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Abstract

The microscopic description of the local structure of water remains an open chal-
lenge. Here, we adopt an agnostic approach to understanding water’s hydrogen bond
network using data harvested from molecular dynamics simulations of an empirical
water model. A battery of state-of-the-art unsupervised data-science techniques is
used to characterize the free energy landscape of water starting from encoding the
water environment using local-atomic descriptors, through dimensionality reduction,
and finally the use of advanced clustering techniques. Analysis of the free energy
at ambient conditions was found to be consistent with a rough single basin and
independent of the choice of the water model. We find that the fluctuations of the
water network occur in a high-dimensional space which we characterize using a com-
bination of both atomic descriptors and chemical-intuition-based coordinates. We
demonstrate that a combination of both types of variables is needed in order to ad-
equately capture the complexity of the fluctuations in the hydrogen bond network
at different length scales both at room temperature and also close to the critical
point of water. Our results provide a general framework for examining fluctuations
in water under different conditions.

We also explore the collective nature of orientational fluctuations on the free
energy landscape. Specifically, we develop an unsupervised protocol for identifying
reorientational dynamics in liquid water. We show that large swings are more likely
to occur higher up in the free energy landscape than smaller amplitude swings. We
show that these orientational fluctuations are collective and occur in waves on the
order of tens of picoseconds. These waves of large swings are found to correlate well
with the fraction of defects as well as the fluctuations in local density.
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Chapter 1

Introduction

Water is perhaps the most common solvent for processes in physics, chemistry and
biology[1, 2, 3]. Unlike simple liquids, water exhibits rather anomalous behavior
along different regions of its phase diagram. For example, upon cooling, liquid
water is characterized by a maximum in its density as well as a minimum in the
compressibility[4, 5]. Despite long study, the structural and dynamical fingerprints
underlying these anomalies remains an open area of study and has been the subject
of lively debate and discussion from both experimental and theoretical fronts [6, 7,
8, 9, 10, 11, 12].

Figure 1.1: This figure illustrates the extended three-dimensional hydrogen bond
network of water. The dashed red lines(red) correspond to hydrogen bonds be-
tween water molecules. The hydrogen bonds are seen to form an extended three
dimensional pattern with most water molecules being connected to 4 neighboring
molecules

5



Due to the difference in the electronegativities of the oxygen and hydrogen
atom, water molecules are held together by hydrogen-bonds involving highly ori-
ented dipole-dipole interactions. Due to the asymmetry of the position of the pro-
tons along the hydrogen bonds, these interactions are highly directed. Numerous
sequential connections of these hydrogen bonds lead to the creation of water’s 3-
dimensional hydrogen bond network. Figure 1.1 illustrates this hydrogen bond net-
work (HBN) for liquid water where the hydrogen bond between two water molecules
is highlighted with the dashed oval. Although the HBN has been invoked to ratio-
nalize many of water’s unique properties, the microscopic origins and nature of its
fluctuations has been the source of numerous controversies [9, 6, 13, 14]. One of
the central challenges here has been examining relevant hydrogen-bond patterns for
a disordered system that occur on various spatial length scales[15, 12, 16, 17, 18, 19].

Almost a century ago, Wilhelm Roentgen provided one of the earliest attempts
to describe different environments in water that could be used to explain its anoma-
lous properties[20]. He speculated that water consists of two environments namely, a
low-density form (LDL) and a high-density form (HDL). In this view, LDL is locally
ordered and favoured by enthalpy, while HDL is disordered and entropically stabi-
lized. Therefore, upon cooling, the fraction of HDL decreases while LDL increases.
This simple picture allows both to explain the metastable behavior of supercooled
water, whose origin will be in the fluctuations between these two states as well as the
density maximum, as a shift between the equilibrium populations from a majority
of HDL towards being dominated by LDL.

Numerous models of water have been put forward building on these original ideas
suggested by Roentgen. These range from mixture models [21, 22, 13, 14, 23, 24],
often interpreted as consisting of the two dominant LDL and HDL states, as well
as continuous random-network models [25, 26]. In the latter, the local tetrahedral
structure of water with some variation in the bond distances and angles, leads to the
creation of local topological structures such as closed rings [27, 28, 29, 29, 30, 31,
32, 17, 33]. Several theoretical and simulation studies have shown that the changes
in the topology of network are manifested across the phase diagram[34, 17, 15].

Four decades ago, Poole and co-workers conducted molecular dynamics simu-
lations of a coarse grained model of water (ST2) and suggested the possibility of
observing a second liquid-liquid critical point [35]. This phenomenon, has since then,
been interpreted in terms of the existence of the HDL and LDL water environments
[14, 12, 35] and confirming Roentgen’s speculations. Very recently, this observation
was confirmed by Sciortino, Debenedetti et. al using microsecond timescale atom-
istic molecular dynamics simulations of several realistic water models [36, 37, 38].

The existence of LDL and HDL water environments is commonly used to in-
terpret the existence of heterogeneities in small angle scattering measurements [18,
19]. Specifically, these experiments show the presence of density fluctuations and
inhomogeneities that occur on the nanometer length scale even at room tempera-
ture [18]. In this context, a common strategy that is adopted is to use molecular
dynamics simulations performed at different thermodynamic state points and then
conducting an inherent structure analysis where one quenches the system to zero-
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Kelvin[39]. Thereafter, one examines the distribution of different types of order
parameters or reaction coordinates designed to distinguish between the LDL and
HDL structures [40, 23].

Underlying the techniques and approaches used to interpret liquid water in terms
of the LDL and HDL states particularly at room temperature, involves two assump-
tions: firstly, it is not clear that the fluctuations relevant in the supercooled regime,
translate to higher temperature and secondly, the directions along which these fluc-
tuations occur may not necessarily be the same. The timescales associated with the
possible heterogeneities in water has also been fervently discussed in the literature
[41, 42, 43]. In this regard, there have been a plethora of chemical-intuition based
coordinates that have been developed to distinguish between the LDL and HDL
environments [44, 45, 46, 47]. Many of these variables build on the original notion
set out by Roentgen which aim at identifying the difference between a locally more
ordered vs disordered structure induced by the changes between the first and sec-
ond solvation shells. Figure 1.2 reproduces a schematic illustration of the changes
typically thought of in HDL and LDL environments taken from a previous work by
Car and co-workers [48].

The vast majority of chemical-intuition based parameters involve projecting
along a reduced set of dimensions and for the most part, require making ad hoc
assumptions for example, on how many or which specific water molecules one uses
in the first or second solvation shell (as seen in Figure 2.1). Furthermore, to really
understand and quantify the fluctuations associated with the 3-dimensional HBN,
the underlying free energy landscape in which it occurs needs to be examined in
its correct embedding which is not known a priori. Indeed we will show in this
thesis, that valuable information about the structural fluctuations in water can be
lost when projecting in a low-dimensional space.

Besides the thermodynamics associated with the free energy landscape of liquid
water, another important and complementary aspect that has also been the subject
of many experimental and theoretical studies is its dynamics [49, 8]. Liquid water
has a very rich dynamical spectrum as observed by Infra-Red (IR) [43], Raman[50]
and TeraHertz (ThZ)[51] spectroscopies. Due to the directed interactions formed
by the water dipoles as eluded to earlier, fluctuations of the HBN at the molecular
scale involve hydrogen-bond breaking and formation where water molecules undergo
reorientational motions [52, 49].

Until over two decades ago, the accepted interpretation for water reorientations
was that it involved a slow diffusive process[53]. Laage and Hynes in 2006 used
molecular dynamics simulations of an atomistic model of water and showed instead
that water molecules undergo large amplitude jumps [49]. The angular jump mecha-
nism as it is now referred to, has been used as a framework to understand changes in
water re-orientational dynamics in a wide variety of contexts such as different elec-
trolyte solutions and also near organic and inorganic interfaces[54, 55, 56]. Although
this mechanism has been found in a wide variety of different water models[57, 58], a
key underlying assumption has been that it is primarily a localized effect involving
three water molecules as shown in the Figure 1.3 reproduced from Ref [49].
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High density Low density

Figure 1.2: This figure illustrates high-density-like and locally disordered (left) vs.
low-density-like and locally ordered (right) environments. The dark and light blue
areas represent the first and second coordination shells around the central water
molecule, respectively. The separation between the water molecules in the first and
second coordination shells [48]

Since the water hydrogen bond network involves both density and orientational
correlations that can extend to the length scale of ∼1nm [59, 19, 12], we postulate
that the angular jump mechanism involves more collective behavior than previously
expected. Furthermore, since water can be seen as a topological directed network
with fluctuations in defects and non-defective water molecules, changes in water re-
orientations would imply changes in directionality of the network. Thus, one might
expect to see cooperative behavior [59].

In this thesis we revisit some of these commonly held assumptions regarding the
fluctuations associated with the thermodynamical and dynamical properties of wa-
ter. In particular, we bring in recently developed modern tools in data science[60,
61, 62] to examine these issues in an unsupervised manner. Specifically, a key over-
arching challenge that we address is to circumvent the bias of chemical intuition in
describing the complexity of different environments and how this is manifested in
both the thermodynamics and dynamics of liquid water.

The advent of machine learning techniques to chemistry has brought in many
tools allowing for the construction of higher quality potentials as well as investigating
the complex data of disordered liquids such as water with minimal chemical bias. In
this thesis we re-visit some fundamental questions in the theory of aqueous systems
armed with these modern tools: What are the relevant degrees of freedom needed
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Figure 1.3: This figure from reference [49] illustrates the angular jump in which a
water molecule(*) breaks a bond with neighboring molecule a and becomes bonded
to another water b originally in the second shell. In panel A, the undercoordinated
water is approaches the first shell of molecule(*) and while the overcoordinated water
b moves away for O*. Panel B shows an intermediate stage of the flip between a
and b where H* molecule is equidistant from the both both waters. In panel C the
exchange has taken place and thermal fluctuations have resulted in all waters having
the same hydrogen bond coordination number of 4

to describe the broad spatial and temporal range of fluctuations in the water? How
much information can we extract from different components of the hydrogen bond
network? What implications does this have on our understanding of the existence
of LDL and HDL phases across the phase diagram?

In an effort to address these questions, the thesis tackles two topics: firstly, char-
acterizing the complex high dimensional nature of the free energy landscape of water
at room temperature and in the supercooled regime (Chapter 3) and secondly, re-
visiting the collective nature of the angular jump mechanism within this landscape
(Chapter 4).

In Chapter 3, constructing the free energy landscape of water involves three
important steps: i) describing local atomic environments that are not biased by
chemical intuition, ii) estimating the intrinsic dimension of the water network and
finally iii) clustering and free energy construction. A combination of both machine-
learning (ML) and chemically inspired coordinates are used to understand the free
energy landscape. Our key finding here is that liquid water is a high dimensional
free energy landscape characterized by a rather broad minimum with small ripples
arising from low barriers separating the different minima constituting very different
structures. These results offer a much more nuanced perspective on the interpre-
tation of water as a two-state picture which is currently invoked in many contexts.
Interestingly, we find that a combination of both the ML based atomic descriptors
as well as chemical-based parameters are required to accurately understand the fluc-
tuations in the network.

Chapter 4 revisits the angular jump mechanism that was originally proposed by
Laage and Hynes. We propose an unsupervised approach for automatically detect-
ing angular swings in water at room temperature. This approach allows for probing
the collective nature associated with the angular motions. We find that the fluctu-
ations in water topology creating defects, come in waves on the timescale of several
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picoseconds. By identifying correlations between the large angular jumps and both
the ML based and chemical intuition based variables used in Chapter 3, we identify
both density and topological fingerprints of the network that are key players in wa-
ter’s cooperative fluctuations.

Overall, the findings of this thesis point to a much richer physics and chemistry
associated with the fluctuations of liquid water. These findings are also independent
of the choice of the water model. The protocol we employ in Chapter 3 for con-
structing the free energy landscape of water provides a general framework by which
the thermodynamics of water in different regions of the phase diagram as well as
near biological interfaces, maybe explored in the future. The collective nature of the
angular jump mechanism also opens up interesting questions on how this changes
for example, upon supercooling and also near biologically relevant systems such as
proteins, where correlations get more enhanced.

In summary, the thesis is organized in the following manner. We begin in Chap-
ter 2 with an overview of all the methods used including a summary of molecular
dynamics and the analysis techniques used to characterize water’s free energy land-
scape. Within this Chapter we also try to highlight where possible, how the data-
science methods we use go beyond the current state-of-the-art in the field. Chapter
3 discusses our results on the high-dimensional fluctuations in water while Chapter
4 we discuss both the method we developed for detecting angular fluctuations in
an unsupervised manner and subsequently how it is used to extract the cooperative
nature of water reorientational dynamics. Finally, we end in Chapter 5 with some
conclusions and perspectives for future work.
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Chapter 2

Methods

In this chapter, we review the basic theory behind the methods employed in the
thesis. We will begin by briefly summarizing some of the techniques underlying
classical molecular dynamics (MD) which allows for generating the water configura-
tions. Subsequently, we will also discuss the various analysis techniques that have
been employed, ranging from cataloging the chemical based parameters of the water
environments, to modern protocols that allow for a multidimensional description of
the underlying physics and chemistry using advanced data-science techniques.

2.1 Classical Molecular Dynamics (MD) Simula-

tions

At the microscopic level, the physics of atoms and molecules should be studied with
a quantum mechanical description of both the electrons and nuclei[63]. However,
modeling this quantum nature can be prohibitively expensive and, therefore, several
approximations need to be employed to describe atomistic systems[64]. A generally
employed one is the Born-Oppenheimer approximation [65]; that is, due to the
separation in timescales of the electrons and the nuclei, the former instantaneously
adapt to the nuclear geometry, generating a force field in which the nuclei move. In
most empirical classical molecular dynamics models an additional set of assumptions
are made namely that the nuclei follow Newton’s equations of motion and the forces
between the nuclei can be parameterized in some manner thereby integrating out
the electronic degrees of freedom[66].

MD has been widely used to study many different systems, ranging from biologi-
cal systems [67, 68], liquids[69] and also inorganic materials[70]. In the following, we
will summarize how the MD protocol is used to simulate the water systems consid-
ered in this thesis. Typically one begins with a set of initial positions of atoms and
updates the positions each time step based on the forces acting on the system. As
mentioned earlier, the rules governing the change of the atomic positions is dictated
by Newton’s equations of motion, yielding a second-order differential equation of
the form:

¨⃗ri =
dv⃗i
dt

=
F⃗i

mi

, i = 1, .., N (2.1)

where r⃗i is the three dimensional vector representing the position of atom i in a
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system withN atoms. The force F⃗i on each atom in turn, depends on the coordinates
of all the atoms in the system through a potential U in the following manner:

F⃗i = −∂U(r⃗1, ..., r⃗N)

∂r⃗i
(2.2)

In classical non-reactive force fields, the potential U (r⃗1, ..., r⃗N) is usually split
into bonded and non-bonded interactions. The bonded part takes into account the
changes in the internal degrees of freedom of the molecules such as bond distances,
angles, and dihedrals[66]. The non-bonded contributions are related to the elec-
trostatic and van der Waals forces which typically involve pairwise interactions.
Electrostatic forces are usually modeled by a Coulomb potential, while the van der
Waals ones with a 6−12 Lennard-Jones potential, leading to the following equation:

U(r⃗1, ..., r⃗n) = Ubond +
∑
<i,j>

Ai,j
qiqj
ri,j

+ (
Ci,j

r12i,j
− Bi,j

r6i,j
) (2.3)

2.1.1 Water Models

The functional form for the force field and the respective parameters of the bonded
and non-bonded interactions defines the water model. Due to the key role of water
as a solvent in many atomistic systems, a lot of different water models have been
developed [71, 72, 73]. Among these empirical potentials, some of the most popu-
lar potentials include TIP3P[71], SPC[72], SPC/E[74], TIP4P [71], TIP4P-Ew[75],
TIP4P/ICE[36] and finally TIP4P/2005[73]. A critical distinguishing feature of
these water models is the number of sites considered for computing the non-bonded
interactions. Specifically, three-site models such as TIP3P, SPC and SPC/E have
three interaction points corresponding to the three atoms of the water molecule,
while four-site models (TIP4P, TIP4P-EW, TIP4P/ICE and TIP4P/2005) move
the charge corresponding to the oxygen along the bisector of the HOH angle while
maintaining four sites for the Lennard-Jones interactions. This somewhat ad hoc
fix has been shown to improve the electrostatic potential around the water molecule
which is then manifested in better reproducing thermodynamic properties of water
across the phase diagram[73].

In this thesis, unless otherwise stated, most of the analysis is performed using the
TIP4P/2005 model to explore the free energy landscape at room temperature in the
supercooled regime. The orientational dynamics in Chapter 4 is studied using the
SPC/E water model. In both cases, we use the rigid-body version of these models
allowing for using larger integration time steps. The TIP4P/2005 water model on
the other hand, has been shown to reproduce the condensed phase properties of
water including the melting and vaporization point as well as the dielectric constant
and structural properties across a wide temperature range between 100-600K[73].
Recently, the TIP4P/2005 water model was also shown to display the second critical
point at 172 ± 1K, 1861 ± 9bar [37] consistent with numerous previous theoretical
and experimental proposals[76]. The SPC/E model consists in a modification of the
original SPC water model by scaling the point charges to account for polarization
in an effective manner. The SPC/E model has been shown to generate a diffusion
constant of water that is consistent with experiments[74].

It is worth stressing that many-body polarization effects, known to be present in
water, are not captured by pairwise simple force-field models [77] described above.
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More accurate models take advantage of the many body expansion of the energy and
polarizability to accurately deal with these effects[78]. Perhaps the most accurate
model for neutral water is the MB-pol potential[78]. The principal idea here is
that the binding energy of many water molecules can be written as a many-body
expansion shown below:

Ebind = E1B + E2B + E3B + · · ·+ ENB

=
N∑

n=1

EnB

(2.4)

In MB-pol, the one body interaction (E1B) term is represented by the spectro-
scopically accurate potential energy surface developed by Partridge and Schwenke[79].
The two body interaction term (E2B), that is, the interaction between two water
molecules, is split into a short and long range contribution, with the short range
term represented by a permutationally invariant polynomial that smoothly switches
to zero once the separation between two water molecules becomes larger than a pre-
determined cutoff value. On the other hand, the long-range interactions arise from
electrostatic contributions originating from interactions between permanent and in-
duced moments as well as weak dispersion forces. The three-body term (E3B) was
also separated into a short and long range induction energy. The many-body inter-
actions in the MB-pol water model was fitted to highly accurate quantum chemistry
calculation at the CCSD(T) level[80]. The MB-pol force field accurately repro-
duces structural, dynamical and spectroscopic properties of water across the phase
diagram[77] both in the bulk and also at interfaces[81]. Wherever necessary and
possible, the predictions made from the empirical potentials we use (TIP4P/2005
and SPC/E) are compared with the MB-pol water model in order to validate our
results.

2.1.2 Time Evolution of Molecular Dynamics

Upon obtaining the force on each atom at time t, we determine its position and
velocity at some time t + ∆t by numerically integrating the Equation 2.1. The ∆t
is the timestep that is used in the simulation, the magnitude of which can affect
the accuracy of the predicted positions and momenta. Many procedures exist to in-
tegrate Newton’s equation of motion such as the Verlet[82], the velocity Verlet[83],
and leapfrog algorithms[84]. For example, the Verlet integrator can be obtained
by Taylor expanding the positions r(t) forward and backward in time which sub-
sequently yields the following equation allowing for predicting the positions of the
particles forward in time:

r⃗(t+∆t) = r⃗(t)− r⃗(t−∆t) +
a⃗(t)∆t2

2
+O(∆t4) (2.5)

Specific physical quantities such as kinetic energy require the accurate calcu-
lation of velocities and it is therefore useful to compute them on the fly. This is
implemented both in the leapfrog and velocity-Verlet, the latter of which is shown
below:
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r⃗(t+∆t) = r⃗(t) + v⃗(t)∆t+
a⃗(t)∆t2

2
(2.6)

v⃗(t+∆t) = v⃗(t) +
a⃗(t) + a⃗(t+∆t)

2
∆t (2.7)

(2.8)

The use of rigid water models without considering the bonding interactions re-
quires modifications to the equations of motion to maintain the internal water struc-
ture. The conservation of the interatomic distances in these models is enforced
through the use of Lagrange multipliers that are exploited in procedures such as the
SHAKE[85] and RATTLE[86] algorithms.

Up to now, the formalism explained allows to perform simulations in the mi-
crocanonical ensemble (NVE) in which the conserved quantities are the number
of particles, the total volume of the system and the total energy. However, the
thermodynamic conditions that are often of interest to compare with experiments
are situations at constant temperature and pressure. There are several methods
to modify the dynamics in order to satisfy these requirements and obtain config-
urations from the canonical (NVT) or isothermal-isobaric (NPT) ensembles. The
temperature in MD simulations is usually controlled using thermostats which are
numerical recipes that essentially modulate the exchange of energy with the veloc-
ities of the particles. Examples include the Anderson[87], Nose-Hoover[88, 89], or
the velocity-rescaling thermostat[90]. Similarly, the pressure is maintained using a
barostat such as Berendsen[91] or Parrinello-Rahman[92] where the volume of the
system fluctuates. In our NVT or NPT simulations that were conducted for this
thesis, we use the velocity-rescaling thermostat and Parrinello-Rahman barostat.

2.2 Descriptors for Water Environments

The final output of the molecular dynamics simulation is a trajectory, a time-ordered
sequence of frames consisting of atomic coordinates. The set of atomic coordinates
in a frame corresponds to a snapshot of the system at some instant in time. If
one runs the simulation long enough, all relevant structural configurations will be
sampled, provided there is no ergodicity breaking. At the same time, if one selects
structures far apart in time, i.e., at times greater than the correlation time, we arrive
at an independent identically distributed (i.i.d.) collection of configurations of the
system.

This ensemble of configurations can be used to compute the thermodynamic
properties of the system under study. In this work, we use the MD simulations
of water to extract water configurations. More precisely, we will investigate the
different environments around the water molecules to obtain a structure-based un-
derstanding of the macroscopic properties.

2.2.1 Chemical-Based Descriptors

The standard approach to the description of environments involves using chemical-
intuition defined functions of atomic coordinates called collective variables(CV)[93].
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Figure 2.1: A visual schematic summarizing all the one-dimensional descriptors of
water environments that were used in this work. a) qtet, Tetrahedrality associated
with the four nearest neighbors. b) d5, distance from the fifth nearest neighbor.
c) LSI, Local Structure Index measuring the extent or order/disorder between
1st and 2nd solvation shells. d)The number of neighbors for Topological defects
in water. Shown are some examples including 2in2out, 1in2out and 2in1out water
molecules. The in, out subscript corresponds to the number of hydrogen bonds be-
ing accepted/donated respectively by the central water molecule which is the order
parameter) ρvoro, the local density estimated as the inverse of the Voronoi volumes
corresponding to each water molecule. f) SOAP dice is the distance in the SOAP
space from a given liquid water environment to the one present in hexagonal ice.

Their use is quite extensive in both the physics and chemistry community, for ex-
ample, to study not only the structure of water under different thermodynamic
conditions [47, 94, 9] but also water near different types of interfaces where the
properties of water are known to change [95].

In the following, we will detail the essential CVs behind the descriptors used in
this work (summarized in Figure 2.1). Tetrahedrality (qtet, Fig. 2.1a ) measures the
similarity between the first layer environment and a tetrahedron. Its input values
are the angles computed taking as vertex the oxygen atom of the central water and
all the possible couples generated by the four nearest neighbors, yielding a value
of 1 for a perfectly tetrahedral environment such as in hexagonal ice[96, 97]. More
precisely, the qtet is defined by the following equation:

qtet = 1− 3

8

3∑
i=1

4∑
j=i+1

(cos(ϕi,j) +
1

3
)2 (2.9)

where ϕi,j is the angle formed by the lines joining the oxygen atom of the central
water molecule its nearest neighbor oxygen atoms i and j. Consequently qtet ranges
[-3 1]

The d5 parameter (Fig. 2.1b) is the distance from the fifth nearest neighbor to
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the central atom and reflects the extent of separation between the first and second
solvation shells. A larger value of d5 is interpreted as being a more open and locally
ordered structure[98]. The LSI parameter was designed to distinguish environments
with well-separated first and second coordination shells from those that are more
disordered. Consider the distances between the central water molecule (using the
oxygen atoms) and the ith neighboring water molecule ordered in the following
manner r1 < r2 < ... < ri < ri+1 < ... < rn < 3.7Å < rn+1. The LSI is then defined
as,

LSI =
1

n

n∑
j=1

(∆(j)− ∆̄)2 (2.10)

where ∆(j) = rj − rj+1 and ∆̄ corresponds to the difference in consecutive dis-
tances and the mean respectively. Fig. 2.1c) schematically illustrates the variables
going into the LSI function, which is designed to probe the order in the first and
second coordination shells by examining all neighboring water molecules within a
cutoff of 3.7Å by looking at the O-O distances. One can build up an intuition of
the physical meaning of this parameter by comparing two extreme cases. In the
case of hexagonal ice, ∆ (j) will be nearly equal to zero for all values except for the
very last term which will lead to a large value of the LSI. Indeed, in this case the
LSI ≃ 0.3. On the other hand in a random gas, ∆ (j) should be much lower and
the consequently lead to a very small value of LSI.

All these variables previously discussed do not explicitly include the hydrogen
atoms. However, numerous previous theoretical studies have shown that there are
essential correlations in the hydrogen-bond network created by the local topology,
which involves directed hydrogen bonds between water molecules[99, 100, 101, 102].
Figure 2.1 d) shows some examples of topological defects that can be created from
the canonical 2in2out (two hydrogen bond donors and two acceptors) water, which
we also examine in our work. A geometrical definition is typically used to construct
hydrogen bonds[103] In particular, to identify topological defects two molecules are
hydrogen-bonded if their inter oxygen distance is less than 3.5 Å and the smallest
angle between the O-O axis and the O-H axis is less than 30 degrees.

Although the previously described parameters are often interpreted in terms of
high and low-density environments, this can only be inferred indirectly. Therefore, to
obtain a more quantitative measure of density variations, we computed the Voronoi
density (ρvoro) as illustrated in Figure 2.1 e). ρvoro is computed as the inverse
of the Voronoi-volume associated with a water molecule which is the sum of the
volume of the oxygen and two hydrogen atoms [41, 104, 105]. This volume is found
by constructing surfaces equidistant between neighbouring atoms. This Voronoi
partitioning is closely linked to the Wigner-Seitz cell in solid-state physics[106, 107]
and provides a very elegant and robust manner in which to partition 3-d space.

Finally, Figure 2.1 f) shows the last one-dimensional descriptor that we used in
this work, namely the SOAP distance from a hexagonal ice structure. This variable
quantifies how different a local water environment in liquid water is from a water
molecule obeying the ice rules in the ice lattice. Depending on the choice of the
various SOAP parameters, one can generate a wide variety of distance measures.

While the collective variables provide a very physical understanding of atomic
systems, they have two main limitations: 1) since they are low dimensional de-
scriptors, there is no guarantee that they capture all the relevant aspects of the
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complexity of environments due to possible information loss and, 2) these variables
are typically chosen through some form of chemical intuition based on visualising
structures and therefore involve either implicitly or explicitly, human bias. In the
next section, we will provide the basis for an agnostic multidimensional description
of water environments.

2.2.2 Machine Learning Based Descriptors

The second class of descriptors aims to represent the atomic environments directly
from the atomic coordinates. The main challenge for obtaining this is that in order
to properly reflect the physics of the system, they must be invariant to translations,
rotations, and permutation of the atoms. More explicitly, if one translates the whole
environment, or rotates it, or changes the order of the atoms in the coordinates, the
descriptors must remain the same. The manner in which to achieve this fall broadly
into two categories namely graph-based versus density-based descriptors.

Graph-based methods such as Coulomb[108] and Gaussian overlap matrices[109]
encode structural features of an environment by constructing matrices whose ele-
ments are functions of pairwise distances between molecules. While such represen-
tations are translationally and rotationally invariant, one must carry out a further
step to make them permutationally invariant. We can achieve permutational invari-
ance either by sorting elements according to the magnitude or using the spectrum.
The spectrum of a matrix is invariant to the permutation of indices but suffers from
a problem of non-uniqueness. In other words, very different graphs can possess the
same spectrum. Sorting matrix elements by magnitude resolves this problem. How-
ever, small changes in distances between molecules can result in significant changes
of graph matrix elements and makes it inconvenient for systems with substantial vi-
brations such as liquids. At the beginning of this work, we attempted to generalize
a graph-based descriptor developed by Hamm and co-workers [8] to identify states
in water. However, very small vibrations of the hydrogen bonds were found to lead
to large changes in the descriptor, a feature that was not desirable.

Density-based descriptors such as the smooth overlap of atomic positions (SOAP)[110],
Atomic Cluster Expansion ACE[111], and Behler-Parrinello[112] symmetry functions
begin by building a three-dimensional density.

In this thesis we use the SOAP descriptors to describe the fluctuations in liq-
uid water. The SOAP descriptor has in the last couple of years been successfully
applied in various contexts such as characterizing hydrogen bond networks[113],
identification and prediction of inorganic crystals[114] and finally also determining
fingerprints in various biological systems[115]. Very recently, Chen et al. [116] and
Pavan et al. [113], have used averaged SOAP descriptors to characterise the simi-
larity of liquid water environments to phases of ice. In the following, we describe
the theoretical formalism underlying the construction of the SOAP descriptors.

Let χ be an atomic environment consisting of all molecules within a certain
spherical volume of radius rcut around a central water. Then for a particular atomic
species Zi, one begins by encoding the local environment of χ in density constructed
as a sum of Gaussian functions with variance σ2 centered on each of the neighbors
of a central atom including the central atom itself:
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ρZi(r) =
∑
j∈χ

exp

(
− |r− rj|2

2σ2

)
(2.11)

This atomic neighbour density can be expanded in a basis of radial basis functions
and spherical harmonics as illustrated below:

ρZi(r) ≈
nmax∑
n=0

lmax∑
l=0

l∑
m=−l

cZi
nlmgn(r)Ylm(θ, ϕ) (2.12)

where the cZi
nlm(r) are the coefficients. Given ρZi(r) one can obtain the coefficients

as

cZi
nlm =

∫∫∫
R3

dV gn(r)Ylm(θ, ϕ)ρ
Zi(r). (2.13)

The number of coefficients of the basis functions one chooses to compute, is
bounded by the number of radial basis functions nmax and that of the angular basis
functions lmax. The parameter rcut identifies all molecules within some radial cutoff
of the central atom. One can then define a rotationally invariant power spectrum as

pZ1Z2

nn′l = π

√
8

2l + 1

∑
m

cZ1
nlm

∗cZ2

n′lm (2.14)

By accumulating the elements of the power spectrum into a vector p, the distance
between two environments χ and χ′ is related to the SOAP kernel by the following
expression.

d(χ, χ′) = 1−KSOAP(p,p′) (2.15)

where,

KSOAP(p,p′) =

(
p · p′

√
p · p p′ · p′

)
(2.16)
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2.3 Data Science Protocol

The machine learning-based approaches described in the previous chapter provides a
very high-dimensional representation of the atomic environment. However, making
sense of these representations and extracting useful information remains a difficult
task. For instance, to compute a free energy profile, one needs to perform a density
estimation (traditionally a histogram) and then take the logarithm of this estimate
as the free energy in kBT units. However, as the dimension of the data increases,
this procedure is destined to fail due to the increasing number of empty bins. This
is one manifestation of the so-called curse of dimensionality [117] namely that the
number of data points needed for obtaining information of similar quality increases
with the power of D, where D is the dimension of the data.

As traditional methods are not able to deal with these high-dimensional descrip-
tors, machine-learning techniques developed with this target are earning consider-
able attention in this field. In this thesis, we used a series of unsupervised machine
learning techniques which aims to uncover the structure of the data associated with
liquid water using minimal human intervention/chemical bias[118].

2.3.1 Intrinsic Dimension (ID)

a b

ID=3 ID=2

Figure 2.2: A visual schematic two three dimensional datasets with different intrin-
sic dimensionalities. Panel a is sampled from a uniform distribution and with an
intrinsic dimension of 3. Panel b shows a dataset with points on the surface of a
sphere having an intrinsic dimension of 2.

As mentioned earlier, the curse of dimensionality makes it very challenging to
extract meaningful information in the data as the dimension of the system increases.
However, machine learning techniques have been shown to be effective even when
applied to high dimensional data. How is this possible? The answer is that, while
the dimension of the data is formally high, correlations between the different vari-
ables describing each data point imply that the system of interest likely resides
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(approximately) in a landscape with lower intrinsic dimension (ID). More formally,
the ID corresponds to the dimension of the manifold in which the data lies which is
typically much lower than the embedding dimension. To see this is in a very simple
example, taking a set of points in three dimensions that are randomly distributed
would yield an ID of 3. However, correlations between the coordinates could result
in the data points lying only on the sphere’s surface, which would, in turn, lead to
an ID with reduced dimension of 2 (see Fig. 2.2).

Besides its importance in understanding the content and structure of information
in data science, the ID is a key player in understanding complexity in physics.
On the one side, due to its deep relationship with the extent of correlations in
physical systems, it can be used to unveil both classical[119] and quantum [120] phase
transitions. On the other hand, the ID is a critical unknown parameter needed for
computing the free energies in high dimensions without using collective variables[61].
Later in this section we will discuss the free energy extraction techniques in more
detail. We begin first with the methodology we employed to determine the ID.

The methods for estimating the intrinsic dimension fall broadly into three cat-
egories namely fractal, projection and finally nearest neighbor methods. Fractal
methods estimate the ID by counting the observed points in a neighborhood around
a specific point and estimating how this count scales with increasing distance [121,
122]. A pitfall of these methods is that they typically require the number of points
to be exponential in the dimension to get a reasonable estimate.

Projection methods such as principal component analysis (PCA) and multi-
dimensional scaling (MDS) search for a subspace to project the data in by minimizing
a projection error[123, 124, 125]. For example, in PCA, this involves diagonalizing
a covariance matrix and counting the number of dominant eigenvalues as an ID.
These techniques work well when the data lie on a hyperplane so that there is typi-
cally a gap in the spectrum. However, this does not work well on twisted manifolds.
Other methods, like ISOMAP[126], kernel PCA[123], t-SNE[127] or UMAP[128] are
designed to deal with non-linearity in the data. However, some of these methods do
not provide a manner to estimate the ID. In addition, those that do have a spectrum
do not present a clear gap in many practical applications, which is needed to infer
the ID.

Nearest-Neighbors like MLE[129] or DANCO[130] methods assume local unifor-
mity and infer the ID based on statistics of nearest neighbor distances. In this work,
we made use of a recently developed technique, namely the Two-NN estimator[62],
which estimates the ID based on information of the first and second nearest neigh-
bor of data points. The method has been successfully applied in studying different
molecular systems[131, 132, 133]. The main ideas and derivation are shown next.

Consider a data set of n D-dimensional vectors in X1, ..., Xn that are indepen-
dently and identically (IID) distributed and selected from some probability distri-
bution. For a given point i, let ri,l correspond to the distance to the lth nearest
neighbor from i. Suppose that our data lies on a lower-dimensional manifold so that
the intrinsic dimensionality (d) is less than D. If the data-set is locally uniform up to
the second nearest neighbor, then the volume of the shell between the first l nearest
neighbor and the l-1 nearest neighbor( ∆vi,l) for l ∈ {1, 2} is given by the following:

∆vi,l = ωd(r
d
l − rdl−1) (2.17)
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r1

r2

Figure 2.3: This figure shows the first and second nearest neighbors r1 and r2 needed
for computing the ID

where ωd = π
d
2

Γ(d+ 1
2
)
is the volume of a unit d-dimensional hypersphere. If the

density is locally constant around a point i, all the ∆vi,l are independently drawn
from an exponential distribution with rate equal to the density

p(vi,l ∈ [v, v + dv]) = ρe−ρvdv (2.18)

Letting R =
∆vi,2
∆vi,1

, this yields the following equations,

P (R ∈ [R,R + dR]) = ρ2e−ρ(vi,1+vi,2)dv1dv2δ(R− vi,2
vi,1

) (2.19)

p(R) = ρ2e−ρ(vi,1+vi,2)dv1dv2δ(R− vi,2
vi,1

) =
1

(R + 1)2
(2.20)

The ratio of the second nearest neighbor and first nearest neighbor (µ = r2
r1
, see

Fig. 2.3), can easily be related to R by the expression R+1 = µd so the probability
density of µ becomes

p(µ) = p(R(µ))
dR

dµ
=

d

µd+1
(2.21)

A very important ingredient in our further derivation involves the use of Log-
likelihood/Maximum likelihood estimation. The goal of this is the estimation of
parameters of an assumed probability distribution, given some observed data and is
achieved by maximizing a likelihood function so that, under the assumed statistical
model, the observed data is most probable. In practice this typically done by finding
maxima in the logarithm of the likelihood function.

Considering the values of µ for N independent points in our dataset {µi}Ni=1, the
probability of having observed this set of values is given by the expression below
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p({µi}Ni=1) =
dn∏n

i=1 µ
d+1
i

(2.22)

The log-likelihood estimate of the intrinsic dimension can then be found by
minimizing the logarithm of this probability with respect to d which finally yields
the following estimator of the intrinsic dimension:

d =
N∑

i log(µi)
(2.23)

It is worth noting that since this derivation relies on the statistics of only the
first and second nearest neighbor, the only requirement is local uniformity up to the
second nearest neighbor. This is a rather mild requirement that one expects to be
fulfilled in many data sets. Consequently Two-NN is thus able to deal with systems
characterized by density heterogeneities as well as being more robust to noise.

Using the SOAP distances, we estimated the ID of the environment around a
water molecule. Ultimately, the physical significance of the ID is that it corresponds
to the minimum number of independent order parameters or reaction coordinates
required to describe, in our case, the environment around a water molecule. In this
way, one can also quantify using the ID the amount of information that is gained or
lost when including different variables[134].

2.3.2 High Dimensional Free Energy

The next step in our analysis involves computing a high dimensional probability
density function in the space of atomic coordinates. This probability distribution is
directly related with the free energy, which is the negative of the logarithm of this
distribution in units of kBT . The importance of the free energy in understanding of
molecular systems cannot be overstated. Differences in the free energy between min-
ima of states or meta-stable states can be directly related to equilibrium constants
while the barrier heights control the dynamical rates of processes between different
states. Both these quantities can be directly related to experimental observables.

Several approaches have been developed to compute the free energy [135, 136,
137]. One of the most popular approaches which has been hinted at above, involves
using collective variables (CV), namely human-defined functions of the atomic coor-
dinates. These are often constructed based on chemical intuition and thus the CVs
often provide deep insight in a very efficient way (with a small amount of data).
Unfortunately, the use of a single (or a few) human-designed variable(s) has two
main drawbacks: 1) it corresponds to an uncontrolled dimensionality reduction, of-
ten lower than the intrinsic dimension, therefore leading to some information loss
and 2), constructing a physically correct CV is highly non-trivial and subject to
a lot of human intervention. The projection methods described earlier provide a
possible alternative to limit the human intervention needed in constructing appro-
priate CVs[93]. However, these methods require both careful selection of various
parameters and involve dimensionality reduction.

As stated above, whether one employs a human designed collective variable or
an automatic projection method, the probability density needs to be estimated in
order to extract the free energy. Density estimation methods can be divided into
parametric and non-parametric methods. Parametric methods such as Gaussian

22 Chapter 2



mixture models (GMM)[138] make assumptions on the functional form of the under-
lying probability distribution and attempt to fit parameters to the data. However,
these methods are often criticized as the number of clusters and the initial param-
eters affect the final analysis. Non-parametric methods do not make assumptions
on the functional form of the density. A classical example of this approach, is the
construction of histograms[139], in which the data space is divided into bins and the
probability density function at each point is estimated by counting the number of
data points within its corresponding bin.

More elaborated non-parametric methods are the k-NN estimator[140], in which
the density is estimated as k times the inverse of the volume occupied by the k-
nearest neighbors of this point. An alternative to this is the kernel density estima-
tion, in which a kernel function (usually a Gaussian although other functions can
be used) is placed at each data point and the total density at a given point is the
average value of all these kernel functions. Although these methods are referred to
as non-parametric, each point requires a choice of a threshold of influence. In the
case of the kernel density estimator, this is the bandwidth, while in k-NN it is the
choice of the k value. Furthermore, these techniques do not work well for data sets
with large heterogeneities in the density. All these methods however, suffer from the
curse of dimensionality mentioned earlier and therefore the quality of the probability
estimates significantly decreases with increased dimension.

In this work, we employ a recently developed Point Adaptive K-nearest estima-
tor(PAK)[61] that avoids the need for any projection and has been used to study a
wide variety of complex molecular systems[132, 133, 141]. In brief, the method uses
the ID as a parameter to construct a point-dependent density (ρi). The derivation
for this method is outlined below.

The log-likelihood function of the ρ given the observation of the k-nearest neigh-
bor distances from point i is:

ℓ(ρ|{vi,l}l<k) = k log(ρ)− ρ
k∑

l=1

vi,l = k log(ρ)− ρVi,K (2.24)

where vi,l is the volume of the hyper-spherical shell centered on i and enclosed

between neighbors l− 1 and l. Therefore, Vi,k =
∑k

l=1 vi,l is the total volume of the
hyper-sphere with a radius equal to the distance from i to its k nearest neighbor. By
maximizing this function with respect to ρ, we arrive at the log-likelihood estimate
of the density ρ = k

Vi,k
which is that of the k-NN estimator already mentioned above.

The asymptotic standard deviation of the parameter ρ given by ϵ = ρ√
k
, provides us

with an estimate of the error.

This form of the error suggests that increasing the value k decreases the error.
However, increasing k would change the density and affect one of the main assump-
tions. Consequently, the PAK density estimator resolves this problem by choosing
for each point i, the largest ki where the density is constant within a certain con-
fidence interval. Practically, this density is computed by adding a linear correction
to the standard k-nearest neighbor estimator of the density, and the ki’s are chosen
to minimize the errors in the density.
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2.3.3 High Dimensional Clustering

The PAK method provides an estimation of the point-dependent free energies which
allows for determining the free energy basins on the system of interest. More specif-
ically, to do this task we employed a modified form of the density peak clustering
algorithm (DPA)[142].

Clustering techniques aim for the detection of natural groups within data sets.
Therefore, they are well suited for discovering the states that appear in molecular
dynamics simulations. Indeed, over three decades ago, Elber & Karplus employed k-
means clustering for assessing the conformers of a protein in an MD trajectory[143].
While a complete review of all the clustering techniques is out of the scope of this
thesis, we will briefly discuss both the original density peaks clustering algorithm[60]
and its modified version in order to demonstrate its suitability for determining the
free energy minima.

In the original algorithm, the density at a data point is roughly estimated as
the number of neighbours within a radius dc. Then, for each data point a new
quantity δ is computed as the minimum distance from a point with higher density.
Cluster peaks are then detected as outliers in the so-called decision graph, which
represents the δ as a function of the density. This simple procedure relies on the
observation that density peaks are characterized by points that have a relative high
density and are typically far away than other points with higher density. The non
centers are then assigned in order of decreasing density to the same cluster as its
nearest neighbor with higher density.

This algorithm described above already has some of the characteristics we need
for identifying the clusters as density maxima, that is, the free energy basins that
we are looking for. However, it suffers from several limitations. Firstly, the density
estimation is very rough and depends on a prudent choice of the parameter dc.
Secondly, its effectiveness relies on visually inspecting the decision graph for outliers,
a process that becomes difficult when statistical fluctuations due to sampling are
significant. Finally, it cannot deal with hierarchical relationships between clusters
which is a critical component of understanding free energy landscapes. Therefore, a
modified version was used to address these challenges.

The first limitation is addressed by employing PAK (see section above) as a
density estimator. PAK provides a more stable estimate of the density allowing for
a rigorous quantification of the error. Rather than relying on visual inspection of
the decision graph, a set of heuristics are implemented that first identify putative
centers and then distinguish between real centers and those coming from statistical
fluctuations of the sampling. More specifically, point i is a putative center if its
density is higher than all the other points in the neighborhood employed for com-
puting the density. Subsequently, the rest of the points are then assigned in order
of decreasing density to the same cluster as its nearest neighbor with higher density.
Finally, after the saddle points between clusters are determined, the significance be-
tween the difference of two clusters is established if the difference between the value
of the density at the maximum and the density at the saddle is smaller than the sum
of the error times a parameter Z. In this case, two clusters would be merged. This
free parameter Z reflects the statistical confidence of the stability of the clusters
found and, unless otherwise stated, the z-value chosen for the analysis presented in
this thesis is set to 2.5.

Finally, for understanding the presence of hierarchies among the clusters de-
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tected, the method makes direct use of the saddles detected in the last step. Indeed,
the lower the barrier between clusters, the more likely that they should be considered
as part of a bigger merged cluster. These aspects of the cluster analysis can be under-
stood more intuitively in the form of a dendrogram constructed in a manner where
the extent of the similarity between the cluster determines their relative distance.
Figure 2.4 shows an example of how applying DPA to a set of points sampled from
the distribution shown in A leads to the dendrogram in panel B which illustrates
the structure of the peaks of the underlying probability distribution function.

DPA has the additional advantage that one has a more rigorous way of assessing
the statistical confidence of a cluster. Thus it is even possible to find data that is
composed by only one cluster if that is the case. This feature does not naturally
emerge in non-density based clustering techniques.
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Figure 2.4: Panel a of this figure is a one-dimensional probability density from which
a data set is sampled. Panel b, obtained by applying DPA to this dataset, shows
the important structure of the peaks and saddle-points of the underlying probability
distribution function in a dendrogram.
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Chapter 3

High Dimensional Fluctuations in
Liquid Water:Combining Chemical
Intuition with Unsupervised
Learning

A version of this chapter is at present being reviewed for publication and has been
uploaded on the arxiv as:
Offei-Danso, Adu, Ali Hassanali, and Alex Rodriguez. ”High Dimensional Fluctua-
tions in Liquid Water: Combining Chemical Intuition with Unsupervised Learning.”
arXiv preprint arXiv:2112.11894 (2021).

3.1 Introduction

Having established the theoretical protocol and methods that we will be using in
the thesis, we next move on in this chapter to examine the insights that we obtain
on the free energy landscape of water. As was mentioned in the Introduction, there
have been numerous theoretical and computational studies devoted to rationalizing
the possibility of LDL and HDL phases in liquid water at room temperature water
by examining the inherent structure of the liquid at zero-K[144, 40, 14]. This has
been used to interpret several experimental observations from scattering measure-
ments[11, 7]. On the other hand, most molecular dynamics simulations of water
at room temperature show that it is a homogeneous liquid [9, 41] and that any
heterogeneities in its structure arise from transient short-lived fluctuations[145, 41,
146]. At the heart of understanding this problem lies the question of the discovery
of molecular probes of the local environments in a disordered liquid medium and
subsequently, how to capture highly complex patterns in the hydrogen bond network
on different length-scales.

Over the last three decades, since the advancement in the use of computer sim-
ulations, a wide plethora of different reaction coordinates or order parameters have
been constructed to interrogate local environments in water. These include to name
a few, the tetrahedrality (qtet)[44, 147], local-structure index (LSI)[45], the distance
of the 5th closest water, molecule (d5) to a central water[148, 47, 98] and local coor-
dination defects[100, 149, 46, 99]. Besides variables that quantify correlations in the
water network, there have also been measures to quantify local density using varia-
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tions of the Voronoi volumes which probes the free-space in the network and hence
the density[104, 41, 105, 150, 131, 102]. Details on how these various parameters
were constructed was elaborated on in Chapter 2. All these various quantities are
inspired by chemical intuition and are used to infer differences between ordered and
disordered water environments. The vast majority of these quantities are designed
using cutoffs in the number of water molecules, such as in qtet or d5 or radially defined
thresholds in the case of the LSI. If water is seen as a percolating directed liquid
network with medium-to-long range correlations beyond the first solvation shell, the
ability of these chemically inspired parameters to capture all the complexities of the
water network, remains an open question.

In this chapter, we employ the techniques discussed in the Methods section to
investigate the fluctuations underlying the free energy landscape of the TIP4P/2005
[73] model of liquid water at room temperature and also close to the critical point.
Our strategy is implemented in three steps and lays the ground-work for a general
framework through which fluctuations of water in different contexts may be studied.
Firstly, we encode the information of water environments using a recently developed
atomic-descriptor, the smooth-overlap of atomic positions (SOAP) which has the
power of preserving rotational, permutational and translational invariances [110].
This is used to compare water environments on different length scales and topologies
to important milestones such as ice.

In the second step, the dimension of the manifold in which the SOAP descriptors
lie is estimated using the two nearest neighbors intrinsic dimension estimator (TWO-
NN) [62]. This quantity, known as the intrinsic dimension (ID), has been successfully
used to characterize changes in the conformation of proteins[133, 141] as well as
phase transitions in simple classical and quantum Hamiltonians[119, 120]. The ID
also feeds into the third and final step of our procedure in which the minima and
transition states of the high-dimensional free energy landscape are located by using
a density peaks clustering algorithm[60, 61, 142].

The chapter is organized as follows. We begin in Section 1 with a summary of
some specific computational aspects for this chapter. In Section 2, we report on all
our results where we discuss: our findings of the intrinsic dimensionality of the hy-
drogen bond network, the free energy landscape of liquid water at room temperature,
and the molecular origins of the associated high dimensional fluctuations. Within
the results, we also elucidate the behavior of the high dimensional fluctuations upon
supercooling and also close to the critical point.
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3.2 Methods

3.2.1 Molecular Dynamics Simulations

All-atom molecular dynamics simulations (MD) of 1019 water molecules were per-
formed using the GROMACS 5.0 package[151]. For most of the results we report
in this paper, we use the TIP4P/2005[73] rigid water model. Energy minimization
was first carried out to relax the system, followed by an NVT and NPT equilibra-
tion at 300K and 1 atmosphere for 10ns each. A timestep of 2fs was used for all
the simulations. The NVT simulations were performed using the velocity-rescaling
thermostat[90] with a time constant of 2ps, while the NPT runs were conducted
using the Parrinello-Rahman[70] barostat using a pressure coupling time constant
of 2ps. The production run at 300K was carried out for 50 ns[152] in the NPT
ensemble.

We also extend some of our analysis of both the chemical-intuition and SOAP-
based descriptors to their evolution upon supercooling. To generate the supercooled
trajectories, we used a linear temperature ramp procedure as done in previous stud-
ies[153] where the temperature was decreased in steps of 10K from 300K down to
250K at ambient pressure. In particular at each of the temperature, after an equili-
bration of 10 ns, a production run of 50ns was carried out within the NPT ensemble
to obtain the supercooled trajectories.

Besides these simulations, we also analyzed molecular dynamics trajectories of
water reported recently by Debenedetti and Sciortino which showed for the first
time, that atomistic models such as TIP4P/2005 and TIP4P/ICE [36] also display
a second critical point. In these simulations, one observes fluctuations between high
and low density phases of water. The work by Debenedetti and Sciortino to generate
supercooled trajectories close to the critical point is a tremendous feat as they require
numerous initial conditions as well as very long simulation times on the order of
10s of microseconds. In summary, these authors perform exhaustive NVT and NPT
simulations of bulk water boxes ranging between 300-35000 water molecules covering
timescales of up to 100 microseconds. For more details on how these trajectories
were generated, the reader is referred to the original manuscript[38].

3.2.2 SOAP Descriptors for Water

For our simulations of bulk water, the SOAP descriptor for a water molecule is
constructed involving different combinations of the oxygen and hydrogen atoms and
their environments. The first descriptor (O⃗) is formed by computing the power
spectrum of the density constructed by placing Gaussian functions on only the
oxygen atoms within a certain radius centered about the position of the oxygen of the
central water molecule. The other two descriptors include the hydrogen atoms of the
water molecule. Since a water molecule contains two hydrogen atoms, it is necessary
to choose the centers to make a new descriptor invariant to the permutation of the
two indices. We achieved this by averaging the power spectra generated with centers
on each of the hydrogen atoms (H⃗ave). In order to preserve information about the
possible asymmetries present in the environment of the two hydrogen atoms, the
absolute value of the difference in the descriptors was also considered (H⃗dif ).

The SOAP descriptors were constructed using the Dscribe package[154]. In prac-
tice 10 randomly chosen water molecules were selected from each frame with a sam-
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pling frequency of 4ps. This was done to ensure independence of points by reducing
the effects of spatial and temporal correlations between sampled environments. In
total, 120000 points were extracted for a radial cutoff of 3.7 and 6.0 Å. These cut-
offs were chosen to enclose the first and second hydration shell of water respectively.
Our analysis was done using 8 (nmax) radial and 6 (lmax) angular basis functions.
These values are similar to those used in previous studies[116, 155]. With the power
spectrum of the SOAP-based environments in hand, one can compute distances be-
tween the different local environments in water and other milestone structures for
example ice.

In this work, for most of our analysis, we focus on comparing the local en-
vironments in water to those in hexagonal ice. In the rest of the manuscript, this
distance is referred to as dice. One can also select many different milestone structures
to compare with. For example, Pettersson and co-workers have recently proposed
the possibility of low-density liquid environments in water arising from fused dodec-
ahedron structures[156]. SOAP distances can then be constructed with respect to
this structure. When this is done, we will make reference to this distance as ddod.

Using these soap descriptors, we focused the ensuing analysis on three varia-
tions: O⃗, (O⃗, H⃗ave) and finally, (O⃗, H⃗ave,H⃗dif ). Extracting the SOAP descriptors
as outlined previously results in high dimensional power spectra. Specifically, the
dimensions for the three SOAP descriptors outlined earlier, are 252, 1904 and 2856
for O⃗, (O⃗, H⃗ave) and (O⃗, H⃗avH⃗dif ) respectively. The high dimensionality of these
spectra implies the need to use advanced techniques to extract meaningful informa-
tion. As described in the Methods section, the SOAP descriptors above then serve
as input for extracting both the intrinsic dimension and subsequently the clustering
and free energy construction.

Finally, as a way for understanding the results obtained from this analysis, we
projected the SOAP descriptors in two dimensions using the uniform manifold ap-
proximation and projection (UMAP)[128] method. UMAP provides a convenient
way of visualizing the high dimensional free energy in two dimensions, as has been
done in several recent applications[157].
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3.3 Results

3.3.1 ID Analysis of Local Water Configurations

Using the Two-NN estimator, we extracted the ID of the hydrogen bond network
using the SOAP descriptors described earlier. In the context of water fluctuations,
the ID provides a quantitative measure of the changes in the information content on
adding several features when describing the local water environment. Specifically,
in our analysis, we systematically examine how the ID changes when increasing the
cutoff from layer 3.7 Å to the second 6.0 Å and when adding hydrogen atoms to the
descriptors.

3.7Å, 𝑶, ID = 5

a) b)

c)

3.7Å, 𝑶,𝑯𝒂𝒗𝒆, 𝑯𝒅𝒊𝒇 , ID = 8

6.0Å, 𝑶, ID = 6

6.0Å, 𝑶,𝑯𝒂𝒗𝒆, 𝑯𝒅𝒊𝒇 , ID = 9

Figure 3.1: Panel a) shows 3.7 Å environment involving only oxygen atoms (top) and
the same environment with hydrogen atoms (bottom). The intrinsic dimensionality
is found to increase by 3 when hydrogens are included. b) Shows 6.0 Å environment
involving only oxygen atoms (top) and the same environment with hydrogen atoms
(below). The intrinsic dimensionality is found to increase by 3 when hydrogens are
included. c) Shows the scaling of the intrinsic dimensionality with the number of
points of the data set.

Figure 3.1 summarizes the results obtained from the ID analysis. Panels a)
and b) schematically illustrate the local environments that are included with the
corresponding inferred IDs. Panel c) shows the convergence of the ID as a function of
the number of data points. Essentially, the ID can be increased in two possible ways:
firstly by including or excluding the chemical species in a water molecule namely
oxygen or hydrogen atoms, and secondly, by increasing the size of the solvation shell
of the local water environment.

Interestingly, the ID analysis shows there is a much bigger change in the im-
portance of including hydrogen atoms into the descriptors compared to expanding
the radial cutoff. For both the 3.7 Å and 6 Å radial cutoffs, the ID increases by
≈ 3 upon the inclusion of the hydrogen atoms. On the other hand, moving from
the smaller to larger radial cutoff increases the ID by a unit value. Several of the
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chemical-based order parameters described earlier in Figure 3.1, for example, qtet,
d5 and the LSI do not explicitly include the hydrogen atoms and therefore are very
likely to miss out important coordinates needed to characterize water environments.

To understand better the molecular origins of these differences in the ID, one
can examine the effect of the inclusion of the hydrogen atoms when comparing dif-
ferent water environments. For instance, we can take the two defects that are shown
in Figure 2.1 panel d namely, 1in2out and 2in1out and compute the distribution of
the SOAP distances within each class of defect type and between the two defects.
In Figure 3.2 it can be seen that when using only the oxygen atoms (O⃗), the dis-
tributions within and across different defects are almost identical. However, upon
adding the hydrogen atoms contributions (O⃗, H⃗ave,H⃗dif ), the distributions are dif-
ferent with a slight bias towards higher values in the case of the inter-group distance
distributions. Although there is clearly significant overlap in all these distributions,
our analysis shows that by only using (O⃗), there is important information about the
hydrogen bond network that is lost, i.e. orientations of neighboring hydrogen atoms
with respect to the neighboring waters.
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Figure 3.2: This figure shows the probability density estimates of the logarithm of
SOAP distances between 1in2out environments(blue) , 2in1out environments(red) as
well as distances between 1in2out and 2in1out environments(yellow). Panel a shows
that there is a complete overlap between all estimates when only oxygen atoms are
used in computing the SOAP distances. In panel b however, we observe that the
three distributions exhibit bigger differences when hydrogen atoms are included in
the analysis.

The changes in the ID has important implications on our understanding of the
free energy landscape of water. Firstly, the hydrogen bonds between water molecules
involve directed dipole-dipole interactions which arise from the asymmetry in the
position of the hydrogen atoms. This feature of the chemistry is clearly reflected in
the change of the ID upon including the hydrogen atoms. At the same time, the
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presence of medium-to-longer range structural and orientational correlations in the
network are manifested also in the increase in the ID albeit to a smaller extent than
the role of directionality[158]. In some sense, the enhancement in the ID from the
oriented hydrogen bonds within 3.7Å is strongly coupled to the order or disorder at
longer distances.

In addition to the effect of the ID on the combination of the variables shown
in Figure 3.1, we also examined the effect of the two hydrogen atom based SOAP
descriptors namely H⃗ave and H⃗dif . For both the 3.7 Å and 6.0 Å environments,

eliminating H⃗dif reduces the ID by one unit to 7 and 8 respectively. This effect on
the ID, indicates that there are important asymmetries involving the environments
of the two hydrogen atoms that can donate hydrogen bonds. A clear example of this,
is shown in Figure 2.1 d) illustrating the creation of different types of topological
defects.

3.3.2 Free Energy Landscape of Liquid Water

Having computed the ID, we are now in a position to generate the high-dimensional
free energies using the PAK-Nearest density estimator. One of the challenges in con-
structing the point-free energies is that the error grows with the ID[61] which implies
that using both a large cutoff and the hydrogen atoms would enhance the errors.
We thus begin by focusing our analysis on using the SOAP descriptor environments
consisting of only the oxygen atoms with a radial cutoff of 3.7Å.

Figure 3.3: a)Free energy surface constructed in 2D UMAP manifold reveals a single
basin. Also shown are three different water environments which are separated by no
significant barriers indicating that fluctuations between different structures occurs
within a flat free energy landscape. b) Contour plot of the 2D UMAP manifold
colored by the actual free energy values is also consistent with a rough but rather
flat basin.

Visualizing the high-dimensional free energies is extremely challenging. With the
PAK free energies, we performed the modified density peak clustering using a confi-
dence interval of z=2.5 which indicates the presence of one big cluster. The presence
of one cluster at this z value is reproduced across several different water molecule
environments suggesting that this is not an artifact of statistical fluctuations.
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In order to gain a more visual inspection of the free energy landscape, we
project the SOAP coordinates in two dimensions using the UMAP method[128].
Although reducing the dimensionality below the ID leads to an unavoidable infor-
mation loss, the UMAP method has shown to fairly preserving the global structure
of the data[159] providing a convenient way to visualize the free energies. The left
panel of Figure 3.3 shows the free energy surface obtained with UMAP. Interest-
ingly, the landscape is characterized by a very broad and rather flat free energy with
small barriers (kBT ) separating shallow minima. These minima are characterized
by water environments that are quite diverse as seen in the three snapshots taken at
various points in the basin. These fluctuations between defective and non-defective
environments without deep minima, is consistent with the presence of short-lived
(between fs-ps) heterogeneities in water[41, 99].

The right panel of Figure 3.3 shows a 2d-contour map along the UMAP coor-
dinates colored by the free energy which more clearly illustrates these features and
confirms that at these temperatures, liquid water is indeed a homogeneous liquid[9,
6]. The UMAP manifold for two other datasets corresponding to different choices of
water molecule environments, were found to be essentially the same suggesting the
main features of the landscape are not artefacts of statistical fluctuations. Figure
3.4 shows the UMAP projection obtained for these three different water molecules
which essentially provide a consistent picture on the topography of the free energy
landscape.

Figure 3.4: 2D UMAP projection of the environments for three datasets colored by
dice.

The preceding analysis is performed on the SOAP descriptors involving only
oxygen atoms within 3.7Å. Since the ID changes quite significantly when includ-
ing the hydrogen atoms we repeated the PAK and UMAP analysis with the other
SOAP variable combinations. Expanding the solvation environment does not lead
to any significant changes in the free energy landscape. More quantitatively, Figure
3.5 shows a scatter plot of the free energies comparing the results using O⃗, and
(O⃗, H⃗avH⃗dif ) both with a radial cutoff 3.7Å using the same water coordinates. The
two free energies are very well correlated with each other and shows that while the
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hydrogen atoms expand the dimensionality of the free energy landscape, the key
physical features remain very similar. As pointed out earlier, the full descriptor in-
cluding the hydrogens is important for distinguishing different defect environments
and therefore, the effects on the underlying free energy may become more pro-
nounced in regimes where these defects are enhanced such as the air-water interface
[101].

Figure 3.5: This figure which shows the scatter plot of the free energy values of O⃗
environments versus (O⃗, H⃗ave,H⃗dif ). There is close to a linear relationship with a
correlation coefficient of 0.7 and an RMSE between the two free energies of ∼2kBT.
In this figure some points have been randomly selected and their errors displayed.

The current results have been extracted using the TIP4P/2005 water model
which neglects many-body polarization effects. To validate our results, we repeated
our procedure of extracting the ID, PAK and UMAP projection on trajectories of
the MB-pol water model at room temperature[77]. As stated in Chapter 2 MB-pol
is a many-body interaction potential which is the most accurate in-silico model for
neutral and non-dissociative water across the phase diagram[77, 78]. In this model,
we also observe the same features, namely the presence of a broad and flat free
energy landscape. Figure 3.6 confirms that even the more accurate MB-pol water
model presents a very similar free energy landscape giving us more confidence in our
results.
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Figure 3.6: Free energy surface of MB-pol constructed in 2D UMAP manifold re-
veals a single basin without an appreciable barrier consistent with the results from
TIP4P/2005 shown earlier.
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3.3.3 Molecular Origins of High Dimensional Fluctuations

The preceding analysis of the ID shows that the fluctuations involving the hydrogen
bond network involve a rather larger number of solvent degrees of freedom moving
in different directions. In the following, we will examine the correlations that exist
between the various chemically inspired coordinates such as qtet, d5, LSI and Voronoi
density (ρvor), as well as the new SOAP-based descriptor, dice that was described
earlier. Note that in this analysis a radial cutoff of 3.7 Å is used. Also in this
discussion below we restrict our analysis to results in which dice was computed with
only oxygen atoms. However, our findings are consistent with using a larger cutoff
as well as the inclusion of the hydrogens (see Appendix Figure 6.1 and Figure 6.2).

Tetrahedrality and dice
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Figure 3.7: Figure a) shows the scatter plot of qtet versus Log(dice) with 3 points
which correspond to the environments shown on the left. The points are colored
to differentiate between defects and non defects. A large overlap is found between
defects and non defects. Panels b) shows the probability density distributions along
qtet and Log(dice) for non-defects, and, under and over coordinated defects as defined
in the main text.

We begin by showing in Figure 3.7 a scatter plot of qtet and Log(dice). Also
highlighted are 3 points (1-3) which are illustrated in the panels to the left of the
Figure. The qtet and Log(dice) values refer to that of the central water colored in
black. The dashed line connecting points 1 and 2 corresponds to the regime where
these two variables are strongly correlated with each other. Specifically, point 1
is a water environment that has a high tetrahedrality and a large negative value
of Log(dice) implying that it is closer in distance to a locally-ice like environment.
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Point 2 on the other hand has a low tetrahedrality and is non ice-like. The origin of
the difference between these two structures is seen more clearly in the bottom panels
where we observe that in point 2, there is an asymmetry in the angles between the
donating and accepting side that are used to compute the tetrahedrality.

Perhaps the more surprising aspect of Figure 3.7 are all the points that lie above
the dashed line. One of these limiting cases is shown by point 3 which has a high
tetrahedrality but a large distance from ice using the SOAP coordinates. This
environment illustrated in the bottom panel of Figure 3.7 (Point 3) shows that there
is a water molecule that is within the first-shell (∼ 3.23 Å ) that is not hydrogen
bonded to the central water. Nonetheless, the angles that are used to extract qtet
involving only the nearest four neighbours do not include this water molecule and
thus the central water is flagged incorrectly as a tetrahedral environment.

Also shown in Figure 3.7 are the overlapped scatter plots for the defective and
non-defect water molecules. Recall that defect waters are those which break the ice
rules of accepting and donating 2 hydrogen bonds. Figure 3.7 b) and c) show the
1-d distributions for Log(dice) and qtet for non-defects, under-coordinated (defined
as when the sum of the number of donating and accepting hydrogen bonds is less
than 4) and over-coordinated defects (where the sum of the number of donating and
accepting hydrogen bonds is greater than 4). In this case, we see that while qtet
and Log(dice) are both characterized by differences in their average values for defect
and non-defect populations, the former appears to show larger variation across the
different environments.

d5 and dice

Figure 3.8 shows the analysis performed on d5 and Log(dice). The d5 parameter
was designed in order to quantify fluctuations that occur between the first and
second hydration shell[148]. Specifically, a larger d5 has been interpreted as a water
environment that is more open and low-density like, while smaller values of d5 as
compact and high-density like.

Similar to that analysis, we illustrate three landmark points in the scatter plot
which are illustrated to the left of Figure 3.8. The water molecules referred to by
the blue arrow correspond to waters that satisfy the d5th criterion. The fluctuations
along the line connecting points 1 and 3 reflect changes where the two parameters
are well correlated: point 1 is a locally tetrahedral environment where the d5 water
resides in the second shell and separated by two hydrogen bonds from the central
water, while in point 3, the d5 water undergoes a large fluctuation bringing it from
3.7 Å to within 3.1 Å of the central water.

The fluctuations along the points 1-2 and 2-3 are more non-trivial as it shows
that both dice and d5 play an important role in characterizing the local environments
independently. Although point 2 has a high d5 of approximately 3.7 Å, asymmetries
in the hydrogen bonds between the donating and accepting side of the first shell,
renders it with a local configuration that is non-ice like. Examining the constrained
distributions of the d5 for the non-defects and under/over coordinated defects as
before, shows that unlike qtet, d5 is much less sensitive in distinguishing these differ-
ent environments. Intuitively, this is because the qtet is a parameter that uses the 4
nearest neighbours while d5 focuses on just a single water molecule that fluctuates
between the first and second hydration shell.
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Figure 3.8: Panel a) shows the scatter plot of d5 versus Log(dice) with the 3 numbered
configurations corresponding to the environments shown pictorially on the left. The
blue arrow points to the water molecule that satisfies the d5th criterion. Panel b
shows the probability densities obtained along d5 for the defective and non-defective
water molecules.

Voronoi density(ρ) and dice

Figure 3.9 shows the analysis performed on the Voronoi density ρ and Log(dice). The
ρ parameter has been used previously in the literature [41, 104, 105] to quantify local
density fluctuations in liquid water at different thermodynamic conditions. As done
in the previous analysis, a series of landmark points are illustrated to aid with the
discussion. The fluctuations along the line connecting points 1 and 2 reflect changes
where the two parameters are well correlated: point 1 is a low density open and ice-
like environment, while point 2 corresponds to a higher density environment with 8
neighboring waters within 3.7 Å. As expected, this high density fluctuation leads to
the creation of an environment with a low value of Log (dice).

Moving along points 1-3 and 2-3 confirms again, the importance of understanding
the fluctuations of the network using a combination of several different variables.
Point 2 is a high density environment created by a water molecule that participates
in a six-membered ring and maintains a local tetrahedral order and therefore has
a low value of Log(dice). Point 3 on the other hand, corresponds to a low density
environment but the orientations of the nearby water molecules do not have a local
tetrahedral structure therefore leading to a higher value of Log(dice). Figure 3.9 c)
shows the ρ parameter performs rather well compared to the d5 at distinguishing
over and undercoordinated defect water molecules. It is interesting to note however,
that there is significant overlap in the densities for water molecules that accept and
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Figure 3.9: Panel a) shows the scatter plot of ρ versus Log(dice) with the 3 num-
bered configurations corresponding to the environments shown pictorially on the
left. Panels b shows the probability densities obtained along ρ for the defective and
non-defective water molecules.

donate 2 hydrogen bonds and both under/over coordinated waters.

LSI and dice

Finally, we conclude this section with a comparison of the LSI and SOAP based pa-
rameter dice. The LSI variable was designed in order to quantify fluctuations between
more ordered and disordered environments due to fluctuations at the boundary be-
tween the first and second solvation shell [45, 160]. Specifically, a larger value of LSI
has been interpreted as a water environment that is more open and characterized by
a separation between first and second shell while smaller values of LSI, correspond to
environments without a well separated first and second shell owing to the presence
of interstitial waters.

The dashed line connecting points 1 and 3 corresponds to the regime where these
two variables are well correlated with each other. Specifically, point 1 is a water
environment that has a large LSI and a large negative value of Log(dice) implying
that it looks locally like an ice-like environment. Point 3 on the other hand has a low
LSI and is non-ice like. The origins of the difference between these two structures
is seen more clearly in the leftmost panels where we observe in point 3 the presence
of several interstitial water molecules.

The region connecting the points 2 and 3 illustrates the challenge in interpreting
the LSI coordinate in terms of the local order/disorder. Point 2, which has a small
distance from ice but smaller separation between first and second shell is found to
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have the same LSI value as point 3 which corresponds to a rather compressed and
high density unicy environment.The LSI is able to distinguish appreciably between
defects and non-defects, while the effect is more subtle distinguishing undercoordi-
nated from overcoordinated environments.
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Figure 3.10: Panel a) shows the scatter plot of LSI versus Log(dice) with the 3
numbered configurations corresponding to the environments shown pictorially on
the left. Panels b show the probability densities obtained along LSI for the defective
and non-defective water molecules.
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3.3.4 Evolution of Molecular Descriptors with Free Energy

In the preceding sections we have shown that the free energy landscape of liquid
water at room temperature is best characterized as having one broad basin with
small barriers separating the different minima. Furthermore, we have also seen as
anticipated by the ID analysis, that the fluctuations within this landscape involve
the coupling of several different molecular descriptors. In this section, we explore
how these quantities change as a function of the free energy at room temperature. In
addition, we also examine the behavior of some of the descriptors close to the critical
point of supercooled water based on an analysis of microsecond long trajectories by
Debenedetti and Sciortino[38].

Room Temperature Liquid Water

a b

c d

Figure 3.11: Panels a)-d) show the evolution of the chemical-based parameters as
a function of different cuts along the free energy (shown with the various colored
curves). The dashed curve in each panel corresponds to the distribution obtained
by averaging over all the water molecules regardless of its free energy.

Using the free energies of the points extracted earlier, we examined how the
various descriptors, evolve as a function of being on different regions of the actual
free energy surface(different from the UMAP free energies). Figure 3.11 and Figure
3.12 show distributions of qtet, d5, LSI, ρvor and Log(dice) in slices of the free energy
ranging between the minimum and 10 kBT. Also shown in each panel, is the distri-
bution of the respective variable obtained from all points independent of its position
on the free energy surface (FES).

Starting with qtet, we observe that the water tetrahedrality reduces as one moves
higher in FES. Interestingly, the shoulder at lower values of qtet ∼ 0.5 becomes much
more pronounced for the points higher up in the FES. In order to better understand
the origin of this shoulder in the tetrahedrality, a feature which has been reported in
numerous previous studies[7, 13], we show in the left and right panels of Figure 3.13
the fraction of defects as a function of free energy cuts and the qtet distributions for
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Figure 3.12: Panel a shows the evolution of Log(dice) as a function of different free
energy cuts while panel b illustrates the Log(dice) for a low and high free energy
region specifically for defective and non-defective water

defects and non-defects respectively. Moving up higher in free energy increases the
fraction of non-tetrahedral water molecules (left panel of Figure 3.13). Furthermore,
the shoulder in qtet arises from these defective water molecules in the network (right
panel of Figure 3.13).
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Figure 3.13: Left panel is the fraction of defects for 3kBT cuts of the free energy.
Right panel shows the qtet distribution of points high in free energy. Also shown
are the weighted qtet distributions of points high in free energy restricted to defec-
tive(red) environments and non-defects(orange).

Defective and non-tetrahedral water molecules which break the ice-rules can
either be undercoordinated or overcoordinated. To dissect the connection between
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the defect type, qtet and free energy, in Figure 3.14 we show the distribution for the
coordination number of water molecules residing in low and high free energy cuts.
Interestingly, we see that it is mostly the undercoordinated water molecules with
coordination number less than or equal to 3 which contribute to the shoulder in qtet
and therefore also the high free energy regions of the landscape.

The evolution of the variables such as d5 and ρvor reflect other changes in the hy-
drogen bond network. In particular, d5 increases from 3.3 to 3.5Å moving above the
minimum in free energy while ρvor decreases from 0.037 to 0.03 Å−3. These changes
correspond to water environments that become more open and less tetrahedral. It
also worth noting that the points near the minima correspond to densities that are
12% larger than the average bulk density. The LSI distributions in Figure 3.11
shows more subtle changes toward higher values as a function of free energy again
consistent with the formation of a more open local structure. It is clear however,
that there is significant overlap along all these variables across the entire free energy
landscape.
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Figure 3.14: Panels a and b show the probability distributions of the no. of hydrogen
bonds of the central water molecule for different cuts low and high in free energy

The left panel of Figure 3.12 shows the distributions of Log(dice) for different free
energy cuts. Interestingly, as one moves to regions of the FES that are higher in free
energy, the environments look more ice-like which is consistent with the lower free
energy structures in ambient temperature water being dominated by high density
and more disordered environments. In the right panel of Figure 3.12, the changes
in Log(dice) as a function of free energy for both defective and non-defective water
molecules are shown. Firstly, we note that the free energy minimum is characterized
by the presence of both defective and non-defect water molecules consistent with
the earlier analysis on the presence of a broad free energy basin characterized by low
barriers separating different water structures. Secondly, we observe that fluctuations
in the hydrogen bond network away from the free energy minimum results in the
creation of both more ice-like or less-ice like environments as revealed by the changes
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in Log(dice). For non-defects which accept and donate two hydrogen bonds, the
higher lying free energy structures arise from more-ice like environments which are
energetically stabilized but entropically disfavored.

Having observed the relevance of defects on the qtet distribution for regions high
in free energy, we examined the behavior of both defecting and non-defective wa-
ter molecules as a function of free energy for the different collective variables. For
qtet (Figure 3.15 a)) the separation between the defects and non-defects increases
as one goes higher in free energy while in the case of d5 (Figure 3.15 b)) the dis-
tributions remain very similar. In the case of ρvor, it is quite interesting to note
that defective environments higher in free energy, have significantly lower densities.
In the ensuing section, we will show that this feature has important implications
for temperature dependent structural evolution. Finally, Figure 3.15 d) shows the
constrained distribution for the LSI. In both high and low FES regions, the LSI
probability distributions for defects are found to be peaked close to zero and with
less fat tails. This is indicative of smaller separation between first and second shells
of the central water for defective environments. Four illustrative examples reflecting
the differences in defect/non-defect water molecule environments are shown in the
figure 3.17. The environments high in free energy (a and b) differ from environments
low in free energy in having fewer interstitial waters.

a b

c d

Defects
Non-defects

Figure 3.15: Panels a b c d illustrate the probability distributions of the
qtet, d5, ρvoro, LSI for a low and high free energy region specifically for defective
and non-defective waters

Although the Log (dice) we have used in the preceding analysis only uses the oxy-
gen atoms, we have shown earlier that the inclusion of the hydrogen atoms contains
important information as seen in the sensitivity of the magnitude of the ID (see
Figure 3.1 ) and SOAP-distance analysis (Figure 3.2). Since there have been several
recent studies using SOAP descriptors with only the oxygen atoms to characterize
water environments[113, 116], we thought it was prudent to quantify better with the
Log(dice) parameter the effect of including the various SOAP descriptors described
earlier.
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We compared the distribution of Log(dice) for defects and non-defects comparing

O⃗, (O⃗, H⃗ave) and (O⃗, H⃗ave,H⃗dif ). Figure 6.3 shows the distributions of Log(dice) for
non-defective, under and over coordinated defects for the various SOAP descriptor
combinations. While there are expected shifts in the absolute values of Log(dice)
with the different prescriptions, the differences are not striking. However, exam-
ining the difference in the probability densities of the defects and non defects as
seen in the Appendix (Figure 6.4) shows that the use of (O⃗, H⃗ave,H⃗dif ) allows for
the largest difference in distinguishing between defective and non-defective water
molecules. Although this may not be so critical in our understanding of the free
energy landscape of bulk water, the use of the hydrogen atoms will likely play a
more important role in understanding the structure of water at interfaces [95].

The strategy we have adopted here using hexagonal ice as reference milestone to
compare the environments in water with serves as one of many possible references.
For example, recent theoretical studies proposed the possibility of fused dodecahe-
dron structures as a possible source of a low density environment in water[156]. In
order to assess this possibility, we also examined the ddod distance as described in
the methods section where environments in liquid water are compared with the pro-
posed fused dodecahedron. We find that in the models of liquid water examined in
this work, the environments in room temperature water yield larger values for ddod
compared to dice as seen in Figure 3.16.
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Figure 3.16: Probability density estimates of Log(dice) and Log(ddod) restricted to
defects and non-defects for radial cutoffs of 3.7 Å and 6.0 Å. The top panels are
constructed using only oxygen atoms (O) while bottom panels include the hydrogen
atoms in computing the distance (O,Have,Hdif ).
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2in2out

2in2out

2in1out

2in1out

0<Free energy(kBT)<3

9<Free energy(kBT)<12

a b

c d

Figure 3.17: This figure shows water molecules within 3.7 Å of a central water(black)
for representative environments in different regions of the free energy landscape.
Panels a and b show examples a non-defective and defective(2in21out) high in free
energy. Panels c and d show the corresponding local topologies for environments for
low in free energy.
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3.3.5 Supercooled Water and Origins of Density Maximum

With a large set of new tools in hand that allow us to examine the fluctuations in
water at room temperature in a much more nuanced way, we are in a position to
examine the behavior of water upon cooling. In particular, we will tackle two issues:
firstly how the free energy landscape and the variables discussed previously evolve
up to 250K and secondly exploring the origins of the density maximum in terms of
our PAK free energies. We note that cooling up to 250K still keeps the liquid very
far from the critical point. Later in this chapter we will also examine the behaviour
of water near this point analyzed from previous microsecond simulations [38].

a b

c d

Figure 3.18: Panels a b c d show the probability distributions of the qtet ,d5,ρvoro,LSI
within the temperature ranges of 250-300K

Figures 3.18 and 3.20 show probability density estimates of qtet ,d5,ρvoro, LSI and
Log (dice) as a function of temperature. In the case of qtet, the shoulder in distribu-
tion is found to reduce upon supercooling. This is consistent with the decrease in
fraction of defects when the temperature is decreased (see Figure 3.19). The peak of
the position of d5 increasing upon supercooling and the fattening of the tails in the
LSI is also consistent with a well separated first and second shell. In Figure 3.20 a,
the peaks of probability density estimates of Log(dice) shift towards more negative
values indicating that the local-environments in water become more ice-like consis-
tent with what is expected. This is seen more clearly in the right panel of Figure
3.20 which shows the average value of Log(dice) across as a function of temperature.
For both defective and non-defective environments, the evolution of this parameter
as a function of temperature is essentially indistinguishable.

Examining the global average of the various quantities like the way we have done
for Log(dice) provides a probe into the behavior of macroscopic quantities relevant to
thermodynamics, for example the density. In Figure 3.21 we illustrate the behavior
as a function of temperature for the various different quantities such as qtet, LSI, d5
and ρvoro. Figure 3.21 shows that the average value of qtet, LSI, d5 all increase as
a function of cooling. Furthermore, while the difference between these variables for
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Figure 3.19: Fraction of defects as a function of temperature from room temperature
to supercooled water.

defective and non-defective environments is more pronounced than for the average
Log(dice) (Figure 3.20 a), both defective and non-defective environments exhibit the
same trends.

Figure 3.20: Panel a shows the probability distributions of the Log(dice) within the
temperature ranges of 250-300K. Panel b shows the average values of Log(dice) for
defective and non-defective environments in the same temperature range.

More interesting perhaps is the case of the average ρvoro where we observe that
the Voronoi density associated with all environments which clearly shows a maxi-
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mum at around 280K close to the maximum of density of the TIP4P/2005 water
model[161]. The density maximum of water has previously been rationalized in terms
of the competition between LDL and HDL water environments [162, 7]. The LDL
structures have been further decomposed into partially and non-hydrogen bonded
environments[163].

If one computes the mean Voronoi density of defects as a function tempera-
ture(see Figure 3.21c), we observe, that it increases upon cooling. This effect on the
overall average density is however, only important at higher temperatures, since the
fraction of defects is small at low temperatures (see Figure 3.19). The net effect of
the presence of defects is to decrease the overall average density at room tempera-
ture. As earlier pointed out, non-defective environments with comparatively lower
densities are found higher up in free energy and it is these defects in particular that
are responsible for the low density at high temperatures. Upon cooling, fluctuations
in the direction of these under-coordinated yet vacuous defects from the minimum,
become less probable (see the left tails of the defect Voronoi probability distribution
SI Figure 6.5e and f). Rather differently from reference[163] we do not interpret
these defects in terms of a HDL and LDL environments since these are not in any
sense well defined minima or possessing a barrier.

On the whole, the dominant contribution to the anomalous expansion of water
is from the non-defective environments which increase as the temperature is cooled.
For such environments, there is a clear increase in average d5 as the temperature
is reduced. This is indicative of the formation of a well separated first and second
shell and is manifest in the decrease of interstitial waters.

a

Figure 3.21: Panels a b c d show the average values of the qtet ,d5,ρvoro, LSI within
the temperature ranges of 250-300K . The blue lines correspond to average values
computed with all points in the data sets, the red corresponds to the average value
computed with non defects and green involves changes in the defective population.
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3.3.6 Liquid Water near the Critical Point

The analysis of supercooled of water discussed in the preceding section do not give
any direct evidence of the existence of the HDL and LDL phases due the fact that
the simulations are short and the temperatures simulated are rather far from the
putative critical point. In a recent work, the second critical point of water was stud-
ied from long microsecond simulations of realistic point-charge water models[38]. In
these simulations close to the critical point of water at ∼ 171K, 1861bars, fluctu-
ations between a high density (HD) phase at 1064 kgm−3 and a low density (LD)
phase at 977 kgm−3 were observed. These transitions occurring over the course of
several tens of microseconds are illustrated in Figure 3.22a . The local water envi-
ronments of the HD and LD phases have typically been rationalized using chemical
based descriptors such as qtet, LSI and the bond-order Steinhardt order parame-
ters[45, 164, 165, 23, 166, 7, 148].

We have seen that a combination of the chemical-based and SOAP variables
provide a more nuanced perspective on the nature of the fluctuations in the hydrogen
bonded network. In Figure 3.22 b, we show the Log(dice) distributions for water
environments extracted from the HD and LD regions of the trajectory in panel a.
Specifically, SOAP environments were determined for all water molecules in the
frames where the density was within 1kg/m3 of the minimum in the HD phase
and LD phase separately. Additionally, the distributions for water at 300K and
supercooled water at 230K are also shown. The LD phase is characterized by water
environments that are more ice-like by 4-5 orders of magnitude compared to those
in the HD phase. As expected, the environments observed in bulk water at 300K are
much more similar to those in the HD phase close to the critical point. Interestingly,
even though the global densities are quite different, there is a significant region of
overlap in the environments observed in the HD and LD phases. This suggests the
existence of heterogeneities within each of the liquid phases near the critical point.

Figure 3.22 c)-h) shows the behavior of the coupling between the d5, qtet and
LSI parameters as a function of Log(dice) for the HD and LD phases in the left
and right panels respectively. For both d5 and qtet in panels c)-f), the extent of the
correlation between these variables and Log(dice) changes rather significantly when
comparing the HD and LD phases. For the LD phase there appear to be a significant
number of environments that have a large d5 and high tetrahedrality, but cover a
broad spread of Log(dice) values. The LSI for the LD phase is the only variable
that shows the presence of a bimodal character. However in the HD phase, most of
the local environments have the signatures of a closed, non-tetrahedral and higher
local density (see Appendix Figure 6.6). A visual inspection of the trajectories
suggests that the LD phase is characterized by the presence of larger domains that
are built up of both low (where there are connected regions with lower dice) and
smaller intermediately high density regions (with larger values of dice. Details of
this analysis will be the subject of a forthcoming study[167].
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Figure 3.22: Panel a is a plot of the time series of the global density of the trajectory
at 171K,1751 bars. Panel b shows the comparison of the Log(dice) at 3.7 Å between
environments in HD and LD regions contrasted with Log(dice) at 230K, 300K. Pan-
els c-h show the 2d kernel density estimates of the Log dice versus chemical-based
parameters. Panels c and d, show the plots of d5 and Log dice for HD and LD regions
respectively while Panel’s e and f show those qtet and Log dice. Figures g and h show
the plots of the LSI and Log dice. The growth of a shoulder is observed in the LD
phase more clearly when using the LSI parameter.
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3.4 Conclusions

There is currently tremendous growth in the development and application of machine
learning methods to understand complex molecular systems. These approaches are
aimed at circumventing the intervention of human or chemical bias as well as allowing
for helping interpreting physical models that are beyond chemical imagination.

In this chapter we used a series of advanced unsupervised learning techniques
to study the fluctuations in simulated liquid water at room temperature. This
procedure involves the use of state-of-the-art local atomic descriptors (SOAP) to
describe water environments, followed by the extraction of the intrinsic dimension
of the water network and then finally determining the topography of the free energy
landscape. We also complement this analysis by studying the behavior of various
chemically inspired coordinates that have been used to study water structure. We
believe that this establishes a rigorous theoretical protocol for studying fluctuations
in liquids and aqueous solutions in general.

Our analysis confirms previous theoretical and experimental observations, that
room temperature water is a homogeneous liquid. However, the picture that emerges
is much more nuanced. Fluctuations in the hydrogen bond network occur on a rather
high dimensional free energy landscape that is broad and rather flat with small
ripples separated by small free energy barriers. These features are found both in
TIP4P/2005 water and in the many-body potential MB-pol water[78]. This implies
the presence of short-lived heterogeneities on the fs-to-ps timescale. The use of
SOAP descriptors, by revealing the intrinsically multidimensional character of the
local environment, leads to an additional conclusion: individually, variables such as
qtet, d5, LSI or for that matter dice, cannot be used to infer the existence of LDL or
HDL like environments. In the next chapter we will explore how all these different
variables are manifested in the collective orientational fluctuations of water.

Finally, we also examined the evolution of all these variables within the super-
cooled regime by analyzing trajectories from recent work by Sciortino and Debenedetti[38].
While the HDL phase in supercooled water resembles the majority of local water
environments in room temperature water, the situation is more complicated with
LDL. Here there appear to be larger domains involving water environments that
are more ice-like as well as high density-like but lower than the density of the HDL
phase. The possibility of creating these domains is consistent with an earlier study in
our group showing that upon supercooling, a network of connected branched-voids
develop surrounded by smaller spherical cavities[102].
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Chapter 4

Unsupervised Detection of the
Collective Nature of Angular
Swings in Liquid Water

The contents of the chapter are at present being prepared for publication by
Adu Offei-Danso, Uriel Morzan, Alex Rodriguez, Ali Hassanali, and Asja Jelic.

4.1 Introduction

Hydrogen-bond network fluctuations in water are at the heart of a wide range of
physical, chemical, and biological processes, ranging from proton transfer in the
ionization of water [168, 169] to the folding of proteins and aggregation of molecules
in solution [133, 56]. Since water molecules are characterized by a rather large dipole
moment which in turn leads to directed interactions between water molecules, the
re-orientational dynamics underlying the network reorganization has attracted the
interest of both experimentalists and theoreticians alike[41, 170, 171, 172, 54].

The complex reorientational dynamics of water can be probed through various
experimental techniques. In particular, the frequency dependent dielectric spectrum
of water at room temperature covers a wide range of frequencies up to approximately
20 THz[173]. While the main dielectric relaxation peak reaching several tens of gi-
gahertz is well described by a Debye relaxation process, the high frequency regime
between 0.1-1 THz deviated significantly from the Debye law[173]. Numerous theo-
retical models have been invoked to rationalize the microscopic origins of the dielec-
tric spectrum including the flickering cluster model by Frank and Wen[21], Pople’s
continuum random network model [25], and finally, the jump and wait diffusive
model[53, 174].

The flickering cluster model is a statistical-physics based description of water
where the liquid is thought to consist of non-hydrogen bonded monomers and clus-
ters of hydrogen-bonded waters in equilibrium with each other. On the other hand,
in Pople’s continuum random network model, water consists of an extensive three-
dimensional network with distorted hydrogen bonds of varying degrees of strength.
Although these two models have been successful at reproducing some thermody-
namic and static properties, they do not capture the above mentioned fast (sub-THz)
dielectric relaxation of liquid water[25, 175]. Since the jump and wait diffusive model
forms a central part of our story, it will be elaborated on in more detail later.
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Since the early days of the development of molecular dynamics techniques to
simulate water, atomistic simulations have played a critical role in dissecting the
complex reorientational motions of water[176, 29]. Even in these early studies,
Stillinger and Rahman hinted at the importance of cooperative or collective water
reorganization of the water network without specifying the mechanisms.

One of the enormous hurdles in pinpointing the microscopic origins of the col-
lective behavior from numerical simulations is the difficulty in disentangling fluctu-
ations occurring over a wide spread of both length and timescales that create and
form labile hydrogen bonds with a broad spectrum of patterns. For this reason,
several early theoretical studies by Ohmine and his collaborators [52, 177] focused
on inherent structures at zero-K and pointed to the importance of larger numbers
of water molecules in water reorganization [52]. However, as mentioned in the third
chapter in reference to the inherent structure analysis, while certainly instructive,
the collective nature of the water dynamics at room temperature occurs on a free
energy landscape (see Figure 3.3 in Chapter 3) that is fundamentally different from
the potential energy surface.

Until over a decade ago, the primary mechanism by which water molecules reori-
ent was thought to be a jump and wait diffusive model. In this framework, after a
hydrogen bond is broken, the water molecule undergoes a period of diffusive motion
remaining bonded to another water molecule during a so-called waiting period [175,
178, 103]. This model was found to adequately describe elastic neutron scattering
experiments[179, 180]. However, similar to the flickering cluster and continuum ran-
dom network models, the jump and wait diffusion does not adequately capture the
dielectric spectrum in the sub-THz range.

In a seminal work by Laage and Hynes [49], it was demonstrated through the
use of computer simulations that water rotations do not occur solely via small dif-
fusive steps but involve large-amplitude angular jumps. This mechanism describes
water molecules’ large and quick rotations as a localized event in the hydrogen
bond network. A schematic picture of the mechanism is shown in Figure 1.3 in
the Introduction). While the angular jump mechanism eludes to the importance
of cooperative or collective fluctuations in triggering the angular jumps, the details
associated with this are essentially swept under the rug. This mechanism has now
become the standard manner in which to view reorientational dynamics of aqueous
solutions in both the bulk and interfaces[181].

In the last several years, important advances in time-dependent spectroscopy
have opened up a new window into probing dynamical processes in water on the fs-
ps timescale [172, 171, 182]. Ultrafast 2D IR anisotropy measurements have infact
suggested that hydrogen bond switches in the water network are a concerted process
involving large reorientations [171, 182]. However, the microscopic origins of these
collective fluctuations have remained unknown.

In this chapter, we unravel a mechanism that elucidates the collective nature by
which water molecules reorient. Using classical molecular dynamics simulations of
the SPC/E water model [74], and by automatizing the detection of angular motions,
we demonstrate that there is a heterogeneity in the types of angular motions that
occur and that large reorientations are facilitated by a highly orchestrated motion
of dozens of water molecules. The heterogeneity in the fast reorientational dynamics
is in turn associated with transitions involving different types of defective and non-
defective water molecules discussed in Chapter 3. We assert that these features are
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a generic property of the fluctuations in the topology of the water hydrogen-bond
network on the TeraHertz timescale[183] which are facilitated by density fluctua-
tions. These effects are akin to previous ideas suggesting the role of defects in the
molecular mobility of water[184, 175].
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4.2 Methods

4.2.1 Molecular Dynamics Simulations

We performed a molecular dynamics (MD) simulation of 1019 water molecules using
the GROMACS 5.0 package [151] with the SPC/E rigid water model [74]. We also
compare some of our results with the MB-pol potential which is the most accurate in-
silico potential reproducing both structural and dynamical properties of water across
the phase diagram [185, 77]. Energy minimization was first carried out to relax the
system, followed by an NVT and NPT equilibration at 300K and 1 atmosphere for
10ns each. A timestep of 1fs was used for all the simulations with a sampling time of
4fs. The NVT simulations were performed using the velocity-rescaling thermostat
[90] with a time constant of 2ps, while the NPT runs were conducted using the
Parrinello-Rahman [70] barostat using a pressure coupling time constant of 2ps.
The production run at 300K was carried out for 2ns in the NVT ensemble [152].

4.2.2 Angular Swing Detection Protocol

Water reorientation dynamics include various processes happening at different time
scales, from swift librational motions causing limited angular changes to slower
reorientation through sudden large-amplitude angular jumps. It remains still an
open question how and to which extent each of these processes is involved in the
underlying collective hydrogen bond rearrangements that was invoked in previous
studies. In order to elucidate the mechanisms behind the collective reorganization
of water, we developed an automatized protocol for detecting all the various angular
changes in water reorientation, which we term angular swings. In this section, we
describe all the steps of the protocol depicted in Fig.4.1, before getting into detailed
analysis of the diverse angular motions identified in the following section.

To track down angular changes in water orientation, we rely on two body-fixed
vectors, the HH vector and the dipole moment (see Fig.4.1(a)). From the MD
simulation, we first extracted the HH and dipole vector time series for each water
molecule, herein referred to as v⃗(t), with t being time. A new times series, v⃗F(t),
was constructed by filtering v⃗(t) with a second-order low-pass digital butterworth
filter [186] with the cutoff frequency of 25 THz, after which a mean filter of 100fs
was applied. In this way we remove fast fluctuations arising from high frequency
librational modes at 20 THz. The original unfiltered and the filtered time series are
shown in blue and red, respectively, in Fig.4.1(b). In these time series of one of the
vector component we examine, we can observe very clear sudden changes, such is the
one at around time 1500 fs, that should be detected by the automatized protocol.

Next, we compute the derivative of v⃗F(t) using a finite difference method, and
calculate the cross product of this vector with v⃗F(t) in order to obtain a new vector

n⃗(t) = v⃗F(t)×
dv⃗F(t)

dt
, (4.1)

that corresponds to the vector perpendicular to the plane of rotation of the body-
fixed vector v⃗F(t).

Our protocol defines the angular swing to be the process that does not change
the plane of rotation of the body-fixed vector v⃗F(t). This implies that, over the
time of one angular swing, the direction of n⃗(t) does not change. The start and the
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Figure 4.1: Summary of the protocol for angular swing detection. (a) Definition
of the HH and dipole (DP) vectors extracted for every molecule. (b) The second
step in our protocol involves the construction of the filtered time series (red) of
each of the three components of the H-H (DP) vector from the original time series
(blue). (c) Illustration of the detection of two successive swing events by identifying
the start and the endpoints of an angular swing as an instantaneous change in the
direction of the vector nk and nk+1 perpendicular to the plane of rotation of the
H-H (DP) vector. This example shows our protocol for two successive swing events,
Ek = [t1t2] (green) and Ek+1 = [t2t3] (red), detected from the filtered time series
of the DP vector of one molecule. The direction of the vector normal to plane of
rotation (green arrow for Ek and red arrow Ek+1) is found to change only when
transitioning from Ek to Ek+1 (d) Angular swings Ek (small green swing) followed
by Ek+1(large red swing) indicated on the filtered DP vector component time series.
The start and end points correspond to extrema in the time series.

end points of swing events are then identified as large instantaneous changes in the
direction of n⃗(t). More precisely, we look at the following quantity

q(t) = 1− n⃗(t) · n⃗(t+ δt)

|n⃗(t)||n⃗(t+ δt)|
, (4.2)

which is equal to 0 during the swing. At the start and at the end of the swing,
this quantity is found to be non-zero, corresponding to the change in the plane
of rotation of the body-fixed vector v⃗F(t). Consequently, start and end points of
angular swings can be identified as maxima in q(t).

Indeed, we find that these points, where the plane of rotation changes, correspond
to extrema in the filtered time series, v⃗F(t), therefore identifying angular swings as
shown in Fig.4.1(d). In order to show more precisely that the extrema of q(t)
determine the start and end points of angular swings, in Fig.4.2(a) we look at the
time series of one of the components of the HH-vector of one water molecule. The
dashed blue line corresponds to the unfiltered time series v⃗(t), while the connected
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line is the filtered time series v⃗F(t). The four vertical lines correspond to the start
and end points of two selected swings detected using the automatized protocol. The
first small swing occurs between the two green lines, while the larger swing is between
the red lines. Panel (b) in Fig.4.2 shows the value of q(t) for the region in which the
selected swings take place, the start and end points of the swings being the points at
which q(t) peaks. We see that the swings detected through our automatic procedure
indeed correspond to strong angular changes in the HH-vector as seen from one of
its component plotted in panel (a), whose extrema correspond well to the non-zero
values of q(t).

Figure 4.2: (a) Time series of one of the HH-vector components of one molecule in
an interval of 2ps. The unfiltered and filtered time series are the dashed and full
lines, respectively. The four vertical lines correspond to the start and end points
of two selected swings. The first small swing occurs between the two vertical green
lines, while the larger swing occurs between the red vertical lines. (b) Time series of
q(t), between 1580 and 1625 fs. The start and end points of the swings are points
at which q(t) peaks, with green and red lines corresponding to the swings observed
in panel (a).

Finally, having identified the start and endpoints of the swings, the duration of
the swings are taken to be the times between two peaks of q(t), and the magnitude
is found by computing the angle between the unfiltered HH or dipole vector at the
start and at the end point of the swing. The final output of the protocol is the start
time (t), duration (∆t), and magnitude (∆Θ), for each angular swing detected. We
performed the procedure both for the HH vectors and the dipole vectors, as some
angular fluctuations of water molecules can be better captured through one or the
other vector. In the next section, we will show the results for both vectors.
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4.3 Results

4.3.1 Angular swings and changes in the local environment

We have applied an automatized protocol that identifies angular fluctuations of each
molecule in the system on the trajectories obtained from the molecular dynamics
simulation, as elaborated in the previous section. As a result, a total of around 108

angular swings were found for a system of 1019 water molecules over a time interval
of 2 ns.

As we see in Fig.4.3, the angular changes we identified through the protocol
have a broad range of amplitudes and duration. Therefore, we term all detected
molecular reorientations as angular swings, rather than angular jumps. The latter is
the predominant term in the literature, but it only refers to large-amplitude angular
swings accompanied by hydrogen-bond breaking [49]. Here, we also analyze small
angular fluctuations which would essentially correspond to small angular diffusive
steps, that don’t necessarily involve H-bond breaking.

Figure 4.3: Panels (a) and (b) show the probability distributions of angular swing
duration ∆t for swings with the angular magnitude ∆Θ greater than a certain thresh-
old, both for dipole and HH vectors, respectively. For low angular thresholds, we
observe bimodality in the probability distributions and a trend towards unimodality
as the angle threshold increases. In particular, the surviving peak for large angles
is found to be around 100 fs.

In Fig.4.3, we show the probability distributions of the duration of swings ∆t,
both for swings detected by looking at the time series of the dipole vector and those
detected from the HH vector, panels (a) and (b), respectively. We select the swings
depending on their magnitude and plot the distribution of the swing duration only
for those swings with an amplitude ∆Θ larger than a certain angular threshold. For
small angular threshold, i.e. when the selected swings are predominantly of small
magnitude, the swing duration peaks at roughly 30 fs. This corresponds to a fast
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hindered rotational mode. As we increase the angular magnitude threshold, we find
that the probability distributions change, both for the dipole and the HH vector.

For intermediate values of the angular amplitude, a second peak in the probabil-
ity distribution appears and the distribution becomes bimodal. A new characteristic
time of around 100 fs emerges as the angle threshold increases to 60◦, i.e. when
looking only at angular fluctuations with the magnitude larger than 60◦. This is
the characteristic time of large angular swings. Indeed, the angular value at which
the second peak in the bimodal distribution becomes prominent, provides us with a
criterion for what we can call large angular swings. In a total number of 108 swings
that were detected in our simulation, 1% percent of them were found to be large
swings. Based on our detection protocol, we find that on average, 50 out of 1019
water molecules undergo large angular swings (detected either through its dipole or
HH vector) in a period of 100 fs.

Let us now look at how many of the detected angular swings involve hydrogen
bond breaking. In Fig.4.4(a), the fraction of swing events that break hydrogen bonds
for different angle thresholds is shown. This monotonically increasing function shows
that large swings (with the angular magnitude larger than 60◦) break hydrogen-
bonds 90% of the time. Panel (b) in Fig.4.4 shows a more detailed analysis by
distinguishing the swings that break either out hydrogen-bonds i.e. interactions in
which the central water donates a hydrogen atom to a neighboring acceptor, or in
hydrogen-bonds i.e. interactions in which the central water accepts a hydrogen from
a neighboring donor.

Our study reveals that HH vector swings break out hydrogen-bonds roughly 90%
of the time, while in hydrogen-bonds are broken 40% of the time. In the case of the
dipole vector, this asymmetry persists, although to a lesser degree (70% for out and
40% in). To understand the nature of this assymetry, it is worth noting that for
the molecule undergoing a swing, the oxygen atom is originally hydrogen bonded
to two neighboring hydrogen atoms, while the each hydrogen atom is bonded to
one oxygen of a nearest neighbor. Consequently a fluctuation originating from this
molecule more easily breaks its proton donating (out) interaction rather than its
proton accepting (in) interaction.

It is important to clarify, that the timescales we discuss here associated with
the swings consider all the orientational fluctuations that occur independent of the
hydrogen bonding interactions. For small angular swings, these motions correspond
to small angular diffusive steps of water molecules which typically will not change
the local topology of the water. On the other hand, for the large amplitude swings,
the swing duration is most akin to the timescales associated with passing through
the transition state during successful angular jumps, in the Laage and Hynes mech-
anism[56].

In the following, we will restrict ourselves to swings that break hydrogen bonds
in order to analyze the local topology of the swinging molecules by calculating the
hydrogen-bond network at the start and end points of the swings. This analysis is
summarized in Fig.4.5. Panels (a) and (c) show changes in the topology of molecules
undergoing small magnitude HH and dipole swings, respectively, while large magni-
tude swings are shown in panels (b) and (d). Small swings (∆Θ < 20◦) were found to
involve transitions between non-defective topology 2in2out and an under-coordinated
defect 1in2out or between non-defective environments and an over-coordinated defect
3in2out (see Fig.4.5(a) and (c)).
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Figure 4.4: Angular changes that lead to hydrogen bond breaking and change in
local water network topology. (a) The plot of the fraction of events in which we
detect hydrogen bond breaking, depending on the angular swing amplitude. The
x-axis represents a threshold angle for the HH (red) and dipole (blue) vector so
that we count all the events with an amplitude larger than the threshold value. For
swings with large amplitudes, most events involve hydrogen bond breaking. (b) We
show the fraction of bonds that break during angular swing events depending on
whether they are with proton donors (out, blue and yellow) and proton acceptors
(in, red and purple) as the angle threshold is increased. We see that the hydrogen
bond associated with the hydrogen atom of the swinging molecule is affected the
most by the large angular swing of the water. (c) Sketch of a non-defective water
(central molecule) with its proton donating bond (out) and its proton accepting
h-bond (in) highlighted.

For large swings (∆Θ > 60◦) dominant transitions occur between 2in2out and
1in2out, as well as 2in1out and 2in1out for the HH vector. For the dipole vector the
dominant contributions are between two 2in1out and 2in1out. Transitions between
under-coordinated environments such as 2in1out and 1in2out become prominent as
well in both large dipole and HH vector fluctuations.

In order to investigate in more depth the origin of angular swings, in the fol-
lowing analysis we will try to obtain more information on the changes in the local
environment of the swinging water molecules. For that purpose, we will characterize
the local environment beyond the binary geometric hydrogen bond criteria, by look-
ing at the Voronoi density and the SOAP built logarithm of the distance from ice
Log(dice) (for the definition see Section 2.2). We compute these two quantities at the
mid-point of every detected swing. We then proceed by constructing the probabil-
ity distributions of the Voronoi density and Log(dice) for swings with an amplitude
larger than certain angular threshold ∆θ. The results are shown in Fig.4.6.

As we increase the threshold of the magnitude of the angular swings we observe
that the peak in the distribution of the Voronoi density is found to shift towards
smaller values, indicating that large angular swings occur in low density environ-
ments (see Fig.4.6 panels (a) and (b)). Furthermore, the behavior of the distance
from ice, shown in panels (c) and (d) in Fig.4.6, also suggests that large angular
swings occur in more disordered environments, since the peak of the distribution
shifts towards larger values of Log(dice) as the threshold for the swing magnitude
is increased. However, there is a significant overlap between the probability dis-
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Figure 4.5: Changes in topology during HH and dipole (DP) vectors detected swings
for events that break hydrogen bonds. The y-axis corresponds to the initial local
topology at the start of the swing, while the x-axis shows the topology at the end of
the jump, where the tick label (x,y) corresponds to xinyout. Panels (a) and (c) show
the transition matrices for small HH and DP swings (∆Θ < 20◦), while (b) and (d)
show transitions for large swings (∆Θ > 60◦).

tributions for the large and small swings. For example, if a small swing occurs in
close vicinity to a large swing of one of the neighboring molecules, this event may
not necessarily be a simple diffusive motion but rather occurring in a disordered
environment triggered by the large swing.

As seen from the previous analysis on the changes in the local environment
involving the local topology of the hydrogen bond network, large swings must natu-
rally result in disruption of the hydrogen bond network of at least one of the nearest
neighbors. Furthermore, large angular swings also tend to occur in low density and
more disordered environments. Since density fluctuations involve collective reorgani-
zational processes within the hydrogen bond network, large swings could presumably
either lead to consequent angular jumps of the near by molecules, as suggested in
the literature [187, 188, 177] or alternatively, be part of several large angular swings
that occur simultaneously. In the next section, we will therefore study in more detail
the collective nature of angular jumps.
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Figure 4.6: Panels (a) and (b) show the magnitude constrained probability distribu-
tions of the Voronoi density, ρvoro, for the water molecules undergoing angular swings
as detected from the HH and dipole (DP) vectors, respectively. Panels (c) and (d)
show the corresponding probability distributions for Log(dice). The probability dis-
tributions shifts towards lower local densities and more disordered environments as
we restrict ourselves to swings with the larger angular magnitude.

4.3.2 Collective Nature of Angular Swings

To build our intuition on the collective nature of angular jumps, in Fig.4.7(a), we
highlight all water molecules in the system that perform large-amplitude swings of
the dipole vector within a selected time interval of 350 fs. The round panels (b)
and (c) in the middle of Fig.4.7 show a close-up of several of these molecules before
and after the angular swing, as seen through their dipole vector orientations. Also
shown in the background are all the other water molecules in close vicinity to this
event. Finally, for the selected group of molecules, the plot in Fig. 4.7(d) follows
the change of the dipole vector in time through the time evolution of the angle it
forms for one of the axes of the laboratory coordinate system (this is a proxy of the
angular change, used here for simplicity; a more precise definition described in the
swing detection protocol in section 4.2.2 is used in the analysis below).

We see that the angular change of the dipole vectors of the eight molecules
involved in this event ranges between 60–120 degrees within the time interval of 350
fs that we are observing. This type of angular reorientation modifies the direction in
which the dipoles of these eight water molecules point and, as we will see, requires
a collective reorganization of the topology of the hydrogen-bond network.

Underpinning the large angular jumps in the HB network are fluctuations in
the topology of water molecules. As we have seen in the previous section, large
angular motions usually create coordination defects that affect the hydrogen bonding
patterns. This, in turn, affects the surrounding molecules’ local topology, leading
to rearrangements of nearby water molecules and possibly other large reorientation
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Figure 4.7: Collective nature of angular jumps. (a) Highlighted are all molecules
undergoing large angular swings of magnitude greater than 60 degrees in a box of
3nm within the time interval of 350fs (which spans between time steps 1000fs and
1350fs in the MD simulation). (b,c) Close-ups of 8 of these molecules in a small
box region at the start (panel (b)) and the end (panel (c)) of a large angular swing
are observed from the changes in their dipole vectors. The colored arcs outline the
angular motion carried by the dipole vectors in the direction of the dashed arrow.
Positions of the molecules in (b) and (c) are slightly different due to translational
motion during the observed time interval. (c) For each of the selected molecules,
we show the change of their dipole vector in time through the time evolution of the
angle it forms with respect to one of the axes of the laboratory coordinate system (for
each molecule, we show the component which changes most in this time interval).
The regions between the start and the end of the swings are shaded by the colors of
the corresponding molecules in panels (b) and (c).

events. Here we examine the connection between local topology and angular swings
in more detail by quantifying the occurrence of these events in time for the entire
ensemble of water molecules.

First, at every time step of the simulation, we calculate the number of waters
in the system that are non-defective, i.e. those that accept two and donate two
hydrogen bonds, and the number of all the other water molecules, which we refer to
as defects. The time series of the fractions of these two quantities with respect to the
total number of water molecules in the system is shown in Fig.4.8(a). Interestingly,
we observe that the fluctuations in non-defective and defective water molecules occur
in waves. The apparent anti-correlation between the two-time series is due to the
definition of the defective and non-defective topologies, which is equal to the total
number of molecules in the system. The oscillations shown in Fig.4.8(a) reflect
processes in the network which on a picosecond timescale, for example, lead to the
creation or annihilation of up to 10-20 defective water molecules in the network.
Many of these bursts then appear to accumulate over a longer timescale leading to a
slower process occurring on 10s of picoseconds. Our findings bare some similarities
with recent work by Liu and co-workers [187, 189] where they show that an angular
jump of a given water molecule could enhance the subsequent jump motions of the
same water molecule and surrounding water molecules up to the 2nd coordination
shell.
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Figure 4.8: Fluctuations in the topology of the water HB network. (a) Time series
of the fraction of the total number of water molecules with a non-defective topology,
i.e., those that accept and donate two hydrogen bonds (blue), and the fraction
of the defective ones (red). Mean-filter with the time window of 1ps was applied
to the time series. The two-time series are found to undergo fluctuations of the
order of tens of picoseconds. Trivial anti-correlation in time is an artifact of the
definition of the defective and non-defective topologies. (b) Examples of a non-
defective environment (2in2out), a defective over-coordinated environment (3in2out),
and defective under-coordinated environments (2in1out and 1in1out)

In Fig.4.8(b), several examples of under and over-coordinated defects are shown.
In all cases, we observe that these defects form throughout the network in waves
and can exhibit different magnitudes of correlations with the non-defective waters.
An examination of the power spectrum of these time series shows that these fluctua-
tions occur on the timescale of several THz (see SI 7.1 and 7.2). These dynamics are
consistent with several experimental spectroscopies [190]. The wide variety of differ-
ent topologies undergoing angular fluctuations imply that there is a heterogeneity
in the jumping mechanisms consistent with the interpretations made by Tokmakoff
and co-workers from 2D-IR ultrafast anisotropy measurements [190].

To quantify the collective nature of angular swings in the water network, we
examine how many angular swings occur simultaneously in the system. We assume
that the rearrangements of the local HB network can give rise to causality between
two swings occurring close by in time. Therefore, at every time step, we calculate
how many molecules perform angular swings within a specific time interval around
it. Previous studies report that the water reorientation happens on a time scale of
about 1ps that includes not only the angular jump itself but also the breakage and
forming of the HB before and after the jump. Thus, we look at a time window of
1ps, within which we calculate all the angular swings happening in the system.

In Fig.4.9(a), we plot the number of swings with an amplitude larger than 60◦,
detected either from the angular motion of the dipole or the HH vector. We note
that the number of concurrent large swings in the system fluctuates with the same
frequency as the number of defected waters, of the order of dozen of picoseconds.
Moreover, the oscillations seem to be correlated in time: the larger the number of the
defective water molecules, the more large-amplitude swings simultaneously happen
in the system. In fact, in panels (b) and (c) of Fig.4.9, we show that when the
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local topology in the HB network is more defective, there are less small-amplitude
angular changes in the system and more of the large-amplitude ones. This implies
a connection between the underlying topology of the HB network and the type and
amount of angular swings occurring simultaneously in the system. Large-amplitude
angular jumps cause rearrangements in the HB network, as they typically involve
hydrogen bond breaking (as seen in the previous section), and those changes in the
local topology facilitate further angular swings and reorientations of water molecules.
These results reinforce a picture of water reorientations being an outcome of highly
coordinated dynamics of water molecules, rooted in the collective fluctuations of the
network’s topology. It is worth noting that the correlation between the number of

Figure 4.9: Correlation between the number of molecules performing large angular
swings simultaneously and the fluctuations in the local topology of the water HB
network. (a) Time series of the number of molecules in the HB network performing
large angular swings (amplitude ∆Θ > 60) at each moment as detected from the
observation of the dipole vector (full blue line) and HH vector (blue dashed line).
At each moment, we count the number of swings happening in the system within a
time window of 1ps around it. We superimpose these time series with the fraction
of molecules in the HB network that are defective (red). We observe fluctuations of
the order of tens of picoseconds in all three curves that often appear to be correlated
in time. (b) Density plot of the fraction of defects in the HB network with respect
to the number of molecules in the network performing small angular swings (∆Θ <
20) within 1ps. Anti-correlation between these two quantities means that when
there are more molecules with defective local topology, the less small-amplitude
angular swings occur in the HB network. We find the correlation coefficient to be
−0.7390±0.0089, with p < 0.01. (c) Density plot of the fraction of defects in the HB
network with respect to the number of molecules making large-amplitude angular
swings (∆Θ > 60) within 1ps. Correlation between these two quantities indicates
that the more the local topology in the HB network is defective, the larger is the
number of molecules that perform large-amplitude angular swings. The correlation
coefficient found is 0.5604± 0.0151, with p < 0.01.
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swings and defects were found to be stronger for small swings. This arises because
large swings also involve local rearrangements from defective topologies to other
defective topologies, as seen in the previous section.

Figure 4.10: Correlation between the number of molecules performing large angular
swings simultaneously and the descriptors of the local environment of the swinging
molecule. (a) We superimpose the filtered time series of the average Log(dice) in 1ps
as a function of time (red) with the filtered time series of the number of molecules in
the HB network performing large angular swings (amplitude ∆θ > 60◦) as detected
from the observation of the dipole and HH vector (blue). As before, at each moment,
we count the number of swings happening in the system within a time window of
1ps around it. (b) The number of large swings occurring concurrently in the system
(blue) is now superimposed with the filtered time series of the average Voronoi
density ρvoro (red).

As pointed out in the third chapter, fluctuations in the local environment of
a water molecule involve fluctuations which cannot be captured solely in terms
of local network topology extracted by means of the geometric criteria. Let us
now examine how the total number of angular swings occurring concurrently in the
system correlates with other descriptors of the local environment, in order to gain
better understanding of the collective nature of large jumps.

As in the previous section, we will look at the logarithm of the average distance
from ice and the average Voronoi density of those molecules that perform angular
swings. In Fig.4.10, we examine the correlation between these quantities with the
number of simultaneous large-amplitude angular swings happening in the system.
Both time series, of the Voronoi density and Log(dice), show fluctuations of the order
of tens of picoseconds and often seem to correlate well with the total number of large
swings occurring simultaneously in the system. However, calculation of the correla-
tion coefficients for the unfiltered time series, did not find large correlation with the
number of large swings, for neither the Voronoi density nor Log(dice). Instead, the
large wavelength components were correlated with a Pearson coefficient of 0.42±0.03
and 0.59± 0.02 for the Voronoi density and distance from ice, respectively.
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We will now concentrate on the large-amplitude swings that happen concurrently
in the system and examine whether they are correlated in time. For that purpose,
for the molecules that perform angular swings, we look at how correlated the parts
of the H-H and dipole vector trajectories are around the times of these swings. Our
analysis shows that an average duration of a large-amplitude angular swing is around
0.1ps (see Fig.4.3). Note that this swing duration does not include times needed for
the HB breakage and forming, as previously considered in the literature, but only
the angular motion of the water molecule. We, therefore, calculate the correlation
for parts of the trajectories of length 0.1ps and longer.

To understand better the nature of large collective angular swings, we com-
puted the Pearson coefficients between the HH and DP vector time series of dif-
ferent molecules over a certain time interval of length dT . It is worth noting that
while calculating the Pearson coefficient between two single component time series
is straightforward, the manner of computing correlation between n-component time
series (in our case the motion is 3-dimensional, therefore n=3) is somewhat ambigu-
ous. To this end, several possible prescriptions have been suggested []. In our case,
restricting ourselves to some time interval of consideration dT , for every molecule,
we select the time series of the component of the HH or dipole vector with the largest
change in magnitude during that time interval dT . In that way, we approximate the
angular motion of each water molecule by looking at the direction with the most
significant change within the time interval of consideration. We believe that the
obtained Pearson coefficient, constructed from a single component of the molecules’
HH or dipole vector time series, is a good measure of how correlated their angular
motions are.

For varying time interval widths dT , ranging from 0.1ps to 50ps, we extracted the
Pearson correlation coefficients between molecules undergoing large angular swings
greater than 60◦, as described above. We then constructed probability density esti-
mates from the Pearson correlation coefficients. On average, 50 out of 1019 waters
are found to undergo large angular fluctuations within 0.1ps. Therefore, for these
results to be statistically significant, we considered different time intervals of length
dT in the trajectory, by shifting the initial time of the window of consideration by
dT , in order to avoid overlapping statistics. Each probability density estimate was
constructed using 10,000 Pearson coefficients. Finally, the probability distributions
for molecules undergoing large angular swings were then contrasted with distribu-
tions generated by computing the Pearson correlation coefficients between all water
molecules over time interval dT in a similar manner. The results of this analysis are
shown in Fig.4.3.2.

In the top panels of Fig.4.3.2, we show that when looking at the short trajecto-
ries, the Pearson correlation coefficient for the molecules performing large-amplitude
angular swings is typically high. In particular, for the shortest time interval dT that
is just of the order of the average duration of the large-amplitude angular swings
(1̃00fs), the probability distribution of the correlation coefficient between the trajec-
tories of the molecules performing the large jumps has a peak close to 1 (red curves).
On the contrary, when we look at the same length trajectories for any other two
molecules, they are typically much less correlated (blue curves), as expected since
motion of any two water molecules in the system is not expected to be correlated.

In the bottom panels of Fig.4.3.2, as we increase the time interval dT over which
we compare the angular motion of the molecules, we observe that the trajectories
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(d,e,f) The bottom panels show the distributions of the Pearson correlation
coefficient for the parts of the trajectories of length 1.5, 50, and 100ps,

respectively. While the distributions for large-amplitude swings overlap with the
ones of all the molecules, the fat tail that we find for intermediate times becomes
less and less pronounced, and at the order of 10ps, the time series become less and

less correlated.
(d,e,f) The bottom panels show the distributions of the Pearson correlation co-

efficient for the parts of the trajectories of length 1.5, 50, and 100ps, respectively.
While the distributions for large-amplitude swings overlap with the ones of all the
molecules, the fat tail that we find for intermediate times becomes less and less pro-
nounced, and at the order of 10ps, the time series become less and less correlated.

Figure 4.11: Correlation of reorientation dynamics of the water molecules. (a,b,c)
In the top three panels, we plot the probability distribution functions of the Pearson
correlation coefficient between the H-H vector trajectories of length 0.1, 0.25, and
0.5ps. We show the difference in the correlations between the time series of the
molecules with large-amplitude swings (red) for those of all molecules that perform
angular swings (blue) within the time window of interest. While for the short time
intervals, the correlation between the large swings is typically high (peak of the
curve is close to 1), as the time interval increases, the time series become more and
more uncorrelated, and we find that the two distributions almost overlap for 0.5ps.
(d,e,f) The bottom panels show the distributions of the Pearson correlation coef-
ficient for the parts of the trajectories of length 1.5, 50, and 100ps, respectively.
While the distributions for large-amplitude swings overlap with the ones of all the
molecules, the fat tail that we find for intermediate times becomes less and less pro-
nounced, and at the order of 10ps, the time series become less and less correlated.

on average become less and less correlated, even for the waters that reorient with
the large-amplitude swing. This is also as expected, since we are now looking at
the time window much larger than the duration of the angular swing and the two
molecules that at some point in time performed angular jump simultaneously, do
not in general have correlated motion over longer times. Moreover, as we increase
the time interval dT , the two probability distributions for large swinging molecules
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and all molecules start to overlap, and the fat tail of the distribution that we observe
for intermediate times becomes less and less prominent. The results on the overall
correlation between the strongly jumping molecules reinforce the assumption that
water reorientation is not just a local phenomenon, as often studied until now, but
a result of highly correlated dynamics of dozens of water molecules.
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4.4 Conclusions

Recent advances in ultrafast infrared spectroscopy renewed the discussion about
the collective rearrangements of the hydrogen bond network and the role that the
large angle reorientations play in it [172, 171, 182]. Indeed, since the seminal work
by Laage and Hynes [49], the large jump mechanism was considered primarily a
localized event, with not much attention given to the possible collective effects in
the reorganization of water.

In this chapter, we investigated the coordinated dynamics of water molecules
and its relation to the underlying changes in the hydrogen bond network. For that
purpose, we developed an automatized protocol that identifies large and small an-
gular swings from the time evolution of the HH and dipole vector. This procedure
relies on the filtering of the time series of the HH and dipole vectors, minimizing
the effects of librations in order to identify instantaneous changes in the vectors.
The unsupervised detection of angular changes beyond fast librational modes, in-
dependent of what their effect on the underlying hydrogen bond network might be,
enabled investigation of large and small angular fluctuations occurring over varied
time scales.

We have first analyzed changes in the local environment that are associated with
small and large angular swings. In particular, we found that large-amplitude swings
change local topology of the swinging molecule, as they usually entail hydrogen
bond breaking, often involving transitions between under-coordinated defects. We
further demonstrated that large swings occur in more disordered and low density
environments. All this implies a strong possibility of an orchestrated dynamics of
water molecules through collective rearrangements of the underlying hydrogen bond
network and density fluctuations.

The collective and cooperative nature of angular motion was explored by quanti-
fying the total number of large swings happening simultaneously in the system and
by looking at how this corresponds to the overall changes in the local environment –
total number of defects, as well as average Voronoi density, and logarithm of distance
from ice. Time series of the total number of large swings, as well as the descriptors
of the local environment in the system, show a strong component in the TeraHertz
and sub TeraHertz domain, which coincides with the experimental results [173], and
is an effect of the changes in the topology of the underlying hydrogen-bond network
and density fluctuations.

Furthermore, the low frequency component of the times series of the number of
large swings was found to be correlated with the time series of the fraction of defects,
average Voronoi density and Logarithm of the distances from ice. We further found
that molecules undergoing large angular swings close by in time were more strongly
correlated in their vector components, with respect to any other pair of molecules in
the system. This reinforces a picture of large reorientations being a collective and
cooperative phenomenon.

Our simulations provide important details on the origins of collective fluctuations
in water often swept under the rug, with broad implications for water at different
thermodynamic conditions such as in supercooled water [5], as well as water near
hydrophobic and hydrophilic interfaces in chemical and biological contexts [56, 191].

Chapter 4 71



Chapter 5

Conclusions

The implications of the data-science and machine learning revolution has built sig-
nificant momentum and its importance in atomistic simulations is likely to become
an integral part of physics, chemistry and biology. Some of these approaches cir-
cumvent the need for human intervention as well as enabling the interpretation of
physical models in a parameter-free manner. While data-driven techniques have
become almost standard protocols in the development of new potentials to describe
the dynamics of complex systems in atomistic settings as well as in analyzing data
of biological systems, their application to understanding the thermodynamic and
dynamical landscape of liquids, remains unexplored. In this thesis we take an im-
portant step to fill this knowledge gap.

Specifically, we investigated the structural and dynamical properties of liquid
water using unsupervised learning techniques. One of the core challenges in under-
standing the complex landscape of water is detecting hydrogen bonding patterns on
various time and length scales. The techniques that were used to codify this are
discussed in detail in Chapter 2.

Chapter 3 re-visits using these state-of-the-art data-science techniques, the no-
tion that liquid water consists of two co-existing states. Using the TIP4P/2005
water model we encode the local environment of water molecules using local-atomic
descriptors that preserve important symmetries in the system. We show that water’s
hydrogen bond network resides in a high-dimensional space (an intrinsic dimension
greater than 5) where the fluctuations are tuned by various interactions in both the
first and second solvation shell. Extracting the free energy and clustering shows the
landscape at room temperature cannot be characterized by a two-state liquid but
instead is a broad and flat surface with small barriers on the order of thermal energy
that separate different types of environments. While high density liquid (HDL) and
low density liquid (LDL) form some of these structures, the free energy landscape is
populated with a continuum of different states. Our analysis is thus consistent with
several theoretical observations that water at room temperature is a homogeneous
liquid with transient short-lived heterogeneities. Our findings are fully consistent
with the analysis of one of the best water models of neutral water, namely the
MB-pol water model [78].

Within this free energy landscape, we also provide clues into the various col-
lective variables or order parameters that underlie the complex fluctuations of the
network. We demonstrate the combination of both chemical-intuition inspired and
machine-learning based atomic descriptors must be used in concert to characterize
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the structural motions of the network. Armored with these new insights at room
temperature, we provide a more nuanced perspective on the microscopic origin of the
density maximum of water in terms of the local environments. We further examine
the behavior of water under supercooling which has evoked intense debate in the
literature[11]. Analyzing microsecond trajectories of water near the critical point
generated recently by Sciortino and Debenedetti[37] where transitions between an
HD and LD macroscopic phase are observed. While the HDL phase in supercooled
water resembles the majority of local water environments in room temperature wa-
ter, the situation is more complicated with LDL. Here there appear to be larger
domains involving water environments that are more ice-like as well as high density-
like but lower than the density of the HDL phase.

One of the key outcomes of Chapter 3 is that it establishes a rigorous theoretical
protocol for studying fluctuations in liquids and aqueous solutions in general. Future
directions in the development of this protocol, would be to automatize the choice
of collective variables with which we understand fluctuations of the free energy
landscape. This could possibly be done by constructing measures from information
theory such as the Kullback–Leibler divergence [192] or the mutual information
[193] that inform us about which CVs out of a large set of collective variables are
most insightful about fluctuations in liquid environments. Another aspect is that
constructing free energies in high dimensions naturally suffers from larger errors
and therefore, coming up with more optimized ways to map the changes point free
energies to atomic enironments. In this regard, it would be interesting to explore
new avenues in predicting the free energies using neural networks[194].

Chapter 4 tackles the problem of the re-orientational hydrogen-bond dynamics in
liquid water within the framework of the fluctuations occurring within the free energy
landscape that was elucidated in Chapter 3. Specifically, we revisit the textbook
accepted picture of large angular jumps in water which is currently depicted as a
primarily localized event involving three active water molecules that coarse-grains
away any cooperative or collective nature of the process. We develop an unsupervised
protocol for detecting large changes in the orientational motion of water that does
not depend on any a priori criteria of hydrogen bond interactions and also lends
itself to the identification of collective orientational swings.

The nature of molecular environments during these swings were explored by
bringing in our understanding of several of the parameters that were analyzed in
Chapter 3 specifically, the local topology and density. In particular, large swings
were found to occur in more disordered and low density environments. Leveraging on
this connection, we demonstrate further, that large angular swings occur in a rather
orchestrated fashion involving approximately 5% of the total population of water
molecules. These angular swings, are manifested also in the collective nature of
the creation of defects in the network and average density of water molecules which
occur on the sub-to-ThZ timescale. Although these dynamics have been observed
in several previous spectroscopy based experiments[59, 195, 196], pinpointing the
collective origin of these modes has remained poorly understood.

If the re-orientational dynamics of water at room temperature, involves highly
cooperative phenomena, how does this effect change upon supercooling or for that
matter, near organic and in-organic interfaces? The spatial extent of the correlations
and coupling between the topology and density in these contexts would be inter-
esting to explore in the future. At the moment, all the studies to our knowledge
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have used only variations of the localized angular jump model to examine the reori-
entational dynamics[49, 191, 181]. Another aspect that warrants attention is how
the large angular swings are reflected if at all, in dielectric spectroscopy within the
sub-ThZ regime[173]. Finally, our numerical results and molecular insights should
motivate the creation of theoretical models to describe the cooperative dynamics
in hydrogen bonded liquids[197] which may play an important role in tuning chem-
ical reactions[198]. Our large angular swings are akin to the tunneling dynamic
pathways of water clusters at low temperature[199] which might be an interesting
starting point for building such models.

From water clusters to condensed phased liquid water in the bulk and near
interfaces, there have been close to 4500 papers referenced on the broader topic of
the structure, dynamics and spectroscopy of water on Martin Chaplin’s resourceful
website[200]. Despite long study, aqueous science continues to offer to the scientific
community both theoretical and experimental challenges. In this thesis, we took an
agnostic approach to investigate both the thermodynamics and dynamics of liquid
water using state-of-the-art unsupervised approaches. These techniques offer the
possibility of providing significantly new insights in to complexity of liquids in a
wide variety of interdisciplinary contexts.
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Chapter 6

Appendix A

a b

c d

Figure 6.1: The panels a)-d) show the scatter plots of Log(dice) at 3.7 Å (including
the hydrogen atom SOAP descriptors) versus the chemical-based collective variables
for qtet, d5, ρvoro and LSI.
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a b

c d

Figure 6.2: The panels a)-d) show the scatter plots of Log(dice) at 6.0 Å (includ-
ing only the oxygen atoms for the SOAP descriptor) versus collective variables for
qtet, d5, ρvoro and LSI.
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Figure 6.3: Probability density estimate of Log(dice) for non-defects, under-
coordinated defects and over-coordinated defects.
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Figure 6.4: Figure shows the difference in distribution of Log(dice) of non-defects
and defects for the three variations of the SOAP descriptors: (O), (OHave),
(O,Have,Hdif ). The descriptor including both Have and Hdif is found to have
the greatest difference between defects and non-defects.
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Figure 6.5: This Figures a-f show the probability distributions of the Voronoi
density as a function of temperature for 250K,260K,270K,280K,290K,300K respec-
tively. The full probability distribution(dashed yellow) is decomposed into the defect
Voronoi distribution(red) and non-defect distributions(blue). The latter two distri-
butions were reweighted by population so that the sum is the full Voronoi density
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Figure 6.6: Density plot of log(dice) versus ρvoro for HD and LD environments of
supercooled water.
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Chapter 7

Appendix B
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Figure 7.1: This figure shows the amplitude spectrum of the number of defects as a
function of time.
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Figure 7.2: This figure shows the autocorrelation function of time non-defects and
two types of defects 1in2out and 2in1out.

Figure 7.3: This figure shows the amplitude spectrum of the HH vector. The blue
corresponds to the unfiltered time series, while the red is that of the filtered
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Figure 7.4: Number of swings > 60◦ for mb-pol water model
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[20] Wilhelm Conrad Röntgen. “Ueber die constitution des flüssigen wassers”. In:
Annalen der Physik 281.1 (1892), pp. 91–97.

[21] Henry S Frank and Wen-Yang Wen. “Ion-solvent interaction. Structural as-
pects of ion-solvent interaction in aqueous solutions: a suggested picture of
water structure”. In: Discussions of the Faraday Society 24 (1957), pp. 133–
140.

[22] Arnold T Hagler, Harold A Scheraga, and George Nemethy. “Structure of
liquid water. Statistical thermodynamic theory”. In: The Journal of Physical
Chemistry 76.22 (1972), pp. 3229–3243.

[23] Vincent Holten et al. “Two-state thermodynamics of the ST2 model for super-
cooled water”. In: The Journal of chemical physics 140.10 (2014), p. 104502.

[24] Paul F McMillan. “Polyamorphic transformations in liquids and glasses”. In:
Journal of Materials Chemistry 14.10 (2004), pp. 1506–1512.

[25] John Anthony Pople. “The molecular orbital theory of chemical valency. V.
The structure of water and similar molecules”. In: Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 202.1070
(1950), pp. 323–336.

[26] Jichen Li and DK Ross. “Evidence for two kinds of hydrogen bond in ice”.
In: Nature 365.6444 (1993), pp. 327–329.

[27] Frank H Stillinger and Aneesur Rahman. “Molecular dynamics study of tem-
perature effects on water structure and kinetics”. In: The Journal of chemical
physics 57.3 (1972), pp. 1281–1292.

[28] Frank H Stillinger and Aneesur Rahman. “Improved simulation of liquid wa-
ter by molecular dynamics”. In: The Journal of Chemical Physics 60.4 (1974),
pp. 1545–1557.

[29] Aneesur Rahman and Frank H Stillinger. “Hydrogen-bond patterns in liquid
water”. In: Journal of the American Chemical Society 95.24 (1973), pp. 7943–
7948.

Chapter 83



[30] A Geiger, FH Stillinger, and A Rahman. “Aspects of the percolation process
for hydrogen-bond networks in water”. In: The Journal of Chemical Physics
70.9 (1979), pp. 4185–4193.

[31] Jer-Lai Kuo et al. “On the use of graph invariants for efficiently generating
hydrogen bond topologies and predicting physical properties of water clusters
and ice”. In: The Journal of Chemical Physics 114.6 (2001), pp. 2527–2540.

[32] Rahul Dandekar and Ali A Hassanali. “Hierarchical lattice models of hydrogen-
bond networks in water”. In: Physical Review E 97.6 (2018), p. 062113.

[33] Ali Khosravi et al. “Ring population statistics in an ice lattice model”. In:
The Journal of Chemical Physics 155.22 (2021), p. 224502.

[34] Riccardo Foffi, John Russo, and Francesco Sciortino. “Structural and topo-
logical changes across the liquid–liquid transition in water”. In: The Journal
of Chemical Physics 154.18 (2021), p. 184506.

[35] Peter H Poole et al. “Phase behaviour of metastable water”. In: Nature
360.6402 (1992), pp. 324–328.

[36] JLF Abascal et al. “A potential model for the study of ices and amor-
phous water: TIP4P/Ice”. In: The Journal of chemical physics 122.23 (2005),
p. 234511.

[37] Pablo G. Debenedetti, Francesco Sciortino, and Gül H. Zerze. “Second critical
point in two realistic models of water”. In: Science 369.6501 (2020), pp. 289–
292. doi: 10.1126/science.abb9796. eprint: https://www.science.org/
doi/pdf/10.1126/science.abb9796. url: https://www.science.org/
doi/abs/10.1126/science.abb9796.

[38] Pablo G Debenedetti, Francesco Sciortino, and Gül H Zerze. “Second critical
point in two realistic models of water”. In: Science 369.6501 (2020), pp. 289–
292.

[39] Frank H Stillinger. Energy landscapes, inherent structures, and condensed-
matter phenomena. Princeton University Press, 2015.

[40] KT Wikfeldt, Anders Nilsson, and Lars GM Pettersson. “Spatially inhomo-
geneous bimodal inherent structure of simulated liquid water”. In: Physical
Chemistry Chemical Physics 13.44 (2011), pp. 19918–19924.

[41] Guillaume Stirnemann and Damien Laage. Communication: On the origin of
the non-Arrhenius behavior in water reorientation dynamics. 2012.

[42] R Schulz et al. “Collective hydrogen-bond rearrangement dynamics in liquid
water”. In: The Journal of chemical physics 149.24 (2018), p. 244504.

[43] CJ Fecko et al. “Ultrafast hydrogen-bond dynamics in the infrared spec-
troscopy of water”. In: Science 301.5640 (2003), pp. 1698–1702.

[44] Nicolas Giovambattista et al. “Structural order in glassy water”. In: Physical
Review E 71.6 (2005), p. 061505.

[45] Gustavo Adrian Appignanesi, JA Rodriguez Fris, and Francesco Sciortino.
“Evidence of a two-state picture for supercooled water and its connections
with glassy dynamics”. In: The European Physical Journal E 29.3 (2009),
pp. 305–310.

84 Chapter



[46] Francesco Sciortino and SL Fornili. “Hydrogen bond cooperativity in simu-
lated water: Time dependence analysis of pair interactions”. In: The Journal
of chemical physics 90.5 (1989), pp. 2786–2792.

[47] Hajime Tanaka et al. “Revealing key structural features hidden in liquids and
glasses”. In: Nature Reviews Physics 1.5 (2019), pp. 333–348.

[48] Biswajit Santra et al. “Local structure analysis in ab initio liquid water”. In:
Molecular Physics 113.17-18 (2015), pp. 2829–2841.

[49] Damien Laage and James T. Hynes. “On the Molecular Mechanism of Wa-
ter Reorientation”. In: The Journal of Physical Chemistry B 112.45 (2008).
PMID: 18942871, pp. 14230–14242. doi: 10.1021/jp805217u. eprint: https:
//doi.org/10.1021/jp805217u. url: https://doi.org/10.1021/
jp805217u.

[50] Yasunori Tominaga, Aiko Fujiwara, and Yuko Amo. “Dynamical structure of
water by Raman spectroscopy”. In: Fluid Phase Equilibria 144.1-2 (1998),
pp. 323–330.

[51] Nikita Penkov et al. “Terahertz spectroscopy applied for investigation of
water structure”. In: The Journal of Physical Chemistry B 119.39 (2015),
pp. 12664–12670.

[52] Iwao Ohmine and Hideki Tanaka. “Fluctuation, relaxations, and hydration in
liquid water. Hydrogen-bond rearrangement dynamics”. In: Chemical reviews
93.7 (1993), pp. 2545–2566.

[53] P Debye. “Polar molecules, the chemical catalog company”. In: Inc., New
York (1929), pp. 77–108.

[54] Minbiao Ji, Michael Odelius, and KJ Gaffney. “Large angular jump mecha-
nism observed for hydrogen bond exchange in aqueous perchlorate solution”.
In: Science 328.5981 (2010), pp. 1003–1005.

[55] Damien Laage et al. “Water jump reorientation: from theoretical prediction
to experimental observation”. In: Accounts of chemical research 45.1 (2012),
pp. 53–62.

[56] Damien Laage, Guillaume Stirnemann, and James T Hynes. “Why water
reorientation slows without iceberg formation around hydrophobic solutes”.
In: The Journal of Physical Chemistry B 113.8 (2009), pp. 2428–2435.

[57] Francesco Paesani, Satoru Iuchi, and Gregory A Voth. “Quantum effects in
liquid water from an ab initio-based polarizable force field”. In: The Journal
of chemical physics 127.7 (2007), p. 074506.

[58] Gaia Camisasca et al. “Translational and rotational dynamics of high and
low density TIP4P/2005 water”. In: The Journal of chemical physics 150.22
(2019), p. 224507.

[59] Christopher J Fecko et al. “Local hydrogen bonding dynamics and collective
reorganization in water: Ultrafast infrared spectroscopy of HOD/D 2 O”. In:
The Journal of chemical physics 122.5 (2005), p. 054506.

[60] Alex Rodriguez and Alessandro Laio. “Clustering by fast search and find of
density peaks”. In: science 344.6191 (2014), pp. 1492–1496.

Chapter 85



[61] Alex Rodriguez et al. “Computing the free energy without collective vari-
ables”. In: Journal of chemical theory and computation 14.3 (2018), pp. 1206–
1215.

[62] Elena Facco et al. “Estimating the intrinsic dimension of datasets by a min-
imal neighborhood information”. In: Scientific reports 7.1 (2017), pp. 1–8.

[63] Paul Adrien Maurice Dirac. The principles of quantum mechanics. 27. Oxford
university press, 1981.

[64] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction
to advanced electronic structure theory. Courier Corporation, 2012.

[65] Max Born and Robert Oppenheimer. “Zur quantentheorie der molekeln”. In:
Annalen der physik 389.20 (1927), pp. 457–484.

[66] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids.
Oxford university press, 2017.

[67] J Andrew McCammon, Bruce R Gelin, and Martin Karplus. “Dynamics of
folded proteins”. In: Nature 267.5612 (1977), pp. 585–590.

[68] Stefano Piana, Kresten Lindorff-Larsen, and David E Shaw. “Protein folding
kinetics and thermodynamics from atomistic simulation”. In: Proceedings of
the National Academy of Sciences 109.44 (2012), pp. 17845–17850.

[69] Aneesur Rahman. “Correlations in the motion of atoms in liquid argon”. In:
Physical review 136.2A (1964), A405.

[70] Michele Parrinello and Aneesur Rahman. “Crystal structure and pair poten-
tials: A molecular-dynamics study”. In: Physical review letters 45.14 (1980),
p. 1196.

[71] William L Jorgensen et al. “Comparison of simple potential functions for
simulating liquid water”. In: The Journal of chemical physics 79.2 (1983),
pp. 926–935.

[72] Herman JC Berendsen et al. “Interaction models for water in relation to
protein hydration”. In: Intermolecular forces. Springer, 1981, pp. 331–342.

[73] Jose LF Abascal and Carlos Vega. “A general purpose model for the con-
densed phases of water: TIP4P/2005”. In: The Journal of chemical physics
123.23 (2005), p. 234505.

[74] HJC Berendsen, JR Grigera, and TP Straatsma. “The missing term in ef-
fective pair potentials”. In: Journal of Physical Chemistry 91.24 (1987),
pp. 6269–6271.

[75] Hans W Horn et al. “Development of an improved four-site water model for
biomolecular simulations: TIP4P-Ew”. In: The Journal of chemical physics
120.20 (2004), pp. 9665–9678.

[76] Stephen Harrington et al. “Liquid-liquid phase transition: Evidence from sim-
ulations”. In: Physical Review Letters 78.12 (1997), p. 2409.

[77] Sandeep K Reddy et al. “On the accuracy of the MB-pol many-body po-
tential for water: Interaction energies, vibrational frequencies, and classical
thermodynamic and dynamical properties from clusters to liquid water and
ice”. In: The Journal of chemical physics 145.19 (2016), p. 194504.

86 Chapter



[78] Sandeep K. Reddy et al. “On the accuracy of the MB-pol many-body po-
tential for water: Interaction energies, vibrational frequencies, and classical
thermodynamic and dynamical properties from clusters to liquid water and
ice”. In: The Journal of Chemical Physics 145.19 (2016), p. 194504. doi:
10.1063/1.4967719. eprint: https://doi.org/10.1063/1.4967719. url:
https://doi.org/10.1063/1.4967719.

[79] Harry Partridge and David W Schwenke. “The determination of an accurate
isotope dependent potential energy surface for water from extensive ab initio
calculations and experimental data”. In: The Journal of Chemical Physics
106.11 (1997), pp. 4618–4639.

[80] Rodney J Bartlett. “Many-body perturbation theory and coupled cluster
theory for electron correlation in molecules”. In: Annual Review of Physical
Chemistry 32.1 (1981), pp. 359–401.

[81] Maria Carolina Muniz et al. “Vapor–liquid equilibrium of water with the
MB-pol many-body potential”. In: The Journal of Chemical Physics 154.21
(2021), p. 211103.

[82] Loup Verlet. “Computer” experiments” on classical fluids. I. Thermodynami-
cal properties of Lennard-Jones molecules”. In: Physical review 159.1 (1967),
p. 98.

[83] William C Swope et al. “A computer simulation method for the calculation
of equilibrium constants for the formation of physical clusters of molecules:
Application to small water clusters”. In: The Journal of chemical physics 76.1
(1982), pp. 637–649.

[84] Charles K Birdsall and A Bruce Langdon. Plasma physics via computer sim-
ulation. CRC press, 2018.

[85] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. “Nu-
merical integration of the cartesian equations of motion of a system with
constraints: molecular dynamics of n-alkanes”. In: Journal of computational
physics 23.3 (1977), pp. 327–341.

[86] Hans C Andersen. “Rattle: A “velocity” version of the shake algorithm for
molecular dynamics calculations”. In: Journal of computational Physics 52.1
(1983), pp. 24–34.

[87] Hans C Andersen. “Molecular dynamics simulations at constant pressure
and/or temperature”. In: The Journal of chemical physics 72.4 (1980), pp. 2384–
2393.
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