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The recent discovery of materials featuring strong Rashba spin-orbit coupling (RSOC) and strong
electronic correlation raises questions about the interplay of Mott and Rashba physics. In this work,
we employ cluster perturbation theory to investigate the spectral properties of the two-dimensional
Hubbard model in the presence of a significant or large RSOC. We show that RSOC strongly favors
metallic phases and competes with Mott localization, leading to an unconventional scenario for the
Mott transition which is no longer controlled by the ratio between the Hubbard U and an effective
bandwidth. The results show a strong sensitivity to the value of the RSOC.

I. INTRODUCTION

The breaking of inversion symmetry has important
consequences on the properties of matter. Just to
mention few examples, it can lead to unconventional
superconducting pairing,1,2 it controls magnetic order-
ing at interfaces and surfaces,3 it rules the genera-
tion of spin currents,4–6 and it determines the lock-
ing of spin and quasi-momentum in metals with strong
Rashba coupling.7,8 Furthermore, inversion symmetry
breaking effects can be controlled and enhanced by mate-
rial engineering9–14 and gating.15,16 In a large class of ma-
terials and heterostructures,11,13,14,17 inversion symme-
try breaking and its effects coexist with electron-electron
correlation. This calls for a systematic study of the in-
terplay between these two effects, which, on one hand,
can help us to understand parity-violating phenomena in
actual solids where interactions are significant and on the
other, owing to the intrinsic tendency of correlated sys-
tems towards magnetic ordering, holds a huge potential
for the development of antiferromagnetic spintronics.18,19

Motivated by these findings, in the present work we fo-
cus on a well-known consequence of inversion symmetry
breaking, namely, Rashba spin-orbit coupling (RSOC),20

and we show that it significantly affects the physics of the
metallic and Mott insulating phases and, consequently of
the Mott transition connecting the Rashba metal and the
Mott insulator. In order to highlight the intrinsic corre-
lation effects, we will restrict to paramagnetic solutions
without magnetic ordering.

Previous works describing the interplay of RSOC and
electronic correlation were mainly focused on the mag-
netic phase diagram,21,22 on the investigation of topolog-
ical effects23,24 and on the properties of the associated
Fermi liquid.25,26 Ref.[21] demonstrates that RSOC fa-
vors the onset of a metallic phase at weak Hubbard in-
teraction and it modifies the magnetic structure of the
insulating phase, in qualitative agreement with a static
mean field approach.22

As a simple approach which allows to study the effects
of strong on-site interaction without spoiling the non-
abelian gauge structure induced by the SOC, we employ

cluster perturbation theory (CPT). The low-numerical
cost of this method allows us to scan a wide region of
parameters, ranging from the weakly correlated Rashba
metal to the Rashba-Mott insulator phase. We thus in-
vestigate two complementary aspects of the interplay of
Rashba SOC and electronic correlation. In the Mott insu-
lator phase, we show that, due to the breaking of SU(2)
spin symmetry, Rashba SOC yields a mixing of singlet
and triplet resonating valence bond (RVB) states possi-
bly opening a new screening channel of local interactions
related to the Pauli screening discussed in Ref. [27]. At
large Rashba coupling and strong interaction where the
system realizes a correlated metallic phase, we instead
demonstrate that the breaking of parity associated with
Rashba SOC enables two kinds of low-energy fermionic
excitations and it results in a pseudogap phase.
In both metallic and insulating phases we find that
RSOC counteracts localization effects, yielding qualita-
tive and quantitative modifications in the Mott transi-
tion. Our work thus hints at an enhancement of trans-
port in strongly correlated systems in the presence of
RSOC, opposite to what happens in weakly interact-
ing disordered Fermi gases.28–30 It can be therefore ex-
tremely relevant to account for the transport properties
of oxides heterostructures,31 surface alloys11 and polar
semiconductors.14,17,32 Furthermore it suggests the pos-
sibility of exploiting the tunability of Rashba spin-orbit
coupling to control transport in strongly correlated ma-
terials.

The paper is organized as follows. After describing
the model and the method in Section II, in Section III
we present our main results concerning the structure of
the spectrum and the density of states across the metal-
insulator transition. We then discuss the peculiarities
of the Rashba-Mott insulator in Section III A while in
section III B we focus on the correlated metallic phase.
Eventually in the Appendices we discuss technical details
on the method.
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FIG. 1: Plaquette tiling of the square lattic. Both intra and
inter plaquette tunneling include a standard spin-diagonal
and a spin dependent tunneling. Inter-plaquette tunneling
is treated perturbatively.

II. MODEL

We consider the following Rashba-Hubbard model

H = H0 +HU . (1)

where HU is the Hubbard interaction,

HU = U
∑
i

ni↑ni↓, (2)

while H0 can be written as the sum of a standard spin-
diagonal hopping and a spin-flip Rashba hopping term
between nearest-neighboring sites as follows

H0 = −t
∑
〈ij〉

c†i cj − tR
∑
〈ij〉

c†i (~αij × ~σ)zcj (3)

where we introduced the local spinor creation and anni-

hilation operators c†i and ci and we defined the vector
~αij = (αxij , α

y
ij) with αµij = i(δij+aµ − δij−aµ) where aµ is

the unitary translation in the µ direction.
We use cluster perturbation theory33,34 (CPT) as a

simple and computationally extremely cheap method
which is able to capture the competition between the in-
herently non-local physics described byH0 and the the lo-
cal interaction HU which drives the system towards Mott
localization.

Within this approach the lattice is partitioned into a
superlattice of identical clusters and the Green’s func-
tion G(ω,k) is computed solving exactly the cluster and,
treating the intercluster hopping perturbatively. Specifi-
cally, we use four-site plaquette clusters that, as stressed
in Ref.[27], are the minimal clusters where the non-
abelian gauge structure of Rashba coupling can emerge.
With this choice, our study encompasses the Pauli screen-
ing mechanism discussed in Ref.[27] and it preserves the
basic symmetries of the lattice.

We tile the lattice as shown in Fig. 1. and we decom-
pose the lattice vectors as ri = rm + ra where rm enu-
merates the plaquette superlattice sites (light-blue dots
in Fig. 1) and it refers to the position of the lowermost
left site of each plaquette while ra indicates the position
of the site in the plaquette. The Hamiltonian is thus
partitioned as follows:

H = Hloc + V (4)

where Hloc contains all the intra-cluster terms (diagonal
in the index m) including interaction while V accounts
for the interplaquette hopping. The matrix V and the
local Hamiltonian are defined to guarantee current con-
servation upon tunneling along x and y. In particular,
as schematically indicated by the blue and red arrows
in Fig. 1 tunneling in opposite directions yields opposite
spin rotations. More details on the partitioning are given
in Appendix A.

Following the route suggested e.g. in Ref. [34], we
perform a partial Fourier transformation with respect to
the cluster position indices describing the Hamiltonian
H in the mixed representation.
In this representation V can be recast as follows

V = −
∑
k,a,b

c†akT̃ab(k)cbk. (5)

where k belongs to the Brillouin zone of the original lat-
tice while the interplaquette hopping amplitude T̃ab(k)
is represented by a 2× 2 matrix spin space. The full in-
terplaquette hopping matrix has thus dimension 8 and it
can be written as follows

T̃ (k) =
(
e−2ikx(tσ0 + itRσy)⊗ τx

+e−2iky (tσ0 − itRσx)⊗ τy + H.c.
)

(6)

with the matrices τx and τy denoting forward unitary
translations in the x and y direction in the plaquette.
Starting from Eqs.(4-6) we obtain the following expres-
sion for the Green’s function of the lattice

G(ω,k) =
1

4

∑
a,b

g̃ab(ω,k)eik·(ra−rb) (7)

where a and b enumerate the sites in the plaquette and
g̃ab(ω,k) is a 2 × 2 matrix in spin-space denoting the
single-particle Green’s function of H to lowest order in
the interplaquette hopping V 35 i.e.

g̃(ω,k) =
[
g−1

loc(ω)− T̃ [k]
]−1

(8)

where gloc(ω) is the exact plaquette’s Green’s func-
tion. The overall structure of the spectrum can be
then deduced from the spectral function, A0(ω,k),
defined as A0(ω,k) = − 1

2π Im Tr [G(ω,k)] while the
spin-polarization of the states can be described us-
ing the spin-projected spectral function Aµ(ω,k) =
− 1

2π Im Tr [G(ω,k)σµ] with µ = x, y, z.
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FIG. 2: Evolution of the spectrum across the Mott transition along the axis kx, red and blue colors indicate positive and negative
y-polarization. Mott insulating phases for weak and strong spin-orbit are shown on the upper and lower leftmost panels while
metallic phases for, respectively, strong and weak interaction are shown on the rightmost panels. Specifically, upper panels,
(a-e), show Ay(ω,k) for tR ∈ [0, 2t] and U = 6t while lower panels, (f-j), show Ay(ω,k) for tR = 2t and U ∈ [16t, 2t].

III. METAL-INSULATOR TRANSITION IN THE
PRESENCE OF RASHBA SOC

We start by presenting the evolution of the spectrum
along two representative lines in the space of parame-
ters which cross the insulator-to-metal transition start-
ing from the insulating solution. In particular, the first
row of Fig.2 (Panels (a-e)) shows results for fixed U = 6t
and increasing values of the Rashba coupling tR, while
in the second row (Panels (f-j)) we fix a moderately
large value of the RSOC tR = 2t and we vary U rang-
ing from U = 16t to U = 2t. To trace the modifica-
tions and merging of the different bands we focus on the
structure of the spectrum along the line X ′-Γ-X, with
X = (π, 0), Γ = (0, 0) and X ′ = (−π, 0) and we plot the
σy-component of the spectral function, Ay(ω,k).

In the absence of RSOC (tR = 0), (Fig. 2a), CPT
yields a spectral functions featuring two well-defined
Hubbard bands along with two satellite bands, similar
results were obtained in Ref.[33] As we switch on a small
Rashba coupling, the Hubbard bands acquire an helical
structure, as shown in Fig. 2b and discussed in more
details in Appendix A. A further increase of tR then in-
duces a transition to a metallic state, (Fig.2(c-d)) and,
in the limit of large tR the spectrum strongly resembles
the non-interacting one Figs.2(e,i,j). Therefore, as tR

goes from 0.5t to 2t the system undergoes a transition
from a Mott insulator with spin-split Hubbard bands to
a Rashba metal despite the interaction is unchanged to
U = 6t.

On the other hand, if we start from a Rashba metal
with a large value of Rashba SOC, shown in Fig.2(h), and
we increase Hubbard interaction strength we can drive
the system towards an insulating phase, realized at large
tR and strong interaction, that differs significantly from
the weak-SOC Mott-insulator shown in Fig. 2(b). As
one can see in Fig. 2(f), where we show the spectral
function for U = 16t and tR = 2t, this strong-SOC in-
sulating phase is characterized by a flat spectrum with a
very weak k dependence. When U is reduced, the non-
interacting band-structure is recovered by merging the
outer branches of the two bands, i.e. the positive helic-
ity branch of the upper Hubbard band and the negative
helicity branch of the lower Hubbard band. The inner
branches progressively disappear across the transition as
shown in Fig. 2(f-j).

A. Mott-Rashba insulators

To elucidate the nature of the insulating phases real-
ized at small and large tR we recall that while at tR = 0
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FIG. 3: (a) Local and non-local magnetization as defined by
Eqs.(11-12) as a function of tR for U = 8t. (b)Red line:
Mott gap as a function of the ratio tR/t shown on the lower
horizontal scale for U = 8t. Blue line: Mott gap for tR = 0,
U = 8t and a diagonal tunneling amplitude teff , shown on the
upper horizontal scale.

Lieb’s theorem36 prescribes zero total magnetic moment,
i.e.

〈S2〉 = 〈S2
x + S2

y + S2
z 〉 = 0 (9)

with Sµ =
∑
i c
†
iσ
µci, at tR 6= 0 the breaking of the

SU(2) spin symmetry removes the constraint on S2 that
acquires a finite value. It is then useful to cast the average
squared magnetization, m2 = 〈S2〉/L, where L is the
number of sites, as the sum of a local and a non-local
contribution,

m2 = m2
loc +m2

nonloc. (10)

In the above equation m2
loc quantifies the local magnetic

moment and it can be easily related to the average double
occupancy, d = 1/L

∑
i〈ni↑ni↓〉 and to the density per

site n,

m2
loc =

1

L

∑
µ,i

〈(c†iσ
µci)

2〉 = 3(n− 2d) (11)

while m2
nonloc characterizes the spin-spin correlation be-

tween different sites:

m2
nonloc =

1

L

∑
µ,i6=j

〈(c†iσ
µci)(c

†
jσ
µcj)〉. (12)

From Eqs. (11) and (12) it follows that in the stan-
dard Hubbard model with tR = 0 the decrease of the
double occupancy driven by the interaction is unavoid-
ably associated to the creation of negative non-local
spin correlations; the constraint m2 = 0 indeed implies
m2

nonloc = −m2
loc. On the other hand, the presence of

a finite Rashba coupling removes the constraint m2 = 0
and it allows m2

nonloc and m2
loc to vary independently.

This is clearly shown in Fig.3(a) where we plot the
local and non-local magnetization as well as their sum,
approximated using the single-cluster ground-state, as a

function of tR/t for U = 8t. There are two fundamen-
tally different regimes: the first, realized at small tR, is
characterized by m2

nonloc < 0 corresponding to predomi-
nant antiferromagnetic (AF) correlations, in this regime
we recover the standard result 〈S2〉 = 0 at tR = 0, the
second regime, realized at large tR, is instead charac-
terized by m2

nonloc & 0 indicating predominantly helical
(HL) correlations.38

A natural question that arises here is whether the onset
of the HL regime affects the metal-insulator transition.
To answer this question, in Fig.3(b) we plot the Mott
gap as a function of tR/t for U = 8t and we compare it
with the gap of a Hubbard model having the same band-
width but no RSOC, i.e. with a standard square lattice
Hubbard model having an effective spin-diagonal hopping
amplitude, teff =

√
t+ t2R/2.39 We see that the onset of

the HL regime brings about a change in the behavior of
the Mott gap that becomes strongly sensitive to the ratio
of tR/t and it falls rapidly to zero. On the contrary, in
the absence of Rashba SOC, we obtain a much weaker
dependence on the ratio U/teff . Including dynamic cor-
relations neglected by CPT, or increasing the cluster size
will probably reduce the gap but it will not qualitatively
modify its behavior, as briefly outlined in Appendix A 3.
These results suggest that the metal-insulator transition
is then not simply driven by the decrease of the dou-
ble occupancy, controlled by the ratio U/teff , but it also
depends on the strength and nature of non-local spin
correlations. Further evidences in this direction may
be found in appendix B where we compare the effects
Rashba coupling and of next-nearest-neighbour tunnel-
ing on the charge gap. There we show that, although
the latter kind of hopping destroys the nesting and re-
duces the density of states at the Fermi level, its overall
effect on the charge gap is rather different from that of
RSOC for moderate and large values. The presence of
Rashba spin-orbit coupling thus seems to favor metal-
lic phases and to introduce new screening mechanisms.
A somewhat similar situation is realized in the presence
of Hund’s coupling in multiorbital systems where more
than one orbital is available on every lattice site. Here the
role of non-local spin correlations is played by the orbital
magnetization.40 Our analysis also shows that the effect
of Rashba coupling differs from that of an external con-
stant magnetic field despite a superficial similarity. In
this simpler case, the total magnetic moment increases
as a function of the magnetic field strength, mostly due
to an increase of the local magnetization, while Rashba
SOC instead mostly affects the non-local magnetization.
This leads to a basic and important difference in the limit
of very large couplings. Obviously very large magnetic
fields drive the system towards a band insulator41 while
a very large Rashba SOC leads to a semimetallic state,
as we discuss in more details in the following Section.

Before proceeding further let us add a technical re-
mark. We extract the gap from the density of states.
In order to obtain a numerical estimate, we use twice
the energy of the first point where the density of states
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FIG. 4: Evolution of the spectral function A0(ω,k) across
the Mott transition for tR = 2t and U ∈ [4t, 16t], Lorentzian
broadening η = 0.1t in the spectral function plots and η =
0.25t in the DOS plots. The red arrows in panels (a,d) signal
rifts in the spectral function and the corresponding peaks in
the DOS.

changes curvature from positive to negative (the factor
two comes from the symmetry around zero energy of the
DOS). As one can easily understand by looking at Fig.4
for each value of tR, this procedure yields the “true” gap
and not the pseudogap.

B. Correlated Rashba metal

As one can see in Fig.2(d,h), a peculiarity of the Mott
transition in the presence of Rashba SOC is that at the
transition the spectrum remains ungapped around the
X and Y = (0, π) points while a pseudogap appears
around Γ and M = (π, π) points in the first Brillouin
zone. This behavior can be qualitatively understood con-
sidering that the Rashba spin-orbit coupling introduces
Fermi-level Dirac crossings at the X and Y points. Low-
energy fermions with momentum close to the X and Y
points therefore behave as nodal fermions and they are
more robust to interaction effects as compared to the

FIG. 5: Spin-polarized spectral function, Ay(ω,k), at the
Fermi level, ω = 0, for tR = 2t andU = 0 (left) and tR =
2t andU = 8t (right).

standard fermions present around Γ and M points.

Signatures of the presence of two kinds of fermionic
quasi-particles behavior may be also found in the den-
sity of states shown in Fig.4. There we see that in the
weakly correlated phase, shown in Fig.4(a), the spec-
trum bears strong similarities with the non-interacting
one. In particular, due to the presence of Rashba cou-
pling, the Van Hove singularity at ω = 0 characteristic
of two-dimensional square lattices is split into two peaks
separated by an energy E0 = 4t(

√
1 + t2R/t

2−1). At the
same time two additional van-Hove singularities appear
at the band edges with a distance proportional to the
non-interacting bandwidth W0 = 8t

√
1 + t2R/(2t

2). The
signatures of correlation, in this case, are the transfer
of spectral weight at large ω associated with spin-wave
excitations and the appearance of rifts at the points Γ
and M yielding the two small peaks close to the Fermi
level indicated with a red arrow in Fig. 4(a). As we in-
crease interaction, the rifts evolve into a pseudogap (Fig.
4(b)) and two additional peaks appear associated with
the opening of the gap at the points X and Y . This
intermediate regime is characterized by a Fermi surface
shown in Fig. 5 consisting of two circles centered at the
Γ and M points with two additional pockets appearing
at the points X and Y and displaying a complex spin
texture reminiscent of that recently found in Ref.[42].

Fig. 4(c) shows the DOS in the insulating phase. In
this phase the four-peak structure characteristic of the
non-interacting Rashba metal on the square lattice is re-
produced in each of the two Hubbard bands. However,
the changes in the bands dispersion induced by Hubbard
interaction, clearly visible in Fig. 4(c), demonstrate a
non-trivial renormalization of the different contributions
to the kinetic energy. We notice that cluster-Dynamical
Mean-Field Theory studies of the two-dimensional Hub-
bard models have shown similar physics where the inter-
actions give rise to different renormalizations of nearest-
neighbor and further-range hoppings, leading to renor-
malizations of the Fermi surface43 and appearance of the
pseudogap and the superconducting gap44.
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IV. CONCLUSIONS

In this manuscript we have studied the interplay be-
tween a sizable Rashba spin-orbit coupling and Hubbard-
like local interactions in a two-dimensional lattice model.
We find that the presence of RSOC deeply affects the
Mott transition and it has two crucial effects: (i) it makes
local and non-local magnetization independent, in con-
trast with the pure Hubbard model, where the formation
of large local magnetic moments leads to negative non-
local spin correlations and (ii) it introduces robust nodal
quasiparticles. As a consequence, the RSOC strongly
favors metallic phases, turning a Mott insulator into a
Rashba metal through a transition which can not be de-
scribed in terms of an effective standard Hubbard model
with a renormalized kinetic term. The spectral prop-
erties reveal different mechanism in which the insulator
transforms into a metal and underline a strong sensitivity
of the spectral and transport properties on the value of
the ratio between the RSOC and the standard hopping
amplitude. Our results provide the community with sim-
ple and practical information about the strong effect of
the spin-orbit coupling on Mott localization, which can
be used as the cornerstone for the study of systems fea-
turing simultaneously large RSOC and large Hubbard U
and as guidelines to tune and tailor the properties of these
systems. To be concrete, let us discuss in more detail the
connection with two recent experimental works which are
pioneering the field of strongly correlated Rashba sys-
tems, reported in Refs. [11] and [42].

In Ref.[11] Tresca et al. investigate the 1/3 monolayer
α-Pb/Si(111) by scanning tunneling microscopy finding a
metallic ground state in sharp contrast to what happens
e.g. in Sn on Si(111) that is a Mott insulator.45 By de-
tailed first principle calculations including on equal foot-
ing relativistic and correlation effects they show that a
peculiar feature of the former system is the strong spin-
orbit coupling. Despite our simple single-band square-
lattice Rashba-Hubbard model cannot fully describe the
complexity of α-Pb/Si(111), a simple analysis of the re-
sults of Ref.[11] shows that their parameters are in a
regime where Pauli screening is relevant. Surface-band
electrons indeed experience a very strong Hubbard inter-
action and a significant spin-orbit splitting of about 25%
of the bandwidth which in our model would correspond
to tR ∼ 1.5t.

In Ref. [42], the author unveil the spin-texture of the
Fermi surface of the cuprate superconductor Bi2212 by
spin-resolved ARPES. We already noticed that a similar
spin-texture arises within our model.

The present work also triggers a number of interest-
ing questions concerning the effects of inversion sym-
metry breaking and Rashba spin-orbit coupling on su-
perconductivity in strongly correlated systems. In fact,
while it is well-known that Rashba coupling may enhance
electron-phonon superconductivity46 the effects of spin-
orbit coupling on high-Tc and unconventional supercon-
ductors are still to a large extent unknown2.
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Appendix A: Cluster perturbation theory in the
presence of Rashba spin-orbit coupling

The general idea of cluster perturbation theory34,47

(CPT) is to construct an approximate solution for inter-
acting lattice models starting from the exact solution of
individual clusters of sites by means of a perturbation
theory in the intercluster hopping.

This statement already contains essential information
concerning CPT, i.e. (i) it is a perturbation theory in
the hopping and as such it is delicate since the reference
system is interacting; (ii) it is controlled to some extent
by the cluster size, Lc, since it becomes trivially exact
in the limit Lc → ∞ and, as shown e.g. in Ref.[48] it
reduces to the Hubbard I approximation for Lc = 1.

The derivation of CPT equations can be done in several
ways by means of diagrammatic perturbation theory49 or
path integral approaches.47 Here we briefly outline the
path integral derivation illustrating the differences aris-
ing due to the presence of Rashba spin-orbit coupling8,20

(SOC).

1. Model and Hamiltonian partitioning

The model is described by the following Hamiltonian:

H = H0 +HU (A1)

where HU denotes the Hubbard interaction,

HU = U
∑
i

ni↑ni↓ (A2)

while H0 indicates the non-interacting Hamiltonian and
it includes a spin-diagonal hopping proportional to t and
a spin-dependent hopping quantified by tR associated
with Rashba spin-orbit coupling. Introducing the spinor

creation and annihilation operators c†i = (c†i↑, c
†
i↓) and

ci = (ci↑, ci↓), the Hamiltonian H0 can be cast al follows

H0 =
∑
ij

c†i [t σ0∆ij + tR(~αij × ~σ)z] cj (A3)

where i enumerates the sites of 2D square lattice, Zγ , ~σ
denotes the vector of Pauli matrices, ~α =

(
αxij , α

y
ij , 0

)
and
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αµij = i(δij+ηµ − δij−ηµ) and ∆ij =
∑
µ(δij+ηµ + δij−ηµ)

with ηx and ηy denoting the unit vectors (1,0) and (0,1).
The first step to construct a CPT consists in tiling

the lattice with small clusters whose Hamiltonian can be
diagonalized exactly. As clusters we use 2×2 plaquettes:
this choice has preserves the symmetries of the lattice and
allows to easily account for the chiral structure of Rashba
SOC. Furthermore, thanks to the small clusters size, it
allows the investigation of a wide region of parameters
with small computational efforts.

The clusters superlattice, ZΓ, is defined by decompos-
ing the vectors of the original lattice, Zγ , as follows

ri = rm + ra (A4)

where rm denotes the position of the lowermost left site
of each plaquette while ra indicates the position of the
site inside the plaquette. Therefore, rm = (mx ax,my ay)
with mx and my even numbers and ra = (βx ax, βy ay)
with βx, βy ∈ [0, 1] and aµ denote the primitive lattice
vectors.

Using the map defined in Eq.(A4) we can easily rewrite
the hopping Hamiltonian as follows:

H0 = −
∑

m,n,a,b

c†am Tam,bn cbn. (A5)

where Tam,bn = T xam,bn+T yam,bn is a matrix in spin-space
that describes the hopping of one electron from site b of
cluster n to site a of cluster m. The structure of the
hopping matrix, Tam,bn, can be most easily understood
by looking at Fig.6. There we see that, given the map
defined in Eq.(A4), forward (backward) interplaquette
tunneling is associated with backward (forward) transla-
tion of the intracluster indices. In the presence of Rashba
SOC this leads to the following expression for the tun-
neling along x

T xam,bn=(δm,n+2ηxδa,b−ηx + δm,nδa,b+ηx)[tσ0 + i tRσy]+

+ (δm,n−2ηxδa,b+ηx + δm,nδa,b−ηx) [tσ0 − i tRσy]

(A6)

and for the tunneling along y

T yam,bn=
(
δm,n+2ηyδa,b−ηy + δm,nδa,b+ηy

)
[tσ0 − i tRσx]+

+
(
δm,n−2ηyδa,b+ηy + δm,nδa,b−ηy

)
[tσ0 + i tRσx].

(A7)

Starting from the above equations it is straightforward
to partition the Hamiltonian as

H = Hloc + V̂ (A8)

where V describes the inter-cluster hopping while Hloc

contains all intra-cluster terms.
Specifically, arranging the creation and annihilation

operators on a given cluster in a vectorial form, V̂ can
be written as

V̂ = −
∑
m6=n

C†m Vm,n Cn (A9)

0,1 1,1

1,00,0

0,1 1,1

1,00,0

FIG. 6: The solid and dotted lines show examples of forward
intra- and inter- plaquette tunneling along x.

with Vm,n = V xm,n + V ym,n and e.g. V xm,n given by

V xm,n = δm,n−2ηxτ
+
x ⊗ (tσ0 − i tRσy) +

+δm,n+2ηxτ
−
x ⊗ (tσ0 + i tRσy) (A10)

where τ+
µ (τ−µ ) denote a single-site forward (backward)

translation in the µ direction of the intra-cluster indices.
Similarly, Hloc can be cast as

Hloc = −
∑
m

C†mT
′ Cm +HU (A11)

with

T ′ = τ+
x ⊗ (tσ0 + i tRσy) + τ−x ⊗ (tσ0 − i tRσy) +

+τ+
y ⊗ (tσ0 − i tRσx) + τ−y ⊗ (tσ0 + tRσx). (A12)

From the above equations we see that the presence of
Rashba coupling leads to a redefinition of the local Hamil-
tonian and of the inter-cluster hopping. Both these terms
acquire a spinorial structure and are described by matri-
ces of dimension 2Lc where Lc denotes the cluster size.

2. Path integral derivation of CPT equations

The purpose of this section is to present a schematic
derivation of the CPT relation between cluster and lat-
tice Green’s functions, Eq. (7-8) of section II, using a
path integral approach.
We start by introducing the vectors of Grassman fields
Γm and Γ∗m corresponding to the vectors of fermion op-
erators Cm and C†m and we write the partition function
as

Z =

∫
D(Γ∗m,Γm) exp

[
−
∫ β

0

(
Γ∗m∂τΓm +Hloc

)
dτ
]
·

· exp
[∫ β

0

Γ∗m Vmn Γndτ
]

(A13)

where we follow the notation of Ref.[50] and the sum over
repeated indices in the exponent is implied. Following the
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route outlined in Refs.[34,47,48], we perform a Grass-
mannian Hubbard-Stratonovich transformation and re-
cast the partition function as a Gaussian integral over

the auxiliary Grassman fields, Ψm and Ψ∗m. By doing so
we obtain

Z = detV

∫
D(Γ∗m,Γm)D(Ψ∗m,Ψm) exp

[
−
∫ β

0

(
Γ∗n∂τΓn +Hloc

)
dτ
]

exp
[∫ β

0

(
Ψ∗m V

−1
mn Ψn + Ψ∗nΓn + Γ∗nΨn

)
dτ
]
.

(A14)

We see that the Γ-fields action is completely local, this
allows to factorize the Γ-integral and arrive at the follow-
ing expression for the partition function

Z = detV Z0

∫
D(Ψ∗m,Ψm) exp

[∫ β

0

Ψ∗m V
−1
mn Ψndτ

]
·

· exp
[∑
m

Sm(Ψ∗m,Ψm)
]

(A15)

where Z0 = Πmz
0
m denotes the local partition function,

i.e. z0
m =

∫
D(ΓΓ∗)e−Sloc with Sloc =

∫ β
0

(
Γ∗n∂τΓn +

Hloc

)
dτ , while Sm(Ψ∗m,Ψm) is defined as follows

Sm(Ψ∗m,Ψm) = log
(〈
e−

∫ β
0

(Ψ∗mΓm+Γ∗mΨm)dτ
〉
0

)
(A16)

where the subscript 0 indicates averages with a local
statistical weight 〈. . .〉0 = 1/Z0

∫
D(ΓΓ∗) . . . e−Sloc(Γ,Γ∗).

Starting from Eq.(A16) and expanding the exponential
yields a complicate interacting theory for the auxiliary
fields: CPT consists in keeping only the first order of
this expansion setting

Sm(Ψ∗m,Ψm)'−
∫ β

0

dτ1dτ2 ψ
∗
m(τ1)Gloc(τ1 − τ2)ψm(τ2)

(A17)
where Gloc(τ1 − τ2) denotes the cluster Green’s function
and it is a matrix in the cluster-site and spin indices.
Using Eq. (A17), switching to Matsubara frequencies
and introducing appropriate source fields, we can easily
derive the following relations:

GCPT = V −1 + V −1GauxV
−1 (A18)

where Gaux and GCPT denote the Ψ’s and Γ’s Green’s
functions. Eventually, using Gaux = −(V −1 +Gloc)−1 we
get the fundamental equation of CPT for the electronic
Green’s function:

GCPT = (G−1
loc + V )−1. (A19)

3. Lattice spectral function

Up to this point spin-indices played the same role as
cluster-site indices and the effect of Rashba coupling was
considered only in the partitioning of the Hamiltonian.

The spin structure of the Green’s function becomes rel-
evant again when we use CPT to extract physical infor-
mation on the lattice ground-state.

Before proceeding further we notice that for single-
site cluster the above expression reduces to Hubbard I
approximation for the single-particle Green’s function.
Within this approximation the self-energy is independent
of spin and momentum and the interacting spectrum con-
sists of four bands with dispersion

ξklν =
U + Ekl + ν

√
U2 + E2

kl

2
(A20)

where the index ν = ± identifies the upper and lower
Hubbard band while the index λ = ± indicates the helic-
ity with Ekλ denoting the dispersion of the helical bands
in the absence of interaction,

Ekl = ε0(k) + 2λtR

√
sin2 kx + sin2 ky, (A21)

where we defined ε0(k) = −2t [cos(kx) + cos(ky)] and we
set ax = ay = 1.

For finite-size clusters, the different components of the
Green’s function GCPT are identified by three pairs of
indices, (m,n), (a, b) and (σ, σ′), referring respectively
to the position of the cluster and the position and the
spin of the electron in the cluster. In order to arrive
to a practical expression for the spectral function of the
original lattice model starting from GCPT , we switch to
momentum space, setting

ĜCPT(k,k′) =
1

L

∑
a,b,m,n

GCPT e
i(k(rm+ra)−k′(rn+rb))

(A22)
where k and k′ belong to the Brillouin zone of Zγ . Since
CPT preserves the superlattice periodicity, the sum over
m,n is straightforward and it yields:

G(k,k′) =
1

Lc

∑
a,b

∑
K

δ(k− k′ −K)g(ω,k) ei(k ra−k′ rb)

(A23)
where K belongs to the reciprocal superlattice and
g(ω,k) is the CPT Green’s function in the mixed rep-
resentation defined by Eq. (8) of Section II.
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FIG. 7: (a) Spectral function, A0, of the Hamiltonian H ob-
tained from CPT for tR = 0.5t, U = 8t and small Lorentzian
broadening η = 0.1t plotted as a function of energy and
momentum across the high-symmetry points: Γ = (0, 0),
M = (π, π), X = (π, 0), X ′ = (−π, 0). (b) Spectral function
obtained from the strong coupling expansion (Eq.(A20)) (c-g)
Spin-resolved components of the spectral function along the
axis kx, A±(ω,k) = A0(ω,k) ± Ay(ω,k), for different values
of ω. Parameters values as in (a).

Following Ref.[34], we eventually restore the period-
icity of the original lattice by keeping only terms with
k = k′ thus defining the Green’s function as

Gσσ′(ω,k) =
1

Lc

∑
a,b

gab σσ′(ω,k)eik(ra−rb) (A24)

where we restored the spin indices. Comparing Eqs.(A23)
and (A24), one realizes that the periodization prescrip-
tion of Ref.34 can be interpreted as neglecting Umklapp
scattering on the cluster superlattice.

A preliminary understanding of the effects included in
CPT can be gained by looking at Fig. 7(a-b) where we
compare the CPT spectral function, A0(ω,k) to that ob-
tained using the Hubbard I approximation, AHI

0 (ω,k),
the latter yields a good qualitative description of the
overall structure of the spectrum at small tR/t, but, fea-
turing a local spin-independent self-energy, it does not
capture the dependence of the spectral weights on k and
on the spin. We notice that in the large U small tR
limit, a weak spin-orbit coupling induces a finite heli-
cal spin-polarization in the paramagnetic Mott insulator.
This is apparent in Fig. 7(c-g), where we plot the spin-
resolved spectral function, A±(ω,k), at different energies
for ky = 0 and kx ∈ [−π, π]. For these k-values the RSOC
behaves as an effective k-dependent magnetic field point-
ing along the y axis and the Green’s function can be easily

��� ��� ��� ���
���
���
���
���
���
���
���
���

��/�

ρ

ρ� ���
�

��ρ�

(�)

� � �� ��

�/�

ρ� ���
�

(�)

FIG. 8: (a) Bond-charge and spin-current as a function of tR/t
for U = 15t, the dashed line represents the product ρctR. (b)
Bond-charge and spin-current as a function of U for tR = 1.2t

diagonalized yielding A±(ω,k) = A0(ω,k)±Ay(ω,k) for
the two helicities.

We remark that, for the standard Hubbard model,
a variety of papers have shown that CPT gives a
proper account of the most important features of the
model. In spite of the small clusters size, the plaquette-
perturbation-theory approach used in the present work
yields results for the gap that approximately agree with
those found using larger 4x4 cluster, see e.g. Refs.
[52,53].

It is interesting to note that the choice of squared clus-
ters and the periodization scheme proposed in Eq. (A24),
preserving the symmetries of the original square lattice,
correctly yield a vanishing spin-Hall current, i.e.

jzs =

∫
dω
∑
k

Tr [A(ω,k)σz] sin(kaµ) = 0 (A25)

with A(ω,k) denoting the spin-dependent spectral func-
tion Aσσ′(ω,k) = −1/πIm [Gσσ′(ω,k)]. The bond-
charge, ρc,

ρc =
∑
k

∫
A0(ω,k) cos(kx)dω,

and the in-plane equilibrium spin-current,37 jsxy,

jsxy = − 1

2π

∑
k

∫ ∞
−∞

Im [Tr [G(ω,k) sin(kx)σy]] dω,

have instead a non-trivial dependence on U and tR
as we show in Fig. 8(a-b). We see that in the AF
phase jsxy grows linearly as a function of tR while the
bond-charge is roughly constant, for a certain value of
tR corresponding to jsxy = ρc, the system undergoes
the AF-HL transition. The transition yields a strong
reduction of the bond charge and a strong increase of
the spin-current, indeed due to Pauli principle standard
tunneling is suppressed by ferromagnetic correlations
while Rashba tunneling is enhanced.
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FIG. 9: (a) Local, non-local and total single-cluster magnetic
moment at U = 8t, tR = 0 as a function of next-nearest-
neighbor tunneling. (b) Spectral gap at U = 8t in the ex-
tended Hubbard model and in the Rashba-Hubbard model.
The value U = 8t is chosen to have the transition in the
Rashba-Hubbard model around tR ∼ t.

Appendix B: Rashba versus next-nearest neighbor
tunneling

In this appendix, we elucidate the peculiarity of
Rashba SOC as compared to next-nearest neighbor tun-
neling, focusing in particular on the behavior of the
charge gap. We thus replace the RSOC term in Hamilto-
nian H0,(Eq.(3)) with a next-nearest-neighbor term de-
fined as

HNN = −t′
∑
〈〈ij〉〉

(c†iσcjσ +H.c.)

and we use CPT to calculate the spectral function and
the charge gap. At a mean field level, Rashba spin-
orbit coupling and next-nearest neighbor tunneling, t′,
have indeed similar consequences on the density of states
of electrons in a two-dimensional square lattice. Both
these single-particle terms, break the perfect nesting of
the Fermi surface shifting the van Hove singularity its
usual location. They also have similar effects on the
ground-state of a single plaquette. Indeed, while for a
standard Hubbard Hamiltonian, at finite U and t, the
plaquette’s ground state has d-symmetry, in the presence
of Rashba spin-orbit coupling27 or next-nearest neighbors
tunneling,51 it undergoes a transition to a state with s-
symmetry.

In spite of these similarities, CPT yields very different
spectral properties for the Rashba-Hubbard model and
the Hubbard model with next-nearest-neighbor tunnel-
ing.

In particular, as shown in Figure 9(a) t′ has a weak
effect on the magnetic moment of the plaquette and the
non-local magnetization remain always negative indicat-
ing AF correlation. By looking at the gap behavior, we
can distinguish two regimes: in the first regime t′ has
roughly the same effect of tR; this is the regime where
the ground state of the Rashba-Hubbard model is mostly
a singlet. In the second regime, for t′ > t the bandwidth
of the extended Hubbard model starts to increase with
increasing t′, as one can see, however this has a much
weaker effect on the gap as compared to the screening
induced by RSOC in the triplet ground-state.
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