
Master in High Performance Computing

Solving non-linear chemical equations for
gas cooling with GPU offloading using

OpenACC

Supervisor(s):

Ivan Girotto,
Umberto Maio,
Luca Tornatore

Candidate:

Avinash Anand

7th edition
2020–2021



Contents

Abstract 3

Acknowledgment 3

1 Introduction 4

1.1 Chemical reactions and kinetic rate equations . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Heating and cooling of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Time-stepping in the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Coding implementation 11

2.1 Original code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Code refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Result validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 GPU offloading of the revised code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Performance optimization of GPU offloading . . . . . . . . . . . . . . . . . . . 19

2.3.2 Profiling the GPU offloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Benchmark and performance comparison 27

3.1 Performance trend with increasing number of particles . . . . . . . . . . . . . . . . . 27

3.2 Performance comparison on single node . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Performance scaling on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Optimal number of MPI processes per GPU . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Performance efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusion and future work 34

References 36

A List of initial parameter sets 37

2



Abstract

Simulation of cooling effects in a gaseous system involves solving a set of non-linear PDEs for
chemical reactions iteratively. The complexity and the computational requirement of the simulation
grow heavily as the number of particles and the number of cooling mechanisms is increased. Fortu-
nately, it is now possible to offload such simulations on a variety of scalable computing platforms.
In this work, we refactored an implementation of gas cooling in Gadget-2. We improved the im-
plementation further by enabling the offloading of computation on multiple GPUs using MPI and
OpenACC. Finally we performed a detailed comparative study of the code performance on x64 86
(Intel Xeon CPU), ppc64le (IBM Power9 CPU), Pascal (Nvidia P100 GPU) and Volta (Nvidia
V100 GPU) architecture based computing platforms.
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Chapter 1

Introduction

Microphysical phenomena that involve chemical reactions and hydrodynamics play important roles
in structure formation at small length and time scales. Heating and cooling of gas and variation
in free-electron densities due to chemical reactions are some of these. Such phenomena are more
effective when their time scales are much smaller than the dynamical time scales. For example,
when cooling is dominant over other microphysical processes and cooling time is longer than the
recombination time, the abundant free-electrons in primordial environment combines with neutral
hydrogen atoms, forming the H– ion. The H– ion further combines with hydrogen atoms to form
hydrogen molecules. The photon emitted in this process escapes if the gas cloud is optically thin.
So the overall effect is that the energy level excitation and de-excitation caused by atomic collisions
causes the conversion of thermal energy of the gas into radiative energy which escapes the medium,
hence cooling the system. Upon cooling over a long time, the clouds abundant in hydrogen molecules
collapse under gravitation leading to the formation of stars and other structures.

In this project, we are working on improving the implementation of the effect of gas cooling and
non-equilibrium chemistry in the Gadget-2[1] simulation, as originally done by Maio et al.[2] This
implementation uses different chemical reactions and their kinetic rate equations to compute the
temperature of the gas in different regimes. In order to accomplish our goal, we extracted the code
section that treats these physical processes from the entire code (which counts approximately 200k
lines) in order to be much more agile in testing and development.

In a typical cosmological simulation, like in Gadget-2, one cannot implement gas chemistry
model that follows individual atoms and molecules because of the limited computational resources.
So the different chemical species are modeled as constituents of the resolved baryon particles. While
the two baryon particles interact with each other by gravitational force, the chemical species corre-
sponding to them are considered as non-interacting.

Our improvement to the implementation is focused on code refactoring and GPU offloading using
OpenACCi. In the following sections, we will discuss briefly the chemical reactions with the corre-
sponding cooling functions and rate equations. The next chapter deals with coding implementation
and is followed by benchmarking.

iOpenACC website: https://www.openacc.org/
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1.1. CHEMICAL REACTIONS AND KINETIC RATE EQUATIONS

Index Chemical reaction Chemical process
1 H + e −−→ H+ + 2 e Hydrogen collisional ionization
2 H+ + e −−→ H + γ Hydrogen recombination
3 He + e −−→ He+ + 2 e Helium collisional ionization
4 He+ + e −−→ He + γ Helium recombination
5 He+ + e −−→ He++ + 2 e He+ collisional ionization
6 He++ + e −−→ He+ + γ He+ recombination
7 H + e −−→ H– + γ Photo-attachment
8 H– + H −−→ H2 + e H2 formation path
9 H + H+ −−→ H2

+ + γ H+ channel
10 H2

+ + H −−→ H2 + H+ H+ channel
11 H2 + H −−→ 3 H
12 H2 + H+ −−→ H2

+ + H
14 H2 + e −−→ 2 H + e Collisional dissociation
16 H– + e −−→ H + 2 e
17 H– + H −−→ 2 H + e
18 H– + H+ −−→ 2 H
19 H– + H+ −−→ H2

+ + e
20 H2

+ + e −−→ 2 H
21 H2

+ + H– −−→ H + H2

1a D + H2 −−→ HD + H
2a D+ + H2 −−→ HD + H+

3a HD + H −−→ D + H2

4a HD + H+ −−→ D+ + H2

5a H+ + D −−→ H + D+

6a H + D+ −−→ H+ + D
7a D+ + e −−→ D + γ Deuterium recombination
1b He + H+ −−→ HeH+ + γ
2b HeH+ + H −−→ He + H2

+

3b HeH+ + γ −−→ He + H+

Table 1.1: List of chemical reactions implemented in the code

1.1 Chemical reactions and kinetic rate equations

In the early universe, where the heavy atoms were not present, the primordial gas clouds were mainly
composed of H, D, He, and molecules based on them, like H2, and HD. These species, interact in
gaseous clouds via a complex series of chemical reactions, releasing energy in form of photons and
cooling the gaseous medium eventually.

To evaluate the change in energy by cooling, we need to quantify the effects of the chemical
reactions and the chemical abundance of the coolant species involved. For this purpose, a set of 28 self-
consistent chemical reactions, accounting for the major collisional cooling processes was identified[2]

and is listed in table 1.1. In the code, we tracked the abundances of all subspecies that were involved
in these chemical reactions: e– , H, H+, He, He+, He++, H2, H2

+, H– , D, D+, HD and HeH+.
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1.1. CHEMICAL REACTIONS AND KINETIC RATE EQUATIONS

Let us consider the rate of change of population of an species i:

dni/dt = Ci −Dini (1.1)

where ni is the number density, t is the time period, Ci is the collective rate of formation and
Di is the coefficient for the collective rate of decomposition of ith species. We can further write
Ci =

∑∑
kpq,inpnq where the summation is over all the pairs of p and q species that combine to

produce the ith species at the temperature-dependent rate kpq,i . Similarly, Di =
∑
kijnj where

summation is over all the j species that interact with ith species leading to its decomposition at the
temperature-dependent rate kij.

We can discretize the eq.(1.1) using backward difference formula:

nt+∆t
i − nti

∆t
= Ct+∆t

i −Dt+∆t
i nt+∆t

i (1.2)

It allows us to update the number density of a species in advanced time step (t+∆t) using the values
from the previous step:

nt+∆t
i =

Ct+∆t
i ∆t+ nti

1 +Dt+∆t
i ∆t

(1.3)

Here the coefficients C and D are obtained from the rates of chemical reactions at time t+ ∆t.

We notice that since the concentration of H– and H2
– are very low, and since they do not much

affect the concentration of other abundant species, they can be considered in equilibrium throughout
the simulation. So for these two species, we can use the expression for number density derived from
the equilibrium formulation instead of eq. 1.3. Considering chemical equations 7, 8, 16, 17, 18 and
19 from table 1.1, we can write the equilibrium concentration of H– as

nH− =
k7nHne

(k8 + k17)nH + (k18 + k19)nH+ + k16ne
(1.4)

where ki is the rate of ith chemical reaction from table 1.1. Similarly, considering chemical equations
9, 12, 19, 2b, 10, 20 and 21 from table 1.1, we can write the equilibrium concentration of H2

+ as

nH+
2

=
k9nHnH+ + k12nH2nH+ + k19nH−nH+ + k2bnHeH+nH

k10nH + k20ne + k21nH−
(1.5)

Since the equation (1.3) for all the species is inter-dependent we can update the concentration
of all the species either all at the same step or sequentially. In this project, we updated the species
abundances sequentially in the following order: H– , H2

+, H2, H, H+, He, He+, He++, HD, D, D+,
HeH+, e– .

While free electron is driving most of the equation, we must ensure that the time step in equation
(1.3) is smaller than the depletion time of free-electrons, telec.

telec = ne/ṅe (1.6)

This was done by setting the maximum allowed time step to δt = εtelec with ε < 1. This prevents
the abundance of free electron to become zero in a few iterations.
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1.2. HEATING AND COOLING OF GASES

1.2 Heating and cooling of gases

Now that we are equipped with the equations to solve the rate equations of the non-equilibrium
chemical reactions, we can proceed to evaluate the temperature and energy of the system and the
cooling rate. The internal energy per unit volume of the gaseous system is evaluated as

E =
P

γ − 1
=

kBT

γ − 1

∑
i

ni (1.7)

where P is the pressure, γ is adiabatic coefficient of the gas, kB is Boltzmann constant, T is tem-
perature, and the summation is over the number density ni of all the species present in the gas
cloud. Since the primordial gas clouds are dominated with monoatomic gases, we can safely assume
γ = 5/3. On the other hand, the rate of change in energy of the system per unit time and per unit
volume is given by

Ė = ĖCompton +
∑
(i,j)

Λijninj (1.8)

Here the ĖCompton is the heating rate due to Compton effect. The summation in the second term is
over all the interacting (i, j) pairs and Λij is the respective cooling function in erg cm3 s−1 which is a
temperature dependent quantity. The cooling mechanisms and the corresponding cooling rates that
we adopted, are listed below:

(a) Collisional excitation

Cooling by collisional excitation happens when a bounded electron in an atom jumps to a
higher energy state following a collision with another species, and then decays to the lower
energy state by emitting photon. We adopted the following cooling rates for this process from
Anninos et al.[3]:

Ėce,1 = 7.50× 10−19
(
1 +

√
T5

)−1 × exp(−118348/T )× nenH erg cm−3 s−1 (1.9)

Ėce,2 = 9.10× 10−27
(
1 +

√
T5

)−1
T−0.1687 × exp(−13179/T )× n2

enHe erg cm−3 s−1 (1.10)

Ėce,3 = 5.54× 10−17
(
1 +

√
T5

)−1
T−0.397 × exp(−473638/T )× nenHe+ erg cm−3 s−1 (1.11)

where the temperature T is in Kelvin, number densities are in cm−3, and T5 = T/105K.

(b) Collisional ionization

A moving species loses its energy when it knocks out a bounded electron from an atom followed
by a collision. The following cooling rates for the corresponding processes were taken from
Anninos et al.[3]:

Ėci,1 = 2.18× 10−11 k1 ne nH erg cm−3 s−1 (1.12)

Ėci,2 = 3.94× 10−11 k3 ne nHe erg cm−3 s−1 (1.13)

Ėci,3 = 8.72× 10−11 k5 ne nHe+ erg cm−3 s−1 (1.14)

Ėci,4 = 5.01× 10−27
(
1 +

√
T5

)−1
T−0.1687 × exp(−55338/T )× n2

enHe+ erg cm−3 s−1 (1.15)

where ki is the rate of ith chemical equation from table 1.1.
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1.2. HEATING AND COOLING OF GASES

(c) Recombination

Recombination happens when two ions combine to form one species while losing some of their
kinetic energy in the process. We used the following cooling rates for this process from Anninos
et al.[3]:

Ėre,1 =8.70× 10−27 × T 0.5T−0.2
3

(
1 + T 0.7

6

)−1
ne nH+ erg cm−3 s−1 (1.16)

Ėre,2 =1.55× 10−26 × T 0.3647ne nHe+ erg cm−3 s−1 (1.17)

Ėre,3 =1.24× 10−13 × T−1.5 [1 + 0.3× exp(−94000/T )]

× exp(−470000/T )× ne nHe+ erg cm−3 s−1 (1.18)

Ėre,4 =3.48× 10−26 × T 0.5T−0.2
3

(
1 + T 0.7

6

)−1
ne nHe++ erg cm−3 s−1 (1.19)

where Tn = T/10nK.

(d) Bremsstrahlung

A free electron loses its some of its kinetic energy as photons when it is accelerated under the
influence of the electric field of a nearby ion. This process is called Bremsstrahlung. Its cooling
rate is given by the following equation taken from Anninos et al.[3]:

Ėbrem =1.43× 10−27 × T 0.5 ×
[
1.1 + 0.34× exp

(
−(5.5− log10 T )2

3

)]
× (nH+ + nHe+ + nHe++)ne erg cm−3 s−1 (1.20)

(e) Compton cooling/heating

Compton effect is the scattering of photons by free electrons. The free electrons in a gas cloud
may gain or lose their kinetic energy depending on the temperature of background radiation
compared to the local gas temperature. The rate of cooling/heating caused by this process is
adopted from Anninos et al.[3] and it is given below:

ĖCompton = 5.65× 10−36 × (1 + z)4 × [T − 2.73(1 + z)]× ne erg cm−3 s−1 (1.21)

(f) H2 and H2
+ cooling

The collision between H and H2 causes the de-excitation of rotational and vibrational energy
states of the H2 molecules. The rate of cooling/heating caused by this process is given by:

ĖH2,H =
[
ΛH2(nH,Tgas)− ΛH2(nH, TCMB)

]
× nH nH2 erg cm−3 s−1 (1.22)

where Tgas is the temperature of gas cloud, TCMB is the temperature of cosmic microwave
background and the term ΛH2(nH, T ) is given as

ΛH2(nH, T ) =
ΛH2,LTE(nH, T )[

1 +
ΛH2,LTE(nH, T )

ΛH2(nH → 0, T )

] (1.23)

In this equation, ΛH2,LTE(nH, T ) is the LTE cooling function for both rotational and vibrational
energy levels evaluated with the equations 6.37 and 6.38 of Hollenbach and McKee[4], and
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1.3. TIME-STEPPING IN THE SIMULATION

ΛH2(nH → 0, T ) is the low density limit of the cooling function evaluated with equation A7
from Galli and Palla[5].

Charge exchange of H2
+ with H and its dissociation with collision by e– causes cooling via

photon emission. The cooling rates for these reactions taken from Galli and Palla[5] are given
below:

ĖH2
+,H = exp(−650/T )× 10−28 T 2 nH2

+nH erg cm−3 s−1 (1.24)

ĖH2
+,e = 3.5× 10−27 × exp(−800/T )T 2 nH2

+ne erg cm−3 s−1 (1.25)

(g) HD cooling

Collision between HD molecules and hydrogen atoms causes the de-excitation of rotational and
vibrational energy levels of the HD molecules. The resulting cooling rate is given by:

ĖHD = ΛHD,H(T )× nHD nH erg cm−3 s−1 (1.26)

where the cooling function ΛHD,H(T ) taken from Lipovka, Núñez-López, and Avila-Reese[6] is
given by:

log10 [ΛHD,H(T )] =− 42.45906 + 21.90083× log10 T − 10.1954× (log10 T )2

+ 2.19788× (log10 T )3 − 0.17286× (log10 T )4 (1.27)

After adding all the contributions, we obtain the overall cooling rate Ė. We use this quantity to
compute the cooling time of gas tcool.

tcool =
E

Ė
(1.28)

Finally we update the system temperature as

Ti+1 = Ti +
Ti × δt
tcool

(1.29)

where we chose δt = εtcool with ε < 1.

1.3 Time-stepping in the simulation

For updating the number density of different species, we need δt = εtelec and while updating the
temperature of the system, we need δt = εtcool. Since our simulation is limited to time period
specified by cosmic scale factors astart and aend, we decided to chose the common time step δt both
for updating species abundances and to update system temperature as

δti = min

{
εtcool, εtelec,

ai − aend
aiH(ai)

}
(1.30)

After updating different quantities using δt, we finally updated the scale factor as

ai+1 = ai + aiH(ai)δti (1.31)
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1.3. TIME-STEPPING IN THE SIMULATION

We remind the readers not familiar with basic Cosmology that the H(a) is the function governing
the Cosmological background of the Universe, as obtained from General Relativity. As such, in this
context it should be considered merely a function that returns the evolution of “Cosmic time”.
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Chapter 2

Coding implementation

2.1 Original code

Let’s review the original code used by Maio et al.[2]. The pseudocode referring to the structure of
the original code is given in algorithm 1 and 2.

This code is embedded within the Gadget-2[1], but for our study, we ran the code inde-
pendent of Gadget-2 by initializing the particle data structures by hand. We chose ε = 0.1,
MAX ITERATIONS = 2000000000, and ran the simulation from one scale factor, astart to another,
aend. For this work we focused in evolving the particles from astart = 0.1428 to aend = 0.1666 or from
astart = 0.0909 to aend = 0.01, which are typical ages of interest in real simulations.

In the rest of this Thesis, we will set the initial values of the physical quantities to be used
for the calculations accordingly to the 11 different sets listed in table A, which have been chosen
as representative of some average or extreme situations (very dense and warm/very hot medium,
underdense and cold/warm/hot medium).

It is worth to stress here that we spotted two bugsi,ii in the current version of the code that in
some rare situations led to either (i) a wrong floating-point operation, resulting in a nan, or (ii) in
a extremely long run-time (of the order of ∼30 minutes) per particle. That, embedded in a typical
Gadget-2 simulation, where a large number of particles is used, for say 1 billion, may cause a
serious increase of the CPU-hours consumption in the cases in which some of those situations appear
for some particles. We fixed these two issues without distubing the code semantics, recovering a
reasonable run-time of the order of ∼10 seconds.

So in order to improve the code, we re-adapted it which we discuss in the next section.

i[First bug] If ne goes to zero (this depends on initial parameter set and scale factor a), it evaluates telec = inf and
then telec = nan in the next iteration. At this point, dti becomes nan as it is evaluated as minimum of three different
time steps (see line 6 of alg. 2). This leads to the abrupt termination of the program.

ii[Second bug] When telec � dti in the loop of the function species solver(), that delays the convergence by cycling
through all the MAX ITERATIONS number of iterations which is set to 2× 109.
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2.2. CODE REFACTORING

Algorithm 1: Functions used in the original code

1 Function energy solver(i particle, ai, dti, Ti−1, ∗Ti,
∗tcool):

2 tcount = 0
3 for i = 0 to MAX ITERATIONS do
4 Evaluate: Energy of the system (see eq. 1.7)

5 Interpolate: Λij of eq. 1.8 at temperature Ti−1 using expressions from section 1.2

6 Evaluate: Ė (see eq. 1.8)

7 Evaluate: tcool (see eq. 1.28)

8 dtin = min{εtcool, dti/2, dti − tcount}
9 Ti = Ti−1 + dtinTi−1/tcool

10 tcount+ = dtin
11 if dt− tcount < dt/MAX ITERATIONS then
12 break;
13 end

14 end

15 return
16

17 Function species solver(i particle, ai, dti, Ti,
∗ṅe):

18 tcount = 0
19 Interpolate: rate coefficient k at temperature Ti
20 for i = 0 to MAX ITERATIONS do
21 Evaluate: ṅe (see eq. 1.1)

22 Evaluate: telec (see eq. 1.6)

23 dtin = min{εtelec, dti/2, dti − tcount}
24 Update: nH− and nH2

+ (see eq. 1.4 and 1.5)

25 Update: nH2 , nH, nH+ , nHe, nHe+ , nHe++ , nHD, nD, nD+ , nHeH+ , ne− (see eq. 1.3)

26 tcount+ = dtin
27 if dti − tcount < dti × 10−3 then
28 break;
29 end

30 end

31 return

2.2 Code refactoring

2.2.1 Structure

We improved the first logical issue of the code as referred in previous section by implementing
a condition to assign dti correctly in every condition. The second issue was corrected by fixing
dtin = dti/2 in both energy solver() and species solver() functions. This choice was motivated from
the observation that before getting telec = inf, the two functions in the original code were performing
just two iterations each.

At this point, launching the modified code with parameter index 0 as listed in table A, from
astart = 0.1428 to aend = 0.1666, we found that after a few iterations, dtin was exceeding tcool in

12



2.2. CODE REFACTORING

Algorithm 2: Structure of the original code

1 Initialization: Lookup tables
2 for i particle = 1 to num particles do
3 Initialization: Tgas
4 for i = 0 to MAX ITERATIONS do
5 Evaluate: tcool, telec (see eq. 1.28 and 1.6)

6 dti = min

{
εtcool, εtelec,

ai − aend
aiH(ai)

}
7 energy solver(i particle, ai, dti, Ti−1, &Ti, &tcool) (see alg. 1)

8 species solver(i particle, ai, dti, Ti, &ṅe) (see alg. 1)

9 ai = ai−1 + ai−1H(ai−1)dti
10 if ai >= aend then
11 break;
12 end

13 end
14 Evaluate: System Entropy, Pressure

15 end

energy solver() function. It means the cooling was getting faster in the intermediate loop reducing
the energy of the system to zero abruptly. A restructuring of this inner loop to treat these cases
properly is in order, which is in the agenda of the code’s authors but out of the scope of this work.
Since we were actually focused on implementing and optimizing the GPU offloading, which is the
core of our work, and the CPU run-time is quite large for a massive amount of particles (i.e. of the
order of 106 or larger), we damped the inner loop of integration in energy solver() and species solver()
functions. The integration is less accurate, but the resulting code is much faster.

The final refactored code we have at the end is given in alg. 3 and 4. With the changes we made,
the program execution takes only ∼4 seconds compared with ∼10 seconds for original code, to evolve
the system from astart = 0.1428 to aend = 0.1666 on a 3 GHz CPU with the parameter index 0 as
listed in table A.

Algorithm 3: Functions used in the revised code

1 Function compute elec dot(i particle, Ti, dti,
∗ṅe):

2 Interpolate: rate coefficient k at temperature Ti
3 Update: nH− and nH2

+ (see eq. 1.4 and 1.5)

4 Update: nH2 , nH, nH+ , nHe, nHe+ , nHe++ , nHD, nD, nD+ , nHeH+ , ne− (see eq. 1.3)

5 Evaluate: ṅe (see eq. 1.1)

6 return
7

8 Function compute t cool(i particle, ai, Ti,
∗tcool):

9 Interpolate: Λij of eq. 1.8 at temperature Ti−1 using expressions from section 1.2

10 Evaluate: Ė (see eq. 1.8)

11 Evaluate: Energy of the system (see eq. 1.7)

12 Evaluate: tcool (see eq. 1.28)

13 return

13



2.2. CODE REFACTORING

Algorithm 4: Structure of the revised code

1 Initialization: Lookup tables
2 for i particle = 1 to num particles do
3 Initialization: Tgas
4 Evaluate: tcool, telec (see eq. 1.28 and 1.6)

5 for i = 0 to ITER LIMIT do

6 dti = min

{
εtcool, εtelec,

ai − aend
aiH(ai)

}
7 Ti = Ti−1 + dtiTi−1/tcool
8 compute elec dot(i particle, Ti, dti, &ṅe) (see alg. 3)

9 compute t cool(i particle, ai, Ti, &tcool) (see alg. 3)

10 ai = ai−1 + ai−1H(ai−1)dti
11 if ai >= aend then
12 break;
13 end

14 end
15 Evaluate: System Entropy, Pressure

16 end

2.2.2 Result validation

We already noticed that in the refactored version which we are using to study the relative improve-
ment due to the GPU offloading, the integration is expected to be less accurate. However, as we
discuss in this section, this accuracy loss lies within the ∼30-40% and hence the code maintains
the same order-of-magnitude than the original code, which supports our choice. The results shown
here for comparison were obtained by modifying the original code by fixing just the two issues men-
tioned in section 2.1 without disturbing the semantics. From now on, we will refer to this version as
original-corrected code.

The Fig. 2.1 shows the comparison between the time evolution of the temperature from the
two codes using the parameter index 0 from table A. The plots from the two codes overlap and the
result from the revised code lies between ∼17% in the beginning to ∼0.1% in the end, compared
to the original-corrected code. As the internal specific energy is directly proportional to the system
temperature, its time evolution follows the similar trend.

Fig. 2.2 compares the final total energy of the system for 11 different initial parameter sets listed
in table A at corresponding aend. The total energy in the new code lies within 0.9-32% of that of
original-corrected code.

Fig. 2.3 compares another key quantity, the ionization fraction of He+ at aend for 11 parameter
sets listed in table A. Here we observe that the result from the revised code lies between 0.3-41%
of that of original-corrected code with an outlier at 66%. Though we can compare the ionization
fraction of H+ and H2

+ as well, but for all the 11 parameter sets we used, those quantities are too
small (∼ 10−100) for reliable comparison.
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Figure 2.1: Comparing the time evolution of the system temperature between the original-corrected
and the revised code

0 1 2 3 4 5 6 7 8 9 10

Parameter set index

0.002

0.003

0.004

0.005

0.006

In
te

rn
a
l

sp
ec

ifi
c

en
er

g
y

a
t
a
e
n
d

(i
n

k
m

2
s−

2
)

original-corrected code

revised code

0 1 2 3 4 5 6 7 8 9 10

Parameter set index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
ra

ct
io

n
a
l

d
iff

er
en

ce
in

In
te

rn
a
l

sp
ec

ifi
c

en
er

g
y

Figure 2.2: Comparing the final total energy for 11 different parameter sets
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Figure 2.3: Comparing the time evolution of He+ ionization fraction for 11 different parameter sets

2.2.3 Performance comparison

After verifying the correctness of physics implementation of the revised code, let’s compare the
performance counters of the two codes. The performance counters were collected using perfiii per-
formance analysis tool on two HPC clusters Ulysses v2 iv and Marconi100 v. Ulysses v2 is the
HPC cluster hosted at SISSA and Marconi100 is the HPC cluster hosted by CINECA. The table
2.1 lists the one node specification of the two clusters. We collected the hardware counters cycles,
instructions, cache-references, cache-misses, branches-references, branch-misses.

For the comparison, we used 44 particles with the parameters sets listed in table A and averaged
the performance counters over 3 runs. The counters are listed in table 2.2 and 2.3. We observe that
even though the number of instruction executed per cycle is larger for the original-corrected code,
the total number of executed instructions, branch references, and branch misses are smaller for the
revised version, which is responsible for its performance improvement. The revised code exhibits a
2.53x speedup on Ulysses v2 and 3.03x speedup on Marconi100 . The relative performance of the
same codes on the two clusters are consistent with the ratio of respective CPU frequency.

2.3 GPU offloading of the revised code

As noted in the previous section, the code refactoring introduces a massive performance improvement
over the original code. Given that the computation for each particle is independent of the others, it
makes the problem embarrassingly parallel. We can use this to our advantage to further improve the
code performance by offloading the computation of our program on GPUs. A GPU has hundreds of
cores that can handle thousands of threads simultaneously which is in contrast to a CPU that offers a

iiiperf performance analysis tool: https://perf.wiki.kernel.org/index.php/Main_Page
ivUlysses v2 cluster: https://www.itcs.sissa.it/services/computing/hpc
vMarconi100 cluster: https://www.hpc.cineca.it/hardware/marconi100
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Host
Specification

Ulysses v2 Marconi100

CPU model Intel Xeon E5-2683v4 IBM POWER9 AC922
Architecture x86 64 ppc64le
Sockets 2 2
Cores/socket 16 16
Threads/core 2 4
Total physical cores 32 32
Total logical cores 64 128
CPU Max frequency 3.0 GHz 3.8 GHz
L1d cache 32K 32K
L1i cache 32K 32K
L2 cache 256K 512K
L3 cache 40960K 10240K
RAM 64 GB DDR4 256 GB DDR4
GPU (on specific nodes) 2× Tesla P100-PCIE 16GB 4× Tesla V100-SXM2 16GB

Table 2.1: Hardware specification of the one node of Ulysses v2 and Marconi100 clusters[7],[8]

Original-corrected code Revised code
Event Count Summary Count Summary

Cycles 1.76E+12 2.552 GHz 6.96E+11 2.555 GHz
Instructions 2.07E+12 1.18 IPC 6.32E+11 0.910 IPC
Cache references 5.09E+07 0.074 M/sec 1.18E+07 0.043 M/sec
Cache misses 3.68E+07 72.281% of all cache refs 8.62E+06 73.107% of all cache refs
Branch references 1.51E+11 219.641 M/sec 6.14E+10 255.15 M/sec
Branch misses 2.78E+08 0.18 % of all branches 1.13E+07 0.02 % of all branches
Total elapsed time 689.39 sec 272.79 sec

Table 2.2: perf counter comparison on Ulysses v2 cluster

Original-corrected code Revised code
Event Count Summary Count Summary

Cycles 1.83E+12 3.788 GHz 5.93E+11 3.722 GHz
Instructions 2.29E+12 1.25 IPC 6.68E+11 1.13 IPC
Cache references 4.89E+11 1011.661 M/sec 1.13E+11 711.846 M/sec
Cache misses 1.25E+09 0.255% of all cache refs 6.26E+08 0.552% of all cache refs
Branch references 1.49E+11 309.229 M/sec 6.07E+10 380.605 M/sec
Branch misses 4.33E+08 0.29 % of all branches 7.81E+07 0.13 % of all branches
Total elapsed time 483.34 sec 159.40 sec

Table 2.3: perf counter comparison on Marconi100 cluster
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few cores capable of handling just a few threads. Also, if we consider a computing cluster where each
node is equipped with multiple GPUs, the GPUs alone provide a more scalable computing platform
than all the CPUs. So we can offload our computations to GPUs by mapping each particles to a
GPU thread and expect a massive performance gain.

Though the a GPU uses SIMT model to parallelize the computations, it is not much useful in
our case. It must be noted that the execution path of each particle in our code is independent of the
others and is strictly depends on the initial parameter. So as the execution proceeds on a GPU, the
threads will eventually lose synchronization, limiting the full utilization of SIMT. Even in that case,
just the massive amount of threads and arithmetic units on the GPU will boost the code performance
significantly.

For offloading a code on GPU, one can use either API based frameworks like CUDA and OpenCL
or directive based interfaces like OpenACC and OpenMP. Our problem is limited to parallelizing a
main loop which is embarrassingly parallel. Also in every iteration, it uses same data set over and
over again. This requires to transfer data between CPU and GPU only at the beginning and at the
end of the program execution on GPU. So in our case, directive based approach is more appropriate
as they are more suitable for loop-level parallelization. On the top of that, the two directive based
methods are portable, allowing us to use the same code for both the multicore execution and GPU
offloading.

To test our implementation, we had access to Nvidia P100 GPU on Ulysses v2 and Nvidia
V100 GPU on Marconi100 . While GPU offloading using OpenACC is supported on both accelera-
tors, OpenMP based offloading is only supported for Nvidia V100 GPUs and highervi. So in order
to utilize both kind of GPU resources and to do comparative study, we decided to use OpenACC.
Using OpenACC has another advantage that it leaves on the compiler to choose automatically the
level of parallelization based on underlying hardware unlike OpenMP where the user has to make
specific declaration[9]. Our OpenACC implementation is based on the OpenACC API version 2.7.vii

Before executing the program on GPU, one has to make sure that the relevant data is avail-
able on GPU memory. This was ensured by first allocating memory on GPU using explicit data
directive acc enter data create() and then initializing lookup table on GPU using the directive
acc parallel loop. Since the arrays of lookup tables were very small in size and initialization hap-
pened in less than a second, there was no need for fine-tuning. The clause acc update device() was
used to copy the variables that were initialized on CPU host. The directive
acc declare create() was needed as well for all the extern variables.

Coming to the offloading of main loop over all the particles, in order to utilize maximum
GPU resources, it is necessary to use optimized kernel launch configuration. In OpenACC, it
is modified using the clauses num_gang(), for the number of CUDA blocks, and num_workers()

and vector_length() for the size of blocks (number of threads per block) which is the prod-
uct of these two. To offload the main loop on GPU, we used the following directive and clauses:
acc parallel loop gang vector_length() independent. The parallel directive with
vector_length() clause launches multiple gangs (blocks) with given vector length (blocksize). Since
we are providing the blocksize explicitly, the number of blocks is determined implicitly and it is given
by the size of loop divided by the blocksize. The loop gang construct make the loop iterations to be
shared across the gangs of the parallel region and independent specifies that all the loop iterations

vihttps://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
viiThe OpenACC API v2.7: https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
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Listing 2.1: Kernel execution time on a P100 GPU obtained using nvprof tool

==29867== NVPROF is profiling process 29867 , command: ./ chemistry_nvc

==29867== Profiling application: ./ chemistry_nvc

==29867== Profiling result:

Time (%) Time Calls Avg Min Max Name

100.00% 631.073s 1 631.073s 631.073s 631.073s main_336_gpu

0.00% 1.0874 ms 10 108.74 us 1.1520 us 981.53 us [CUDA memcpy HtoD]

0.00% 768.99 us 1 768.99 us 768.99 us 768.99 us [CUDA memcpy DtoH]

0.00% 44.447 us 1 44.447 us 44.447 us 44.447 us init_chem_216_gpu

0.00% 11.104 us 1 11.104 us 11.104 us 11.104 us init_chem_77_gpu

0.00% 8.8950 us 1 8.8950 us 8.8950 us 8.8950 us init_chem_429_gpu

0.00% 2.3040 us 2 1.1520 us 1.1520 us 1.1520 us [CUDA memset]

0.00% 1.8240 us 1 1.8240 us 1.8240 us 1.8240 us init_chem_389_gpu

are independent and can be executed in parallel.

In order to utilize multiple GPUs on a node, we used MPI-OpenACC based hybrid code. As a
simple case, the particles were distributed over all the MPI processes and then each MPI processes
were allowed to offload its computations to available GPUs within the same node in round-robin
fashion. For this purpose, the OpenACC APIs acc_get_device_type(), acc_get_num_devices()
and acc_set_device_num() were used. Since OpenACC is directive based offloading approach, we
can also use our hybrid code as MPI only code with CPU only execution.

For all the GPU offloading using OpenACC, we used Nvidia nvcviii compiler of Nvidia HPC
SDK. To compile the MPI-OpenACC hybrid code, on Ulysses v2 we used Open MPIix that comes
with Nvidia HPC SDK v20.9.0. For the same on Marconi100 , we used IBM Spectrum MPI v10.4.0x

with Nvidia pgcc compiler v21.5.0 available as wrapper mpipgicc. For all the compilations, we used
compiler based optimization flag -O2.

Listing 2.1 shows the typical execution time for different kernels offloaded on GPU, obtained with
Nvidia nvprof tool.xi It shows that the time taken by data transfer between host and device, and
initialization of data structures and lookup tables are negligible in comparison with the execution of
main loop of algorithm 4. So we only need improve the performance of main loop which we discuss
in the next sub-section.

2.3.1 Performance optimization of GPU offloading

On an Nvidia GPU, the threads are launch in a bunch of 32 threads called warps. A warp executes
one common instruction at a time. The warps are created, managed, scheduled and executed by an
independent unit called streaming multiprocessor (SM). An SM has limited number of arithmetic
pipelines, registers, shared memory and warp schedulers. There are also the limitations on number
of warp and blocks that an SM can host. These specifications of an SM varies with the particular
devices and is listed in table 2.4 for P100 and V100 GPUs.

viiiNvidia HPC compiler user’s guide: https://docs.nvidia.com/hpc-sdk/compilers/

hpc-compilers-user-guide/index.html
ixOpen MPI documentation: https://www.open-mpi.org/doc/
xIBM Spectrum MPI documentation: https://www.ibm.com/docs/en/smpi
xiNvidia nvprof profiling tool: https://docs.nvidia.com/cuda/profiler-users-guide/index.html
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Specification Tesla P100 Tesla V100
Architecture Pascal Volta
CUDA capability version 6.0 7.0
Number of SMs 56 80
FP32 cores/SM 64 64
Total FP32 cores 3584 5120
Peak FP32 TFLOPS 9.3 15.7
FP64 cores/SM 32 32
Total FP64 cores 1792 2560
Peak FP64 TFLOPS 4.7 7.8
GPU max clock rate 1329 MHz 1530 MHz
Memory interface 4096-bit HBM2 4096-bit HBM2
Memory size 16 GB 16 GB
Memory bandwidth 732 GB/s 900 GB/s
Peak power comsumption 250 W 300 W
Warp schedulers/SM 2 4
Threads/warp 32 32
Max warp/SM 64 64
Max thread blocks/SM 32 32
Max 32-bit registers/SM 65536 65536
Max registers/block 65536 65536
Max registers/thread 255 255
Max threads/block 1024 1024

Table 2.4: Hardware specification for P100 and V100 GPUs[10],[11]

As a first step toward optimization, we can try manipulating the occupancy of the SMs. The
pool of warps that are allocated on a SM are called active warps. The occupancy is the ratio of the
number of active warps to the maximum number of possible active warps. The occupancy can be
changed by changing the kernel launch configuration that is, the grid size and blocksize. We can
determine the optimal launch configuration simply by looking at the time it takes to complete the
program execution for different configurations of blocksize. But since both P100 and V100 GPUs
allow maximum 1024 threads and 65536 registers per block, as we try to increase the blocksize,
the number of registers available per thread will get reduced. So while we modified the blocksize
using the clause vector_length(), we also specified the maximum number of registers per thread
using the compiler flag -gpu=maxregcount:<num>. While there is also limitation on shared memory
available per block and shared memory per multiprocessor, it is not a constraint since our program
is not data intensive.

Table 2.5 and 2.6 list the elapsed time for the execution of main loop for different launch con-
figurations on Ulysses v2 and Marconi100 respectively. We used total 220 = 1, 048, 576 number of
particles with the parameter sets listed in table A. The elapsed time is reported in seconds unless
specified otherwise.

From the results, we infer that the best launch configuration is 512 threads per block, 2048
number of blocks with maximum 128 registers per thread. We also observe that for all launch
configurations, a V100 GPU delivers a performance more than twice that of a P100 GPU. This
difference in performance is reflected by the difference in their respective architecture. A V100 GPU
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Number of threads per block
(number of blocks = 220/#threads)

32 64 128 256 512 1024
32 >12 hrs >12 hrs >12 hrs >12 hrs >12 hrs >12 hrs

Max 64 >12 hrs >12 hrs >12 hrs >12 hrs >12 hrs >12 hrs
register 128 13155.59 13213.84 13182.33 13091.13 13014.41
count 256 13331.69 13257.79 13180.75 13171.60
per 512 13331.79 13260.08 13183.37

thread 1024 15347.91 15142.11
2048 15367.45

Table 2.5: Elapsed time for executing the main loop for different launch configurations on Ulysses

v2 with 220 particles. The timings are listed in seconds except for the red-banded rows where the
runtime exceeded the maximum time-limit of the job. The green cell in the table shows the minimum
elapsed time among others.

Number of threads per block
(number of blocks = 220/#threads)

32 64 128 256 512 1024
32 >24 hrs >24 hrs >24 hrs >24 hrs >24 hrs >24 hrs

Max 64 29181.94 29269.70 29313.00 29555.42 30906.89 31687.69
register 128 6187.04 5992.84 5949.61 5680.77 5046.40
count 256 6367.12 6343.20 6306.21 6020.38
per 512 6363.49 6344.08 6309.00

thread 1024 6365.32 6346.93
2048 6362.37

Table 2.6: Elapsed time for executing the main loop for different launch configurations on Marconi100

with 220 particles. The timings are listed in seconds except for the red-banded rows where the runtime
exceeded the maximum time-limit of the job. The green cell in the table shows the minimum elapsed
time among others.

has 80 multiprocessors, total 5120 CUDA cores, compared to 56 and 3584 respectively that a P100
GPU has. Also the GPU and memory clock frequency of V100 is higher than the other. In the next
section and onward, we will use 512 threads per block and maximum 128 registers per thread as
launch configuration unless otherwise mentioned.

2.3.2 Profiling the GPU offloading

Though we obtained the optimal launch configuration for our kernel, we don’t know yet if it brings
out the best of a GPU. So in this section, we will review the code performance on GPU using the
Nvidia Nsight Compute toolxii, find out the bottlenecks, and then explore the possibility of further
performance improvement. Since the pascal GPU architecture is not supported by Nsight compute,
we will only profile our code on V100. For all the profiling, we will use 81920 particles which is

xiiNvidia Nsight Compute: https://docs.nvidia.com/nsight-compute/index.html
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twice of the size of wave that is possible with blocksize 512 and maximum 128 registers per thread
(discussed in section 3.1).

First we take a look at the occupancy of the code on GPU given in the Fig. 2.4. The theoretical
active warp per SM is determined by the launch configuration and is given by

Theoretical active warps/SM =
registers/SM

max registers/thread× threads/warp
(2.1)

With the values listed in table 2.4 and max registers/thread = 128, we get
theoretical active warp/SM = 16. The occupancy percentage is computed against the maximum
number of warp that is possible on an SM (64 on V100). As the chart shows, we are getting only
4.16 active warps per SM against 16. The chart also shows the change in occupancy as the launch
configuration is changed. But as we observed in previous section, even with high theoretical occu-
pancy, any other launch configuration results in poor performance. So as suggested in the chart, we
will take a look at scheduler statistics.

The warp scheduler statistics for main loop kernel is given in fig. 2.5. A V100 GPU has 4 warp
schedulers per SM, each responsible for handling maximum 16 warps. The eligible warps are the
active warps that are ready to issue the next instruction. At every cycle, the scheduler picks up one
warp from the eligible one and issues instruction to it. When there are no eligible warps, the issue
slot is skipped. This happens when the active warps are still working on the previous instructions to
complete. The lost issue slots indicates lack of eligible warps to hide the latency.

To see the reason behind the warp stall, we take a look at the warp state statistics, given in Fig.
2.6. The primary contributor to warp stall is the wait for fixed latency execution to complete. On
an average, we lose 3.3 cycles on this between every two instruction issue. The second highest stall
reason is the wait for math pipeline to be available. This is followed by the cycle misses where the
warps are waiting to receive an instruction. The next important stall reason is the LG (local and
global memory) throttle. This happens when a warp waits for an LG operation to finish for the L1
instruction queue.

Finally the selected warps are the one for which the scheduler issues the instruction. A small
difference between selected and not selected warp state indicates there are enough number of warps
to cover the latencies which is contradictory to the other stall reasons. The contradiction can be
explained by the inherent thread divergence. This happens when one thread completes execution
earlier than the other threads in the same warp OR when different threads in a warp branch off to
different execution path. In our case, it happens because the different particles take different number
of iterations and hence different execution path to converge. When warp divergence happens, only
the threads with taken branch are executed forward and the others are disabled. This makes the
stall wait more prominent even if the compute resources are utilized optimally.

Now let’s take a look at the pipeline and SM utilization of the main loop kernel shown in Fig. 2.7.
FP64 pipeline which is responsible for double-precision floating point computations has the highest
70.3% pipeline utilization. The same keeps the SMs busy for 70.27% of elapsed time. It correlates
with math pipe throttle stall that we saw in warp state statistics. ALU, FMA and XU are other
arithmetic pipelines while LSU is the load storage unit pipeline that is responsible for issuing load
and store instructions to L1 cache. The CBU pipeline is the convergence barrier unit that is for
branch level convergence, barrier and branch instructions[12]. Overall load of arithmetic pipeline over
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Figure 2.4: Occupancy of the main loop kernel on V100 with 81920 particles
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Figure 2.5: Warp scheduler statistics for the main loop kernel on V100 with 81920 particles
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Figure 2.6: Warp state statistics for the main loop kernel on V100 with 81920 particles
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Figure 2.7: Compute workload analysis for the main loop kernel on V100 with 81920 particles

the other pipelines strongly indicates that our code is strictly compute bound.

Similarities between the different types of instruction per cycle (Ipc) counters in compute workload
analysis explains the only little difference between selected and not selected warp in Fig. 2.6. The
scheduler was able to issue instructions to one warp per cycle. That is why we see more than one
active issued Ipc in compute workload analysis.
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Chapter 3

Benchmark and performance comparison

In this chapter, we measure and compare the performance of revised code on different CPU and
GPU architectures. To obtain all the results, we used the parameter set listed in table A where ith

particle was assigned the parameter set index i mod 11. For all the GPU offloading, we used 512
threads per block and maximum 128 registers per thread. Unless otherwise mentioned, we will keep
the number of MPI process same as the number of GPUs to which we offload the computation.

3.1 Performance trend with increasing number of particles

We see the increase in elapsed time for the execution of main loop in Fig. 3.1 as the number of
particles is increased. The single core performance on CPU decreases linearly and it decreases with
multiple of 32 particles when all 32 cores of a node are used. Though the GPUs are slower for smaller
number of particles, they overshadow CPUs fairly quickly. It crosses single core performance at 12
and 13 number of particles, and it crosses 32 cores performance at 417 and 449 number of particles
on Ulysses v2 and Marconi100 respectively.

Despite the performance takeover, however, we can see that elapsed time on GPU remains nearly
constant as the number of particles is increased. This indicates the under-utilization of GPU resources
for the range of particles we used. We examine further the execution of code on GPUs to determine the
number of particles for which, the GPU resources are fully utilized. Fig. 3.2 shows the performance
trend of the code on a single GPU as the number of particles is increased.

We observe that elapsed time on P100 GPU remains almost constant till it reaches 28672 particles
(∼302s) and then till 57344 particles (∼598.5s). The same happens for V100 GPU for 40960 particles
(∼175.5s) and 81920 particles (∼351s). It means that for the parameter sets we chose, a P100 GPU
can process maximum 28672 particles at a time and a V100 GPU can process maximum 40960
particles at a time. This result perfectly correlates with the system architecture. With 512 threads
per block and maximum 128 registers per thread, we are using total 65536 registers per block. It is
the maximum number of registers available to a block and it is same as the number of registers we
have on each SM (see table 2.4). It means we are offloading one block per SM with blocksize being
512. As P100 has 56 and V100 has 80 SMs, we can thus offload total 56 × 512 = 28672 threads on
P100 and 80× 512 = 40960 threads on V100 GPU at a time which is the same as the periodicity we
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Figure 3.1: Execution time for the main loop as the number of particles is increased. The plots in the
first row refer to the Ulysses v2 and the ones in the second row refer to the Marconi100 cluster.
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Figure 3.2: Execution time for the main loop on a single GPU as the number of particles is increased
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observe in fig. 3.2. The number of threads that can run concurrently on a GPU is called wave. So
we can say that with the launch configuration we use, the size of a wave on P100 is 28672 and it is
40960 on V100.

3.2 Performance comparison on single node

As we now have the revised code available with GPU offloading, let’s compare its performance on
different targets available on a single compute node. Fig. 3.3 shows the performance comparison be-
tween MPI only execution using all 32 cores on a node, OpenACC multicore execution and OpenACC
execution offloaded to a single GPU with 216 = 65536 particles. Unlike MPI, OpenACC multicore
uses the host multicore CPU as a shared-memory computing platform - like OpenMP. By default
OpenACC multicore uses all the available physical cores during execution. While Nvidia HPC SDK
offers an environment variable ACC_NUM_CORES to change the number of cores to use at runtime, but
as of OpenACC version 2.7, there are no APIs to query the number of cores in use.

Ulysses Marconi100
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T
im

e
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c)

MPI only (32 cores)

OpenACC multicore (32 cores)

OpenACC multicore (Unknown number of cores)

OpenACC with GPU offload

Figure 3.3: Performance comparison of the revised code with 216 = 65536 particles on different
targets available on a single compute node of Ulysses v2 and Marconi100

Along with others, we report the OpenACC multicore performance with default number of cores
in use - that is unknown and 32 cores, that is available number of physical cores on a node - assigned
with ACC_NUM_CORES. We observe that OpenACC multicore offers better performance in both cases
- as much as 2x - than MPI. This can be attributed to better cache efficiency as the result of shared-
memory execution. On the other hand, a single GPU on Ulysses v2 performs 14.76x better than
MPI only and 7.65x better than the best of OpenACC multicore execution. On Marconi100 , a
single GPU performs 21.74x better than MPI only and 12.65x better than the best of OpenACC
multicore execution.

In Fig. 3.4, we compare the performance between GPU offloading on a single compute node of
Ulysses v2 and Marconi100 . We observe that 2 GPUs of Marconi100 perform ∼2x better than
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3.3. PERFORMANCE SCALING ON GPUS
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Figure 3.4: Comparing the single node GPU offloading performance between Ulysses v2 and
Marconi100 clusters

the 2 GPUs of Ulysses v2 , that is consistent with the result we obtained in section 2.3. The 4
GPUs on Marconi100 perform even better due to scaling. So we conclude that given an exclusive
node on Ulysses v2 or Marconi100 , GPU offloading is the best available option. And among
the two system, GPU offloading on a single node on Marconi100 will be 4x faster than the GPU
offloading on a single node on Ulysses v2 .

3.3 Performance scaling on GPUs

Since our problem is embarrassingly parallel, we expect perfect strong and weak scaling as the number
of GPUs are increased. We observe the same in Fig. 3.5 and 3.6 respectively. For strong scaling, we
used 3× 220 = 3, 145, 728 particles.

3.4 Optimal number of MPI processes per GPU

So far we have used one MPI process to offload computations to one GPU. However, Gadget-2,
where we will embed our revised code, is already based on MPI. In Gadget-2, the particles are
initialized and distributed over all the available MPI processes. So it becomes important to identify
the optimal distribution of the MPI processes over the available GPUs. We implemented a feature in
the code by which a user can specify in the command line argument, the number of MPIs (let’s call
them the communicating MPIs) that will communicate to GPUs. We used MPI_Comm_split_type()

function to split the global MPI communicator MPI_COMM_WORLD into sub-communicators for each
nodes. Then we split the nodal sub-communicator further so that the rank 0 of each sub-sub-
communicator acts as an communicating MPI.
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(1, 220) (2, 221) (4, 223) (8, 224)

(Number of GPUs, Number of particles)

0

2000

4000

6000

8000

10000

E
la

p
se

d
ti

m
e

(i
n

se
c)

Ulysses (P100 GPUs)

Marconi100 (V100 GPUs)

(1, 220) (2, 221) (4, 223) (8, 224)

(Number of GPUs, Number of particles)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

W
ea

k
sc

a
li
n
g

effi
ci

en
cy

Ulysses (P100 GPUs)

Marconi100 (V100 GPUs)
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Figure 3.7: Performance comparison for MPI processes distributed evenly over allocated GPUs

We used MPI_Gather() function to collect the particle data structures within the sub-sub-
communicator to the communicating MPIs. These communicating MPIs then offload the computa-
tion on GPUs. After the computation is over, the communicating MPIs receive the updated data
structures from GPUs and distribute them back to the respective MPIs using MPI_Scatter(). In this
implementation, we used acc_get_num_devices() to obtain the total number of available GPUs.
This API function returns the total number of GPUs available on the node irrespective of the ac-
tual allocation by the job. So we are forced to use all the GPUs available on a node for using this
implementation.

Fig. 3.7 shows the performance results from this implementation. 32 cores per node was used for
this exercise and the number of particles was decided in a way that each GPU has to perform com-
putation for 220 particles. The x-axis in the plot refers to the number of communicating MPIs. For
example, if the number of communicating MPIs is one, that means one MPI process each was commu-
nicating to the available GPUs on a node. And each communicating MPI was gathering/scattering
the particle data structure from/to 16 (=32/2) MPI processes, including itself.

From the results, we conclude that one MPI process per GPU is the most efficient offloading
strategy. Despite having more MPI communication overhead, this choice works better because it
reduces the number of host-to-device data transfer and vice versa, and limits the number of CUDA
streams to one per GPU.

3.5 Performance efficiency

In the previous sections, we have shown that the revised code performance is better than the original-
corrected code and GPU offloading is even better. In this section, we will explore the performance
metrics of the revised code on different computing platforms.
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3.5. PERFORMANCE EFFICIENCY

Figure 3.8: Throughput of GPU offloading on a V100 GPU with 81920 particles

We measured the performance of MPI only code in GFLOPS on both Ulysses v2 and Marconi100

with the help of PAPI libraryi. We used the PAPI preset event PAPI_DP_OPS to collect the number of
double-precision floating-point operations needed to execute the main loop of alg. 4. With this, we
obtained the throughput of 1 node of Ulysses v2 to be 25.213 GFLOPS and that of Marconi100

to be 37.890 GFLOPS.

Fig. 3.8 shows the roofline chart of the code performance for the main loop of alg. 4 on the
V100 GPU. The chart was obtained using Nvidia Nsight Compute tool. It shows that our code has
achieved 1.36 TFLOPS in double-precision compared to peak 7.8 TFLOPS listed in table 2.4. The
achieved FP64 value lies in the right-hand side of the FP64 ridge point. It indicates that our code is
indeed a compute bound code. The FP32 performance is not much relevant in our case. We could
not produce the same result for a P100 GPU as it is not supported by Nsight Compute.

To measure the power efficiency of GPUs we used the Nvidia’s nvprof profiling tool. With the
option of system profiling, it produces average, min and max SM clock frequency, memory clock
frequency, temperature and power consumption for each GPUs. For this purpose, we used 286720
particles, that is equivalent to 10 waves on one P100 GPU and 7 waves on a V100 GPU. We obtained
the average power consumption on a P100 to be 73.7W over 2797.13 seconds and 63.0W over 1236.04
seconds on a V100 GPU. So overall, for 286720 particles, a P100 GPU used ∼206,091,993 J energy
while a V100 GPU used only ∼77,890,811 J. This indicates that the Marconi100 cluster is more
power efficient for GPU offloading. It is worth noticing that the average power consumption of
our code is much lower than the max power consumption as listed in table 2.4. It is the result of
non-utilization of complete GPU resources as discussed in the section 2.3.2.

iPerformance Application Programming Interface (PAPI) library: https://icl.utk.edu/papi/
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Chapter 4

Conclusion and future work

In this project, we have successfully managed to refactor and port the original implementation of gas
cooling by Maio et al.[2] to different computing platforms using MPI and OpenACC. We found the
best launch configuration for our compute kernel to utilize most of GPU resources. With the best
launch configuration we observed that a single P100 GPU outperforms 32 CPU cores of Ulysses v2

by a factor of 7.65, and a single V100 GPU outperforms 32 CPU cores of Marconi100 by a factor
of 12.65. On the top of that, GPUs on one node of Marconi100 , equipped with 4×V100 GPU
performs 4x better than the GPUs on one node of Ulysses v2 that has 2×P100 GPU.

We have also implemented a feature to allow only a certain number of MPI processes out of all,
to offload the computations on GPUs available on a node. Restricting the number of MPIs that
connect to a GPU limits the number of CUDA streams and host-device data transfer. As a result,
we observed that 1 MPI process per GPU offers the best performance.

There are multiple possibilities to improve the GPU offloading further. As discussed in section
2.3.2, our implementation is severely limited by the saturation of FP64 pipeline and uncoalesced
memory access. We know that FP32 pipeline provides twice as much throughput than the FP64
pipeline. So using half-precision floating point computations instead of double-precision as we did
in our case, will likely improve the code performance by a factor of 2. However since our code is
parameter sensitive, loss of precision will also affect the accuracy of the results significantly.

On the other hand, the uncoalesced memory access issue on GPU is the result of separate,
non-sequential memory chunk transaction requested by different threads. This type of transaction
happens either when the lookup table is accessed separately by each thread or when the individual
elements of particle data structure are updated. While the first type of transaction cannot be avoided
or modified, the second type of transaction can be improved with a transformation of particle data
structure. When a set of consecutive threads access an element of particle data structure, they each
access it from different struct making the data access uncoalesced. Instead if we group the identical
elements from each particle data structures in an array, every access to them will become coalesced.
This will require data transformation twice - at the beginning and the end of offloading - that will
add a computational overhead but at the same time, it will save us multiple compute cycles.

Another good exercise for the future development would be to use shared memory units of GPU
using cache directive of OpenACC on the arrays of lookup tables. It will reduce the load on L1-L2
data transfer link and will likely improve the performance more.
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Appendix A

List of initial parameter sets
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