the opaque condition

were paired with pseudo-derived word primes (e.g., cervello-cervo, compara-

ble to corner-corn in English). Nonword primes were obtained with the same

logic of Experiment I, that is, by combining the stems of the selected tar-
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Condition Frequency Length OLD20

High Frequency (HF) 3.645 (0.738) 5.05 (1.011) 1.141 (0.282)

Low Frequency (LF) 3.615 (0.722) 5.025 (1) 1.176 (0.296)

Morphological (Morph) 3.611 (0.786) 5.025 (0.862) 1.176 (0.316)

Opaque - Word (Op) 3.614 (0.765) 4.975 (0.768) 1.124 (0.228)

Table 2.1: Target features (mean and standard deviation) in Experiment II.

gets with suffixes (e.g., -eria; frequency: M=5.10, SD=0.47; length: M=3.9,

SD=0.71), highly frequent, meaningless word-endings (e.g., -upe; frequency:

M=5.08, SD=0.32; length: M=3.82, SD=0.39) and low frequency, meaning-

less word-endings (e.g.,-iaba; frequency: M=2.60, SD=0.82; length: M=3.85,

SD=0.36). Overall, we constructed one set of word primes and three sets

of nonword primes, which were matched for length and orthographic neigh-

borhood size and paired with carefully constructed unrelated baselines (Table

2.2).

Condition Relatedness Frequency Length OLD20

High Frequency (HF) Related 0 7.85 (1.231) 2.466 (0.552)

High Frequency (HF) Unrelated 0 7.875 (1.223) 2.461 (0.522)

Low Frequency (LF) Related 0 7.825 (1.196) 2.752 (0.495)

Low Frequency (LF) Unrelated 0 7.875 (1.223) 2.692 (0.582)

Morphological (Morph) Related 0 7.85 (1.231) 2.244 (0.574)

Morphological (Morph) Unrelated 0 7.85 (1.231) 2.215 (0.637)

Opaque - Word (Op) Related 2.624 (0.767) 7.85 (1.231) 1.742 (0.442)

Opaque - Word (Op) Unrelated 2.657 (0.902) 7.825 (1.238) 1.709 (0.432)

Table 2.2: Prime features (mean and standard deviation) in Experiment II.

As a result, the stimulus set was made up of 160 target words, each paired

with a related and an unrelated prime, which were rotated across participants

in a between-item, within-subject Latin Square design; note that this approach
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implies only two rotations, compared to the six rotations adopted in Experi-

ment I.

One hundred and sixty nonwords were then obtained by substituting a

consonant from an existing Italian simple word (e.g., fuolo from the word fuoco,

fire). These items were used as NO-response targets in filler trials. Following

the approach adopted in Experiment I, each nonword target was matched with

a nonword prime, constructed by adding the same clusters as in experimental

conditions to a related or unrelated nonword base (e.g., fuolerpe).

Procedure

The trial timeline was identical to Experiment I, with the sole exception of

primes being presented more briefly (42 ms) to further ensure their effective

masking.

Data Analysis

The analysis approach was identical to Experiment I in all details.

One subject was below 80% in accuracy on nonword trials and was thus dis-

carded. No-response trials (0.32%) and incorrect responses (2.51%) were also

removed. The final model included log-transformed frequency, orthographic

neighborhood size and length of the targets, prime length as well as trial num-

ber within the session, accuracy and reaction time on the preceding trial.

2.6 Experiment II: Results

The results obtained from Experiment II are displayed in Figure 2.3, with

primes from all conditions showing a facilitatory pattern (main effect of Relat-

edness, (χ2=42.372, p<0.001). Critically, we replicate the lack of an interaction
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Figure 2.3: Model estimates of reaction times in Experiment II. Error bars depict 95%

confidence intervals.

between Condition and Relatedness (χ2=1.151, p=0.765). Such result is cor-

roborated by a Bayes Factor analysis, which provides strong evidence against

the model including an interaction factor (0.00082±3.09%).

2.7 Discussion

The present study aimed at establishing the relationship between morpho-

orthographic effects and letter co-occurrence regularities. Since morphemes

are also frequent letter clusters, we combined existing Italian stems with gen-

uine suffixes, high-frequency and low-frequency word-endings, and examined

the facilitation elicited by each type of nonword in a masked priming, lexi-

cal decision study. A strong priming effect emerged independently of either

frequency or morphological nature of word-endings. Such pattern of results

was further corroborated through an additional experiment including lexical

primes with semantically opaque relations to their targets (e.g., corner-corn).
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Coherently, the facilitation elicited by morphological nonwords (e.g., heroable)

did not depend on rating-based semantic interpretability nor on how much

morpheme interference effect they caused in a plain lexical decision task.

The main results of the masked priming task are in line with a wealth of

studies on nonword primes, which consistently reported solid facilitation effects

independently of the presence of an affix (that is, with primes like farmness,

but also with primes like farmald ; e.g., Beyersmann, Casalis, et al., 2015;

Beyersmann, Cavalli, et al., 2016; Beyersmann & Grainger, 2018; Hasenäcker

et al., 2016, 2020; Heathcote et al., 2018; McCormick et al., 2009; Morris et

al., 2011). It is noteworthy that such a pattern is different from the solidly

replicated evidence coming from word primes, in which the presence of both

a (pseudo-)stem and a (pseudo-)affix is necessary to elicit facilitation (corner

primes corn, but brothel does not prime broth; e.g., Rastle et al., 2004). This

asymmetry between word and nonword primes could be quite easily accounted

for by lexical competition. While nonword primes have no established repre-

sentations, words might compete for activation in the lexical-semantic system:

corner and cornea would be competing with corn, but neither cornity nor

cornew would. Therefore, if morphology becomes crucial to overcome compe-

tition and win the race for activation in word priming (i.e., allowing corn to be

activated in corner, but not in cornea), the embedded target word can be easily

activated in a nonword prime by virtue of its mere presence (e.g., Grainger &

Beyersmann, 2017). This early activation of shared elements between primes

and targets could arise from different mechanisms, as implemented by sev-

eral models in the literature. For instance, Grainger and Beyersmann (2017)

suggest that such a mechanism is deputed to the extraction of edge-aligned

embedded words; on the other hand, Crepaldi et al. (2010) and Taft (2004)

stipulate the existence of a pre-lexical level of representation that would cap-
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ture both stems and affixes.

While the present results are largely compatible with either account of

stem extraction, they clearly speak against morphology per se as the main

driver of the early stages of visual word identification, as postulated by earlier

models of pre-lexical processing (e.g., Crepaldi et al., 2010; Taft, 2004; Taft &

Nguyen-Hoan, 2010). Instead, our findings are better aligned with more recent

theories that emphasize orthographic, rather than morphological factors. The

hypothesis at the core of the present study is that morpho-orthographic effects

are mostly based on letter statistics; morphemes, among other letter chunks,

are frequent letter clusters, and this is why they would be captured at this

level of processing. This account is coherent with recent findings reported by

Grainger and Beyersmann (2020), suggesting that in the absence of a pseudo-

morphological structure, nonword priming might be affected by conditional

probabilities between the identified stem and an eventual (derivational) affix.

However, the statistical regularity manipulated in the present study (i.e.,

word-ending frequency) did not affect morpho-orthographic priming, a result

that is also consistent with previous evidence coming from letter search studies

(Beyersmann, Ziegler, & Grainger, 2015). Despite its essential role in linguistic

processing (e.g., Ellis, 2002), letter-cluster frequency should be regarded as

only one possible metric of letter co-occurrence regularities. It is hence possible

for other, more sophisticated metrics (such as the aforementioned conditional

probability) to play a more prominent role in early visual word processing. This

would in turn suggest the involvement of a different mechanism, perhaps of a

predictive nature (e.g., Avarguès-Weber et al., 2020), as suggested by several

experiments across different cognitive domains (see R. Frost et al., 2019, for a

recent review on the history and interplay of co-occurrence metrics).

The primary role of statistical cues, rather than morphological status per
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se, is also widely supported by some evidence obtained in artificial lexicon

studies (e.g., Chetail, 2017; Lelonkiewicz et al., 2020), in which readers were

unequivocally shown to be sensitive to the frequency with which chunks of

pseudo-characters co-occur. One key difference is in the nature of the tasks

adopted, as well as in the experimental demands of these studies. Specifically,

learning studies with artificial characters focus on unfamiliar material that

becomes somewhat familiar by the end of the experiment. Since the pioneering

work of Saffran et al. (1996), the extraction of statistical information has in fact

proven to be the bedrock behind the learning of linguistic (or pseudo-linguistic)

material, with frequency of occurrence having a pivotal role during the first

phases of exposure to novel stimuli. The goal of the present study was instead

to uncover the role of co-occurrences within the processing of well-established

units (existing letters and morphemes). It is possible, then, that while growing

in familiarity and proficiency with a writing system, letter statistics contribute

to create and consolidate higher-level representations, a stage that would be

captured by artificial lexicon studies. Once such higher-level representations

are well established, they would acquire an autonomous, rooted status, thus

making the system less reliant on mere frequency (and perhaps other statistical

cues, more generally); this would be the stage captured here, and in other

studies with real linguistic material. The frequency of letter chunks would be

critical during learning, but perhaps less so in the mature system, where those

chunks have probably acquired representations on their own.

This interpretation highlights the idea that the early stages of visual word

processing, even if they are indeed heavily based on language-agnostic, sta-

tistical processes, are also in constant interaction with more central, lexical

representations (whenever these representations are available). This resolves

the apparent conflict with data showing a role for morphological family size
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(Beyersmann & Grainger, 2018) and position of the embedded stem (Beyers-

mann et al., 2018) in complex nonword priming effects.

An additional result is that nonword priming is not modulated by either

lexical-semantic drive (as indexed by the amount of morpheme interference),

or interpretability (as gauged by overt ratings). Importantly however, metalin-

guistic ratings constitute only one possible operationalization of nonword inter-

pretability. Compelling evidence for more sophisticated, model-based metrics

comes from work on novel compounds (Günther & Marelli, 2020), in which

semantic effects are captured through compositional processes, an approach

that paves the way for a more dynamic view of meaning-combination mecha-

nisms in novel derived forms (Amenta et al., 2020). Nevertheless, in keeping

with several previous studies (e.g., Giraudo & Voga, 2016; Longtin & Meunier,

2005; Tseng et al., 2020), the present results suggest that masked priming is not

much influenced by semantic effects, at least with derived nonword primes (see,

e.g., Feldman & Basnight-Brown, 2008; Feldman et al., 2012, for a somewhat

different perspective with word primes). More generally, these data suggest a

weak relationship between the mechanisms captured by masked priming, and

the lexical-semantic dynamics induced by the same nonwords when presented

overtly, as target items. Such results might indicate that while masked prim-

ing taps into early processing, overt-ratings and morpheme interference are

based on subsequent stages, thus calling for an integrated view of morpho-

orthographic phenomena within the lexical-semantic system at large.



Chapter 3

Study II:

Selective Neural Entrainment Reveals

Hierarchical Tuning to Linguistic Regularities∗

In today’s complex societies, printed words are among the most culturally

relevant visual objects processed by the human brain, and visual word recog-

nition is dexterously mastered by skilled readers, which can process written

input as swiftly as faces. Nevertheless, the literate brain is a case of an expert

system shaped by cultural experience (Dehaene & Cohen, 2011): while the cor-

tical architectures supporting face processing might have evolved specifically

to this aim, reading and writing constitute a relatively recent invention (Carr,

1999). Consequently, research around the neural underpinnings of reading

poses rather peculiar challenges, tackled via developmental and neuropsycho-

logical studies, and encompassing several imaging and computational modeling

efforts (e.g., Carreiras et al., 2014; Price, 2012).

Consistent evidence suggests the literate system relies on cortical resources

originally deputed to other functions (e.g., visual object processing), which

would be reorganized (or even recycled, Dehaene & Cohen, 2007), during liter-
∗From De Rosa, M., Vignali, L., D’Urso, A., Ktori, M., Bottini, R., & Crepaldi, D. (2022). Selective

Neural Entrainment Reveals Hierarchical Tuning to Linguistic Regularities. Manuscript in preparation.
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acy acquisition (as reviewed in, e.g., Dehaene et al., 2015). As a result, the neu-

ral underpinnings of reading would still follow the principles that govern object

recognition in the primate ventral stream (Dehaene et al., 2005). A clear exam-

ple comes from the hierarchical organization observed in the macaque monkey,

with an anterior-to-posterior progression of increasingly larger receptor fields

for more complex objects (Booth & Rolls, 1998; Riesenhuber & Poggio, 1999;

Rolls, 2001). A similar graded selectivity for increasingly complex linguistic

stimuli was observed by Vinckier et al. (2007) in a portion of the ventral occip-

itotemporal cortex (vOT), with the asymmetrical left profile that is generally

associated with linguistic processing (Cohen et al., 2002; Dejerine, 1892; War-

rington & Shallice, 1980). Vinckier et al. (2007) exposed skilled readers to

a hierarchy of linguistic stimuli, ranging from strings of pseudo-characters to

real words, and including sequences of infrequent letters, frequent letters but

rare bigrams, and frequent bigrams but rare quadrigrams. BOLD-contrast

responses clearly indicated the presence of a hierarchical trajectory, with pro-

gressively selective responses for more complex stimuli. However, real words

did not differ from highly frequent, ortho-phonotactically legal quadrigrams

(i.e., pseudowords).

Albeit in line with previous evidence (J. R. Binder et al., 2006; Dehaene

et al., 2005; Pammer et al., 2004; Price et al., 1996; Wydell et al., 2003),

the lack of a reliable neural distinction between words and pseudowords has

been object of a heated debate (as detailed in, e.g., Price, 2012; Taylor et al.,

2013). Indiscriminate responses to real words (e.g., rent) and well-structured

letter strings (e.g., tren), previously unseen and meaningless, suggest that

visual word recognition might be entirely supported by abstract orthographic

knowledge, consolidated by frequent encounters with regularly co-occurring

patterns and beyond any lexical information. Such sublexical account (J. R.



42

Binder et al., 2006; Vinckier et al., 2007) has been challenged on the basis

of studies showing selective lexical responses (Glezer et al., 2009; Kronbichler

et al., 2007; Kronbichler et al., 2009), and proposing an interactive account

of linguistic information, which would provide a source of top-down feedback

for the early processing of orthographic input (Price & Devlin, 2003, 2011).

Purely orthographic features, as well as higher-order factors (like phonology

or semantics) and their mutual interaction, are then comparatively at the core

of the neural computations performed in the literate brain. As a result, the

rather refined knowledge of where the neural underpinnings of reading might

reside is complemented by a relatively poor understanding of what such areas

are coding for.

Notably, identifying the building blocks of visual word identification is a

question of paramount importance also beyond the neuroimaging literature.

The arena of cognitive models of reading is also populated by accounts that dif-

ferently emphasize the role of linguistic factors and their relative contributions,

even if they generally remain beyond the details of neural implementations (but

see Taylor et al., 2013, for an overarching framework). Differences in lexical

and sublexical features animate the debate around the Dual Route Cascaded

model (Coltheart et al., 2001), postulating the existence of whole-word forms,

against connectionist models (Plaut et al., 1996; Seidenberg, 2005), which

propose a fully-sublexical locus of processing for the written input. A similar

debate involves the role of morphological information: while morphemes (sub-

lexical units that convey a fairly predictable form-to-meaning mapping, e.g.,

-ness) are widely considered to constitute an important part of the processing

pathway toward visual word identification, models differ as to where these pro-

cessing units might lie along this pathway (Crepaldi et al., 2010; Feldman &

Basnight-Brown, 2008; Feldman et al., 2012; Taft, 2004; Taft & Nguyen-Hoan,
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2010), and how they interact with other units (Grainger & Beyersmann, 2017;

Grainger & Ziegler, 2011). In a strikingly close tandem, disentangling the role

of lexical and sublexical information, along with other potentially relevant lin-

guistic dimensions, is a fundamental step to steer both neural and cognitive

debates, and significantly advance our understanding of skilled reading.

Substantial contributions in this direction came from neuroimaging studies

using adaptation techniques. Neural habituation phenomena (such as repeti-

tion suppression and visual adaptation, Grill-Spector et al., 2006; Henson et

al., 2004; Kohn, 2007) manifest the tendency of neural responses to decrease

over time when the same stimulus – or stimulus feature, such as orientation,

size or type – is repeated. Subsequently, neural habituation is considered to

reflect the selectivity of neuronal populations to specific features, and is there-

fore uniquely suited to implicitly address discrimination processes. The careful

variation of specific visual word properties probed neuronal tuning to abstract

representations, leading to fMRI responses that were invariant to font, size,

case and location (Dehaene et al., 2004; Dehaene et al., 2001). More recently,

Lochy et al. (2015) obtained selective neural responses for lexical items by

combining EEG recordings with oddball sequences – the so-called Fast Pe-

riodic Visual Stimulation paradigm (FPVS, Rossion, 2014). This technique

adopts frequency tagging to isolate the brain’s oscillatory response induced

by the rapid, periodic presentation of visual items at a fixed rate (Norcia et

al., 2015). Specifically, skilled readers were presented with periodic streams

of stimuli (e.g., pseudowords, presented with a frequency of 10 Hz) in which

word items appeared at regular intervals (every 5 items, hence with a 2 Hz

frequency). Known words elicited a neural entrainment, as evidenced by a

sharp 2 Hz response measured at scalp, reflecting the brain’s ability to im-

plicitly and rapidly discriminate lexical items in a stream of readable, ortho-
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phonotactically legal but non existing pseudowords.

A series of studies adopting linguistic material (e.g., Lochy et al., 2018;

Lochy et al., 2015; Lochy et al., 2016) showcases the FPVS technique as a

powerful window into the neural basis of visual word processing. Neural dis-

crimination responses are elicited within few minutes of stimulation, are clearly

quantifiable at the predefined frequency of interest, and yield high signal-to-

noise ratios. Importantly, any response is gathered implicitly, in the absence

of task-induced confounds, and is selective to the dimension that differentiates

the two classes of items presented within the stimulation sequence. Accord-

ingly, carefully controlled FPVS sequences could not only address the existence

of lexical representations, but also probe the specific contributions of all the

features that characterize linguistic information. Written input is indeed com-

posed of a series of nested levels, with phonological, orthographic and semantic

factors permeating different units of processing. In the eyes of a skilled reader,

known words are highly familiar, complex visual objects, which become per-

ceptually salient after a lifetime exposure (a mechanism akin to perceptual

learning, Fahle et al., 2002; Gilbert et al., 2001; Goldstone, 1998; Nazir et al.,

2004; Nazir & Huckauf, 2007). Structurally, visual words are combinations

of known symbols (e.g., letters) that reflect the statistical co-occurrence reg-

ularities of the written language (Araújo et al., 2015; Lin et al., 2011; Rudell

& Hu, 2000). Words have also consistent phonological (Aparicio et al., 2007;

Braun et al., 2015; Dietz et al., 2005), morphological (Leminen et al., 2016;

Leminen et al., 2013; Leminen et al., 2019; Vigliocco et al., 2006) and semantic

associations (Devereux et al., 2013; Mirman & Magnuson, 2009; Price et al.,

2006).

The present study aimed at investigating the contribution of each of these

features by coupling MEG recordings with FPVS sequences, in a tightly con-
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trolled hierarchy of contrasts. Critically, each contrast tackled a specific lin-

guistic feature, seeking evidence for its relevance in skilled reading. We assessed

the presence of an Alphabetic response, by contrasting strings of consonants

(e.g., sfcl) with sequences of items composed of artificial characters matching

Roman letters on low-level visual features (BACS-2 characters, C. Vidal &

Chetail, 2017). The same strings of consonants were then pitted against read-

able, but non-existing strings (e.g., amsi), to test the relevance of Readability.

Readable items were then compared to meaningless word endings that are

highly frequent in the written language (e.g., enso), to investigate the impact

of Familiarity. Such frequent units were then set against suffixes, frequent and

meaningful sublexical items (e.g., eria), so that we could directly investigate a

Meaningfulness response. The final comparison involved suffixes on one hand,

and words (e.g., idea) on the other: a successful discrimination, here, would

represent a purely lexical response, in that both classes of items are frequently

attested in the written environment and consistently associated with meaning,

and are exclusively differentiated on the basis of their lexical status.

3.2 Materials and Methods

Participants

Twenty-one volunteers (10 females; age: M=27.2, SD=5.35) took part in

the experiment after giving written informed consent. All participants were

right-handed native Italian speakers reporting having normal or corrected-to-

normal vision and no history of linguistic or neurological impairment. The

experiment was conducted in accordance with the Declaration of Helsinki and

was approved by the local ethical committee of the University of Trento.
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Materials

Stimuli (illustrated in Figure 3.1) comprised six categories of 32 items,

all three-to-four elements long (M=3.53, SD=0.507). Words (W, e.g., idea)

were Italian nouns, and Suffixes (Suff, e.g., eria) were derivational morphemes.

Frequent Endings (HFE, e.g., enso) were highly frequent, meaningless word

endings attested in Italian. Pseudoendings (PE, e.g., amsi) were novel pro-

nounceable letter strings with a regular CV-structure (i.e., fourteen items:

CCV, seventeen items: VCCV, one item: VVV) that could constitute ortho-

phonotactically legal word endings in Italian, but are not attested. Nonword

stimuli (NW, e.g., sfcl) comprised random consonant strings and were thus

unpronounceable. Finally, Pseudofont (PF) strings were obtained by render-

ing random combinations of characters from the BACS-2 serif artificial script

(C. Vidal & Chetail, 2017), and resulted in strings of symbols closely matching

the visual characteristics of Latin characters (i.e., number of strokes, junctions,

terminations, and serifs).

Among the linguistic items, Words, Suffixes and Frequent Endings had

a high and comparable written frequency (W: M=4.507, SD=0.580; Suff:

M=4.983, SD=0.533; HFE: M=4.229; SD=0.925, as assessed SUBTLEX-

IT, Crepaldi et al., 2013), while Pseudoendings and Nonwords had a zero

frequency, as per their definition.

Procedure

Stimuli were presented via sinusoidal contrast modulation at a frequency

of 6 Hz for 26.7 seconds, with each stimulus cycle lasting a total of 166.66

ms. Two types of stimulation sequences were presented for each condition. In

experimental trials, the stimulation alternated between stimuli that belonged
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to two different categories (i.e., XYXYXYXY. . . ), such that stimuli from each

category were presented every 333.33 ms (i.e., at a frequency rate of 6 Hz/2=3

Hz). In baseline trials, a sequence comprised stimuli that belonged only to

one category (i.e., XXXXXXXX. . . ). This design ensured that in each ex-

perimental condition a differential signal (i.e., difference between alternating

and baseline sequences) at the stimulation frequency of 3 Hz reflected a neural

response that was selective to the property that distinguished the two cate-

gories of stimuli. For a schematic illustration of the experimental design and

examples of stimulation sequences, see Figure 3.1.

Five experimental conditions were used to isolate neural responses to stim-

uli that are alphabetic (Nonwords vs. Pseudofonts; baseline: Nonwords), read-

able (Pseudoendings vs. Nonwords; baseline: Pseudoendings), sublexical or-

thographic units (Frequent Endings vs. Pseudoendings; baseline: Frequent

Endings), sublexical meaningful units (Suffixes vs. Frequent Endings; base-

line: Suffixes), and lexical units (Words vs. Suffixes; baseline: Words). There

were 6 trials per experimental condition and type of sequence, yielding a total

stimulation time of 45 minutes: 26.7 s (trial duration) x 5 experimental condi-

tions x 2 types of sequences (alternating, baseline) x 6 trials. Trials consisted

of unique sequences of 160 stimuli, each of which was presented exactly five

times in a pseudo-randomized fashion to avoid close repetitions. The order

of trial presentation was also pseudo-randomized to avoid close repetitions of

specific classes of items during the course of the experimental session. Trial

presentations were separated by 15-second breaks.

Participants were seated at approximately 1 meter from a PROPixx DLP

projector (VPixx Technologies, Canada). The screen had a 1440x1080 pixels

resolution and a refresh rate of 120 Hz. Stimulus display was administered

by PsychToolbox-3 (Brainard, 1997) on MATLAB R2015a (The MathWorks)
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Figure 3.1: Experimental Paradigm. All stimuli were presented by sinusoidal contrast mod-

ulation; the figure displays four cycles of 166.66 ms. In the experimental trials (panel A)

stimuli from two classes were alternated, to isolate neural responses selective to discrimina-

tive properties (e.g., letter strings and pseudo-characters differ solely on the basis of their

alphabetic nature). Examples are given for the five different properties of interest: Alpha-

betic (Nonwords, NW, vs. Pseudofonts, PF), Readability (Pseudoendings, PE, vs. Nonwords,

NW), Familiarity (High frequency endings, HFE, vs. Pseudoendings, PE), Meaningfulness

(High frequency endings, HFE, vs. Suffixes, Suff), and Lexicality (Words, W, vs. Suffixes,

Suff). The control trials (panel B) comprised items belonging to the same category (e.g., a

single stream of letter strings), and served as a baseline for the discriminative nature of the

neural responses yielded by the experimental trials. Particularly, the difference between the

3 Hz response in experimental and baseline trials would represent a genuine discrimination

between items belonging to two different experimental categories, thus reflecting the feature

under study.
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in a Windows environment. All stimuli were presented at the center of the

screen. All alphabetic stimuli (i.e., Words, Suffixes, Frequent Endings, Pseu-

doendings and Nonwords) were presented in lowercase characters, using the

fixed-width Courier New font, whereas Pseudofonts were presented in BACS-2

serif font. Both fonts were emboldened by 70% from their original character

weight to improve visibility. Each stimulus subtended horizontal and vertical

visual angles of 2.58 and 0.64 degrees, respectively.

To ensure participants maintained a constant level of attention, they were

instructed to monitor the color change of a cross presented continuously at

the center of the screen. The change, from blue to red and vice versa, oc-

curred three times in each trial, independently of the experimental manipu-

lation. Overall, participants’ performance in the color-change detection task

was close to ceiling in accuracy (M=97.8%, SD=14), and featured fast reaction

times, (M=465 ms, SD=177). Moreover, it was comparable across experimen-

tal trials (NW in PF=97%, SD=16, reaction time: M=460 ms, SD=157; PE in

NW=97.3%, SD=16, reaction time: M=469 ms, SD=188; HFE in PE=98.4%,

SD=12, reaction time: M=468 ms, SD=175; Suff in HFE=97.8%, SD=14, re-

action time: M=476 ms, SD=202; W in Suff=98.6%, SD=11, reaction time:

M=452, SD=145) as well as baseline trials (NW in NW=97.3%, SD=16, re-

action time: M=466 ms, SD=189; PE in PE=98.1%, SD=13, reaction time:

M=455 ms, SD=149; HFE in HFE=97.8%, SD=14, reaction time: M=477

ms, SD=216; Suff in Suff=97.6%, SD=15, reaction time: M=461 ms, SD=160;

W in W=98.4%, SD=12, reaction time: M=462 ms, SD=173).

MEG acquisition, Preprocessing and Frequency analysis

MEG data were recorded using a whole-head 306 sensor (204 planar gra-

diometers; 102 magnetometers) Vector-view system (Elekta Neuromag, Helsinki,
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Finland). Participants’ head position was continuously determined with re-

spect to the MEG helmet through five head position indicator coils (HPIs).

MEG signals were recorded at a sampling rate of 1000 Hz and online band-pass

filtered between 0.1 and 300 Hz. At the beginning of each experimental ses-

sion, fiducial points of the head (the nasion and the left and right pre-auricular

points) and a minimum of 300 other head-shape samples were digitized using

a Polhemus FASTRAK 3D 519 digitizer (Fastrak Polhemus, Inc., Colchester,

VA, USA).

Raw data were processed through MaxFilter 2.0 (Elekta Neuromag). For

each participant, bad channels were identified via visual inspection, and inter-

polated. Head displacements were inspected and corrected through realign-

ment to a single reference. After applying movement compensation, external

sources of noise were separated and removed by applying the temporal exten-

sion of signal space separation (tSSS; Medvedovsky et al., 2009; Taulu and

Hari, 2009; Taulu and Simola, 2006).

Preprocessing and analysis were performed in MATLAB (MathWorks, Inc)

with a combination of Fieldtrip (Oostenveld et al., 2011), Brainstorm (Tadel

et al., 2011) and custom scripts. Continuous recordings from each participant

were band-pass filtered (0.1 - 100 Hz), downsampled (250 Hz) and epoched

into 26.7-seconds trials, which were realigned to the onset of the first stimulus

(via photodiode). Segments contaminated by artifacts were identified through

visual inspection and manually removed (1.11%). To remove eye movements

and heartbeat related artifacts from the MEG signal we performed an Indepen-

dent Component Analysis (ICA, Jutten & Herault, 1991), separately for mag-

netometers and planar gradiometers. Eye movement and pulse-related compo-

nents were captured by correlating the independent component (IC) time series

with that of EOG and ECG channels. For each participant, trials within each
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condition were averaged, and submitted to a Fast Fourier Transform. Given

the length of the epochs, the frequency resolution was 1/26.7=0.0374 Hz. The

spectra were then baseline-corrected by subtracting from each frequency bin

the mean of the surrounding 20 bins (10 from each side, excluding local min-

ima, maxima and immediately adjacent bins, as in e.g., Dzhelyova and Rossion,

2014); the response of interest was then defined as the baseline-corrected ampli-

tude 3 Hz. A significant discrimination response, indexing neural entrainments

elicited by items belonging to different categories, was assessed by comparing

the 3 Hz response in each experimental condition (e.g., Words in Suffixes) with

the corresponding baseline (i.e., Words in Words).

Sensor Space Analysis Sensor level analyses were run at whole-brain level

through a non-parametric cluster permutation test (Maris & Oostenveld, 2007).

Differences at 3 Hz for both experimental and baseline conditions were as-

sessed separately for magnetometers and combined planar gradiometers, by

considering a minimum neighborhood distance of 6 millimeters between sen-

sors. Statistical significance was assessed through a one-tail, dependent sample

t-test with Monte-Carlo estimates over 5000 permutations (significance level:

p<0.05).

Source Space Analysis Distributed minimum-norm source estimation (MNE,

Hämäläinen & Ilmoniemi, 1994) was applied following the standard procedure

in Brainstorm (Tadel et al., 2011). For twenty participants, anatomical T1-

weighted MRI images were acquired during a separate session in a Prisma 3T

scanner (Siemens, Erlangen, Germany) using a 3D MPRAGE sequence, 1-mm3

resolution, TR=2140 ms, TI=900ms, TE=2.9ms, flip angle 12°, and segmented

in Freesurfer (Fischl, 2012). Co-registration of MEG sensor configuration and

the reconstructed scalp surfaces was based on around 300 scalp surface loca-
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tions. As one participant did not undergo MRI acquisition, we warped the

default anatomy to match the shape defined by the digitized points. Individ-

ual noise covariance matrices were computed from 1 s pre-stimulus interval in

all the available trials for each participant. The forward model was obtained

using the overlapping spheres method (Huang et al., 1999) as implemented in

Brainstorm. Fourier-transformed regression coefficients were then projected

onto a 15000 vertices boundary element using a dynamic statistical paramet-

ric mapping approach (dSPM; Dale et al., 2000), assuming dipole sources

to be perpendicular to the cortical surface. Individual results were spatially

smoothed (3mm FWHM) and projected to a default template (ICBM152).

Differences at 3 Hz between experimental and baseline conditions were

then assessed at source level in the vertices of predefined regions of interest,

obtained from the Desikan-Killiany cortical atlas (Desikan et al., 2006). ROIs

corresponded to several cortices involved in reading, such as fusiform (e.g.,

Dehaene et al., 2002), lingual (e.g., Raschle et al., 2011), inferior parietal

(e.g., Sliwinska et al., 2015), inferior temporal (e.g., Dien et al., 2013), lateral

occipital (e.g., Borowsky et al., 2007) and middle temporal (e.g., Turkeltaub et

al., 2003). On each ROI, significant responses were assessed via nonparametric

cluster permutation test (N=5000, p<0.05; Maris & Oostenveld, 2007). Non-

significant effects were here explored through JZS Bayes Factor analysis (BF10,

scale factor r=0.707; Rouder et al., 2009), which provides quantifiable evidence

in support of H1 or H0, thus allowing to support the null hypothesis itself

(Leppink et al., 2017).
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3.3 Results

Sensor Space As shown in Figure 3.2, clear discrimination response in-

dicated sensitivity to alphabetic items (NW-PF vs. NW-NW), emerging in

a diffused area for both planar gradiometers (t (20)=311.13, p=0.0002, g=0.83

[95% CI: 0.53, 1.13]) and magnetometers (t (20)=274.17, p=0.0002, g=0.81 [95%

CI: 0.49, 1.12]). Lexical items embedded in suffixes (W-Suff vs. W-W) also

elicited a marked discrimination response, with left-lateralized topography for

both planar gradiometers (t (20)=80.30, p=0.0004, g=0.65 [95% CI: 0.12, 1.16])

and magnetometers (t (20)=74.28, p=0.0002, g=0.71 [95% CI: 0.18, 1.22]).

No discrimination response emerged as statistically significant for the other

contrasts. Readability (PE-NW vs. PE-PE) resulted in a cluster that did not

reach significance in planar gradiometers (t (20)=9.39, p=0.13, g=0.61 [95%

CI: -0.91, 2.01]) and no cluster for magnetometers; Familiarity (HFE-PE vs.

HFE-HFE), produced a non-significant cluster for magnetometers (t (20)=8.81,

p=0.233, g=1.03 [95% CI: -0.93, 3]) and no cluster for gradiometers. No

significant cluster emerged for meaningful sublexical units (Suff-HFE vs. Suff-

Suff).

Source Space Significant discrimination responses in the predefined ROIs

are displayed in Figure 3.3. At source level, a 3 Hz discrimination response for

alphabetic stimuli (NW-PF vs. NW-NW) emerged bilaterally in all the areas

of interest (as summarized in Table 3.1).

A discrimination of readable stimuli in strings of consonants (PE-NW vs.

PE-PE) yielded a right-lateralized profile, involving fusiform (t (20)=161.31,

p=0.0216, g=1.23 [95% CI: 0.82, 1.63]), inferotemporal (t (20)=134.31, p=0.0206,

g=1.30 [95% CI: 0.86, 1.72]), lateral occipital (t (20)=204.39, p=0.024, g=1.16
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Figure 3.2: Sensor level results. One significant, largely diffused cluster indicated the dis-

crimination of alphabetic stimuli, while a left-lateralized significant cluster was associated

with lexical discrimination. The topography of the effects is comparable across planar gra-

diometers (panel A) and magnetometers (panel B) for both discrimination responses.
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ROI t value Effect size g Pr(>| t |)

Left Fusiform 1059.21 1.57 [1.36, 1.77] <0.001 ***

Right Fusiform 956.08 1.91 [1.69, 2.12] <0.001 ***

Left Inferiorparietal 1060.81 1.35 [1.18, 1.52] <0.001 ***

Right Inferiorparietal 1315.81 1.37 [1.22, 1.52] <0.001 ***

Left Inferotemporal 903.83 1.29 [1.10, 1.48] <0.001 ***

Right Inferotemporal 1052.57 1.57 [1.38, 1.75] <0.001 ***

Left Lateral Occipital 1609.02 1.48 [1.32, 1.65] <0.001 ***

Right Lateral Occipital 1313.58 1.62 [1.45, 1.79] <0.001 ***

Left Lingual 921.25 1.59 [1.37, 1.80] <0.001 ***

Right Lingual 729.36 1.70 [1.47, 1.92] <0.001 ***

Left Middle temporal 603.84 1.03 [0.82, 1.25] <0.001 ***

Right Middle temporal 1141.24 1.38 [1.20, 1.55] <0.001 ***

Table 3.1: Alphabetic Response (PF-NW vs. NW-NW), Source Level Results.

[95% CI: 0.82, 1.49]) and middle temporal cortices (t (20)=105.35, p=0.0332,

g=0.92 [95% CI: 0.48, 1.34]).

Familiarity (HFE-PE vs. HFE-HFE) elicited significant responses only in

the right inferior temporal area (t (20)=220.03, p=0.0178, g=1.14 [95% CI:

0.81, 1.47]). Consistently with the results observed in sensor space, suffixes

embedded in frequent endings (Suff-HFE vs. Suff-Suff) yielded no significant

response in the predefined ROIs. This null result was further explored through

a JZS Bayes Factor analysis across ROIs, which, where conclusive, provided

moderate evidence in favor of the null hypothesis (as summarized in Table

3.2).

Differences between words and suffixes (W-Suff vs. W-W) were traced in

bilateral fusiform (left: t (20)=227.12, p=0.0174, g=1.11 [95% CI: 0.77, 1.44];

right: t (20)=283.35, p=0.004, g=0.94 [95% CI: 0.65, 1.22]), together with two

significant clusters in left inferior temporal (first: t (20)=230.97, p=0.0206,
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ROI Number of Vertices BF10<1/3 BF10>3

Left Fusiform 268 156 (58%) 0

Right Fusiform 255 186 (72%) 0

Left Inferiorparietal 351 70 (19%) 39 (11%)

Right Inferiorparietal 421 219 (52%) 20 (5%)

Left Inferotemporal 307 155 (50%) 0

Right Inferotemporal 316 213 (67%) 9 (3%)

Left Lateral Occipital 371 207 (55%) 4 (1%)

Right Lateral Occipital 367 251 (68%) 0

Left Lingual 246 154 (62%) 0

Right Lingual 227 186 (82%) 0

Left Middle temporal 277 191 (69%) 9 (3%)

Right Middle temporal 324 205 (63%) 19 (6%)

Table 3.2: Suff-HFE vs. Suff-Suff contrast, Source Level Bayes Factor Analysis. For each

ROI, the table reports the total number of vertices, the ones providing moderate evidence

in favor of the Null hypothesis (i.e., with BF10<1/3) and those moderately supporting the

alternative (i.e., with BF10>3).

g=1.01 [95% CI: 0.68, 1.33]; second: t (20)=186.03, p=0.029, g=0.93 [95%

CI: 0.55, 1.29]), left lateral occipital (t (20)=580.00, p=0.0008, g=0.77 [95%

CI: 0.57, 0.97]) and left lingual (t (20)=436.91, p=0.004, g=1.23 [95% CI: 0.98,

1.48]).

3.4 Discussion

The present study investigated the neural underpinnings of skilled read-

ing, by asking which linguistic features might be rapidly and automatically

discriminated by the reading brain. With this aim, we paired MEG record-
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Figure 3.3: Source level results. Significant discrimination responses (p<0.05) for the five

linguistic properties under study (from the top: (A) Alphabetic, (B) Readability, (C) Fa-

miliarity, (D) Meaningfulness, (E) Lexicality), displayed (from left to right) with left, right,

ventral and posterior views.
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ings with Fast Periodic Visual Stimulation sequences (FPVS, Rossion, 2014)

constructed specifically to isolate some fundamental features of written text,

in a carefully controlled hierarchy of nested contrasts. In this design, observ-

ing a neural entertainment at the frequency with which classes of items were

presented implicitly indexes a selective discrimination for the feature that dif-

ferentiates the two groups of items. Interleaving words (e.g., idea) and suffixes

(e.g., eria) revealed a strong Lexicality response, already detectable at sensor

level. Similarly, the alternation of pseudo-characters and letter strings (e.g.,

sfcl) revealed a strong sensitivity to the alphabetic nature of the stimuli, also

observable at both sensor and source levels. More subtle contrasts, addressing

the role of Readability (with strings of consonants, e.g., sfcl vs. pseudoend-

ings, e.g., ampi) and Familiarity of letter strings (with high frequency endings,

e.g., enso vs. pseudoendings, e.g., ampi), were captured only at source level.

Notably, our results did not reveal a Meaningfulness response, as assessed by

contrasting suffixes (e.g., eria) with equally frequent, but meaningless word

endings (i.e., enso).

The reading system is automatically responsive to rapidly presented lexical

items, suggesting a marked neural sensitivity to whole words. Such response

is characterized by a predominantly left-lateralized profile, arising in areas

typically associated with word identification and processing, such as left lat-

eral occipital, lingual and inferotemporal cortices (J. Binder & Price, 2001;

Borowsky et al., 2007), as well as the bilateral fusiform gyrus (Cohen et al.,

2002; Dehaene et al., 2002; Fiez & Petersen, 1998; Puce et al., 1996). This

selective neural discrimination for word forms speaks to the cognitive debate

around lexicality, and lends some support to the existence of an orthographic

lexicon, consistently with more recent neural models of reading (Taylor et al.,

2013). Nevertheless, the spatial resolution of non-invasive human neuroimag-
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ing in general, and of MEG in particular, requires a word of caution in in-

terpreting this result. Specifically, our findings cannot pinpoint whether this

Lexical response originates from a set of individual neurons specifically selec-

tive to words per se, or rather from a coordinated, large ensemble of neurons

with a less granular preference. Therefore, the present study cannot arbitrate

between localist and distributed accounts of lexical neural codes at a mecha-

nistic level (Bowers, 2009, 2017; Quian Quiroga & Kreiman, 2010; Roy, 2012;

Vankov & Bowers, 2017).

Neuroimaging evidence has been fairly elusive as to whether the reading

brain responds specifically to existing words (as opposed to well formed strings

of letters, e.g., J. R. Binder et al., 2006; Dehaene et al., 2005; Pammer et al.,

2004; Price et al., 1996; Wydell et al., 2003). The adoption of neural adap-

tation techniques has provided a decisive methodological boost in this direc-

tion, by allowing to tap into selective neuronal tunings to stimulus features

(Grill-Spector et al., 2006; Norcia et al., 2015). Importantly however, while

previous studies succeeded in capturing selective adaptation to lexical forms

(e.g., Glezer et al., 2009; Lochy et al., 2015), they generally did so by pit-

ting words against pseudowords, thus adopting two classes of items that differ

on more than one relevant dimension. Written words are indeed meaningful

linguistic objects, with a known phonological and orthographic form, while

well-structured pseudowords are, albeit pronounceable (Taylor et al., 2013),

unknown strings of letters. Contrariwise, the Lexical response obtained in the

present study stems from an unprecedentedly tight comparison, realized by

contrasting fully-fledged, real words with suffixes. Morphemes like -ness or

-er are attested in the language with high frequency, and due to their deriva-

tional properties, they alter the meaning of stems they are combined with in

a highly predictable and consistent manner (e.g., kindness, highness, singer,
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dancer), thus have a specific meaning (Bloomfield, 1933; Bybee, 1988). Similar

to words, suffixes forge strong and consistent associations between their ortho-

graphic form and a semantic concept (e.g., the suffix -er conveys agency, while

-ness denotes quality, condition or state), and they only differ from words in

their sublexical, rather than lexical, status, in that they cannot appear in iso-

lation, as independent linguistic units. Therefore, the adoption of morphemes

allows to uniquely overcome the rather coarse characterization of the lexical

discrimination obtained with pseudowords, and supports the presence of a neu-

ral response that is specifically lexical, not related to meaning, frequency of

occurrence or readability alone.

Indubitably, sublexical morphemes such as suffixes play a fundamental

function in visual word identification. Behavioral evidence has extensively

supported the role of morphemes in the recognition of complex words (as re-

viewed in, e.g., Amenta & Crepaldi, 2012; Giraudo & Voga, 2014; Rastle &

Davis, 2008), which was further corroborated by several neuroimaging studies

(e.g., Beyersmann et al., 2021; M. H. Davis et al., 2004; Devlin et al., 2004;

Gold and Rastle, 2007; Lavric et al., 2012; Lehtonen et al., 2011; Lewis et

al., 2011; for a recent review, see Leminen et al., 2019). Nevertheless, the

vast majority of the available studies investigated the role of morphemes by

embedding them in a lexical context (i.e., morphologically complex words,

e.g., kind-ness, or pseudowords, e.g., table-ness), and thus leaves their specific

neural characterization somewhat underspecified. The present study provides

novel insights by showing that, when presented in isolation, suffixes are not

reliably distinguished from frequent word endings. Such finding nicely reckons

with recent experimental evidence obtained in artificial lexicon studies indi-

cating that skilled readers can carve affix-like units on the sole basis of their

frequency of occurrence, and in the absence of phonological or semantic infor-
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mation (e.g., Chetail, 2017; Lelonkiewicz et al., 2020). Collectively, this body

of evidence does not abide by cognitive models of morphological processing

that assume dedicated representations for meaningful, sublexical units (e.g.,

Crepaldi et al., 2010; Taft, 2004; Taft & Nguyen-Hoan, 2010), and is better

aligned with accounts emphasizing perceptual and orthographic mechanisms

for the decomposition of complex words (e.g., Grainger & Beyersmann, 2017).

Particularly, Grainger and Beyersmann (2017) theorize that while the recog-

nition of sublexical units is achieved on the basis of orthographic factors, their

semantic activation is primarily driven by the lexical context in which they

appear (e.g., the meaning of -er would be activated when the suffix is pre-

sented in an adequate context, like sing-er). Coherently, and in spite of their

morphological status, isolated suffixes would be no more perceptually salient

than other highly frequent word endings.

Taken together, our results are likely to reflect the sensitivity of the reading

system to form-based regularities, by tapping into the bottom-up processing

of visuo-linguistic material. Words stood out as independent units even if

compared with another set of meaning-bearing items, consistently with theo-

ries of perceptual learning (Fahle et al., 2002; Gilbert et al., 2001; Goldstone,

1998). The lexical knowledge available to skilled readers is indeed not only

reliant on linguistic information, but also on the visual familiarity that results

from an extensive experience with written text, where frequent and repeated

encounters with printed words would consolidate their representation as com-

plex but unitary shapes, rather than combination of features (Gilbert et al.,

2001; Kennedy et al., 2000; Nazir & Huckauf, 2007). Consequently, individ-

ual words would become privileged units of processing that “pop-out” (Nazir

et al., 2004) to the eyes of a skilled reader, particularly if displayed in their

most prototypical form (as, for instance, in a horizontal orientation, Nazir &
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Huckauf, 2007; Wimmer et al., 2016). Critically, word tokens are generally

surrounded by empty spaces, which provide privileged anchor points to infer

letter information and, subsequently, word identity (Fischer-Baum et al., 2011;

Grainger & Beyersmann, 2017; Jacobs et al., 2013). Such perceptual salience

might not be comparably bestowed upon suffixes, which, although frequent

and meaningful, are bound to appear within complex words and are never en-

countered independently. Coherently, bound morphemes like suffixes were not

significantly discriminated by highly frequent, but meaningless word endings,

as both classes of items are comparably familiar in their form and are equally

supported by the perceptual experience of skilled readers.

The selective neural responses for Alphabetic stimuli, as well as for Read-

ability and Familiarity, also sit well with a bottom-up account of the present

results. Strings of consonants embedded in pseudo-characters elicited a strong

and diffused response, involving all the predefined regions of interest consid-

ered. Such a pervasive Alphabetic response suggests that, despite pseudo-

characters being carefully matched onto letters’ low-level visual features (C.

Vidal & Chetail, 2017), letter-based configurations were markedly more fa-

miliar to skilled readers (Lochy et al., 2018; Lochy et al., 2015; Lochy et al.,

2016; Thesen et al., 2012; van de Walle de Ghelcke et al., 2020; Vinckier et

al., 2007; Wang et al., 2021). When contrasted with strings of consonants,

readable but non-attested sequences of letters (e.g., ampi) elicited a right-

lateralized response encompassing fusiform, lateral occipital and both middle

and inferior temporal ROIs, areas reportedly involved in vowel processing, as

opposed to consonants (Carreiras & Price, 2008; Carreiras et al., 2009) and

non-speech (Obleser et al., 2006; Uppenkamp et al., 2006). Critically, ortho-

phonotactically legal items are not only readable, but also more word-like

(as opposed to consonant strings), a feature considered to be at the core of
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the neural underpinnings of reading (e.g., J. R. Binder et al., 2006; Vinck-

ier et al., 2007), and consistent with a form-based regularity account of the

present findings. In a transparent orthography like Italian, orthographic units

are unambiguously associated with a phonological pattern, thus hampering

a clear-cut distinction between the effects of familiarity and readability per

se. Nevertheless, recent neuroimaging evidence obtained in Hebrew (Weiss et

al., 2015) seems to support a privileged role for familiarity over orthographic

transparency. By exposing skilled readers to words with vowel sounds ren-

dered either through vowels alone, or with the adoption of diacritic markers,

Weiss et al. (2015) observed that the more familiar format (i.e., without dia-

critics) provided a major processing advantage. This advantage overrode the

increased transparency ensured by the presence of diacritics, hence pinpointing

visual familiarity as a key feature in the neural processing of readable stimuli

(see, e.g., Chetail & Boursain, 2019; Kinoshita et al., 2021; Marcet et al., 2020;

Perea et al., 2020; Perea et al., 2022, for recent behavioral investigations on

the topic).

Finally, the contrast between readable but non-existing word endings (e.g.,

ampi) and highly frequent word endings (e.g., enso) resulted in a selective

neural entrainment sourced in an anterior portion of the right inferotempo-

ral ROI. Behavioral research on reading pullulates with effects of written fre-

quency, which have been often considered proxies of learned representations

(Baayen et al., 2007; Burani and Thornton, 2003; Colé et al., 1989; Monsell

et al., 1989; Preston, 1935; Taft, 1979, 2004; see, e.g., Brysbaert et al., 2018;

Ellis, 2002 for reviews). Neuroimaging studies indicate that frequency effects

can be traced throughout several visual word identification processes (Barber

& Kutas, 2007), and that frequency-modulated activations might be housed in

occipitotemporal regions (e.g., S. J. Frost et al., 2005; Keller et al., 2001; Kuo
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et al., 2003; Montani et al., 2019; Vinckier et al., 2007; but see, e.g., Fiebach

et al., 2002; Fiez et al., 1999; Ischebeck et al., 2004 for diverging patterns of

results). Notably, written frequency effects are reminiscent of a more general

recognition mechanism of extraction and storage of recurring patterns, includ-

ing words, faces and other salient visual objects (Kronbichler et al., 2004; Y.

Vidal et al., 2021). In keeping with this conjecture, the selective neural en-

trainment elicited by high-frequency clusters in the present study stems from

a portion of the inferior temporal cortex, which constitutes a cornerstone of

visual object encoding (DiCarlo et al., 2012). Particularly, this area has been

attested to support the processing of orthographic items in primates (Rajal-

ingham et al., 2020), and qualifies as a powerful visual processing resource

to be recycled (Dehaene & Cohen, 2007) by the more phylogenetically recent

reading system.

The bottom-up nature of the processes underpinning the present results is

also supported by a series of methodological considerations. The FPVS tech-

nique allows to detect automatic and implicit neural discrimination responses

within few minutes of stimulation, by capitalizing on a rapid presentation rate

and lack of explicit engagement with the material (Liu-Shuang et al., 2014;

Norcia et al., 2015; Rossion, 2014). Critically, stimuli are presented via sinu-

soidal contrast modulation (from white background to full contrast and back)

with a frequency of 6 Hz, thus each item remains on screen for about 167

ms, reaching full contrast at 83 seconds, and with an actual visibility duration

of around 140 ms (considering that stimuli can be recognized at low contrast

levels, such as 20%, Lochy et al., 2015; Lochy et al., 2016). Such a brief pre-

sentation is complemented with the perceptual masking induced by sequential

stimulus presentation, which unfolds without any inter-stimulus interval (in

line with RSVP paradigms; see Retter et al., 2018, for a related discussion).
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As a result, the present FPVS design is likely to tap into rather early stages

of processing, which are probably informed more by bottom-up, visual and

orthographic information rather than by top-down, higher level information

(such as semantics).

Remarkably, the demanding nature of the stimulation stream is also con-

sistent with the spatial profile of the more subtle responses obtained along

the hierarchy of contrasts. Indeed, while linguistic processes are generally

associated with activity in the left hemisphere (Dehaene et al., 2001; Pinel

& Dehaene, 2010), the right hemisphere is reportedly more resilient to fast

and degraded visual presentations of alphanumeric stimuli (e.g., Asanowicz

et al., 2017; Hellige & Michimata, 1989; Jonsson & Hellige, 1986; Michimata

& Hellige, 1987; Sergent & Hellige, 1986; Verleger et al., 2013; Verleger et al.,

2011). Coherently, while a selective Lexical response resulted in a prototyp-

ical left-lateralized profile, more subtle, sublexical units could enjoy weaker

support from pre-existent linguistic representations, which allowed the right-

lateralized, perceptual response to be more easily captured. Future research

is needed to address the impact of different experimental parameters, by sys-

tematically tuning the stimulation frequency to the feature of interest, and

assessing whether different presentation rates could further qualify the neural

entrainment hereby observed (for a related discussion, see Alonso-Prieto et al.,

2013; Rossion, 2014).

In conclusion, the present study capitalized on FPVS and MEG record-

ings to shed some new light on which linguistic features underpin reading.

Implicit discrimination responses emerged in a tightly controlled hierarchy of

contrasts, whose extremes revealed a strong sensitivity to letters and lexical

items. Sensitivity to the intermediate layers – the mere association with mean-

ing, familiarity and readability – was generally weaker, if present at all. Taken
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together, these results provide novel insight into the brain’s sensitivity to form-

based regularities, and highlight the relevance of perceptual familiarity at the

early stages of visual word identification.



Chapter 4

Study III:

Frequency-based Neural Discrimination

in Fast Periodic Visual Stimulation∗

The human brain can learn implicitly and effortlessly from the statistical

properties of an input stream. Known as implicit statistical learning, this re-

markable, domain-general ability helps us make sense of the highly complex

and ever-flowing sensory environment to which we are exposed, by enabling

us to discover fundamental units of information (for recent reviews, see Arm-

strong et al., 2017; Aslin, 2017; Christiansen, 2019; R. Frost et al., 2019; E. L.

Newport, 2016). Arguably, the most familiar experimental demonstrations of

such a phenomenon come from language research, attesting our ability to de-

tect conditional relations between elements in the input. For example, guided

only by differences in the transitional probabilities (TPs) between syllables,

we can extract out of a continuous stream of sounds multi-syllabic units that

correspond to words, and differentiate them from nonwords (Saffran et al.,

1996; for analogous findings in the visual modality with shapes, see Kirkham

et al., 2002; Siegelman and Frost, 2015; Turk-Browne et al., 2005). In addition
∗From De Rosa, M., Ktori, M., Vidal, Y., Bottini, R., & Crepaldi, D. (2022). Frequency-Based Neural

Discrimination in Fast Periodic Visual Stimulation. Manuscript accepted for publication in Cortex.
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to these, however, there are a host of statistical relations that can influence

learning (Thiessen et al., 2013). By relying on the frequency distributions of

phonemes in the input, for example, we are able to discover categorical proto-

types (and boundaries), and distinguish between different phonemic categories

(Maye et al., 2002; for analogous findings in the visual modality with low-

level stimuli, see Rosenthal et al., 2001). In the current study, we examine

whether distributional information can elicit implicit statistical learning in the

context of an increasingly popular methodology that combines electrophysio-

logical recording with Fast Periodic Visual Stimulation (FPVS).

Capitalizing on the principle of neural entrainment (for a review, see Norcia

et al., 2015), the FPVS approach uses frequency tagging to effectively capture

visual discrimination processes at the level of the brain (Rossion, 2014). In

particular, this involves presenting sequences of base stimuli (i.e., a set of vi-

sual items) at a fast periodic frequency rate F interleaved with oddball stimuli

(i.e., a set of items that differ from base stimuli on a dimension of interest), in-

serted at fixed intervals (every n item) and thus appearing at a slower periodic

rate (F/n). A few minutes of stimulation are sufficient to evoke robust neural

responses (i.e., steady state visual evoked potentials, SSVEP; Regan, 1966)

that are clearly and objectively identifiable at the predefined base and odd-

ball stimulation frequencies and their harmonics. Critically, the presence of a

neural response at the oddball frequency reflects the brain’s ability to discrim-

inate between oddballs and base stimuli and is selective to the dimension that

differentiates them. Finally, this neural discrimination response is obtained

implicitly in the absence of task-induced measures, and it is thus devoid of

potential contamination from other cognitive and decisional processes.

This highly sensitive and behavior-free approach has become particularly

popular for probing category-selective processing at the level of perception
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(see also Coll et al., 2019; Stothart et al., 2017; Van der Donck et al., 2020,

for higher-level categorization in emotion and semantic processing) and has

provided important insights into the neural representation of stimuli such as

faces, objects, and words, in studies with healthy adults (Jacques et al., 2016;

Liu-Shuang et al., 2014; Lochy et al., 2015; Retter & Rossion, 2016; Rossion

et al., 2015; Stacchi et al., 2019) and children (Lochy et al., 2016), as well as

clinical populations (Liu-Shuang et al., 2016; Lochy et al., 2018; Stothart &

Smith, 2020).

Beyond pre-established categorical differences, however, an important and

outstanding question is whether this approach can also capture the emergence

of a novel distinction. The FPVS-oddball design provides a context that can

easily foster implicit statistical learning. Extensively used to explore the neural

mechanisms that underlie the detection of novelty in our perceptual environ-

ment (i.e., mismatch negativity; for reviews see Kimura et al., 2011; Näätänen

et al., 2007; Stefanics et al., 2014), the oddball paradigm features oddballs as

rare deviants in a stream of frequent, standard events. A typical 60-second

FPVS sequence, for example, with a base presentation rate of 6 Hz and an

oddball embedded periodically every 5th item (i.e., 6/5 = 1.2 Hz), comprises

a total of 360 stimuli, out of which 288 are base stimuli and only 72 appear

as oddballs. Differences in the frequency with which oddball and base stim-

uli occur in a given input stream are therefore inherent in the nature of the

experimental paradigm. Importantly, this relative frequency-of-occurrence dif-

ference constitutes a source of distributional information on the basis of which

oddballs (i.e., a group of infrequent stimuli) could be differentiated from base

stimuli (i.e., a group of frequent stimuli), independently (or in the absence) of

any pre-existing difference between them. But is the brain capable of such fast

and implicit statistical learning simply based on the frequency-of-occurrence
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of perceptual events? And if so, is this frequency difference sufficient to elicit

a neural discrimination response? To address these questions, we adopted a

simple modification of the classic FPVS-oddball paradigm by exposing par-

ticipants to homogeneous streams of stimuli, insofar all the items were drawn

from the same category (e.g., word oddballs embedded in a sequence of words).

Crucially, base and oddball types could be differentiated only by their respec-

tive frequency-of-occurrence within a presentation stream: oddball tokens ap-

peared four times less often than base tokens (see Figure 1). Item assignment

to oddball and base stimuli was performed randomly across participants who

were engaged in an orthogonal task. Under these conditions and in the ab-

sence of other pre-existing or systematic distinctions between base and oddball

stimuli, neural entrainment at the oddball stimulation frequency would index a

selective discrimination response between two newly emerged groups of stimuli,

generated purely on the basis of the statistical structure of the input stream.

In order to determine whether or not the emergence of such differential

signal stems from a primary learning mechanism that applies to any percep-

tual event, participants were exposed to four types of linguistic stimuli: (1)

familiar words (e.g., pasta); (2) pronounceable letter strings that are not at-

tested as words in the lexicon (Pseudowords, e.g., stapa); (3) unpronounce-

able consonant strings (Nonwords, e.g., qnlvd), and (4) strings of letter-like,

non–alphabetic characters (Pseudofonts; see Figure 4.1 for examples). We

hypothesized that if sensitivity to local token frequency in the context of

FPVS-oddball designs is influenced by stimulus familiarity, then discrimina-

tion responses would be modulated as stimuli become increasingly similar to

well-established neural representations (i.e., more word-like).
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4.2 Materials and Methods

Participants

Thirty paid volunteers (7 males; age: M=24.8, SD=4.02) took part in the

experiment after giving written informed consent. All participants were right-

handed and native speakers of Italian, reporting having normal or corrected-

to-normal vision and no history of linguistic or neurological impairment. Par-

ticipants remained unaware of the goals of the experiment until the end of the

session. The present study was approved by the SISSA Ethics Committee.

Materials

Each of the four categories of stimuli (Words, Pseudowords, Nonwords,

Pseudofonts) consisted of 16 five-elements long items. Words (e.g., pasta) were

selected to be frequent singular nouns (log10 frequency: M=3.29, SD=0.12),

made up of frequently occurring letter combinations (mean log10 bigram fre-

quency: M=6.08, SD=0.47). Pseudowords (e.g., stapa) were constructed by

rearranging the letters of the word stimuli to form novel pronounceable letter

strings, also with frequent letter combinations (mean log10 bigram frequency:

M=6.31, SD=0.59). Nonwords (e.g., qnlvd) were constructed by sampling

random consonants without replacement, resulting in unpronounceable letter

strings with rare or non–existent letter combinations (mean log10 bigram fre-

quency: M=4.07; SD=1.63). Finally, pseudofont strings were constructed

by combining characters from the BACS-2 serif artificial script (C. Vidal &

Chetail, 2017), which were designed to closely match the visual characteris-

tics of Latin characters (e.g., number of strokes, junctions, terminations, and

serifs).
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Procedure

A schematic illustration of the experimental paradigm is shown in Figure

4.1. Stimuli were presented in sequences of 360 stimuli, 72 of which were

oddballs and 288 base stimuli. Base and oddball stimuli in a given sequence

belonged to the same category (e.g., word oddballs embedded in a stream

of word base stimuli) and differed only in terms of how often their respective

tokens (N=8) appeared in the stream, with oddball tokens presented four times

less frequently (i.e., 9 repetitions of each oddball token) than base tokens (i.e.,

36 repetitions of each base token). The selection of base and oddball tokens

involved randomly drawing two sets of 8 unique items from each stimulus

category. In order to account for any systematic differences between oddball

and base tokens, this procedure was performed separately for each individual

participant. Once drawn, the selection of oddball and base tokens was held

constant across all experimental trials for the same participant.

An experimental trial comprised a stimulation sequence, presented for 60

seconds. In each trial, stimuli were presented by sinusoidal contrast modu-

lation at a frequency of 6 Hz, with each stimulation cycle (i.e., from a 94%

light grey background to full contrast and back) reaching full contrast after

83 ms and lasting a total of 166.66 ms. An oddball stimulus was embed-

ded every five base stimuli (i.e., oddball frequency of 1.2 Hz, thus every 833

ms). The presentation order of the stimuli was pseudo-randomized so as to

eliminate consecutive item repetitions: base repetitions were separated by a

minimum of 4 base stimuli, whereas oddball repetitions were separated by at

least 2 oddball presentations (i.e., minimum distance 14 items). There were 5

experimental trials per condition such that the total stimulation time was 20

minutes: 60 s (trial duration) x 4 conditions (Words, Pseudowords, Nonwords,

Pseudofonts) x 5 trials. Experimental trials were presented in random order



73

Figure 4.1: Experimental paradigm. In each sequence, stimuli were presented by sinusoidal

contrast modulation at 6 Hz during 60 s. Each stimulus reached full contrast 83 ms after its

onset and faded out completely after 166 ms (the duration of one cycle). Oddball stimuli

appeared every fifth item at a frequency rate of 1.2 Hz (6/5 Hz). Differently from the

classical FPVS-oddball design in which oddballs are embedded in a sequence of base stimuli

that belong to a different category, in the present study oddballs and base stimuli were

randomly drawn from the same category (X embedded in X; oddball is highlighted for

illustration) and differed only in terms of their token frequency. A stimulation sequence

comprised 360 stimuli with each base token repeated 36 times and each oddball token 9

times. Presentation order was pseudo-randomized to avoid immediate repetition. Examples

are given for the four different conditions used in the experiment.
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and were separated by a 30-second break. Each break ended with a 15-second

countdown that indicated the beginning of the next trial.

Participants were run individually in a sound-attenuated and dimly illu-

minated room, seated at approximately 80 cm from a 27” BenQ XL2720Z

monitor. Screen resolution was 1920 X 1080 pixels and refresh rate was set

at 60 Hz. Stimulus display was administered by PsychToolbox-3 (Brainard,

1997, http://psychtool box.org)) on MATLAB R2015b (The MathWorks) in

a Windows environment. All stimuli were presented at the center of the

screen. All alphabetic stimuli (i.e., Words, Pseudowords and Nonwords) were

presented in lowercase characters, using the fixed-width Courier New font,

whereas Pseudofonts were presented in BACS-2 serif font. Both fonts were

emboldened by 70% from their original character weight to improve visibil-

ity. Each stimulus subtended horizontal and vertical visual angles of 2.87

and 0.72 degrees, respectively. Participants were instructed to fixate a small

cross (12 pixels) presented continuously at the center of the screen, and to

press a button as soon as they detected a change in its color (from blue to

red and vice versa), which occurred randomly 6 times within each trial, in-

dependently of the oddball-base manipulation. The sole purpose of the color-

change detection task was to ensure that the participant maintained a con-

stant level of attention throughout the stimulation. Overall, participants’ per-

formance in the color-change detection task was highly accurate (accuracy:

M=97.2%, SD=0.08; reaction times: M=448 ms, SD=73) and comparable

across the different experimental conditions (Words=98.2%, SD=0.05, reac-

tion time: M=447 ms, SD=73; Pseudowords=95.5%, SD=0.11, reaction time:

M=446 ms, SD=71; Nonwords=98.3%, SD=0.06, reaction time: M=447 ms,

SD=67; Pseudofonts=96.8%, SD=0.09, reaction time: M=453 ms, SD=80).
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EEG acquisition and Preprocessing

Electroencephalographic (EEG) activity was acquired at a sampling rate

of 256 Hz using an Active Two Biosemi system (Biosemi, Amsterdam, Nether-

lands) with 128 active electrodes mounted on an elastic cap and positioned ac-

cording to the radial-ABC system locations. Two additional electrodes served

as reference (Common Mode Sense active electrode, CMS) and ground (Driven

Right Leg passive electrode, DRL). The magnitude of the offset of all elec-

trodes, referenced to the common mode sense, was held below 20 mV.

EEG data preprocessing was performed in MATLAB (MathWorks, Inc)

using a combination of custom script and the EEGLAB toolbox (Delorme &

Makeig, 2004). Data from each subject were band-pass filtered (0.1–100 Hz),

and artifact-ridden channels were removed by visual inspection of their time

series and spectra. Eye blink, muscular and electrode-pop artifacts were re-

moved using Independent Component Analysis. After cleaning, removed chan-

nels were replaced by using spherical interpolation, and data were segmented

into 60-second epochs and re-referenced to the average of all electrodes. This

procedure resulted in one dataset (5 trials of 60 seconds) per participant per

condition. Data from one participant were excluded from the analyses due to

excessive movement artifacts in the electrophysiological data.

Frequency Analysis

Experimental trials were first averaged in the time domain, separately for

each condition and each individual participant. This procedure served to re-

duce EEG activity that was not phase-locked to the stimulation. Data were

then submitted to a Fast Fourier Transform and normalized amplitude spec-

tra were extracted for each channel (absolute value of the FFT, divided by
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the number of data points). Given that the length of the epochs was 60 sec-

onds, the frequency resolution was very high (1/60=0.0167 Hz). To account

for noise variations across the frequency spectrum, a local baseline-correction

was applied, which involved subtracting from each frequency bin the mean of

the surrounding 20 bins (10 from each side, excluding immediately adjacent

bins and bins with minimum and maximum values; as in e.g., Dzhelyova and

Rossion, 2014). Base and oddball responses were defined as the sum of the

baseline-corrected amplitudes at the base (6 Hz) and oddball (1.2 Hz) stimu-

lation frequencies and their corresponding first three harmonics (base: 12, 18,

24 Hz; oddball: 2.4, 3.6, 4.8 Hz).

ROI Analysis

The EEG response at the base stimulation frequency was analyzed in an

occipito-parietal area comprising twenty electrodes surrounding and includ-

ing Oz (A23 in Biosemi’s ABC labeling), the site typically showing maximal

SSVEP responses (Norcia et al., 2015). The EEG response at the oddball stim-

ulation frequency were examined in two predefined regions-of-interest (ROI).

Following previous work that used the same type of visual stimuli (i.e., pseudo-

fonts and letter strings, e.g., Lochy et al., 2015), the primary regions of interest

for oddball responses comprised an area of five occipito-temporal sites includ-

ing and around the electrode PO7 on the left, and PO8 on the right hemisphere

(A10 and B7 respectively in Biosemi’s ABC labeling).

Data analysis was conducted at two levels. First, in order to test the sig-

nificance of the oddball response in each condition, the response of interest

was averaged across the channels of each ROI for each participant, and then

subjected to a one sample t-test. Second, differences between conditions were

assessed through ANOVAs with Condition (Words, Pseudowords, Nonwords,
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Pseudofonts) as a within-groups factor. In the case of the response at the

oddball frequency, the within-groups factor of Hemisphere (left, right) was

also included. The absence of statistically significant effects was further cor-

roborated via a JZS Bayes Factor (Rouder et al., 2009), which measures the

relative evidence for the null vs. the alternative hypothesis, thus allowing to

provide support for the null itself (Leppink et al., 2017). These analyses were

performed using a Cauchy prior with the default scale value of r=0.5. We

report the relative evidence in favor of the null (BF01), where a value of 1

implies equal relative evidence and values above 3 indicate evidence in favor

of the null.

Cluster Permutation Test

To assess the presence of an effect in electrodes besides the ones included

in the ROIs, the presence of an oddball response was additionally tested using

a non-parametric clustering method (Bullmore et al., 1999) as implemented

in the FieldTrip toolbox for EEG/MEG analyses (Oostenveld et al., 2011).

This method provides an intuitive and straightforward solution to the multi-

ple comparisons problem. It relies on the fact that a true effect should not

be isolated, but should instead spread over adjacent electrodes, and is imple-

mented through the following steps: (i) a statistic of interest (a t-value and

the corresponding p-value, in this case) is calculated for each channel; (ii) spa-

tially neighboring channels that yield a significant result (p<0.05) are grouped

together into candidate clusters, and a cluster-level t-value is computed by

summing their individual t-values; (iii) next, a random subset of channels have

their values set to zero, and the procedure is repeated on this surrogate data.

This is repeated a large number of times (5000, in this case) and each time the

largest cluster-level t-value is retained, constructing in this way an empirical
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distribution of possible t-values under the null; (iv) finally, the p-values of the

observed candidate clusters is calculated as the percentage of t-values from the

null distribution that are more extreme than their cluster-level t-value (for a

more detailed explanation, see Maris & Oostenveld, 2007).

In order to test for possible differences in the topographies of the effects

across conditions, we first applied the cluster permutation method described

above. Since no significant clusters emerged in any of the comparisons, we

turned to the JZS Bayes Factor (using a default Cauchy prior with scale value

of r=0.707) to assess the evidence in favor of no difference between conditions.

We calculated the Bayes Factor independently for each electrode and reported

the number of electrodes showing evidence in favor of the null and in favor of

the alternative hypothesis.

4.3 Results

Base Stimulation Frequency

A response at the base stimulation frequency reflects the successful syn-

chronization of the visual system to the periodic stimulation and serves to

demonstrate a constant deployment of attentional resources. In all experimen-

tal conditions the base stimulation frequency (6 Hz) and its higher harmonics

(12, 18 & 24 Hz) resulted in a clear response in the predefined region of inter-

est around Oz (Words: t (28)=9.556, p<0.001, g=1.774 [95% CI: 1.179 - 2.356];

Pseudowords: t (28)=9.707, p<0.001, g=1.802 [95% CI: 1.202 - 2.390]; Non-

words: t (28)=13.173, p<0.001, g=2.446 [95% CI: 1.706 - 3.174 ]; Pseudofonts:

t (28)=14.522, p<0.001, g=2.696 [95% CI: 2.696 - 3.482]). The scalp topogra-

phy of the response was analogous to the one previously observed in studies

that presented visual stimuli at the same or similar frequency rates (e.g., Liu-
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Shuang et al., 2014). A one-way ANOVA revealed an effect of Condition that

was marginally significant (F (2.12, 59.32)=3.13, p=0.048, Greenhouse-Geisser

corrected). A subsequent JZS Bayes Factor analysis, however, revealed mod-

erate evidence against the presence of this effect (BF01=6.289), and as such it

was not submitted to further analyses.

Oddball Stimulation Frequency

ROI Analysis

Results revealed a significant oddball response in both the predefined left

and right occipito-temporal regions of interest (see Figure 4.2)†.

Tokens with a low frequency of occurrence successfully elicited an entrain-

ment at the oddball stimulation frequency when the stream of stimulation con-

sisted of Words embedded in Words (Left ROI: t (28)=4.16, p=0.0003, g=0.77

[95% CI: 0.35 - 1.18]; Right ROI: t (28)=3.87, p=0.0006, g=0.72 [95% CI:

0.30 - 1.12]), Pseudowords in Pseudowords (Left ROI: t (28)=3.46, p=0.0017,

g=0.64 [95% CI: 0.28 - 1.04]; Right ROI: t (28)=3.20, p=0.0033, g=0.59 [95%

CI: 0.19 - 0.99]), Nonwords in Nonwords (Left ROI: t (28)=2.55, p=0.0164,

†As a sanity check, we examined whether, in addition to the oddball stimulation fre-

quency at 1.2 Hz (every 5thitem, 6/5 Hz), our data showed evidence for neural entrainment

also at 1 Hz (every 6th item, 6/6 Hz), 1.5 Hz (every 4th item, 6/4 Hz), 2 Hz (every 3rd

item, 6/3 Hz), and 3Hz (every 2nd item, 6/2 Hz). Results showed only scattered evidence

for entertainment at these frequencies. Of the 32 tests that we ran (4 frequencies x 2 ROI x

4 types of stimuli), only 7 were significant: at 1 Hz, Words, right ROI: t (28)=1.89, p=0.035;

at 1.5 Hz, Pseudofonts, right ROI: t (28)=2.12, p=0.021; and at 3 Hz (Words, right ROI:

t (28)=5.68, p < .001, left ROI: t (28)=3.25, p=0.001; Pseudowords, right ROI: t (28)=1.83,

p=0.039; Nonwords, right ROI: t (28)=2.33, p=0.014, left ROI: t (28)=1.70, p=0.05). This

is in stark contrast with the very systematic emergence of a response at the frequency of

oddball presentation.
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Figure 4.2: Grand-averaged token frequency response estimated as the summed baseline

corrected amplitudes for the oddball frequency (1.2 Hz) and its harmonics (2.4, 3.6, 4.8

Hz) for the different conditions (Words in red, Pseudowords in yellow, Nonwords in blue,

Pseudofonts in green) in the left and right occipito-temporal regions of interest, marked in

the corresponding scalp topographies. Boxes depict the 95% t-interval around the mean and

dots represent single participants. The dashed line illustrates the level of noise.
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g=0.47 [95% CI: 0.08 - 0.85]; Right ROI: t (28)=3.79, p=0.0007, g=0.70 [95% CI:

0.29 - 1.10]), and Pseudofonts in Pseudofonts (Left ROI: t (28)=2.66, p=0.0127,

g=0.49 [95% CI: 0.10 - 0.88]; Right ROI: t (28)=2.79, p=0.0093, g=0.59 [95%

CI: 0.13 - 0.90]). A two-way ANOVA failed to indicate any significant ef-

fect of either Hemisphere (F (1, 28)=0.440, p=0.5112, η2=0.001) or Condition

(F (1, 28)=0.440, p=0.2993, η2=0.001); additionally, the interaction between

the two terms was not significant (F (3, 84)=2.343, p=0.7885, η2=0.015). A

JZS Bayes Factor analysis corroborated the absence of statistically significant

effects for Hemisphere (BF01=6.134), Condition (BF01=5.617) and their inter-

action (BF01=250).

Cluster Permutation Analysis

As illustrated in Figure 4.3, all four conditions revealed a strong and re-

liable response at the oddball stimulation frequency (1.2 Hz) and its higher

harmonics (2.4, 3.6 & 4.8 Hz) reflecting sensitivity to the token frequency ma-

nipulation. In the Words condition, this emerged in four electrode clusters

located (i) in a posterior area that comprised occipito-temporo-parietal sites

(t (28)=174.27, p=0.0002, d=0.58 [95% CI: 0.18 - 0.97]); (ii) in central me-

dial sites (t (28)=77.60, p=0.007, d=0.48 [95% CI: 0.09 - 0.86]); (iii) over mid-

frontal electrodes (t (28)=29.43, p=0.408, d=0.55 [95% CI: 0.15 - 0.93]); and

finally, (iv) in a small lateralized left-central region (t (28)=26.14, p=0.0488,

d=0.49 [95% CI: 0.10 - 0.87]). In the Pseudowords condition, the discrim-

ination response emerged in one posterior cluster localized across occipito-

temporo-parietal sites (t (28)=119.40, p=0.0006, d=0.50 [95% CI: 0.11 - 0.89]).

In the Nonwords condition, a significant response was elicited in two occipito-

temporo-parietal clusters, one on the right (t (28)=58.42, p=0.0128, d=0.60

[95% CI: 0.20 - 1.00]), and one on the left hemisphere (t (28)=37.95, p=0.0314,
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d=0.50 [95% CI: 0.11 - 0.89]). Finally, Pseudofonts yielded a similar scalp

topography as the Nonwords condition, again with one significant occipito-

temporo-parietal cluster on the right (t (28)=87.30, p=0.0008, d=0.51 [95% CI:

0.11 - 0.89]) and one on the left hemisphere (t (28)=26.07, p=0.0434, d=0.48

[95% CI: 0.09 - 0.87]). There were no candidate clusters to indicate signifi-

cant differences in the distribution of the oddball response between conditions.

This lack of statistical evidence was further corroborated by JZS Bayes Fac-

tor analyses, which provided evidence against cross-condition differences in the

scalp topography of the oddball response (Electrodes showing evidence in favor

of the null (BF01>3): Words vs. Pseudowords=66, Words vs. Nonwords=73,

Words vs. Pseudofonts=61; Pseudowords vs. Nonwords=68, Pseudowords vs.

Pseudofonts=74; Nonwords vs. Pseudofonts=84. Electrodes showing evidence

in favor of the alternative (BF10>3): Words vs. Pseudowords=0, Words vs.

Nonwords=0, Words vs. Pseudofonts=0; Pseudowords vs. Nonwords=1, Pseu-

dowords vs. Pseudofonts=1; Nonwords vs. Pseudofonts=1).

4.4 Discussion

The present study examined whether neural discrimination can be gener-

ated implicitly by the statistical structure of a rapidly changing visual stream.

In an FPVS-oddball design, participants were exposed to rapid streams of vi-

sual stimuli (6 Hz), embedded with oddballs that appeared periodically every

fifth item (1.2 Hz). Crucially, oddballs and base stimuli belonged to the same

category and differed only in terms of the frequency with which their indi-

vidual tokens occurred in the stream (i.e., oddball tokens appeared less often

than base tokens). Results revealed a significant neural signal at the oddball

stimulation rate and its harmonics, reflecting a selective response to oddballs
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Figure 4.3: Grand-averaged token frequency response for the different conditions resulting

from the cluster permutation test. In the scalp topographies different symbols depict the

significant clusters. The plots represent the corresponding data with the oddball response

centered at 0. Boxes depict the 95% t-interval around the mean and the dotted line il-

lustrates the level of noise. For illustration purposes, the analogous response in the 10

neighboring frequency bins is displayed. The distribution of individual oddball responses

for each participant in each cluster is also reported.
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relative to base stimuli. Such a response is of similar nature to the one observed

in perceptual categorization studies, indexing the brain’s ability to distinguish

between two different categories of stimuli (e.g., words vs. nonwords, Lochy et

al., 2015; faces vs. objects, Retter and Rossion, 2016). Importantly, however,

in the absence of any preexisting distinction, or other systematic differences

(e.g., order of token presentation), between oddballs and base stimuli, the pres-

ence of an oddball response in the current study signifies the discrimination

between two groups of items formed purely on the basis of their token fre-

quency in the input stream: high versus low frequency tokens. Additionally,

results showed that such a discrimination response was elicited across a wide

span of stimuli, ranging from strings of unfamiliar, non-alphabetic characters

to fully fledged, frequent words, indicating a frequency-based grouping that

occurred independently of stimulus familiarity.

The observed frequency-of-occurrence effect emerged automatically, while

participants engaged in an orthogonal task that did not require explicit pro-

cessing of the experimental stimuli. Indeed, the ability of the human brain

to implicitly learn from the statistical properties of an input stream is widely

attested across a variety of research domains (e.g., Christiansen, 2019; R.

Frost et al., 2019; see also Santolin and Saffran, 2018, for a review across

species). Implicit statistical learning is attributed to a fundamental learn-

ing mechanism that enables us to discover patterns of regularity embedded in

our sensory environment and appears to be involved in several key cognitive

functions including category learning. A well-known illustration of this was

provided by Maye et al. (2002), who showed that the frequency distribution

of category exemplars to which infants are exposed influences the formation

of phonemic category boundaries. Specifically, when infants were exposed to a

bimodal frequency distribution, whereby prototypical phonemes occurred fre-
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quently, and intermediate category phonemes (i.e., falling between phonemic

categories) were infrequent, they were more likely to distinguish between pro-

totypes of two phonemic categories. Conversely, when they were exposed to

a unimodal frequency distribution, whereby intermediate category phonemes

occurred most frequently, infants were less likely to make such distinction (see

also Maye et al., 2008; Rosenthal et al., 2001). Consistent with these find-

ings, the present study provides evidence for participants’ sensitivity to the

distributional properties of the input. Remarkably, however, we show that

even a simple frequency-of-occurrence difference appears to be sufficient to

group separately stimuli that are otherwise indistinguishable. Furthermore,

we demonstrate that this process operates dynamically on novel and familiar

stimuli alike (i.e., overriding any previous representational knowledge). Direct

support for this phenomenon is provided by a recent study conducted in the

context of artificial grammar learning. In a series of experiments, Marino et

al. (2020) showed that infants relied on the frequency which words occurred

in the artificial grammar to implicitly categorize stimuli as function and con-

tent words; as in real languages function words appeared more frequently than

content words. We suggest that these observations denote the deployment of

a fundamental mechanism that is intimately tuned to frequency patterns and

underpins abstract category bootstrapping. Using frequency as a potential cue

to bootstrap categories can be easily conceptualized in the domain of language

learning, whereby frequency-related effects are critical for the emergence of

linguistic categories (for a theoretical discussion, see Ellis, 2002). Learning

idioms, syntactic patterns, but also plausible word forms (i.e., comprising le-

gal ortho-phonotactic patterns, prototypical bigrams or meaningful units) is

an ability that hinges on how frequently a listener, or a reader, experiences

instances of the existing categories in a linguistic system. Importantly, the
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discovery of such linguistic categories unfolds automatically and effortlessly,

despite the lack of explicit instructions and of an overt intention to learn.

An additional, significant aspect of the current findings is that they serve to

demonstrate the potential of the FPVS-oddball paradigm as a novel approach

to the study of statistical learning. Recent critical analyses of the existing

literature highlight the need to methodologically diversify this important field

of research, which has surprisingly been confined to, and limited by, a small

range of experimental paradigms (for critical reviews, see R. Frost et al., 2019;

Siegelman et al., 2018). Compared to these, the FPVS methodology enjoys

several advantages. Specifically, in a typical statistical learning experiment,

learning is tested offline during a separate test-phase, which follows partici-

pants’ passive exposure to an input stream (i.e., the familiarization phase).

Furthermore, newly acquired knowledge is usually measured through partici-

pants’ performance on a behavioral task that requires them to deliberate over

learned material in order to make explicit decisions about stimuli that either

follow or violate the regularities present in the input stream (i.e., close vari-

ations of the tasks used in the seminal work in the field; e.g., Saffran et al.,

1996). However, these measures, in addition to learning, are likely to reflect

cognitive operations that relate to participants’ reflective and decision-making

abilities (see, e.g., Christiansen, 2019). By contrast, with FVPS, learning can

be derived directly from exposure to the stream of information.

A direct measure of learning can also be obtained by behavioral methodolo-

gies that aim to track statistical learning online. This is usually achieved by

measuring response time differences between predictable and unpredictable

stimuli in target recognition or self-paced tasks throughout familiarization

(Franco et al., 2015; Siegelman et al., 2018). Relative to these approaches,

FPVS does not require participants to actively engage or attend to the exper-
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imental stimuli. As a consequence, any neural signal elicited by the statistical

structure of the input does so automatically and remains uncontaminated by

other task-specific cognitive demands. This specific feature of FPVS offers

an easy and straightforward way to investigate the automaticity of statistical

learning in the absence of selective attention to the input (see Turk-Browne

et al., 2005, for a related discussion).

It should be noted, however, that recording the changes elicited by the on-

going exposure to regularities is pivotal for measuring learning online; captur-

ing the learning trajectory offers important insights into the dynamic process

of assimilating the statistical regularities present in the environment (Siegel-

man et al., 2018). In the context of FPVS, this learning process could be

reflected by incremental changes to the oddball response as a function of stim-

ulation time: in the present study one would expect the sensitivity to the

frequency-of-occurrence effect to grow stronger with participants’ exposure to

the statistical structure of the input stream. The present study was not de-

signed to investigate the evolution of the frequency-based effect over time; in

fact, the results of a post-hoc exploration of this issue could not allow any firm

conclusion (the details and results of these analyses are reported in the Ap-

pendix to this Chapter). However, this exploration does show the importance

of a few methodological details if we are to capture the temporal evolution

of the signal. For example, given that the frequency resolution of the EEG

spectrum is inversely proportional to the duration of the signal, the use of suf-

ficiently long stimulation trials is necessary to counteract the loss of frequency

resolution that results from segmenting the stimulation period into smaller

epochs (i.e., time windows). Additionally, in order to reduce variability in the

measurement of the oddball response, care should be taken so that the critical

manipulation (i.e., the difference in frequency-of-occurrence between base and
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oddball tokens in the present study) within a given time window is compa-

rable across participants. In order to establish the potential contribution of

FPVS designs to this field, future work should build upon these considerations

and assess whether this novel methodology can successfully capture the neural

traces of the temporal evolution of learning upon exposure.

Electrophysiological methodologies that rely on event-related potentials can

also provide neural evidence for statistical learning. Compared to FPVS, ERP

approaches offer an ideal way to examine the time course of a neural response

relative to the onset of a stimulus and have been shown to effectively capture

online statistical learning (Abla et al., 2008; Sanders et al., 2002). Due to the

high-frequency rate of stimulation, in FPVS there is an overlap between the

responses elicited by the different stimuli making it difficult to delineate the

time course of a response with respect to the stimulus onset. On the other

hand, FPVS benefits from two distinctive advantages. The first one lies in the

objectivity with which a response is measured. FPVS provides a response that

is observed at a predefined frequency band, thus eliminating the subjectivity

that can accompany the identification of ERP components. Second, FVPS is

a highly sensitive approach and particularly suited for subtle manipulations.

This is due to the fact that the FPVS response is confined to a small number

of discrete, narrow frequency bands and as such, it is minimally contaminated

by irrelevant noise sources (i.e., which tend to distribute throughout the EEG

frequency spectrum; for further discussion on the strengths and weaknesses of

FPVS, Rossion, 2014).

Notably, this new methodological approach opens up a new way to ad-

dress questions that can lead to a further specification of the mechanisms that

underpin statistical learning. In particular, the present findings provide novel

evidence that statistical learning emerges under high temporal constraints, and
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can thus operate on a timescale that has so far remained virtually unexplored:

the presentation of a given stimulus lasted less than 166 ms and its processing

was masked by both a preceding and a following stimulus. Can this type of

learning unfold on an even faster timescale? Furthermore, the frequency differ-

ence that elicited neural grouping in the present study was 9 repetitions of each

oddball token as opposed to 36 repetitions of each base token (i.e., 1/4 ratio).

What might be the minimum relative difference required to give rise to the

kind of discrimination response that was observed? Finally, beyond frequency

of occurrence whether more elaborate statistics like the transitional probability

of events can be learned implicitly under these stimulation conditions remains

to be established.

In the same light, the present findings contribute to the statistical learning

literature by stressing the importance of non-associative statistical cues – the

distribution of token frequency, in this specific case – to implicit learning.

Following on the path set by the earliest, seminal work in the field (e.g., Reber,

1967; Saffran et al., 1996), most statistical learning studies have focused their

investigations on conditional statistics. Indeed, the substantial uniformity that

characterizes this research field has been especially highlighted in a recent

critical review by R. Frost et al. (2019), who discuss its impact on the scope of

the empirical findings and ultimately, on advancing our understanding of the

underlying statistical learning mechanisms. While the salience of conditional

statistics is indisputable (Avarguès-Weber et al., 2020), these are not the only

type of statistics that learners attend (Thiessen et al., 2013). In this context,

we consider the present set of data as a way to highlight the diversity of the

probabilistic information that characterizes our perceptual world, and how

powerful distributional cues – somewhat neglected in previous research on

statistical learning – can be in driving our learning.
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An additional aspect of our findings worth mentioning is the implications

they carry for FVPS research. The susceptibility of the approach to the sta-

tistical structure of the stimulus sequence challenges previous evidence for

category-selective neural discrimination to determine if, and to what extent,

the evoked responses have been confounded by the relative token frequency of

base and oddball stimuli or the presence of other embedded regularities. Con-

currently, our findings call future FPVS work to account for implicit statistical

learning phenomena in the design of the stimulation stream in order to avoid

such contamination in the discrimination responses.

Finally, considering the potential neural mechanisms that underlie the

emergence of the discrimination response in the present study, we suggest that

this can be accounted for by a bottom-up process of context-dependent neural

adaptation. The observed frequency-of-occurrence effect could index a differ-

ence in across-item repetition suppression (i.e., delayed repetition, Henson et

al., 2004), with the frequently repeated base tokens undergoing greater reduc-

tion in stimulus-evoked neuronal activity compared to oddball tokens, which

were repeated less frequently (see also Radtke et al., 2021). Alternatively, the

differential response to oddball stimuli could reflect an effect of expectation (or

surprise), similar in kind to that observed in the MMN response (e.g., Kimura

et al., 2011; Stefanics et al., 2015) as interpreted within the framework of pre-

dictive coding models (e.g., Friston, 2005; Garrido et al., 2009). According to

this, our brain generates expectations about incoming sensory events on the

basis of our previous experiences. Encountering an unexpected, rare stimulus

would thus result in a larger prediction error relative to a frequent and ex-

pected one. Within this framework, a frequency-based oddball response can

be conceptualized as a difference in prediction error between stimuli with a

high probability of occurrence (base tokens) versus stimuli with a low proba-
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bility of occurrence (oddball tokens). Importantly, the generation of stimulus

expectations in the current oddball design would arise from the distributional

properties of the input via the integration of information across several stimuli

(for further evidence of the effect of distributional statistics on MMN, see e.g.,

Koelsch et al., 2016).

Interestingly, using a more conventional oddball design Amado and Kovács

(2016) demonstrated that the relative contribution of repetition suppression

and expectation effects to the visual MMN is modulated by stimulus category.

Specifically, they showed that in the case of faces and chairs, the visual MMN

was largely due to repetition suppression, whereas in the case of single real and

false (i.e., similar to our pseudofonts) letters, the vMMN was mainly explained

by surprised-related differences. Separating the relative effects of these neu-

ral mechanisms on the FPVS-oddball response was beyond the scope of our

study (but see Feuerriegel et al., 2018). Nevertheless, we note that our results

indicate that the observed frequency-based oddball response emerged equally

for different stimulus categories, ranging from entirely novel (e.g., strings of

pseudofonts) to very familiar (e.g., words) stimuli. This suggests that novel

distributional information can be rapidly acquired in the context of an oddball

experiment, even if it departs from the distributions learned over a lifetime,

attesting to the versatility of the brain when it comes to learning statistical

information.

In conclusion, the present study capitalized on FPVS and EEG to provide

evidence for neural discrimination based purely on the distribution of token fre-

quency within a rapidly changing stream of visual stimuli. This discrimination

response emerged implicitly and independently of stimulus familiarity, thus re-

flecting the operation of a fundamental mechanism that is prone to capture the

statistical structure embedded in the environment. These findings showcase
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the potential of FVPS for providing a neural measure of implicit statistical

learning and open up a new promising avenue for this line of research.



Chapter 5

Study IV: Co-occurrence Statistics in Letter

Identification∗

When presented with text, skilled readers recognize words within the span

of a glimpse. Visual information is rapidly encoded, so that single letters –

these artificial visual objects that accompany readers of alphabetical languages

in their everyday life – come together into a unique code, which is then used to

access one of the hundreds of thousands of possible lexical representations. The

validity of such code relies on the ability to extract letter information from the

visual display at hand, as well as on the linguistic knowledge available to the

reader. Orthographic processing is the interface that allows such integration of

visual and linguistic information (Grainger, 2018), and can thus be regarded

as the first stage of visual word identification.

Single word reading relies on abstract letter identities (beyond the specifics

of case, size and font), together with their position within a string. Neverthe-

less, reading is also a visual skill (Carr, 1986; Nazir & Huckauf, 2007), and thus

draws heavily on visual information. Consistent evidence supports the role of

visual and oculomotor skills in reading acquisition (Aghababian & Nazir, 2000;
∗From De Rosa, M., & Crepaldi, D. (2021). Co-occurrence statistics affect letter processing. Manuscript

in preparation.



94

Ducrot et al., 2013; Grainger, Dufau, et al., 2012; Jeon et al., 2010; Kwon et

al., 2007; Lobier et al., 2013; Sperlich et al., 2016), and indicates that atypical

visual processing might be involved in reading impairments (Bellocchi, 2013;

Franzen et al., 2021; Gori & Facoetti, 2015; Perea et al., 2012; Stein & Fowler,

1981; Vernet et al., 2021).

Even for skilled readers, obtaining orthographic information is subordi-

nated to overcoming perceptual limitations. A first bottleneck is visual acuity,

which steeply drops outside of the center of fixation (Adler & Fliegelman, 1934;

Sloan, 1951) with a reduction of about 60% at 1° of eccentricity (Wertheim,

1894). Another major challenge is posed by crowding, the deteriorated per-

ception of a target caused by the presence of nearby flankers (Bouma, 1970;

Flom et al., 1963; Townsend et al., 1971; see Levi, 2008; D. Whitney and

Levi, 2011, for recent reviews). While the nature of its underpinning mech-

anisms is still a hotly debated topic (Balas et al., 2009; Francis et al., 2017;

Greenwood et al., 2009; Harrison & Bex, 2017; Herzog et al., 2015; Manassi &

Whitney, 2018; Pelli et al., 2004; Rosenholtz et al., 2019; Van den Berg et al.,

2010), crowding depends on the distance between the target and the flankers.

Therefore, it affects the processing of letters in close spatial proximity, such

as the components of a single word, both in peripheral (e.g., Bricolo et al.,

2015; Pelli et al., 2007) and foveal reading (Grainger, Dufau, & Ziegler, 2016).

While excessive inter-letter spacing is found to disrupt whole-word perception

(Cohen et al., 2008), a slight increase alleviates crowding, thus resulting in

faster lexical decision latencies (Perea et al., 2011); coherently, the reduction

of inter-character distance compared to normal spacing is detrimental for word

identification (Montani et al., 2015).

The combined effects of visual acuity and crowding play a major role in

letter processing, as attested by the profile of the serial position functions ob-
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tained in letter identification tasks (Grainger, Dufau, & Ziegler, 2016). Perfor-

mance in recognizing letters in a five-item long string is generally ideal for the

foveated letter, where acuity is maximal. Letters out of this area are instead

negatively affected by their reciprocal close proximity, with the notable excep-

tion of the outer items, for which performance is advantaged. As a result, letter

identification performance as a function of absolute position typically results

in a W-shaped and a M-shaped patterns for accuracy and latency, respectively

(Averbach & Coriell, 1961; Haber & Standing, 1969; Ktori & Pitchford, 2008;

Mason, 1975; Merikle et al., 1971; Pitchford et al., 2008; Schwantes, 1978;

Stevens & Grainger, 2003). Crowding mechanisms have been associated with

the facilitated performance on exterior letters, as they are flanked by only

one item, compared to the non-fixated inner positions, which are negatively

affected by the presence of two surrounding letters.

However, in spite of a purely visual account of this pattern of results,

W/M-shaped serial position functions are more often specifically associated

with readable alphanumeric stimuli, as opposed to unreadable symbols (Ma-

son, 1982; Mason and Katz, 1976; Tydgat and Grainger, 2009; but see, e.g.,

Castet et al., 2017 for a different view). Additionally, the first letter of the

string enjoys a marked and unparalleled advantage (Aschenbrenner et al., 2017;

Scaltritti & Balota, 2013; Scaltritti et al., 2018), a finding that cannot be ac-

commodated by crowding mechanisms alone. Several accounts ascribe these

patterns to peculiarities of the literate brain (e.g., Aschenbrenner et al., 2017;

Tydgat & Grainger, 2009; Winskel et al., 2018), consistently with the numer-

ous testaments to top-down influences of higher-order linguistic knowledge on

perceptual processes. Among them, the so-called word superiority effect is

perhaps the most well known – the finding that individual letters are more

easily identified when embedded in real words rather than anagrams, random
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strings or even in isolation (Carr et al., 1979; Cattell, 1886; Reicher, 1969;

Wheeler, 1970). In keeping with this phenomenon, recent neuroimaging stud-

ies showed representational boosting in early visual areas for individual letters

in lexical contexts (Heilbron et al., 2020), a finding that is also consistent with

evidence of attenuated crowding for letters in words, compared to pseudowords

(Montani et al., 2015).

From word frequency to word meaning, to pronounceability and ortho-

graphic legality, both lexical and sublexical sources of information have been

considered as drivers of top-down influences (Baron & Thurston, 1973; Krueger,

1975). One hypothesis is that a lifetime exposure to text might result not only

in lexical and sublexical discrete representations, but also in an implicit knowl-

edge of the distributional properties inherent in the language, which in turn

could affect reading. Words are, after all, combinations of letters, assembled

according to ortho-phonotactic rules. The textual environment is thus poten-

tially rich in statistical cues that could effectively support skilled readers in

letter and string processing. This conjecture is consistent with the remark-

able sensitivity to regularities exhibited by the human cognitive system, a

phenomenon broadly known as statistical learning (recently reviewed in, e.g.,

Armstrong et al., 2017; Aslin, 2017; Christiansen, 2019; R. Frost et al., 2019;

E. L. Newport, 2016). Statistical learning is a domain general mechanism that

encompasses visual (Fiser & Aslin, 2002), tactile (Conway & Christiansen,

2005) and auditory domains (Saffran et al., 1999), and permeates a variety of

cognitive phenomena, such as memory (Kóbor et al., 2017), object represen-

tation (Lengyel et al., 2019), predictive processing (Morgan et al., 2019) and

language acquisition (Saffran & Kirkham, 2018).

This pervasive aptitude has been often associated with reading acquisition

and execution, and could constitute a plausible interface between visual and
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linguistic processes. Examples come from learning studies with pseudo-linguis-

tic material, such as Chetail (2017), in which participants implicitly extrapo-

lated frequent bigrams from a train of stimuli, and Lelonkiewicz et al. (2020),

where affix-like units were chunked on the sole basis of their distributional

statistics. Furthermore, patterns of regularity affect readers’ eye movements

in sentence reading (Snell & Theeuwes, 2020), and statistical learning abilities

have been associated with reading development and proficiency (Arciuli and

Simpson, 2012; von Koss Torkildsen et al., 2019, even if with some experimen-

tal caveats, as duly reported in, e.g., Arciuli and Torkildsen, 2012; Schmalz

et al., 2017).

The present study investigates the role of statistical learning at the inter-

face between visuo-attentional and linguistic processes. Specifically, we asked

whether co-occurrence regularities inherent in the natural language influence

letter identification, and contribute to overcome crowding phenomena. To

this aim, we briefly exposed skilled readers to five-letter strings of consonants;

critically, letters in the crowded positions (i.e., second and fourth) appeared

embedded in either a highly (e.g., B in MBL) or poorly (e.g., B in PBG) sta-

tistically coherent context, quantified as transitional probabilities between ad-

jacent letters . We hypothesized that, given that edge and foveated letters are

perceived more easily, a statistical relation with crowded letters could provide

a relevant source of contextual information to overcome the ambiguity of an ex-

cessive, and faulty, feature integration. In Experiment I, participants engaged

in a two-alternative forced choice task with whole strings (a target and a dis-

tractor, e.g., Adelman et al., 2010), which differed by one letter (e.g., MBLSD

vs. MCLSD). Experiment II included both a Reicher-Wheeler task on individ-

ual letters (Reicher, 1969; Wheeler, 1970) and a Same-Different matching task

(Nickerson, 1965), with the introduction of time constraints. Experiment III
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had participants perform a Same-Different task on the same stimuli rendered

as pseudo-characters from the BACS-2 font (C. Vidal & Chetail, 2017), so

that letter identities could be disrupted while preserving the low-level visual

features of the original configurations.

5.2 Experiment I: Materials and Methods

Participants

Fifty-four Italian skilled readers (17 males; age: M=25.03, SD=3.90; 5 left-

handed) volunteered in the experiment, after giving written informed consent.

They reported having normal or corrected-to-normal vision, and no history of

linguistic or neurological impairment. The study was approved by the SISSA

Ethics Committee.

Materials

Ten consonants were chosen as target letters (B, C, G, L, M, N, P, R, S, T).

For each of them, single letter transitional probabilities (TP) were obtained

for all the consonants in the Italian alphabet, as attested in SUBTLEX-IT

(Crepaldi et al., 2013) on the basis of position unconstrained type frequency.

Particularly, the forward probability of a letter X to precede a letter (e.g., B)

was defined as:

probability of Xn−1|Bn =
frequency of XB

frequency of B

Conversely, the backward probability was quantified as:
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probability of Y n+1|Bn =
frequency of BY

frequency of B

and expressed the probability of a letter Y to follow the letter B. For each

target (e.g., B), we selected a letter with high forward transitional probability

(e.g., Mn−1) and one with high backward transitional probability (e.g., Ln+1),

so to obtain a highly coherent triplet for each target (i.e., MBL). Conversely,

low coherence triplets (e.g., PBG) were constructed by selecting letters with

low transitional probabilities forward (e.g., Pn−1) and backward (e.g., Gn+1)

to the target (i.e., B). High and low TP triplets differed also for their written

frequency (as reported in Table 5.1). For task related purposes, each triplet

was then paired with a distractor, differing solely for the middle letter, to serve

as an alternative in the task (e.g., MBL was paired with MCL). Crucially,

distractors showed less extreme, “neutral” transitional probabilities compared

to the corresponding target triplets (included in Table 5.1).

Coherence was orthogonally manipulated with position by embedding high

and low coherence triplets into strings of five letters, so that the target item

would appear in both the second (e.g., MBLSD and PBGVN) and the fourth

position (e.g., DVMBL and LNPBG) in the two contexts.

The stimulus set comprised also items with letter-changes occurring in the

remaining positions (i.e., first, third and fifth). This allowed us to ensure

that participants would not strategically direct their attention to the positions

where we manipulated TP, but also to replicate the serial position function

generally observed for letter-search tasks with five-letter strings. As a result,

we had a total of 100 unique items (10 target letters x 5 positions x 2 contexts),

each of which was presented twice to each participant, in a pseudo-randomized
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TP Forward TP Backward Trigram Frequency

High Coherence

Target 0.080 (0.045) 0.120 (0.121) 3.499 (1.744)

Distractor 0.025 (0.020) 0.029 (0.034) 2.498 (1.436)

Low Coherence

Target 0.001 (0.001) 0.002 (0.002) 0.599 (0.658)

Distractor 0.007 (0.012) 0.023 (0.016) 1.986 (1.314)

Table 5.1: Stimuli Features (mean and standard deviation).

order so to avoid close repetitions.

Apparatus

Each experimental session took place in a quiet dark room. Participants

were seated at 57 cm from a BenQ XL2720Z monitor (27”, 1920x1080 pixels,

144 Hz); viewing distance was kept constant throughout the experiment by

means of a head-and-chin rest. Eye movements were monitored online using

a Eyelink DM-890 (SR Research Ltd, Canada), at a sampling rate of 1000

Hz; this allowed a stringent control of the participants’ eye position upon

the presentation of the probe stimulus (Castet et al., 2017). Stimuli were

rendered as uppercase characters from the Courier New font, and displayed

at the center of the screen in black on a light gray background [RGB: 160,

160, 160]. Characters held a center-to-center distance of 0.6° of visual an-

gle, thus occupying positions −1.2°, −0.6°, 0°, +0.6°. +1.2° from the center

of the screen. Participants prompted their responses through a high preci-

sion two–button CyNexo response pad (http://www.cynexo.com), based on

an Arduino processor (http://www.arduino.cc). Experimental sessions were

administered via PsychToolbox-3 (Brainard, 1997; http://psychtoolbox.org/)
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on MATLAB R2015b (The Mathworks) in a Windows environment.

Procedure

A schematic view of the trial timeline is presented in Figure 5.1. The

experiment began with a four-point-calibration procedure, which was repeated

until validation error was below an average of 1° of visual angle.

Figure 5.1: Representation of the experimental procedure adopted in Experiment I.

A black fixation dot (10 pixels in radius) was presented at the center of the

screen, on a light gray background [RGB: 160, 160, 160]. Participants were

instructed to continuously fixate the dot for 200 ms in order to trigger the

beginning of a trial; extra calibrations were performed every time participants

did not succeed in holding the fixation. Correct and continuous fixation would

result in the appearance of the probe, which stayed on screen for 100 ms

and was then backward masked by a string of five hash marks, presented

for 500 ms. The string duration is in line with previous studies adopting

consonant strings (e.g., Castet et al., 2017; Tydgat and Grainger, 2009; but

see C. Whitney, 2001 for a related discussion in the case of lexical items). Two

five-letter options appeared below the center of the screen (−10°), one to the

left and one to the right of the probe location, and stayed on the screen until

response. Consecutive trials were separated by a jittered interval of 1 second.



102

Each session also comprised one example, ten practice trials and three breaks.

Calibration and validation were repeated at the end of each break.

Data Analysis

One subject was below 60% in overall accuracy and was thus excluded from

further analyses, together with individual anticipatory responses of less than

200 ms (0.074%).

Accuracy was analyzed through generalized linear mixed-effects models

with crossed random intercepts for subjects and trials (Baayen et al., 2008),

as implemented in lme4 (Bates et al., 2007) and lmerTest (Kuznetsova et al.,

2017). Where applicable, post-hoc comparisons were performed through the

multcomp (Hothorn et al., 2016) and emmeans (Lenth, 2019) packages. We

ran two separate analyses. The first was performed on all trials, with Position

as the main effect of interest, to assess the presence of a serial position function

consistent with previous findings (e.g., Castet et al., 2017; Tydgat & Grainger,

2009). Accuracy on the preceding trial was the only other fixed effect improv-

ing the model’s goodness of fit (even if just marginally, χ2=3.208, p=0.073),

and was thus included in the final model. A second analysis focused on the

core manipulation and only included the trials where the target letters were in

Position 2 or 4, that is, the positions featuring the experimental manipulation.

In this analysis, we assessed the effects of Position (2 vs. 4), Context (high vs.

low coherence) and their mutual interaction.

5.3 Experiment I: Results

The absolute position within the string was found to significantly modulate

the accuracy with which participants selected the correct option (χ2=341.704,
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p<0.001). The resulting serial position function is shown in Figure 5.2A. Post-

hoc comparisons (Table 5.2) revealed that outer positions (i.e., positions 1 and

5) elicited significantly more accurate responses compared to internal ones (i.e.,

position 2, 3 and 4).

Positions Estimate Std. Error z value Pr(>| z |)

1 - 3 2.336 0.142 16.400 <0.001 ***

2 - 3 0.061 0.110 0.561 0.985

4 - 3 −0.077 0.110 −0.703 0.955

5 - 3 0.430 0.112 3.843 <0.001 **

2 - 1 −2.274 0.142 −15.948 <0.001 ***

4 - 1 −2.413 0.142 −16.961 <0.001 ***

5 - 1 −1.905 0.143 −13.252 <0.001 ***

4 - 2 −0.139 0.110 −1.263 0.710

5 - 2 0.368 0.112 3.283 0.008 **

5 - 4 0.507 0.111 4.539 <0.001 ***

Table 5.2: Accuracy across Positions, Post-hoc Comparisons (Experiment I).

Figure 5.2B shows the results of the analysis conducted only on the trials

of interest, that is, those exhibiting the contextual manipulation (high vs. low

coherence) in the crowded positions (2 and 4). We observed a significant main

effect of Context (χ2=6.743, p=0.009), indicating that highly coherent triplets

(e.g., MBL) elicited more accurate responses compared to less coherent ones

(i.e., PBG; β=0.43, SE=0.16). The analysis revealed a marginal effect of

Position (χ2=3.698, p=0.0544) and no significant interaction between Context

and Position (χ2=2.237, p=0.134).
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Figure 5.2: Model estimates for probabilities of correct responses (A) across all positions

and (B) for position 2 and 4, as modulated by context in Experiment I. Error bars represent

95% confidence intervals.

5.4 Experiment I: Discussion

Experiment I examined accuracy as a function of letter co-occurrence statis-

tics in a two-alternative forced choice task. Skilled readers were briefly exposed

to strings of five letters, which they had to recognize between two whole-string

alternatives differing just in one element (e.g., MBLSD vs. MCLSD). Criti-

cally, participants were more accurate in their choice when the differing letter

was embedded in high TP contexts (e.g., MBL), as compared to less coherent

ones (e.g., PBG). Therefore, our findings suggest that skilled readers capitalize

on letter regularities that are consistent with their previous experience with

written language.

The contextual facilitation effect emerged in a task that is expected to be

affected by visual constraints, like acuity and crowding. Such factors delineate

key benchmark phenomena that are mostly related to the absolute position
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of each individual letter within the string. In this respect, the present results

indicate a general facilitation in correctly detecting the outer letters of the

string, which was particularly pronounced for the first position, in line with

several previous studies (e.g., Aschenbrenner et al., 2017; Scaltritti & Balota,

2013; Tydgat & Grainger, 2009). Additionally, we observed a markedly less

accurate performance for the central position, a finding that has been associ-

ated with the detrimental effects of the backward mask (Castet et al., 2017).

Taken together, the present results are roughly in line with the serial position

functions generally obtained with more traditional tasks (e.g., Reicher-Wheeler

paradigm).

In addition to a successful replication of previous findings, we observed a

consistent contextual facilitation for letters in positions 2 and 4 of a five-letter

string. This result supports the hypothesis that letter co-occurrences affect a

rather early stage of pre-lexical processing. Nevertheless, the exact locus of

such facilitation could be further qualified. In fact, co-occurrences could inter-

act with single-letter processing, by boosting individual elements (consistently

with some recent neuroimaging evidence, e.g., Heilbron et al., 2020), but also

pertain to whole-string processing, thus affecting the integration of letter-level

information and higher-order units. The task adopted in Experiment I, which

focused on single-letter manipulations but emphasized a more string-oriented

approach, could not disentangle between the two alternatives.

A second methodological aspect worthy of consideration is the lack of time-

response constraints. Particularly, leaving the two string alternatives available

on screen until response could have twofold implications on our results. Firstly,

participants could have engaged in post-perceptual decision processes, thus

contaminating the effects of interest. Secondly, long processing times prevent

us from fully addressing whether contextual information interacts with the
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allocation of attentional resources, a mechanism of paramount importance in

early orthographic processing in general, and first letter advantage in particular

(as postulated in, e.g., Aschenbrenner et al., 2017).

Experiment II aimed at replicating the contextual facilitation observed in

Experiment I, while taking into account these observations. We introduced a

response-time constraint, to attenuate any effect of post-perceptual processes.

Moreover, participants were subjected to two different tasks, involving the

same materials: a more traditional Reicher-Wheeler task that unambiguously

focused on single letter processing, and a Same-Different matching, with a

more pronounced emphasis on whole-string processing.

5.5 Experiment II: Materials and Methods

Participants

Sixty-one Italian skilled readers (15 males; age: M=25.34, SD=3.53; 6 left-

handed) participated in the experiment. They all respected the same criteria

as Experiment I (normal or corrected-to-normal vision, no history of linguistic

or neurological impairment), and gave their written informed consent for the

study, which was approved by the SISSA Ethics Committee.

Materials

The stimulus set was identical to Experiment I. For the Reicher-Wheeler

task, the two options were obtained by presenting only the central letter in the

triplet (i.e., for MBLSD, the alternatives would have been B and C, as MCL

was the distractor triplet for MBL). In the case of the Same-Different task,

the probe was always the five-letter string with the contextual manipulation;
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different trials adopted the distractor strings from Experiment I.

Apparatus

The apparatus was identical to Experiment I.

Procedure

Consistently with the previous experiment, a four-point calibration and val-

idation procedure was performed at the beginning of each task, until validation

error was below 1° of visual angle in average.

Trials for all tasks began with two black vertical bars indicating the center

of the screen (Figure 5.3); the bars substituted the solid dot from Experiment

I to reduce perceptual load. Participants were asked to continuously fixate

the center for 200 ms to elicit the appearance of the probe. The vertical bars

became green whenever the participant’s gaze was correctly directed towards

the center of the screen, and turned red to indicate an incorrect position. As

in Experiment I, extra calibrations and validations were performed each time

participants did not succeed in holding the correct gaze position. All tasks

included one example, ten practice trials and three pauses. Calibration and

validation were performed anew before resuming the experiment at the end of

each break.

Reicher-Wheeler Task Probe strings were presented for 100 ms, and were

then substituted with a string of five hash marks. After 500 ms, two single-

letter options appeared on screen, positioned vertically at −2.2° and +2.2°

from the center of the screen, and horizontally located to cue one of the five

positions (Figure 5.3A). The options stayed on the screen for 2500 ms, or until

response. Consecutive trials were separated by a jittered interval of 1000 ms.
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Figure 5.3: Experimental procedures adopted in Experiment II. (A) Reicher-Wheeler Task

timeline; (B) Same-Different Task, showing an example for both same (upper example) and

different (lower example) probe-target pairs.

Same-Different Task Probe strings were presented for 100 ms, and then

backward masked with a string of hash marks (500 ms). A five-letter target

would then appear below the probe position (−2.2° from center) and remain on

screen until response, for a maximum of 2500 ms (Figure 5.3B). The inter-trial

interval was set to 1000 ms (jittered).

Data Analysis

We followed the same analysis protocol of Experiment I. The introduction

of a response timeout allowed us to model, in addition to accuracy, reaction

times for correct responses. This analysis was performed via linear mixed-

effects models with crossed random intercepts for subjects and trials (Baayen

et al., 2008), as implemented in lme4 (Bates et al., 2007). The distributions

of reaction times were investigated and normalized separately for each task,
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on the basis of the lambda values resulting from independent Box-Cox tests

(Osborne, 2010) as implemented in the MASS library (Ripley et al., 2013).

For both tasks, no-response trials (Reicher-Wheeler Task: 1.180%, Same-

Different: 0.319%) and anticipatory responses of less than 200 ms (Reicher-

Wheeler Task: 0.90%; Same-Different: 0.131% of the respective totals) were

removed. Inclusion criteria for individual participants were adapted to each

task independently. One subject had an overall accuracy of 50% and was

excluded from further analyses in the Reicher-Wheeler task; no subject was

excluded from the analysis of the Same-Different task.

5.6 Experiment II: Results

Reicher-Wheeler Task

Accuracy The general analysis of all trials included the significant effect

of trial order (χ2=10.285, p<0.001), which suggests that participants became

more accurate throughout the experiment. A significant main effect of Posi-

tion (χ2=206.719, p<0.001) was further explored via post-hoc comparisons,

revealing a strong first letter advantage with responses for the leftmost posi-

tion being significantly more accurate than for all the other positions (Table

A.1).

The analysis of the trials with the contextual manipulation showed no

effect of Context (χ2=0.141, p=0.707), Position (χ2=0.140, p=0.707), nor of

their interaction (χ2=0.098, p=0.753). Figure 5.4 illustrates both patterns of

results.

Reaction Times The analysis of the log-transformed reaction times for cor-

rect responses (72.20% of the total) indicated that both trial order (χ2=58.95,
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Figure 5.4: Model estimates for probabilities of correct responses in the Reicher-Wheeler

Task (A) across all positions and (B) for position 2 and 4, as modulated by context in

Experiment II. Error bars represent 95% confidence intervals.

p<0.001) and reaction times on the previous trial (χ2=45.10, p<0.001) had

a significant effect. Crucially, a main effect of Position (χ2=516.06, p<0.001)

complements the pattern observed in the accuracy analysis, with faster re-

sponses elicited by the first position within the string. Post-hoc comparisons

(Table A.2) revealed a smaller but significant advantage for the last letter over

the two crowded positions (5 vs. 2: χ2=−4.875, p<0.001; 5 vs. 4: χ2=−3.267,

p=0.009). As a result, and in line with previous studies, the serial position

function for reaction times in this task is nicely M-shaped (Figure 5.5, panel

A).

The analysis of the trials of interest (illustrated in Figure 5.5B) reveals

again no effect of Context (χ2=0.921, p=0.337), nor an interaction between

Context and Position (χ2=1.685, p=0.194). The effect of Position alone was

instead marginally significant (χ2=3.859, p=0.049).
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Figure 5.5: Model estimates of reaction times (in milliseconds) for correct responses in the

Reicher-Wheeler Task (A) across all positions and (B) for position 2 and 4, as modulated

by context in Experiment II. Error bars represent 95% confidence intervals.

Same-Different Task

Accuracy Same trials yielded an overall accuracy of 83.4% across subjects,

which was not affected by absolute position within the string (χ2=2.400,

p=0.662), nor, in the target trials, by either Context (χ2=0.162, p=0.686),

Position (χ2=0.235, p=0.627) or their interaction (χ2=0.002, p=0.964; Figure

5.6A).

Different trials elicited less accurate responses overall (63.6%), which were

modulated by the absolute position within the string (χ2=235.346, p<0.001;

Figure 5.7A), associated with a strong first position advantage (Table A.3).

Once again, the trials of interest for the contextual manipulation did not show

any significant effect of interest (Figure 5.7B; Context: χ2=0.652, p=0.419;

Position: χ2=1.528, p=0.216; Context x Position: χ2=0.037, p=0.847)
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Figure 5.6: Model estimates for probability of correct responses in same trials (A) across

all positions and (B) for position 2 and 4, as modulated by context in Experiment II. Error

bars represent 95% confidence intervals.

Figure 5.7: Model estimates for probability of correct responses in different trials (A) across

all positions and (B) for position 2 and 4, as modulated by context in Experiment II. Error

bars represent 95% confidence intervals.
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Reaction Times The analysis of the inverse-transformed reaction times for

correct same responses showed main effects of reaction times on the preceding

trial (χ2=163.531, p<0.001) and trial order (χ2=24.981, p<0.001), but it was

not affected by absolute position within the string (χ2=1.265, p=0.867; Figure

5.8A).

Trials exhibiting a contextual manipulation showed a significant main ef-

fect of Condition (χ2=5.385, p=0.020) and of its interaction with Position

(χ2=7.277, p=0.006; Figure 5.8B). The main effect of Position did not reach

significance (χ2=3.320, p=0.068). Post-hoc comparisons (Table 5.3) revealed

that highly coherent triplets elicited faster reaction times for same trials, but

only for the second position within the string. The opposite effect in position

4 did not reach significance.

Contrast Estimate Std. Error t-ratio Pr(>| t |)

Position 2

Low vs. High Coherence 0.0001 0.0000436 2.320 0.026 *

Position 4

Low vs. High Coherence -0.0001 0.0000438 -1.512 0.139

Table 5.3: Context x Position Interaction, Post-hoc Comparisons (Experiment II).

Different trials showed also for reaction times a facilitatory effect for outer

positions (main effect of Position: χ2=535.087, p<0.001; Post-hoc compar-

isons are reported in Table A.4). The analysis of the trials of interest, how-

ever, did not show any significant effect of Context (χ2=0.0031, p=0.955),

while position 2 elicited on average faster reaction times compared to posi-

tion 4 (χ2=5.754, p=0.016). The interaction factor did not reach significance

(χ2=2.267, p=0.132; Figure 5.9, panel B).
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Figure 5.8: Model estimates of reaction times (in milliseconds) for correct responses in same

trials (A) across all positions and (B) for position 2 and 4, as modulated by context in

Experiment II. Error bars represent 95% confidence intervals.

Figure 5.9: Model estimates of reaction times (in milliseconds) for correct responses in

different trials (A) across all positions and (B) for position 2 and 4, as modulated by context

in Experiment II. Error bars represent 95% confidence intervals.
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5.7 Experiment II: Discussion

Experiment II further explored the facilitatory effect of letter co-occurrences

observed in Experiment I. Skilled readers were presented with five-letter-long

stimuli and were then subjected to (i) a two-alternative forced choice with in-

dividual letters and (ii) Same-Different matching. In both tasks, participants

had limited time to prompt their responses, so that post-perceptual, decisional

processes could be attenuated. Consistently with Experiment I, highly coher-

ent triplets (e.g., MBL) elicited a facilitatory effect compared to less coherent

ones (i.e., PBG). However, such effect only surfaced as faster reaction times

for same judgments in the Same-Different matching task; moreover, the effect

was limited to the leftmost part of the string (i.e., position 2 vs. position 4).

Experiment II clearly indicates that the role of contextual information is

modulated by task demands. Results from the Reicher-Wheeler task did not

yield any effect of letter co-occurrence statistics, suggesting that supra-letter

information might be discarded when the paradigm encourages participants to

focus on individual letters (Aschenbrenner et al., 2017; Scaltritti & Balota,

2013). On the other hand, the picture emerging from the Same-Different

task is more complex. Matching tasks allow to tap into higher level units,

notwithstanding a clear distinction between the processes involved in same

and different trials. While different judgments trigger a comparison that is

based on an analytic, self-terminating search, same responses are postulated

to engage a more holistic type of process, which also accesses the available

higher level information (Barron & Pittenger, 1974). Consequently, the re-

sults hereby observed in different trials closely resemble the pattern emerging

from the Reicher-Wheeler task, and it is in the same judgments that we could

appreciate a top-down effect of the context in which letters were placed. These
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findings thus suggest that letter co-occurrence regularities interact with the in-

tegration of letter-level information within whole strings, rather than boosting

single letter identification per se.

The introduction of time constraints did not annihilate the effect of letter

co-occurrence statistics, suggesting that this pattern cannot be completely as-

cribed to decisional processes. However, we observed that letter co-occurrence

statistics had a significant effect only for the second position of a five-letter

long string. This pattern is nicely in line with the copious evidence indicat-

ing that speakers of left-to-right languages (such as Italian, as in the present

study) might benefit from an advantaged processing of the leftmost part of

orthographic stimuli, from sequences of consonants (e.g., Tydgat & Grainger,

2009) to words (e.g., Scaltritti & Balota, 2013). Enhanced task demands (as

adopted in Experiment II) could have resulted in a stronger interaction be-

tween such prototypical allocation of visuo-spatial attention (as postulated in

Aschenbrenner et al., 2017) and the statistical knowledge of the orthography

at hand. Speculatively, more stringent time constraints could have induced

participants’ attention to be quickly allocated to the beginning of the string,

and there captured by a cohesive, consistent group of letters.

Taken together, Experiment II seems to confirm that the statistics of letter

co-occurrence in the natural language affect the early stages of string process-

ing. Such an effect is conditional on the task performed, as it requires a more

holistic process rather than focusing on individual letters, and it interacts with

visuo-attentional resources that are typically deployed in orthographic process-

ing. These considerations suggest the contextual facilitation hereby reported

to be genuinely orthographic in nature. Nevertheless, such an effect could be

conceived to transcend orthographic information per se: individual letters are

indeed extremely familiar visual objects, with rather consistent low-level visual
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features. As a result, letter chunks could be regarded as mere combinations of

lower-level objects that result in a consistent visual pattern. In this eventuality,

the brain’s pervasive sensitivity to statistical regularities could capture and ex-

ploit high TP triplets by means of visual statistical learning mechanisms, and

beyond any orthographic information. Experiment III was designed to pro-

vide insights in this direction, and ascertain the orthographic nature of the

contextual facilitation. We adopted the same material as in Experiments I

and II, and ran a new Same-Different task. Critically, the strings of stimuli

were here rendered as pseudo-characters from the BACS-2 font (C. Vidal &

Chetail, 2017). BACS-2 characters are individually paired with characters of

the Latin alphabet, so that they exhibit type, number and configuration of

strokes (as defined in Changizi et al., 2006), as well as size, junctions, ter-

minations and presence (or absence) of symmetry. This careful construction

allows BACS-2 symbols to retain the lower-level characteristics of Roman let-

ters, while disrupting their abstract identities. Any contextual effect would

here suggest the recruitment of purely visual resources, engaging the process

of co-occurrences between letter features rather than letters; alternatively, a

lack of facilitation would confirm the genuine linguistic nature of the effects

observed in Experiment I and II.

5.8 Experiment III: Materials and Methods

Participants

The same sixty-one participants that took part in Experiment II were re-

cruited for Experiment III.
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Figure 5.10: Experimental paradigm adopted in Experiment III, showing examples of both

same (above) and different (below) probe-target pairs for the pseudo-character strings.

Materials

The stimulus set was identical to Experiments I and II. Each letter was

rendered as a pseudo-character from the BACS-2 font (C. Vidal & Chetail,

2017), thus controlling for the low-level visual aspects of the presentation.

Apparatus

The apparatus was identical to Experiments I and II.

Procedure

The procedure was the same as in Experiment II; a schematic illustration,

with examples for the pseudo-character stimuli, is available in Figure 5.10.

Data Analysis

The analysis approach was identical to Experiment II. In the interest of

a direct comparison with the key results obtained from Experiment II, non-

significant effects were further explored through Bayes Factor (BF) analyses

(Dienes, 2014) as implemented in the R package BayesFactor (Morey et al.,
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Figure 5.11: Model estimates for probabilities of correct responses in same trials (A) across

all positions and (B) for position 2 and 4, as modulated by context in Experiment III. Error

bars represent 95% confidence intervals.

2015). In particular, the preferred model (that is, the one expressing the

hypothesis under study) was compared against models without the effects of

interest, thus providing quantifiable evidence in support of H1 or H0 (M. D.

Lee & Wagenmakers, 2014).

No-response trials (0.450%) and anticipatory responses of less than 200 ms

(0.073%) were removed; no participant was excluded from further analyses.

5.9 Experiment III: Results

Accuracy Same trials yielded an overall accuracy of 76.94% across subjects.

The statistical effect of absolute position on correct same responses did not

reach significance (χ2=8.705, p=0.069). The analysis of the trials of interest

did not reveal any significant effect (Context: χ2=0.679, p=0.409; Position

(χ2=0.407, p=0.523; Context x Position: χ2=0.617, p=0.432; Figure 5.11).
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Figure 5.12: Model estimates for probabilities of correct responses in different trials (A)

across all positions and (B) for position 2 and 4, as modulated by context in Experiment

III. Error bars represent 95% confidence intervals.

Different trials elicited markedly less accurate responses (42.33%). Accu-

racy was modulated by absolute position (χ2=314.286, p<0.001), with outer

positions eliciting more accurate responses (Figure 5.12A; post-hoc compar-

isons, Table A.5). The analysis on the trials of interest did not indicate any

solid effect of Context (χ2=2.783, p=0.095), Position (χ2=0.023, p=0.878) or

their interaction (χ2=2.106, p=0.147; Figure 5.12B).

Reaction Times Log-transformed reaction times for correct same responses

were significantly affected by reaction times on the preceding trial (χ2=241.790,

p<0.001) and trial order (χ2=60.342, p<0.001), but no significant effect was

associated with absolute position within the string (χ2=1.672, p=0.795; Figure

5.13A). Consistently, trials containing the contextual manipulation were not

affected by Position (χ2=0.921, p=0.337), nor by the interaction between Po-

sition and Context (χ2=1.313, p=0.251). The main effect of Context indicates

the presence of a trend, but did not reach statistical significance (χ2=3.589,
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Figure 5.13: Model estimates of reaction times (in milliseconds) for correct responses in

same trials (A) across all positions and (B) for position 2 and 4, as modulated by context

in Experiment III. Error bars represent 95% confidence intervals.

p=0.058). These null results were further explored through a Bayes Factor

analysis, which provided evidence against the model including an effect of

context (0.15±2.63%) as well as of an interaction term (0.10±1.94%).

Log-transformed reaction times for correct different trials indicated a sig-

nificant facilitation induced by outer positions (χ2=102.673, p<0.001; post-hoc

comparisons, Table A.6; Figure 5.14A). The analysis of the trials of interest

did not indicate any significant effect related to Context (χ2=1.572, p=0.209),

Position (χ2=0.754, p=0.384), nor their interaction (χ2=0.453, p=0.500).

Cross-experiment analysis The results from Experiment III offer no re-

liable support for effects of Context in strings of pseudo-characters. Never-

theless, the trend emerging in the case of latencies for correct same responses

might be worth additional consideration. Particularly, same trials in Experi-

ment II indicated that letters enjoy a solid contextual advantage, and a direct

comparison with the data harvested in Experiment III could shed some light
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Figure 5.14: Model estimates of reaction times (in milliseconds) for correct responses in

different trials (A) across all positions and (B) for position 2 and 4, as modulated by context

in Experiment III. Error bars represent 95% confidence intervals.

on the locus (visual, or orthographic) of this effect.

We combined the Same-Different data from Experiment II and III, and

assessed the interplay of Position (2 vs. 4), Context (high vs. low coherence)

and Font (letters vs. pseudo-characters) on reaction times for correct same

responses. Our results indicate a significant three-way interaction (χ2=8.580,

p=0.003) supporting the fact that statistically coherent contexts affected strings

of letters more strongly than strings of visually matched pseudo-characters,

specifically for position 2 (Figure 5.15; Table 5.4).
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Figure 5.15: Model estimates of reaction times (in milliseconds) for correct responses in

same trials for position 2 and 4 across fonts, as modulated by context across Experiments

II and III. Error bars represent 95% confidence intervals.

5.10 General Discussion

The present study addressed the role of letter co-occurrence regularities

in the interaction between visuo-attentional and linguistic processes underly-

ing letter identification. With this aim, we conducted three experiments, in

which skilled readers were briefly exposed to strings of five consonants. Cru-

cially, letters in second and fourth position (which are negatively affected by

crowding) appeared within either a high or low coherence context, as quanti-

fied via transitional probabilities (TP) between adjacent letters in the natural

language. Experiment I showed that, when presented with two five-letter al-

ternatives differing by only one letter, skilled readers were significantly more
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Position Context Estimate Std. Error z-ratio Pr(>| Z |)

Letters

2 vs. 4
Low vs. High

Coherence
0.091 0.032 2.847 0.004 **

Pseudo-characters

2 vs. 4
Low vs. High

Coherence
-0.028 0.033 -0.860 0.389

Table 5.4: Font x Position x Context Interaction, Post-hoc Comparisons (Experiments II

and III).

accurate in recognizing the correct option when the critical letter appeared

in a high TP context. Experiment II further dove into this pattern by hav-

ing participants perform a Reicher-Wheeler two-alternative forced choice task

on single letters, and a Same-Different matching task, which emphasize the

processing of individual letters and whole strings, respectively. Moreover, in

Experiment II we introduced response-time constraints, thus attenuating any

post-perceptual bias. High coherence contexts elicited faster same responses in

the Same-Different task, but only for letters presented in the second position of

the string. In Experiment III participants performed a Same-Different task on

the same stimuli, with real letter substituted by their corresponding BACS-2

pseudo-characters (C. Vidal & Chetail, 2017), to disrupt letter identities while

preserving their low-level visual features. Here, the contextual manipulation

did not yield any significant facilitation.

Taken together, our results indicate that, during the early stages of visual

word identification, skilled readers capitalize on their lifelong experience with

letter co-occurrence regularities. The effect emerges only when a more holistic

processing is encouraged, and with increasing task-demands (e.g., response-

time constraints) it interacts with the encoding of positional information for
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letters within the string. Additionally, this sensitivity to co-occurrences is

orthographic in nature, in that it does not emerge with pseudo-characters that

preserve the low-level visual features of the string configuration.

While not all letters are equally visible to the reader, contextual informa-

tion is masterfully exploited to achieve identification. Letter processing draws

feedback from higher-level, linguistic knowledge, in a graded pattern of facili-

tation from fully-fledged words to anagrams and legal, readable pseudowords,

all of which provide marked contextual advantages in comparison with ille-

gal strings of consonants, or even isolated presentations (Carr et al., 1979;

Prinzmetal, 1992; Reicher, 1969; Wheeler, 1970). Our results are consistent

with this graded effect of orthographic familiarity, and indicate that statisti-

cally informed, implicitly learned regularities could constitute an intermediate

source of feedback, which can support letter processing beyond perceptual

bottlenecks. In keeping with evidence involving newly trained items (Huckauf

& Nazir, 2007), the present study suggests that implicitly learned patterns,

devoid of phonological and semantic connotations, can aid perception, and

corroborate the role of learning in overcoming a faulty, excessive integration

of features (Pelli et al., 2004).

Our findings pinpoint an effect that has a genuine orthographic component.

High transitional probabilities facilitate letter perception when participants en-

gage a holistic process, along the lines of natural reading (as opposed to singling

out individual letters, Aschenbrenner et al., 2017; Scaltritti & Balota, 2013),

and is conditional on the presence of intact letter identities. Additionally, with

shorter response times, statistically coherent contexts advantage targets in the

leftmost part of letter-strings. Notably, this positional modulation dovetails

with the fact that letters at word onset convey constraining information to-

wards word identity, (Alhama et al., 2019; Clark & O’regan, 1999; Hyönä et
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al., 1989; McConkie et al., 1989), a crucial notion at the core of some of the

most prominent accounts of letter encoding in reading. According to the mod-

ified receptive field hypothesis (MRFH, Tydgat & Grainger, 2009), reading

acquisition would sharpen visual perception to optimize the encoding of the

initial letters of a word (Chanceaux & Grainger, 2012; Chanceaux et al., 2013;

Grainger, Bertrand, et al., 2016); here, co-occurrence regularities could be

perceived more accurately, and contribute to boost letter identification. Such

effect is also consistent with the visuo-spatial account postulated by Aschen-

brenner et al. (2017), for which readers would rapidly deploy their attention

towards the leftmost letters of the word. Attentional mechanisms could also

easily accommodate the role of response-time constraints in our findings: while

with unlimited time contextual information can emerge regardless of position

(as observed in Experiment I), shorter times constrain this process. Letter

information would then be sampled more accurately towards the onset, thus

reducing the scope of the contextual advantage to positions close to the focus

(Experiment II).

Notwithstanding the orthographic locus of the effect, this contextual fa-

cilitation is likely to have a perceptual provenance. Perceptual learning is

an implicit mechanism invoked to explain the sharpening of sensory represen-

tations following repeated exposure to patterns (Fahle et al., 2002; Gilbert

et al., 2001; Goldstone, 1998), an hypothesis that is largely consistent with

the numerous statistical learning studies supporting the role of co-occurrence

probabilities for the formation of higher-level visual representations (e.g., Fiser

& Aslin, 2005; A. L. Lee et al., 2021; Lengyel et al., 2021; Zhao et al., 2014).

As a result, co-occurring letter patterns would become familiar to the skilled

reader by virtue of an extensive experience with written text, and could pro-

vide a source of pre-lexical, visual knowledge for letter and word processing
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(Kennedy et al., 2000; Nazir et al., 2004; Nazir & Huckauf, 2007).

The manipulation that led to a contextual facilitation relies on transitional

probabilities between adjacent letters, a quantified regularity that has been

in the limelight of the statistical learning literature (Aslin et al., 1998; Bo-

gaerts et al., 2016; Endress & Mehler, 2009; Hunt & Aslin, 2001; McDonald

& Shillcock, 2003; Pelucchi et al., 2009; Perruchet & Desaulty, 2008; Saffran

et al., 1996). The conditional relations between letters were however drawn

from the natural language, rather than realized in an artificial lexicon, and

resulted in letter chunks that also varied in written frequency. The relation

between transitional statistics and chunking has been much debated (for a re-

cent review, see Perruchet, 2019), and arbitrating between the two is beyond

the scope of this work. Our results are compatible with a rapid computation

of transitional probabilities, informed by previous experience with text, as well

as with a chunking mechanism of discrete, frequent units (such as bigrams or

trigrams). Importantly, and somewhat beyond advocating for conditional or

distributional measures (Thiessen et al., 2013), sensitivity to statistical regular-

ities is here found to mediate and interact with visual and linguistic processes

at the core of orthographic processing.

The statistical properties of written input convey pivotal information for

skilled readers to exploit during visual word identification, and are indissolubly

associated with the ortho-phonotactic rules governing the textual environment.

Statistical regularities affect reading behaviors insofar as they are reflective of

the distribution of information in a given language (Chetail, 2017). Coherently,

sensitivity to distributional properties is likely to interact with the phonologi-

cal factors at play in letter processing (Winskel et al., 2018), and could have a

role in other key benchmark phenomena, such as letter transpositions effects

(Johnson et al., 2007; Rayner et al., 2006). A statistical learning perspective
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could also contribute to our understanding of such phenomena within the con-

text of non-alphabetic orthographies (Gu & Li, 2015; Perea et al., 2010; Velan

& Frost, 2009), by quantifying readers’ orthographic expectations beyond ad-

jacent relations (Hsu et al., 2014; E. L. Newport & Aslin, 2004; Peña et al.,

2002; Perruchet et al., 2004). In conclusion, the present study showcases the

potential contribution of statistical learning to our understanding of the early

stages of reading, and substantiates the need for models of orthographic pro-

cessing to account for sensitivity to patterns of regularity in the language (R.

Frost, 2012).



Chapter 6

General Discussion

The cognitive system is greatly sensitive to patterns of regularity, which

amount to a cornerstone of how the environment is experienced by agents. The

textual environment is no exception: with its inherent recurrent structures, the

written language offers a cornucopia of regularities to be picked up and capital-

ized upon by skilled readers. The research included in the present thesis aims

at tackling the bond between this pervasive sensitivity to statistical patterns

and skilled reading, by asking how statistical learning mechanisms relate to

the early stages of visual word recognition.

6.2 Summary of Findings

Among the early processes underpinning word recognition, behavioral and

neuroimaging research has extensively investigated the role of morphemes, re-

current letter chunks that convey a fairly regular meaning (e.g., lead -er -ship).

Skilled readers exhibit a remarkable sensitivity to morphemes; the experiments

described in Chapter 2 ask whether such sensitivity might be rooted in visual

statistical learning mechanisms. A masked priming lexical decision study as-

sessed the facilitation induced by nonword primes obtained by combining ex-

isting stems (e.g., bulb) with (i) naturally frequent, derivational suffixes (e.g.,
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-ment), (ii) non-morphological, equally frequent word endings (e.g., -idge), and

(iii) non-morphological, infrequent word endings (e.g., -kle). Results indicate

that the masked priming induced by nonwords is not modulated by either the

frequency or the morphological status of word endings. These findings were

successfully replicated in a second experiment adopting a new set of stimuli,

featuring morphologically opaque word items (e.g., flower-flow) along with

the three nonword prime classes. Therefore, morpho-orthographic phenomena

as observed in masked priming lexical decision studies cannot be reduced to

effects of letter chunk frequency.

Chapter 3 details a study that adopted an FPVS design (Rossion, 2014) and

MEG recordings, allowing us to directly compare suffixes and high-frequency

endings. By gathering implicit discrimination responses without any task-

induced modulation, this paradigm tackled the question of whether suffixes

are selectively recognized as meaning-bearing units. Along the same lines, we

compared classes of items that could only be distinguished on the basis of a

single linguistic feature (such as the presence of letters, readability, familiar-

ity and lexical status), resulting in a tight hierarchy of nested contrasts. By

aiming at uncovering which properties can elicit a fast and automatic discrim-

ination, we tackled the very definition of linguistic units in their relevance

to skilled reading. Our results reflected the sensitivity of the reading system

to form-based regularities, revealing Alphabetic, Readability, Familiarity and

Lexicality responses, together with a substantial lack of distinction between

suffixes and frequent endings (i.e., a Meaningfulness response). While the

adoption of the FPVS technique allowed to gather a direct neural response for

different linguistic properties, it is likely to tap into the bottom-up processing

of visuo-linguistic material (see also Section 6.4). Coherently, the findings de-

tailed in Chapter 3 do not pinpoint the involvement of higher-level factors, such
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as phonology and semantics, but instead they shed some new light into the

neural underpinnings of skilled reading in relation to perceptual regularities.

Chapter 4 capitalized on the FPVS paradigm to test the emergence of a

discrimination response on the basis of the statistical regularities embedded in

a presentation stream (an auxiliary hypothesis that emerged from the adoption

of the paradigm itself). Skilled readers were passively exposed to sequences of

linguistic items with increasing familiarity (i.e., pseudo-characters, strings of

consonants, pseudowords and words), presented at a fast rate and periodically

interleaved with oddballs. Crucially, each sequence comprised stimuli of the

same category, and the only distinction between base and oddball items was

the frequency of occurrence of individual tokens within a stream. Frequency-

domain analyses revealed robust neural responses at the oddball presentation

rate in all conditions, reflecting the discrimination between two locally-emerged

groups of items purely informed by token frequency, and regardless of stimulus

familiarity. These results provide evidence for a fundamental mechanism of

regularity encoding, tuned to frequency of occurrence and potentially under-

pinning the bootstrapping of linguistic categories.

Chapter 5 focused on early orthographic processing, by asking whether the

encoding of letter information within a visual display is affected by letter co-

occurrence regularities. Skilled readers were briefly presented with strings of

five consonants; critically, letters in position 2 and 4 were embedded in ei-

ther high (e.g., B in MBL) or low (e.g., B in PBG) transitional probability

(TP) triplets. When presented with two strings differing by the critical let-

ter (e.g., MBLSD vs. MCLSD, PBGVN vs. PTGVN), participants correctly

identified the right option more often in high-TP than low-TP contexts, regard-

less of position. A second experiment featured both a Same-Different and a

Reicher-Wheeler task with response time constraints, and further qualified the
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contextual facilitation effect, with high-TP eliciting faster ‘same’ judgements

only for letters in position 2. In a third experiment, context had no effect

on Same-Different matching with strings of pseudo-characters sharing letters’

low-level visual features. Collectively, the pattern of results emerging from the

three experiments indicate that co-occurrence statistics affect the identifica-

tion and processing of individual letters in tasks that emphasize whole-string

processing. This effect is genuinely orthographic, as it is conditional on intact

letter identities, and with increasing task demands it only surfaces for letters

close to word onset.

6.3 Bundles of Regularity

Language, both oral and written, is a code (Goodman, 1971). Written

language unfolds in space, and relies on a structure that is rich in statistical

cues: patterns of regularity can be identified in how letters combine into larger

units, associated with phonological codes and meanings, and in how these

units form words, sentences, discourses. This regular nature potentially pro-

vides a precious source of information for the human cognitive system, which is

constantly uncovering and capitalizing upon probabilistic regularities. When

exposed to a new system, such as an artificial grammar, readers rapidly iden-

tify the relevant patterns in the input (e.g., Chetail, 2017; Endress & Mehler,

2009; Lelonkiewicz et al., 2020; Marino et al., 2020; Maye et al., 2008; Maye

et al., 2002; Saffran et al., 1996; Saffran et al., 1999; Y. Vidal et al., 2021), a

behavior that closely mimics the first encounters of children with the ‘real’ tex-

tual environment (e.g., Cassar & Treiman, 1997; Conrad et al., 2013; Pacton

et al., 2019; Pacton et al., 2001; Siegelman et al., 2020; Treiman & Kessler,

2021). Similarly, the tacit knowledge of statistical patterns in the written in-
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put, reinforced by extensive experience, might support the efficient processing

of linguistic material in skilled readers.

Among the possible relevant units in the early processing of visual words,

supra-letter, sub-lexical units such as morphemes have been defined as islands

of regularity (Rastle et al., 2000), in that they combine a rather consistent

orthographic form with a specific meaning. As frequently recurring letter clus-

ters with a non-arbitrary form-meaning mapping, morphemes are pivotal units

in the written language. Lexica are deeply enriched by morphology, to the

point that around 85% of the English words result from inflection, derivation

or compounding processes (Algeo & Algeo, 1993; Grainger & Ziegler, 2011).

Consequently, morphological units provide a relevant source of regularity for

skilled readers to exploit – and an interesting dimension to assess the role of

statistically-defined patterns in visual word identification.

The neuroimaging evidence presented in Chapter 3 indicated that suffixes

(e.g., -er, -ness) are not discriminated from meaningless but highly-frequent

word endings (e.g., -el, -idge, which are instead differentiated from non-existent

legal letter chunks). Admittedly, this evidence is negative in nature (that is,

it comes from a lack of discrimination rather than from the presence of an

effect); nevertheless, it was further substantiated by a Bayes Factor analysis

with moderate evidence in favor of the Null hypothesis, and provides grounds

for further consideration. The result is a characterization of suffixes as frequent

letter chunks appearing regularly at the end of words, a definition in keeping

with artificial grammar studies. Affix-like units can be carved on the sole

basis of their frequency of occurrence (e.g., Lelonkiewicz et al., 2020), and

are strongly associated with the appearance in typical positions within larger

units (which, in the case of suffixes, is a word-ending position; Crepaldi et

al., 2010). Clearly, positional written frequency plays a fundamental role in
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the very definition of affixes, and constitutes a statistical quantification of

morpheme’s regularity in form that can successfully support skilled readers in

identifying salient morphological units not only in artificial lexica, but also in

the real language∗, regardless of any form-to-meaning mapping. Importantly

however, our findings rely on suffixes presented in isolation. Out of context,

suffixes did not alter any stem, and were thus stripped of their morphological

function – arguably, they conveyed no meaning. As a result, this statistical

definition of suffixes is likely to pertain to an orthographic locus of processing,

abstracted away from later, higher-level morphological information.

The masked priming lexical decision study detailed in Chapter 2 comple-

ments this picture, by featuring suffixes in the context of semantically opaque

words (e.g., corn-er) and nonwords (e.g., corn-ity). Here, suffixes did not dif-

fer from either frequent (e.g., corn-idge) nor infrequent (e.g., corn-og) letter

chunks. This pattern enriches the neural definition of suffixes obtained in the

MEG study, by depicting suffixes as bound morphemes, subordinated to other,

possibly more salient units in morpho-orthographic processing. Such finding

fits the predictions of some recent models in the literature, in which the acti-

vation of (pseudo-)affix representations is a secondary mechanism that follows

the recognition of stems (or, more precisely, edge-aligned embedded words, i.e.,

corn in corner, Grainger & Beyersmann, 2017). In light of these combinations,

the functional role of morphemes seems to extend beyond the mechanisms of

an agnostic, statistically-oriented recognition process. Borrowing a beautiful
∗Critically, positional frequency of letter chunks is a relatively straightforward quantifi-

cation of suffixes’ form regularity, which can be easily extended to prefixes (that is, affixes

appearing at the beginning of a word, e.g., un-real). However, the case of non-concatenative

classes of morphemes, such as circumfixes (ge-t in the past participle of German verbs, such

as gesagt, said) or transfixes (k -t-b for writing in Arabic) might require a different approach

(see, e.g., Finley & Newport, 2021, for a recent discussion on this topic).
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image from Baayen et al. (2016): “[. . . ] A pawn by itself has no independent

meaning. A pawn on the second row of a chess board can be totally inert,

whereas the same pawn on the seventh row, free to promote to a queen, has

tremendous potential” (Baayen et al., 2016, p. 24). An exhaustive character-

ization of morphemic units, and of their relevance in visual word recognition,

should include a description of morphemes within the linguistic system, thus

capturing the rules that govern derivational and morpho-semantic processes.

Whether this complex picture can be rendered via statistically driven patterns

of co-occurrences is an open issue for future research (but see, e.g., Amenta

et al., 2020; Grainger & Beyersmann, 2020; Marelli et al., 2015; Marelli &

Baroni, 2015, for recent evidence in this direction). Nevertheless, a complete

depiction of morphemes cannot abstract away from the linguistic system and

its constellation of combinations to fully account for morphological processes

in visual word identification.

Taken together, these considerations around bound morphemes point to-

wards a fundamental dichotomy. Morphemes are meaning-bearing units, build-

ing blocks of the language, as well as orthographic units informed by statistical

regularities. From the findings included in the present thesis, these two levels

are somewhat separated, in that statistical patterns can reflect salient linguis-

tic structures and support their recognition, however they cannot fully explain

the linguistic relevance of such units in visual word processing. Critically, this

distinction might be hindered when considering lexical items: words are in-

deed intrinsically meaningful visual objects, which cannot be deprived of their

associations with orthographic, phonological, morphological and semantic in-

formation. On the other hand, the focus on sublexical units such as suffixes

allows to isolate the relative contribution of form and meaning based regular-

ities, which can provide equally relevant and yet independent contributions in
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the race towards visual word identification. Through this unique window into

skilled reading, it is possible to draw a line between statistical learning and

reading, with sensitivity to regularities being mostly recruited during early

orthographic processes.

Notably, an orthographic account of statistical learning mechanisms in

skilled reading sits well with the localist dual-route model proposed by Grainger

and Ziegler (2011), which postulates a fine-grained path, in which co-occurring

letter chunks, associated with a precise position within larger strings, feed

orthographic representations of multi-letter graphemes and affixes. While

Grainger and Ziegler (2011) do not explicitly refer to statistical learning mech-

anisms (but see Crepaldi et al., 2010, for a discussion on how letter co-

occurrences might inform affix representations), it is plausible to associate this

early level of processing with skilled readers’ familiarity with the statistical reg-

ularities of the input. Similarly, the series of experiments enclosed in Chapter

5 indicate that early orthographic processes (such as combining letters into a

unique code, beyond perceptual constraints) draw from an implicit knowledge

of the statistical structure inherent to the written text (a finding in line with

artificial grammar studies, e.g., Chetail, 2017) – even if facilitatory patterns

only surface under specific conditions. Once again, the experimental evidence

detailed in Chapter 5 pertains a level of processing that is intentionally de-

void of higher-level linguistic properties, such as phonology or semantics, and

thus corroborates the conclusion that known visual regularities interact with

a rather early stage of visual word identification.

In conclusion, the research included herein suggests that the knowledge of

the statistical regularities inherent to written input supports early orthographic

processes in skilled reading. As a domain-general linchpin of information pro-

cessing, statistical learning provides a critical interface between visual and
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linguistic processes (e.g., Y. Vidal et al., 2021), in line with a recruitment (or

recycling, Dehaene et al., 2005) of cognitive resources not originally deputed

to reading. The extensive experience with visual regularities would guide the

recognition of statistically cohesive visual patterns, which in turn become po-

tential candidates for the relevant functional units in the language (such as

morphemes or graphemes). Outside of the realm of form regularities, and

beyond identification, chunking or bootstrapping, other linguistic processes

would then require the involvement of higher-level knowledge. Therefore (and

somewhat speculatively), the involvement of statistical learning mechanisms is

limited to a set of early processes amounting to part of the mechanisms leading

to visual word identification.

6.4 Looking Through a Prism:

Methodological Notes

The statistical regularities under study were extracted from the written

language, and thus result in patterns that capture the linguistic structure as

it might be experienced by the reader. Compared to the fully-deterministic

regularities that populate the artificial grammars in the majority of the sta-

tistical learning literature, this approach might be considered more ecological,

in a closer approximation to reading processes. Nevertheless, the relevance of

such “natural” regularities was assessed in a set of artificial tasks. Therefore,

it is important to frame the conclusions drawn from this research within the

scope of the experimental techniques and methodologies adopted.

As discussed in Chapters 3 and 4, Fast Periodic Visual Stimulation para-

digms (FPVS, Rossion, 2014) target automatic and implicit neural discrimina-

tion phenomena by means of a rapid and periodic stimulation. The response of
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interest is not elicited by a task, and emerges without any direct or explicit en-

gagement with the material. Additionally, the items are presented sequentially

and with a sinusoidal modulation of spatial contrast, in a fast presentation rate

(in the case of our studies, 6 Hz). The FPVS designs adopted in these studies

are thus likely to tap into rather early stages of processing, possibly domi-

nated by bottom-up, visual information rather than by top-down, higher level

linguistic factors.

This consideration can be easily extended to the experiments included in

Chapter 5. Here, unreadable consonant strings, with no connections to phono-

logical or semantic information, were presented briefly, and then immediately

masked before the administration of one of three tasks, all of which are as-

sumed to pinpoint early orthographic processes. The two-alternative forced

choice task with whole strings has been critical in the study of letter processing,

by fostering new insights into the parallel identification of individual letters in

words (e.g., Adelman et al., 2010), as well as the mechanisms at the basis of the

first-letter advantage phenomenon (e.g., Aschenbrenner et al., 2017; Scaltritti

& Balota, 2013). Comparably, Reicher-Wheeler two-alternative forced choice

tasks (Reicher, 1969; Wheeler, 1970) can be adopted to study early processes

that draw heavily on short-term visuo-spatial and attentional resources, along

the lines of other partial report techniques (e.g., Averbach and Coriell, 1961;

see Castet et al., 2017 for a recent critical review). Lastly, Same-Different

matching tasks have been generally considered to tap into early, pre-lexical

processing of order encoding (e.g., Angiolillo-Bent & Rips, 1982; Kinoshita &

Norris, 2009; Perea & Acha, 2009), and have been extensively adopted to study

the encoding of visual material beyond arrays of letters and pseudo-characters

(as reviewed in, e.g., Proctor, 1981; Van Zandt et al., 2000).

Chapter 2 features the adoption of a masked priming design, in line with
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the numerous studies adopting subliminal displays to probe mechanisms of vi-

sual word processing (Forster, 1998; Masson & Bodner, 2003; Van den Bussche

et al., 2009). Critically, this technique can tap into several stages of processing

(Kinoshita & Lupker, 2004), mostly depending on the parameters governing

the presentation of the prime (i.e., prime duration and visibility M. H. Davis

& Rastle, 2010; Van den Bussche et al., 2009). The display of primes below

conscious appreciation, combined with lexical decision tasks (Forster & Davis,

1984) has been pivotal in addressing morpho-orthographic processes during

visual word identification (Rastle & Davis, 2008), in an early stage that is

largely free of semantic influences (as observed in, e.g., Giraudo and Voga,

2016; Longtin and Meunier, 2005; Tseng et al., 2020; but refer also to, e.g.,

Feldman and Basnight-Brown, 2008; Feldman et al., 2012 for a different per-

spective, and to M. H. Davis and Rastle, 2010; Feldman et al., 2009 for a

debate around this topic). The emergence of higher-level, semantic effects can

be more easily captured with different tasks (e.g., Amenta & Crepaldi, 2012;

Duñabeitia et al., 2011; Marelli et al., 2013), independently of any sensitiv-

ity to morpho-orthographic structure or, more generally, to the factors that

typically affect the early stages of visual word identification. Conversely, the

study presented in Chapter 2 intentionally aimed at tapping into an earlier

mechanism, which prompted the choice of a masked priming lexical decision

with carefully controlled experimental parameters (50 ms and 42 ms prime du-

ration for Experiments I and II, respectively). Notably, the pattern of results

observed did not show any effect of interpretability or morpheme interference,

in keeping with our design.

In sum, our findings suggest an involvement of statistical learning mecha-

nisms in the early stages of visual word processing; however, they consistently

stem from studies that principally tap into early resources. As already argued,
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the case of morphological units is emblematic, in that different lenses could

reveal a picture that both encompasses and transcends the role of statistical

regularities per se. Is there a clear separation between visual and linguis-

tic regularities, in the cascade of word processes? How do these levels, or-

thographic and morphological, statistically-informed and linguistically-driven,

interact? Addressing these questions will require future studies to adopt diver-

sified techniques and novel quantification of relevant patterns, thus resulting in

a more complete characterization of the mechanisms that govern visual word

identification.

A final methodological remark comes from Chapter 4, which showed how

novel distributional information can be easily and rapidly acquired even if it de-

parts from the distributions learned over a lifetime, and regardless of stimulus

familiarity. This finding falls in line with the extensive literature showcas-

ing the pervasive and ubiquitous nature of statistical learning phenomena. In

turn, the results included Chapter 4 call future studies for caution: the cogni-

tive system is constantly, dynamically engaging with the material presented,

detecting new regularities; any assessment of pre-existing statistical knowl-

edge could thus be contaminated by newly acquired statistics, hidden in the

manipulation and potentially unrelated to the experimental question at hand.

6.5 Conclusions

In the puzzle of skilled reading, human’s statistical learning capacities and

pattern of regularities in the textual environment are perfectly complementary

pieces – an observation that is clearly reminiscent of questions around the ori-

gin of language itself. Indeed, sensitivity to statistical cues is a cornerstone

of information processing, involved in the more ancestral visual system that
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also supports reading. The present thesis serves to highlight, and possibly cir-

cumscribe, the contributions of statistical learning mechanisms in early visual

word recognition processes.



Appendices



Appendix to Chapter 4:

Temporal Evolution of Frequency-Based

Discrimination Response

The main analysis revealed reported in Chapter 4 reveals a selective neural

response to the oddball stimuli demonstrating a discrimination between odd-

ball and base tokens that occurred during the 60-second trial period. As a

follow-up analysis, we examined the temporal build-up of this response during

the course of the stimulation trial.

It is important to note that this analysis was performed as a post-hoc ex-

ploration and was thus unavoidably constrained by the current experimental

design. The study’s design was not ideally suited to investigate the temporal

evolution of the effect for at least two reasons. First, the division of the stimu-

lation trial into smaller epochs was contingent on the principle that frequency

resolution is inversely proportional to the duration of the signal, with smaller

temporal windows necessarily yielding lower spectral resolutions. This is par-

ticularly relevant in the context of the present experiment, where the frequency

of interest was manipulated experimentally, and thus sits sharply at 1.2 Hz.

With lower frequency resolution, the band including 1.2 Hz unavoidably also

includes surrounding frequencies that were not entrained; therefore, signal is

confounded by noise. In order to counteract this issue and obtain the steady-
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state response with the best possible signal-to-noise ratio, we broke each trial

into the minimum number of smaller time windows that would allow us to

assess a temporal evolution, i.e., two 30-seconds chunks. Certainly, the use of

a longer stimulation period could have afforded more subdivisions and would

have been more suited to effectively capture the time-course of the response;

future studies that aim specifically at testing the temporal evolution of the

frequency discrimination signal should definitely adopt this modification.

Second, the extent of the critical frequency-of-occurrence manipulation

within each time window likely varied across trials and participants. While

in a given 60-second trial the relative frequency-of-occurrence difference of

base and oddball tokens was strictly designed to be four to one (i.e., 36 base

vs. 9 oddball token repetitions), the corresponding ratio during a given period

within the trial was not controlled. This is due to the fact that the presenta-

tion order of individual tokens was maximally randomized (for more details,

see the Experimental Paradigm and Procedure section in the main text). This

allowed us to eliminate the induction of periodic responses other than those

related to the base and oddball presentation frequencies (e.g., a response to a

specific token appearing periodically every n-th item).

These considerations notwithstanding, we tried to determine whether, even

in the present experiment, the frequency-of-occurrence effect would increase

as a function of participants’ exposure to the statistical structure of the input

stream. If so, we would expect the oddball response to be greater in a late,

compared to an early, time window along the stimulation period. Bearing

in mind that the time evolution analysis would be necessarily noisy, it was

important to have a term of comparison. Therefore, we ran the same exact

analysis at the base stimulation frequency, that is, we assessed how the en-

trainment at 6 Hz would change in the first 30 seconds of stimulation vs. the
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second 30 seconds of stimulation. Because this response is purely perceptual

and does not build in any way on the statistics of the stimulation stream, we

expected the signal to change less within the stimulation trial. Also, if any

change should occur, it would likely go in the opposite direction, that is, a

weaker response in the second part of trial, due to perceptual habituation. Fi-

nally, since the perceptual entrainment at the base frequency is much stronger

than the statistical learning entrainment at the oddball frequency (see the base

stimulation frequency results in the main text), we expected this signal to be

more resistant to the substantial decrease in frequency resolution, and there-

fore in signal-to-noise ratio. As a consequence, the time-window analysis on

the base response constitutes a further term of comparison for what concerns

the statistical significance of the effects.

Data Analysis

EEG data pre-processing was the same as described in the main analysis.

This was also the case for the frequency domain analysis except that before the

averaged trials were submitted to a Fast Fourier transform (separately for each

condition and participant), they were divided into two epochs ranging from 0

to 30 seconds and from 30 to 60 seconds. Furthermore, in each time window the

local baseline-correction was adjusted according to the frequency resolution of

the epochs in order to be comparable to the one applied to the entire 60-second

trial. Specifically, in the main analysis we considered 10 bins on each side of the

frequency of interest; at a resolution of 1/60=0.0167 Hz, this corresponds to

0.167 Hz on each side. Since we now have half the resolution (i.e., 1/30=0.0333

Hz), we considered only 5 bins from each side, which covered again 0.167 Hz

overall. As in the main analysis, we excluded immediately adjacent bins and

bins with minimum and maximum values. Oddball and base responses were
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defined as the sum of the baseline-corrected amplitudes at the oddball (1.2 Hz)

and at the base (6 Hz) stimulation frequencies and their corresponding first

three harmonics (oddball: 2.4, 3.6, 4.8 Hz; base: 12, 18, 24 Hz). Responses

were calculated over the same regions of interest (ROIs) as the ones reported

in Chapter 4: for the oddball response, one predefined occipito-parietal area

on the left hemisphere and its analogous on the right hemisphere were used,

whereas for the base response, one large occipital parietal area was selected

(see Figure 4.2 in the main text).

Results

Participants’ individual oddball and base responses across the two time

windows are displayed in Figure A.1 for each experimental condition. As it

is clearly shown in the figure, participants’ oddball responses across the two

halves of the stimulation period are rather variable (i.e., left column of Figure

A.1). Despite this variability, however, most participants seem indeed to show

a stronger oddball response in the second 30-second period of the stimulation

trial compared to the first (e.g., in the Word condition, panel A in Figure A.1,

17 out of the 27 participants with an oddball response beyond the noise level

lie above the diagonal). This observation is also supported by the descriptive

statistics. With the exception of Nonwords, in all other experimental condi-

tions the mean oddball response in the second time window is numerically

greater than in the first time window (averaged across ROIs, Words: Time

1=0.042, SD=0.10, Time 2=0.074, SD=0.07; Pseudowords: Time 1=0.051,

SD=0.08, Time 2=0.057, SD=0.08; Nonwords: Time 1=0.046, SD=0.08, Time

2=0.042, SD=0.09; Pseudofonts: Time 1=0.021, SD=0.08, Time 2=0.033,

SD=0.08).

In sharp contrast, participants’ individual base responses do not show as
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much variability between the first and second half of the stimulation period;

in the right column of Figure A.1, participants are all concentrated close to

the diagonal. Furthermore, it appears that for the majority of the partici-

pants the base response in the second time window is diminished compared

to the first (e.g., in the Word condition, panel A in Figure A.1, 20 out of

29 participants lie below the diagonal). The mean base response in the first

and second time window per condition are as follows: Words: Time 1=0.410,

SD=0.24, Time 2=0.387, SD=0.23); Pseudowords: Time 1=0.384, SD=0.23,

Time 2=0.367, SD=0.21; Nonwords: Time 1=0.433, SD=0.18, Time 2=0.407,

SD=0.18; Pseudofonts: Time 1=0.346, SD=0.12, Time 2=0.319, SD=0.14).

The effect of time window and its interaction with the experimental conditions

on the base and oddball response was statistically assessed through ANOVAs,

with Condition (Words, Pseudowords, Nonwords and Pseudofonts) and Time

Window (first and second) as within-groups factors. In the case of the oddball

response, the within-groups factor of Hemisphere was also included. Results

on the oddball response revealed no significant difference between the first and

second time window (F (1,28)=1.491, p=0.232; Time 1: M=0.040, SD=0.05;

Time 2: M=0.051, SD=0.04). In addition, there were no significant interac-

tions involving the effect of Time Window. These statistics indicate that the

trends described above do not allow any firm conclusion as to the temporal

evolution of the discrimination signal, which surely deserves further investiga-

tion in experiments specifically designed to that aim. At the same time, these

statistics are clearly not surprising in the context of the current experimen-

tal design, given the inherent noise and variability in the measurement of the

oddball response within each time window that is discussed above.

Results on the base response revealed a significant effect of Time Window

(F (1,28)=15.055, p<0.01), with the response in the second time window being
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smaller than the first time window (Time 1: M=0.393, SD=0.20; Time 2:

M=0.370, SD=0.19). There were no significant interactions involving the

effect of Time Window.
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Oddball	Response Base	Response

Oddball	Response Base	Response

Oddball	Response Base	Response

Oddball	Response Base	Response

A

B

C

D

Figure A.1: Temporal evolution of oddball (left column; averaged over left and right ROIs)

and base (right column) responses during the stimulation period for Words (A), Pseudowords

(B), Nonwords (C) and Pseudofonts (D). In each graph, the x and y axes represent the

neural response in the first time window (ranging from 0 to 30 seconds) and the second time

window (ranging from 30 to 60 seconds), respectively. Each dot represents an individual

participant, while the dotted lines illustrate the level of noise in each time window. The

black dot illustrates the mean response in each time window and the error bars denote the

corresponding 95% confidence intervals.



Appendix to Chapter 5:

Additional Tables

Positions Estimate Std. Error z value Pr(>| z |)

2 - 1 −1.24 0.11 −11.54 <0.001 ***

3 - 1 −1.31 0.11 −12.26 <0.001 ***

4 - 1 −1.33 0.11 −12.40 <0.001 ***

5 - 1 −1.23 0.11 −11.45 <0.001 ***

3 - 2 −0.07 0.10 −0.76 0.94

4 - 2 −0.09 0.10 −0.92 0.89

5 - 2 0.01 0.10 0.10 1.00

4 - 3 −0.02 0.10 −0.16 1.00

5 - 3 0.08 0.10 0.85 0.91

5 - 4 0.10 0.10 1.01 0.85

Table A.1: Experiment II, Reicher-Wheeler Task, Accuracy: Post-hoc Comparisons across

Positions.
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Positions Estimate Std. Error z value Pr(>| z |)

2 - 1 0.34 0.02 19.88 <0.001 ***

3 - 1 0.27 0.02 15.51 <0.001 ***

4 - 1 0.31 0.02 18.19 <0.001 ***

5 - 1 0.25 0.02 14.90 <0.001 ***

3 - 2 −0.07 0.02 −4.23 <0.001 ***

4 - 2 −0.03 0.02 −1.59 0.50

5 - 2 −0.09 0.02 −4.88 <0.001 ***

4 - 3 0.05 0.02 2.63 0.07

5 - 3 −0.01 0.02 −0.63 0.97

5 - 4 −0.06 0.02 −3.27 0.01 **

Table A.2: Experiment II, Reicher-Wheeler Task, Reaction Times: Post-hoc Comparisons

across Positions.

Positions Estimate Std. Error z value Pr(>| z |)

2 - 1 −2.77 0.23 −11.96 < 0.001 ***

3 - 1 −3.22 0.23 −13.88 < 0.001 ***

4 - 1 −3.15 0.23 −13.57 < 0.001 ***

5 - 1 −2.72 0.23 −11.73 < 0.001 ***

3 - 2 −0.45 0.20 −2.24 0.16

4 - 2 −0.38 0.20 −1.88 0.32

5 - 2 0.06 0.20 0.28 1.00

4 - 3 0.07 0.20 0.36 1.00

5 - 3 0.50 0.20 2.53 0.08

5 - 4 0.43 0.20 2.17 0.19

Table A.3: Experiment II, Same-Different Task, Different trials, Accuracy: Post-hoc Com-

parisons across Positions.
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Positions Estimate Std. Error z value Pr(>| z |)

2 - 1 0.00037 0.000022 16.55 < 0.001 ***

3 - 1 0.00042 0.000023 18.45 < 0.001 ***

4 - 1 0.00042 0.000023 18.32 < 0.001 ***

5 - 1 0.00033 0.000022 15.16 < 0.001 ***

3 - 2 0.000056 0.000024 2.31 0.14

4 - 2 0.000053 0.000024 2.16 0.19

5 - 2 −0.00003 0.000024 −1.32 0.68

4 - 3 −0.000003 0.000025 −0.14 1.00

5 - 3 −0.000088 0.000024 −3.60 < 0.001 ***

5 - 4 −0.000085 0.000024 −3.48 < 0.001 ***

Table A.4: Experiment II, Same-Different Task, Different trials, Reaction Times: Post-hoc

Comparisons across Positions.

Positions Estimate Std. Error z value Pr(>| z |)

2 - 1 −1.28 0.12 −10.93 <0.001 ***

3 - 1 −1.34 0.12 −11.41 <0.001 ***

4 - 1 −1.44 0.12 −12.22 <0.001 ***

5 - 1 −0.02 0.11 −0.20 1.00

3 - 2 −0.06 0.12 −0.49 0.99

4 - 2 −0.16 0.12 −1.37 0.65

5 - 2 1.25 0.12 10.74 <0.001 ***

4 - 3 −0.11 0.12 −0.88 0.90

5 - 3 1.31 0.12 11.22 <0.001 ***

5 - 4 1.42 0.12 12.04 <0.001 ***

Table A.5: Experiment III, Same-Different Task, Different trials, Accuracy: Post-hoc Com-

parisons across Positions.



153

Positions Estimate Std. Error z value Pr(>| z |)

2 - 1 0.15 0.02 7.54 <0.001 ***

3 - 1 0.15 0.02 7.20 <0.001 ***

4 - 1 0.14 0.02 6.75 <0.001 ***

5 - 1 0.04 0.02 2.15 0.20

3 - 2 −0.00 0.02 −0.16 1.00

4 - 2 −0.01 0.02 −0.48 0.99

5 - 2 −0.11 0.02 −5.54 <0.001 ***

4 - 3 −0.01 0.02 −0.32 1.00

5 - 3 −0.11 0.02 −5.30 <0.001 ***

5 - 4 −0.10 0.02 −4.92 <0.001 ***

Table A.6: Experiment III, Same-Different Task, Different trials, Reaction Times: Post-hoc

Comparisons across Positions.



References

Abla, D., Katahira, K., & Okanoya, K. (2008). On-line assessment of statistical

learning by event-related potentials. Journal of Cognitive Neuroscience,

20 (6), 952–964.

Adelman, J. S., Marquis, S. J., & Sabatos-DeVito, M. G. (2010). Letters in

words are read simultaneously, not in left-to-right sequence. Psycholog-

ical Science, 21 (12), 1799–1801.

Adler, F. H., & Fliegelman, M. (1934). Influence of fixation on the visual acuity.

Archives of Ophthalmology, 12 (4), 475–483.

Aghababian, V., & Nazir, T. A. (2000). Developing normal reading skills: As-

pects of the visual processes underlying word recognition. Journal of

experimental child psychology, 76 (2), 123–150.

Algeo, J., & Algeo, A. S. (1993). Fifty years among the new words: A dictionary

of neologisms 1941-1991. Cambridge University Press.

Alhama, R. G., Siegelman, N., Frost, R., & Armstrong, B. C. (2019). The role

of information in visual word recognition: A perceptually-constrained

connectionist account. The 41st annual meeting of the cognitive science

society (cogsci 2019), 83–89.

Alonso-Prieto, E., Van Belle, G., Liu-Shuang, J., Norcia, A. M., & Rossion, B.

(2013). The 6 hz fundamental stimulation frequency rate for individ-



155

ual face discrimination in the right occipito-temporal cortex. Neuropsy-

chologia, 51 (13), 2863–2875.

Amado, C., & Kovács, G. (2016). Does surprise enhancement or repetition

suppression explain visual mismatch negativity? European Journal of

Neuroscience, 43 (12), 1590–1600.

Amenta, S., & Crepaldi, D. (2012). Morphological processing as we know it: An

analytical review of morphological effects in visual word identification.

Frontiers in psychology, 3, 232.

Amenta, S., Günther, F., & Marelli, M. (2020). A (distributional) semantic

perspective on the processing of morphologically complex words. The

Mental Lexicon, 15 (1), 62–78.

Andrews, S. (1992). Frequency and neighborhood effects on lexical access:

Lexical similarity or orthographic redundancy? Journal of Experimental

Psychology: Learning, Memory, and Cognition, 18 (2), 234.

Angiolillo-Bent, J. S., & Rips, L. J. (1982). Order information in multiple-

element comparison. Journal of Experimental Psychology: Human Per-

ception and Performance, 8 (3), 392.

Aparicio, M., Gounot, D., Demont, E., & Metz-Lutz, M.-N. (2007). Phono-

logical processing in relation to reading: An fmri study in deaf readers.

Neuroimage, 35 (3), 1303–1316.

Araújo, S., Faısca, L., Bramão, I., Reis, A., & Petersson, K. M. (2015). Lexical

and sublexical orthographic processing: An erp study with skilled and

dyslexic adult readers. Brain and Language, 141, 16–27.

Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading

ability in children and adults. Cognitive science, 36 (2), 286–304.



156

Arciuli, J., & Torkildsen, J. V. K. (2012). Advancing our understanding of the

link between statistical learning and language acquisition: The need for

longitudinal data. Frontiers in psychology, 3, 324.

Armstrong, B. C., Frost, R., & Christiansen, M. H. (2017). The long road of

statistical learning research: Past, present and future.

Asanowicz, D., Verleger, R., Kruse, L., Beier, K., & Śmigasiewicz, K. (2017).

A right hemisphere advantage at early cortical stages of processing al-

phanumeric stimuli. evidence from electrophysiology. Brain and cogni-

tion, 113, 40–55.

Aschenbrenner, A. J., Balota, D. A., Weigand, A. J., Scaltritti, M., & Besner,

D. (2017). The first letter position effect in visual word recognition: The

role of spatial attention. Journal of Experimental Psychology: Human

Perception and Performance, 43 (4), 700.

Aslin, R. N. (2017). Statistical learning: A powerful mechanism that operates

by mere exposure. Wiley Interdisciplinary Reviews: Cognitive Science,

8 (1-2), e1373.

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of condi-

tional probability statistics by 8-month-old infants. Psychological sci-

ence, 9 (4), 321–324.

Avarguès-Weber, A., Finke, V., Nagy, M., Szabó, T., d’Amaro, D., Dyer, A. G.,

& Fiser, J. (2020). Different mechanisms underlie implicit visual statis-

tical learning in honey bees and humans. Proceedings of the National

Academy of Sciences, 117 (41), 25923–25934.

Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. The Bell

System Technical Journal, 40 (1), 309–328.



157

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling

with crossed random effects for subjects and items. Journal of memory

and language, 59 (4), 390–412.

Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in

dutch: Evidence for a parallel dual-route model. Journal of Memory

and Language, 37 (1), 94–117.

Baayen, R. H., Milin, P., Ðurđević, D. F., Hendrix, P., & Marelli, M. (2011). An

amorphous model for morphological processing in visual comprehension

based on naive discriminative learning. Psychological review, 118 (3),

438.

Baayen, R. H., Milin, P., & Ramscar, M. (2016). Frequency in lexical process-

ing. Aphasiology, 30 (11), 1174–1220.

Baayen, R. H., Wurm, L. H., & Aycock, J. (2007). Lexical dynamics for low-

frequency complex words: A regression study across tasks and modali-

ties. The mental lexicon, 2 (3), 419–463.

Baker, C. I., Behrmann, M., & Olson, C. R. (2002). Impact of learning on

representation of parts and wholes in monkey inferotemporal cortex.

Nature neuroscience, 5 (11), 1210–1216.

Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic represen-

tation in peripheral vision explains visual crowding. Journal of vision,

9 (12), 13–13.

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis,

B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007).

The english lexicon project. Behavior research methods, 39 (3), 445–459.

Barber, H. A., & Kutas, M. (2007). Interplay between computational mod-

els and cognitive electrophysiology in visual word recognition. Brain

research reviews, 53 (1), 98–123.



158

Baron, J., & Thurston, I. (1973). An analysis of the word-superiority effect.

Cognitive psychology, 4 (2), 207–228.

Barron, R. W., & Pittenger, J. B. (1974). The effect of orthographic structure

and lexical meaning on “same-different” judgments. Quarterly Journal

of Experimental Psychology, 26 (4), 566–581.

Bates, D., Sarkar, D., Bates, M. D., & Matrix, L. (2007). The lme4 package.

R package version, 2 (1), 74.

Bellocchi, S. (2013). Developmental dyslexia, visual crowding and eye move-

ments. Eye movement: Developmental perspectives, dysfunctions and

disorders in humans, 93–110.

Beyersmann, E., Casalis, S., Ziegler, J. C., & Grainger, J. (2015). Language

proficiency and morpho-orthographic segmentation. Psychonomic bul-

letin & review, 22 (4), 1054–1061.

Beyersmann, E., Cavalli, E., Casalis, S., & Colé, P. (2016). Embedded stem

priming effects in prefixed and suffixed pseudowords. Scientific Studies

of Reading, 20 (3), 220–230.

Beyersmann, E., & Grainger, J. (2018). Support from the morphological fam-

ily when unembedding the stem. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 44 (1), 135.

Beyersmann, E., Kezilas, Y., Coltheart, M., Castles, A., Ziegler, J. C., Taft,

M., & Grainger, J. (2018). Taking the book from the bookshelf: Masked

constituent priming effects from compound words and nonwords. Jour-

nal of cognition, 1 (1).

Beyersmann, E., Montani, V., Ziegler, J. C., Grainger, J., & Stoianov, I. P.

(2021). The dynamics of reading complex words: Evidence from steady-

state visual evoked potentials. Scientific Reports, 11 (1), 1–14.



159

Beyersmann, E., Mousikou, P., Javourey-Drevet, L., Schroeder, S., Ziegler,

J. C., & Grainger, J. (2020). Morphological processing across modalities

and languages. Scientific Studies of Reading, 24 (6), 500–519.

Beyersmann, E., Ziegler, J. C., Castles, A., Coltheart, M., Kezilas, Y., &

Grainger, J. (2016). Morpho-orthographic segmentation without seman-

tics. Psychonomic bulletin & review, 23 (2), 533–539.

Beyersmann, E., Ziegler, J. C., & Grainger, J. (2015). Differences in the pro-

cessing of prefixes and suffixes revealed by a letter-search task. Scientific

Studies of Reading, 19 (5), 360–373.

Biederman, G. B. (1966). Supplementary report: The recognition of tachisto-

scopically presented five-letter words as a function of digram frequency.

Journal of Verbal Learning and Verbal Behavior, 5 (2), 208–209.

Biederman, I. (1987). Recognition-by-components: A theory of human image

understanding. Psychological review, 94 (2), 115.

Binder, J., & Price, C. J. (2001). Functional neuroimaging of language. Hand-

book of functional neuroimaging of cognition, 187–251.

Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan,

L. (2006). Tuning of the human left fusiform gyrus to sublexical ortho-

graphic structure. Neuroimage, 33 (2), 739–748.

Bloomfield, L. (1933). Language. New York, NY: Henry Holt.

Bogaerts, L., Frost, R., & Christiansen, M. H. (2020). Integrating statistical

learning into cognitive science. Journal of Memory and Language, 115,

104167.

Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of sta-

tistical learning performance: A parametric investigation of exposure

duration and transitional probabilities. Psychonomic bulletin & review,

23 (4), 1250–1256.



160

Booth, M., & Rolls, E. T. (1998). View-invariant representations of familiar

objects by neurons in the inferior temporal visual cortex. Cerebral cortex

(New York, NY: 1991), 8 (6), 510–523.

Borowsky, R., Esopenko, C., Cummine, J., & Sarty, G. E. (2007). Neural rep-

resentations of visual words and objects: A functional mri study on the

modularity of reading and object processing. Brain topography, 20 (2),

89–96.

Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature,

226 (5241), 177–178.

Bouma, H. (1973). Visual interference in the parafoveal recognition of initial

and final letters of words. Vision research, 13 (4), 767–782.

Bowers, J. S. (2009). On the biological plausibility of grandmother cells: Im-

plications for neural network theories in psychology and neuroscience.

Psychological review, 116 (1), 220.

Bowers, J. S. (2017). Parallel distributed processing theory in the age of deep

networks. Trends in cognitive sciences, 21 (12), 950–961.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10 (4), 433–

436.

Braun, M., Hutzler, F., Münte, T. F., Rotte, M., Dambacher, M., Richlan,

F., & Jacobs, A. M. (2015). The neural bases of the pseudohomophone

effect: Phonological constraints on lexico-semantic access in reading.

Neuroscience, 295, 151–163.

Bricolo, E., Salvi, C., Martelli, M., Arduino, L. S., & Daini, R. (2015). The

effects of crowding on eye movement patterns in reading. Acta psycho-

logica, 160, 23–34.



161

Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The word frequency effect

in word processing: An updated review. Current Directions in Psycho-

logical Science, 27 (1), 45–50.

Brysbaert, M., & New, B. (2009). Moving beyond kučera and francis: A crit-

ical evaluation of current word frequency norms and the introduction

of a new and improved word frequency measure for american english.

Behavior research methods, 41 (4), 977–990.

Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E.,

& Brammer, M. J. (1999). Global, voxel, and cluster tests, by theory

and permutation, for a difference between two groups of structural mr

images of the brain. IEEE transactions on medical imaging, 18 (1), 32–

42.

Burani, C., Arduino, L. S., & Marcolini, S. (2006). Naming morphologically

complex pseudowords: A headstart for the root? The Mental Lexicon,

1 (2), 299–327.

Burani, C., Salmaso, D., & Caramazza, A. (1984). Morphological structure

and lexical access. Visible Language, 18 (4), 342–352.

Burani, C., & Thornton, A. M. (2003). The interplay of root, suffix and whole-

word frequency in processing derived words. Trends in Linguistics Stud-

ies and Monographs, 151, 157–208.

Bybee, J. L. (1988). Morphology as lexical organization. Theoretical morphol-

ogy, 119141.

Carr, T. H. (1986). Perceiving visual language. Handbook of perception and

human performance (29:1–29:92). John Wiley & Sons.

Carr, T. H. (1999). Trying to understand reading and dyslexia: Mental chronom-

etry, individual differences, cognitive neuroscience, and the impact of



162

instruction as converging sources of evidence. Converging methods for

understanding reading and dyslexia, 459–491.

Carr, T. H., Posner, M. I., Pollatsek, A., & Snyder, C. R. (1979). Orthogra-

phy and familiarity effects in word processing. Journal of Experimental

Psychology: General, 108 (4), 389.

Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what,

when, where, and how of visual word recognition. Trends in cognitive

sciences, 18 (2), 90–98.

Carreiras, M., & Perea, M. (2002). Masked priming effects with syllabic neigh-

bors in a lexical decision task. Journal of Experimental Psychology:

human perception and performance, 28 (5), 1228.

Carreiras, M., & Price, C. J. (2008). Brain activation for consonants and vow-

els. Cerebral Cortex, 18 (7), 1727–1735.

Carreiras, M., Vergara, M., & Perea, M. (2009). Erp correlates of transposed-

letter priming effects: The role of vowels versus consonants. Psychophys-

iology, 46 (1), 34–42.

Cassar, M., & Treiman, R. (1997). The beginnings of orthographic knowledge:

Children’s knowledge of double letters in words. Journal of educational

psychology, 89 (4), 631.

Castet, E., Descamps, M., Denis-Noël, A., & Cole, P. (2017). Letter and sym-

bol identification: No evidence for letter-specific crowding mechanisms.

Journal of vision, 17 (11), 2–2.

Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading

acquisition from novice to expert. Psychological Science in the Public

Interest, 19 (1), 5–51.

Cattell, J. M. (1886). The time it takes to see and name objects. Mind, 11 (41),

63–65.



163

Chanceaux, M., & Grainger, J. (2012). Serial position effects in the identifi-

cation of letters, digits, symbols, and shapes in peripheral vision. Acta

psychologica, 141 (2), 149–158.

Chanceaux, M., Mathôt, S., & Grainger, J. (2013). Flank to the left, flank

to the right: Testing the modified receptive field hypothesis of letter-

specific crowding. Journal of Cognitive Psychology, 25 (6), 774–780.

Changizi, M. A., Zhang, Q., Ye, H., & Shimojo, S. (2006). The structures of let-

ters and symbols throughout human history are selected to match those

found in objects in natural scenes. The American Naturalist, 167 (5),

E117–E139.

Chauncey, K., Holcomb, P. J., & Grainger, J. (2008). Effects of stimulus font

and size on masked repetition priming: An event-related potentials (erp)

investigation. Language and Cognitive Processes, 23 (1), 183–200.

Chetail, F. (2015). Reconsidering the role of orthographic redundancy in visual

word recognition. Frontiers in Psychology, 6, 645.

Chetail, F. (2017). What do we do with what we learn? Statistical learning of

orthographic regularities impacts written word processing. Cognition,

163, 103–120.

Chetail, F., & Boursain, E. (2019). Shared or separated representations for

letters with diacritics? Psychonomic bulletin & review, 26 (1), 347–352.

Chomsky, N. (1980). Rules and representations. Behavioral and brain sciences,

3 (1), 1–15.

Chomsky, N. (2011). Language and other cognitive systems. what is special

about language? Language learning and development, 7 (4), 263–278.

Christiansen, M. H. (2019). Implicit statistical learning: A tale of two litera-

tures. Topics in Cognitive Science, 11 (3), 468–481.



164

Clark, J. J., & O’regan, J. K. (1999). Word ambiguity and the optimal viewing

position in reading. Vision Research, 39 (4), 843–857.

Cohen, L., Dehaene, S., Vinckier, F., Jobert, A., & Montavont, A. (2008).

Reading normal and degraded words: Contribution of the dorsal and

ventral visual pathways. Neuroimage, 40 (1), 353–366.

Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S.

(2002). Language-specific tuning of visual cortex? functional properties

of the visual word form area. Brain, 125 (5), 1054–1069.

Colé, P., Beauvillain, C., & Segui, J. (1989). On the representation and pro-

cessing of prefixed and suffixed derived words: A differential frequency

effect. Journal of Memory and language, 28 (1), 1–13.

Coll, M.-P., Murphy, J., Catmur, C., Bird, G., & Brewer, R. (2019). The im-

portance of stimulus variability when studying face processing using

fast periodic visual stimulation: A novel ‘mixed-emotions’ paradigm.

Cortex, 117, 182–195.

Coltheart, M. (1978). Lexical access in simple reading tasks. Strategies of in-

formation processing, 151–216.

Coltheart, M. (2006). Dual route and connectionist models of reading: An

overview. London Review of Education, 4 (1), 5–17.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). Drc:

A dual route cascaded model of visual word recognition and reading

aloud. Psychological review, 108 (1), 204.

Conrad, N. J., Harris, N., & Williams, J. (2013). Individual differences in chil-

dren’s literacy development: The contribution of orthographic knowl-

edge. Reading and Writing, 26 (8), 1223–1239.



165

Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical

learning of tactile, visual, and auditory sequences. Journal of Experi-

mental Psychology: Learning, Memory, and Cognition, 31 (1), 24.

Crepaldi, D., Keuleers, E., Mandera, P., & Brysbaert, M. (2013). Subtlex-it.

Crepaldi, D., Rastle, K., & Davis, C. J. (2010). Morphemes in their place:

Evidence for position-specific identification of suffixes. Memory & cog-

nition, 38 (3), 312–321.

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine,

J. D., & Halgren, E. (2000). Dynamic statistical parametric mapping:

Combining fmri and meg for high-resolution imaging of cortical activity.

neuron, 26 (1), 55–67.

Davis, M. H., Meunier, F., & Marslen-Wilson, W. D. (2004). Neural responses

to morphological, syntactic, and semantic properties of single words:

An fmri study. Brain and language, 89 (3), 439–449.

Davis, M. H., & Rastle, K. (2010). Form and meaning in early morphologi-

cal processing: Comment on feldman, o’connor, and moscoso del prado

martın (2009). Psychonomic bulletin & review, 17 (5), 749–755.

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron,

56 (2), 384–398.

Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area

in reading. Trends in cognitive sciences, 15 (6), 254–262.

Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to liter-

ate: Behavioural and cerebral changes induced by reading acquisition.

Nature Reviews Neuroscience, 16 (4), 234–244.

Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for

written words: A proposal. Trends in cognitive sciences, 9 (7), 335–341.



166

Dehaene, S., Jobert, A., Naccache, L., Ciuciu, P., Poline, J.-B., Le Bihan, D., &

Cohen, L. (2004). Letter binding and invariant recognition of masked

words: Behavioral and neuroimaging evidence. Psychological science,

15 (5), 307–313.

Dehaene, S., Le Clec’H, G., Poline, J.-B., Le Bihan, D., & Cohen, L. (2002).

The visual word form area: A prelexical representation of visual words

in the fusiform gyrus. Neuroreport, 13 (3), 321–325.

Dehaene, S., Naccache, L., Cohen, L., Le Bihan, D., Mangin, J.-F., Poline,

J.-B., & Rivière, D. (2001). Cerebral mechanisms of word masking and

unconscious repetition priming. Nature neuroscience, 4 (7), 752–758.

Dejerine, J. (1892). Contribution à l’étude anatomopathologique et clinique des

différents variétés de cécité verbale. Mémoires de la Société de Biologie,

4, 61–90.

Delorme, A., & Makeig, S. (2004). Eeglab: An open source toolbox for analysis

of single-trial eeg dynamics including independent component analysis.

Journal of neuroscience methods, 134 (1), 9–21.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,

D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., et al.

(2006). An automated labeling system for subdividing the human cere-

bral cortex on mri scans into gyral based regions of interest. Neuroim-

age, 31 (3), 968–980.

Devereux, B. J., Clarke, A., Marouchos, A., & Tyler, L. K. (2013). Repre-

sentational similarity analysis reveals commonalities and differences in

the semantic processing of words and objects. Journal of Neuroscience,

33 (48), 18906–18916.



167

Devlin, J. T., Jamison, H. L., Matthews, P. M., & Gonnerman, L. M. (2004).

Morphology and the internal structure of words. Proceedings of the Na-

tional Academy of Sciences, 101 (41), 14984–14988.

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve

visual object recognition? Neuron, 73 (3), 415–434.

Dien, J., Brian, E. S., Molfese, D. L., & Gold, B. T. (2013). Combined erp/fmri

evidence for early word recognition effects in the posterior inferior tem-

poral gyrus. Cortex, 49 (9), 2307–2321.

Dienes, Z. (2014). Using bayes to get the most out of non-significant results.

Frontiers in psychology, 5, 781.

Dietz, N. A., Jones, K. M., Gareau, L., Zeffiro, T. A., & Eden, G. F. (2005).

Phonological decoding involves left posterior fusiform gyrus. Human

brain mapping, 26 (2), 81–93.

Ducrot, S., Pynte, J., Ghio, A., & Lété, B. (2013). Visual and linguistic de-

terminants of the eyes’ initial fixation position in reading development.

Acta psychologica, 142 (3), 287–298.

Duñabeitia, J. A., Kinoshita, S., Carreiras, M., & Norris, D. (2011). Is morpho-

orthographic decomposition purely orthographic? evidence from masked

priming in the same–different task. Language and Cognitive Processes,

26 (4-6), 509–529.

D’ydewalle, G., & Auwers, T. (1994). Orthographic redundancy in letter recog-

nition: Orthographic neighbourhood or orthographic context? European

Journal of Cognitive Psychology, 6 (3), 287–310.

Dzhelyova, M., & Rossion, B. (2014). Supra-additive contribution of shape and

surface information to individual face discrimination as revealed by fast

periodic visual stimulation. Journal of Vision, 14 (14), 15–15.



168

Ellis, N. C. (2002). Reflections on frequency effects in language processing.

Studies in second language acquisition, 297–339.

Endress, A. D., & Mehler, J. (2009). The surprising power of statistical learn-

ing: When fragment knowledge leads to false memories of unheard

words. Journal of Memory and Language, 60 (3), 351–367.

Fahle, M., Poggio, T., Poggio, T. A., et al. (2002). Perceptual learning. MIT

Press.

Feldman, L. B., & Basnight-Brown, D. M. (2008). The role of morphology in

visual word recognition: Graded semantic influences due to competing

senses and semantic richness of the stem. Single-word reading: Behav-

ioral and biological perspectives, 85–106.

Feldman, L. B., Kostić, A., Gvozdenović, V., O’Connor, P. A., & del Prado

Martın, F. M. (2012). Semantic similarity influences early morphological

priming in serbian: A challenge to form-then-meaning accounts of word

recognition. Psychonomic bulletin & review, 19 (4), 668–676.

Feldman, L. B., O’Connor, P. A., & del Prado Martın, F. M. (2009). Early

morphological processing is morphosemantic and not simply morpho-

orthographic: A violation of form-then-meaning accounts of word recog-

nition. Psychonomic bulletin & review, 16 (4), 684–691.

Feuerriegel, D., Keage, H. A., Rossion, B., & Quek, G. L. (2018). Immediate

stimulus repetition abolishes stimulus expectation and surprise effects

in fast periodic visual oddball designs. Biological psychology, 138, 110–

125.

Fiebach, C. J., Friederici, A. D., Müller, K., & Von Cramon, D. Y. (2002).

Fmri evidence for dual routes to the mental lexicon in visual word

recognition. Journal of cognitive neuroscience, 14 (1), 11–23.



169

Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (1999). Effects of

lexicality, frequency, and spelling-to-sound consistency on the functional

anatomy of reading. Neuron, 24 (1), 205–218.

Fiez, J. A., & Petersen, S. E. (1998). Neuroimaging studies of word reading.

Proceedings of the National Academy of Sciences, 95 (3), 914–921.

Finley, S., & Newport, E. (2021). Non-concatenative morpheme segmentation

in adults and children.

Fischer-Baum, S., Charny, J., & McCloskey, M. (2011). Both-edges represen-

tation of letter position in reading. Psychonomic Bulletin & Review,

18 (6), 1083–1089.

Fischl, B. (2012). Freesurfer. Neuroimage, 62 (2), 774–781.

Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-

order spatial structures from visual scenes. Psychological science, 12 (6),

499–504.

Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal

structure from visual shape sequences. Journal of Experimental Psy-

chology: Learning, Memory, and Cognition, 28 (3), 458.

Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical

learning of visual feature hierarchies. Journal of Experimental Psychol-

ogy: General, 134 (4), 521.

Flom, M. C., Heath, G. G., & Takahashi, E. (1963). Contour interaction and

visual resolution: Contralateral effects. Science, 142 (3594), 979–980.

Forster, K. I. (1998). The pros and cons of masked priming. Journal of psy-

cholinguistic research, 27 (2), 203–233.

Forster, K. I., & Davis, C. (1984). Repetition priming and frequency atten-

uation in lexical access. Journal of experimental psychology: Learning,

Memory, and Cognition, 10 (4), 680.



170

Francis, G., Manassi, M., & Herzog, M. H. (2017). Neural dynamics of grouping

and segmentation explain properties of visual crowding. Psychological

review, 124 (4), 483.

Franco, A., Eberlen, J., Destrebecqz, A., Cleeremans, A., & Bertels, J. (2015).

Rapid serial auditory presentation. Experimental psychology.

Franzen, L., Stark, Z., & Johnson, A. P. (2021). Individuals with dyslexia use a

different visual sampling strategy to read text. Scientific reports, 11 (1),

1–17.

Friston, K. (2005). A theory of cortical responses. Philosophical transactions

of the Royal Society B: Biological sciences, 360 (1456), 815–836.

Frost, R. (2012). Towards a universal model of reading. The Behavioral and

brain sciences, 35 (5), 263.

Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learning

research: A critical review and possible new directions. Psychological

Bulletin, 145 (12), 1128.

Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Do-

main generality versus modality specificity: The paradox of statistical

learning. Trends in cognitive sciences, 19 (3), 117–125.

Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts suc-

cessful literacy acquisition in a second language? Psychological science,

24 (7), 1243–1252.

Frost, S. J., Mencl, W. E., Sandak, R., Moore, D. L., Rueckl, J. G., Katz, L.,

Fulbright, R. K., & Pugh, K. R. (2005). A functional magnetic reso-

nance imaging study of the tradeoff between semantics and phonology

in reading aloud. Neuroreport, 16 (6), 621–624.

Gallistel, C. R. (2011). Prelinguistic thought. Language learning and develop-

ment, 7 (4), 253–262.



171

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The

mismatch negativity: A review of underlying mechanisms. Clinical neu-

rophysiology, 120 (3), 453–463.

Gibson, E. J. (1971). Perceptual learning and the theory of word perception.

Cognitive Psychology, 2 (4), 351–368.

Gilbert, C. D., Sigman, M., & Crist, R. E. (2001). The neural basis of percep-

tual learning. Neuron, 31 (5), 681–697.

Giraudo, H., Dal Maso, S., & Piccinin, S. (2016). The role of stem frequency

in morphological processing. Mediterranean morphology meetings, 10,

64–72.

Giraudo, H., & Voga, M. (2014). Measuring morphology: The tip of the ice-

berg? a retrospective on 10 years of morphological processing.

Giraudo, H., & Voga, M. (2016). Words matter more than morphemes: An

investigation of masked priming effects with complex words and non-

words. Italian Journal of Linguistics/Rivista di linguistica, 28, 49–78.

Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for highly selective

neuronal tuning to whole words in the “visual word form area”. Neuron,

62 (2), 199–204.

Gold, B. T., & Rastle, K. (2007). Neural correlates of morphological decomposi-

tion during visual word recognition. Journal of Cognitive Neuroscience,

19 (12), 1983–1993.

Goldstone, R. L. (1998). Perceptual learning. Annual review of psychology,

49 (1), 585–612.

Goodman, K. S. (1971). Decoding-from code to what? Journal of reading,

14 (7), 455–498.



172

Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in

reading acquisition: The intriguing case of crowding and developmental

dyslexia. Journal of vision, 15 (1), 8–8.

Grainger, J. (2008). Cracking the orthographic code: An introduction. Lan-

guage and cognitive processes, 23 (1), 1–35.

Grainger, J. (2018). Orthographic processing: A ‘mid-level’vision of reading:

The 44th sir frederic bartlett lecture. Quarterly Journal of Experimental

Psychology, 71 (2), 335–359.

Grainger, J., Bertrand, D., Lété, B., Beyersmann, E., & Ziegler, J. C. (2016).

A developmental investigation of the first-letter advantage. Journal of

Experimental Child Psychology, 152, 161–172.

Grainger, J., & Beyersmann, E. (2017). Edge-aligned embedded word activa-

tion initiates morpho-orthographic segmentation. Psychology of learn-

ing and motivation (pp. 285–317). Elsevier.

Grainger, J., & Beyersmann, E. (2020). Effects of lexicality and pseudo-mor-

phological complexity on embedded word priming. Journal of Experi-

mental Psychology: Learning, Memory, and Cognition.

Grainger, J., Dufau, S. et al. (2012). The front-end of visual word recognition.

Visual word recognition, 1, 159–184.

Grainger, J., Dufau, S., Montant, M., Ziegler, J. C., & Fagot, J. (2012). Or-

thographic processing in baboons (papio papio). Science, 336 (6078),

245–248.

Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in

Cognitive Sciences, 20 (3), 171–179.

Grainger, J., & Hannagan, T. (2014). What is special about orthographic pro-

cessing? Written Language & Literacy, 17 (2), 225–252.



173

Grainger, J., & Jacobs, A. M. (1994). A dual read-out model of word context

effects in letter perception: Further investigations of the word superior-

ity effect. Journal of Experimental Psychology: Human Perception and

Performance, 20 (6), 1158.

Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word

recognition: A multiple read-out model. Psychological review, 103 (3),

518.

Grainger, J., & Ziegler, J. (2011). A dual-route approach to orthographic pro-

cessing. Frontiers in psychology, 2, 54.

Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2009). Positional averaging

explains crowding with letter-like stimuli. Proceedings of the National

Academy of Sciences, 106 (31), 13130–13135.

Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain:

Neural models of stimulus-specific effects. Trends in cognitive sciences,

10 (1), 14–23.

Gu, J., & Li, X. (2015). The effects of character transposition within and across

words in chinese reading. Attention, Perception, & Psychophysics, 77 (1),

272–281.

Günther, F., & Marelli, M. (2020). Trying to make it work: Compositional

effects in the processing of compound “nonwords”. Quarterly Journal of

Experimental Psychology, 73 (7), 1082–1091.

Haber, R. N., & Standing, L. (1969). Location of errors with a post-stimulus

indicator. Psychonomic Science, 17 (6), 345–346.

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of

the brain: Minimum norm estimates. Medical & biological engineering

& computing, 32 (1), 35–42.



174

Harrison, W. J., & Bex, P. J. (2017). Visual crowding is a combination of an

increase of positional uncertainty, source confusion, and featural aver-

aging. Scientific reports, 7 (1), 1–9.

Hasenäcker, J., Beyersmann, E., & Schroeder, S. (2016). Masked morpholog-

ical priming in german-speaking adults and children: Evidence from

response time distributions. Frontiers in Psychology, 7, 929.

Hasenäcker, J., Beyersmann, E., & Schroeder, S. (2020). Morphological priming

in children: Disentangling the effects of school-grade and reading skill.

Scientific Studies of Reading, 1–16.

Hasenäcker, J., Ktori, M., & Crepaldi, D. (2021). Morpheme position coding

in reading development as explored with a letter search task. Journal

of cognition, 4 (1).

Heathcote, L., Nation, K., Castles, A., & Beyersmann, E. (2018). Do ‘blacheap’

and ‘subcheap’ both prime ‘cheap’? An investigation of morphemic sta-

tus and position in early visual word processing. Quarterly Journal of

Experimental Psychology, 71 (8), 1645–1654.

Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & De Lange, F. P. (2020).

Word contexts enhance the neural representation of individual letters

in early visual cortex. Nature communications, 11 (1), 1–11.

Hellige, J. B., & Michimata, C. (1989). Visual laterality for letter comparison:

Effects of stimulus factors, response factors, and metacontrol. Bulletin

of the Psychonomic Society, 27 (5), 441–444.

Henson, R., Rylands, A., Ross, E., Vuilleumeir, P., & Rugg, M. D. (2004).

The effect of repetition lag on electrophysiological and haemodynamic

correlates of visual object priming. Neuroimage, 21 (4), 1674–1689.



175

Herzog, M. H., Sayim, B., Chicherov, V., & Manassi, M. (2015). Crowding,

grouping, and object recognition: A matter of appearance. Journal of

vision, 15 (6), 5–5.

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A.,

Scheibe, S., & Hothorn, M. T. (2016). Package ‘multcomp’. Simultane-

ous inference in general parametric models. Project for Statistical Com-

puting, Vienna, Austria.

Hsu, H. J., Tomblin, J. B., & Christiansen, M. H. (2014). Impaired statisti-

cal learning of non-adjacent dependencies in adolescents with specific

language impairment. Frontiers in psychology, 5, 175.

Huang, M., Mosher, J. C., & Leahy, R. (1999). A sensor-weighted overlapping-

sphere head model and exhaustive head model comparison for meg.

Physics in Medicine & Biology, 44 (2), 423.

Huckauf, A., & Nazir, T. A. (2007). How odgcrnwi becomes crowding: Stimulus-

specific learning reduces crowding. Journal of Vision, 7 (2), 18–18.

Huey, E. B. (1908). The psychology and pedagogy of reading: With a review of

the history of reading and writing and of methods, texts, and hygiene

in reading.

Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time

task: Access to separable statistical cues by individual learners. Journal

of Experimental Psychology: General, 130 (4), 658.

Hyönä, J., Niemi, P., & Underwood, G. (1989). Reading long words embedded

in sentences: Informativeness of word halves affects eye movements.

Journal of Experimental Psychology: Human Perception and Perfor-

mance, 15 (1), 142.



176

Ischebeck, A., Indefrey, P., Usui, N., Nose, I., Hellwig, F., & Taira, M. (2004).

Reading in a regular orthography: An fmri study investigating the role

of visual familiarity. Journal of Cognitive Neuroscience, 16 (5), 727–741.

Jacobs, A. M., & Grainger, J. (1992). Testing a semistochastic variant of

the interactive activation model in different word recognition experi-

ments. Journal of Experimental Psychology: Human perception and per-

formance, 18 (4), 1174.

Jacobs, A. M., Rey, A., Ziegler, J. C., & Grainger, J. (2013). Mrom-p: An inter-

active activation, multiple readout model of orthographic and phono-

logical processes in visual word recognition. Localist connectionist ap-

proaches to human cognition (pp. 157–198). Psychology Press.

Jacques, C., Retter, T. L., & Rossion, B. (2016). A single glance at natural

face images generate larger and qualitatively different category-selective

spatio-temporal signatures than other ecologically-relevant categories in

the human brain. NeuroImage, 137, 21–33.

Jeon, S. T., Hamid, J., Maurer, D., & Lewis, T. L. (2010). Developmental

changes during childhood in single-letter acuity and its crowding by

surrounding contours. Journal of experimental child psychology, 107 (4),

423–437.

Johnson, R. L., Perea, M., & Rayner, K. (2007). Transposed-letter effects in

reading: Evidence from eye movements and parafoveal preview. Jour-

nal of Experimental Psychology: Human Perception and Performance,

33 (1), 209.

Jonsson, J. E., & Hellige, J. B. (1986). Lateralized effects of blurring: A test of

the visual spatial frequency model of cerebral hemisphere asymmetry.

Neuropsychologia, 24 (3), 351–362.



177

Jutten, C., & Herault, J. (1991). Blind separation of sources, part i: An adap-

tive algorithm based on neuromimetic architecture. Signal processing,

24 (1), 1–10.

Karpicke, J. D., & Pisoni, D. B. (2004). Using immediate memory span. Mem-

ory & cognition, 32 (6), 956–964.

Keller, T. A., Carpenter, P. A., & Just, M. A. (2001). The neural bases of

sentence comprehension: A fmri examination of syntactic and lexical

processing. Cerebral cortex, 11 (3), 223–237.

Kennedy, A., Heller, D., Pynte, J., & Radach, R. (2000). Traces of print along

the visual pathway. Reading as a perceptual process (pp. 39–56). Else-

vier.

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The british lexicon

project: Lexical decision data for 28,730 monosyllabic and disyllabic

english words. Behavior research methods, 44 (1), 287–304.

Kimura, M., Schröger, E., & Czigler, I. (2011). Visual mismatch negativity

and its importance in visual cognitive sciences. Neuroreport, 22 (14),

669–673.

Kinoshita, S., & Lupker, S. J. (2004). Masked priming: The state of the art.

Psychology Press.

Kinoshita, S., & Norris, D. (2009). Transposed-letter priming of prelexical or-

thographic representations. Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition, 35 (1), 1.

Kinoshita, S., Yu, L., Verdonschot, R. G., & Norris, D. (2021). Letter identity

and visual similarity in the processing of diacritic letters. Memory &

Cognition, 49 (4), 815–825.



178

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical

learning in infancy: Evidence for a domain general learning mechanism.

Cognition, 83 (2), B35–B42.

Kóbor, A., Janacsek, K., Takács, Á., & Nemeth, D. (2017). Statistical learn-

ing leads to persistent memory: Evidence for one-year consolidation.

Scientific reports, 7 (1), 1–10.

Koelsch, S., Busch, T., Jentschke, S., & Rohrmeier, M. (2016). Under the

hood of statistical learning: A statistical mmn reflects the magnitude of

transitional probabilities in auditory sequences. Scientific reports, 6 (1),

1–11.

Kohn, A. (2007). Visual adaptation: Physiology, mechanisms, and functional

benefits. Journal of neurophysiology, 97 (5), 3155–3164.

Kronbichler, M., Bergmann, J., Hutzler, F., Staffen, W., Mair, A., Ladurner,

G., & Wimmer, H. (2007). Taxi vs. taksi: On orthographic word recog-

nition in the left ventral occipitotemporal cortex. Journal of cognitive

neuroscience, 19 (10), 1584–1594.

Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner,

G. (2004). The visual word form area and the frequency with which

words are encountered: Evidence from a parametric fmri study. Neu-

roimage, 21 (3), 946–953.

Kronbichler, M., Klackl, J., Richlan, F., Schurz, M., Staffen, W., Ladurner, G.,

& Wimmer, H. (2009). On the functional neuroanatomy of visual word

processing: Effects of case and letter deviance. Journal of Cognitive

Neuroscience, 21 (2), 222–229.

Krueger, L. E. (1975). The word-superiority effect: Is its locus visual-spatial

or verbal? Bulletin of the Psychonomic Society, 6 (5), 465–468.



179

Ktori, M., & Pitchford, N. J. (2008). Effect of orthographic transparency on

letter position encoding: A comparison of greek and english monoscrip-

tal and biscriptal readers. Language and Cognitive Processes, 23 (2),

258–281.

Kuo, W.-J., Yeh, T.-C., Lee, C.-Y., Wu, Y.-T., Chou, C.-C., Ho, L.-T., Hung,

D. L., Tzeng, O. J., & Hsieh, J.-C. (2003). Frequency effects of chinese

character processing in the brain: An event-related fmri study. Neu-

roimage, 18 (3), 720–730.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). Lmertest pack-

age: Tests in linear mixed effects models. Journal of statistical software,

82 (13), 1–26.

Kwon, M., Legge, G. E., & Dubbels, B. R. (2007). Developmental changes in

the visual span for reading. Vision research, 47 (22), 2889–2900.

Lavric, A., Elchlepp, H., & Rastle, K. (2012). Tracking hierarchical process-

ing in morphological decomposition with brain potentials. Journal of

Experimental Psychology: Human Perception and Performance, 38 (4),

811.

Lee, A. L., Liu, Z., & Lu, H. (2021). Parts beget parts: Bootstrapping hierarchi-

cal object representations through visual statistical learning. Cognition,

209, 104515.

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A

practical course. Cambridge university press.

Lehtonen, M., Monahan, P. J., & Poeppel, D. (2011). Evidence for early mor-

phological decomposition: Combining masked priming with magnetoen-

cephalography. Journal of cognitive neuroscience, 23 (11), 3366–3379.



180

Lelonkiewicz, J. R., Ktori, M., & Crepaldi, D. (2020). Morphemes as letter

chunks: Discovering affixes through visual regularities. Journal of Mem-

ory and language, 115, 104152.

Leminen, A., Jakonen, S., Leminen, M., Mäkelä, J. P., & Lehtonen, M. (2016).

Neural mechanisms underlying word-and phrase-level morphological pars-

ing. Journal of Neurolinguistics, 38, 26–41.

Leminen, A., Leminen, M., Kujala, T., & Shtyrov, Y. (2013). Neural dynamics

of inflectional and derivational morphology processing in the human

brain. Cortex, 49 (10), 2758–2771.

Leminen, A., Smolka, E., Dunabeitia, J. A., & Pliatsikas, C. (2019). Morpho-

logical processing in the brain: The good (inflection), the bad (deriva-

tion) and the ugly (compounding). cortex, 116, 4–44.

Lengyel, G., Nagy, M., & Fiser, J. (2021). Statistically defined visual chunks

engage object-based attention. Nature communications, 12 (1), 1–12.

Lengyel, G., Žalalytė, G., Pantelides, A., Ingram, J. N., Fiser, J., Lengyel,

M., & Wolpert, D. M. (2019). Unimodal statistical learning produces

multimodal object-like representations. Elife, 8, e43942.

Lenth, R. (2019). Emmeans: Estimated marginal means, aka least-square means.

R package version, 1 (4), 2.

Leppink, J., O’sullivan, P., & Winston, K. (2017). Evidence against vs. in

favour of a null hypothesis. Perspectives on medical education, 6 (2),

115.

Levi, D. M. (2008). Crowding—an essential bottleneck for object recognition:

A mini-review. Vision research, 48 (5), 635–654.

Lewis, G., Solomyak, O., & Marantz, A. (2011). The neural basis of obligatory

decomposition of suffixed words. Brain and language, 118 (3), 118–127.



181

Lin, S.-E., Chen, H.-C., Zhao, J., Li, S., He, S., & Weng, X.-C. (2011). Left-

lateralized n170 response to unpronounceable pseudo but not false chi-

nese characters—the key role of orthography. Neuroscience, 190, 200–

206.

Liu-Shuang, J., Norcia, A. M., & Rossion, B. (2014). An objective index of

individual face discrimination in the right occipito-temporal cortex by

means of fast periodic oddball stimulation. Neuropsychologia, 52, 57–

72.

Liu-Shuang, J., Torfs, K., & Rossion, B. (2016). An objective electrophysiolog-

ical marker of face individualisation impairment in acquired prosopag-

nosia with fast periodic visual stimulation. Neuropsychologia, 83, 100–

113.

Lobier, M., Dubois, M., & Valdois, S. (2013). The role of visual processing

speed in reading speed development. PloS one, 8 (4), e58097.

Lochy, A., Jacques, C., Maillard, L., Colnat-Coulbois, S., Rossion, B., & Jonas,

J. (2018). Selective visual representation of letters and words in the left

ventral occipito-temporal cortex with intracerebral recordings. Proceed-

ings of the National Academy of Sciences, 115 (32), E7595–E7604.

Lochy, A., Van Belle, G., & Rossion, B. (2015). A robust index of lexical

representation in the left occipito-temporal cortex as evidenced by eeg

responses to fast periodic visual stimulation. Neuropsychologia, 66, 18–

31.

Lochy, A., Van Reybroeck, M., & Rossion, B. (2016). Left cortical specializa-

tion for visual letter strings predicts rudimentary knowledge of letter-

sound association in preschoolers. Proceedings of the National Academy

of Sciences, 113 (30), 8544–8549.



182

Longtin, C.-M., & Meunier, F. (2005). Morphological decomposition in early

visual word processing. Journal of Memory and Language, 53 (1), 26–

41.

Longtin, C.-M., Segui, J., & Hallé, P. A. (2003). Morphological priming without

morphological relationship. Language and cognitive processes, 18 (3),

313–334.

Manassi, M., & Whitney, D. (2018). Multi-level crowding and the paradox of

object recognition in clutter. Current Biology, 28 (3), R127–R133.

Marcet, A., Ghukasyan, H., Fernández-López, M., & Perea, M. (2020). Jalapeno

or jalapeño: Do diacritics in consonant letters modulate visual similar-

ity effects during word recognition? Applied Psycholinguistics, 41 (3),

579–593.

Marelli, M., Amenta, S., & Crepaldi, D. (2015). Semantic transparency in free

stems: The effect of orthography-semantics consistency on word recogni-

tion. Quarterly Journal of Experimental Psychology, 68 (8), 1571–1583.

Marelli, M., Amenta, S., Morone, E. A., & Crepaldi, D. (2013). Meaning is

in the beholder’s eye: Morpho-semantic effects in masked priming. Psy-

chonomic bulletin & review, 20 (3), 534–541.

Marelli, M., & Baroni, M. (2015). Affixation in semantic space: Modeling mor-

pheme meanings with compositional distributional semantics. Psycho-

logical review, 122 (3), 485.

Marino, C., Bernard, C., & Gervain, J. (2020). Word frequency is a cue to

lexical category for 8-month-old infants. Current Biology.

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of eeg-

and meg-data. Journal of neuroscience methods, 164 (1), 177–190.



183

Mason, M. (1975). Reading ability and letter search time: Effects of ortho-

graphic structure defined by single-letter positional frequency. Journal

of Experimental Psychology: General, 104 (2), 146.

Mason, M. (1978). From print to sound in mature readers as a function of

reader ability and two forms of orthographic regularity. Memory & Cog-

nition, 6 (5), 568–581.

Mason, M. (1982). Recognition time for letters and nonletters: Effects of se-

rial position, array size, and processing order. Journal of Experimental

Psychology: Human Perception and Performance, 8 (5), 724.

Mason, M., & Katz, L. (1976). Visual processing of nonlinguistic strings: Re-

dundancy effects and reading ability. Journal of Experimental Psychol-

ogy: General, 105 (4), 338.

Massaro, D. W., Jastrzembski, J. E., & Lucas, P. A. (1981). Frequency, or-

thographic regularity, and lexical status in letter and word perception.

Psychology of learning and motivation (pp. 163–200). Elsevier.

Masson, M. E., & Bodner, G. E. (2003). A retrospective view of masked prim-

ing: Toward a unified account of masked and long-term repetition prim-

ing. Masked priming: The state of the art, 57–94.

Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning in

infants: Facilitation and feature generalization. Developmental science,

11 (1), 122–134.

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional

information can affect phonetic discrimination. Cognition, 82 (3), B101–

B111.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model

of context effects in letter perception: I. an account of basic findings.

Psychological review, 88 (5), 375.



184

McConkie, G. W., Kerr, P. W., Reddix, M. D., Zola, D., & Jacobs, A. M.

(1989). Eye movement control during reading: Ii. frequency of refixating

a word. Perception & Psychophysics, 46 (3), 245–253.

McCormick, S. F., Brysbaert, M., & Rastle, K. (2009). Short article: Is morpho-

logical decomposition limited to low-frequency words? Quarterly Jour-

nal of Experimental Psychology, 62 (9), 1706–1715.

McDonald, S. A., & Shillcock, R. C. (2003). Low-level predictive inference in

reading: The influence of transitional probabilities on eye movements.

Vision Research, 43 (16), 1735–1751.

Medvedovsky, M., Taulu, S., Bikmullina, R., Ahonen, A., & Paetau, R. (2009).

Fine tuning the correlation limit of spatio-temporal signal space sepa-

ration for magnetoencephalography. Journal of neuroscience methods,

177 (1), 203–211.

Merikle, P. M., Lowe, D. G., & Coltheart, M. (1971). Familiarity and method of

report as determinants of tachistoscopic performance. Canadian Jour-

nal of Psychology/Revue canadienne de psychologie, 25 (2), 167.

Michimata, C., & Hellige, J. B. (1987). Effects of blurring and stimulus size

on the lateralized processing of nonverbal stimuli. Neuropsychologia,

25 (2), 397–407.

Mirman, D., & Magnuson, J. S. (2009). Dynamics of activation of semantically

similar concepts during spoken word recognition. Memory & cognition,

37 (7), 1026–1039.

Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects of frequency on

visual word recognition tasks: Where are they? Journal of Experimental

Psychology: General, 118 (1), 43.

Montani, V., Chanoine, V., Stoianov, I. P., Grainger, J., & Ziegler, J. C. (2019).

Steady state visual evoked potentials in reading aloud: Effects of lexical-



185

ity, frequency and orthographic familiarity. Brain and Language, 192,

1–14.

Montani, V., Facoetti, A., & Zorzi, M. (2015). The effect of decreased in-

terletter spacing on orthographic processing. Psychonomic Bulletin &

Review, 22 (3), 824–832.

Morey, R. D., Rouder, J. N., & Jamil, T. (2015). Bayesfactor: Computation of

bayes factors for common designs. r package version 0.9. 12-2.

Morgan, E., Fogel, A., Nair, A., & Patel, A. D. (2019). Statistical learning and

gestalt-like principles predict melodic expectations. Cognition, 189, 23–

34.

Morris, J., Porter, J. H., Grainger, J., & Holcomb, P. J. (2011). Effects of

lexical status and morphological complexity in masked priming: An erp

study. Language and cognitive processes, 26 (4-6), 558–599.

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch

negativity (mmn) in basic research of central auditory processing: A

review. Clinical neurophysiology, 118 (12), 2544–2590.

Nazir, T. A., Ben-Boutayab, N., Decoppet, N., Deutsch, A., & Frost, R. (2004).

Reading habits, perceptual learning, and recognition of printed words.

Brain and language, 88 (3), 294–311.

Nazir, T. A., & Huckauf, A. (2007). The visual skill “reading”. Single-word

reading (pp. 39–56). Psychology Press.

New, B., & Grainger, J. (2011). On letter frequency effects. Acta Psychologica,

138 (2), 322–328.

Newport, E. L. (2016). Statistical language learning: Computational, matura-

tional, and linguistic constraints. Language and Cognition, 8 (3), 447–

461.



186

Newport, E. L., & Aslin, R. N. (2004). Learning at a distance i. statistical learn-

ing of non-adjacent dependencies. Cognitive psychology, 48 (2), 127–162.

Nickerson, R. S. (1965). Response times for “same”-“different” judgments. Per-

ceptual and Motor Skills, 20 (1), 15–18.

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B.

(2015). The steady-state visual evoked potential in vision research: A

review. Journal of vision, 15 (6), 4–4.

Obleser, J., Boecker, H., Drzezga, A., Haslinger, B., Hennenlotter, A., Roet-

tinger, M., Eulitz, C., & Rauschecker, J. P. (2006). Vowel sound ex-

traction in anterior superior temporal cortex. Human brain mapping,

27 (7), 562–571.

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). Fieldtrip: Open

source software for advanced analysis of meg, eeg, and invasive electro-

physiological data. Computational intelligence and neuroscience, 2011.

Osborne, J. (2010). Improving your data transformations: Applying the box-

cox transformation. Practical Assessment, Research, and Evaluation,

15 (1), 12.

Owsowitz, S. E. (1943). The effects of word familiarity and letter structure fa-

miliarity on the perception of words (tech. rep.). RAND CORP SANTA

MONICA CA.

Paap, K. R., Newsome, S. L., & Noel, R. W. (1984). Word shape’s in poor

shape for the race to the lexicon. Journal of Experimental Psychology:

Human perception and performance, 10 (3), 413.

Pacton, S., Fayol, M., Nys, M., & Peereman, R. (2019). Implicit statistical

learning of graphotactic knowledge and lexical orthographic acquisition.

Spelling and writing words (pp. 41–66). Brill.



187

Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learn-

ing out of the lab: The case of orthographic regularities. Journal of

experimental psychology: General, 130 (3), 401.

Pammer, K., Hansen, P. C., Kringelbach, M. L., Holliday, I., Barnes, G., Hille-

brand, A., Singh, K. D., & Cornelissen, P. L. (2004). Visual word recog-

nition: The first half second. Neuroimage, 22 (4), 1819–1825.

Pelli, D. G., Farell, B., & Moore, D. C. (2003). The remarkable inefficiency of

word recognition. Nature, 423 (6941), 752–756.

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary

masking: Distinguishing feature integration from detection. Journal of

vision, 4 (12), 12–12.

Pelli, D. G., & Tillman, K. A. (2007). Parts, wholes, and context in reading:

A triple dissociation. PLoS One, 2 (8), e680.

Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J.

(2007). Crowding and eccentricity determine reading rate. Journal of

vision, 7 (2), 20–20.

Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Learning in reverse: Eight-

month-old infants track backward transitional probabilities. Cognition,

113 (2), 244–247.

Peña, M., Bonatti, L. L., Nespor, M., & Mehler, J. (2002). Signal-driven com-

putations in speech processing. Science, 298 (5593), 604–607.

Perea, M., Abu Mallouh, R., & Carreiras, M. (2010). The search for an input-

coding scheme: Transposed-letter priming in arabic. Psychonomic Bul-

letin & Review, 17 (3), 375–380.

Perea, M., & Acha, J. (2009). Does letter position coding depend on conso-

nant/vowel status? evidence with the masked priming technique. Acta

Psychologica, 130 (2), 127–137.



188

Perea, M., Fernández-López, M., & Marcet, A. (2020). What is the letter é?

Scientific Studies of Reading, 24 (5), 434–443.

Perea, M., Gomez, P., & Baciero, A. (2022). Do diacritics entail an early pro-

cessing cost in the absence of abstract representations? evidence from

masked priming in english.

Perea, M., Jiménez, M., Talero, F., & López-Cañada, S. (2015). Letter-case

information and the identification of brand names. British Journal of

Psychology, 106 (1), 162–173.

Perea, M., Moret-Tatay, C., & Gómez, P. (2011). The effects of interletter

spacing in visual-word recognition. Acta psychologica, 137 (3), 345–351.

Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects

of inter-letter spacing in visual-word recognition: Evidence with young

normal readers and developmental dyslexics. Learning and Instruction,

22 (6), 420–430.

Perea, M., & Rosa, E. (2002). Does “whole-word shape” play a role in visual

word recognition? Perception & psychophysics, 64 (5), 785–794.

Perruchet, P. (2019). What mechanisms underlie implicit statistical learning?

transitional probabilities versus chunks in language learning. Topics in

cognitive science, 11 (3), 520–535.

Perruchet, P., & Desaulty, S. (2008). A role for backward transitional proba-

bilities in word segmentation? Memory & cognition, 36 (7), 1299–1305.

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning:

One phenomenon, two approaches. Trends in cognitive sciences, 10 (5),

233–238.

Perruchet, P., Tyler, M. D., Galland, N., & Peereman, R. (2004). Learning non-

adjacent dependencies: No need for algebraic-like computations. Jour-

nal of Experimental Psychology: General, 133 (4), 573.



189

Pinel, P., & Dehaene, S. (2010). Beyond hemispheric dominance: Brain regions

underlying the joint lateralization of language and arithmetic to the left

hemisphere. Journal of Cognitive Neuroscience, 22 (1), 48–66.

Pitchford, N. J., Ledgeway, T., & Masterson, J. (2008). Effect of orthographic

processes on letter position encoding. Journal of Research in Reading,

31 (1), 97–116.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996).

Understanding normal and impaired word reading: Computational prin-

ciples in quasi-regular domains. Psychology Press.

Preston, K. A. (1935). The speed of word perception and its relation to reading

ability. The Journal of General Psychology, 13 (1), 199–203.

Price, C. J. (2012). A review and synthesis of the first 20 years of pet and

fmri studies of heard speech, spoken language and reading. Neuroimage,

62 (2), 816–847.

Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area.

Neuroimage, 19 (3), 473–481.

Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral oc-

cipitotemporal contributions to reading. Trends in cognitive sciences,

15 (6), 246–253.

Price, C. J., McCrory, E., Noppeney, U., Mechelli, A., Moore, C., Biggio, N.,

& Devlin, J. T. (2006). How reading differs from object naming at the

neuronal level. Neuroimage, 29 (2), 643–648.

Price, C. J., Wise, R., & Frackowiak, R. (1996). Demonstrating the implicit

processing of visually presented words and pseudowords. Cerebral cor-

tex, 6 (1), 62–70.

Prinzmetal, W. (1992). The word-superiority effect does not require a t-scope.

Perception & Psychophysics, 51 (5), 473–484.



190

Proctor, R. W. (1981). A unified theory for matching-task phenomena. Psy-

chological Review, 88 (4), 291.

Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Dif-

ferential sensitivity of human visual cortex to faces, letterstrings, and

textures: A functional magnetic resonance imaging study. Journal of

neuroscience, 16 (16), 5205–5215.

Quian Quiroga, R., & Kreiman, G. (2010). Measuring sparseness in the brain:

Comment on bowers (2009).

Radtke, E. L., Martens, U., & Gruber, T. (2021). The steady-state visual

evoked potential (ssvep) reflects the activation of cortical object repre-

sentations: Evidence from semantic stimulus repetition. Experimental

Brain Research, 239 (2), 545–555.

Rajalingham, R., Kar, K., Sanghavi, S., Dehaene, S., & DiCarlo, J. J. (2020).

The inferior temporal cortex is a potential cortical precursor of or-

thographic processing in untrained monkeys. Nature communications,

11 (1), 1–13.

Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations as-

sociated with dyslexia predate reading onset. Neuroimage, 57 (3), 742–

749.

Rastle, K., & Coltheart, M. (2006). Is there serial processing in the reading

system; and are there local representations? In S. Andrews (Ed.), From

inkmarks to ideas: Current issues in lexical processing (pp. 3–24). Psy-

chology Press.

Rastle, K., Davis, M. H., Marslen-Wilson, W. D., & Tyler, L. K. (2000).

Morphological and semantic effects in visual word recognition: A time-

course study. Language and cognitive processes, 15 (4-5), 507–537.



191

Rastle, K., & Davis, M. H. (2003). Reading morphologically complex words.

Masked priming: The state of the art, 279–305.

Rastle, K., & Davis, M. H. (2008). Morphological decomposition based on the

analysis of orthography. Language and Cognitive Processes, 23 (7-8),

942–971.

Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother’s brothel:

Morpho-orthographic segmentation in visual word recognition. Psycho-

nomic bulletin & review, 11 (6), 1090–1098.

Rayner, K., White, S. J., & Liversedge, S. (2006). Raeding wrods with jubmled

lettres: There is a cost.

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of verbal

learning and verbal behavior, 6 (6), 855–863.

Regan, D. (1966). Some characteristics of average steady-state and transient

responses evoked by modulated light. Electroencephalography and clin-

ical neurophysiology, 20 (3), 238–248.

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness

of stimulus material. Journal of experimental psychology, 81 (2), 275.

Retter, T. L., Jiang, F., Webster, M. A., & Rossion, B. (2018). Dissociable

effects of inter-stimulus interval and presentation duration on rapid face

categorization. Vision research, 145, 11–20.

Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and

spatio-temporal dynamics of natural image categorization in a fast vi-

sual stream. Neuropsychologia, 91, 9–28.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recogni-

tion in cortex. Nature neuroscience, 2 (11), 1019–1025.

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., Firth, D., &

Ripley, M. B. (2013). Package ‘mass’. Cran r, 538, 113–120.



192

Rolls, E. T. (2001). Functions of the primate temporal lobe cortical visual areas

in invariant visual object and face recognition. Vision: The Approach

of Biophysics and Neurosciences, 366–395.

Rosenholtz, R., Yu, D., & Keshvari, S. (2019). Challenges to pooling models of

crowding: Implications for visual mechanisms. Journal of vision, 19 (7),

15–15.

Rosenthal, O., Fusi, S., & Hochstein, S. (2001). Forming classes by stimulus

frequency: Behavior and theory. Proceedings of the National Academy

of Sciences, 98 (7), 4265–4270.

Rossion, B. (2014). Understanding individual face discrimination by means of

fast periodic visual stimulation. Experimental Brain Research, 232 (6),

1599–1621.

Rossion, B., Torfs, K., Jacques, C., & Liu-Shuang, J. (2015). Fast periodic

presentation of natural images reveals a robust face-selective electro-

physiological response in the human brain. Journal of vision, 15 (1),

18–18.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009).

Bayesian t tests for accepting and rejecting the null hypothesis. Psy-

chonomic bulletin & review, 16 (2), 225–237.

Roy, A. (2012). A theory of the brain: Localist representation is used widely

in the brain. Frontiers in psychology, 3, 551.

Rudell, A. P., & Hu, B. (2000). Behavioral and brain wave evidence for au-

tomatic processing of orthographically regular letter strings. Brain and

language, 75 (2), 137–152.

Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model

of context effects in letter perception: Ii. the contextual enhancement



193

effect and some tests and extensions of the model. Psychological review,

89 (1), 60.

Rumelhart, D. E., & Siple, P. (1974). Process of recognizing tachistoscopically

presented words. Psychological review, 81 (2), 99.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by

8-month-old infants. Science, 274 (5294), 1926–1928.

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical

learning of tone sequences by human infants and adults. Cognition,

70 (1), 27–52.

Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual

review of psychology, 69, 181–203.

Sanders, L. D., Newport, E. L., & Neville, H. J. (2002). Segmenting non-

sense: An event-elated potential index of perceived onsets in continuous

speech. Nature Neuroscience, 5 (7), 700–703.

Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across

species. Trends in Cognitive Sciences, 22 (1), 52–63.

Sawi, O. M., & Rueckl, J. (2019). Reading and the neurocognitive bases of

statistical learning. Scientific Studies of Reading, 23 (1), 8–23.

Scaltritti, M., & Balota, D. A. (2013). Are all letters really processed equally

and in parallel? further evidence of a robust first letter advantage. Acta

psychologica, 144 (2), 397–410.

Scaltritti, M., Dufau, S., & Grainger, J. (2018). Stimulus orientation and the

first-letter advantage. Acta psychologica, 183, 37–42.

Scarf, D., Boy, K., Reinert, A. U., Devine, J., Güntürkün, O., & Colombo, M.

(2016). Orthographic processing in pigeons (columba livia). Proceedings

of the National Academy of Sciences, 113 (40), 11272–11276.



194

Schmalz, X., Altoè, G., & Mulatti, C. (2017). Statistical learning and dyslexia:

A systematic review. Annals of Dyslexia, 67 (2), 147–162.

Schmalz, X., & Mulatti, C. (2017). Busting a myth with the bayes factor:

Effects of letter bigram frequency in visual lexical decision do not reflect

reading processes. The Mental Lexicon, 12 (2), 263–282.

Schubert, T. M., Cohen, T., & Fischer-Baum, S. (2020). Reading the written

language environment: Learning orthographic structure from statistical

regularities. Journal of Memory and Language, 114, 104148.

Schwantes, F. M. (1978). Stimulus position functions in tachistoscopic identi-

fication tasks: Scanning, rehearsal, and order of report. Perception &

Psychophysics, 23 (3), 219–226.

Seidenberg, M. S. (1987). Sublexical structures in visual word recognition:

Access units or orthographic redundancy?

Seidenberg, M. S. (2005). Connectionist models of word reading. Current di-

rections in psychological science, 14 (5), 238–242.

Sergent, J., & Hellige, J. B. (1986). Role of input factors in visual-field asym-

metries. Brain and Cognition, 5 (2), 174–199.

Siegelman, N., Bogaerts, L., Kronenfeld, O., & Frost, R. (2018). Redefining

“learning” in statistical learning: What does an online measure reveal

about the assimilation of visual regularities? Cognitive science, 42, 692–

727.

Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability:

Theoretical perspectives and empirical evidence. Journal of memory

and language, 81, 105–120.

Siegelman, N., Rueckl, J. G., Steacy, L. M., Frost, S. J., van den Bunt, M.,

Zevin, J. D., Seidenberg, M. S., Pugh, K. R., Compton, D. L., & Morris,

R. D. (2020). Individual differences in learning the regularities between



195

orthography, phonology and semantics predict early reading skills. Jour-

nal of memory and language, 114, 104145.

Sliwinska, M. W., James, A., & Devlin, J. T. (2015). Inferior parietal lobule

contributions to visual word recognition. Journal of Cognitive Neuro-

science, 27 (3), 593–604.

Sloan, L. L. (1951). Measurement of visual acuity: A critical review. AMA

archives of ophthalmology, 45 (6), 704–725.

Smith, F. (1969). The use of featural dependencies across letters in the visual

identification of words. Journal of Verbal Learning and Verbal Behavior,

8 (2), 215–218.

Snell, J., & Theeuwes, J. (2020). A story about statistical learning in a story:

Regularities impact eye movements during book reading. Journal of

Memory and Language, 113, 104127.

Sperlich, A., Meixner, J., & Laubrock, J. (2016). Development of the perceptual

span in reading: A longitudinal study. Journal of Experimental Child

Psychology, 146, 181–201.

Spoehr, K. T., & Smith, E. E. (1973). The role of syllables in perceptual

processing. Cognitive Psychology, 5 (1), 71–89.

Stacchi, L., Ramon, M., Lao, J., & Caldara, R. (2019). Neural representations

of faces are tuned to eye movements. Journal of Neuroscience, 39 (21),

4113–4123.

Stefanics, G., Astikainen, P., & Czigler, I. (2015). Visual mismatch negativity

(vmmn): A prediction error signal in the visual modality. Frontiers in

Human Neuroscience, 8, 1074.

Stefanics, G., Kremláček, J., & Czigler, I. (2014). Visual mismatch negativity:

A predictive coding view. Frontiers in human neuroscience, 8, 666.



196

Stein, J., & Fowler, S. (1981). Visual dyslexia. Trends in Neurosciences, 4,

77–80.

Stevens, M., & Grainger, J. (2003). Letter visibility and the viewing position

effect in visual word recognition. Perception & Psychophysics, 65 (1),

133–151.

Stothart, G., Quadflieg, S., & Milton, A. (2017). A fast and implicit measure

of semantic categorisation using steady state visual evoked potentials.

Neuropsychologia, 102, 11–18.

Stothart, G., & Smith, L. (2020). A new functional biomarker of cognitive im-

pairment in alzheimer’s disease: Neuroimaging/optimal neuroimaging

measures for early detection. Alzheimer’s & Dementia, 16, e041056.

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brain-

storm: A user-friendly application for meg/eeg analysis. Computational

intelligence and neuroscience, 2011.

Taft, M. (1979). Recognition of affixed words and the word frequency effect.

Memory & Cognition, 7 (4), 263–272.

Taft, M. (1986). Lexical access codes in visual and auditory word recognition.

Language and Cognitive Processes, 1 (4), 297–308.

Taft, M. (1992). The body of the boss: Subsyllabic units in the lexical process-

ing of polysyllabic words. Journal of Experimental Psychology: Human

Perception and Performance, 18 (4), 1004.

Taft, M. (1994). Interactive-activation as a framework for understanding mor-

phological processing. Language and cognitive processes, 9 (3), 271–294.

Taft, M. (2004). Morphological decomposition and the reverse base frequency

effect. The Quarterly Journal of Experimental Psychology Section A,

57 (4), 745–765.



197

Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed

words. Journal of verbal learning and verbal behavior, 14 (6), 638–647.

Taft, M., & Forster, K. I. (1976). Lexical storage and retrieval of polymor-

phemic and polysyllabic words. Journal of verbal learning and verbal

behavior, 15 (6), 607–620.

Taft, M., & Nguyen-Hoan, M. (2010). A sticky stick? the locus of morphological

representation in the lexicon. Language and Cognitive Processes, 25 (2),

277–296.

Taulu, S., & Hari, R. (2009). Removal of magnetoencephalographic artifacts

with temporal signal-space separation: Demonstration with single-trial

auditory-evoked responses. Human brain mapping, 30 (5), 1524–1534.

Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method

for rejecting nearby interference in meg measurements. Physics in Medicine

& Biology, 51 (7), 1759.

Taylor, J., Rastle, K., & Davis, M. H. (2013). Can cognitive models explain

brain activation during word and pseudoword reading? a meta-analysis

of 36 neuroimaging studies. Psychological bulletin, 139 (4), 766.

Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J.,

Felsovalyi, O., Girard, H., Barr, W., Devinsky, O., et al. (2012). Sequen-

tial then interactive processing of letters and words in the left fusiform

gyrus. Nature communications, 3 (1), 1–8.

Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction

and integration framework: A two-process account of statistical learn-

ing. Psychological bulletin, 139 (4), 792.

Townsend, J., Taylor, S., & Brown, D. (1971). Lateral masking for letters with

unlimited viewing time. Perception & Psychophysics, 10 (5), 375–378.



198

Treiman, R., Gordon, J., Boada, R., Peterson, R. L., & Pennington, B. F.

(2014). Statistical learning, letter reversals, and reading. Scientific Stud-

ies of Reading, 18 (6), 383–394.

Treiman, R., & Kessler, B. (2021). Statistical learning in word reading and

spelling across languages and writing systems. Scientific Studies of

Reading, 1–11.

Treisman, A., & Schmidt, H. (1982). Illusory conjunctions in the perception of

objects. Cognitive psychology, 14 (1), 107–141.

Tseng, H., Lindsay, S., & Davis, C. J. (2020). Semantic interpretability does

not influence masked priming effects.Quarterly Journal of Experimental

Psychology, 73 (6), 856–867.

Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of

visual statistical learning. Journal of Experimental Psychology: General,

134 (4), 552.

Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F.

(2003). Development of neural mechanisms for reading. Nature neuro-

science, 6 (7), 767–773.

Tydgat, I., & Grainger, J. (2009). Serial position effects in the identification of

letters, digits, and symbols. Journal of Experimental Psychology: Hu-

man Perception and Performance, 35 (2), 480.

Uppenkamp, S., Johnsrude, I. S., Norris, D., Marslen-Wilson, W., & Patterson,

R. D. (2006). Locating the initial stages of speech–sound processing in

human temporal cortex. Neuroimage, 31 (3), 1284–1296.

Van den Berg, R., Roerdink, J. B., & Cornelissen, F. W. (2010). A neuro-

physiologically plausible population code model for feature integration

explains visual crowding. PLoS computational biology, 6 (1), e1000646.



199

Van den Bussche, E., Van den Noortgate, W., & Reynvoet, B. (2009). Mecha-

nisms of masked priming: A meta-analysis. Psychological bulletin, 135 (3),

452.

Van der Donck, S., Dzhelyova, M., Vettori, S., Mahdi, S. S., Claes, P., Steyaert,

J., & Boets, B. (2020). Rapid neural categorization of angry and fearful

faces is specifically impaired in boys with autism spectrum disorder.

Journal of Child Psychology and Psychiatry.

van de Walle de Ghelcke, A., Rossion, B., Schiltz, C., & Lochy, A. (2020).

Impact of learning to read in a mixed approach on neural tuning to

words in beginning readers. Frontiers in psychology, 10, 3043.

Van Zandt, T., Colonius, H., & Proctor, R. W. (2000). A comparison of two

response time models applied to perceptual matching. Psychonomic

bulletin & review, 7 (2), 208–256.

Vankov, I. I., & Bowers, J. S. (2017). Do arbitrary input–output mappings in

parallel distributed processing networks require localist coding? Lan-

guage, Cognition and Neuroscience, 32 (3), 392–399.

Velan, H., & Frost, R. (2009). Transposition effects are not universal: The im-

pact of transposing letters in hebrew. Journal of Memory and Language,

61 (3), 285–302.

Verleger, R., Dittmer, M., & Śmigasiewicz, K. (2013). Cooperation or com-

petition of the two hemispheres in processing characters presented at

vertical midline. PloS one, 8 (2), e57421.

Verleger, R., Śmigasiewicz, K., & Möller, F. (2011). Mechanisms underlying

the left visual-field advantage in the dual stream rsvp task: Evidence

from n2pc, p3, and distractor-evoked veps. Psychophysiology, 48 (8),

1096–1106.



200

Vernet, M., Bellocchi, S., Leibnitz, L., Chaix, Y., & Ducrot, S. (2021). Pre-

dicting future poor readers from pre-reading visual skills: A longitudinal

study [PMID: 33730530]. Applied Neuropsychology: Child, 0 (0), 1–15.

https://doi.org/10.1080/21622965.2021.1895790

Vidal, C., & Chetail, F. (2017). Bacs: The brussels artificial character sets for

studies in cognitive psychology and neuroscience. Behavior Research

Methods, 49 (6), 2093–2112.

Vidal, Y., Viviani, E., Zoccolan, D., & Crepaldi, D. (2021). A general-purpose

mechanism of visual feature association in visual word identification

and beyond. Current Biology, 31 (6), 1261–1267.

Vigliocco, G., Warren, J., Siri, S., Arciuli, J., Scott, S., & Wise, R. (2006). The

role of semantics and grammatical class in the neural representation of

words. Cerebral Cortex, 16 (12), 1790–1796.

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L.

(2007). Hierarchical coding of letter strings in the ventral stream: Dis-

secting the inner organization of the visual word-form system. Neuron,

55 (1), 143–156.

von Koss Torkildsen, J., Arciuli, J., & Wie, O. B. (2019). Individual differ-

ences in statistical learning predict children’s reading ability in a semi-

transparent orthography. Learning and individual differences, 69, 60–

68.

Wang, F., Kaneshiro, B., Strauber, C. B., Hasak, L., Nguyen, Q. T. H., Yakovl-

eva, A., Vildavski, V. Y., Norcia, A. M., & McCandliss, B. D. (2021).

Distinct neural sources underlying visual word form processing as re-

vealed by steady state visual evoked potentials (ssvep). Scientific re-

ports, 11 (1), 1–15.



201

Warrington, E. K., & Shallice, T. (1980). Word-form dyslexia. Brain: a journal

of neurology, 103 (1), 99–112.

Weiss, Y., Katzir, T., & Bitan, T. (2015). Many ways to read your vow-

els—neural processing of diacritics and vowel letters in hebrew. Neu-

roImage, 121, 10–19.

Wertheim, T. (1894). Uber die indirekte sehscharfe. Zeitschrift fur Psychologie,

7, 172–187.

Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology,

1 (1), 59–85.

Whitney, C. (2001). How the brain encodes the order of letters in a printed

word: The seriol model and selective literature review. Psychonomic

Bulletin & Review, 8 (2), 221–243.

Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on

conscious perception and object recognition. Trends in cognitive sci-

ences, 15 (4), 160–168.

Wimmer, H., Ludersdorfer, P., Richlan, F., & Kronbichler, M. (2016). Visual

experience shapes orthographic representations in the visual word form

area. Psychological Science, 27 (9), 1240–1248.

Winskel, H., Ratitamkul, T., & Perea, M. (2018). Can the first letter advantage

be shaped by script-specific characteristics? Journal of Experimental

Psychology: Learning, Memory, and Cognition, 44 (3), 493.

Wydell, T. N., Vuorinen, T., Helenius, P., & Salmelin, R. (2003). Neural cor-

relates of letter-string length and lexicality during reading in a regular

orthography. Journal of Cognitive Neuroscience, 15 (7), 1052–1062.

Yablonski, M., & Ben-Shachar, M. (2016). The morpheme interference effect in

hebrew: A generalization across the verbal and nominal domains. The

Mental Lexicon, 11 (2), 277–307.



202

Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond coltheart’s n: A

new measure of orthographic similarity. Psychonomic bulletin & review,

15 (5), 971–979.

Zhao, L., Cosman, J. D., Vatterott, D. B., Gupta, P., & Vecera, S. P. (2014).

Visual statistical learning can drive object-based attentional selection.

Attention, Perception, & Psychophysics, 76 (8), 2240–2248.


	Acknowledgements
	Abstract
	General Introduction
	Part-based and Holistic Processes in Visual Word Identification
	Thriving on Regularities
	Statistical Learning and Domain-Generality in Visual Word Processing
	What (else) can Statistical Learning offer to Reading?
	Research Questions and Roadmap

	Study I: Letter Chunk Frequency in Morphological Masked Priming
	Experiment I: Materials and Methods
	Experiment I: Results
	Ad interim Discussion
	Experiment II: Materials and Methods
	Experiment II: Results
	Discussion

	Study II: Selective Neural Entrainment Reveals Hierarchical Tuning to Linguistic Regularities
	Materials and Methods
	Results
	Discussion

	Study III: Frequency-based Neural Discrimination in Fast Periodic Visual Stimulation
	Materials and Methods
	Results
	Discussion

	Study IV: Co-occurrence Statistics in Letter Identification
	Experiment I: Materials and Methods
	Experiment I: Results
	Experiment I: Discussion
	Experiment II: Materials and Methods
	Experiment II: Results
	Experiment II: Discussion
	Experiment III: Materials and Methods
	Experiment III: Results
	General Discussion

	General Discussion
	Summary of Findings
	Bundles of Regularity
	Looking Through a Prism: Methodological Notes
	Conclusions

	Appendices
	Appendix to Chapter 4
	Appendix to Chapter 5
	References

