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Chapter 1

Introduction

Molecular Dynamics (MD) and Monte Carlo (MC) simulations are popular techniques in the study

of classical molecular systems. The microscopic detail they provide can elucidate biologically and

chemically relevant mechanisms which cannot be directly studied experimentally. Due the rapid

advances in computational hardware and software, recent years have seen a boost in the amount of

data generated in these kind of simulations, making of molecular simulations a prototypical example

of big data problem[35]. This calls for the development of approaches to treat, analyse and represent

such data.

The data produced in molecular simulations are typically very long trajectories of highly dimen-

sional vectors with the coordinates of hundred thousands atoms. One of the key task in order to

be able to treat them is then the identification of a lower-dimensional, but still fully informative,

representation: the so-called problem of Dimensionality Reduction (DR). Generally, a first step

in this direction is made by choosing a space of descriptors; for example, in many applications

in the analysis of molecular simulations it can be safe to neglect all the coordinates of the light

atoms and of the solvent molecules. However, this step, called featurisation, typically brings to a

description which is still relatively high-dimensional description. Fortunately, a fact comes to help:

due to the specific form of the interactions between the atoms, configuration space is, pictorially

speaking, almost empty. The data are typically localised, at least approximately, on a manifold,

called intrinsic data manifold, of dimension much smaller than the number of descriptors, called

Intrinsic Dimension (ID). Optimal DR should then allow to restrict the analysis to nothing more

and nothing less than the intrinsic manifold; if more information is retained, this has consequence

on the computational cost and on the efficacy of the analysis methods. If a further projection is

done, some information is typically lost.

The intrinsic manifold can in principle parametrised by a set of generalised coordinates express-

ing all the relevant degrees of freedom of the system. In the field of molecular simulations these
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coordinates are referred to as a Collective Variable (CV). The Probability Density Function (PDF)

over the full coordinate space can be marginalised over the CVs. If the CVs parametrise the intrinsic

manifold, this marginalization does not imply any significant information loss. In general, even if

the CVs describe the manifold only approximately, by taking the negative logarithm of this reduced

PDF one obtains the Free Energy Surface (FES) of the collective variables (the reduced PDF and

the FES are defined mathematically in the next chapter). On this hypersurface, if the CVs are

appropriately chosen, the metastable states of the system appear as local minima separated by

barriers. In order for the system to dynamically cross these barriers, a time which is exponentially

increasing in the barrier height is required. Such transitions are in fact a typical example of rare

event process[150]. The FES is typically highly rugged and complex[190], so that many of such

barriers and wells are encountered in a typical reaction or biomolecular process. Thus, the FES

is a key quantity to understand and characterise the properties of molecular systems[152]. It can

provide information on the occupation of the states of the systems but also e.g. help measuring

thermodynamic observables, elucidate reaction pathways and chemical mechanisms, serve as input

for clustering and other pattern recognition algorithms. The concept of FES is useful even outside

the realm of molecular simulations, wherever knowing the distribution of the data is required.

The characterisation of the data manifold in its full complexity is a very challenging theoretical

and computational task The main difficulty is that the ID is typically high, of order 10 or more,

and the so-called Curse Of Dimensionality (COD) arises[21, 73, 140]: data in high dimensions have

a tendency to become all far from one another and most points happen to lie on the boundary

of the data manifold[14, 203]. In these conditions, many analysis and learning methods fail to

provide meaningful results. Yet, restricting to fewer dimension for manipulation or visualisation

purposes can wash out relevant information and result in a misleading description. This poses to

computational physicists a dilemma which seems to be difficult to solve in practical applications.

CV selection[70] is considered a key open problem in molecular simulations. When done manu-

ally, this task requires a detailed insight on the system. Therefore many machine learning techniques

have emerged to tackle the problem of unsupervised dimensional reduction and CV identification.

The simplest of them are linear projection methods[104, 105, 146, 188, 202] but these fail when the

data manifold is not a hyperplane. However, the data manifolds are known to be highly nonlinear,

twisted and topologically complex[17]. Many non-linear projection methods have been developed

to tackle tbhis problem[43, 44, 169, 186], but also this methods may fail when the topology is not

trivial: if a data manifold is, say, two-dimensional but topologically isomorphic to a thorus, it will

be impossible mapping it to a two-dimensional description with a Cartesian metric. Some methods

manage to cope with complex topologies[32, 111], but typically pay a price in terms of simplicity.

Many other techniques for CV selection focus only on the description of the transition process, which
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is almost always well-described by a single coordinate, renouncing to provide a full description of

the data manifold.

In order to get around this issue, in our group we developed an approach that is able to compute

the free energy surface directly in the space of the descriptors without explicit dimensional reduction,

namely without defining explicitly the CVs. This method, called PAk[157], is based on the k-Nearest

Neighbour (kNN) density estimator, which in order to estimate local PDF on a point of the sample

fixes a number of neighbours k and divides it by N and by the volume of the hypersphere centered

on such point containing k − 1 other neighbour. By estimating the ID, assuming local flatness of

the data manifold and providing an adaptive procedure for the selection of k, PAk is able to greatly

alleviate the COD without the need of defining any CV explicitly. Thanks to its good performance

as a multidimensional free energy estimator it could be used in the analysis of a molecular system

of ID up to 28. The free energy is then used as as input for a clustering analysis which allows to

successfully identify the metastable states.

As we will see, the PAk approach, even if very powerful, is affected by important limitations.

These limitations have been the object of our theoretical investigation.

In Chapter 2 we briefly introduce the concepts of dimensional reduction, the probability den-

sity function and the free energy. We then provide an overview of the most common nonparametric

density estimation methods, namely the histograms, the kernel density estimators and the kNN esti-

mator. We focus on nonparametric methods since they are very flexible, since they do not requiring

any specific assumption on the functional form of the estimated quantity. The only parameter they

all, in some form, require is the selection of a length scale, called also bandwidth, which determines

how locally they operate. The main drawbacks of these methods are connected to the tuning of this

bandwidth[177]. On one hand, their locality requires a high statistic for them to be accurate. To

overcome the curse of dimensionality one is forced to select a larger bandwidth, to reduce noise in

the estimates. On the other hand, the selection of a large bandwidth would cause to lose relevant

detail and thus bias the results. In the literature on density estimation the search of a balance

between these two needs is referred to the bias-variance tradeoff. One way to address this problem

is to adapt the selected bandwidth point by point based on the local sample properties: make it

smaller in regions where the statistic is high, larger where it is low. The kNN estimator is indeed

a first step in the direction of adaptivity. In the following chapters we show how the adaptive

neighbourhood selection proper of kNN can be improved to obtain estimators which perform even

better in high-dimensional settings.

In Chapter 3 we present PAk, the multidimensional free energy estimator recently developed in
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our group[157]. We focus on the description and the discussion of the key ingredients which makes

it more suitable than the standard kNN approach to estimate the free energy in high dimension.

The first one is that the configuration space volumes which enter the definition of the estimator are

measured in the low-dimensional intrinsic manifold rather than in the full embedding space. This

trick prevents the positional information of the data from being diluted on irrelevant directions

transverse to the data manifold. Assuming that the data manifold is Riemannian, namely locally

flat, the data manifold is locally approximated by its tangent hyperplane and distances between

neighbours, the only distances used in the estimator, can be measured in this low-dimensional

Euclidean space. This allows to operate on the intrinsic manifold without parametrising it explicitly.

The only prerequisite is estimating the local intrinsic dimension[68], as this is required to measure

the volumes in the embedding manifold.

The second key ingredient of PAk is the definition of an optimal criterion for the neighbourhood

selection for all points in the sample. Central to this purpose is the formulation of kNN in terms of

a maximum-likelihood estimator. This point-adaptive neighbourhood selection makes the already-

adaptive kNN doubly adaptive, thus much more robust to the curse of dimensionality.

The third key ingredient is introducing a variational slope parameter, which allows describing

linear variations of the free energy within the neighborhood used to compute it. We will see that

this is equivalent to taking the limit of a bandwidth going to zero. We call this property punctuality

of PAk. This fact is exploited in Chapter 5 to define an efficient reweighting scheme for statically

biased simulations.

In this chapter we also survey some of the main drawbacks which affect PAk. Firstly, despite

proven robust to the course of dimensionality, its nonparametric nature dooms nonetheless its per-

formance to drop in very high dimensions. Secondly, PAk’s likelihood model introduces spurious

correlations among estimates at neighbouring points. Thirdly, PAk provides free energy estimates

only in correspondence of datapoints, but a generalisation of the methods for points lying outside

this finite set would be required in many applications. In this chapter we also propose a scheme

to efficiently compute interpolated free energies in generic points of configuration space which is

coherent with the PAk approach: the PAk interpolator.

Chapter 4 presents an application of PAk, in its original formulation, to a problem of biochemical

relevance, the study of the SARS-CoV-2 Main Protease. By analysing a very long molecular trajec-

tory of the system we characterise its metastable states and propose potential druggable pockets.

We analyse it using two different feature spaces: the space defined by all the ψ backbone dihedrals

of the protease, and the space defined by the contacts between pairs of residues which break or

form during the dynamics. The two metrics are both sensitive to local and global conformational

Chapter 1. Introduction 4



changes in the peptide, but capture different details: the ψ coordinates keep track of the changes

in the protein backbone; the mobile contacts metrics, instead, also keep track of the side-chains re-

arrangements, while neglecting fluctuations around the completely formed or completely unformed

contacts. Both feature spaces contain O(102) coordinates, demonstrating the capability of PAk to

provide free energy estimates in high dimensional spaces.

We are able to identify 18 metastable states of the system, which we characterise by considering

the accessibility of the active site. Based on this analysis we propose some relevant contact patterns

and three possible binding sites which could be targeted to achieve allosteric inhibition.

We show that all three proposed target sites are comprised in pockets with high druggability

score according to the software PockDrug. By looking at sequences of proteins in the same Pfam

family we find that all the residues involved in the proposed target sites are conserved. We consider

it a hint that our proposed targets and the consequent allosteric mechanisms might be weakly ex-

posed to mutations. The insight on this molecule’s conformational changes provided by our analysis

as well as the transferability of the same approach to other systems might prove useful for the design

of farmaceutical inhibitors.

Chapter 5 introduces the first theoretical development presented in this Thesis, a procedure to

estimate the free energy in high-dimensional spaces starting from a sample of points generated in

a biased simulation. This protocol consists of computing the biased free energy at all points in

the dataset using PAk and then reweighting this quantity point by point simply subtracting the

numerical value of the applied bias in each point.

The simple additive form of this reweighting procedure is a nontrivial result. First of all, it

crucially relies on the punctuality of PAk. One one hand this estimator optimally selects for every

point in the dataset the size of the neighbourhood considered in the free energy estimate; on the

other hand, the likelihood maximisation peculiar of PAk extrapolates the value of the free energy

in the limit of neighbourhood size (or bandwidth) going to zero, which makes the estimate more

punctual than in other kernel-based methods.

Secondly, since any free energy estimate involves integration over degrees of freedom which are

not necessarily those which are biased, we describe the condition under which it is possible to

reweight in an Umbrella-Sampling fashion the biased free energy over some coordinates σ(x) when

the applied bias potential is a function of some possibly different CVs s(x). In short, this is possible

if all the information necessary to define the biasing CVs s is encoded in the coordinates σ over

which the free energy is computed. In other words, if the intrinsic manifold the {si}i lie on can be

mapped to a submanifold of the manifold the {σi}i lie on.

We test our unbiasing approach on several model free energy surfaces and on realistic systems
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for which the ground truth free energies are estimated from an unbiased simulation. The results

show that in all tested cases bPAk is an unbiased estimator of the ground truth values. We also

discuss the applicability of this punctual form of the reweighting to other finite-size kernel methods

in statically biased simulations.

In Chapter 6 we discuss what we consider the most important theoretical development presented in

this thesis, the Binless Multidimensional Thermodynamic Integration (BMTI) free energy estimator.

Its development was motivated by the fact that PAk, despite unbiased and robust, produces noisy

estimates even in conditions of low dimensionality and high sample density, where other methods’

fluctuations typically reduce. Thus, BMTI was conceived with the purpose of providing similar free

energy values at neighbouring points, as it should be for continuous and smooth functions.

In the first part of the chapter we discuss the main ingredient of the approach: the accurate

and robust estimates ˆδF of the free energy differences between neighbouring points and of their

error. These estimates are based on a nonparametric estimator of the average free energy gradient

on optimally-sized neighbourhoods. The size of these neighbourhoods is selected using the same

procedure as the one employed in PAk, inheriting, therefore its double adaptive formulation. Next,

we show that the gradients estimated in this manner can be used to estimate the free energy

differences ˆδF s between a data points and all its k neighbours. We prove that the ˆδF s are normally

distributed around the true values and spread with the estimated standard deviation. Therefore we

considered them as marginal random variables of a multivariate normal distribution whose diagonal

covariance matrix has the estimated variances of the ˆδF s as entries. We interpret such distribution

as a likelihood for the error-affected observations ˆδF as a function of the free energies F seen

as parameters. The corresponding Maximum Likelihood Estimator (MLE) produces the BMTI

estimates F̂ .

The motivation of the name defining the acronym BMTI shall now be clearer: BMTI estimator

does not specify any requirements for the position of its inputs, there is no grid and no binning to

populate, so it is binless. Thanks to the point-adaptiveness, mutuated from PAk, of its constituent

blocks ˆδF it allows mitigating the COD, making it suitable for high-dimensional applications, hence

multidimensional. Finally, in order to reconstruct the FES it proceeds in a TI-like fashion by

considering all the possible paths connecting points in the neighbours graph and computes all the

relative free energy differences along them simultaneously, by solving a linear system, using the

estimates ˆδF as increment and their estimated errors as weights.

BMTI estimates have proven to outperform other nonparametric methods when tested on many

model systems. We also define an observable that measures the estimators’ roughness. BMTIis

has the smallest roughness of all other nonparametric estimators we tested while PAk, as expected,
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is the most rough. There was only one case in which BMTI failed: when applied to a sample in

which the saddle points connecting the thee wells of the FES had not been sufficiently sampled.

Since the likelihood model is defined only in terms of free energy differences, the connectivity of

its neighbours graph is a strict requirement in order to produce meaningful results. The second

problem which affects BMTI is the inefficiency of its error estimator, on which much research effort

is being devoted.
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Chapter 2

Theoretical Background

The typical output of molecular simulations are very long trajectories, namely sets N of time-

ordered configurations of the system. In its rough form each configuration consists of the collection

of all the Cartesian coordinates of the atoms and is, therefore, generally very high-dimensional

even for relatively simple systems. For example, a configuration of a peptide includes not only the

coordinates of all the atoms of the peptide itself, but also of all the atoms of the solvent in which

it is immersed, for a total of O(104) real numbers even in the simplest cases. We refer to the space

of these vectors as the raw coordinate space, and we denote by Dr its dimension. Thus, our raw

dataset is the collection Xr := {xr,i}i of the N configurations xr,i.

In typical applications, not all of these vector components are interesting and their great num-

ber would make a direct analysis impossible. As a first step, a set of D ≪ Dr features is therefore

typically selected. These features are typically combinations or simple projection of the raw co-

ordinates. This procedure, called featurisation[80], requires of course some insight on the system

(although recently much effort has been put in automatic feature selection[135, 195]), and is typ-

ically done by keeping enough features so that no relevant information is lost. For example, in

order to capture conformational changes of large proteins, one can keep track of the positions of

all the internal dihedral angles of the protein, assuming that the solvent degrees of freedom do not

play a significant role, and that the internal bonds and angles are approximately fixed during the

dynamics. These selected features live in what we will call the coordinate space or the configuration

space. The representation of the dataset in this space is X := {xi}i.
In all the following we will only assume that an appropriate metric can be defined on this space

(not necessarily Euclidian). Moreover, we will assume that our data are a sample obtained by a

MD or MC simulation in the canonical ensemble[190]. We make this choice since we are interested

in the application of our methods in the field of molecular simulations. Again, however, this is done

without loss of generality, since the methods hereby discussed can straightforwardly be applied, and
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2.1. Dimensional reduction

indeed are[61, 81, 204] to many other fields where understanding and representing the distribution

of high dimensional data is required.

For exposition simplicity, we assume that the configurations of our system are distributed with

the canonical probability density:

ρ(x) :=
e−βU(x)

Z , (2.1)

where U(x) is the potential energy, β := (kBT )
−1, with kB Boltzmann constant and T the temper-

ature of the system, is the so-called inverse thermodynamic temperature or coldness[127, 130] and

Z is the configurational partition function Z :=
R
e−βU(x) dx. The key thermodynamic potential in

this case is the Helmholtz free energy of the system:

A := −β−1 lnZ . (2.2)

2.1 Dimensional reduction

The chemical and physical interaction between the degrees of freedom of the system restrain the

dynamics only to a part of configuration space. Indeed, configurations are typically concentrated

in regions of configuration space having a dimension d much smaller than that of the full config-

uration space. Outside these regions, the probability density decays rapidly[151]. These regions

of space are referred to as the intrinsic data manifold and their local dimensionality is commonly

called the intrinsic dimension[74]. To distinguish them, we will call the dimension D of the full

space the embedding dimension. Importantly, the the localisation of data in manifolds of relatively

small dimension is not a peculiarity of data sampled in molecular simulations, but are a general

property observed in a huge variety of datasets[17]. For example, it has been observed that the

computational search speed of nearest-neighbours in generic dataset scales with the ID rather than

with the embedding D[20, 110].

The ID is a key player in all the approaches we used and developed. It can be estimated following

various algorithms[27, 28], which, importantly, need to be able to cope with manifolds which are,

in general, curved, twisted and topologically complex[17].

The ID quantifies the number of Degrees Of Fredom (DOFs) that are necessary to provide

a complete description of the system without loosing any relevant information. It is therefore a

crucial quantity, since the manipulation, analysis and representation of very high dimensional data is

practically unfeasible and, beyond featurisation, an additional step of explicit dimensional reduction

is generally required in practical applications. In principle, of course, a proper dimensional reduction
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2.1. Dimensional reduction

would restrict the full space to a set of d variables. However, these d coordinates are typically

nonlinear functions of the coordinates s(x). In the field of molecular simulations these coordinates

are referred to as collective variables (CVs). We remark that if a manifold of intrinsic dimension d

is topologically complex it is very difficult (if not impossible) finding an explicit expression for the

d CVs that would describe it.

2.1.1 The free energy surface

When properly defined, a set of CVs is capable to capture all the relevant detail of the process under

study without significant information loss. The reduced probability density is formally defined as

the marginal of ρ(x) with respect to all the CVs:

ρ(s̃) =

Z
ρ(x) δ(s̃− s(x)) dx (2.3)

We can consider the restriction of configuration space Ωs̃ where the s(x) = s̃ as something in between

a microstate and a macrostate of the canonical ensemble, also called a mesostate[89, 147, 171]: if

the choice of CVs performs a dimensional reduction then the set of points identified by the CVs

taking a specific vector of values s̃ is extended rather than infinitesimal and cannot be regarded

as a microstate; on the other hand, it is not guaranteed that a small multidimensional interval

of the CVs [s̃ + δs] identifies a set of points with the dignity of macrostate, namely having well-

defined macroscopic properties and a large thermalisation times outside the interval w.r.t. to the

thermalisation time within it. As such, it can make formally sense to consider the partial free energy

of a mesostate identified by a CV:

As̃ =− β−1 lnZs̃ := −β−1 ln

Z

Ωs̃

e−βU(x) dx = −β−1 ln

Z

Ωs̃

Z ρ(x) dx = −β−1 ln

Z

Ωs̃

ρ(x)dx + fc

(2.4)

where Zs̃ is the configurational partition function restricted to the microstate Ωs̃ and fc = −β−1 lnZ
is an additive constant equal for all values of the CVs. Notice that, by definition of the CVs s(x),

all the Ωs̃ are disjoint sets and so the partial free energies As̃ add up to the total Helmholtz free

energy: A =
P

s̃As̃. If the CVs identify slow DOFs of the system, a small interval of CV values can

even happen to identify some macrostate of the system, in which case it can even make sense to

distinguish internal energy and entropy contributions to the partial free energy[78, 126]. Anyhow,

no matter this nomenclature, in the molecular simulations community the following quantity is

generally considered:
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F (s̃) := −β−1 ln ρ(s̃) = −β−1 ln

Z
ρ(x) δ(s̃− s(x)) dx = −β−1 ln

Z

Ωs̃

ρ(x) dx , (2.5)

which differs from the actual free energy As̃ only by the additive constant fc. The collection of

F (s̃) for all the values of s the CVs describe a hypersurface, which is referred to as the free energy

surface (FES) of the CVs.

The reduced probability density in equation (2.3) and the free energy surface, or simply free

energy, in equation (2.4) will be the focus of our research throughout this thesis work. We will

talk about estimating ρ(x) and F (x) where x represents any choice of coordinates as long as a

metric is defined on them. In fact, all considered estimators are formulated in a completely general,

distance-based way. Unless differently specified, in this work we will consider free energies in units

of kBT .

2.2 Multidimensional density estimation: nonparametric methods

As pointed out by Silverman[178], the need for nonparametric methods was first proposed in the

famous pioneering work by Fix and Hodges[71] in the context of discriminatory analysis and has

since then become very popular in many fields of machine learning[17, 74, 80, 170] and, notably, of

density estimation[101, 170, 177]. Parametric methods assume a functional form for the probability

distribution and focus on the optimisation of few parameters in order to best fit the observa-

tions. They are employed for a wide range of applications, ranging from classification to density

estimation[17, 21, 58, 90, 114, 167]. However, while making it arguably less costly to return a

smooth and well-behaved function, especially with few data, parametric methods require a much

better knowledge of the underlying distribution. A wrongly specified model, i.e. one which does

not capture some crucial features of the distribution, introduces in fact a bias that cannot be healed

even in the case of large samples[21, 170]. There are many cases in which a simple parametric model

which generalises the system’s density is very difficult, if not impossible, to provide. Molecular sim-

ulations make no exception, since even the smallest and simplest molecules display metastability

(multimodality in terms of p.d.f.) and often complex and rugged free energy landscapes.

In order to study all such systems, nonparametric methods are better suited. Nonparametric

methods, in fact, make fewer and less rigid assumptions on the distribution and are rather fully

driven by the data sample[177]. Such assumptions are typically some local properties[74]. Unlike

what their name suggests, these methods do have indeed at least one parameter, which typically

controls the level of smoothness[144]: we will refer to this as smoothing parameter or bandwidth or

scale parameter, since it controls the scale at which the influence of a single datapoint decays. In
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his book[170], Scott discusses various possible ways to distinguish parametric from nonparametric

density estimators. An estimator is commonly called nonparametric when it is consistent for a wide

range of true density functions, a definition which does not mark a sharply clear boundary between

the two classes. However, this criterion can be rephrased quantitatively in terms of locality[187]:

an estimator f̂ is called nonparametric if, given two different datapoints xi and xj , the influence of

xj on f̂(xi) vanishes asymptotically, i.e. in the limit of infinite statistics.

Nonparametric approaches, thanks to their characteristics, are ideal for the explorative study of

some dataset distribution features, such the intrinsic dimensionality, topology and shape of the data

manifold (the support of the distribution), monomodality, multimodality or glassiness, the presence

of entalpic or entropic barriers[179], data structures like clusters and so on and so forth. However,

aside from preliminary investigation of features, nonparametric methods are well-established also

as self-standing learning methods. Thanks to their flexibility and the possibility to use them even

with little or no a priori assumptions, nonparametric methods are are broadly adopted in the field of

density estimation[80, 101]. Such flexibility comes at a cost of course: nonparametric methods are

typically affected by a higher noise (variance) and potentially also bias, a drawback which can be

exacerbated in high dimensions[74]. Since their prediction is based on local properties of the sample,

all the interesting regions of the density domain must be populated in order to produce meaningful

results. As we know, however, the task of sampling low-density regions is exponentially harder

with increased dimensionality. A possible approach would be looking at data at a coarser scale, i.e.

increasing the smoothing parameter. This however is a risky procedure, since it makes the model

less informative and more parametric, although not supported by a model, which can introduce

a severe bias. In order to exploit the advantages of nonparametric methods without incurring

misleading results, a balance between sensitivity and statistics and resolution must be found: it is

the so-called bias-variance trade-off, which is common to all nonparametric methods[80]. In the rest

of the chapter we briefly review some of the main nonparametric density estimation methods. In

particular we focus on the so-called counting methods[126], excluding from our treatment orthogonal

series estimators[31], since they are often unstable and non-consistent and their application involve

a high degree of technicalities[101]. In the following chapters we will show how many of the most

common drawbacks affecting nonparametric estimators can be tackled efficiently in order to obtain

good performance even in high dimensionality.

2.2.1 Histogram methods

The most basic, most common and oldest density estimation method is the histogram[177]. This

approach consists of dividing the domain into non-overlapping regions called bins and counting the
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number of datapoints falling within each of these bins. If all the bins have the same size, then the

shape of a suitably parametrised histogram is appoximately the same as that of the PDF. Thus,

other than estimating the PDF, the histogram is a simple and powerful tool for representing and

visualising the distribution and features of the data.

We shall present this method in its simplest one-dimensional version, in which the bins are seg-

ments and the smoothing parameter is a scalar h called binwidth. All definitions and nomenclature

are easily generalisable to the multidimensional case (in the case of D dimensions, bins are not

segments but D-dimensional volumes, and the binwidth can be expressed a D-dimensional vector if

the grid spacing is different in different directions).

Let us assume N data points in one dimension {xi}i lie on a segment [a, b], which will be the

support of our histogram. This segment is divided into M bins (T1, . . . , TM ) of width h, where

T1 = [a, a+ h), T2 = [a+ h, a+2h) and so on. The number of points falling in each bin constitutes

the counts histogram {n̂m}Mm=1. Defining IS the indicator function of a segment S, such that

IS(x) = 1 if x ∈ S and 0 otherwise, the number of counts in bin Tm is n̂m =
PN

i=1 ITm(xi). By

dividing the counts by the number of total observed points, one obtains the so-called frequency

histogram {p̂m}m, with:

p̂m :=
n̂m

N
. (2.6)

If the N datapoints are Independent and Identically Distributed (IID), then the bin counts are

binomial random variables: n̂m ∼ B(N, pm) such that

⟨p̂m⟩ = pm :=

Z

Tm

ρ(x) dx and Var[n̂m] = N pm (1− pm) , (2.7)

i.e. p̂m is an estimator of the true probability to sample a datapoint in that bin (whose consistency

can be shown)[170]. Looking at equation 2.7, one can approximate the PDF at the centre cm of bin

Tm assuming ρ(cm) ≈ pm/h. In fact, what is generally done is to extend this approximations to all

the points in the bin (making a slightly greater systematic error than in the case of bin centres), so

that the density of a datapoint xm falling in bin Tm is approximated as:

ρ(xm) ≈ pm h , ∀ xm ∈ Tm (2.8)

and thus, following from equations (2.6) and (2.7), it is estimated as:

ρ̂(xm) :=
p̂m
h

=
n̂m

N h
, (2.9)

while the uncertainty on such estimator can be expressed as the standard deviation:
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σ[ρ̂(xm)] =

p
Var[n̂m]

N h
≈ ρ̂(xm)√

n̂m
. (2.10)

This setting corresponds to approximating the whole PDF as a step-wise function[101], called the

frequency density histogram or area-normalised histogram, which can be shown to be a consistent

estimator of the PDF[170]. Expression (2.9) can be rewritten using the indicator function of the

bins:

ρ̂(x) :=
X

m

n̂m

N h
ITm(x) . (2.11)

Despite being consistent and at a the same time a very simple and easily implemented tool, the

histogram is far from being the ideal choice in terms of both variance and bias. In fact, histograms

are very sensitive to the choice of the smoothing parameter but also of the position of the bin

centres. One can see from equation (2.10) that the variance can be reduced by increasing the

binwidth, which has the effect of increasing the bin counts. However, increasing the smoothing

parameter stretches the validity of approximation (2.8), introducing a bias which is greatest on the

borders of the bins and obviously increases with the bin size. Imposing a step-wise behaviour to

the estimator of a typically smooth function introduces artificial discontinuities in the PDF, makes

it difficult to estimate derivatives and disfavours the intuitive contour plot visualisation. Moreover,

for the same reason, the shape of a histogram can vary significantly with small adjustments in the

domain origin[177]; the problem is intensified in the multidimensional case, where the degrees of

freedom to adjust the grid orientation make the representation even more parametrisation-sensitive.

Finally, another source of bias is the fact that histogram have finite support, namely they are non-

zero only in regions where data have been sampled; while this has convergence advantages when

the PDF is integrated, this tails behaviour might be pathological.

Besides the last one, all these problems could be addressed by choosing a denser discretisation of

the domain, which however would reduce the number of data per bin and increase noise; this effect

is more and more severe with increasing dimensionality, where populating the histogram requires

exponentially larger samples the choice a small binwidth could produce even empty bins. A good

balance must be found and, indeed, we are facing an emblematic example of bias-variance trade-off

problem. By choosing a probability convergence criterion (e.g. minimisation of Mean Integrated

Absolute Error (MIAE) or Mean Integrated Squared Error (MISE) or many possible others), it is

possible to find the optimal value for the histogram binwidth[101, 170]. We will not get into the

details of such discussion. Another possible way to get around some of these issues is to use variable

partition histograms[101], in an attempt to make the smoothing parameter adaptive: instead of
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using a fixed bandwidth (or D-dimensional banwdidth vector in the multidimensional case) for all

bins, this is varied locally. This requires choosing a sensible partitioning criterion, which can turn

out to be challenging especially in high dimensions.

2.2.2 Kernel Methods

Due to its high versatility and simplicity, Kernel Density (KD) estimation is probably the most

common approach to nonparametric density estimation both in the univariate and in the multi-

variate case and it can indeed be considered a prototype for all of them. Except for very simple

tasks, it is preferred to histograms since it can outrival it both in terms of reducing parametrisation

rigidities and in terms of smoothness.

One of the main drawbacks of histograms is the fixed nature of the domain partition: even

when defining the bins adaptively, which is not a very common practice, the grid structure of the

domain tassellation does not always suit the geometry of the problem: rare-data regions might

result penalised to promote higher resolution in high-density regions or vice-versa. To overcome

this rigidity, KD estimation considers only finite-size regions around the datapoints. The intuitive

idea behind a Kernel Density Estimator (KDE), instead, is to assign a fixed amount of probability

pN = 1/N to each point and to build the PDF by adding at the position of each sample point a

function that normalises to pN . The features of the class of functions chosen determine the quality

and the properties of the estimator, such as smoothness, convergence and its capability to resolve

or generalise from the data.

KDEs were first introduced by Fix and Hodges[71], who proposed what is now known as naive

estimator[177]: in correspondence of each datapoint a box function of fixed size is added. In practice,

if in one dimension we set a bandwidth h, the density at point x is computed as the number of

sample points which fall in an interval (x− h
2 , x+

h
2 ) divided by h and N , much like in the histogram

case (2.9):

ρ̂naive(x) =
1

N h

�
number of sample points falling in

�
x− h

2
, x+

h

2

��
(2.12)

In the limit of infinite statistics N → ∞ and vanishing smoothing parameter h → 0, the probability

Px,h that the random variable y ∼ ρ(y) takes values in
�
x− h

2 , x+ h
2

�
is correctly estimated with

this method:

lim
h→0

ρ̂naive(x) = lim
h→0

1

h
Px,h =

d

dx

Z x+h
2

x−h
2

ρ(y) dy (2.13)

When all points lie on a regular grid and the size of the box is that of grid spacing, the naive
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estimator is equivalent to a histogram having such grid nodes as bin centres.

However, while eliminating the histogram problem of bin centring, the naive estimator is still

discontinuous, since it is a step-wise function. Nonetheless, the problem can be easily tackled by

allowing smoother functional forms than the box function, so the concept was soon formalised by

Rosenblatt[161] (first appearence of KDE[178]) and Parzen[145], who generalised the method to a

wider class of functions and studied convergence and asymptotic properties. The first extension to

the multidimensional case was by Cacoullos[26]. Again, for simplicity and without loss of generality,

we will present mostly the implicit reminder that all can be extended to the multidimensional case.

The intuitive view of KD estimation as a sum of N bumps of a given shape at the position of

the sample points can be viewed in a somehow more formal way by thinking about the Dirac delta

function as a convolutional kernel. If we knew the value of a PDF ρ(x) for all values of x, from the

definition of the Dirac delta we could write the value of the PDF at point x0 as:

ρ(x0) =

Z
ρ(x)δ(x− x0) dx . (2.14)

However, we can only observe a discrete a finite distribution of points, which we can represent as

the sample density[74]:

ρs(x) =
1

N

NX

j=1

δ(x− xj) (2.15)

Plugging ρs(x) into equation (2.14) would give 1/N if x0 ≡ xj for some sample point xj and 0

otherwise. In order to be able to generalise from observed data, the delta function can be relaxed

to a smoother kernel κh with width regulated by a finite scale parameter h > 0, but which still

preserves the delta function normalisation property:

Z ∞

−∞
κh(x− x0) dx = 1 . (2.16)

The corresponding kernel density estimator, in one dimension, is defined as:

ρ̂ (x) :=
1

N

NX

j

κh (x− xj) . (2.17)

Typically, these kernels are chosen to be radially symmetric probability densities, with κh(x) ≥ 0

and κh(x) = κh(−x); in this case expression (2.17) defines a bona fide PDF[101] and one recovers

the Dirac delta in the limit of small bandwidth:

lim
h→0

κh(x− x0) = δ(x− x0) . (2.18)

Chapter 2. Theoretical Background 16



2.2. Multidimensional density estimation: nonparametric methods

If the chosen and kernel is differentiable, the estimated PDF inherits such property, making it

smooth and giving KDEs competitive advantage over histogram.

Very commonly in literature the dependence on the smoothing parameter is not incorporated in

the kernel function, but rather a kernel K ≡ κh=1 is used, so that the consequence of rescaling the

smoothing parameter must be explicitly treated. We write an expression of a KDE in this form,

this time directly in the multivariate case, so that the dependence on the dimensionality D is also

evident:

ρ̂ (x) :=
1

N hD

NX

j

K

�
x− xj

h

�
(2.19)

Expression (2.19) is still not the most general form for a multivariate KDE, since the chosen band-

width h is treated as a scalar. However, the amount of smoothness can also be chosen not to be

isotropic and can in general be represented by a D×D symmetric matrix H[170]; expression (2.19)

is then recovered for H = h 1D.

If the kernel κh is well behaved, the estimators in equation (2.17) and (2.19) are unbiased and

consistent if h → 0 as n → ∞ when nhD → ∞. Asymptotic convergence is obtained regardless of

the functional form of the kernel, as long as regularity conditions apply[101], although the shape

and properties of κh do influence the speed of convergence. Nonetheless, while dimensionality effects

are important, the shape of the kernel does not seem to affect convergence heavily[101]. This offers

great flexibility, and allows to choose among a wealth of possibilities, some of which illustrated in

the table:

Kernel shape K(x)

Box 1
2 I[−1,1] (x)

Gaussian 1√
2π exp(−1

2x
2)

Epanechnikov I[−1,1] (x)
3
4(1− x2)

Cosine I[−1,1] (x)
π
4 cos

�
π
2x

�

Triangle I[−1,1] (x) (1− | x |)

Biweight I[−1,1] (x)
15
16 (1− x2)2

Table 2.1: Some of the most common kernels used in KDE[80, 177].

The simplest of all kernels above is the previously discussed box-shape kernel, i.e. the naive estima-

tor. In the multidimensional case two are the most common options for the naive estimator: either

taking the D-squared box, thus use the indicator function of the hypersquare of unit side centered in

x ≡ 0; or considering the D-ball of unit radius and zero origin BD(1,0) and thus using its indicator
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2.2. Multidimensional density estimation: nonparametric methods

function IBD(1,0) divided by the volume of the D-dimensional unit hypersphere ωD (see equation

(D.3)). The Gaussian KDE is by far the most used, both in the univariate and in the multivariate

case, in which the degree of smoothing is controlled by the diagonal - or even dense - inverse covari-

ance matrix. Except for the Gaussian, all other kernel in table 2.1 have compact support and are all

subcases of a more general expression for polynomial kernels[101]. Worth a mention is the so-called

Epanechnikov kernel, which has been shown to be optimal in terms of asymptotic MISE[65]. Notice

that in the formulas presented so far we assumed data to lie in a Euclidean metric space, in which

the concept of vector difference, distance, norm are those familiar to us. All the kernels in table

2.1 are symmetric w.r.t x, i.e. they only depend on the norm of ∥x∥. Extending this concept, it is

possible to use KDEs and estimate the PDF at given points even in non-Euclidean metrics simply

knowing a distance between data point (e.g. on curved Riemannian manifolds[148]).

KDEs are thus a very simple and powerful tool, but they are also very general, since under weak

assumptions both parametric and nonparametric methods can be proven, at least asymptotically, to

be some sort of generalised kernel density estimator[187]. In the case of histogram the equivalence

between equations (2.9) and (2.19) can be easily seen by applying the definition of n̂m. In what

follows, we will point out similar analogies also while presenting the other methods.

As for all nonparametric methods, the crucial problem for KDEs is the selection of the band-

width. In regions of high data density, a large value of h may lead to over-smoothing and a washing

out of detail that might otherwise be extracted from the data. However, reducing the level of

smoothing may lead to noisy estimates elsewhere in data space where the density is smaller, mak-

ing the estimated PDF artificially rough and spiky. Once again, this problem is accentuated in

high dimensions: the MISE can be decomposed into a variance component scaling as h−D and a

bias, going as h2σ2
K ∼ hD+2, where σ2

K is the variance of the kernel function an typically goes as

∼ hD[37].

As mentioned by Silverman[178], the problem of bandwidth selection in KD estimation was first

discussed even by Fix and Hodges in the original paper. Due to the popularity of KDEs, a great

amount of research effort has been devoted to tackling this issue [92, 180, 191]. According to different

possible optimality criteria, various optimal values for the choice of a unique bandwidth have been

proposed[101]. A further improvement can be obtained by allowing the smoothing parameter to be

coordinate-dependent, i.e. by making it adaptive. This, however, can require some prior knowledge

of the system studied or some accurate modelling. A famous metod is the so-called variable kernel

estimator[24], which relates the smoothing parameter at a point to the distance of its nearest

neighbor of some order k. Other methods propose iterative procedures to refine the local choice

of h[4, 5, 87, 177]; in this case, however, the performance of the estimator still depends on the

smoothing parameter chosen in the first (blind) iteration.
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2.2.3 k-Nearest Neighbours methods

A brilliant but very simple way to adaptively select the bandwidth of a KDE is adopted in the k-

Nearest Neighbours (kNN) estimator. Instead of fixing the scale parameter h, the hyperparameter

of kNN sets the number of neighbors to be considered for each point, which in turn determines the

local level of smoothing. As for the KDE methods, also this other important class of nonparametric

density estimation methods was firstly proposed in the same work by Fix and Hodges[71, 178]. It was

then formalised and generalised to the multivariate case few years later[118], while in reference [120]

bias and variance, tails behaviour and other theoretical properties of the estimator are discussed.

The first key ingredient to implement kNN is to compute the distances { d(xi,xj) }i,j among all

couples of datapoints. For every point xi it is possible to rank all the N points in neighbouring

order: the index i0 will be exactly i, i1 the index of the Nearest Neighbour (NN) of xi, i2 the index

of the second-nearest and so on until iN−1, which is the furthest point from xi in the database.

Then one has to decide the number k of neighbours to be considered for each point. The distance

of the kth neighbour, ri,k := di,ik , implicitly sets a typical scale around point xi: if data are dense

around in that region, then ri,k will be small; if data are rare ri,k will be large. The selection of

k defines a neighbourhood for each point and induces a directed weighted graph structure on the

dataset, in which nodes are represented by sample points, an edge directed from point i to point j

is established if j is in the neighbourhood of i (among i’s first k− 1 NN) and the weight of the edge

equals the distance between the two connected nodes. We name this graph the Neighbours Graph

(NG) of the dataset: it will be a crucial ingredient of all our work.

Hence, the kNN density estimator at point xi is defined as:

ρ̂i :=
k

N

1

ωD rDi,k
=:

k

N Vi,k
, (2.20)

where ωD is the volume of the unit-radius hypersphere in D-dimensions, which enters the definition

of the volume of the D-hypersphere of radius rDi,k centered on xi: Vi,k := ωD rDi,k. Basically, kNN

instead of counting the number of points within a ball of fixed radius h, fixes the number of points

k to look at, measures the radius of the ball in D dimensions centered at a given point xi containing

no less and no more of k datapoints. Evidently, a convention must be chosen to define such ball: one

could choose the largest possible, having as radius ri,k, the distance of the closest excluded point

xik ; the smallest possible, of radius ri,k−1 just as big as needed to include the (k−1)th neighbour of

xi; or anywhere in between these two distances. We have adopted the first convention, which tends

to slightly underestimate the PDF. However, like for all other conventions, the estimator is unbiased

if k → ∞ and k/N → 0 while N → ∞[101]. Concerning the hyperparameter k selection, as for

all nonparametric methods bias-variance trade-off considerations apply; expression (2.20) implicitly
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considers the PDF constant over a region of radius ri,k, so this condition – we call it Constant

Density Assumption (CDA) – should not be strongly violated. Various authors suggest that the

choice of k should scale with sample size and dimensionality as k ∝ N 4/D+4[6].

Thanks to its adaptivity to the local sample density, the kNN density estimator performs well

even in high dimensions and has has a smaller variance compared to a standard KDE[177]. However,

kNN is not immune to the curse of dimensionality, since in very high dimensions the meaningfulness

of a distance ranking fades away[19]: the difference between the distance of the kth NN and of the

(k + 1)th NN goes to 0 when D → ∞, which can make the definition (2.20) unstable. Various

attempts have been made to address this problem[132, 139, 157]. This will be discussed more in

detail in the following chapter.

So far, we have defined the estimator in equation (2.20) only on points of the dataset. Given

a generic point of coordinates x, one can still measure the distances w.r.t all datapoints {xi}i and

define the distance of the lth closest point to x, of index l(x) as, rl(x) := d(x,xl(x)). Fixing a value

for the number of neighbours k one obtains the function rk(x) which expresses the local value of

the smoothing parameter. Thus, what sometimes is done in literature is to give a KDE expression

that extends the kNN estimator to all the domain:

ρ̂(x) :=
1

N (rk(x))
D

NX

i=1

K

�
x− xi

rk(x)

�
, (2.21)

where to recover expression (2.20) one should sit on a sample point xi and take K to be a ball

kernel; with any choice of K(x), expression (2.21) is a subcase of the variable kernel estimator[24].

This continuum version of kNN, that we will call continuated kNN, has however several drawbacks.

Firstly, rk(x) is defined everywhere, but is highly discontinuous, which is reflected in a discontinu-

ity and non-differentiability of the estimator itself. Secondly, the tails of the estimated PDF are

artificially fat, decaying as ∥x∥−D, which makes the estimator ill-behaved for peripheral points of

the dataset; in one dimension this estimator is not even normalisable[162]. Finally, notice that the

continuated kNN estimator is not defined for k < 2, since it would not find any point within radius

r1(x); the case of too-small k however is not interesting and should be avoided due to low statistical

significance of the resulting estimates.

kNN is an excellent strategy to implement a simple adaptive method to estimate the density.

It has the advantage of selecting a higher smoothing parameter in low density region, reducing

variance, and a smaller one, retaining more detail, in data-rich regions. While standard KDEs tend

to undersmooth the tails and oversmooth the peaks of the PDF, by selecting a global bandwidth for

the whole dataset, kNN is known to oversmooth the tails, introducing a great bias[177]. Overall, we

can conclude that, if uninterested in a smooth PDF, kNN is preferable to KDEs for the estimation
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of complex and/or multidimensional PDFs and performs better with a poorer statistics, although

the curse of dimensionality affects it nontheless. Extrapolated or border estimates (at coordinates

falling outside the core of the datasets) must be taken cautiously.
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Chapter 3

Improving kNN-based density estimation

3.1 Overcoming some limitations of kNN

3.1.1 The importance of restricting to the relevant submanifold

In the first chapter we covered the topic of PDF estimation with particular focus of Euclidian spaces

RD of coordinates x. As anticipated, these procedures do not differ formally from the case in which

they are applied to a set of collective variables s(x) living in a possibly-non-Euclidean metric, as long

as a metric is defined in this space. Besides being crucial in data manipulation and visualisation, in

the field of density estimation restricting to a reduced coordinate space can be advantageous to cope

with the curse of dimensionality and becomes in most cases imperative in order to obtain sensible

results; moreover, in many enhanced sampling techniques data are generated via the exploration of a

CVs space, which makes that space the natural one to compute quantity such as the reduced density

(2.3) or the FES (2.5). However, the quality of these estimates is critically bound to the quality of

dimensional reduction (DR). In the introduction we briefly mentioned on how the problem of DR

is tackled in the literature, by finding an explicit mapping of the full coordinate space into a much

smaller space of descriptors through linear or non-linear transformations s(x). This mapping can

be specified manually, by exploiting chemical/physical/mechanistic insight into the system under

consideration or can be pursued automatically via the available unsupervised DR techniques. Both

manual and automatic procedures, or a combination of the two, have potentially serious drawbacks

and introduce a remarkable layer of complexity to the task of density estimation and are therefore

a possible source of bias.

However, an alternative is to never perform explicitly this transformation, with the only assump-

tion that data lie on a Riemannian manifold Ω of known dimensionality d, which is embedded in

the Euclidean space RD. If this hypothesis holds, since we are interested in nonparametric density

estimation, local by definition, we can consider distances between points on the data manifold only

22



3.1. Overcoming some limitations of kNN

at a scale at which it looks locally flat. In this regime, Ω at a given point x is well approximated

by its tangent hyperplane TΩ(x). Therefore, we are well justified to take our nonparametric estima-

tors with support only on this Rd restriction, i.e. to be normalised considering only d dimensions.

Nonetheless, since data are restrained on the manifold, in a neighbourhood of each datapoint xi

one can measure distances equivalently in the Euclidean RD metric or in the Rd metric of TΩ(xi):

opting for the first one, we would never need to define an explicit chart of Ω.

This idea, originally proposed in reference[139] applied to KDEs and then further developed

in reference[157] using kNN, is a key ingredient to help mitigating the curse of dimensionality. In

fact, a data point xi can be seen as adding a lump of probability density only on the relevant d

dimensions, instead of diluting this information over a much larger number of irrelevant dimensions

D ≫ d. This approach relies on a good estimate of the local intrinsic dimensionality d(x) of the

manifold, which can be achieved with various possible techniques[28, 66, 68, 84]. Here and in what

follows we assume for simplicity that d is constant over the whole dataset and estimate it with the

TWO-NN approach described in reference [68]. This nonparametric and unsupevised ID estimator

also allows to cope with complex topologies, since it only looks at the manifold locally rather than

globally.

3.1.2 A likelihood model for kNN

In section 2.2.3 we introduced the kNN density estimator starting from a KDE perspective in which

no explicit assumption was made on the distribution of the data. There was however an implicit

assumption: the request that the bias of the estimator is not too high is equivalent to assuming

that the PDF over a region of size selected by the chosen k is sufficiently flat or slowly-varying (as

in the case of the histogram). This requirement can be formalised in a way that allows to obtain

kNN as MLE[157], which is our first step towards further improvements to kNN.

Given a point xi, we indicate by ri,j the Euclidean distance between point i and its jth nearest

neighbour. Importantly, we assume the existence of a data manifold of intrinsic dimension d to which

data are softly confined, as discussed in section 3.1.1. Thus, Euclidean distances measured in RD

are the same as those measured in Rd, which in turn, for neighbouring points of i, is approximately

equivalent to the distance in the manifold metric. We also measure volumes in Rd, so that the

volume of the unit hypersphere is ωd. Therefore, the volume of the hyperspherical shell between

neighbours j − 1 and j of a point i is given by νi,j = ωd(r
d
i,j − rdi,j−1), where ri,0 is conventionally

set to 0 (hence, the volume of the d-sphere enclosed between a point i and its k-nearest neighbour

is Vi,k :=
Pk

j=1 νi,j = ωd r
d
i,k).

If we fix a number of neighbours k and consider the actual PDF ρ constant within a radius ri,k
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from point i, then it can be proven[68] that the hyperspherical shell volumes {νi,j}j are IID random

variables exponentially distributed with rate corresponding to the number density Nρ:

P (νi,j ∈ [ν, ν + dν]) = (Nρ) e−(Nρ) ν dν . (3.1)

We can therefore write a joint probability distribution for the k independent random variables:

fρ ({νi,j}j) =

kY

j=1

fρ (νi,j) :=

kY

j=1

(Nρ) e−(Nρ) νi,j . (3.2)

As we can see from equation (3.2), the random variable νi,j has expected value (Nρ)−1; in fact, on

average, in the volume of one shell we find one point: ⟨νi,j Nρ⟩ = 1.

We can encode this PDF into a log-likelihood for the observed shell volumes {νi,j}j as a function

of the parameter ρ by taking the logarithm of the right-hand side of equation (3.2):

Li,k(ρ) = L( ρ | N, {νi,j}j) :=

kX

j=1

(ln(Nρ)− (Nρ)νi,j) = k log(Nρ)− (Nρ)Vi,k . (3.3)

By maximising this log-likelihood w.r.t. ρ one obtains the solution ρ̂i = k/(N Vi,k), which is exactly

the kNN estimator defined in (2.20). It is worth asking if such an estimator, obtained from a

likelihood maximisation, can still be regarded as nonparametric; according to the definition by

Scott[170] discussed in section2.2 it is indeed, since it is only locally parametric and the asymptotic

limit N → ∞ makes this local dependence more and more punctual: rk(x) → 0.

Applying the asymptotic limit of the Cramér–Rao Bound (CRB)[51, 155] for the variance of the

estimator ρ̂i it is possible to estimate its statistical error in terms of standard deviation:

ερ̂i :=

�
− ∂2

∂ρ2
L ( ρ | N, {νi,j}j)

�− 1
2

=
ρ̂i√
k
, (3.4)

which has the same expression of the histogram uncertainty (2.10). Since we know that ρ̂i is an

unbiased estimator and thus ⟨ερ̂i⟩ = ρ/
√
k, we can once again see an instance, even for kNN, of the

bias-variance trade-off: the statistical error of the estimator decreases by increasing the smoothing

parameter, but this makes the approximation on which equation (3.1) relies shakier, since the den-

sity in a ball of radius ri,k might become non-constant.
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3.1.3 Adaptive neighbourhood size selection

As discussed in section 2.2.3, the kNN estimator is an adaptive version of a kernel density estimator,

since a fixed k would select a small smoothing parameter in regions of high density end a large where

statistics is scarce. However, as we have seen, it is not immune from the bias-variance trade-off

problem, despite being less exposed to it. Luckily, there is room for further improvement, because

the effect of k on variance can be partly decoupled from that on variance: while a low variance can

still only be granted by a high statistics, requiring a large k, systematic error in kNN is introduced

only when k selects a region over which the PDF is not slowly-varying; the selected bandwidth

should be small where the PDF changes rapidly, but can be larger when the PDF varies at a slower

pace, regardless of its absolute value. In Figure 3.1b one can see an example of this: in green a

slowly varying low-density region, where the PDF remains constant on a large region: a decent

statistic can be included in the estimate; in blue a constant density region is perturbed by a high

density peak rising quite close to the central point: only few points can be included in the estimate;

in red a high-density region, where very many points have been collected and despite rk being quite

small a big k can be selected.

(a)

(b)

Figure 3.1: Adaptive selection of the optimal neighbourhood size k̂ for the kNN estimator.
(a) Schematic representation of the log-likelihood test in the case of two different bivariate PDFs. (A and
B) Sample of 2000 points extracted from a uniform distribution and the same sample with 2000 additional
points extracted from a Gaussian distribution. (C and D) Dk given in equation (3.6) as a function of k
estimated for the two points highlighted in orange in panels A and B. The green line corresponds to the
threshold Dthr. Image from reference [157]. (b) Optimal selected k and corresponding scale parameter
rk in different conditions in the case of a bivariate PDF. Sample of 2000 points extracted from a uniform
distribution plus additional 2000 points extracted from a peaked distribution.
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Based on this observation, Rodriguez et al.[157] proposed a quantitative procedure to optimise

the largest possible value of k for which the PDF can be considered approximately constant within

a certain level of confidence. To apply this procedure, given point i, we start with a low value for k

and proceed iteratively by comparing two likelihood models: the first one (M1) in which the PDF

estimated with kNN at point i and at its (k + 1)th nearest neighbour, denoted by index l, have

two different values ρ and ρ′; the second one (M2) in which i and l have the same kNN density ρ.

In M1 the total log-likelihood is maximised with respect to two DOFs, ρ and ρ′, while in M2 only

one DOF, ρ, is allowed. These two maximised log-likelihoods, LM1 and LM2 are then compared:

as long as they are similar within a certain confidence interval the putative optimal value for k is

increased by one and the test is iterated; when the likelihood of model M1 utilises its extra DOF

in the maximisation to become significantly larger than LM2 it means that the constant-density

approximation does not hold for the k under test and so k−1 is adopted as optimal neighbourhood

size k̂i for the neighbourhood of point i.

Phrasing everything in mathematical terms, the optimal log-likelihoods of M1 and M2 are

obtained (cf. (3.3)) as:

LM1 := max
ρ,ρ′

Li,k(ρ) + Ll,k(ρ
′) = k log

�
k2

Vi,k Vl,k

�
− 2k(1 + logN) (3.5a)

LM2 := max
ρ

Li,k(ρ) + Ll,k(ρ) = 2k log

�
2k

Vi,k + Vl,k

�
− 2k(1 + logN) (3.5b)

These two likelihoods are then compared by a likelihood ratio test[134], which becomes a difference

test in the case of log-likelihoods:

Dk = 2(LM1 − LM2) = 2k (log Vi,k + log Vl,k − 2 log(Vi,k + Vl,k) + log 4) . (3.6)

The difference Dk between the two maximised log-likelihoods for a given k is distributed as a χ2

RV with one DOF, since M1 has two parameters and M2 has one. We consider a p-value of 10−6 as

significance threshold for the difference between the two models, corresponding to Dthr = 23.928.

As long as Dk < Dthr we consider the radius selected by the present k compatible with the constant

density assumption around point i and we proceed to test the case of k + 1 neighbours. When the

inequality is violated the test fails and the previous value of k is retained. In brief, the condition

for the optimal neighbourhood choice for point i is:

k̂i s.t. ∀ k ≤ k̂i , Dk < Dthr and Dk+1 ≥ Dthr . (3.7)
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The set of adaptively selected neighbourhood sizes for every point {k̂i}i can be used in all previous

formulas of the kNN estimator to obtain a better-performing estimator, that we will name k̂NN.

This estimator is indeed doubly adaptive, since it builds adaptively on the already-adaptive kNN

method. Although this may sound like a computationally costly procedure, by fixing a maximum

number maxk̂ of explored values in the optimisation of k the estimation of the optimal k̂ only scales

linearly with the number of sample points N [79]. All kNN-based estimators discussed hereafter

only involve operations on this sparse NG defined by fixing the set of {k̂i}i.
In Figure 3.1a one can see the statistical test to select k̂i at work. In the case of a uniform density

Dk does not even get close to the threshold (in green); in the case of the Gaussian distribution

superimposed on a uniform background the test is easily passed for all values until approximately

102, but then some values of Dk start shooting high and rapidly Dthr is reached. To visualise the

rapidity of this triggering process in panels C and D the highest values of Dk recorded up to that

specific k are connected by black solid line, which is horizontal in the first case and almost vertical in

the second one. Tested in various conditions of statistics, dimensionality and underlying PDF, this

neighbourhood selection procedure has proven quite consistent also relaxing the chosen significance

threshold defining Dthr to larger values, even by two or three orders of magnitude corresponding to

p-values of 10−4 ÷ 10−3.

As a side note, we point out that this whole procedure of neighbourhood size optimisation can

be employed to address the problem of the bandwidth selection discussed in section 2.2 not only in

the case of kNN-based methods, but also in the case of KDE. An application to Gaussian kernels

is discussed in Appendix B.

3.2 PAk: a point-adaptive kNN-based density estimator

3.2.1 A free-energy formulation of k̂NN estimator

Equation (3.3), its solution and the corresponding estimated error (3.4) can be rewritten in form of

free energy. The free energy formulation of the estimator is more convenient to describe landscapes

affected by metastability, where the PDF varies by orders of magnitude. To proceed, we apply the

simple identity:

F (x) := − log[Nρ(x)] , (3.8)

in the spirit of the definition of FES in equation (2.5), where β has been set to unity, so units of

kBT are assumed. Notice that, upon identification s̃ ≡ x, the only difference between these two

definitions is a constant factor depending only on N , which can be neglected.
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By simply plugging this definition of F into equation (3.3) one obtains the log-likelihood of the

volume shells around a given point i as a function of the free energy:

Lk̂NN
i (F ) = Lk̂NN

i (F | {νi,j}j) :=

k̂iX

j=1

�
−F − νi,j e

−F
�

(3.9)

which is maximised by:

F̂i := argmax
F

Lk̂NN
i (F ) = − ln k̂i + ln

X

l

νi,j = − ln
k̂i
Vi,k̂i

(3.10)

and has an error estimate εF̂i
= k̂

− 1
2

i . So far we have just rewritten in free energy terms the upgrades

to kNN introduced in section 3.1. The likelihood formulation provides a correct error estimate for

the model and, as we will see, lays the foundation for further improvements to the model.

Before moving on to introduce the improvements, it is worth discussing which is the quantity

that F̂ actually estimates. So far, we have mentioned three levels of dimensional reduction (DR)

(c.f.r. section 2.1): from the raw coordinate space to what we called the full coordinate space, via

a choice of descriptors or featurisation RDr ∋ xr 7→ x ∈ RD; from this latter space to the CVs space

Σ via an explicit DR; an implicit DR simply operated via the computation of the ID, from the

space of the descriptors (or even of the CVs) to the intrinsic d-dimensional data manifold Ω ⊂ RD

(or Ω ⊂ Σ), approximated at each point x by its tangent hyperspace TΩ(x) (or TΩ(s)), affine space

of Rd. Estimator (3.10) computes the negative log-PDF in the space it is applied. If such space

is Σ, the estimated quantity is exactly the FES in equation (2.5). If however it is applied in the

full coordinate space, ρ̂i estimates unbiasedly the actual PDF ρ(xi) for each point xi; therefore, in

this case F̂ estimates the potential energy of the configuration xi entering the canonical Boltzmann

factor in equation (2.4). Nonetheless, it can still make sense to refer to it as a “free energy”, since

for each point xi the estimator considers an extended region Ωi of volume Vi,k̂i
in configuration

space, which cointains an infinite number of configurations. If the collection of all the {Ω}i were a

tassellation the concepts of internal energy Ui = ⟨U(x)⟩Ωi and Gibbs entropy Si = −kB⟨log ρ(x)⟩Ωi

would be straightforward; unfortunately, kNN and related estimators do not consider a tiling of

disjoint regions, but a set of regions with many overlaps, which would make it hard to give an

explicit definition. Finally, a different reason why F can be regarded as a free energy is the fact

that for every d-dimensional vector in the tangent space of the data manifold TΩ, (D−d) transverse

directions are also explicitly included in x: although their PDF is strongly suppressed outside Ω,

those DOFs are formally averaged on, justifying the term.
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3.2.2 Linear corrections to k̂NN: introducing PAk

In reference [157] the author propose to modify the k̂NN likelihood in order to account for possible

corrections to the assumption that the PDF (and likewise the free energy) around point i is constant.

They suggest that, moving away form i, F might be allowed to vary linearly in the neighbour rank

j with a slope a, tweaking equation (3.9) into:

LPAk
i (F, a) = LPAk

i (F, a | {νi,j}j) : =

k̂iX

j=1

�
−F + aj − νi,j e

−F+aj
�

= −F k̂i + a
k̂i(k̂i + 1)

2
−

k̂iX

j=1

νi,j e
−F+aj

(3.11)

where a is treated as a variational parameter and thus it is maximised over both F and a:

F̂i := argmax
F

max
a

LPAk
i (F, a | {νi,j}j) . (3.12)

Notice that expression (3.12) has no closed-form solution and must be solved iteratively, e.g. using

the Newton-Raphson method[79].

Rank  -  j 

lo
g

 Y
j

Figure 3.2: Pictorial illustration of PAk’s log-linear fitting procedure. AAAAA spiegare meglio e
modificare immagine, in ordinata ci va il logaritmo

As pointed out in reference [29], for each point i this maximisation is equivalent to the solution

of a log-linear regression model[133] in which the j observed responses are the random variables

Yi =
n
Y i
j

o
j
:=
n

1
νi,j

o
j
distributed exponentially with expected value ⟨Y i

j ⟩ = e−Fi+aj . Therefore, Fi

is the intercept of such model and its value is equivalent to taking the limit j → 0 or, analogously,

sending the smoothing parameter of the model ri,k̂i → 0. In other words, this fitting procedure

makes PAK less influenced by local fluctuations of the neighbours, thus making its estimates at
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neighbouring points more uncorrelated. We call this feature the punctuality of PAk.

The maximum likelihood approach also allows estimating the uncertainty of the MLE F̂i, again

in the CRB setting[51, 155], which gives:

εPAk
i =

s
4k̂i + 2

(k̂i − 1)k̂i
, (3.13)

where the differences w.r.t. the k̂NN case are given by the presence of variational parameter a.

3.2.2.1 Using PAk to analyse biased trajectories

The PAk estimator allows estimating the free energy of a set of data points harvested from a

multidimensional probability density. In molecular dynamics simulations of systems affected by

metastability, one often biases the dynamics by an external potential, which is built in order to

enhance the probability to observe transitions between the metastable states in a short simula-

tion time. For all kernel methods, the standard reweighting schemes require subtracting the local

exponential average of the biasing potential over the neighbourhood, which can be very noisy. In

reference [29], whose results are presented in Chapter 5, we show how this problem can be overcome,

at least if the bias is not time-dependent, thanks to the PAk’s punctuality, which nontrivially allows

the definition of a punctual reweighting scheme.

3.2.3 Estimator performance

3.2.3.1 Validation of estimators

In this thesis work we will face multiple times the necessity of assessing the efficiency of estimators

and of their error predictions. In order to do so, we will mainly look at the observables described

in what follows. The name of the quantities considered is F since we are mainly interested in free

energy estimators, but these performance quantifiers are quite generally applicable to any estimator.

3.2.3.1.1 L1 error or absolute error. Quantifies the local deviation of the estimator at a point

F̂i from the true value Fi. For example, in the case of free energies, plotted as a function of the

true values of F will provide insight of the estimator performance in the various regimes of sample

point densities. Some estimators might for example perform better than others where the statistic

is high, but underprerform when it is low. The L1 is defined:

ϵL1
i = |Fi − F̂i| . (3.14)
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3.2.3.1.2 Average L1 error or absolute error. Quantifies the global accuracy of an estimator

and is defined as the sample average of the observable in equation (3.14):

EL1 =
1

N

NX

i=1

ϵL1
i (3.15)

3.2.3.1.3 Pull variable[57]. It is used to compare two different error-affected estimators F̂ a and

F̂ b of the same quantity F . It is defined as:

χi :=
(F̂ a

i − F̂ b
i )q

ε2
F̂a
i

+ ε2
F̂ b
i

, (3.16)

where εF indicates the uncertainty on the quantity F . If F̂ a and F̂ b are compatible and independent

from one another, the distribution of the pull over a full statistical sample {xi}i is expected to be a

Gaussian with zero average and unitary variance: χi ∼ N (0, 1). One of the two estimators, say F̂ a

can as well be substituted by the true values Fi, in which case the corresponding errors εF̂a
i

are zero.

This is used to test the performance of the remaining estimator and of its error. In this case, the shift

of the pull distribution from zero accounts for biasedeness of F̂ b; variance of the distribution instead

quantifies error accuracy: if the distribution is too spread it means the error is underestimated (or

that sample points are correlated), if it is too narrow it means it is overestimated.

3.2.3.2 PAk performance

Reporting the results about PAk validation from reference [157], which introduced it, we evaluate

PAk with three tools: the correlation plots between ground truth and predicted free energies for

every point, F̂i vs Fi; the pull distribution of the estimated free energies, according to equation

(3.16), giving χi :=
Fi−F̂i

εi
, which should be distributed like a standard normal N (0, 1); the mean

absolute error of the estimator in equation (3.15), which reads EL1 = 1
N

PN
i=1 |Fi − F̂i|.

The tests assessing the performance of PAk estimator and comparing it to standard kNN and

to Gaussian KDE are presented in Figure 3.3. By looking at correlation plots, pull distributions

and absolute errors we see that PAk and its error estimator are unbiased and accurate in a range

of dimensionalities d ranging from 2 to 8. Looking at the table in panel (c), reporting the mean

absolute errors of the three estimators on synthetic datasets with d from 2 to 16, we see that

PAk slightly underperforms kNN with kopt selected in order to minimise EL1 with respect to the

analytical ground truth free energy; however, PAk always gives very similar results, despite the fact

that its optimisation in fully unsupervised; the choice of kopt is instead supervised: this optimisation

could not be carried out in realistic settings where the true free energy is unknown; it is very likely
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that fixing k arbitrarily kNN would underperform PAk. Concerning the Gaussian KDE, PAk always

beats it also in terms of absolute error, despite the fact that dcopt is optimised supervisedly.

In panels (b) and (c) we see that the pulls obtained with PAk are better than with the other

estimators. In the leftmost pull distribution, in d = 16, we see that all free energy estimators are

biased. This is an evident manifestation of the COD, which causes all points to be far away from

each other and thus forces the estimators to ignore a lot of detail present in the analytical potentials.

However, this might also be a problem of this specific dataset; furthermore, not in all applications

a rigorous detail is required in the reconstruction of the FES; indeed, PAk has been succesfully

used in practical applications on real datasets with intrinsic dimensionalities greater than 8: it has

routinely been used on datasets whith ID between 8 and 15[29, 157, 179], but it has also returned

biochemically meaningful results when applied on a huge realistic systems of ID between 26 and

28[30], as we will discuss in Chapter 4. We will also show in Chapter 6 that PAk gives stikingly good

results on a synthetic dataset of ID 9. Importantly, PAk always displays the best pull distribution

among the three estimators, a sign of its error estimator robustness.

For a comprehensive discussion on PAk performance we refer the reader to reference [157].

Thereby, PAk free energies estimated on the full coordinate space without explicit dimensional re-

ductions, are shown to fairly agree with those computed in a space of collective variables specifically

designed for an optimal description of the system. From here to the end of this chapter we will give

an overview on PAk’s stregths and weaknesses. Wherever our claims might appear not sufficiently

supported by evidence so far provided, they will emerge in all the next chapters, when PAk will be

shown at work, both when used in applications and when compared to other estimators.

3.2.4 PAk in a nutshell

PAk is a non-parametric unsupervised estimator which generalises the kNN approach. The first im-

provement introduced is conceptual and can be applied in principle to the whole class of generalised

kernel methods[139] using only distances and not coordinates, including kNN-based algorithms[157]:

the assumption that the estimates should be restricted to the tangent hyperplane of the intrinsic

data manifold. By considering only such space of dimensionality d much lower than the embedding

space dimension D an implicit DR is performed, which greatly alleviates the curse of dimensionality

and grants sensible results even if D is very high. Formally, the intrinsic manifold’s tangent hyper-

plane TΩ(x) is coordinate-dependent; however, its parametrisation hould not be defined explicitly:

as long as the ID of the dataset is computed accurately and the selected bandwidth ri,k̂i is such that

within such distance from point i the PDF varies slowly enough, distances can be measured in RD

and volumes in Rd; this allows to perform a significant DR without ever defining any CV explicitly.
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(c)

(b)(a)

Figure 3.3: Performance of PAk estimator. All images are taken from reference [157] (a) Correlation
plots and pull distributions of the free energy estimator on three test systems, A, B and C, having ID
d = 2, 4, 7 and described in Appendices A.8.1, A.8.2 and A.8.3 respectively. In purple observed data, in
black theoretical behaviour (b) Test on a the bidimensional artificial dataset whose negative free energy is
represented on the left; three estimation methods are employed: fixed Gaussian kernel (red dots), standard
kNN (blue triangles), and PAk (blue solid line). Center: average L1 error EL1 varying the chosen k for
the kNN and of the Gaussian KDE smoothing parameter h, whose values are indicated on the bottom and
top x axis respectively. Right: pull distributions for the three estimators; for kNN and the Gaussian KDE
the values of k and h chosen are those who minimise EL1 on the dataset and are labelled kopt and dcopt
respectively; the blue dashed line is the standard Gaussian; the error on the Gaussian KDE estimates are
estimated by bootstrapping[63]. (c) Test on four artificial data sets of different dimensioality D = d; each
dataset is composed by four d-variate Gaussians of different heights and variances and are described in the
Supporting Information of reference [157]; top row: pull distributions computed for three different density
estimators (same methods and colour code as panel (b)) on three systems (d = 4, 8, 16); bottom row: table
reporting the average absolute error EL1 (labelled ϵ) for the three methods and the optimal values for kopt
and dcopt.

Secondly, PAk original paper[157] introduces a likelihood formulation for the kNN class of meth-

ods, from which estimators of the PDF and of the free energy can be derived as MLEs. This for-

mulation provides a natural error estimate. In its probability density phrasing, the kNN likelihood

allows to define a procedure for the determination of the local bandwidth, as we will recap in the

next paragraph. Yet, the – completely equivalent – free energy formulation paves the way for further

developments to kNN, starting with PAk and continuing through the method that will be introduced

in Chapter 6. Despite their formulation in terms of free energy, all estimator that will be discussed

can in principle be used in any context where a PDF should be computed, due to the simple relation

(3.8); since the estimators of the free energy neglect a constant additive term, in order to guarantee
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a normalisation to unity a known reference PDF value ρ(xref) should be adopted; alternatively,

as mentioned in section 3.2.1, a tassellation of the domain {Ωi}i should be provided, so that the

summation
P

i ρ̂iVΩi is computable and can be set to one. Despite the likelihood maximisation

procedure might apparently characterise all these approaches as parametric, their local nature, as

already discussed, make them fully-fledged nonprametric methods. Moreover, in reference [29] (and

in Chapter 5) we argue that, via the neighbour-order-dependent regression achieved by (3.12), PAk

takes the locality aspect one step further, defining a punctual estimator.

Thirdly, reference [157] introduces an unsupervised procedure to optimise independently for each

datapoint the maximum number of nearest neighbours that can be included in the estimate without

introducing systematic errors. This step, which can be applied to all kNN-based methods and not

only to PAk, improves greatly the adaptivity of the estimators, making them more accurate and

robust. Even if some small biases were induced at this stage of the procedure, we expect them to

be healed by the log-likelihood maximisation step; what distinguishes PAk is in fact its two-step

approach: the adaptive neighbourhood selection followed by the maximisation of PAk likelihood

using, besides the free energy F , the additional variational parameter a accounting for deviations

from the constant density assumption.

Tested on various systems, PAk has been proven an unbiased punctual free energy estimator,

outperforming other non-parametric and unsupervised methods. The competitive advantage is es-

pecially visible in high dimensionality and with modest-size samples. PAk builds on the well-known

kNN density estimation procedure, thus it retains the same benefits as its parent method. In terms

of accuracy it outperforms it while paying a very reasonable price in terms of simplicity and com-

putational scalability. Arguably, all improvements introduced with PAk have to do with enhancing

the point-adaptiveness of pre-existing methods. Although our focus will be shifted occasionally

from one PAk feature to another, we believe that all of the ingredients of PAk play a crucial role in

determining its performance.

3.2.5 Survey on PAk’s drawbacks

In this section we briefly outline some of the drawbacks and problems of the PAk estimators. These

drawbacks motivated our research work, and this thesis is an attempt to address some of them.

3.2.5.1 Pak is not defined other than for sample points

The PAk estimator provides free energy estimates at all points in a given sample. However, some

applications might require estimating the free energy even in other points of configuration space,

which do not belong to the sample. This calls for the definition of an interpolation scheme, which
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Figure 3.4: Pictorial illustration of PAk’s correlation-induced roughness as compared to kNN.
In both panels performance of PAk (A) and standard kNN (B) on a 1-dimensional potential (cfr. Appendix
A.1 for the functional form) for various sample sizes. In blue samples of 4000 points, in yellow 1000, in green
250. The k of kNN is chosen as 1/10 of the sample size. In violet the configurations of a decimated sample
(125 points).

allows estimating the free energy in a point of generic coordinates, and not only on the data points

used to estimate it. We propose a possible solution to this problem in section 3.2.6.

3.2.5.2 Curse of dimensionality

The PAk approach makes a progress with respect to other nonparametric methods in alleviating

the curse of dimensionality. As mentioned above, it improves its accuracy by restricting, without

explicitly defining it, to the low-dimensional intrinsic data manifold and by featuring a doubly-

adaptive bandwidth selection. However, since PAk is a nonparametric method, and does not provide

a model for the free energy surface it is still strongly affected by the COD. As we will see in Chapter

6, e.g. in Figure 6.7 and in the discussion in section 6.3.2.2.1, the linear corrections in the log-

likelihood in equation (3.11) which define PAk starting from the kNN log-likelihood in equation

(3.9) plays a key role in guaranteeing accurate results even at very high free energy values, where

datapoints are rare. However, if the statistic is too poor w.r.t. what the high dimensionality would

require, the performance of PAk are not great, as we will see in some specific examples. The

development of improved, possibly partly-parametric, models, more robust to the COD than PAk,

has been a first focus of our research.
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3.2.5.3 Spurious correlations and roughness

The kNN-based density estimation methods consider every point on average ⟨k̂⟩ times. This causes

local fluctuations of the estimators around the ground truth distribution to be amplified and prop-

agated at a range corresponding to the local selected k. To put it differently, if the free energy

estimates F̂ at different points were all independent, we would observe a white noise around the

ground truth value; instead, estimates at a given point i consider in their computation the configu-

rations of all the neighbours of i and vice-versa, so that the free energy of neighbouring points result

correlated (even if they are considered independent by the model in equation (3.9) and we observe

a correlated noise. In 1 dimension, for example, this emerges as the mid-frequency undulating be-

haviour visible in Figure 3.2.5.3 in both panels (representing PAk in panel A and standard kNN in

panel B). This problem, phrased in slightly different terms, has been known since long ago[177]. It

is of course a problem of all kernel methods, but it affects more severely approaches whose kernels

do not have fast-decaying tails, as e.g. Gaussian KDEs do. All kernel methods are consistent[101],

so simply kernel with fattest tails will have the related estimator converge more slowly. In practice,

for all methods this noise is healed by statistics. In the case of kNN, moreover, the limit N → ∞
automatically takes the limit h → 0, since k is fixed. By looking at panel B of Figure 3.2.5.3 we can

see the estimates of kNN estimator on a 1-dimensional potential for various sample sizes n (with k

chosen as N/10). In green we observe the smallest sample, of 250 points, which has big oscillations.

Noise is rapidly absorbed when the sample size goes to 1000 (in yellow) and then 4000 (in blue).

PAk, which is also based on kNN, has an additional factor that influences the noise in its

estimates. The free energies F of the neighbours of a point i entering kNN likelihood in equation

(3.9) as parameters are corrected linearly in PAk likelihood in equation (3.11) as F −a j, where j is

the neighbourhood rank and a is a scalar which is the same for all ranks j. These terms, evidently,

do not take into account any spatial information on where the jth neighbour of i is located w.r.t.

i: they are linear in rank space rather than in configuration space. For example, in 1 dimension the

model does not know if a neighbour j is on the left or on the right of i. This causes the MLE to fit

locally, by looking at it in configuration space rather than in neighbourhood rank space, assuming a

sort of cusp-like (or hypercone-like) free energy profiles in order to extrapolate the value for F̂i. This

fact introduces spurious noise and mid-range ripples which remain visible even when the statistic

improves, while other nonparametric methods, such as standard kNN, converge more rapidly. We

can see it by looking at Figure 3.2.5.3: while with 4000 points (in blue) kNN (in panel B) has

managed to smoothen and damp the noise present at lower statistic, PAk, in blue, still maintains

a spiky behaviour. For future reference, we refer to this feature as PAk’s intrinsic roughness. This

undesired feature, however, as we have seen and will see also in the next chapters, does not affect
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PAk unbiasedness and statistical robustness. In Chaapter 6 we will describe a possible stratedy to

mitigate this problem.

3.2.6 Computing the free energy in a generic point: the PAk interpolator

A great amount of approaches for interpolating are available in the literature[8, 77], from the basic

nearest neighbour interpolation, to inverse distance weighting, to Gaussian KDE to the use of radial

basis functions. These methods are only effective when the dimensionality is low, but are rapidly

affected by the COD.

We propose an approach that applies the PAk scheme to define an interpolator which works

also in high dimensional spaces. The procedure is straightforward: for every point ξ in which we

want to compute the interpolated free energy we compute the distances to all the points in the

sample {rξ,i}i and we rank the neighbours i of ξ from 1 to N . Then we estimate the optimal

neighbourhood size k̂ξ as described in section 3.1.3, but with an important difference: the kNN

number-density estimates which enter the log-likelihoods in equations (3.5) for the likelihood ratio

test should be ρξ := k/ωd rdξ,k+1 =: k/Vξ,k rather than the usual definition of Vξ,k as the distance

to the kth neighbour; this accounts for the fact that ξ is not a point of the sample: in other

words, the biggest volume shell centred on xξ that contains only one point is that of radius rξ,2.

Once the optimal number of neighbours for point ξ is found, PAk likelihood is defined as in the

standard PAk by equation (3.11), but considering that this time νξ,1 := ωd rdξ,2 and that for

j > 1 νξ,j := ωd (rdξ,j+1 − rdξ,j). This likelihood can be maximised, returning the maximum-

likelihood estimate of the interpolated free energy at point ξ: F̂ξ. This procedure, introduced

by us in reference[29] has been proven to define an unbiased interpolator for the free energy at

configurations not belonging to the data sample in various applications[204]. We call it the PAk

interpolator. PAk interpolator has the same features as its parent method PAk, discussed in section

3.2.4. The computational cost of computing the interpolated free energy with this method is the

same as a simple PAk estimate.
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Chapter 4

An application to the SARS-CoV-2

Main Protease

In this chapter we present a project in which, making use of the PAk estimator presented in

Chapter 3, we characterise the metastable states of SARS-CoV-2 Main Protease to propose potential

druggable pockets. This work is published with the title Candidate Binding Sites for Allosteric

Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics

Simulations[30]. This application allows illustrating the advantages of the PAk estimator in a

real-worls application, but also its drawbacks, posing the basis for future developments.

We analyse a 100µs Molecular Dynamics (MD) trajectory of the SARS-CoV-2 Main Protease

with the purpose of explicitly characterising and describing these metastable states. In some of these

configurations, the catalytic dyad is less accessible. Stabilising them by a suitable binder could lead

to an inhibition of the enzymatic activity. The idea that motivates this analysis is exploring the

viability of allosteric inhibition. Based on a characterisation of global and local properties of the

states of the molecule, we are able to propose a few possible targets which could serve as binding

sites for drug-like compounds with the purpose of allosteric inhibition.

The core of all this analysis procedure is a pipeline of unsupervised methods which combines:

an accurate ID estimate[68]; the PAk estimator (introduced in section 3.2.2 of Chapter 3), which

allows characterising a free energy landscape as a simultaneous function of hundreds of variables;

a Density Peak algorithm to find configuration clusters based on their FES[61, 158]. These tools

allow us to identify several conformations that, when visited by the dynamics, are stable for several

hundred nanoseconds.
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4.1 SARS-CoV-2 Main Protease and its inhibition

The severe acute respiratory syndrome, which has broken out in December 2019 (COVID-19), is

caused by coronavirus 2 (SARS-CoV-2)[199, 208]. Its main protease (Mpro or 3CLpro) was the

first protein of SARS-CoV-2 to be crystallised, in complex with a covalent inhibitor, in January

2020[103]. It is essential in the viral life cycle since it operates at least eleven cleavage sites on large

viral polyproteins that are required for replication and transcription[103, 207], so it is an attractive

target for the design of antiviral drugs[153]. Since there is no known human protease having a

cleavage specificity similar to the one of Mpro, it may be possible to design molecules that do not

interact with human enzymes[103, 207].

Mpro is a homodimer. Each monomer has 306 residues and is composed of three domains.

Domains I and II (residues 10-99 and 100-182, respectively) have an antiparallel β-barrel structure.

The binding site of the substrate is enclosed between these β-sheets[207]. Domain III (residues

198-303) contains five α-helices and has a role in the regulation of the protein dimerization[207].

The two residues His41 and Cys145 form the catalytic dyad. The structure and way of functioning

of the SARS-CoV-2 Mpro are similar to the ones of the SARS-CoV Mpro[10, 201]. This is expected,

due to a 96% sequence identity between them.

The most direct strategy to block the action of the Mpro is through small molecules that directly

interact with the catalytic site. The first in silico trials were made with covalent inhibitors known to

be interacting with the catalytic site of SARS-CoV Mpro such as N3[103] or 11r[207]. Many efforts

followed in the field of virtual screening. In this kind of studies, computational docking of millions

of molecules is performed, the behaviour of the best candidates is usually then tested through MD

simulation [38, 76, 102, 106, 128, 141].

Another possible route that can be followed to stop the action of the Mpro, is allosteric inhibition[49,

119]. The functional definition of allosteric regulation implies the energetic coupling between two

binding events[69, 129]. The binding of the allosteric ligands affect orthosteric pockets by altering

protein dynamics, either through large-scale structural changes or through more subtle changes in

correlated residue motions [136, 197]. Following the idea of conformational selection[198], allosteric

effectors will act as inhibitors by stabilising configurations in which the access to the active pocket is

at least partially closed. In short, the idea is to block the protease in one of its metastable conforma-

tions, in which the catalytic dyad cannot regularly operate, inhibiting in this way the whole protein

functionality. This approach, at least in principle, has several advantages. First of all, it offers the

possibility to drug sites far from the catalytic pocket, thus enlarging the chance to discover active

compounds and to obtain non-competitive inhibition. If an allosteric site is identified and targeted,

using this strategy one can develop drugs which are highly specific since they do not bind in active
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sites, which are typically conserved in protein families [137]. Owing to these advantages, allostery

has been established as a mechanism for drug discovery, for example to target G-protein-coupled

receptors(GPCRs)[48, 91] or protein kinases[55, 143, 200].

4.2 Search for metastable states

Our strategy to identify candidate binding sites for allosteric inhibition is fully based on the analysis

of a long MD trajectory. This can be seen as a first important drawback of PAk in its original

formulation: it cannot be used to analyse trajectories generated under the action of an external

bias, as it happens in many enhanced sampling methods. We will see in the nexh Chapter how this

limityation can be overcome.

We analyse a 100µs MD trajectory of the Mpro generated in the D. E. Shaw Lab[52]. Our scope is

to search for possible metastable states of the protease, namely configurations which do not change

significantly on the scale of several tens of ns. These configurations are important for developing

drugs for allosteric inhibition, since they are already (marginally) stable, and by designing a ligand

which increase their stability they can become kinetic traps[137]. The local minima of the free

energy, if deep enough, correspond to the metastable states, approximately the same that would be

found by performing a costly Markov State Modeling analysis[154].

We look for metastable states estimating the free energy landscape with PAk, whose compet-

itive advantage is that it allows performing the analysis in very high-dimensional spaces, taking

into account at the same time several hundreds different variables without explicit dimensional

reduction[157, 179]. Then the estimated FES undergoes a completely unsupervised and nonpara-

metric density-peak clustering algorithm. This procedure allows finding the free energy minima,

and thus the metastable states, with no prejudice on their structure.

4.2.1 Choice of descriptors

We extract from the 100µs MD trajectory of the Mpro enzyme 10.000 equally spaced frames, one

every 10ns. Since the molecular complex is a homodimer, we consider the 20.000 total frames of the

two monomer trajectories as a sample of the conformational space of a single monomer. However,

the trajectories of the two monomers are considered and analysed separately, in order to verify a

posteriori whether the configurations they explore are similar or not.

We carry out our analysis in two different descriptor spaces: the space defined by all the ψ

backbone dihedrals of the protease, and the space defined by the contacts between pairs of residues

which break or form during the dynamics. Both spaces consider the enzyme globally, not limiting

the analysis to the catalytic dyad or to the binding pocket, which is essential to unveil possible
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allosteric states. Our two metrics are both sensitive to local and global conformational changes in

the peptide, but capture different details: the ψ coordinates keep track of the changes in the protein

backbone; the mobile contacts metrics, instead, also keep track of the side-chains rearrangements,

while neglecting fluctuations around the completely formed or completely unformed contacts. In

both metric spaces in which we perform our analysis, we neglect the 10 residues at the C-terminus

of the peptide, since they are highly mobile in both monomers and might introduce noise in the

analysis. The distance functions among points in the two metric spaces are:

• the ψ-backbone-dihedral distance[50]; such distance between configurations t and t′ is defined

as θt,t′ =
P

i((ψi,t − ψi,t′))
2, where ψi,t is the value at time t of the ψ dihedral angle that

involves the α-carbon of residue i of the monomer, index i runs between 1 and 296 and the

notation ((•)) stands for 2π-periodicity within the brackets;

• the contact-map distance[50], restricted only to contacts which vary significantly during the

simulation. To define these mobile contacts, we first compute the contact-map matrix C for

each frame, restricted to residues 1-296. For each couple of residues ij we first evaluate the

distances between all the couples of heavy atoms, with one atom belonging to i and the second

one belonging to j. Cij is then equal to σ(dmin) where dmin is the smallest distance between

the couples of atoms, and σ is the sigmoidal function: σ = (1 − (d/r0)
10)/((1 − (d/r0)

20)) ,

with r0 = 4.5Å. We consider as mobile the contacts which are completely formed (Cij > 0.8)

in at least 5% of the frames and completely broken (Cij < 0.2) in at least 5% of the frames.

Moreover, we neglect those contacts which have a value between 0.2 and 0.8 (i.e. close to

r0) in more than 50% of the frames. This procedure selects 155 relevant mobile contacts for

the first monomer (m1) and 184 for the second (m2). Most of these contacts are in common,

as reasonable since the two monomers are chemically identical; the union of the two sets has

235 elements. Denoting by M the set of mobile contacts of a monomer, the contact-map

distance between configuration t and t′ is dt,t′ =
P

(i,j)∈M
p
(Cij(t)− Cij(t′))2, where C(t) is

the contact matrix of configuration t.

4.2.2 Our nonparametric unsupervised pipeline at work

The free energy landscape of each dataset is estimated following the procedure described in the

previous chpapter. First of all, the intrinsic dimension (ID) of the manifold containing the configu-

rations is calculated [68]. In the spaces of the ψ dihedrals we get an ID of 28 for m1 and of 26 for

m2. In the spaces of the mobile contacts, we get an ID of 17 for both monomers. The free energy F

of each configuration is then calculated using the PAk estimator in equation (3.12). Finally, using
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(a) (b)

Figure 4.1: Global observables for the 18 identified states. (a) Trajectories for the two monomers
in the space of the states. The frames that do not belong to a core set are relabeled by the state identifier of
last visited core state; notice there is no label assigned to the first 10 to 20 µs indicating that no statistically
meaningful metastable state is visited in the first part of the trajectory. (b) Global observables of the states.
Top: the maximum residence time for each state, taken as the longest time interval over which the state
label does not change. Middle: average PDA of the frames belonging to the core of a state. Bottom: average
SASA of the catalytic dyad of the frames belonging to the core of a state; the SASA is computed choosing
a probe radius rp = 2.0Å.

Density Peak (DP) clustering[158] in its unsupervised variant[61], we build a topography of the free

energy landscape.

When we find the free energy minima we assign all the frames to one of these minima according

to the DP procedure. The set of configurations assigned to a single free energy minimum defines

a free energy basin. Then, following ref [61], we find the saddle point between each pair of basins.

The cluster Core Set (CS) of a basin is the set of configurations whose free energy is lower than the

free energy of the lowest saddle point of the basin.

The described approach requires choosing the metric and a single metaparameter, the statistical

confidence Z at which a basin is considered meaningful. A basin a is considered meaningful if

(Fab − Fa) > Z(εFa + εFab
) for all the basins b which share a border with a. Here, Fa is the

free energy minimum of basin a, εFa is its uncertainty, Fab is the free energy of the saddle point

between basin a and b, and εFab
is its uncertainty. In our analysis Z is set to the value Z=1.4,

which corresponds to a confidence level of approximately 85 %. This means that we expect to have

nearly a 15% of artificially split free energy basins. We have verified that, by varying Z around this

value, the description does not change significantly: the most populated free energy basins remain

approximately unchanged.
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Figure 4.2: Pictorial illustration of the PDA observable. Visualisation of the backbone (in dark
blue) of the residues surrounding the catalytic dyad (in red) and thus shaping the enzyme’s binding pocket.
In light blue the most flexible loop surrounding the cavity are represented: the left and upper flap, the linker
and right loop. In white dashed lines, the segments connecting the five Cα atoms which delineate the three
triangles whose total area we call PDA. Such triangles are: Ser46-Gly143-Met165 and Thr25-Ser46-Gly143,
Gly143-Met165-Arg188. The segment labels report distances in Å.

In the following analysis we call state a set of configurations which belong to the core set of the

same free energy basins according to both metrics. If, for example, a given basin number found using

the dihedral metric is split in two different basins according to the contact metric, in our analysis

we will consider two states. As a consequence, our states are structurally uniform according to

both metrics. We consider in our analysis only states with a population of at least 8 core state

configurations. With this criterion, we identify 11 relevant states in the trajectory of m1 and 7 in

the trajectory of m2, for a total of 18 metastable states.

4.3 Characterisation of metastable states

4.3.1 Global observables

Firstly, we want to make sure that the metastable states detected analysing the m1 and m2 tra-

jectories separately are the same as if we run the algorithm on the merged 20.000 configurations.

We check it in the case of the mobile contacts metric. We find that all the clusters involve either

only frames from the first monomer or from the second. There is no relevant cluster that shares

structures from both monomers, meaning that in terms of the contact map the configurations of

Chapter 4. An application to the SARS-CoV-2 Main Protease 43



4.3. Characterisation of metastable states

m1 are different from the configurations of m2. Due to their chemical identity, in an ergodic simu-

lation the configurations explored by the two monomers should be nearly identical. Therefore, the

first important result of our analysis is that 100µs of MD simulation are not sufficient to explore

ergodically all the configuration space, as recently claimed also by Cocina et al.[42]. This is also

visible by looking at Figure 4.1a: most states are visited only 2-3 times. Consequently, the mean

residence time cannot be meaningfully estimated. We instead compute, the maximum residence

time, considering it a proxy of the metastability of each state. These times are shown in the upper

panel of Figure 4.1b and range from 0.20µs to 16.07µs.

To quantify the accessibility to the catalytic site we estimate two observables: the first one is

the well-konwn average Solvent-Accessible Surface Area (SASA) of the dyad[11, 115, 176]. The

second one was defined by us, designed specifically for the active site of the Mpro; we call it Pocket

Doorway Area (PDA) and it quantifies the opening of the catalytic pocket from the position of four

selected Cα carbons. PDA is defined as the sum of the area of the three triangles formed by the

Cα carbons Thr25-Ser46-Gly143, Ser46-Gly143-Met165 and Gly143-Met165-Arg188, which form the tips

of 5 loops delimiting the cavity. For a visual representation of the PDA see Figure 4.2. The two

quantities, presented in the middle and lower panels of Figure 4.1b, are in general quite correlated,

although not in all the states. Indeed, contrary to PDA, SASA is sensitive to what happens in the

direct proximity of the catalytic residues, while neglecting more macroscopic rearrangements of the

catalytic pocket.

4.3.2 Structural characterisation of the states

We characterise the states by analyzing in detail their contact structure and their backbone ar-

rangement. In the case of the mobile contacts, we analyse the intra-monomer contacts which

change significantly between at least two of the 18 states; furthermore, we also track the behaviour

of few inter-monomer contacts that might reflect some changes in the metastable states’ catalytic

cativity[10, 12]. When the average over the configurations belonging to a state of the contact matrix

entry Cij for a given contact (i, j) is < 0.3, we consider that the contact is not formed in that state;

when the average is > 0.7 we deem it to be formed; if neither of the case applies we label the

contact as undetermined for that state and indicate it with letter n. The contact structure of the

selected states is summarised by the table in Figure 4.3a. The contacts displayed are all the mobile

contacts that change relevantly among states; contacts not displayed in Table 4.3a either have an

undetermined label n for most of the stares or they involve residues directly contiguous to some

contact displayed.

Turning to the backbone, we analyse the ψ dihedral angles in the loops closing the cavity and
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m1:1 1 1 0 0 1 0 0 1 0 n 1 1 1 0 1 0 1 1
m1:2 n 1 0 0 1 0 0 0 0 n 1 0 1 1 1 1 1 1
m1:3 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1
m1:4 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 n
m1:5 0 1 1 1 0 1 1 1 1 1 1 n 1 1 0 1 1 1
m1:6 n 1 1 0 0 1 0 1 1 n 1 0 n 0 1 1 1 1
m1:7 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1
m1:8 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1
m1:9 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 n
m1:10 0 1 0 1 0 0 0 1 0 n 1 0 n 0 1 1 1 1
m1:11 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1
m2:1 1 1 1 0 1 1 0 1 n 1 1 0 n 1 0 1 0 1
m2:2 1 1 1 0 1 1 0 1 n 1 1 0 n 1 0 1 0 1
m2:3 0 0 0 0 0 1 0 1 n 1 0 0 n 1 0 1 1 1
m2:4 n 0 0 0 0 n 0 1 1 1 n 0 1 0 0 1 1 1
m2:5 0 0 0 0 n 1 1 0 n 1 n n 1 0 1 1 0 n
m2:6 1 1 1 0 n 1 0 1 n 1 1 0 0 1 0 1 0 1
m2:7 n 1 1 0 1 1 0 1 n 1 1 0 0 n 0 1 0 1

(a)

(b)

Figure 4.3: (a) Table presenting the status of selected intra-monomer contacts and inter-monomer contacts.
In the case of inter-monomer contacts, the residue of the monomer which is excluded by the metric that defines a state is marked
with a star(∗). For each contact (columns) the average over the configurations of a given state is reported in the corresponding
row. Such contacts are divided into two subgroups by a double vertical line: on the left those between residues belonging to
the flexible loops which control the access to the binding pocket and on the right other contacts. For readability, the entries
take only three possible labels: 0 when the contact is not formed, 1 when it is formed and n in all other case. Contacts whose
label does not vary in any of the states of a given monomer are reported in light gray colour. (b) Visualisation of selected
inter-monomer contacts. A VMD[99] representation of monomeric Mpro in state m1:1; on the left hand side the enzyme
binding pocket, which encloses the catalytic dyad (in red); all other highlighted residue couples refer to the contact with the
corresponding colour in the table.
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state ID Ile43-Pro52 loop Phe140-Cys145 loop Phe185-Tyr201 loop 2 61 153 154 168
m1:1 αββαααααcβ βββαββ ββcβββcβββββββββα β β c α α
m1:2 αββαααααcβ ββcαββ ββcβββββββββcβββα β β c α α
m1:3 αααααcααcβ cαβααβ ββcβcβββββββcβββα β β β c α
m1:4 ααααβcβαβc cβcαββ ββcβcβcβββββββββα β β β c α
m1:5 ααααβcβαcβ cαβααβ ββcβcβcβββββcβββα β β β α α
m1:6 αββαααβαcβ cαβααβ ββcβββcββββββββcα c β β c α
m1:7 ααααβcββcβ βββαββ ββcβcβcβββββcββcα β β β α α
m1:8 αβαcβcαβββ βββαββ ββcβββcβββββββββα β β c α α
m1:9 ααααβcββcβ ββcαββ ββcβββββββββββββα β β β α α
m1:10 ααβαβαββcβ ββcαββ ββcβββββββββββββα β β β α α
m1:11 ααααβcββcβ cβcαββ ββcβββcβββββββββα β β β α α
m2:1 αββαααααcβ βββααβ ββcβcβββββββcβββα β β β c α
m2:2 αββαααααcβ βββααβ ββcβcβββββββββββα β β c α α
m2:3 αββββααβββ βββcαβ ββcβcβββββββcββcα α α c α α
m2:4 βββββαβαβα cββααβ ββcβββcβββββββββα α β c α α
m2:5 αββββαβββα ββββββ cαβααααααβββββββα β β c α β
m2:6 αββαβαcαcβ βββcαβ ββcβcβββββββcβββα c β c α α
m2:7 αβββββαβββ βββααβ ββcβββcβββββcβββα β β c α α

Table 4.1: Selected ψ backbone dihedral angles . The first three column refer to the three most
flexible loops, which are the ones controlling the access to the catalytic pocket. The remaining columns refer
to other isolated dihedrals, selected due to their high variability throughout the 18 states. For each row, the
average over the configurations of the corresponding state is considered. For a better readability, we adopt
a ternary labelling: if −π/2 < ψ < pi/6 the angle is labeled as α; if ψ < −11/12π or ψ > π/2 as β; in all
other cases the angle is labeled as c. Dihedrals whose label does not vary in any of the states of a given
monomer are reported in light gray colour.

other few dihedrals which change significantly in the various states. Results are reported in Table

4.1. Notice that the labels α,β and c do not exactly refer to the peptide’s secondary structure (α-

helix, β-sheet and coil), since ψ dihedrals are not enough to univocally map the secondary structure

geometry (and not even the Ramachandran plot[156] might be enough [164]); however, they provide

a rapid, though approximate, indication, since the value of ψ is highly correlated with the secondary

structure geometry.

4.4 Description of the metastable states

4.4.1 A little nomenclature

In this subsection we introduce some terms that will help us to describe the structural properties

of the metastable states. As mentioned above, the catalytic dyad His41-Cys145 is located in the

pocket between the protein domains I and II. The access to this cavity is controlled by the flexible

loop structures highlighted in Figure 4.3b. The two most flexible loops[25] involve residues from

Ile43 to Pro52 (left flap) and from Phe185 to Tyr201 (linker loop). The left flap corresponds to the

leftmost loop in Figure 4.3b, and opens and closes like a small door. No conformers from the second

dimer m2 have the left flap wide open, consequently contact Glu47-Leu57 is never formed. The

linker loop closes the cavity from below in Figure 4.3b and links domains II and III. All the m2

states have a loosely structured linker loop, with contact Arg131-Thr199 almost never formed and
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contact Asp197&Thr198-Asn238 always formed. The contacts controlling the distance between the

β barrels of the I and II protein domain[207] (Asn28-Tyr118 and Val18-Gly120), which are always

formed in m1, are at times unformed in m2. The loop from Phe140 to Cys145 (we call it upper flap)

is smaller and assumes mainly two conformations: tilted downwards (contacts Ans28-Gly143&Ser144

and Tyr118-Asn142 not formed, dihedral ψ144 in β configuration), which hides the catalytic Cys145

or flat out (ψ144 in α configuration), which leaves more access to the dyad. Last, the β-sheet loop

from Met162 to Gly170 delimits the cavity from the right in Figure 4.3b (we call it right loop); it is

the least flexible, but it interacts with the N-finger of the other monomer and is crucial for shaping

the substrate binding pocket[85].

4.4.2 Structural analysis

All m2 states except m2:5 have the upper flap not tilted down and retracted with respect to the

pocket, with contact Tyr118-Asn142 almost always formed and contact Gly138-His172 almost never

formed. These two contacts are almost always mutually exclusive, with exception of states m1:6 and

m2:5, in which both contacts are formed at the same time. Another important difference among

states, not related with the loops, is that dihedrals from Leu227 to Asn238 (bottom right in Figure

4.3b) in all states of m1 are arranged in α configuration, so that an α-helix is formed and contact

Tyr239-Leu287 is always formed; in m2 such α-helix structure is often defective. As for the contact

between the N-finger and domain III (contact Gly2-Asn214), in m2 it is often formed, while it is

broken in most m1 states.

We describe all the states in detail in Appendix C. Hereby, we focus on the most stable, the

most open and the most closed according to the SASA and PDA observables. From the analysis

of the maximum residence time it is clear that states 1 and 2 of both m1 and m2 are among the

longest-lived metastable states. All four are in fact very similar to the crystallographic structure

(PDB 6Y84[138]): they all have the left flap and the linker loop in contact between each other

(cont. Met49-Gln189); the left flap is closed (cont. Glu47-Leu57 broken, cont. Thr25-Cys44 formed)

and the linker loop stretched towards it (cont. Leu167-Arg188 broken), covering the lower part of

the binding pocket.

The two most open states are m2:4, which ranks the highest in both PDA and SASA, and m1:8.

In m2:4 the upper flap is not tilted downwards and is far from the pocket and from the right loop,

leaving cont. Gly138-His172 not formed; the left flap is very open (although the dihedrals of this

loop are quite variable among the configurations of such state); the linker loop is slightly contracted

(cont. Arg131-Thr199 and Pro132-Thr196 not formed), not stretching towards the left flap as in other

closed or partly-closed states; this leaves the catalytic dyad well exposed. State m1:8 also ranks very
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(a) (b)

Figure 4.4: (a) Visualisation of monomeric Mpro in state m1:9[99]; in red the catalytic dyad; in dark
blue the residues involved in the upper pocket (top) and the distal pocket (bottom) found by the software
PockDrug[100]. (b) SASA distibutions over configurations with selected contact patterns. 0
indicates a contact surely not formed, 1 indicates a contact surely formed. Top: upper pocket. Bottom:
distal pocket.

high in PDA and in SASA. The left flap is open, although dihedrals from Ile43 to Ser46 are not all in

α configuration; their particular arrangement (αβαc), however, grants that the biggest sidechains

of the left flap are not oriented towards the binding pocket. The linker loop is not stretched towards

the left flap, but rather down, towards the interface with the solvent; it is quite open (dihedral

of Gln189 in c instead of β configuration) in proximity of the pocket and all its sidechains do not

obstruct the access to the cavity (in particular those of Arg188 and Gln189, responsible for a low

SASA in other states).

Among the most closed states we mention m1:7,m1:9,m2:3,m2:5. State m1:9 is very similar to

m1:10 in its contact and backbone structure, with the exception of the left flap, which is more

open in state m1:10. State m1:9 is also structurally similar to m1:7: the only difference among the

contacts is Pro132-Thr196, which is formed in m1:7 and not in m1:9, allowing the lower loop to be

more flexible. In both, the upper flap is tilted downwards, but the left flap backbone is open. In

m1:9 the side-chains of the residues in the loops surrounding the binding pocket are oriented towards
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Figure 4.5: Representation of monomeric Mpro in state m1:1 with highlighted residues and
candidate binding pockets. Residue couples involved in contacts are highlighted according to the colour
code in the the table in Figure 4.3a. The three proposed binding sites are represented by a golden wire mesh.

the catalytic dyad, causing such state to rank among the lowest in SASA. State m1:7 ranks among

the lowest in PDA and as the lowest in SASA; the reason lies in the sidechains of the lower and

left flaps, in particular of Thr45 and Gln189, which form a contact and effectively close the access to

the reactive site. State m2:3 ranks as the third lowest in both SASA and PDA. Cys145 is not well

covered, but on the other hand His41 is less accessible than in most other states. As most m2 states,

m2:3 has the upper flap bent upwards and contact Gly138-His172 not formed. The linker loop is not

stretched, leaving the contacts with Arg131 partly unformed. The left flap is closed and stretched

towards the linker loop and its dihedrals are arranged in such a way that cont. Met49-Gln189 is

not formed. Finally, state m2:5 is the one with the lowest PDA and is among the lowest-ranked

in SASA. Its conformation is quite peculiar: the linker loop is all retracted and coiled (it is the

only state of m2 forming cont. Leu167-Arg188). The left flap is all stretched towards the linker

loop (cont. Met49-Gln189 formed) and almost completely covers the catalytic His41. The upper flap,

rather than being flat or tilted down, is oriented upwards, causing a deformation in domain II which

allows cont. Gly138-His172 to be formed. Remarkably, like m1:9, state m2:5 is one of the few states

with cont. Ala285 - Ala285∗ not tightly formed.
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4.5 Looking for druggable targets

Our analysis shows that the accessibility to the catalytic dyad is reflected in the forming and

breaking of few relevant contacts around the reactive cavity. For example, cont. Glu47-Leu57 is not

formed when the left flap is closed, a condition common to most states in which the catalytic dyad

is not accessible. Similarly, the catalytic site (in particular Cys145) is less exposed when the upper

flap it tilted downwards, i.e. when cont. Tyr118-Asn142 is not formed. The druggability analysis

software PockDrug[100] finds one pocket in correspondence of the residues of each of the two contacts

(respectively called left pocket and upper pocket) and assigns to them a druggability probability

of 0.68 ± 0.08 and 0.95 ± 0.03. Targeting these two regions with drug-like compounds, blocking

the formation of the mentioned contacts, might prove a successful strategy for the inhibition of the

catalytic activity. The distribution of SASA over all configuration in which contact Tyr118-Asn142 is

not formed is significantly shifted towards lower SASA values than in the cases in which the contact

is formed (see Figure 4.4b).

Our analysis on the relevant contacts also unveils the presence of another interesting pocket

far from the catalytic site, in the interface region between domains II and III (right hand side of

the table in Figure 4.3a). The five relevant contacts in this region are: Arg131-Thr199, Arg131-

Asp289, Pro132-Thr196, Asp197&Thr198-Asn238, Tyr239-Leu287. This region, which we call distal

pocket has been previously identified and screened for docking and has been predicted as a potential

druggable target[59, 183]. It has also been suggested as a target for allosteric inhibition of the

catalytic activity[60, 209]. Coherently, the predicted druggability score is 0.65±0.08. Experimental

confirmation of the viability of the distal pocket as a target comes from crystallographic fragment

screening[45, 59]. Among the hits that were identified, three are particularly interesting. Fragment

Mpro-x0390, classified as “high confidence", is in contact with atoms from five different residues,

among which four are involved in the relevant contacts mentioned above. Fragment Mpro-x0464,

also classified as “high confidence", is in contact with eleven residues, among which six are involved in

the relevant contacts. Fragment Mpro-x1163, classified as “correct ligand but with weak density",

is in contact with nine residues, among which five are involved in the relevant contacts. With

a completely different approach, the database Pocketome[9] identifies for the coronavirus Mpro a

bindable pocket in the distal region, with two possible ligands (entry R1AB_SARS2_P6); this

pocket includes residues Pro132, Thr196, Thr198, Asn238, Tyr239, all involved in the five relevant

distal pocket contacts. Alternatively, many other algorithms have been developed for the detection

and scoring of druggable pockets[67, 82, 109, 117, 142, 165, 196]. We decided to further benchmark

our findings by running the pocket detection software fpocket[113]. While for most structures the

analysis does not detect any pocket in the distal region, the structures in the core set of state
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Source Organism 47 57 118 142 131 132 196 197 198 199 238 239 287 289

Human SARS-CoV2 E L Y N R P T D T T N Y L D
Human SARS-CoV E L Y N R P T D T T N Y L D

Murine CoV A L Y C R S Q D Y T G F L D
Human CoV 229E T E Y N R T A N Q M G F L D

Feline CoV T E Y A R S T N V M S F L D
Avian inf. bronchitis S V Y A R S P D N L G F F D
Thrush CoV HKU12 K I Y N Q T T F Q Y S F F C

Table 4.2: Mutation and conservation of relevant residues. Amino acid 1-letter code of relevant
residues in the Human SARS-CoV2 3CLpro (from PDB 6Y84) and of the corresponding residues in the other
proteins in the seed of the same Pfam family (Coronavirus endopeptidase C30, Pfam entry PF05409). The
sequence IDs reported as column headers refer to the sequence of Human SARS-CoV2 3CLpro, in the first
non-header line of the table.

m1:9 display two pockets in contact with various residues in the distal region, even if with low

druggability. Finally, we analyse the whole trajectory with the software MDpocket[168], which

quantifies in terms of a frequency grid the points involved in accessible pockets: the frequency value

ranges from 0 if a point is never found along the trajectory in an open pocket to 1 if it is always

found. The software assigns low values to the distal pockets: this suggests that the distal pocket is

observed as a transient site, which makes its detection non-trivial. With the aim of verifying the

presence of allosteric effects involving the distal pocket, we focus on the above mentioned contacts

in this region. We compute the distribution of the PDA and of the SASA restricted to the frames in

which the contact pattern described above is present or not. Despite all considered residues being

far from the binding pocket, the distributions of the PDA and of the SASA are sizably different

in the two conditions (see Figure 4.4b). This suggests that if these five contacts could be forced

to be formed or broken according to the desired pattern, e.g. by a drug-like compound, one could

influence the PDA and the SASA, controlling indirectly the access to the reactive site. Comparing

the table in Figure 4.3a and Figure 4.1b, a good candidate for allosteric drugging seems to be the

contact pattern of state m1:9: (0, 0, 0, 1, 1). Interestingly, the PDA and SASA distributions obtained

by selecting only the first three of the five contacts, namely (0, 0, 0), do not differ significantly from

those with all five contacts involved (see e.g. Figure 4.4b).

4.6 Mutation and conservation of relevant residues within the same

protein family

We finally analyse the conservation of the residues involved in all the proposed contact patterns in

the sequences of proteins belonging to the same family as Mpro. We perform a multiple sequence

alignment of our sequence (from PDB 6Y84[138]) with all the sequences in the Pfam[64] seed of the

corresponding family, Coronavirus endopeptidase C30 (Pfam entry PF05409), obtained via multiple

sequence alignment. Similarly to reference [192], we find that many of the residues involved in the
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proposed target sites are conserved in all or most of the sequences and furthermore all of them

are conserved in the sequence of Human SARS coronavirus (SARS-CoV). In fact, as we see by

looking at Table 4.2, all relevant contacts are conserved between the Mpro of Human SARS-CoV2

and Human SARS-CoV. Particularly stable within the protein sequences appear to be the residues

corresponding to: Tyr118, Arg131, Asp289, Leu287. Furthermore, quite recurrent are Asn142, Thr196,

Asp197.

4.7 Discussion

Our data analysis approach allowed us to identify 18 putative metastable states of the Mpro of

SARS-CoV-2. We characterised these states in terms of their structural differences, identifying

some contacts which are selectively formed or broken in the different states. We believe that this

analysis brings insight on the molecule’s conformational changes which might prove useful for the

design of farmaceutical inhibitors. Our analysis approach is useful especially for understanding

(and eventually controlling) the global dynamics of a protein, since treats the region of the catalytic

cavity and any other part of the protein within the same framework. We stress that the same kind of

analysis can easily be applied to any other candidate target proteins, due to its extreme generality.

Based on this analysis we propose some possible target sites for the design of drug-like molecules,

some of which directly in contact with the flaps regulating the access to the enzyme’s active site,

some located in the distal pocket at the interface between domains II and III of the monomers

(see Figure 4.5). We provide evidence of allosteric effects connected to such pocket and we propose

as drug target simply three contacts whose inhibition is correlated to a reduction in the access to

the catalytic site; a more refined drug design could yield even stronger catalytic inhibition. We

show that all three proposed target sites are comprised in pockets with high druggability score

according to the software PockDrug. We find that all residues involved in the proposed target

sites are conserved between the Mpro of Human SARS-CoV and Human SARS-CoV-2 and that

many of them are conserved in most sequences in the seed of the Pfam family to which they

both belong. We interpret this as a comforting indication for the validity of our proposed targets.

Moreover, the conservation of all such residues might suggest that mutations are unlikely, thus

hopefully the displayed allosteric mechanisms are resistant to possible future mutations. A further

possible interesting way to validate the viability of the predicted pockets as potential drug targets,

especially of the distal pocket, would be analysing the effect of mutations in that region on the

catalytic activity. Finally, a dynamical docking simulation would be the next step to assess our

findings from a more accurate biochemical standpoint.

To summarise, the added value provided by our analysis is twofold. First, and most importantly,
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we provide the structure of the state which should be targeted for drug design. This structure does

not coincide with the crystallographic structure, and not even with the most likely configuration

observed in the MD simulation: indeed some crucial tertiary contacts which are formed in the crystal

are not formed in the structure we propose, and these contacts form and break dynamically along the

trajectory. Available bioinformatic tools for searching druggable cavities do not normally provide

hints on the structural rearrangement which should be induced by the drug to modify the properties

of the catalytic cavity, as we are instead able to do. The second non-trivial insight provided by

our analysis is that it unveils high mobility in the distal pocket region, excluding the presence of

relevant conformational changes coupled with the accessibility of the catalytic dyad in other sites.

Even if we cannot exclude that allosteric effects may arise even from other pockets, our findings

suggest prioritising these targets among the wealth of putative binding sites found by automatic

scanning. The structures of the putative metastable states described in this work are available in

the Supporting Information of reference[30] for independent structural analysis and for targeted

drug design which, we hope, will be performed by groups with the appropriate competences.

All this analysis, however, was made possible by the public availability of a very long MD tra-

jectory of the sytem considered, generated on a powerful supercomputer[172, 173]. The availability

of such large special-purpose machines is a prerogative of few groups in the world. In order to

obtain a relevant MD simulation an arbitrary system of interest, most researchers have to resort to

enhanced sampling methods. In the next chapter we introduce a framework that allows extending

our free energy estimation approach to the case of biased MD simulations.
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Chapter 5

bPAk: free energy estimates from

statically biased simulations

In the previous chapter we have presented an analysis of a molecular dynamics trajectory including

configurations sampled from the canonical distribution. However, when dealing with molecular

systems or other systems characterised by rare transitions, e.g. the one presented in Chapter

4, samples representative of the underlying distribution, which is typically unknown, are difficult

to obtain and not always trajectories generated by special-purpose supercomputers[172, 173] are

available. To address this problem people resort to enhanced sampling techniques[15, 18, 112, 174,

184, 206].

The simplest manner to artificially force a simulation to visit the relevant states of the system

in a short simulation time is adding an external bias potential. Since estimating the free energy

surface in the sense of equation 2.5 from a finite sample requires, implicitly or explicitly, counting

how many times the system is observed in a finite region, the effect of this bias must be taken into

account to estimate the unbiased distribution.

In this chapter we introduce an approach to estimate the free energy as a simultaneous function

of several descriptors starting from data generated in a biased simulation. The method exploits the

properties of PAk, especially those discussed in section 3.2.4 which make PAk estimator punctual,

in a sense that will be rigorously defined in this chapter. We show that punctuality allows removing

the effect of the external bias in a simple and rigorous manner. The approach is validated on

model systems for which the free energy is known analytically and on a small peptide for which the

ground truth free energy is estimated in an independent unbiased run. In both cases the free energy

obtained with our approach is an unbiased estimator of the ground-truth free energy, with an error

whose magnitude is also predicted by the model. The results hereby presented are published in

reference [29] with the title Statistically unbiased free energy estimates from biased simulations and
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parts of this chapter are freely taken from such publication.

5.1 The problem of reweighting in biased simulations

The prototype of many enhanced sampling methods is Umbrella Sampling[189], in which an external

bias potential, constant in time, is added to the potential energy with the aim of accelerating the

transitions between the local free energy minima and explore all the relevant metastable states of

the system. We shall focus here on this specific approach, aware that the applicability of our method

can be extended given that few conditions are satisfied.

Let us consider a biased simulation in the canonical ensemble: during the simulation, the bias

B(x) is added to the potential energy U(x). This bias, is a function of a (possibly multidimensional)

CV s(x), namely B(x) ≡ B(s(x)). In the most general case, one might want to estimate the free

energy as a function of another (also possibly multidimensional) CV σ(x). The unbiased free energy

for a specific value σ̃ can be estimated as:

F (σ̃) = −β−1 log

Z
ρB(x) eβB(s(x)) δ(σ̃ − σ(x)) dx + fB (5.1)

where ρB(x) = Z−1
B e−β(V (x)+B(s(x))) is the biased probability distribution, ZB is the biased canonical

partition function and fB is an additive constant that will from now on be neglected. In ordinary

Umbrella Sampling the biasing CV is an explicit function of the the variables σ, namely s(x) ≡
s(σ(x)). In this case equation 5.1 takes the simple known form F (σ̃) = FB(σ̃) − B(s(σ̃)) where

FB(σ̃) = −β−1 log
R
ρB(x) δ(σ̃−σ(x)) dx. If s(x) is a generic function of the coordinates, instead,

the exponential factor cannot be brought out of the integral and there is no easy manner to estimate

the unbiased probability density ρ(σ) from ρB(σ).

Both in the case in which s is a function of σ or not, what is generally done in literature[15, 174,

184, 206] is to relax the delta function in equation 5.1 and instead use a kernel Kh that converges

to it only when the limit to zero is taken on its scale parameter h, as described in section 2.2.2. In

other words, instead of F in equation 5.1, the following quantity FK is computed:

FK(σ̃) := −β−1 log

Z
ρB(x)eβB(s(x))Kh(σ̃ − σ(x))dx (5.2)

so that, by replacing the true biased density ρB(x) by its sample estimator (see equation (2.15))

one obtains:

F̂K(σ̃) ∼ −β−1 log
NX

j=1

eβB(s(xi))Kh(σ̃ − σ(xj)) (5.3)
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where F̂K denotes the estimator of FK in equation 5.2 and is defined up to an additive constant. As

seen in section 2.2 there are many examples of such kernels K among nonparametric methods. The

common feature of these estimators is that they are not punctual, namely they provide an estimate

of the free energy on a finite-size region. Thus, in the limit n → ∞ they converge to FK in equation

5.2 but not to F in equation 5.1. Over this region the value of e βB(s) can be largely fluctuating,

making the estimators ill-behaved[108, 175]. The estimators F̂K only converge to F asymptotically,

namely in the limit when both h → 0 and n → ∞. However, even when big, n will always be

finite, so a finite parameter h may be required in order for the estimators F̂K to be statistically

meaningful. This problem becomes more and more severe in high dimension, due to the COD and

can happen even in the trivial case σ = s, if s is multidimensional or the sample is too small.

As we discussed in 3.2.2 in the PAk estimator for each point i one estimates the free energy

by maximising the likelihood of a model in which F is assumed to depend linearly on the the

neighbourhood order l:

F̂i := argmax
F

max
a

k̂iX

l=1

log(e−F+ale− exp(−F+al)νi,l) (5.4)

For each i, this maximisation is equivalent to the solution of a log-linear regression modelin which the

l observed responses are the random variables Yi = { 1
νi,l

}l distributed exponentially with expected

value ⟨Y i
l ⟩ = e−Fi+al. Therefore, Fi is the intercept of such model and this procedure makes the

estimator (empirically) punctual, as the l → 0 limit is practically equivalent to taking the limit

for h → 0. Under these conditions, it is not anymore necessary to take the average of the bias

factors e βB(s(x)) over the neighbourhood of σ(xi) set by a finite h: the reweighting involves only

the punctual value of the bias applied when generating a datapoint i, without even necessity to

specify the underlying CV s(xi). As we will show, this allows removing the effect of the bias in a

simple, numerically robust and theoretically well-founded manner, also in the case in which the CV

on which the bias is applied is not an explicit function of the variables σ.

5.2 Punctual reweighting using PAk

5.2.1 Analytic conditions for punctual reweighting in Umbrella Sampling

Looking at equation 5.1 we see that if there exists a map σ 7→ ŝ(σ) associating to each point σ(x)

a unique value s(x) = ŝ(σ(x)) then B(s(x)) can be formally expressed as an explicit function of

σ(x) and the exponential factor e βB(ŝ(σ)) can be brought out of the integral. Hence Equation 5.1

for σ̃ = σ(xi) takes the form

Chapter 5. bPAk: free energy estimates from statically biased simulations 56



5.2. Punctual reweighting using PAk

F (σ(xi)) = FB(σ(xi))−B(s(xi)). (5.5)

For future reference, we call the existence of such map the Map-Existence Condition (MEC). A

consequence of the MEC is that if for two configurations x1,x2 we have σ(x1) = σ(x2) then one

cannot have s(x1) ̸= s(x2). Again, we stress the MEC is required only for the configurations x in

the thermal ensemble. In fact, in molecular systems the interactions among atoms strongly reduce

the independent directions in which the system can move. For this reason the ensemble density

ρ(x) is almost vanishing on a big portion of RN . The simplest case in which the MEC is verified is

for s(x) = s(σ(x)), namely when s is an explicit functions of the coordinates σ. In this case ŝ ≡ s.

However, equation 5.5 can also be valid if ρB is estimated on the σ but s is an explicit function of

different coordinates σ′, as long as these can be expressed as function of σ. This is true if all relevant

σ′ can be parametrised by an explicit function σ′ = φ(σ). In this case s(x) ≡ s(σ′(x)) ≡ s(φ(σ(x)))

and ŝ ≡ s ◦ φ.

5.2.2 Reweighting with a punctual estimator

In the cases where equation 5.5 holds, if one is able to estimate FB(σ(xi)) via an unbiased punctual

estimator F̂B
i , the unbiased free energy at point i can be estimated as:

F̂i := F̂B
i −Bi (5.6)

where Bi := B(s(xi)) is simply the numerical value of the bias applied when generating datapoint

xi. Equation 5.6 applies in principle to any punctual estimator of the biased free energy. By

choosing a suitable F̂B
i , the meaning of F̂i becomes operatively clear. We propose to estimate F̂B

i

with PAk, because, as proven in section 3.2.2, it is punctual without explicitly taking the limit

h → 0, thanks to the extrapolating features of its likelihood optimisation, depicted in Figure 3.2.

Rephrasing it, for all points {σi}i in a sample, it provides an unbiased estimate of the free energy

F (σi) in equation 5.1 rather than the one in equation 5.2.

With this specification, equation 5.6 defines a simple punctual reweighting scheme to estimate

point by point the unbiased free energy of a set of data generated in a biased simulation. From now

on we shall for brevity refer to this procedure as bPAk . We will show that the procedure defined

in equation 5.6 gives consistent result even when the MEC is slightly violated, i.e. when s is not

an explicit function of the σ, but there exists a parametrisation φ that, given some σ, is able to

capture most relevant features in the space of the σ′s.
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Figure 5.1: Comparison of bPAk performance to PAk’s on analytic potentials. We consider two
functional forms: the 2-dimensional double well potential and the 6-dimensional potential in Appendices A.2
and A.6. In both cases we sample 10.000 points from a biased and an unbiased simulation. First column:
(A) 2-dimensional double-well potential surface; (E) bias potential used along x coordinate in the biased run
for both analytic potentials. Second and third column: comparison of PAk and bPAk estimates against the
analytic free energy showing correlation plots and pull distribution; (B),(C) respectively unbiased and biased
case for 2d potential; (F),(G) respectively unbiased and biased case for 6d potential. (D),(H) statistical tests
comparing bPAk to PAk on the points of the biased samples for 2d and 6d potentials respectively.

5.3 Validation of bPAk

In order to validate the robustness of the punctual reweighting procedure that we called bPAk we

compare its performance to that of PAk on unbiased samples, since PAk is already established as a

good free energy estimator on multidimensional data[157]. Thus, we choose our test systems such

that we are able to generate both an unbiased and a biased equilibrium sample. In order to assess

the statistical compatibility of the results obtained with PAk and bPAk, we use, as done in section

3.2.3.2, the correlation plot between estimated and ground truth free energies and the distribution

of the pull in equation (3.16). Using these tools we first of all compare the estimates of free energy in

the case of PAk and bPAk directly to the true known value in the case of multidimensional analytic

potentials that we sample numerically. Secondly, still in the analytic case, we compare directly the

two estimators. Finally, we consider as realistic case MD simulations of the CLN025 decapeptide;

in this case there is no known ground truth free energy for the system, therefore the only sensible

test is to directly compare the unbiased and the biased estimators.

5.3.1 Data sampled from multidimensional analytic potential surfaces

As a first step, we test bPAk on systems for which the ground truth potential is known analytically.

We consider two functional forms: the bidimensional double well potential shown in Figure 5.1A,
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and the 6-dimensional potential which is identical to the bidimensional one in the first two directions.

Thus, to bias the dynamics in both cases we can apply as bias potential the inverse of the analytic

free energy along the x axis, cutoffed such that it is non-zero only on a finite interval (Figure 5.1E).

We apply PAk to the unbiased sample and bPAk to the biased sample, obtaining two estimates of

the free energies, which in these two cases should coincide with the analytic potential energy. We

test the two estimators directly against the analytically known ground truth with the statistical

tests described in section 5.3.

Looking first at the 2-dimensional case, Figures 5.1B and 5.1F, the normal distribution with

unitary variance and zero mean seems in both cases well approximated; the correlation is good, with

the difference that the biased simulation explores regions at higher free energy, as expected. Also in

the 6-dimensional case, Figures 5.1C and 5.1G, the agreement with the ground truth potentials is

good. While for PAk (unbiased case) this had previously been shown, also for bPAk we can conclude

that the method performs excellently, at least in these two simple cases, and gives a statistically

unbiased estimate of the correct free energies.

We now consider the case in which the ground truth unbiased free energy is not known explicitly,

but one is able to generate a sample of data from the unbiased distribution. In this case, the

unbiased and biased simulations sample different sets of points. Thus, since PAk only gives a

punctual estimate of the free energy, we need to resort to the interpolation scheme described in

section 3.2.6 of Chapter 3, PAk interpolator, in order to directly compare PAk and bPAk results.

We apply PAk interpolator from the unbiased sample to compute the interpolated free energy on the

biased sample points. Then we apply bPAk procedure to biased points, i.e. we estimate the biased

free energy with PAk and then reweight punctually according to equation (5.2). This procedure

works even in the case we only know the value of the bias potential {Bi}i on sample points.

Figure 5.1 (D),(H) shows the results of this test for the 2d and the 6d potentials; all samples

generated have 10.000 points. Excellent compatibility between PAk and bPAk for both potentials

is displayed. The example illustrates that the compatibility between a free energy estimated with

and without the bias can be demonstrated also if the free energy is not known analytically. This

will be used to analyse the simulation of the peptide.

5.3.1.1 Comparison with standard reweighting on a finite neighbourhood

We compare the performance of bPAk with that of other nonparametric methods in the estimate

of the free energy from biased data. Firstly, we compare the results of bPAk to those of k -NN

reweighted in the standard way illustrated in equation 5.3, i.e. by subtracting to the estimated

biased free energy the quantity log⟨e βB(sj)⟩j . Secondly, we apply the punctual reweighting also
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Figure 5.2: Comparison of reweighting protocols on rough analytic potentials. Comparison of
different biased free energy estimators and reweighting protocols on datasets sampled from two distributions:
p and p10. (E) Heatmap representation of unbiased p. (F) Bias applied to p10, which is exactly ten times the
one applied to p. In both cased d = D = 2, so what we call unbiased free energy corresponds identically to
the potential energy entering the Boltzmann factor if p and p10 are interpreted as canonical p.d.f.’s. (A-D) .
All estimates are performed on 10000 data points. The values represented on the vertical axes are averages
over batches of 200 points. In solid transparent bars the sample standard deviation of the batch. (A),(B)
refer to p; (C),(D) refer to p10. The chosen values of 180 and 130 for the k -NN estimators are chosen as
the average optimal value of k predicted by PAk for the datasets. (A),(C) bPAk compared to k -NN with
standard reweighting. (B),(D) bPAk compared to k -NN, both with punctual reweighting

to k -NN, for which this ansatz is not justified by a demonstration of punctuality of the density

estimator, but becomes correct only in the limit h → 0.

We use two datasets in 2 dimensions: one sampled from the probability density function p

represented in Figure 5.2E; the other one sampled from p10 re-normalised to 1, which for further

reference we simply indicate by p10. The two systems display metastability between the two main

basins. By construction, the potential barrier in p10 is exactly 10 times as high as the one in p. The

simulations are biased along the x coordinate, with a bias obtained from the histogram along x of

the unbiased sampling (see Figure 5.2F).

For both distributions, bPAk drastically outperforms the k -NN method reweighted in a standard

manner (Figures 5.2A,5.2C). With punctual reweighting, the quality of k -NN estimates of the

unbiased free energy improve. However, bPAk still shows a better performance along the whole

range of free energy values, especially for high values (Figures 5.2C,5.2D). Furthermore, bPAk

yields much better relults also looking at the pull distributions between the estimated and the

ground truth free energies in all reweighting schemes, a sign that bPAk estimator is preferable to

standard k -NN also in terms of error estimate.
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Figure 5.3: Performance of bPAk on a realistic system: CLNO25. All free energies in this figure
are measured in kJmol−1. (A) Free energy of the CLN025 peptide computed as histogram of the collective
variable s. (B),(C) statistical tests comparing bPAk to PAk on the points of the biased sample in the case
of the ψ-dihedral angles and of the Cα distances respectively. In (C) the error bars have been omitted from
the correlation plot for a better readability; green dots represent all the points in the biased dataset; the red
dots neglect all points with k̂i ≤ 6.

5.3.2 Application of bPAk on an all-atom based simulation of a peptide

We test our method also on a realistic system, namely the MD simulation of decapeptide CLN025

discussed in Appendix A.7. In order to bias the trajectory, we choose as collective variable the

ψ-dihedral distance from an equilibrium configuration, defined as:

s =

9X

n=1

1− cos(ψn − ψref
n )

2
(5.7)

where ψn denotes the n-th backbone ψ-dihedral angle of the peptide in the present configuration

and ψref
n is the value of the same dihedral angle in a chosen reference equilibrium configuration

(in our case we chose the crystal structure[98]); this CV takes values from s = 0, in the reference

configuration, to s = 9. We evaluate s along the trajectory and compute the free energy F (s)

from a histogram (Figure 5.3A). We fit the lowest part (∼ 10 kJmol−1) of the free energy with

a sum of Gaussians F̃ (s) + c and use the negative of such sum as bias potential B(s) = −F̃ (s).

Using PLUMED[22] we run a umbrella sampling biased REMD simulation in the same setting of

the unbiased one.

We analyse the two trajectories in the 9-dimensional ψ-backbone-dihedra space (see Appendix

A.7.1). This choice implies of course a drastic dimensional reduction on the over-400-dimensional

raw coordinate space, the atomic configuration space; still, even after this huge projection the

system will show complex features and a reasonably high dimensionality, so that we are entitled to

consider it a realistic case. We extract 9.500 points from the unbiased trajectory to use them as

reference sample sample for PAk Interpolator and 3.700 points from the biased one to be used as

test sample. The estimated intrinsic dimension of the dataset is d ∼ 7. The comparison between
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Figure 5.4: Preservation of cluster structure obtained from the biased and the unbiased trajec-
tories of a small peptide. Comparison between the two main clusters of the unbiased and of the biased tra-
jectories. (A),(D) Average dihedral angle for each of the backbone dihedra for each cluster. (B),(C),(E),(F)
backbone visualisation of the configurations closest in dihedral distance to the cluster average.

bPAk estimate and our ground truth free energy (output of PAk Interpolator), in Figure 5.3B,

shows excellent agreement, despite the high dimensionality.

5.3.2.1 Robustness of bPAk under change of metric

We finally test the robustness of bPAk using a different coordinate system, in which s is not anymore

an explicit function of the σ. We choose as coordinates the distances among alpha carbons (Cα),

as discussed in Appendix A.7.2, thus the embedding dimension of the chosen space is now D = 45.

This time, due to the much higher dimensionality of the embedding space, we feed our estimators

with higher statistics: we take 37.000 reference points from the biased sample and 38.000 from the

unbiased one. The estimated intrinsic dimension is d = 9. We carry out our protocol and show the

result of the statistical tests in Figure 5.3C, green dots. Looking at the correlation plot we see a

divergence from linearity especially at higher values of the free energy. We know that such values

are associated to low densities in configuration space, corresponding either to low k̂i or to high

values for the distance of the k̂i-th neighbour. We notice (Figure 5.3C, red dots) that neglecting all

points with k̂i ≤ 6, corresponding to ∼ 10% of the data, the correlation plot improves sensibly. Our

explanation is that Cα-distance and ψ-dihedra metrics are equivalent in the sense defined in section

5.2.1 for low free energy configurations, more structured and dense in phase space, while the MEC

is partly violated at high free energy values. As a sidenote, the choice of k̂i ≤ 6 as cutoff value is

justified by quantitatively measuring the percentage of outliers at 2 sigma (pull > 2) as a function

of k̂i: systematic errors stop showing dependence on k̂i around the value 6.
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5.3.2.2 Cluster analysis

As a last test to assess whether bPAk captures the correct features of the free energy landscape we

compare a cluster analysis in PAk and bPAk. As a clustering method we use Density Peak[158],[61].

In both cases we found eight clusters, but the two main clusters contain together more than 70%

of all the configurations. These clusters contain the most structured configurations, closest to the

native state; they correspond in fact to the leftmost basin in the free energy of Figure 5.3A. Looking

at Figure 5.4 we see both quantitatively and qualitatively that cluster u5 almost perfectly matches

cluster b4 and the same happens with u7 and b8. Both couples of clusters present a structured

α-helix turn in the central region of the peptide (dihedra 4-6); in the case of u5 and b4 the tails

(dihedra 1-3 and 8-9) lie in the β-domain, hence the β-hairpin is fully folded; in clusters u7 and b8

the tails are unstructured; as expected, the first couple is also energetically slightly favoured. As

for our initial purpose, we can conclude that bPAk preserves also the cluster structure of the free

energy.

5.4 Discussion

We have presented bPAk, a procedure to estimate the free energy in high-dimensional spaces starting

from a sample of points generated in a biased simulation. The approach is based on PAk free-energy

estimator. Besides all PAk aspects discussed in section 3.2.4, such as e.g. the nonnecessity of defining

CVs and the restriction to the intrinsic data manifold, the features that are crucial in order to have

a punctual reweighting are those that make PAk estimates more local than in the case of other

nonparametric methods. In particular, on one hand PAk optimally selects for every point in the

dataset the size of the neighbourhood considered in the free energy estimate; on the other hand, its

likelihood maximisation extrapolates the value of the free energy in the limit of neighbourhood size

going to zero, which makes the estimate punctual, differently from other kernel-based methods.

The bPAk protocol consists of computing the biased free energy at all points in the dataset

applying PAk to the biased sample and then reweighting this quantity point by point simply sub-

tracting the numerical value of the applied bias to retrieve an unbiased estimate. The simple

additive form of this reweighting procedure is a nontrivial result. First of all, it crucially relies on

the punctuality of PAk. Second, since it involves integration over degrees of freedom which are not

necessarily explicitly orthogonal to those involved in the computation of the bias potential, some

reasonable but necessary requirements must be satisfied. We have described the condition under

which it is possible to reweight in an Umbrella-Sampling fashion the biased free energy over the

coordinates σ(x) when the applied bias potential is a function of some possibly different CVs s(x).

In short, this is possible if all the information necessary to define the biasing CVs s is encoded in
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the coordinates σ over which the free energy is computed; in other words, if the manifold the {si}i
can be mapped to a submanifold of the manifold the {σi}i lie on. A case in which this condition is

violated on a small subset of configurations has been presented in the case of the CLN025 peptide.

We have tested bPAk comparing its results to various unbiased ground truth free energies, some

known analytically, some estimated with PAk from an unbiased simulation. In all tested cases,

the pull distribution proved bPAk to be an unbiased estimator of the ground truth values. In

the case of two analytically-known distributions, we have also compared the performance of bPAk

to that of other estimators, both with standard and with punctual reweighting. While bPAk is

confirmed to be our best choice, punctual reweighting visibly improved the estimates also in the

case of finite-size-kernel estimators, where in principle one should take a suitable average of the

bias in the neighbourhood defined by the kernel width. The opportunity of adopting punctual

reweighting even with non-punctual estimators could be further investigated, but this is beyond the

scope of this work.
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Chapter 6

Beyond PAk: including free energy

derivatives information

In this chapter we present a free energy estimation method developed by us in order to improve the

performance of the PAk estimator, introduced in Chapter 3. In section 3.2.5 we have discussed some

of the drawbacks affecting this estimator. In section 3.2.6 of the same chapter we have proposed a

scheme to overcome the first of its limitations, the fact that PAk does not generalise outside the data

sample. In Chapter 5 we have presented a framework to apply PAk with an efficient reweighting

scheme for the analysis of samples generated under the action of an external bias, which was lacking

in PAk’s original formulation. We here focus on the problem of the roughness of PAk, induced, we

recall, by the fact that the free energy is estimated independently for each data point, even when

they are neighbours. The approach described here, still unpublished, is based on the estimation

of free energy differences δF within small neighbourhoods over which the PDF is approximately

quadratic. This estimation, in turn, relies on an accurate estimation of the free energy gradient.

The estimation of the free energy gradient at a given point is illustrated in section 6.1, while the

estimation of the δF s is dealt with in section 6.2. In section 6.3 we introduce the free energy

calculation method that we named Binless Multidimensional Thermodynamic Integration.

6.1 Estimating the free energy gradient via a k̂NN kernel

Let us first consider a distribution ρ̃ varying linearly along a direction (indicated by its gradient) in

a given region of configuration space Ωi centred around point xi. For any point x in Ωi:

ρ̃(x) = ρ̃(xi) +∇xρ̃(x)|xi(x− xi) . (6.1)

In these conditions the gradient of the density is proportional to the mean shift[75] around the
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central point:

∇xρ̃(xi) := ∇xρ̃(x)|xi ∝ ⟨(x− xi)⟩ρ̃ =

R
ρ̃(x)(x− xi) dxR

ρ̃(x) dx
. (6.2)

We now show how accurate is the approximation 6.2 for a generic PDF, in which also quadratic

or terms are present. Let us consider the Taylor expansion of a density ρ(x) around point xi:

ρ(x) = ρ(x) = ρ(xi) + ∇T
xρ(xi)(x− xi) +

1

2
(x− xi)

T∇2
x ρ(xi)(x− xi) +O

�
(x− xi)

3
�
. (6.3)

The mean shift around point xi within region Ωi := Bd(ri,xi) of volume Vd is defined as:

⟨(x− xi)⟩Ωi,ρ :=

R
Ωi

ρ(x)(x− xi) dxR
Ωi

ρ(x) dx
. (6.4)

For a lighter notation we choose the specific case xi = 0, but the derivation remains valid also in

the more general case. Inserting the expansion (6.3) into equation (6.4) and taking into account

the results (D.3), (D.4) and (D.5):

⟨(x− xi)⟩Ωi,ρ =

R
Ωi

ρ(x)x dxR
Ωi

ρ(x) dx

=
ρ(xi)�����: 0R

Ωi
x dx + ∇T

xρ(xi)
R
Ωi

xxT dx + 1
2 ∇2

x ρ(xi)�������: 0R
Ωi

xxTx dx

ρ(xi)
R
Ωi

1 dx + ∇T
xρ(xi)�����: 0R

Ωi
x dx + 1

2 Tr
h
∇2

x ρ(xi)
R
Ωi

xxTdx
i + O(Vd r

4
i )

=
∇xρ(xi)��Vd

r2i
d+2

ρ(xi)��Vd + 1
2 Tr∇2

x ρ(xi)��Vd
r2i
d+2

+ O(��Vd r
4
i )

=
∇xρ(xi)

r2i
d+2

ρ(xi)
�
1 + Tr∇2

x ρ(xi)
2 ρ(xi)

r2i
d+2

� + O(r4i )

=
r2i

d+ 2

∇xρ(xi)

ρ(xi)

�
1− Tr∇2

xρ(xi)

2ρ(xi)

r2i
d+ 2

�
+ O(r4i )

(6.5)

where the neglected integrals vanish for integration of an odd function on a symmetric domain.

Therefore, having ∇xF (xi) = −kBT
∇xρ(xi)
ρ(xi)

according to equation (3.8), the gradient of the free

energy can be well approximated by:

∇xF (xi) ≈ −kBT
d+ 2

r2i
⟨(x− xi)⟩Ωi,ρ . (6.6)

Operatively, the mean shift on the right-hand side of equation (6.6) can be easily estimated as a
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sample average of the shift observable (x−xi) over the first k̂i− 1 NNs of xi (see Appendix D.2.1),

equation (D.9):

⟨(x− xi)⟩Ωi,ρ̂ :=
1

k̂i

k̂i−1X

j=1

(xj − xi) . (6.7)

In these conditions, due to the specific neighbourhood selection, we expect the approximation

in equation (6.5) to hold well. Notice that other radially-symmetric kernels can be employed in

alternative to kNN[39, 46, 74]). By putting together equations (6.6) and (6.7) we recover a sample

free energy gradient estimator:

ĝi = ˆ∇xF (xi) := −kBT
d+ 2

r2i

1

k̂i

k̂i−1X

j=1

(xj − xi) . (6.8)

A similar estimator was first proposed in reference [75] based on intuitive arguments. To the best

of our knowledge, however, the explicit derivation of the the expression in equation (6.8) is not

present in literature. Moreover, it is worth to stress that ĝi in our approach is adaptive in the same

sense of the k̂NN estimator (cfr. section 3.1), since it restricts to the intrinsic manifold of dimension

d ≪ D and operates a doubly-adaptive bandwidth selection; this is probably the main reason of its

successful performance, which will be illustrated in what follows. As a final remark, notice that, due

to the finite size of the kernel bandwidth, ĝi is not exactly an unbiased estimator of the punctual

free energy gradient ∇xF (xi), but in fact an estimator of the average quantity ⟨∇xF (xi)⟩Ωi over

the region Ωi, up to cubic order in the Taylor expansion of ρ(x) (cfr. Appendix D.2.1.3); the latter

quantity converges asymptotically to the true value ∇xF (xi) in the limit ri → 0.

6.1.1 Variance-covariance matrix of the gradients

The estimator ĝi is the sample average of a set of i.i.d random variables
n
−kBT

d+2
r2i

(xj − xi)
ok̂i

j=1

whose mean value is gi. From the central limit theorem we know that the distribution of ĝi is

a D-variate normal distribution whose variance-covariance matrix σ2
i := σ2[ĝi] = cov[ĝi, ĝi] is

proportional to 1/k̂i times the variance-covariance matrix of (x−xi) in Ωi. The standard deviation

of a gradient component ĝi,α is simply the squared root of the marginal of σ2
i over the component

α[62]. This marginal is estimated by:

σ̂[ĝi,α] =
1p

k̂i − 1
σ̂

�
d+ 2

r2i
(xα − xi,α)

�
, (6.9)

Here, and in the following, by sample standard deviation of an observable O(x) over a sample of
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Figure 6.1: Free energy gradient components estimator performance tested on various bivari-
ate Gaussian systems. All four systems considered, one for each column, have a bivariate normal PDF
centered at the origin of the Cartesian plane (see Appendix A.5) sampled 10000 times. The entries of each
system’s covariance matrix are indicated in the column header. First row: correlation plots of estimated
x gradient components against true values. In red the line ĝi,y = gi,y. Second row: correlation plots of
estimated y gradient components against true values. In red the line ĝi,y = gi,y. Third row: distribution of
the pull of gradient components from equation (6.10). In red the standard normal distribution N (0, 1). Bot-
tom row: distribution of the chi-squared variables χ̂2

ĝi
defined using equation (6.11) and the auto-covariance

matrix estimated from the sample by σ̂2
i in equation (D.15). In red the analytical chi-squared distributions

with 2 DOFs.

Ns datapoints we mean the square root of the sample variance defined:

σ̂2[O(x)] :=
Ns

Ns − 1


 1

Ns

NsX

l=1

O2(xl)−
 

1

Ns

NsX

l=1

O(xl)

!2

 ≈ ⟨O2(x)⟩Ω − ⟨O(x)⟩2Ω = σ̂2[O(x)]Ω ,
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where the prefactor Ns
Ns−1 is the so-called Bessel’s correction for the unbiased sample variance

estimator[193]. The variance-covariance of the estimator hence decreases with the number of sam-

pled points as 1/k̂i, while, as mentioned before, the estimator bias grows with the neighbourhood

size ri. We face also here the bias-variance trade-off problem. σ2
i is a D×D matrix, where D can be

typically large, while k̂i can become quite small, especially in high-dimensions, so the estimates for

the gradient covariance is typically very noisy. Luckily, we are often interested only on the values

on the diagonal, corresponding to equation (6.9), which, as we will see in section 6.1.2, appear to

be estimated reliably also in realistic settings. In Appendix D.2.2.1 one can find the a derivation of

σ2
i (cfr. equation (D.14)) and an expression for the sample estimator σ̂2

i (cfr. equation (D.15)).

Figure 6.2: Free energy gradient estimator performance tested on various systems. The four
systems, one for each column, are indicated in the column header; they are all described in Appendix A; their
dimensionality goes from 2 to 9. For all of them, the analytic expression of the free energy gradient is known.
In the fourth and last column, the nine-dimensional case, 80000 sample points are considered; for all other
system the sample size is 10000. In the first column the system is the same considered in the first column
of Figure 6.1. Top row: correlation plots of estimated gradient components against true values. In red the
line ĝi,α = gi,α. Middle row: distribution of the pull of gradient components from equation (6.10). In red
the standard normal distribution N (0, 1). Bottom row: distribution of the chi-squared variables χ̂2

ĝi
defined

using equation (6.11) and the auto-covariance matrix estimated from the sample by σ̂2
i in equation (D.15).

In red the analytical chi-squared distributions with number of DOFs equal to the embedding dimension of
the system ν = D. Panel D3 does not show the measured distribution because the computed auto-covariance
matrix is too noisy to provide a sensible inverse.
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(a) (b)

Figure 6.3: Effect of the neighbourhood size k̂ on the accuracy of the estimators of the
gradients and of the δF s. In all panels, the system considered is the 9-dimensional smoothed FES of the
CLN025 decapeptide in the ψ-dihedrals space (cfr. Appendix A.7.1.1). (a) We plot for each point i the
norm of the vector difference between the estimated gradient ĝi and the true one gi as a function of the
neighbourhood size k̂i: ∥ĝi − gi∥. In yellow and green the median and mean of this quantity for all points
having the same k̂. (b) Distribution of the error on δF estimates w.r.t to true values ∆δFij := ˆδF ij − δFij

as a function of the neighbourhood rank of point j w.r.t. i. The rightmost panel shows the distribution of
the error in the prediction of the free energy differences between nearest neighbours. The rank increases
going from left to right until the k̂th nearest neighbour is considered in the leftmost panel of subfigure (b).

6.1.2 Performance of the gradient estimator

In order to illustrate the performance of the gradient estimator we use two representations we have

already adopted in Chapters 3 and 5: the correlation plot and the Gaussianity test in form of the

pull distribution. Moreover, we compare the empirical chi-squared of the estimated gradients to

the theoretical distribution, as we will explain briefly. All these tools allow us to condensate a lot

of information in simple plots. This is particularly useful in the case of gradients, since we are

estimating a vector quantity and moreover it has the dimensionality of the embedding space D.

In the case of the correlation plots we can either condense all couples of points:

�
{(gi,1, ĝi,1)}Ni=1, {(gi,2, ĝi,2)}Ni=1, . . . , {(gi,D, ĝi,D)}Ni=1

	

on a single plot, as done in Figure 6.2, or inspect the behaviour along the various directions in

D different plots, as done for various two-dimensional Gaussian systems in Figure 6.1, choosing

Cartesian coordinates or any other suitable coordinates system.

As per the pull distribution, we use it as the simplest way to assess the performance of the

gradient estimator and of its error. In particular, since the estimated gradient components ĝi,α are

all IID RVs, the pull for the gradient components:

χi,α :=
gi,α − ĝi,α
σ[ĝi,α]

(6.10)

should be distributed as a standard normal variable: χi,α ∼ N (0, 1). We are able to estimate the

gradient standard deviation via σ̂[ĝi,α] in equation (6.9), so we can use it in equation (6.10) to check
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its accuracy.

An alternative test for the estimated vector quantities ĝ is looking at the distribution of the

chi-squared variable:

χ2
ĝi

:= (ĝi − gi)
T · cov−1[ĝi, ĝi] · (ĝi − gi) ∼ χ2

ν=D , (6.11)

which, as indicated, should have a chi-squared distribution with D DOFs, since the standardised

multivariate pull variable χĝi
:= cov− 1

2 [ĝi, ĝi]·(ĝi−gi) should be distributed as a standard D-variate

normal N (0, 1D)[86, 123]. If, instead of the analytical auto-covariance of the gradient estimators,

we use the estimated one σ̂2
i , we obtain χ̂2

ĝi
. We use this approach to assess the quality of the

estimated covariance.

Figure 6.1 illustrates the performance of the gradient estimator on four two-dimensional Gaussian

probability distributions, with variances and covariances defined in the titles. In the top two rows

we can see the correlation plots of the two estimated gradient components along the x and y

axes against the true values. Looking at the parameters defining the distributions, in the column

headers, we see that only the Gaussian in the first column has a non-diagonal covariance matrix.

In the remaining columns the width of the Gaussian is kept fixed along the x direction, while it is

reduced more and more going from left to right. Along the y axis we see that all estimates correlate

well with the true values. Along the x axis, instead, estimates are noisier and noisier going from

left to right, namely towards smaller variance along the y axis. Indeed, the gradient estimated via

the sample mean shift (6.8) is good at capturing the gradient direction, but in these e datasets the

gradient is mostly oriented along the y direction, so the relative error on the transverse direction is

larger. Another way to understand this effect is that we are considering circular regions {Ωi}i in a

anisotropic landscapes; in these conditions the approximation leading to the mean shift equivalence

in equation (6.5) is violated and higher order corrections play a role, with a higher visible impact on

the direction where the free energy varies more slowly. As for the Gaussian in the first column, since

is orientation tilted w.r.t. and not aligned with any axis, the noise is present but is less structured

in the correlation plot A1 with respect to the other examples. For all datasets the computed pull

distribution for the gradient components, in the third row, is in good agreement with the standard

normal distribution, a sign that our estimates are unbiased and that we correctly estimate their

variance. Instead the chi-squared distributions in the bottom row display a fair agreement only

in the second system; it gives poorer results, in order, in panels C4, A4 and D4, where fatter

tails are observed w.r.t. the predicted distribution. This means that our estimates σ̂2
i of the

gradients’ covariance are very noisy. However, we anticipate that these estimated auto-covariances
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are sufficiently accurate to quantify the error of free energy differences between neighbouring points,

possibly due to subtle error cancellation. As a side comment, the reason why in terms of quality of

both the pulls and the chi-squared the system in the first column appears to underperform columns

2 and 3 is that the “aspect ratio” of the first Gaussian is somewhere in between the ones of the third

and fourth.

Let us now turn to Figure 6.2, which shows the performance of the gradient estimator on four

different model free energy landscapes (see Appendix ) in terms of the correlation plot of estimated

and true gradient components, the distribution of the pull of gradient components from equation

(6.10) and the distribution of the chi-squared variables χ̂2
ĝi

defined using equation (6.11) together

with the sample autocovariance σ̂2
i defined in equation (D.15). In the correlation plots (top row),

differently from Figure (6.1), all gradient components, from 1 to D, are plotted together. We

can see that gradient estimates correlate quite well with the true analytical values. Only in the

9-dimensional case, in panel D1, there is a visible bias: it can happen in fact that the gradient

modulus is overestimated for some points, which results in a correlation plot slightly tilted w.r.t. to

the identity line. Taking a closer look, we notice that this happens for points with few neighbours:

in Figure 6.3a we see how both the mean and the median norm of the vector difference between

the estimated and the true gradient (the two curves are almost coincident) are decreasing functions

of the neighbourhood size k̂i of the points; the same is true for the biggest value of the quantity

∥ĝi−gi∥ as a function of k̂i. Indeed, the gradient of points with smaller neighbourhoods is affected

by a large variance. The quality of the pull distributions in the second row testify that even in high

dimensionality our error estimates are quite good. This will become even clearer in the next section.

The reason why on the 2-dimensional potential in panel B2 the gradient estimator performs worse

than in the 6-dimensional case, in panel C2, is because the former is designed to put a strain on

estimators, being rugged and spiky, so that the selected neighbourhood size k̂i is for many points

quite small. In the bottom row, the observed chi-squared distributions are not satisfying; the same

considerations made commenting Figure (6.1) apply.

6.2 Free energy differences between neighbouring points

We will now show that using the estimator ĝ in equation (6.8) it is possible to compute free energy

differences δFij between neighbouring points xi and xj :

δFij := Fj − Fi . (6.12)

One could be tented to express their free energy difference as the contraction between the estimated
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gradient and their vector difference rij := xj − xi:

δF i
ij := ∇T

xF (xi)(xj − xi) = gi · rij (6.13)

and the estimator version1:

ˆδF
i

ij := ĝi · rij . (6.14)

However, the gradients in the two points gi and gj can be different, so in principle δF i
ij ̸= δF j

ij . The

right quantity to contract with rij in order to obtain exactly δFij would be the average free energy

gradient along their connecting segment
R 1
0 F (λ(t))∥λ′(t)∥dt where λ(t) is a parametrisation of the

vector rij ; such quantity is well approximated, until third order terms in the Taylor expansion of

the free energy become relevant, by the semisum of the gradients in the two neighbouring points,

so that the free enegry difference δFij can be estimated as:

ˆδF ij :=
ĝi + ĝj

2
· rij . (6.15)

6.2.1 Error estimates on the δF s

Defining σ2
ij := σ2[

ĝi+ĝj

2 ], simple error propagation from equation (6.12) gives ε2ij := σ2[ ˆδF ij ] =

rTij · σ2
ij · rij , with:

σ2
ij =

1

4
(σ2

i + σ2
j + 2 cov[ĝi, ĝj]) , (6.16)

where, recall, σ2
i = cov[ĝi, ĝi]. However, we do not have a solid cross-covariance model for covĝi,ĝj

and it is impossible to estimate it rigorously from a single sample, which makes estimating the

uncertainty of ˆδF ij far from trivial (refer to Appendix D.2.2.2 for a further discussion and a tentative

model for the cross-covariance). Nonetheless, by calling εiij
2
:= rTij · σ2

i · rij , we can express the

uncertainty on ˆδF ij as:

ε2ij =
1

4
(εiij

2
+ εjij

2
+ 2 pij ε

i
ij ε

j
ij) , (6.17)

where pij is the Pearson correlation coefficient between the estimators ˆδF
i

ij and ˆδF
j

ij seen as random

variables, and specifically:

pij =
rTij · cov[ĝi, ĝj] · rij

εiij ε
j
ij

. (6.18)

Like for the cross-covariance of the gradients, we cannot straightforwardly compute pij from a single

1A possible rewriting solely in terms of distances between points of the estimator in equation (6.14), which can
be useful in a computational perspective, is reported in equation (D.19) of Appendix D
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Figure 6.4: Effect of the estimated Pearson correlation coefficient p̂ij on the pull distribution
of the δF s at fixed neighbourhood rank values. Distribution of the pull variables χ̂ij in equation
(6.21) for points j at fixed neighbourhood rank values w.r.t. point i. The systems considered are in blue the
6-dimensional potential (see Appendix A.6) and in yellow the bivariate Gaussian in column B of Figure 6.1.
In red the standard normal distribution N (0, 1). On the rightmost column, for each couple (i, j) considered,
j is the NN of point i. The neighbourhood rank increases going left, so that e.g. the second column from the
left considers points j whose neighbourhood rank w.r.t. i is k̂i/2 (rounded to the closest integer). Finally, on
the leftmost column point j is the furthermost point from i within its neighbourhood. Top row: no Pearson
correlation coefficient is used: p̂ij = 0. Bottom row: p̂ij is the one in equation (6.19).

Figure 6.5: ˆδF estimator performance tested on various bivariate Gaussian systems. The four
systems considered, one for each column, are the same bivariate Gaussians considered in Figure 6.1. The
entries of each system’s covariance matrix are indicated in the column header. Top row: correlation plots
of estimated { ˆδF ij}ij against true values {δFij}ij . In red the line ˆδF ij = δFij . Bottom row: distribution of
the pull variables χ̂ij in equation (6.21). In red the standard normal distribution N (0, 1).
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data sample, but we propose to estimate it giving it a geometrical interpretation: since pij must be

0 for uncorrelated estimates (which happen if the the d-hyperspheres Ωi and Ωj do not overlap at

all), nonzero in case of overlapping neighborhoods Ωi ∩Ωj ̸= ∅ and 1 if Ωi ≡ Ωj , we assume it to be

well approximated by the ratio between the squared volume of their intersection Ωi ∩ Ωj and the

product of the two volumes. Moreover, since k̂i is proportional to the d-volume Vi = ωdr
d
i of Ωi via

the relation k̂i = Vi ρ̂
k̂NN
i , we define a proxy for pij as:

p̂ij =
k̂2ij

k̂i k̂j
, (6.19)

where k̂ij is the number of points in common between the neighbourhoods of xi and xj . Other

possible estimators for pij are discussed in Appendix D.2.2.3. Together with the specification in

equation (6.19), equation (6.17) guarantees that the uncertainty estimation on ˆδF ij is accurate if

its pull χij is normally distributed:

χij :=
Fj − Fi − ˆδF ij

εij
∼ N (0, 1) . (6.20)

The quantity in equation (6.20) is computed using estimated gradient auto-covariances in equation

(6.17), so that ε̂iij
2 := rTij · σ̂2

i · rij and ε̂2ij :=
1
4(ε̂

i
ij
2 + ε̂jij

2 + 2 p̂ij ε̂
i
ij ε̂

j
ij), thus

χ̂ij :=
Fj − Fi − ˆδF ij

ε̂ij
. (6.21)

We examine the Gaussianity of this quantity in the next section.

6.2.2 Performance of the ˆδF estimator

Once again, in order to test our estimator ˆδF ij we resort to correlation plots of ˆδF ij against δFij

and distributions of the pull variables in equation (6.20). Both in Figures 6.5 and 6.6 we see that all

correlation plots and pull distributions are in excellent agreement with the predictions for unbiased

estimators. From Figure 6.5 we see that the noise present in the gradient components estimates

is strongly dumped. Also in Figure 6.6 we observe better pull distributions than for the gradient

components. In this figure we have also represented, in columns B, C and E, three systems (cfr.

Appendix A.8) for which we know the ground truth free energy values on the sample points, but we

do not know the analytical FES: thus we can test the δ̂F s but not the gradient estimators. These

tests demonstrate that the estimator ˆδF ij is more robust than the estimator ĝi; we explain this fact

by considering that by taking the semisum of two gradient estimates as in equation (6.15), errors

compensate at second order, bringing the leading-order corrections in the estimator ˆδF ij to fourth

order.
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Figure 6.6: ˆδF estimator performance tested on various systems. The six systems considered,
one for each column, are indicated in the column header (cfr. Appendix A). Top row: correlation plots of
estimated { ˆδF ij}ij against true values {δFij}ij . In red the line ˆδF ij = δFij . Bottom row: distribution of
the pull variables χ̂ij in equation (6.21). In red the standard normal distribution N (0, 1).

Finally, Figure 6.4 illustrates the effect of estimating the Pearson correlation coefficient p̂ij in

different manners. In the top row we see the behaviour when p̂ij is set to zero for all points: the

error is visibly underestimated when i and j are very close (panels on the right), generating pull

distributions with variance greater than one; when considering couples of further points (going

from right to left) the effect of correlations between gradient estimates is less pronounced, since

they do not have relevant parts of their neighbourhoods in common, and the pulls resemble more

the standard normal distribution. In the bottom row we see how, by using our geometrical proxy

in equation (6.19), the bias at low neighbour ranks is corrected. The effect at all ranks is more

visible for the lower-dimensional system, in yellow, w.r.t. the higher-dimensional in blue; this is in

agreement with our understanding that correlations between sample points are more important in

low dimension. Actually, by looking at the rightmost panels, we see that the pull in yellow goes from

being too spread to being slightly too narrow. This might suggest that p̂ij slightly overestimates

the real Pearson correlation coefficient. However, panel A1 shows that the pull χij when point j

has a neighbourhood rank close to k̂i w.r.t. point i is slightly more concentrated than predicted,

even when p̂ij is zero; all of this despite the fact that, as seen in Figure 6.3b, the absolute error

∆δFij := δFij − ˆδF ij is higher at higher ranks. One possible explanation, then, is that variances

propagated from single gradient estimates ε̂iij
2 are slightly overestimated, thereby narrowing the

pull.

Possibly, improvements could be introduced by estimating more rigorously the variance-covariance
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matrix as proposed in Appendices D.2.2.2 and D.3.4. These are quite recent theoretical results and

still need to be implemented and tested. However it could well be that all our attempts are limited

by noise due to the small statistics. In fact, the tested distributions of the observed chi-squared χ2
ĝi

seem to suggest that the gradients’ covariance matrices estimates rapidly become unreliable with

increasing dimensionality.

In conclusion, Figures 6.5 and 6.6 display an excellent overall performance in a wide range of

systems, embedding dimensionalities and IDs for both the estimators of the neighbours free energy

difference ˆδF ij and of its error ε̂ij , which includes our empirical correction p̂ij . We consider these

estimators satisfying enough to build upon them.

6.3 Binless multidimensional thermodynamic integration: BMTI

So far we have illustrated how we estimate the free energy difference between neighbouring points

of the data sample and its statistical error. These are, in turn, based on a reliable procedure

to define the extent of points’ neighbourhoods and on an accurate gradient estimator with its

uncertainty. By choosing a path connecting point xi to point xf via couples of neighbouring points

{(xi,xi+1), (xi+1,xi+2), . . . , (xf−2,xf−1), (xf−1,xf )} one should in principle be able to reconstruct

the free energy difference ∆Fif := Ff − Fi by summing all the small estimated ˆδF s. This idea

is the same one underpinning thermodynamic integration[107, 126]: estimating the gradient (or

derivative in the univariate case) of the free energy and integrating it along a path to retrieve free

energy differences.

Fixing a set of neighbourhood sizes {k̂i}i for each point i, as discussed in sections 2.2.3 and

3.1.3, defines a sparse directed connection graph, the NG, on which a couple of points is typically

connected by multiple paths. This fact calls for a procedure that estimates free energy differences

among points considering contributions from all the possible paths. If one were able to do so, as long

as the NG is connected, all the relative free energies among points would be coherent, getting rid

of the spurious correlations due to redundant counting of points discussed in section 3.2.5.3. What

is most commonly done in literature when dealing with TI[40] is either integrating the so-called

mean force along a single curve[53] or solving the problem on a grid where estimates of the free

energy gradient have been collected at each node[54, 94]. In the first family of methods estimated

free energies are by construction one-dimensional. In a high-dimensional space, the free energy

difference between pair of data points can turn out to be path-dependent; in other words, closed

paths in configuration space typically start and end at different free energy values. In the second

family of methods, instead, the requirement that a dense grid of estimates is populated is quite

demanding making the approaches computationally heavy in dimensionality greater than 2 or 3.
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In analogy with PAk, but in a completely different setting, we propose to obtain the free energy

estimates via a log-likelihood maximisation. However, in this case all the free energy at sampled

points are computed simultaneously.

6.3.1 Distribution of the δF s

First of all, let us now, for a lighter notation, label any couple of neighbouring points in the sample

by a single index a := (i, j), so that {a, b, . . . } represent the edges of the NG {(i, j), (l,m), . . . } (cfr.

Appendix D.3.4). How many of these couples are there? If one wants to consider directed edges,

then they are as many as the non-zero entries of the sparse connectivity matrix of the NG, that is:

Nspar =
NX

i=1

(k̂i − 1) ≈ N(< k̂ > −1) . (6.22)

Then, let us us recall the considerations of section 6.2.1 and in particular equation (6.20). We

have proven in section 6.2.2 that χij is well estimated by χ̂ij in equation (6.21). This means that

the random variable ˆδF a has mean value µa := ⟨ ˆδF a⟩ = δFij = Fj −Fi and can be seen as marginal

variable of a multivariate normal distribution: ˆδF a ∼ N (µa , ε2a). Therefore, the vector containing

the ˆδF a’s for all couples of neighbours ˆδF = { ˆδF a}a is distributed as:

ˆδF ∼ N (δF , C) ∝ exp


−1

2

X

a,b

(δFa − ˆδF a)
T C−1

a,b (δFb − ˆδF b)


 . (6.23)

The covariance matrix C has size Nspar×Nspar, with Nspar defined in equation (6.22). The diagonal

of matrix C is Caa = ε2a for all Nspar couples labelled by a. However C is generally not diagonal

due to correlations between couples δFa, δFb estimated on at-least-partially overlapping regions of

configurational space. Again, we refer the reader to an appendix, namely Appendix D.3.4, for a

discussion on the matter and a proposal on how to address it.

Looking at equation (6.23) and bearing in mind the definition of the δF s in equation (6.12), we

can see that the argument of the exponential, in square brackets, can be recast into a quadratic

form for the free energies. By calling F the vector of all free energies at sample points {F}i, this

quadratic form reads:

FT · A · F + bT · F + c (6.24)

where the N ×N matrix A, the N -vector b and the scalar c depend on the estimated free energy

differences ˆδF and on their covariance matrix C. Therefore, we can take the logarithm of this Nspar-

variate Gaussian and interpret it as a log-likelihood for the error-affected observations { ˆδFij}ijs as
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a function of the parameters {Fi}i:

L(F | ˆδF , C) ∝ log N (δF , C) . (6.25)

This theoretical framework allows to obtain estimates for the free energies maximising the log-

likelihood over the parameters and also provides a well-defined procedure to compute their error.

6.3.2 Uncorrelated free energy differences approximation

As a first approach to the solution of the model in equation (6.25) we can make the simplifying

assumption that the δF ’s are uncorrelated, namely that C is approximated by a matrix D retaining

only its diagonal part: Dab = δabCaa = ε2a. With this assumption, the log-likelihood in equation

(6.25) becomes:

log N (δF , D) ∝ L(F | ˆδF , D) := −
NX

i=1

X

j∈Ωi

(Fj − Fi − ˆδF ij)
2

2ε2ij
. (6.26)

This formulation makes it clearer that we are dealing with a weighted least squares model, while

equation (6.25) corresponds to a generalised least squares model[181]. The maximisation of L(F |
ˆδF , D) with respect to the parameters {Fi}i to obtain the optimal free energy estimators {F̂i}i

provided by this model can be recast (see Appendix D.3.1) into the linear system:

NX

j=1

Aij F̂j = ∆i (6.27)

in which the matrix A and the vector of ∆ will be now defined. Each off-diagonal element of the

matrix Aij has a contribution −ε−2
ij if i ∈ Ωj and another identical one if j ∈ Ωi; instead, the

diagonal terms are the negative of the sum of all the off-diagonal on that line Aii =
P

j ̸=iAij ; we

notice that A is symmetric even if the connectivity matrix (derived from the NG) is not. As for the

constant vector, each ∆i is defined as ∆i := −
�P

j|i∈Ωj
+
P

j∈Ωi

�
ˆδF ji/ε

2
ji. Notice that, since the

free energies enter equation (6.26) only as terms of differences, their value is determined except for

an arbitrary additive constant. This implies that the linear system (6.27) is underdetermined and is

reflected in the fact that matrix A is singular. However, bearing this in mind, the linear system can

easily be solved using any standard linear algebra library (e.g. implementing the conjugate gradient

method[97]), returning our free energy estimates {F̂i}i.
Equation (6.27) defines a procedure that allows computing all the free energies simultaneously,

by weighting in some uncertainty-dependent manner all the various paths’ contributions. Notice

that in one dimension and with two neighbours (one on the left and one on the right) this scheme

is exactly equivalent to TI in its classical formulation[107]. Unlike standard TI techniques, this
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approach does not require the introduction of CVs nor the definition of a regular grid over which

data about the free energy gradient are collected. This makes the approach suitable for free energy

estimates in for high-dimension. We name this approach Binless Multidimensional Thermodynamic

Integration (BMTI). BMTI has gives excellent results even in its simplified formulation presented

in this section, as we will show in section 6.3.2.2.

6.3.2.1 The estimation of error for BMTI

Given a log-likelihood like the one in equation (6.25), the covariance matrix of the maximum-

likelihood estimators that can be derived, once again, by taking the equal sign in the Cramér–Rao

Bound inequality:

cov[F̂]ij :=

�
− ∂2

∂Fi∂Fj
L(F | δ̂F , C)

�−1

. (6.28)

The diagonal elements of this covariance matrix represent our uncertainty estimates on the MLEs

{F̂i}i. Importantly, in the case we are considering, in which the sparse covariance matrix C of the

ˆδF s is replaced by its diagonal D, the inverse of cov[F̂] corresponds exactly to the matrix A in

equation (6.27), therefore:

ε2i = var[F̂i] = (A−1)ii. (6.29)

Thus, estimating the error on the estimates amounts to inverting matrix A. Since this matrix is

singular, expression A−1 must be interpreted as the pseudoinverse[149] of A.

Unfortunately, the error in equation (6.29) has proven to underestimate the real statistical

error (see discussion in section 6.3.2.2 and Figure 6.9), regardless of the fact that the solution of

equation (6.27) returns very accurate predictions for the free energies. We suspect this has to do

with the redundancy of expression (6.26): despite depending on Nspar parameters { ˆδF a}a and Nspar

parameters {εa}a, these are far from independent measures, since they are all computed starting

from N ≪ Nspar datapoints. Therefore, we expect the effective DOFs of the Nspar-terms sum

constituting L(F | ˆδF , D) to be at most N − 1; they are exactly N − 1 in the case {xi}i are

actually IID random variables.

One possible way to address this problem is dividing the BMTI log-likelihood by some factor

accounting for the redundancy contained in its formulation. This idea was backed by looking at

a simplified version of the problem in one dimension. In Appendix D.3.2 we briefly discuss this

case. Generalising this result to our case was for us unfeasible without, once again, confronting the

challenging problem of the estimation and invesion of the correlation matrix of the δF s, discussed

Chapter 6. Beyond PAk: including free energy derivatives information 80



6.3. Binless multidimensional thermodynamic integration: BMTI

in Appendix D.3.3. We attempted an empirical generalisation based on the one-dimensional results.

Our intuition suggests that this divisor should be chosen of the order of the average neighbourhood

size, O(⟨k̂i⟩i); this would increase the estimated variances of the F̂ s, in equation (6.29) of approx-

imately the same order. Therefore we choose it, for each term (i, j) of the sum defining BMTI

log-likelihood in equation (6.26), to be the geometric average of the selected neighbourhood sizes

for points i and j; thus, the redundancy-corrected BMTI log-likelihood becomes:

LBMTI
r (F | ˆδF , D) := −

NX

i=1

X

j∈Ωi

(k̂i k̂j)
− 1

2
(Fj − Fi − ˆδF ij)

2

2ε2ij
. (6.30)

We discuss the efficacy of this empirical correction on the error estimates of BMTI in in paragraph

6.3.2.2.3 of the next section. Remarkably, the redundancy-corrected model in equation (6.30) pro-

duces the same results for the estimated F̂ s as the one in equation (6.26): on all tested datasets

the free energies estimated in the two manners differ at most at the third significant digit; we take

this as a clue that there is indeed some redundancy in the BMTI model and that the direction is

the right one.

However, we anticipate that, while this empirical correction is exact for the simplified one-

dimensional case considered in Appendix D.3.2, the quality of the error estimates immediately

deteriorates in two or more dimensions, improving error estimates only partly, but not adequately.

6.3.2.2 Performance of BMTI

6.3.2.2.1 Accuracy of BMTI We assess the accuracy of the BMTI estimator by considering

three statistical tests discussed in section 3.2.3.1 of Chapter 2: firstly, the correlation plots showing

for every point i the estimated free energies F̂i plotted against the ground truth values Fi; the

scatterplot should lie on average on the line F̂i = Fi. Secondly, the absolute error of the estimator

ϵL1
i = |Fi − F̂i| introduced in equation (3.14) plotted as a function of the true free energy Fi in

order to examine the behaviour of the estimator in all ranges of data density. Third, the mean

absolute error from equation (3.15), expressed as: EL1 = 1
N

PN
i=1 |Fi − F̂i|, which quantifies the

performance of F̂ globally on a dataset. We compare the performance of BMTI to that of other

nonparametric estimators both graphically and quantitatively. Such estimators are PAk, BMTI

and also: standard kNN but with k selected as ksel := ⟨k̂i⟩i i.e. as the average optimal k found

by PAk for the dataset; a fixed-bandwidth Gaussian KDE with hsel selected according to Scott’s

rule of thumb[170, 194]; in the evaluation of EL1 , in Table 6.1, we consider also k̂NN introduced

in section 3.1.3 of Chapter 3, just below equation (3.7) and our adaptive version of the Gaussian

KDE, PAkde, introduced in section 3.1.3 of Chapter 3 and explained in Appendix B.
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Figure 6.7: BMTI estimator performance tested on various systems and compared to other
methods. The four systems, one for each column, are indicated in the column header; they are all described
in Appendix A; their embedding dimensionalities go from 2 to 20, while their intrinsic dimensionalies go
from 2 to 9. For the Mueller-Brown potentials in columns A and B the sample size is 5000 and the ID is
d = 2; for the system in column C, a trajectory of 30000 points in d = 7 dimensions embedded in D = 20
is considered; in column D the considered sample has 20000 points and ID d = 9. Top and middle rows:
correlation plots of estimated free energies F̂i against true values Fi. Top: PAk estimator. Middle: BMTI
estimator. In red the lines F̂i = Fi. Bottom row: absolute error ϵL1

i as a function of the free energy Fi; a
Gaussian filter has been applied to the data for readability. Various estimators are compared: in red PAk;
in blue BMTI; in dashed grey kNN with k selected as ksel := ⟨k̂i⟩i; in dashed light green Gaussian KDE
with smoothing parameter hsel selected according to Scott’s rule of thumb[170, 194].

Let us look at Figure 6.7. In the first two columns we consider two samples of 5000 points of the

classical bidimensional Mueller-Brown potential, described in Appendix A.4; the one in column A

is extracted at temperature which is double w.r.t. the sample in column B; this is equivalent to

sampling at β = kBT
−1 = 0.035 and β = 0.07 the Mueller Brown potential in equation (A.4) for

the systems in column A and in column B respectively. Thus, the free energy barrier to escape the

global minimum of the potential is twice as big in the second column as it is in the first one.

In the first system we can see that BMTI correlation plot, in panel A2, is much sharper than

that of PAk, in panel A1; this is especially true at low free energy values, while BMTI estimates

become a bit noisier very high in the free energy range. In panel A3 we can see that BMTI, in
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System PAk BMTI kNN GKDE hScott k̂NN PAkde

EL1 EL1 EL1 ksel EL1 hsel EL1 EL1

2d Gaussian 0.14 0.08 0.15 194 0.06 0.22 0.10 0.13

20d-A (d = 2) 0.12 0.07 0.12 313 0.79 0.68 0.08 2.71

2d-MB x 0.035 0.16 0.10 0.19 123 0.41 0.24 0.13 0.13

2d-MB x 0.07 0.11 0.25 0.20 155 0.41 0.24 0.13 0.14

6d potential 0.50 0.26 0.36 26 0.67 0.40 0.34 0.37

20d-C (d = 7) 0.52 0.36 0.46 22 1.69 0.65 0.43 1.67

9d CLN025 sm. 0.76 0.61 0.63 13 2.39 0.47 0.65 0.90

Table 6.1: Absolute error of PAk, BMTI and other nonparametric estimators.

blue, outperforms PAk, in red, in terms of absolute error across the whole range of free energies;

the difference between the two estimators’ performance is quite evident and narrows for low-density

points. Standard kNN, in dashed grey, outperforms PAk only in a small range of intermediate

values and gives very biased estimates at high F values. The Gaussian KDE with fixed smoothing

parameter has an L1 error comparable with the other estimators only in a small range of F values,

before and after which it rapidly diverges.

In the second Mueller-Brown system, column B, instead, the high free energy barrier causes the

regions of the two saddle points of the Mueller-Brown potential to be visited few times, if any at all,

as we can see in Figure A.1. Consequently, the NG of the second system is disconnected or at least

weakly connected and the solution of equation 6.27 produces three separate blocks, corresponding to

the three basins. It is like we had performed thermodynamic integration on three separate systems,

starting from three different arbitrary offset free energy values. The free energies within these

clusters are all coherent among themselves, but the three offsets are not the same, producing the

disconnected correlation that we see in panel B2. The correlation plot in panel B1 shows instead

that PAk does not seem to be affected by this disconnection. By looking at the absolute error as a

function of F we see that BMTI again outperform PAk in denser regions, corresponding to the basin

where the global minimum is located, but then suddenly diverges as F increases. An analogous

behaviour is observed for kNN. The Gaussian KDE again works well only in a limited range of F s,

in which it even beats PAk, but it is not reliable outside it.

In column C of Figure 6.7 we consider a sample of 30000 points extracted from the 20-dimensional

system described in Appendix A.8.3 which has intrinsic dimension d = 7; in column D we consider

a sample of 20000 points of the KDE-smoothed 9-dimensional potential described in Appendix

A.7.1.1, which has intrinsic dimension d = 9. BMTI performs better than PAk on both systems

as we can see from the sharper correlation plots in panels C2 and D2 compared to PAk’s in panels

C1 and D1 and from panels C3 and D3, where the error of BMTI is constantly under that of PAk.
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Standard kNN in both cases has a range in which its error is lower than PAk’s and is also for a

while very similar to BMTI’s; however, it has a tendency to be biased outside the range in which

the selected ksel is optimal. As for the Gaussian KDE, its behaviour is similar to that observed in

panels A3 and B3.

Table 6.1 reports the mean absolute errors for various estimators in order to assess their global

performance. The systems considered are the same as in Figure 6.7, with the addition of two more:

a sample of 10000 points extracted from the bivariate Gaussian distribution in column A of Figure

A.2 of Appendix A; 10000 points extracted sampled from the 6-dimensional potential considered

many times so far (see Appendix A.6). Overall, we see that BMTI is always the best performing with

two exceptions: first, the Mueller-Brown potential sampled at β = 0.07 (column B of Figure 6.7): in

this case estimates are accurate as long as one is interested in the global minimum of the potential,

but they become unreliable at higher free energy values; second, the 2-dimensional Gaussian, which

has a convex harmonic potential with only one minimum, where the fixed-bandwidth Gaussian

KDE curiously outperforms all other methods and also slightly BMTI, which displays the second

best score; this is the only exploit of this method, which performs poorly on all other systems. As

for the adaptive Gaussian KDE, PAkde, it does a good job up to dimensionality D = 6, where it

fairly competes with the other methods, but its performance becomes worse when the embedding

dimensionality is pushed higher, no matter the fact that the ID might be low; in fact, the Gaussian

kernel is D-variate, so the information content of one sample point having coordinates xi is diluted

over all D dimensions, rather than being retained within the intrinsic manifold. Finally, standard

kNN performs worse than PAk in low dimensionality, but it becomes globally more accurate in high

dimensions: this is probably because, ksel chosen as ⟨k̂i⟩i keeps a low neighbourhood size in higher

density regions, where PAk mistakenly slightly overestimates the optimal neighbourhood size, also

due to the curse of dimensionality; however, we still know by looking at the bottom row in Figure

6.7 that PAk always outperforms kNN, at high F values, where it can use its point-adaptiveness

to reduce the number of neighbours to few units. Interestingly, on various systems k̂NN performs

better than PAk itself, from which it takes the selected k̂; this is probably due to the fact that

PAk’s intrinsic roughness produces noisy estimates even at high-density, where instead standard

kernel methods converge more rapidly to the ground truth values; however, despite not hereby

illustrated, we have seen that at high free energy values PAk always surpasses k̂NN, a sign that

PAk likelihood correction is fundamental in rare data conditions to capture some curvature effects

on regions where the the free energy cannot be approximated as constant.

Last but not least, it is important to stress that the only methods that have proven reliable

across the whole set of test systems and samples, giving consistently fair estimates, are PAk, k̂NN
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Figure 6.8: Smoothness of BMTI estimator compared to other methods. We consider the
Mueller-Brown potential in equation (A.4) sampled 5000 times at an inverse thermodynamic temperature
β = 0.035. A Scatter plot of the sample coloured according to the density. The red curve represents
the NN-interpolated MEP discussed in Appendix A.4. B Vaious free energies along the NN-interpolated
MEP. In black the analytic freee energy; in red PAk; in blue BMTI; in dashed grey kNN with k selected as
ksel := ⟨k̂i⟩i; in dashed light green Gaussian KDE with smoothing parameter hsel selected according to Scott’s
rule of thumb[170, 194]. C Distribution of roughness measured on dataset points for various estimators; the
colour code is the same as in panel B.

and standard kNN. Despite BMTI impressive performance, there was one single case in which it

did not excel; but in that case it stumbled heavily. We are. currently developing a strategy to

improve the performance of BMTI in the case of weakly connected or disconnected NGs or at least

to discriminate the conditions in which an alternative to BMTI should be used.

6.3.2.2.2 Smoothness of BMTI One of the main concerns that pushed us to develop BMTI as

an improvement to the already well-performing PAk was addressing the problem of PAk’s intrinsic

roughness and, in general, the amplification of local sample fluctuations carried out by kNN-based

methods. Indeed, the free energy is a smooth function, namely that free energy values at neighbour-

ing points should be close to each other. In kNN methods every estimate Fi is derived independently

from all estimates on other points {Fj}j ̸=i. In fact, the log-likelihoods that define kNN, k̂NN and

PAk do not depend on the value of F at other points. Thus, the global likelihood for a vector of

free energies F will be the product of N likeihoods for the points i (see sections 3.1.2 and 3.2.2 of

Chapter 3).

We now want to assess how good BMTI is in obtaining smooth free energy estimates. A multidi-

mensional FES can be rugged and bumpy, but we are only interested in local free energy fluctuations

artificially introduced by our estimators, rather than those which are simply features of the system

considered. Based on this concept, we introduce an observable to quantify locally the deviation

of free energy estimator gradient with respect to the behaviour of the true landscape. We call it

roughness We want to have a measure of the spatial coherence of free energy estimates, comparing
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it to the spatial rate at which the true free energy varies. Thus, we define the local roughness as:

ζi :=
∆Fi,NNi −∆F̂i,NNi

ri,NNi

, (6.31)

where ∆Fi,NNi is the ground truth free energy difference between point i and its nearest neighbour,

∆F̂i,NNi is the estimated free energy difference between point i and its nearest neighbour and ri,NNi

is the Cartesian distance between the two points. Basically, ζi is the difference between the Newton

quotients between a point i and its nearest neighbour in the estimated FES and in the ground truth

FES. The roughness quantifies the presence of local spikes in the estimated free energy surface which

are not present in the real one. As we know from calculus, the limit for ri,NNi → 0 of the Newton

quotient is the gradient projection along the direction of ri,NNi , thus:

lim
ri,NNi

→0
ζi =

ri,NNi

ri,NNi

·
�
∇xF (xi)−∇xF̂ (xi)

�
. (6.32)

In the case of an unbiased consistent estimator the gradient of the estimated free energy should of

course converge to that of the true one; hence, in the limit of infinite statistics, where the limit in

equation (6.32) is automatically taken, ζi should go to zero.

In probabilistic terms, the distribution of the RV defined in equation (6.31) should concentrate

around zero for an unbiased estimator, with a variance that goes to zero increasing the statistics.

Fixing the statistic and a test system, the spread of the distribution of ζ is higher if the derivatives

of free energy estimates are noisier (namely, if the free energy estimates are rougher).

In order to visualise how BMTI roughness compares to that of other estimators we can look at

Figure 6.8. In panel A, represented as a red curve, we observe the NN-interpolated Minimum Energy

Path (MEP) between the two main minima of the potential. The way this path is constructed is

reported in Appendix A.4; in brief, is the path formed only of sample points which is most similar

to the real MEP connecting the two main minima of the potential.

In panel B we can look at the estimator performance along the one-dimensional CV given by the

length of the NN-interpolated path from the global minimum to a point. We call this CV simply

the distance along the MEP ; it is zero in the global minimum and it has its maximum value when

the path reaches the second-deepest minimum of the Mueller-Brown potential. In black we observe

the true free energy values, in blue BMTI estimates, in red PAk estimates. While the general trend

along the path and the free energy differences between couples of free energy extrema (local maxima

or minima) are well captured by both estimators, we clearly see the spikyness of PAk as opposed to

BMTI smoothness; this effect is more evident in the free energy minima, where the sample density

is higher a pathological behaviour which does not preclude PAk’s overall efficiency, but prevents
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Figure 6.9: Testing the effect of the empirical redundancy factor in BMTI likelihood for
various systems. Distribution of the observed pull χ̂i in equation (3.16) for vaious estimators and various
systems. Each panel corresponds to a different system, indicated in the panel titles (cfr. Appendix A). In
orange the pull distribution where pull variables are computed using the original BMTI error in equation
(6.29); in blue the redundancy-corrected error is adopted; the dashed black line corresponds to the pull
distribution of PAk estimates; in red the standard normal distribution N (0, 1).

it from always crushing the competition of other nonparametric methods, as seen in Table 6.1.

Standard kNN performs quite similarly to the previous two approaches, but with a tendency to

always overestimate the free energy, which is coherent with the higher mean absolute error in Table

6.1. The Gaussian KDE, instead, rapidly detaches from the ground truth curve and systematically

underestimates the free energy.

Finally, in panel C we can inspect the distribution of the observed roughness for the various

estimators. The image proves that BMTI is the smoothest of all considered estimators, followed

by the Gaussian KDE, then kNN and finally by PAk, confirming in a more quantitative way the

insight provided by panel B. Notice that, if one were surprised by the bad performance of the

intuitively smooth Gaussian KDE estimator, it should be considered that this is partly an effect

of the Gaussian KDE biasedness, well represented in panel B. In fact, while smoothness is not

a sufficient condition for unbiasedness, unbiasedness is a necessary condition for scoring low in

roughness as per our definition in equation 6.31. Nonetheless, even the adaptive Gaussian KDE,

not reported in panel C for readability, has a broader roughness distribution than BMTI. This can

be understood by thinking that, even by adding many smooth bumps one over the other, there

is no guarantee that the obtained result will not be rugged, due to the finiteness of the statistic.

BMTI is the only nonparametric method considered which enforces coherence among estimates at

neighbouring points, so it is rightfully the smoothest among them.

6.3.2.2.3 Performance of BMTI uncertainty estimator In order to assess the performance

of the uncertainty estimator for BMTI given by equation (6.29) corrected or not by the redundancy

factor, we look at the pull distributions for BMTI and the redundancy-corrected BMTI and compare
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them to the pull distribution of our benchmark method, PAk. We consider three systems: in panel

A a sample of 10000 points extracted from the bivariate Gaussian distribution in column A of

Figure A.2 of Appendix A; in panel B a sample of 5000 obtained from the Mueller-Brown potential

in equation (A.4) sampled at β = 0.035 (the sample scatter plot is also visible in panel A of Figure

6.8); in panel C 10000 points extracted sampled from our usual 6-dimensional (see Appendix A.6).

PAk error proves fairly accounted for on all tested systems, with the black dashed line following

the red solid line (the theoretical prediction) quite closely; even in the 6-dimensional case the perfor-

mance is satisfying, considering that the dimensionality is quite high. Instead, the pull distribution

of the uncorrected BMTI estimator, in orange, is always much wider than the standard normal,

a sign that the quantity in equation 6.29 highly underestimates the correct variance. Even in its

corrected version, in blue, the results are ambiguous: in the two systems of ID d = 2, in panels

A and B, the redundancy correction still leaves BMTI error underestimated, leaving the pull quite

spread, too much for systems in which the COD does not play; in the 6-dimensional system in panel

C, in contrast, the correction overcompensates and the pull results even narrower than a standard

normal.

The behaviour of BMTI and of its error has been tested on all systems considered in this thesis

work and presented in Appendix A; in most of the cases the correction leaves the error underesti-

mated, like in panels A and B, but in some other cases it overcompensates like in panel C. We could

identify a factor to help predict whether the corrected variance would turn out underestimated or

overestimated, such as could for example be the dimensionality: in the case of the 20-dimensional

system of ID d = 7 (cfr. Appendix A.8.3) the error is overcompensated like in panel C, but in the

9-dimensional case (cfr. Appendix A.7.1.1) it is underestimated. This is confusing and can only

lead us to the conclusion that we still do not have a viable option for accurately estimating the

uncertainty on BMTI estimates. On a positive note, however, the redundancy correction always

seems to retrieve at least the correct order of magnitude for the estimator variance, so this error

estimate can be used in context in which an approximate error estimate is sufficient.

6.3.3 Discussion

The BMTI free energy estimator has been conceived with the purpose of producing estimates that

are close in value for neighbouring point, like for continuous and differentiable functions. Our

motivation lies in the fact that the flagship free energy estimation method in our group, PAk,

displays a noisy behaviour, which is visible especially in contexts of low dimensionality and high

sample density, where other methods’ fluctuations typically reduce.

The core of BMTI is an approach to nonparametrically estimate the free energy gradient and
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produce accurate estimates ˆδF of the free energy differences δF between neighbouring points. The

ˆδF s are considered as marginal random variables of a multivariate normal distribution whose di-

agonal covariance matrix has the estimated variances of the ˆδF s as entries. We can interpret such

distribution as a likelihood for the error-affected observations ˆδF as a function of the free energies

F seen as parameters. The maximisation of this log-likelihood model produce the BMTI estimates

F̂, which have proven to perform very well in several contexts. Despite being a maximum-likelihood

estimator, for the same motivations as in the case of PAk, we regard BMTI as a nonparametric

estimator, since it is only based on very local estimates and does not make any assumption on the

FES functional form.

It is worth mentioning that, as far as we are aware, no method other than ours in literature

is able to provide accurate nonparametric free energy gradient estimates in high-dimensionality

settings like the ones we have considered. The only approach to our knowledge that seems to

efficiently compute the free enrgy (actually, log-density) gradient up to dimension D = 7 is a para-

metric method presented in reference [166]. Our approach, hovever, has the advantages of a great

computational simplicity (it only involves computing small sample averages) and the fact that it

can be pushed to very high embedding dimensionalities D as long as the order of the intrinsic di-

mensionality remains limited. Moreover, we believe that the efficacy of BMTI resides in the high

accuracy of the estimators ˆδF , which can then be used as robust building blocks to estimate the

whole FES.

In order to illustrate BMTI features we can start by going back to the meaning of the acronym,

namely Binless Multidimensional Thermodynamic Integration. In particular, let us first focus on

the TI part. Thermodynamic Integration[107] is a term which indicates a wealth of techniques to

perform free energy calculations. What they have in common is that they proceed by integrating

thermodynamic quantities to retrieve differences in thermodynamic potentials[88, 125, 126]. In the

cases interesting for us, the integrated quantity is the gradient of the (canonical) free energy. We

do not aim to discuss here TI and connected techniques extensively, but the evident connection of

BMTI to TI methods imposes to at least give a brief overview on how in this class of approaches

the reconstruction of the FES is carried out.

Typically[40], like in the original paper by Kirkwood[107] and in many others, TI is carried

out by integrating the gradient along a one-dimensional reaction CV[16, 33, 47, 53, 72, 185], in

order obtain the potential of mean force. As pointed out in reference [41], integrating the mean

force in more than one dimension is regarded in literature as a very difficult task. Sometimes the

FES is reconstructed by sampling the mean force on a dense grid[94]. However, this approach is

computationally demanding and thus allows for the FES reconstruction only up to d = 2, 3[47,
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56, 124]. Within this range of spatial dimensions, it is possible to reconstruct the free energy

gradient in a more sophisticated way by solving the Poisson equation [7, 93, 116]. This technique

is however quite delicate, since it involves the intrinsically noisy numerical estimation of the free

energy Laplacian on a shifted mesh w.r.t. the one where samples of the free energy gradients are

cumulated. This approach requires to deal only with conservative fields, which should integrate to

zero on loop integrals. In other cases, with the help of enhanced sampling techniques[3, 54, 121, 163],

the dimensionality of the CV space explored is much higher than one, even up to 10 dimensions[36].

In these cases one faces the choice to either compute free energy differences between important free

energy landmarks integrating the mean force along a one-dimensional path or to reconstruct the

whole FES.

However, to the best of our knowledge, the whole FES reconstruction is done in literature

only up to a CV space of four dimensions, in the case of the widely adopted[2, 34] variational

reconstruction method introduced in reference [122]. This approach adopts radial-basis functions

for the representation of the free energy. The points at which the radial basis functions should be

centred must however be carefully chosen, involving a great deal of technicalities. The number of

chosen centres is always kept below few hundreds, setting an upper limit to the estimator level of

detail.

Instead, BMTI has proven accurate and reliable on all tested systems with embedding dimension

up to D = 20, hence the “M” for Multidimensional in the acronym. Unlike many FES reconstruction

strategies[7, 47, 56, 93, 94, 116] it does not necessarily require a dense sampling of the configuration

space and performs well even with small samples of few thousand points, as proven by the fact

that all the samples presented in this thesis work have between 5000 and 30000 points. The points

used as inputs for the estimator do not need to be constrained on a regular grid (hence the “B” of

binless). Moreover, BMTI retains all the adaptive structure of PAk described in Chapter 3: the

restriction to the low-dimensional intrinsic data manifold and the point-adaptive neighbourhood

selection (on top of the intrinsic adaptiveness typical of kNN-based methods), which defines the

directed neighbours graph (see sections 3.1.1 and 3.1.3). All these features, the “binlessness”, the

restriction to the intrinsic manifold and the double-adaptivity, expose BMTI much less to the curse

of dimensionality. In order to reconstruct the FES in a TI-like fashion, BMTI does not require to

select a number of interesting points for which the relative free energy difference is computed: it

rather considers all the possible paths connecting points in the NG and computes all the relative

free energy differences along them simultaneously in form of the linear system (6.27). As already

stressed, this crucially relies on the quality of the estimates produced for the {δFij}ij , which enter

BMTI as main ingredients, and of their errors {εij}ij , which establish the weights attributed to the

paths in the simultaneous optimisation. In addition its ability to operate with few points, BMTI
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also works in the opposite regime. The points entering BMTI estimates do not even need to be

selected or healed and there are no precautions to be taken, unlike in reference[122]: all points in

the sample can be retained. Computationally, BMTI can handle up to O(105) points on a desktop

computer. A Python package implementing this approach has been recently publicly released by our

group on GitHub[79]. If one is interested in the error computation, however, numbers are limited by

memory requirements, since the procedure described by equation 6.29 requires to compute the dense

inverse of the sparse matrix A, which has size N × N . All these considerations lead us to believe

that BMTI is a competitive option when the free energy gradient information is to be employed to

reconstruct the FES, i.e. in the TI class of methods.

The only possible downside w.r.t. other TI approaches is that BMTI has been conceived to

deal with equilibrium samples, i.e. it needs the sample points to be extracted by the unbiased

underlying distribution. If this is not the case, the output of the gradient estimator ĝ, defined

in equation (6.8), on the biased sample does not represent the gradient of the ground truth FES.

Nonetheless, there are no apparent inconveniences in employing BMTI likelihood even with free

energy gradient data gathered in biased simulations, as long as these are are unbiased estimates of

the free energy gradient; these gradients would enter the ˆδF estimators in equation (6.15). Even

if the NG determined from this sample would not probably reflect the structure of the ground

truth FES, this would not cause any trouble in the FES reconstruction, as long as correct weights

are attributed to the log-likelihood terms; again, the estimator performance would rely on the

accuracy of the errors on the ˆδF s, a fact which requires a sensible uncertainty estimation on the

free energy gradients or mean force[47, 160]. An alternative path, would be to apply to BMTI

the same reasoning that, applied to PAk in Chapter 5, led to the punctual reweighting scheme in

equation (5.6) for static biases and thus to bPAk. Since, like PAk, BMTI is a maximum-likelihood

estimator, we have no reason to believe that BMTI does not perform a kind of fitting analogous

to that of PAk. Also, again, recall both methods share the aforementioned double-adaptiveness

and the restriction to the intrinsic data manifold. Therefore, it seems safe to apply the punctual

reweighting in scheme also to BMTI.

We point out that neither of these two pathways for the generalisation of BMTI to biased sam-

ples have been explored so far. Yet, for all the above, but both of them look like promising future

directions.

Concerning the smoothness, BMTI has proven to solve the issue that motivated us to develop it. The

spurious noise introduced by redundant counts in kernel methods and even more severely by PAk

(cfr. 3.2.5.3) is removed by correctly accounting for correlations among estimates at neighbouring

points, as discussed in section 6.8. Together with its high accuracy, this will make BMTI our
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preferred method in many contexts. However, as all TI approaches, it fails to give consistent

estimates in the case of disconnected or weakly connected NGs, as discussed commenting e.g. column

B of Figure 6.7.

Evidently, BMTI does not have the same versatility as kNN-based methods: approaching a sys-

tem without prior knowledge the only choice to play it safe appears to be resorting to these methods,

which are the most robust. Nonetheless, it would not make sense to reject BMTI for this reason,

since it has proven to outperform all other nonparametric methods in most conditions. Thus, we

propose the following simple procedure that can be applied as a preliminary screening to assess, in

case the ground truth free energy of a system is unknown, whether BMTI estimates on that system

will be reliable or not. As we saw, again, in Figure 6.7, the correlation plot between the BMTI

estimates and the true free energies becomes visibly disconnected when the NG is disconnected or

weakly connected; PAk’s correlation plot, instead, is concentrated in a single bulk in all conditions.

Therefore, a simple test is looking at the correlation plot between PAk and BMTI estimates: if it

is connected, BMTI estimator should be preferred, while PAk should be opted for otherwise.

Finally, the issue of BMTI error estimation is worth a mention. As discussed in section 6.3.2.1, the

correct framework to estimate the error on {F̂i}i is that of the CRB. Due to the redundancy of the

information carried by the ˆδF s in BMTI likelihood, the resulting error estimates are underestimated

of some orders of magnitude. As discussed in section 6.3.2.2.3, the way we proposed to get around

this issue was dividing each term in the BMTI likelihood by an empirical factor accounting for

such redundancy. Unfortunately, the proposed factor is not able to consistently unbias BMTI error

estimates. It however corrects at least the order of magnitude, maybe a hint that, tweaking the

form of the redundancy count, the undertaken path could lead us to fair results. In applications

where only the order of magnitude of the error is required, this redundancy-corrected BMTI error

estimate can serve the cause.

As of yet, the only way to give an accurate estimate of the free energy errors in BMTI seems

to be inverting the full correlation matrix of the ˆδF s, plugging this matrix into the log-likelihood

(6.25) and computing the log-likelihood’s Hessian as in equation (6.28). This is a path that we have

taken only recently, when we have worked out expression (D.23) for the matrix C, so it has not

been seriously put to test yet.
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Appendix A

Test systems

A.1 1-dim. double well potential

This potential, adopted in Figure 3.2.5.3, has the form:

U(x) = − log

�
1

2
N (−0.5, 1) +

1

2
N (1.6, 0.5)

�
(A.1)

A.2 2-dim. double well potential

The PDF of this potential, represented in panel A of Figure 5.1, has the form:

U2d :=
�
2 e−(x− 1.5)2 − (y− 2.5)2 + 3 e−2x2 − 0.25 y2

�3
(A.2)

A.3 2-dim. modified Mueller-Brown potential on a glassy back-

ground

The PDF corresponding to this potential is obtained by superimposing on a box [−4, 4] × [−2, 2]

with periodic boundary conditions the following distributions:

• a bivariate multi-peak PDF of form:

fmp := 0.11 [3.4 e−6.5 (x+1)2 +11 (x+1)(y−0.5)− 6.5 (y−0.5)2

+2 e−(x+0.5)2 − 10 (y+0.5)2 + 4 e−(x− 0.5)2 − 10 (y+1)2 ]
(A.3)

• 90 rescaled bivariate Gaussians 0.005×N (c, 0.04 · 12) with the centres c randomly sampled

in the rectangle [−3.6, 3.6]× [−1.8, 1.8]; their integral is 0.45;
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A.4. 2-dim. Mueller-Brown potential

• a uniform background such that added to Ump they integrate to 0.55;

Adding these three contributions to we obtain a PDF that, as in Chapter 5, we call p(x). Then we

can also consider p(x)10 re-normalised to 1, which for further reference we simply indicate by p10:

p10(x) :=
(p(x))10R
(p(x))10 dx

.

The two systems display metastability between the two main basins. By construction, the potential

barrier in p10 is exactly 10 times as high as the one in p.

A.4 2-dim. Mueller-Brown potential

This is the classical bivariate Mueller-Brown potential[131], whose expression is:

UMB := 15 e0.7 (x+1)2 +0.6 (x+1)(y−1)+0.7 (y−1)2 − 200 e−(x−1)2−10 y2

− 100 e−x2−10 (y−0.5)2 − 170 e−6.5 (x+0.5)2 +11 (x+0.5)(y−1.5)−6.5 (y−1.5)2
(A.4)

and whose contour plot can be seen in panel A of Figure A.4. From this potential, we generated

various samples at various temperatures. In particular, we focused on a range of temperatures

around which all three basins of the potential were visited even extracing only 5000 points. We

found that for the inverse value of coldness β = 0.035 the saddle points are also fairly populated,

while halving the temperature, at β = 0.07, the points outside the minima are rarer, as can be seen

in panels B1 and B2 of Figure A.4. The two systems display free energy barriers from the global

minimum to the neighbouring basin which are around ∼ 3.7kBT and ∼ 3.7kBT high respectively,

as visible in panel C of Figure A.4. We use these two settings in order to test our free energy

estimators in different conditions of connectivity of the neighbours graph between sample points.

In order to compute the minimum energy path (MEP) connecting the two main minima we use

the Nudged Elastic Band (NEB) algorithm[96] in its improved tangent formulation [95] with 32

images. For the exact location of the two minima we use the values in reference [23]. We call the

MEP for this system the polygonal chain that linearly interpolates between the 32 images. Next, we

want to find a path as close as possible to the MEP but which only connects points in the sample.

We sample our MEP homogeneously 20 times for each image, so that we extract a set of 621 points

along the MEP. For each of these MEP points, we look for its nearest neighbour in the data sample

we are considering. If the distance between the MEP point and the NN in the dataset is below a

given threshold we keep the point, otherwise we reject it. The collection of all these sample points

forms what we call the NN-interpolated MEP. For both data samples of 5000 points extracted from
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A.4. 2-dim. Mueller-Brown potential

Figure A.1: Illustration of the Mueller-Brown potential used as test system. A Contour plot of
the Mueller-Brown potential in equation (A.4). For the reader’s convenience, the minimum of the potential
has been shifted to 0. Also, for a better readability, the colour map has been cutoffed to 230, otherwise it
would be saturated by the diverging behaviour in the top right corner. The black dashed curve represents
the MEP connecting the two minima computed via the NEB algorithm. B1-2 Scatter plots of two sets
of 5000 points sampled from the Mueller-Brown potential. B1: The thermodynamic beta is β = 0.035; in
dashed black the MEP (same as panel A), in red the NN-interpolated MEP, the path connecting points
within a distance 10−2 from the real MEP. B2: The thermodynamic beta is is β = 0.07; in dashed grey the
MEP (same as panel A), in yellow the NN-interpolated MEP, the path connecting points within a distance
10−2 from the real MEP. C Analytic free energies for the two systems along the MEPs. In solid red and
dashed black the free energies at β = 0.035 along the the MEP and the NN-interpolated MEP respectively;
in solid yellow and dashed grey the free energies at β = 0.07 along the the MEP and the NN-interpolated
MEP respectively.

the Mueller-Brown potential at β = 0.035 and β = 0.07 we consider a NN interpolation threshold

of 2×10−2. In the first sample the NN-interpolated MEP contains 460 points; in the second sample

the number of points satisfying the threshold requirement is reduced to 280. The MEP is clearly

visible as the dashed curve in panel A of Figure A.4. The NN-interpolated MEPs are represented

in coloured solid lines panels B1 and B2. The ground truth free energies along the various paths

are visible in panel C.
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A.5. 2-dim. Gaussian distibutions

Figure A.2: Bivariate potentials from four Gaussian distributions used as test system. Each
column represents a different system. All Gaussians are centered at the origin. The parameters of each
system’s covariance matrix are indicated in the header of each column. Top: contour plots of the potential
surfaces. Bottom: four samples of 10000 points from the above potentials.

A.5 2-dim. Gaussian distibutions

These four systems have bivariate normal distributions N (0,Σ). We name the two elements on

the diagonal of this matrix σ2
x and σ2

y , while the two identical off-diagonal terms are σxy. The first

Gaussian, whose corresponding potential is represented in panel A1 of Figure A.2, has σ2
x = 1,

σ2
y = 0.2 and σxy = 0.4. The second system, in panel B1, has σ2

x = 2, σ2
y = 1 and σxy = 0. The

third system, in panel C1, has σ2
x = 2, σ2

y = 0.1 and σxy = 0. The fourth system, in panel D1, has

σ2
x = 2, σ2

y = 0.01 and σxy = 0. In the bottom row of the figure scatter plots of samples of 10000

points from the above potentials are shown.

A.6 6-dim. potential:

2-dim. double well potential plus 4-dim. harmonic directions

This potential in the first two dimensions is exactly the same as the one in section A.2. The

additional 4 dimensions feel a (convex) harmonic potential centered at the origin and with unitary

curvature.
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A.7. CLN025 decapeptide

Figure A.3: The CLN025 β-hairpin used as test system. A1 and A2 Visualisation of two metastable
states of the peptide, found by clustering[61] after estimating the FES with PAk. A1 A configuration in the
global minimum of the free energy, corresponding to the crystal structure. A2 A configuration in the second
most populated cluster, corresponding to the second minimum. B Free energies along the one-dimensional ψ-
dihedral distance collective variable s defined in equation (5.7) and computed on a histogram for a dataset of
4000 points. In blue the free energy profile of the whole dataset. In other colours the individual contributions
of the 6 main clusters to the one dimensional free energy F (s). The clusters are found as described in section
A.7.1. C Free energy profiles F (s) computed on a histogram fo two datasets of 9500 points (one unbiased
and one biased).

A.7 CLN025 decapeptide

As a realistic system we consider a β-hairpin called CLN025[98]. This molecule is a small protein

of 10 residues and 166 atoms and is one of the smallest peptides that display a stable secondary

structure, in this case a β-sheet. Thanks to the relatively small size of the molecule we are able

to produce both a long unbiased MD trajectory and a biased one. We simulate the protein in

Gromacs[1] in explicit solvent. Since we are not interested in the precise phisical chemistry of the

system, we use quite a small box, resulting in a total of 2959 atoms, 166 of CLN025, the rest from the

931 water molecules. To enhance the sampling of configuration space. We run a Replica Exchange

MD[182] simulation with 16 replicas using equally spaced temperatures from 340K to 470K as done

previously in reference [159]. In panels A1 and A2 Figure A.3 the visualisation of two metastable
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A.7. CLN025 decapeptide

states of the peptide. The one in Figure A1 corresponds to the crystal structure.

A.7.1 9-dim. ψ dihedrals metric

The first feature space chosen is the 9-dimensional ψ-backbone-dihedra space. This choice implies

of course a drastic dimensional reduction on the over-400-dimensional original atomic configuration

space; still, even after this huge projection the system will show complex features and a reasonably

high dimensionality, so that we are entitled to consider it a realistic case. Thus D = 9 is the

embedding space dimension. The distance between two configurations Xa and Xb in this space is:

θ(Xa,Xb) =

sX

n

((ψa
n − ψb

n))
2 (A.5)

where ((•)) stands for 2π-periodicity within the brackets.

In order to generate a biased trajectory we apply the procedure described in section 5.3.2 of

Chapter 5. The free energies along the one-dimensional ψ-dihedral distance collective variable s

defined in equation (5.7) and computed on a histogram for two datasets of 9500 points (one unbiased

and one biased) can be seen in panel C of Figure A.3.

To find the relevant clusters of the system we extract 4000 points from the trajectory. We then

compute the ID of the system as d = 7. We estimate the free energy estimate in this space with

PAk. Then we analyse the FES by a density peak clustering algorithm[61] and we find 6 main

clusters. Individual contributions of these 6 clusters to the free energy profile F (s) are visible in

panel C of A.3. Configurations from the two main clusters are visualised in panels A1 and A2.

A.7.1.1 9-dim. ψ dihedrals metric, analytic potential via Gaussian KDE smoothing

We generate a sample of 38000 points. We analyse it in the space of the ψ-backbone-dihedrals. The

estimated ID[68] is d = 7. With such ID we generate a 9-dimensional smooth potential using our

adaptive Gaussian KDE presented in Appendix B of which we know the analytic value everywhere.

A.7.2 45-dim. alpha carbon distances metric

The second featurisation chosen is that of the distances between all alpha carbons (Cα). Since we

have 10 residues there are 10 alpha carbons, thus 10× 9/2 = 45 pairwise distances between them;

therefore the embedding dimension of the chosen space is now D = 45. The metric on this space is

the RMSD:
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A.8. 20-dim. embeddings

dRMS(X
a,Xb) =

s
2

N(N − 1)

X

i>j

(daij − dbij)
2 (A.6)

where Xa and Xb are two configurations in the 45-dimensional space and dqij is the distance

between the i-th and the j-th Cα in configuration Xq.

A.8 20-dim. embeddings

We considered three systems used for the validation of PAk estimator in reference [157]and briefly

drescribed in the following three subsections. They are trajectories of respectively 2,4 and 7 CVs of

which the ground truth free energy is known. All the systems were treated in the same way. Initially,

the FES is resampled in the space of the collective variables with a probability proportional to the

exponential of negative of the free energy value. Then, the data points are twisted on a Swiss-roll

by splitting the first of its coordinates in two by means of the transformation x 1 = x cos(x) and x

2 = x sin(x). Finally a rotation around a random vector in D = 20 is performed. In this manner

each point sampled from the original distribution is embedded in a 20-dimensional space. See

A.8.1 2-dim. system before embedding

The original system before embedding is the projection on two collective variables of the nucleation

of the C-terminal of amyloid-β[13].

A.8.2 4-dim. system before embedding

The original system before embedding is the projection on four collective variables of the folding of

the third IgG-binding domain of protein G from streptococcal bacteria (GB3)[83].

A.8.3 7-dim. system before embedding

The original system before embedding is the projection on seven collective variables of the conforma-

tional space of the intrinsically disordered protein human islet amyloid polypeptide (hIAPP)[205].
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Appendix B

Adaptive neighbourhood size selection in

kernel density estimation: PAkde

The framework that allows to adaptively select the neighbourhood size for points in a sample and

the restriction to the intrinsic data manifold, introduced in sections 3.1.3 and 3.1.1 of Chapter 3 can

be employed also as a method for the bandwidth selection of kernel density estimators. The optimal

values k̂ in equation (3.7) give a quantitative measure of the maximum number of neighbours that

can be included from the sample in a hypersphere centred on a given point i maintaining the PDF

value within that hypervolume compatible with a constant according to some tolerance Dthr. Fixing

a set of N neighbourhood sizes {k̂i}i returns as a side product also a set of lengthscales {ri}i: the

smallest a ri, the faster will be the variations of the PDF around point i and vice-versa.

This fact can be exploited also in the selection of the bandwidth h of any kernel density estimator

of the form in equation (2.17), namely: ρ̂ (x) = 1
N

PN
j κh (x− xj). Based on the functional form

of the kernel κh, its shape and tail properties, the {ri}i scaled by some factor λ can be employed

as local smoothing parameters, so that at any point i the selected bandwidth becomes ĥi := λri.

We have tested this method in case of Gaussian KDEs on various systems and it has proven to

considerably improve the estimates of fixed-bandwidth Gaussian KDEs. In a range of embedding

dimensions ranging from D = 2 to D = 9 most optimal values for λ were between 1
2 and 1

3 . We

choose the factor λ = 1
2 and define our point-adaptive Gaussian KDE:

ρ̂ (x) =
1

N

NX

j

κĥj
(x− xj) , (B.1)

with ĥi :=
1
2ri for each point i. We call the estimator in equation (B.1) the Point-Adaptive (Gaus-

sian) kernel density estimator, or PAkde. Its performance on several systems across a wide range of

embedding and intrinsic dimensionalities can be examined in Chapter 6 in Table 6.1 and is discussed
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in section 6.3.2.2.1. A more refined bandwidth selection criterion should include a dependency on

the dimensionality such as e.g. in Scott’s or Silverman’s rules of thumb[170, 177]. We will further

investigate in this direction.
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Appendix C

Structural description of the metastable

states

We here present a description of all 18 metastable states in terms of their local contact structure and

backbone arrangement and of the two observables SASA and PDA. Some parts of the description

might be redundant with the main text of the manuscript.

From the analysis of the maximum residence time it is clear that states 1 and 2 of both m1

and m2 are among the longest-lived metastable states. All four are in fact very similar to the

crystallographic structure (PDB 6Y84): they all have the left flap and the linker loop in contact

between each other (cont. Met49-Gln189); the left flap is closed (cont. Glu47-Leu57 broken, cont.

Thr25-Cys44 formed) and the linker loop stretched towards it (cont. Leu167-Arg188 broken), covering

the lower part of the binding pocket. The contact and backbone structures of states m2:1 and m2:2

are almost identical and even a visual inspection with the software VMD confirms the two states can

be considered in practice as the same metastable state (even the SASA and PDVA have compatible

values within errorbars); the difference between states m2:1,m2:2 and m1:1,m1:2 is the fact that

the latter two have the F140-C145 loop (we call it upper flap) tilted downwards (contacts 28 vs

143-144 and 118 vs 142 not formed, dihedral 144 in β instead of α configuration), which hides the

catalytic Cys145, resulting in a slightly lower SASA and PDVA. The differences between m1:1 and

m1:2, instead, are mostly in the linker loop, which in m1:2 is wider in proximity of the pocket (cont.

185-186 vs 192 not formed) and narrower towards the end (contacts 132 vs 196 and 197-198 vs 238

formed, 131 vs 199 not formed).

Two other states which are similar to each other in terms of contact structure are m2:6 and

m2:7. The upper flap is not bent downwards (dihedral 144 in α configuration, as most of the states

in m2), leaving some SASA for the catalytic Cys145. In m2:7 the left flap is more stretched towards

120



the linker loop, and the linker loop is open wider, granting slightly lower PDVA and SASA. In both

cases, however, the catalytic dyad is quite accessible.

Then there are states m1:9 and m1:10 which are very similar in their contact and backbone

structure, with the exception of the left flap, which is much more open in state m1:10. States m1:9

and m1:10 (especially the former) are then both structurally similar to m1:7: the only difference

among the contacts is 132 vs 196, which is formed in m1:7 and not formed in m1:9 and m1:10,

allowing the lower loop to be more flexible. In all three states the upper flap is tilted downwards;

surprisingly, despite the fact that the left flap is wide open, two out of these three states are detected

as closed by our observables. In m1:9 the side-chains of the residues in the loops surrounding the

binding pocket are oriented towards the catalytic dyad, causing such state to rank among the lowest

in SASA; moreover, cont. 285 vs 285∗ in this state is not completely formed (n configuration). State

m1:7 ranks among the lowest in PDVA and as the lowest in SASA; the reason lies in the sidechains

of the lower and left flaps, in particular of Thr45 and Gln189, which form a contact and effectively

close the access to the reactive site.

Another couple of similar states is that of m1:4 and m1:11: they characterised by a very open

left flap (cont. 47 vs 57 formed) and the upper flap still tilted downwards. They rank among the

most open in PDVA but not very high in SASA, due to the upper flap and to sidechains orientation

(especially in m1:11). State m1:4 is among the only three states in which the contact of the dimer

interface (cont. 285 vs 285∗) is a little looser than in the others.

The remaining states do not present close similarities to others in terms of contact structure;

we describe them in approximate order of decreasing openness of the catalytic pocket. The most

open state according to both PDVA and SASA is m2:4; its upper flap is not tilted downwards and

is retracted from the pocket, distancing from the β-sheet M162-G170 loop (we call it right loop),

leaving cont. 138 vs 172 not formed; the left flap is very open (although the dihedrals of this loop

are quite variable among the configurations of such state); the linker loop is slightly contracted and

wide (cont. 131 vs 199 and 132 vs 196 not formed), not stretching towards the left flap as in other

closed or partly-closed states; all of the above play to leave the catalytic dyad well exposed.

State m1:8 also ranks very high in PDVA and in SASA, despite the upper flap tilted downwards.

The left flap is very open, although dihedrals 43-46 are not all in α configuration; their particular

arrangement (αβαc), however, grants that the biggest sidechains of the left flap are not oriented

towards the binding pocket. The linker loop is not strerched towards the left flap, but rather down,

towards the interface with the solvent; it is quite open (dihedral 189 in c instead of β configuration)

in proximity of the pocket and all its sidechains do not obstruct the access to the cavity (in particular

those of Arg188 and Gln189, responsible for a low SASA in other states).

State m1:5 is characterised by an having the left flap open (although less than e.g. state m1:4
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and m1:11), with cont. 47 vs 57 formed, and the upper loop not tilted. The right loop leans slightly

towards the tip of linker loop (Arg188), causing cont. 138 vs 172 to be broken and cont. 167 vs 188

to be formed between the sidechain of Leu167 and the backbone of Arg188. All other contacts far

from the pocket are formed. The linker loop leans towards the left flap rather than down.

In state m1:3 the position of the upper flap and of the right loop are approximately the same

as in m1:5. The linker loop stretches a bit more toward the left flap, causing contacts 132 vs 196

and 197-198 vs 238 to be broken. The left flap is closed, forming contact 49 vs 189 with the linker

loop. The lower part of the pocket results closed, but the catalytic dyad is left quite exposed from

above, which yields a central position in both SASA and PDVA ranks.

Also state m1:6 leaves the pocket quite accessible from the top and covered from the bottom.

The linker loop is quite open, while the left flap is closed and stretched towards it. The peculiar

shape of the left flap brings the α-carbons of Ser46 and Arg188 very clpse together, which results in

a very low PDVA (second lowest in the ranking).

State m2:3 ranks as the third lowest in both SASA and PDVA. Cys145 is not well covered, but

on the other hand His41 is less accessible than in most other states. As most m2 states, m2:3 has

the upper flap flat and cont. 138 vs 172 not formed. The linker loop is not stretched, leaving

the contacts with residue Arg131 unformed or partly unformed. The left flap is really closed and

stretched towards the linker loop and its dihedrals are arranged in such a way that cont. 49 vs 189

is not formed; however, these two most mobile loops have a contact between Glu47 and Gln189.

Finally, state m2:5 is the one with the lowest PDVA and is among the lowest-ranked in SASA.

Its conformation is quite peculiar: the linker loop is all retracted and coiled (it is the only state of

m2 forming cont. 167 vs 188). The left flap is all stretched towards the linker loop (cont. 49 vs 189

formed), which, with the contribution of the sidechains, almost completely covers the catalytic His41.

The upper flap, rather than being flat or tilted down, is oriented upwards, causing a deformation

in the II domain which allows cont. 138 vs 172 to be formed. Remarkably, m2:5 is one of the three

states with cont. 285 vs 285∗ not tightly formed.
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Appendix D

Gradient of the free energy

D.1 Useful n-dimensional integrals

D.1.1 Vector identities

Vector scaled by scalar product of two vectors:

a(b · c) = (a · b)c (D.1)

Outer and scalar products:

(a⊗ b) · c = (a · c)b (D.1)
= (c · b)a (D.2)

D.1.2 Hyperspherical coordinates and the volume of the unit-radius n-sphere

In order to perform integrals on n-dimensional spheres it is useful to project cartesian coordinates

on hyperspherical ones:

x1 = r cos(φ1)

x2 = r sin(φ1) cos(φ2)

x3 = r sin(φ1) sin(φ2) cos(φ3)

...

xn−1 = r sin(φ1) · · · sin(φn−2) cos(φn−1)

xn = r sin(φ1) · · · sin(φn−2) sin(φn−1) .

With this change of coordinates the infinitesimal volume element dnx = dx1 · · · dxn becomes:
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D.1. Useful n-dimensional integrals

dVn =

����det
∂(xi)

∂ (r,φj)

���� dr dφ1 dφ2 · · · dφn−1 = rn−1 sinn−2(φ1) sin
n−3(φ2) · · · sin(φn−2) dr dφ1 dφ2 · · · dφn−1

We express the volume of an n-dimensional sphere Bn(R) as Vn = ωnR
n. Therefore, its surface is

Sn = ∂RVn = nωnR
n−1. The quantity ωn is the volume of the n-sphere of unitary radius, whose

expression can be derived by computing ωn :=
R
Bn(R) 1 dx, which gives:

ωn =
2

n

π
n
2

Γ(n2 )
(D.3)

D.1.3 Mean square radius

Let us then go ahead and compute the mean square displacement in a n-dimensional ball Bn(R) of

volume Vn and radius R:

Vn ⟨x2⟩Bn =

Z

Bn

x2 dnx =

Z

Bn

r2 dVn =

Z R

0
r2 Sn(r) dr =

Z R

0
r2 nωn r

n−1 dr = nωn
Rn+2

n+ 2

= R2 n

n+ 2
Vn

(D.4)

D.1.4 Mean outer product of the displacement

It is required in many of the above equations to be able to compute the average outer product of

the displacement in a n-dimensional ball Bn(R) of volume Vn and radius R:

Vn ⟨xxT⟩Bn =

Z

Bn

xxT dnx

=

Z

Bn

X

i,j

(xixj êiê
T
j ) d

nx where {êi}i are standard basis elements

=

Z

Bn

X

i

(x2i êiê
T
i ) d

nx all off-diagonal terms vanish for integration of odd function on even domain

= 1n In(R)Vn

since all directions are equal for symmetry reasons, the diagonal matrix in the second-last line must

be proportional to the n-dimensional identity matrix 1n and we call the scaling factor In(R). Now

notice that Eq. (D.4) is the trace of Eq. eq. (D.5) and so:

R2 n

n+ 2
= ⟨x2⟩Bn = ⟨Tr(xxT)⟩Bn = Tr(⟨xxT⟩Bn) = Tr(1n) In(R) = n In(R) ⇒ In(R) =

R2

n+ 2
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D.2. Estimating free energy derivatives

and therefore:

⟨xxT⟩Bn = 1n
R2

n+ 2
(D.5)

D.2 Estimating free energy derivatives

D.2.1 Mean shift

D.2.1.1 Analytical expression for the mean shift

First of all, let us consider the Taylor expansion of a density ρ(x) around point xi:

ρ(x) = ρ(x) = ρ(xi) + ∇T
xρ(xi)(x− xi) +

1

2
(x− xi)

T∇2
x ρ(xi)(x− xi) +O

�
(x− xi)

3
�
. (D.6)

The mean shift around point xi within region Ωi := Bd(ri,xi) of volume Vd is defined as:

⟨(x− xi)⟩Ωi,ρ :=

R
Ωi

ρ(x)(x− xi) dxR
Ωi

ρ(x) dx
. (D.7)

For a lighter notation we choose the specific case xi = 0, but the derivation remains valid also in

the more general case. Inserting the expansion (6.3) into equation (6.4) and taking into account

the results (D.3), (D.4) and (D.5):

⟨(x− xi)⟩Ωi,ρ =

R
Ωi

ρ(x)x dxR
Ωi

ρ(x) dx

=
ρ(xi)�����: 0R

Ωi
x dx + ∇T

xρ(xi)
R
Ωi

xxT dx + 1
2 ∇2

x ρ(xi)�������: 0R
Ωi

xxTx dx

ρ(xi)
R
Ωi

1 dx + ∇T
xρ(xi)�����: 0R

Ωi
x dx + 1

2 Tr
h
∇2

x ρ(xi)
R
Ωi

xxTdx
i + O(Vd r

4
i )

=
∇xρ(xi)��Vd

r2i
d+2

ρ(xi)��Vd + 1
2 Tr∇2

x ρ(xi)��Vd
r2i
d+2

+ O(��Vd r
4
i )

=
∇xρ(xi)

r2i
d+2

ρ(xi)
�
1 + Tr∇2

x ρ(xi)
2 ρ(xi)

r2i
d+2

� + O(r4i )

=
r2i

d+ 2

∇xρ(xi)

ρ(xi)

�
1− Tr∇2

xρ(xi)

2ρ(xi)

r2i
d+ 2

�
+ O(r4i )

(D.8)

where the neglected integrals vanish for integration of an odd function on a symmetric domain.
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D.2. Estimating free energy derivatives

D.2.1.2 Operational definition of sample mean shift

Now, let us focus on the estimation of the mean shift on the left-hand side of the equation from a

sample. As discussed in section 6.1, we compute it as the sample average of the shift observable

(x − xi) over the fist k̂i − 1 NNs of xi; mathematically, we use the sample density estimator ρ̂s in

equation (2.15) combined with a restriction on the region Ωi = Bd(rk̂i,i,x), so that:

⟨(x− xi)⟩Bd(rk̂i
,xi),ρ̂s =

R
Bd(rk̂i

,xi)
ρ̂s(x)(x− xi) dx

R
Bd(rk̂i

,xi)
ρ̂s(x) dx

=

1
N

PN
j=1

R
Bd(rk̂i

,xi)
δ(xj − x) (x− xi) dx

k̂i/N

=
1

k̂i

NX

j=1

Z
IBd(rk̂i

,xi) δ(xj − x) (x− xi) dx

=
1

k̂i

NX

j=1

IBd(rk̂i
,xi) (xj − xi)

=
1

k̂i

k̂i−1X

j=1

(x− xi)

(D.9)

where IBd(rk̂i
,xi) is the indicator function of the selected neighbourhood of point i and can be

rewritten in terms of product of Heaviside theta distributions and of boxcar functions as:

IBd(rk̂i
,xi) =

dY

α=1

Box[−rk̂i
,rk̂i

](xα − xi,α) =

dY

α=1

h
Θ(xα − xi,α + rk̂i)−Θ(xα − xi,α − rk̂i)

i
. (D.10)

The above derivation justifies equation (6.7); it corresponds to using as density estimator for ρ(x)

over the whole region Ωi the value ρ̂i estimated with k̂NN.

D.2.1.3 Proof that the mean shift estimates the average free energy gradient

Let us consider the fact that ∇xF (xi) = −∇xρ(xi)
ρ(xi)

, having dropped the Boltzmann factor and,

starting from expression (6.3) let us give an expression for the density gradient:

∇xρ(xi) = ∇xρ(xi) +
1

2
∇2

x ρ(xi)(x−xi) +
1

6
(x−xi)

T∇3
x ρ(xi)(x−xi) + O

�
(x− xi)

3
�
. (D.11)

Therefore we can write the mean value of the free energy gradient over Ωi, considering again without

loss of generality the specific case xi = 0:
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D.2. Estimating free energy derivatives

⟨∇xF (x)⟩Ωi =

R
Ωi

ρ(x)∇xF (x) dxR
Ωi

ρ(x) dx

=

R
Ωi�

��ρ(x)∇xρ(x)/���ρ(x) dxR
Ωi

ρ(x) dx

=
∇xρ(xi)

R
Ωi

1 dx + 1
2 ∇2

x ρ(xi)�����: 0R
Ωi

x dx + ∇3
x ρ(xi)

R
Ωi

xxTdx

ρ(xi)
R
Ωi

1 dx + ∇T
xρ(xi)�����: 0R

Ωi
x dx + 1

2 Tr
h
∇2

x ρ(xi)
R
Ωi

xxTdx
i + O(Vd r

4
i )

=
∇xρ(xi)��Vd + 1

6 ∇3
x ρ(xi) · 1D��Vd

r2i
d+2

ρ(xi)��Vd + 1
2 Tr∇2

x ρ(xi)��Vd
r2i
d+2

+ O(��Vd r
4
i )

=
∇xρ(xi) + 1

6 ∇3
x ρ(xi) · 1D

r2i
d+2

ρ(xi)
�
1 + Tr∇2

x ρ(xi)
2 ρ(xi)

r2i
d+2

� + O(r4i )

=
∇xρ(xi)

ρ(xi)

�
1− Tr∇2

xρ(xi)

2ρ(xi)

r2i
d+ 2

�
+

1

6
∇3

x ρ(xi) · 1D
r2i

d+ 2
+ O(r4i )

= ĝi + O
�
1

6
∇3

x ρ(xi) · 1D
r2i

d+ 2

�

(D.12)

where ĝi is the estimator defined in equation (6.8). Therefore ĝi is an estimator of the average

quantity ⟨∇xF (xi)⟩Ωi over the region Ωi, up to cubic order in the Taylor expansion of ρ(x).

D.2.2 Correlation structure of the free energy gradients

Figure D.1: Representation of neighbourhoods defining local estimates of the gradients and
their correlation structures.

Let us consider two points x1 and x2 for which we have selected the optimal number of neighbours
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D.2. Estimating free energy derivatives

k1 and k2 which define the hyperspherical neighbourhoods Ω1 = Bd(rk1 ,x1) and Ω2 = Bd(rk2 ,x2).

Ignoring prefactors, the true free energy gradients g1 and g2 in the two points are estimated,

according to equation (6.8), as:

ĝ1 =
1

k1

k1X

j=1

(xj − x1) =
1

k1

NX

j=1

IΩ1(xj − x1)

ĝ2 =
1

k2

k2X

j=1

(xj − x2) =
1

k1

NX

j=1

IΩ2(xj − x2)

(D.13)

where the rightmost sums run over all N points thanks to the use of the indicator functions;

when x1 and x2 are sample points then the leftmost sums run from j = 0 to k1 − 1 and k2 − 1

respectively. Of course, since we use unbiased estimators, we have ⟨ĝ1⟩ = g1 = ⟨(x − x1)⟩Ω1 and

⟨ĝ2⟩ = g2 = ⟨(x− x2)⟩Ω2 .

D.2.2.1 Variance-covariance matrix of the free energy gradients

Let us first consider the auto-covariance matrix of the gradient estimator ĝ1 at a point x1:

σ2
1 = cov[ĝ1, ĝ1] : = ⟨ĝ1ĝT

1 ⟩ − ⟨ĝ1⟩⟨ĝT
1 ⟩

=

�h 1
k1

NX

i=1

IΩ1(xi − x1)
ih 1

k1

NX

j=1

IΩ1(xj − x1)
T
i�

− g1g
T
1

=

�h 1
k1

k1X

i=1

(xi − x1)
ih 1

k1

k1X

j=1

(xj − x1)
T
i�

Ω1

− g1g
T
1

=
1

k21

k1X

i,j



(xi − x1)(xj − x1)

T
�
Ω1

− g1g
T
1

=
1

k21




k1X

i



(xi − x1)(xi − x1)

T
�
Ω1

+
X

i̸=j



(xi − x1)(xj − x1)

T
�
Ω1


− g1g

T
1

=
1

k�21

�
��k1⟨(x− x1)(x− x1)

T⟩Ω1 +��k1(k1 − 1)⟨(x− x1)⟩Ω1⟨(x− x1)
T⟩Ω1

�
− g1g

T
1

=
1

k1
⟨(x− x1)(x− x1)

T⟩Ω1 +
k1 − 1

k1
⟨ĝ1⟩⟨ĝT

1 ⟩ − g1g
T
1

=
1

k1

�
⟨(x− x1)(x− x1)

T⟩Ω1 − g1g
T
1

�

=
1

k1

�
⟨(x− x1)(x− x1)

T⟩Ω1 − ⟨(x− x1)⟩Ω1⟨(x− x1)
T⟩Ω1

�

=
1

k1
cov[(x− x1), (x− x1)]Ω1

(D.14)
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D.2. Estimating free energy derivatives

Notice that, regarding the {ĝi}i as RVs, we observe only a single realisation for each i in one sample;

for a generic RV this would make it impossible to estimate their variances unless assumptions on

their distribution were made

However sum of RVs –> teo lim centr

Operatively, σ2
1 can be estimated from the sample substituting the mean values in the equations

with sample averages over the k1 points in Ω1. In particular, ⟨(x − x1)⟩Ω1 is estimated by ĝ1 in

equation (6.8), while ⟨(x− x1)(x− x1)
T⟩Ω1 is estimated form neighbours xj of x1 as 1

k1

Pk1
j=1(xj −

x1)(xj − x1)
T. Thus, for a given point xi the variance-covariance matrix σ2

i of the free energy

gradient is computed from the sample (reintroducing prefactors and notation so far neglected) as:

σ̂2
i :=

�
kBT

d+ 2

r2i

�2 1

k̂i − 1




k̂iX

j=1

1

k̂i
(xj − xi)(xj − xi)

T − ĝiĝ
T
i


 (D.15)

where, again, the prefactor 1/(k̂i − 1) comes from the Bessel’s correction for the unbiased sample

variance estimator[193].

D.2.2.2 Cross-covariance matrix of the free energy gradients

We can write

⟨ĝ1ĝ2⟩ =
1

k1k2

N,NX

i,j

⟨H1(xi − x1)H2(xj − x2)⟩

=
1

k1k2

NX

i

⟨H1(xi − x1)H2(xi − x2)⟩

=
k12
k1k2

⟨(x− x1)(x− x2)⟩Ω12

(D.16)

where from the first to the second line we have used the fact that the xi are independent and from

the second to the third we have used the fact that they are identically distributed along with the

properties of the cutoff functions.

⟨ĝ1ĝ2⟩ =
1

k1k2

N,NX

i,j

⟨H1(xi − x1)H2(xj − x2)⟩

=
1

k1k2




NX

i

⟨H1(xi − x1)H2(xi − x2)⟩+
N(N−1)X

i̸=j

⟨H1(xi − x1)⟩⟨H2(xj − x2)⟩




=
1

k1k2
[k12⟨(x− x1)(x− x2)⟩Ω12 + (k1k2 − k12)⟨(x− x1)⟩Ω1⟨(x− x2)⟩Ω2 ]

(D.17)
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D.3. Support to the discussion about BMTI

D.2.2.3 Possible estimators for the Pearson correlation coefficient entering εij

D.2.2.3.1 Intersection over union we assume it to be well approximated by the ratio between

the volume of their intersection Ωi ∩Ωj and their union Ωi ∪Ωj . Moreover, since k̂i is proportional

to the d-volume Vi = ωdr
d
i of Ωi via the relation k̂i = Vi ρ̂

k̂NN
i , we define a proxy for pij as:

p̂ij =
k̂ij

k̂i + k̂j − k̂ij
, (D.18)

D.2.2.3.2 Consider also p̂ij =
k̂ij√
k̂i k̂j

D.2.2.3.3 Consider also p̂ij =
k̂ij

k̂i k̂j
, which goes from 0 to 1/max{k1, k2}

D.2.3 An expression for ˆδF
i

ij in terms of distances between points

By using expression (6.8) for the free energy gradient sample estimator ĝi and the definition of the

vector difference between two points i and j, rij := xj − xi, we can give an expression of ˆδF
i

ij in

equation (6.14) solely in terms of distances between points:

ˆδF
i

ij = −kBT
d+ 2

r2
1

k̂i

k̂iX

l=1

r2ij + r2il − r2jl
2

(D.19)

D.3 Support to the discussion about BMTI

D.3.1 Solution of the BMTI for uncorrelated ˆδF s

Let us consider the log-likelihood model defining BMTI in equation (6.26), that we repeat here for

the reader’s convenience:

L(F | ˆδF , D) := −
NX

i=1

X

j∈Ωi

(Fj − Fi − ˆδF ij)
2

2ε2ij
.

We maximise it analytically with respect to the vector F by setting its gradient to zero:

0 =
∂

∂Fi
L(F | ˆδF , D) = −

X

k

X

j∈Ωk

1

σkj
(Fj − Fk − δFkj)(δji − δki)

= −
X

j|i∈Ωj

1

σji
(Fi − Fj − δFji) +

X

j∈Ωi

1

σij
(Fj − Fi − δFij) ,

where the notation j | i ∈ Ωj indicates the set of points j which include the point i in their neigh-

bourhood Ωj . Working out equation the above calculation further, we can bring all the maximisation
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parameters {Fi}i on the left-hand side of the equal sign:

X

j|i∈Ωj

1

σ2
ji

δFji −
X

j∈Ωi

1

σ2
ij

δFij =
X

j|i∈Ωj

1

σ2
ji

(Fi − Fj)−
X

j∈Ωi

1

σ2
ij

(Fj − Fi) .

Distinguishing on the right-hand side of the expression the sums in which F ’s are summed over

from those those who can be factored out and defining

∆Fi :=
X

j|i∈Ωj

1

σ2
ji

δFji −
X

j∈Ωi

1

σ2
ij

δFij (D.20)

we obtain:

∆Fi =


 X

j|i∈Ωj

1

σ2
ji

+
X

j∈Ωi

1

σ2
ij


Fi −

X

j|i∈Ωj

1

σ2
ji

Fj −
X

j∈Ωi

1

σ2
ij

Fj . (D.21)

This linear system can be written in vectorial form as follows. First, for notational convenience, we

rename the two sums in parenthesis as S→i =
P

j|i∈Ωj
1
σ2
ji

and Si→ =
P

j∈Ωi
1
σ2
ij

with the two arrow

symbols respectively indicating the points for which i is a neighbour (→ i) and the points in the

neighbourhood of point i (i →). Then we rewrite the last line using indicator functions for the set

of points:

∆Fi = (S→i + Si→)Fi −
X

j|i∈Ωj

1

σ2
ji

Fj −
X

j∈Ωi

1

σ2
ij

Fj

=
X

j

"
(S→i + Si→) δji −

1

σ2
ji

I{i∈Ωj} −
1

σ2
ij

I{j∈∂i}

#
Fj

=:
X

j

AijFj

and equation (6.27) is recovered, with the definition of matrix A given in square brackets.

D.3.2 Empirical correction of redundancy in likelihood

D.3.2.1 The 1d uncorrelated gradients case

Consider the model

Fi − Fj ∼ ∆Fij = (gi + ηi)xij (D.22)

where gi is the exact gradient in i, xij is the vector between i and j and ηi is an uncorrelated gaussian

noise of variance ε2. This is assumed to be valid for j ∈ NNi the set of the first k neighbors of i.

Appendix D. Gradient of the free energy 131



D.3. Support to the discussion about BMTI

This implies
Fi − Fj −∆Fij

εxij
∼ N (0, 1)

The combination of variables defined above is equal to the same stochastic variable ηi/ε for all j.

Therefore, we also have
X

j∈NNi

Fi − Fj −∆Fij

kεxij
∼ N (0, 1)

Therefore the free energies Fi can be found by minimizing the quadratic likelihood

L(F ) =
1

2

X

i


 X

j∈NNi

1

kεxij
(Fi − Fj −∆Fij)




2

=
1

2ε2

X

i


 X

j∈NNi

Fi − Fj

kxij
− g̃i




2

The
∂L(F )

∂Fi
= γi

X

j

1

xij
+
X

j

γj
1

xij

D.3.3 Solution of the full BMTI model

D.3.4 Correlation structure of the ˆδF ’s

For any couple of neighboring points labelled by a single index a := (i, j), the random variable ˆδF a

of mean value µa := ⟨ ˆδF a⟩ = Fj − Fi can be seen as marginal variable of a multivariate normal:

ˆδF a ∼ N (µa , ε
2
a). Thus, the vector containing the ˆδF a’s for all couples of neighbours ˆδF = { ˆδF a}a

is ˆδF ∼ N (µ , C). The diagonal of this covariance matrix C is Caa = ε2a for all couples labelled

by a. However C is generally not diagonal due to correlations between couples δFa , δFb estimated

on at-least-partially overlapping regions of configurational space. Again, we refer the reader to

The exact form of C would again require the knowledge of cov[ĝi, ĝj], but, thanks to equation

(6.19) its correlation structure can be captured quite well:

⟨δFijδFlm⟩ =
rTijrlm

4
⟨(ĝi + ĝj)(ĝl + ĝm)⟩

=
rTijrlm

4
[⟨ĝiĝl⟩+ ⟨ĝiĝm⟩+ ⟨ĝj ĝl⟩+ ⟨ĝj ĝm⟩]

=
1

4

h
pil ε

i
il ε

l
il + pim εiim εmim + pjl ε

j
jl ε

l
il + pjm εjjm εmjm

i
.

(D.23)

One can decide whether to define C considering (i, j) and (j, i) different couples, thus preserving

the directional structure of the neighbors graph, in which case its size is Nspar×Nspar with Nspar =
PN

i=1(k̂i − 1) ≈ N(< k̂ > −1); or one can consider them equal, in which case the size of C is even

smaller. Either way, it looks like it could be possibly inverted for some thousand points, especially

with a cutoff on k̂. Nspar is generally much smaller than the total number of possible ordered couples
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D.3. Support to the discussion about BMTI

Figure D.2: Representation of neighbourhoods defining local estimates of the ˆδF ’s and their
correlation structures.

of indices, which is N(N − 1).
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