
SOFTWARE METAPAPER

ABSTRACT
We present embo, a Python package to analyze empirical data using the Information
Bottleneck (IB) method and its variants, such as the Deterministic Information
Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic
mapping M of X that encodes the most information about Y, subject to a constraint on
the information that M is allowed to retain about X. Despite the popularity of the IB, an
accessible implementation of the reference algorithm oriented towards ease of use on
empirical data was missing. Embo is optimized for the common case of discrete, low-
dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a
parallel implementation of key computational steps, and includes reasonable defaults
for the method parameters. Embo is broadly applicable to different problem domains,
as it can be employed with any dataset consisting in joint observations of two discrete
variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.

CORRESPONDING AUTHOR:
Eugenio Piasini

Computational Neuroscience
Initiative and Department
of Physics and Astronomy,
University of Pennsylvania, US

epiasini@sas.upenn.edu

KEYWORDS:
Information theory; Python;
Information Bottleneck;
Deterministic Information
Bottleneck; data analysis;
statistics

TO CITE THIS ARTICLE:
Piasini E, Filipowicz ALS, Levine
J, Gold JI 2021 Embo: a Python
package for empirical data
analysis using the Information
Bottleneck. Journal of Open
Research Software, 9: 10.
DOI: https://doi.org/10.5334/
jors.322

EUGENIO PIASINI

ALEXANDRE L. S. FILIPOWICZ

JONATHAN LEVINE

JOSHUA I. GOLD

*Author affiliations can be found in the back matter of this article

Embo: a Python package
for empirical data analysis
using the Information
Bottleneck

mailto:epiasini@sas.upenn.edu
https://doi.org/10.5334/jors.322
https://doi.org/10.5334/jors.322
http://orcid.org/0000-0003-0384-7699
http://orcid.org/0000-0002-1311-386X
https://orcid.org/0000-0002-6246-9045
http://orcid.org/0000-0002-6018-0483

2Piasini et al. Journal of Open Research DOI: 10.5334/jors.322

(1) OVERVIEW
INTRODUCTION
The Information Bottleneck Method
In the Information Bottleneck (IB) framework [1], given
two random variables X and Y, we are interested in
extracting all the information that X may contain about
Y and discarding the rest as irrelevant. To solve this
problem, we seek a third random variable M that solves
the following optimization problem:

min (:) (:)

(|)
I M X I M Y

p m x
b-

 (1)

where I(˙:˙) is Shannon’s mutual information [2], and M
is constrained to be independent of Y conditional on X:

 (, ,) () (|) (|)p x m y p x p m x p y x= (2)

Intuitively, Equation (1) says that we are looking for
a stochastic mapping of X to M that keeps as little
information about X as possible while maximizing the
information about Y. β is an arbitrary (positive) parameter
quantifying the relative importance of these two
competing goals. In the spirit of rate distortion theory
[2], it can be shown [1] that the set of solutions to this
method for all possible values of β gives an upper bound
to the amount of information one can encode about Y
given a certain amount of information about X, or vice
versa, the minimum amount of information about X

needed to encode a certain amount of information about
Y. These bounds are typically summarized by plotting a
curve showing I(M : Y) vs I(M : X), obtained by computing
these quantities for the solution of Equation (1) across
many different values of β. This is known as the IB curve.
Example IB curves, taken from one of the notebooks in
embo’s documentation, are shown in Figure 1.

Because of its appealing theoretical properties, since
it inception the IB has enjoyed continued attention as
a method for unsupervised [3] and supervised [4, 5]
learning, as well as becoming more recently a popular
tool in the study of learning and generalization in deep
neural networks [6, 7] and in neuroscience [8, 9, 10, 11].

Generalized and Deterministic Information
Bottleneck
A useful generalization of the Information Bottleneck was
introduced by [12]. By noting that I(M : X) = H(M) – H(M|X),
one observes that there are two different ways in which the
bottleneck variable M can have limited information about
X: it can have limited variability (small H(M)), or it can be
very noisy (large H(M|X)). These possibilities suggests that
we could modify the cost function in (1) as follows:

min () (|) (:)

(|)
H M H M X I M Y

p m x
a b- -

 (3)

where α ≥ 0. We call this the Generalized Information
Bottleneck problem, or GIB (note that the same acronym

Figure 1 From embo’s documentation (examples/Basic-example.ipynb): Top, red: IB curves for two simple synthetic datasets,
one where both X and Y are binary (left column, “Two symbols”) and one where they can both take on 4 possible states (right
column, “Four symbols”). Each dot represents the solution of Equation (1) for a particular value of β (solid lines connecting the dots
are added for legibility). Gray: identity line. Bottom: values of I(M : Y)and I(M : X) vs their corresponding values of β. See the software
documentation for further detail on how these figures were generated. Note that the IB curve is always below the identity line and
that the values of I(M : Y) and I(M : X) are never larger than the base 2 logarithm of the number of states (1 bit and 2 bits, respectively,
corresponding to 2 and 4 states, respectively). These are conditions that the IB curve should always satisfy [1] and can be taken as
sanity checks for embo’s correct operation.

https://doi.org/10.5334/jors.322

3Piasini et al. Journal of Open Research DOI: 10.5334/jors.322

is used in [13] with a different meaning). The GIB reduces
to the standard IB as a special case for α = 1.

If α = 0, the problem consists of finding the minimum-
entropy bottleneck variable M that contains a certain
amount of information about Y (or the M with the largest
amount of information about Y among all Ms with a set
entropy). This is called the Deterministic Information
Bottleneck (DIB) by [12]. The term “deterministic” comes
from the fact that solutions in the α = 0 case are shown to
be deterministic mappings from X to M, with H (M|X) = 0. A
simple demonstration of application of the DIB, inspired by
one of the examples given in [12], is illustrated in Figure 2.

IB for empirical data; comparison with other
software
Despite the large body of existing work on the IB (and GIB),
public, off-the-shelf implementations of its “reference”
version based on the Blahut-Arimoto algorithm [1, 12]
have been lacking. The supplementary Python code
associated with [12] implements the GIB, but it is rather
tightly coupled to the specifics of that paper and is not

distributed as a standard package (it does not contain
tests or licensing information and is not available on
the Python Package Index). To our knowledge, the only
existing Python implementation that offers a reasonably
flexible and documented interface is that contained in
dit [14], a multipurpose information theory toolbox. By
focusing narrowly on the IB, embo can offer greater
ease of use for the most common applications (by
removing the need to preprocess the data and reducing
the amount of boilerplate code to a minimum) and
support for specialized applications such as the past-
future information bottleneck [15] (documented more
in detail in the notebook located at examples/Markov-
Chains.ipynb within the source distribution). Moreover,
and very importantly for the application of IB methods
to real-world research problems, embo is much more
computationally efficient than dit. Figure 3 shows that
embo offers a 1000x–10000x speedup over dit on a set of
simple problems (embo can solve much larger problems,
but these are not included in the comparison because
they become prohibitively time-consuming with dit).

Figure 2 From the documentation (examples/Deterministic-Bottleneck.ipynb): comparison of IB and DIB, similarly to
Figure 2 in [12]. In this example, X can take on one out of 128 possible states, Y can take on one out of 32 states, and p(x) is close
to uniform (see the notebook for details about the joint p(x,y)). Left: IB and DIB solutions for a range of β values, visualized in the “IB
plane” where I(M : Y) is plotted against I(M : X). Right: same solutions as in the left panel, visualized in the “DIB plane” where I(M : Y)
is plotted against H(M). As expected from [12], in the IB plane the two methods behave similarly. In the DIB plane, however, the DIB
performs better than the IB in the sense that H(M) is much lower for the DIB than for the IB, for any given value of I(M : Y).

Figure 3 From embo’s documentation (examples/Compare-embo-dit.ipynb): comparison of embo and dit [14] on sample IB
problems of different dimensionality, defined as the number of possible states for the joint random variable (X,Y). The problem with
dimensionality 9 (where both X and Y have three possible states) is taken from the documentation of the current version of dit. Left: runtime

vs dimensionality. Dit/sp and dit/ba indicate the algorithm used by dit: sp for scipy.optimize and ba for the Blahut-Arimoto algorithm.
It was not possible to run dit on the smallest problem due to a software bug. Center: IB bound for the problem with dimensionality 9,
computed with embo and dit. Embo and dit/sp (blue and orange) find the same solution, while dit/ba (green) finds a suboptimal one.
Right: I(M : X) and I(M : Y) as a function of β. Note how dit/ba (green) becomes unstable at large β. See notebook for more details.

4Piasini et al. Journal of Open Research DOI: 10.5334/jors.322

Taken together, the features discussed in this section
help to remove all barriers in going from empirical data to
an IB curve, thus making the IB method more accessible
to a broad generalist audience.

IMPLEMENTATION AND ARCHITECTURE
The main point of entry to the package is the
InformationBottleneck class. In its constructor,
InformationBottleneck takes as arguments an
array of observations for X and an (equally long) array
of observations for Y, together with other optional
parameters (see the software documentation for
details). Alternatively, a joint probability mass function
p(x,y) can be directly specified. In the most basic use
case, users can call the get_bottleneck method of an
InformationBottleneck object. Embo will then solve
the optimization problem in Equation (1) for a certain
set of values of β and will return the set of solutions,
composed of the optimal values of I(M : X), I(M : Y) and
H(M) corresponding to each of those β. The IB bound can
then be visualised by plotting I(M : Y) vs I(M : X), as we
have done in Figure 1 (top panels). If an alpha argument
was passed to the InformationBottleneck constructor,
the corresponding GIB problem as per Equation (3)
will be solved instead. To visualize the DIB bound, it is
then sufficient to specify alpha=0 and plot I(M : Y) vs
H(M), as we have done in Figure 2. Usage examples of
InformationBottleneck, illustrating the output to be
expected on some sample input data, are given in the
software’s documentation.

From the architectural standpoint, embo can parallelize
the computation of the IB curve on multicore machines
by breaking down the set of β values into k smaller subsets
and running each subset in parallel. This functionality is
implemented with the multiprocessing Python module
and can be controlled by the user by setting an optional
parameter specifying the number k of processes to use.

Embo has several other optional parameters, which
allow the user to control precisely the range and number
of β values to be considered, as well as finer aspects
of the behaviour of the algorithm that solves the
optimization problem (3) for a given β (the Blahut-Arimoto
algorithm[1, 2, 12] and to automatically preprocess data
for the application of the past-future bottleneck method
[15]. These parameters are all described in the software’s
documentation, but embo comes with reasonable
defaults allowing users to worry about such details only
if needed.

QUALITY CONTROL
Embo has a suite of unit tests to ensure basic functionality
and prevent regressions. These tests are integrated with
Gitlab’s continuous integration (CI) pipelines, so that unit
tests are automatically run each time new commits are
pushed to Gitlab. Tests include running (G)IB analyses on

a variety of datasets and probability distributions, both
fixed and randomly generated at test time. The tests
check properties such as limβ→∞I(M : Y) = I(X : Y) and that
embo’s internal functions for computing information-
theoretic quantities (such as entropy and Kullback-Leibler
divergence) give the same results as those provided
by SciPy. Tests are automatically run against multiple
versions of NumPy using tox (https://pypi.org/project/tox/).
CI reports are publicly available online at https://gitlab.com/

epiasini/embo/pipelines.
Meaningful examples of IB analyses are available

as Jupyter notebooks in embo’s documentation.
These examples are distributed with the software (for
instance when it is installed via pip) and are listed in the
package’s README and are viewable online at https://

gitlab.com/epiasini/embo/-/tree/master/embo/examples. These
examples play a double role: as a tutorial on how to use
the software, and as a sanity check that the software is
behaving as expected. As mentioned in the caption to
Figure 1 and explained in much further technical detail
in the notebooks, the examples used in the Jupyter
notebooks are chosen to make it easy for the user to
gauge if embo is behaving correctly. For instance, by
construction an IB curve should always lie below the
identity line and never include points with coordinates
larger than the base 2 logarithm of the number of
possible values taken on by the variables being analyzed
[1]. These properties can be immediately checked by
visual inspection of Figure 1, which is taken from one of
the notebooks mentioned above.

The examples available in the documentation also
showcase embo’s other features, such as facilities for
solving the generalized and deterministic bottleneck
problems, parallel computation of (G)IB bounds and the
integrated facility for performing past-future-bottleneck
type analyses.

(2) AVAILABILITY
OPERATING SYSTEM
Embo is a pure Python package and therefore has
ample compatibility. It has been tested to run on Linux
(Ubuntu 16.04, 18.04 and 20.04) and macOS (10.13
and 10.14).

PROGRAMMING LANGUAGE

Embo requires Python 3.

ADDITIONAL SYSTEM REQUIREMENTS
Embo does not have any special system requirement. It
supports parallel computation on multicore machines
through the multiprocessing module in Python’s standard
library.

https://pypi.org/project/tox/
https://gitlab.com/epiasini/embo/pipelines
https://gitlab.com/epiasini/embo/pipelines
https://gitlab.com/epiasini/embo/-/tree/master/embo/examples
https://gitlab.com/epiasini/embo/-/tree/master/embo/examples

5Piasini et al. Journal of Open Research DOI: 10.5334/jors.322

DEPENDENCIES
Embo requires a recent version of NumPy [16] (≥ 1.17)
and SciPy [17]. Matplotlib [18] is recommended to plot IB
curves, but is not a dependency. Embo can be installed
using pip, the de-facto standard Python package
management system, by simply running the command
pip install embo, but installation from a source code
archive (by downloading the source and running python
setup.py install) is supported too.

LIST OF CONTRIBUTORS

•	 Eugenio Piasini, University of Pennsylvania (developer)
•	 Alexandre Filipowicz, University of Pennsylvania

(developer)
•	 Jonathan Levine, University of Pennsylvania

(developer)
•	 Joshua Gold, University of Pennsylvania (consultant)

SOFTWARE LOCATION
Archive (1)

Name: Zenodo
Persistent identifier: 10.5281/zenodo.3625785

Licence: GNU General Public License v3.0 or later
Publisher: Eugenio Piasini, Alexandre L. Filipowicz,

Jonathan Levine
Version published: 1.1.0
Date published: 22/02/2021

Archive (2)
Name: Python Package Index (PyPI)
Persistent identifier: https://pypi.org/project/embo/

Licence: GNU General Public License v3.0 or later
Publisher: Eugenio Piasini, Alexandre L. Filipowicz,

Jonathan Levine
Version published: 1.1.0
Date published: 22/02/2021

Code repository
Name: Gitlab
Persistent identifier: https://gitlab.com/epiasini/embo

Licence: GNU General Public License v3.0 or later
Date published: 22/02/2021

LANGUAGE
English

(3) REUSE POTENTIAL

In [11], Embo has been used to assess the complexity
of the strategies adopted by human subjects during
cognitive tasks. In the computational cognitive science
and neuroscience domain, the same approach can be

used to analyze human or animal behavior in different
tasks, as well as the statistical relationship between
sensory stimuli and recorded neuronal activity [8, 9].
More generally, the Information Bottleneck method is
entirely domain agnostic, and embo can be used in any
setting involving joint observations of two discrete, low-
dimensional variables.

Embo may be extended in several ways. Possible
technical upgrades include improving the software’s
performance, for instance by rewriting the Blahut-
Arimoto algorithm implementation (or some critical
paths of it) in C, or by using performance-oriented
Python libraries such as Numba or Cython. Features that
may be added include the estimation of finite sample
bounds for the IB [19]. Finally, embo may be coupled
with analyses based on multipartite information
decompositions [20, 21] to study the mutual
relationship of triplets of empirical variables, where
one is hypothesized to act as a bottleneck between the
other two. This condition is highly relevant for the study
of neural activity recorded concomitantly with sensory
stimulation and behavioural output in awake animals
[22].

The recommended support channel for embo is via
its GitLab project, where issues can be reported, and
patches and merge requests are welcome. Additionally,
the maintainers can be contacted directly at their
institutional email addresses.

ACKNOWLEDGEMENTS

We thank Kamesh Krishnamurthy for discussions, and
Joseph Kable and Vijay Balasubramanian for supporting
the projects in which the software was created.

FUNDING STATEMENT

Funded or partially funded by NSF-NCS 1533623,
R01EB026945, NIMH F32MH117924 and R01NS113241.
The funders had no role in the design of the software,
manuscript preparation, or decision to publish.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Eugenio Piasini and Alexandre L. S. Filipowicz: These
authors contributed equally.

https://doi.org/10.5281/zenodo.3625785
https://pypi.org/project/embo/
https://gitlab.com/epiasini/embo

6Piasini et al. Journal of Open Research DOI: 10.5334/jors.322

AUTHOR AFFILIATIONS
Eugenio Piasini orcid.org/0000-0003-0384-7699
Computational Neuroscience Initiative and Department of
Physics and Astronomy, University of Pennsylvania, US

Alexandre L. S. Filipowicz orcid.org/0000-0002-1311-386X
Toyota Research Institute, US

Jonathan Levine orcid.org/0000-0002-6246-9045
Department of Neuroscience, University of Pennsylvania, US

Joshua I. Gold orcid.org/0000-0002-6018-0483
Department of Neuroscience, University of Pennsylvania, US

REFERENCES

1. Tishby N, Pereira FC, Bialek W. The information bottleneck

method. In Proceedings of the 37-th Annual Allerton

Conference on Communication, Control and Computing.

1999; 368–377. arXiv:physics/0004057.

2. Cover TM, Thomas JA. Elements of Information

Theory. Wiley, second edition. 2006. DOI: https://doi.

org/10.1002/047174882X

3. Slonim N, Tishby N. Document clustering using word

clusters via the information bottleneck method. In

Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information

retrieval – SIGIR ‘00. ACM Press. 2000. DOI: https://doi.

org/10.1145/345508.345578

4. Hecht RM Noor E, Tishby N. Speaker recognition by

Gaussian information bottleneck. In Proceedings of the

10th Annual Conference of the International Speech

Communication Association. Brighton, UK. 2009.

5. Kolchinsky A, Tracey BD, Wolpert DH. Nonlinear

Information Bottleneck. Entropy. 2019; 21(12): 1181. DOI:

https://doi.org/10.3390/e21121181

6. Tishby N, Zaslavsky N. Deep learning and the information

bottleneck principle. In 2015 IEEE Information Theory

Workshop (ITW). IEEE. 2015. DOI: https://doi.org/10.1109/

ITW.2015.7133169

7. Achille A, Soatto S. Emergence of Invariance and

Disentanglement in Deep Representations. J. Mach. Learn.

Res. 2018; 19(1): 19471980. ISSN 1532-4435.

8. Palmer SE, Marre O, Berry MJ, Bialek W. Predictive

information in a sensory population. Proceedings of

the National Academy of Sciences. 2015; 112(22):

6908–6913. ISSN 0027-8424. https://www.pnas.org/

content/112/22/6908.full.pdf. DOI: https://doi.org/10.1073/

pnas.1506855112

9. Chalk M, Marre O, Tkačik G. Toward a unified theory

of efficient, predictive, and sparse coding. Proceedings

of the National Academy of Sciences. 2018; 115(1):

186–191. ISSN 0027-8424. DOI: https://doi.org/10.1073/

pnas.1711114115

10. Filipowicz AL, Glaze CM, Kable JW, Gold JI. Pupil diameter

encodes the idiosyncratic, cognitive complexity of belief

updating. eLife. 2020; 9. DOI: https://doi.org/10.7554/

eLife.57872

11. Filipowicz A, Levine J, Piasini E, Tavoni G, Kable J, Gold

J. The comparable strategic flexibility of model-free and

model-based learning. biorXiv. 2020. DOI: https://doi.

org/10.1101/2019.12.28.879965

12. Strouse D, Schwab DJ. The Deterministic Information

Bottleneck. Neural Computation. 2017; 29(6): 1611–1630.

DOI: https://doi.org/10.1162/NECO_a_00961

13. Chechik G, Globerson A, Tishby N, Weiss Y. Information

Bottleneck for Gaussian Variables. J. Mach. Learn. Res. 2005;

6: 165188. ISSN 1532-4435.

14. James RG, Ellison CJ, Crutchfield JP. dit: a Python package

for discrete information theory. Journal of Open Source

Software. 2018; 3(25): 738. DOI: https://doi.org/10.21105/

joss.00738

15. Creutzig F, Globerson A, Tishby N. Past-future information

bottleneck in dynamical systems. Physical Review E. 2009;

79(4). DOI: https://doi.org/10.1103/PhysRevE.79.041925

16. Harris CR, Millman KJ, van der Walt SJ, Gommers R,

Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,

Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH,

Brett M, Haldane A, del R’ıo JF, Wiebe M, Peterson P,

G’erard-Marchant P, Sheppard K, Reddy T, Weckesser W,

Abbasi H, Gohlke C, Oliphant TE. Array programming with

NumPy. Nature. 2020; 585(7825): 357–362. DOI: https://doi.

org/10.1038/s41586-020-2649-2

17. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy

T, Cournapeau D, Burovski E, Peterson P, Weckesser W,

Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ,

Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey

CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D,

Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR,

Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P,

SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python. Nature Methods. 2020; 17:

261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2

18. Hunter JD. Matplotlib: A 2D graphics environment.

Computing in Science & Engineering. 2007; 9(3): 90–95. DOI:

https://doi.org/10.1109/MCSE.2007.55

19. Shamir O, Sabato S, Tishby N. Learning and generalization

with the information bottleneck. Theoretical Computer

Science. 2010; 411(29–30): 2696–2711. DOI: https://doi.

org/10.1016/j.tcs.2010.04.006

20. Pica G, Piasini E, Chicharro D, Panzeri S. Invariant

Components of Synergy, Redundancy, and Unique

Information among Three Variables. Entropy. 2017; 19(9):–.

ISSN 1099-4300. DOI: https://doi.org/10.3390/e19090451

21. Lizier J, Bertschinger N, Jost J, Wibral M. Information

Decomposition of Target Effects from Multi-Source

Interactions: Perspectives on Previous, Current and

Future Work. Entropy. 2018; 20(4): 307. DOI: https://doi.

org/10.3390/e20040307

22. Pica G, Piasini E, Safaai H, Runyan C, Harvey C, Diamond

M, Kayser C, Fellin T, Panzeri S. Quantifying how much

sensory information in a neural code is relevant for

behavior. In Advances in Neural Information Processing

Systems 30. 2017.

http://orcid.org/0000-0003-0384-7699
http://orcid.org/0000-0002-1311-386X
https://orcid.org/0000-0002-6246-9045
https://orcid.org/0000-0002-6246-9045
http://orcid.org/0000-0002-6018-0483
https://doi.org/10.1002/047174882X
https://doi.org/10.1002/047174882X
https://doi.org/10.1145/345508.345578
https://doi.org/10.1145/345508.345578
https://doi.org/10.3390/e21121181
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://www.pnas.org/content/112/22/6908.full.pdf
https://www.pnas.org/content/112/22/6908.full.pdf
https://doi.org/10.1073/pnas.1506855112
https://doi.org/10.1073/pnas.1506855112
https://doi.org/10.1073/pnas.1711114115
https://doi.org/10.1073/pnas.1711114115
https://doi.org/10.7554/eLife.57872
https://doi.org/10.7554/eLife.57872
https://doi.org/10.1101/2019.12.28.879965
https://doi.org/10.1101/2019.12.28.879965
https://doi.org/10.1162/NECO_a_00961
https://doi.org/10.21105/joss.00738
https://doi.org/10.21105/joss.00738
https://doi.org/10.1103/PhysRevE.79.041925
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.tcs.2010.04.006
https://doi.org/10.1016/j.tcs.2010.04.006
https://doi.org/10.3390/e19090451
https://doi.org/10.3390/e20040307
https://doi.org/10.3390/e20040307

7Piasini et al. Journal of Open Research DOI: 10.5334/jors.322

TO CITE THIS ARTICLE:
Piasini E, Filipowicz ALS, Levine J, Gold JI 2021 Embo: a Python package for empirical data analysis using the Information Bottleneck.
Journal of Open Research Software, 9: 10. DOI: https://doi.org/10.5334/jors.322

Submitted: 04 February 2020 Accepted: 13 May 2021 Published: 31 May 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.322
https://doi.org/10.5334/jors.322
http://creativecommons.org/licenses/by/4.0/

