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MATHEMATICAL ANALYSIS AND NUMERICAL
APPROXIMATIONS OF DENSITY FUNCTIONAL THEORY

MODELS FOR METALLIC SYSTEMS∗

XIAOYING DAI† , STEFANO DE GIRONCOLI‡ , BIN YANG§ , AND AIHUI ZHOU†

Abstract. In this paper, we investigate the energy minimization model of the ensemble Kohn-
Sham density functional theory for metallic systems, in which a pseudo-eigenvalue matrix and a
general smearing approach are involved. We study the invariance and the existence of the minimizer
of the energy functional. We propose an adaptive double step size strategy and the corresponding
preconditioned conjugate gradient methods for solving the energy minimization model. Under some
mild but reasonable assumptions, we prove the global convergence of our algorithms. Numerical
experiments show that our algorithms are efficient, especially for large scale metallic systems. In
particular, our algorithms produce convergent numerical approximations for some metallic systems,
for which the traditional self-consistent field iterations fail to converge.

Key words. ensemble Kohn-Sham density functional theory, metallic systems, mathematical
analysis, numerical approximation, precondtioned conjugate gradient method, convergence

AMS subject classifications. 65K10, 65N25, 49S05, 35P30

1. Introduction. The Kohn-Sham density functional theory (DFT) is widely
used in the electronic structure calculations [2, 4, 25, 30]. The underlying mathemat-
ical model is often formulated as either a nonlinear eigenvalue problem or an energy
minimization problem with an unitary constraint. The most commonly used approach
for computing the Kohn-Sham DFT model is to solve the nonlinear eigenvalue prob-
lem by using the self-consistent field (SCF) iterations. However, the convergence of
the SCF iterations is not guaranteed and the performance of the SCF iterations is
unpredictable, especially for large scale systems. Consequently, people turn to pay
attention to investigating the constrained energy minimization problem (see, e.g.,
[9, 16, 35, 40, 41] and references therein).

We particularly note that the efficient numerical methods for the classical Kohn-
Sham DFT model, in which occupation numbers are either 1 or 0, are inefficient or
even invalid for metallic systems. The main reason is that the gap between the highest
occupied state and the lowest unoccupied state for metallic systems is very small or
absent. More precisely, the classical Kohn-Sham DFT model becomes ill-posed due
to its difficulty to separate the occupied states and unoccupied states.

To provide a well-posed and efficient mathematical model for metallic systems, the
unoccupied states have been incorporated into the classical Kohn-Sham DFT model
and the fractional occupancies has been applied in computations. For instance, the
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ensemble Kohn-Sham DFT (or the finite-temperature Kohn-Sham DFT) is devel-
oped (see, e.g., [22]), in which the associated total energy is a nonlinear functional
of wavefunctions and pseudo-eigenvalues (or occupation numbers). We see that the
ensemble Kohn-Sham DFT can be formulated as a nonlinear eigenvalue problem or a
constrained energy minimization problem. It is not difficult to apply the SCF itera-
tion approach for the classical Kohn-Sham DFT model to the ensemble Kohn-Sham
DFT model. We understand that some preconditioners have been also constructed to
accelerate the SCF iterations [19, 22, 24, 42]. Unfortunately, the convergence of the
SCF iterations for the ensemble Kohn-Sham DFT is not guaranteed yet.

In the context of solving the constrained energy minimization problem of the
ensemble Kohn-Sham DFT, different from the classical Kohn-Sham DFT, we need
to treat the occupation numbers as additional variables. There are more challenges
for designing and analyzing an efficient algorithm. For example, we observe that the
unitary invariance of the energy functional is not clear and applying the unitary trans-
formation to the Kohn-Sham orbitals may not produce the ground states. We also
understand that it is necessary to calculate the Kohn-Sham orbitals exactly [22] and
it is usually required to choose a good unitary transformation of the wavefunctions
when designing an optimization algorithm. We refer to [17, 18, 22] for constructing the
unitary transformation of the wavefunctions to make energy approximations decay.
Ismail-Beigi et al. [21] suggested expressing the unitary transformation as P = eiB

and minimizing the energy functional with respect to the Hermitian matrix B. How-
ever, the unitary transformation is incorporated into the model when some matrix
representations are applied. Marzari et al. [28] proposed an optimization algorithm
by adopting a matrix representation of the occupation numbers, which we call the
occupation matrix, and they got an unitarily invariant functional of wavefunctions
by minimizing the occupation matrix. It is shown in [28] that it is not necessary to
construct the unitary transformation. Later on, Freysoldt et al. [14] introduced the
so-called pseudo-Hamitonian matrix and proposed a preconditioned conjuagte gra-
dient (PCG) algorithm to minimize the energy functional with respect to the wave-
functions and the pseudo-Hamiltonian matrix, in which the unitary transformation
is constructed automatically by minimizing the energy functional with respect to the
pseudo-Hamiltonian matrix. Recently, Ulbrich et al. [37] studied a proximal gradi-
ent method for the ensemble Kohn-Sham DFT with the Fermi-Dirac smearing. We
may refer to [1, 34] for more works on the direct minimization algorithms for the
ensemble Kohn-Sham DFT model. To our knowledge, there is little mathematical
analysis on the ensemble Kohn-Sham DFT and its approximations. In this paper, we
investigate the energy minimization model of the ensemble Kohn-Sham DFT from a
mathematical aspect, and design and analyze the associated optimization algorithms.

The rest of this paper is organized as follows. In the next section, we introduce
some basic notation and the energy minimization model of the ensemble Kohn-Sham
density functional theory with the pseudo-eigenvalue matrix and the general smearing
method. In section 3, we study the invariance and the exsistence of the minimizer
for the ensemble Kohn-Sham energy functional. In section 4, we propose an adaptive
double step size strategy and the corresponding preconditioned conjugate gradient
(PCG) algorithms to solve the energy minimization problem. Under some mild but
reasonable assumptions, we then prove the global convergence of the PCG algorithms
based on the adaptive double step size strategy we proposed. We report several nu-
merical experiments in section 5 to demonstrate our theory and show the superiority
of our algorithms over the traditional SCF iterations. We give some concluding re-
marks in section 6. Finally, we provide some details of the gradient of the energy

2



functional in Appendix A and the derivation process to get the standard Kohn-Sham
equation in Appendix B.

2. Preliminaries.

2.1. Basic notation. Throughout this paper, we consider periodic systems.
Since we usually apply a large enough unit cell when calculating isolated systems,
our definitions and conclusions are applicable to the isolated systems in practice. Let
Ω = {x1ξ1 +x2ξ2 +x3ξ3 : x1, x2, x3 ∈ [0, 1)} be the unit cell, where ξ1, ξ2, ξ3 ∈ R3 are
three non-coplanar vectors. Then the associated Bravais lattice and the reciprocal
lattice are R = {n1ξ1 +n2ξ2 +n3ξ3 : n1, n2, n3 ∈ Z} and R∗ = {m1ζ1 +m2ζ2 +m3ζ3 :
m1,m2,m3 ∈ Z}, respectively. Here, Z represents the set of all integers and

ζ1 = 2π
ξ2 × ξ3

ξ1 · (ξ2 × ξ3)
, ζ2 = 2π

ξ3 × ξ1
ξ2 · (ξ3 × ξ1)

, ζ3 = 2π
ξ1 × ξ2

ξ3 · (ξ1 × ξ2)
.

For G ∈ R∗, we denote by eG(r) = |Ω|−1/2eiG·r the planewave with wavevector
G, where |Ω| is the volume of Ω. The family {eG}G∈R∗ forms an orthonormal basis
of the complex valued R-periodic functions space

(2.1) L2
#(Ω,C) =

{
ψ ∈ L2

loc(R3,C) : ψ is R-periodic
}
,

and for any ψ ∈ L2
#(Ω,C),

ψ(r) =
∑

G∈R∗
ψ̂GeG(r) with ψ̂G =

1

|Ω| 12

∫
Ω

ψ(r)e−iG·rdr.

We define the Sobolev space of complex valued R-periodic functions as

Hs
#(Ω,C) =

{
ψ ∈ L2

#(Ω,C) :
∑

G∈R∗
(1 + |G|2)s|ψ̂G|2 <∞

}
with s ∈ R, endowed with the inner product

(ψ, φ)Hs# =
∑

G∈R∗
(1 + |G|2)s

¯̂
ψGφ̂G,

and the induced norm

‖ψ‖2Hs# =
∑

G∈R∗
(1 + |G|2)s|ψ̂G|2.

For convenience, unless otherwise specified, (·, ·) and ‖ · ‖ always represent the inner
product and the norm of L2

#(Ω,C), respectively.

Let Ψ = (ψ1, . . . , ψN ) ∈ (L2
#(Ω,C))N ,Φ = (φ1, . . . , φN ) ∈ (L2

#(Ω,C))N . Here
N is some positive integer. We can view Ψ and Φ as vectors with elements being
functions. Then we have

ΨΦ∗ =

N∑
i=1

ψiφ̄i, Ψ∗Φ = (ψ̄iφj)
N
i,j=1.

For any A = (Aij)
N
i,j=1 ∈ CN×N , we denote by

AΨ∗ =

 N∑
j=1

A1jψ̄j , . . . ,

N∑
j=1

ANjψ̄j

T

, ΨA =

(
N∑
i=1

Ai1ψi, . . . ,

N∑
i=1

AiNψi

)
.
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Define
〈Ψ∗Φ〉 = ((ψi, φj))

N
i,j=1 ∈ CN×N .

For any positive integer n and any Ψ = (Ψ1,Ψ2, . . . ,Ψn), Φ = (Φ1,Φ2, . . . ,Φn) ∈
((L2(Ω,C))N )n, we define its inner product as 〈Ψ,Φ〉 =

∑n
i=1 tr〈Ψ∗iΦi〉. The induced

norm is ‖Ψ‖ =
√
〈Ψ,Ψ〉. We shall use the notation

‖Ψ‖∞ = max
i=1,2,...,n

‖Ψi‖

for convenience.
For any A = (A1, A2, . . . , An), B = (B1, B2, . . . , Bn) ∈ (CN×N )n, we define its

inner product as 〈A,B〉 =
∑n
i=1 tr(A∗iBi). And the induced norm is Frobenius norm,

denoted by ‖ · ‖F . We shall use the notation ‖ · ‖sF defined as

‖A‖sF = min
c∈C
‖cIN −A‖F ,

where cIN −A := (cIN −A1, cIN −A2, . . . , cIN −An). It is easy to obtain

(2.2) ‖A‖sF =

∥∥∥∥∑n
i=1 trAi
nN

IN −A
∥∥∥∥
F

.

Define
‖A‖sF,∞ = min

i=1,2,...,n
‖cAIN −Ai‖F ,

where cA =
∑n
i=1 trAi
nN . It is easy to get the following properties for ‖ · ‖sF by (2.2).

Proposition 2.1. Let A,B ∈ (CN×N )n, then the following properties of ‖ · ‖sF
hold true:

1. ‖A−B‖sF = 0 if and only if there exists c ∈ C such that A = B + cIN ;
2. ‖ · ‖sF satisfies the triangle inequality, i.e., ‖A+B‖sF ≤ ‖A‖sF + ‖B‖sF ;
3. ‖ · ‖sF satisfies the absolute homogeneity, i.e., ‖αA‖sF = |α|‖A‖sF for any
α ∈ C;

4. if

n∑
i=1

trAi = 0, then

| 〈A,B〉 | ≤ ‖A‖sF ‖B‖sF .

It follows from Proposition 2.1 and (2.2) that ‖A‖sF is the norm of the following
linear space {

A = (A1, A2, . . . , An) ∈ (CN×N )n :

n∑
i=1

trAi = 0

}
.

The Stiefel manifold is defined by

MN
B,C = {Ψ ∈ (H1

#(Ω,C))N : 〈Ψ∗BΨ〉 = IN},

where B: (L2(Ω,C))N → (L2(Ω,C))N is a bounded and self-adjoint operator. Let

ON×NC = {P ∈ CN×N : P ∗P = IN}, SN×NC = {A ∈ CN×N : A∗ = A}.

If only real values are taken into account, we then remove C or replace C with R
and replace the conjugate transpose symbol ∗ by the transpose symbol T in the above
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notation. We note that the Fourier coefficients of real valued R-periodic functions
have some symmetry, more precisely,

(2.3) Hs
#(Ω) =

{
ψ ∈ Hs

#(Ω,C) : ∀G ∈ R∗, ψ̂−G =
¯̂
ψG

}
.

We then introduce some projections of wavefunctions. Let Ψ ∈ MN
B,C. We know

that the tangent space of MN
B,C at Ψ is

TΨMN
B = {Φ ∈ (H1

#(Ω,C))N : 〈Φ∗BΨ〉+ 〈Ψ∗BΦ〉 = 0 ∈ CN×N}.

Let
KΨ = {Φ ∈ (H1

#(Ω,C))N : 〈Φ∗Ψ〉+ 〈Ψ∗Φ〉 = 0 ∈ CN×N}.

It is clear that TΨMN
B,C = KΨ provided B = I, where I is the identity operator. For

any α ∈ R, we define the linear operator onto KΨ by

(2.4) Pα,Ψ(Φ) = (Φ− BΨ〈Ψ∗Φ〉) + αBΨ(〈Ψ∗Φ〉 − 〈Φ∗Ψ〉), ∀Φ ∈ (H1
#(Ω,C))N .

We see that

P 2
α,Ψ(Φ) = Pα,Ψ(Φ) + α(2α− 1)BΨ(〈Ψ∗Φ〉 − 〈Φ∗Ψ〉), ∀Φ ∈ (H1

#(Ω,C))N ,

which indicates that Pα,Ψ is a projection if and only if α = 0 or 1/2. Define

P ∗α,Ψ(Φ) = (Φ−Ψ〈Ψ∗BΦ〉) + αΨ(〈Ψ∗BΦ〉 − 〈Φ∗BΨ〉), ∀Φ ∈ (H1
#(Ω,C))N .

We have that for any Φ1,Φ2 ∈ (H1
#(Ω,C))N , 〈Pα,Ψ(Φ1),Φ2〉 and

〈
Φ1, P

∗
α,Ψ(Φ2)

〉
have

the same real part. Thus P ∗α,Ψ is the adjoint operator of Pα,Ψ if only real functions

are involved. We mention that P0,Ψ(Φ) is orthogonal to Ψ for any Φ ∈ (H1
#(Ω,C))N .

2.2. Ensemble Kohn-Sham DFT model for metallic systems. We con-
sider the ensemble Kohn-Sham density functional theory, in which we adopt the ma-
trix representation of occupations [14, 28]. We see from Bloch’s theorem [25] that
the kinetic energy and the electronic density are given by the integral over the Bril-
louin zone (BZ). If BZ sampling is used to discrete the integral over BZ, the ensemble
Kohn-Sham energy functional with a general smearing approach can be formulated
as

(2.5) F(Ψ, η) = E(Ψ, η)− σ
∑
k∈K

wk trS

(
1

σ
(ηk − µIN )

)
with wavefunctions Ψ = (Ψk)k∈K ∈ ((H1

#(R3,C))N )|K| and the pseudo-eigenvalue

matrices η = (ηk)k∈K ∈ (SN×NC )|K|, where

E(Ψ, η) =
∑
k∈K

wk tr

(〈
Ψ∗k

(
−1

2
(ik +∇)2 + Vnl

)
Ψk

〉
Fηk

)
+

∫
Ω

Vloc(r)ρΨ,η(r)dr

+
1

2

∫
Ω

∫
Ω

ρΨ,η(r)ρΨ,η(r′)

|r − r′|
drdr′ + Exc(ρΨ,η).

Here K is a finite subset of BZ, wk is the weight associated to k-points k ∈ K satisfying∑
k∈K

wk = 2,

5



N is the number of wavefunctions for one k-point, σ = kBT with the Boltzmann
constant kB and the temperature T ,

Fηk
= f

(
1

σ
(ηk − µIN )

)
,

f is a function which is sometimes called the smearing function, and µ is a function
of η which will be determined later, S is a function associated to the entropy term.
The electronic density ρΨ,η is

ρΨ,η =
∑
k∈K

wk tr((Ψ∗kΨk + 〈Ψ∗kM〉Q〈M∗Ψk〉)Fηk
)

with M = (ϕ1, . . . , ϕK) ∈ (L2
#(Ω,C))K and the Hermitian-matrix-valued function

Q = (Qij)Ki,j=1 ∈ (L2
#(Ω,C))K×K . Sometimes we shall simply denote ρΨ,η by ρ.

Vloc ∈ L2
#(Ω,C) is the local pseudopotential and Vnl is the nonlocal pseudopotential

defined by Ψk 7→ Vnl(Ψk) = MD〈M∗Ψk〉 with D ∈ SK×KC . Note that the form of (2.5)
is suitable for the full potential calculations, the pseudopotential approximations [36,
38] and the projector augmented wave (PAW) method [3]. For instance, if the norm-
conserving pseudopotential is applied, then Q = 0 and ρΨ,η =

∑
k∈K wk tr(Ψ∗kΨk). In

theory, N should be +∞ for the ensemble Kohn-Sham DFT. However, N has to be
set to be finite in practice. We require N > Nb where Nb is the number or the half
number of electrons. For example, in Quantum ESPRESSO, N is set to Nb+ b0.2Nbc
by default, where bxc is the greatest integer not larger than x.

Now we address the function µ of η in detail. Assume that f and S satisfy the
following properties:

A.I f and S are analytic functions on R satisfying S′(x) = xf ′(x).
A.II lim

x→−∞
f(x) = 1 and lim

x→+∞
f(x) = 0.

A.III lim
x→+∞

S(x) and lim
x→−∞

S(x) exist.

A.IV f is strictly monotonically decreasing.

Under these assumptions, for given η ∈
(
SN×NC

)|K|
, there is one and only one µ ∈ R

satisfying
∑

k∈K
wk trFηk

= Ne. Here Ne is the number of electrons. Thus, we choose µ

in (2.5) as the unique function of η from
(
SN×NC

)|K|
to R such that

∑
k∈K

wk trFηk
= Ne.

We list several possible choices for the smearing function used in the literature.
• the Fermi-Dirac smearing [5]:

fFD(x) =
1

1 + ex
, SFD(x) = −[fFD(x) ln fFD(x)+(1−fFD(x)) ln(1−fFD(x))].

• the Gaussian smearing [12, 15]:

fGS(x) =
1

2
(1− erf(x)), SGS(x) =

1

2
√
π
e−x

2

.

• the Methfessel-Paxton smearing [29]:

fMP,m(x) = fGS(x) +

m∑
i=1

AiH2i−1(x)e−x
2

, SMP,m(x) =
1

2
AmH2m(x)e−x

2

,

6



where Hi are the Hermite polynomials (defined as H0(x) = 1, Hi+1(x) =
2xHi(x)−H ′i(x)) and

Ai =
(−1)i

i!4i
√
π
.

• the Marzari-Vanderbilt smearing [26, 27]:

fMV(x) = fGS(x) +
1

4
√
π

(
−1

2
aH2(x) +H1(x)

)
e−x

2

,

SMV(x) =
1

4
√
π

(
−1

2
H2(x) + ax2H1(x)

)
e−x

2

,

where a is a free parameter such that fMV(x) is nonnegative for any x ∈ R.
Marzari suggests choosing a = −0.5634 or a = −

√
2/3 in [26].

We see that the assumptions A.I-A.II imply the existence of µ ∈ R such that∑
k∈K

wk trFηk
= Ne for any given η ∈

(
SN×NC

)|K|
. Further, if A.IV is satisfied, then

µ is unique. Thus, µ is a function of η when the Fermi-Dirac smearing and the
Gaussian smearing are applied. But for some other smearing such as the Methfessel-
Paxton smearing and the Marzari-Vanderbilt smearing, it is still open whether µ
is unique. In practice, we will always assume that µ is a function of η such that∑
k∈K

wk trFηk
= Ne.

According to the ensemble Kohn-Sham DFT, we solve the following constrained
minimization problem

(2.6) inf
(Ψ,η)∈(MN

B,C)
|K|×(SN×NC )

|K|
F(Ψ, η)

to obtain the ground state of the system, where B is an operator defined by Ψ 7→
BΨ = Ψ +MQ〈M∗Ψ〉 with Q =

∫
Ω

Q(r)dr. Note that B is bounded and self-adjoint.

The associated Lagrange functional is

(2.7) L(Ψ, η,Λ) = F(Ψ, η)−
∑
k∈K

wk tr[Λ∗k(〈Ψ∗kBΨk〉 − IN )]

with the Lagrange multiplier Λ = (Λk)k∈K ∈
(
CN×N

)|K|
. Note that throughout this

paper, since our discussion with respect to η is in the linear space
(
SN×NC

)|K|
over

R, there is no term associated with the constraint η ∈
(
SN×NC

)|K|
in the Lagrange

functional (2.7).
Assume that the exchange-correction functional Exc is differentiable. We regard

Ψk and Ψ̄k as two independent variables for all k ∈ K and view F as a functional of
Ψ, Ψ̄ and η. Then we get (see Appendix A)

FΨk
(Ψ, η) = wkHk(ρΨ,η)ΨkFηk

and

(2.8) LΨk
(Ψ, η,Λ) = wk(Hk(ρΨ,η)ΨkFηk

− BΨkΛk),

where FΨk
and LΨk

are Wirtinger derivatives,

Hk(ρ) = −1

2
(ik +∇)2 + Ṽloc(ρ) + Ṽnl(ρ)

7



with Ṽloc(ρ) = Vloc +

∫
Ω

ρ(r)

| · −r|
dr + Vxc(ρ), Ṽnl(ρ) : Ψk 7→ Vnl(Ψk) + MD̃ 〈M∗Ψk〉,

Vxc(ρ) =
δExc

δρ
, and

D̃ =

∫
Ω

Ṽloc(ρ)(r)Q(r) dr ∈ SK×KC .

Here we use the convenient notation F(Ψ, η) = F(Ψ, Ψ̄, η) and L(Ψ, η,Λ) = L(Ψ, Ψ̄, η,Λ).
Set

∇Ψk
F(Ψ, η) = 2wk(Hk(ρΨ,η)Ψk − BΨk〈Ψ∗kH(ρΨ,η)Ψk〉)Fηk

and∇ΨF = (∇Ψk
F)k∈K. Given η, we denote by∇ηk

F = FTηk
and∇ηF = (∇ηk

F)k∈K,
where

Fηk
=

(
∂F
∂ηkij

)N
i,j=1

.

When all ηk are diagonal matrices,
∂F
∂ηkij

is given by

∂F
∂ηkij

= wk

(
(〈ψki, Hk(ρΨ,η)ψki〉 − εki)

1

σ
f ′
(
εki − µ
σ

)
δij

−
f ′
(
εk′i−µ
σ

)
δij∑

k′ wk′
∑N
i′=1 f

′
(
εk′i′−µ

σ

)dµ
+ 〈ψkj , H(ρΨ,η)ψki〉

fkj − fki

εkj − εki
(1− δij)

)
for any k ∈ K, where Ψk = (ψk1, ψk2, . . . , ψkN ), ηk = Diag(εk1, εk2, . . . , εkN ), fki =

f((εki − µ)/σ),
fkj−fki

εkj−εki = 1
σf
(
εki−µ
σ

)
provided εkj = εki,

dµ =
∑
k′∈K

wk′

N∑
i′=1

(〈ψk′i′ , Hk′(ρΨ,η)ψk′i′〉 − εk′i′)
1

σ
f ′
(
εk′i′ − µ

σ

)
.

It is clear that LΨk
(Ψ, η,Λ) = 0 and Lηk

(Ψ, η,Λ) = 0 for all k ∈ K mean that
∇ΨF(Ψ, η) = 0 and ∇ηF(Ψ, η) = 0. And ∇ΨF(Ψ, η) = 0 and ∇ηF(Ψ, η) = 0 mean
that there exists some Λ such that LΨk

(Ψ, η,Λ) = 0 and Lηk
(Ψ, η,Λ) = 0 for all k ∈ K.

As for the classical Kohn-Sham DFT model, let LΨ(Φ, η,Λ) = 0 and Lη(Φ, η,Λ) = 0,
we will obtain the standard Kohn-Sham equation (see Appendix B for details).

3. Mathematical analysis. In this section, we investigate some basic mathe-
matical properties of the ensemble Kohn-Sham DFT model, including the invariance
and the existence of the minimizer of the energy functional.

3.1. Invariance. We first have the following invariance of the energy functional.

Theorem 3.1. For any c ∈ R, (Ψ, η) := (Ψk, ηk)k∈K ∈ ((H1
#(Ω,C))N )|K| ×(

SN×NC
)|K|

and P := (Pk)k∈K ∈
(
ON×NC

)|K|
, there holds

(3.1) F(ΨP, P ∗(η + cIN )P ) = F(Ψ, η),

where ΨP = (ΨkPk)k∈K, P ∗ηP = (P ∗k ηkPk)k∈K.
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Proof. It is sufficient to prove that

F(Ψ, η + cIN ) = F(Ψ, η),(3.2)

F(ΨP, P ∗ηP ) = F(Ψ, η)(3.3)

hold true for any c ∈ R, (Ψ, η) ∈ ((H1
#(Ω,C))N )|K|×

(
SN×NC

)|K|
and P ∈

(
ON×NC

)|K|
.

We first prove the equation (3.2). By the uniqueness of µ that
∑

k∈K
wk trFηk

= Ne,

we obtain µ(η+cIN ) = µ(η)+c for any c ∈ R. Thus, we have (Fηk+cIN )k∈K = (Fηk
)k∈K

and (
S

(
1

σ
(ηk + cIN − µ(η + cIN )IN )

))
k∈K

=

(
S

(
1

σ
(ηk − µ(η)IN )

))
k∈K

,

which lead to ρΨ,η+cIN = ρΨ,η and arrive at (3.2).
Next we prove the equation (3.3). Since f and S are analytic on R, we have

Pkf(ηk)P ∗k = f(PkηkP
∗
k ), PkS(ηk)P ∗k = S(PkηkP

∗
k ).

By the uniqueness of µ that
∑

k∈K
wk trFηk

= Ne, we get µ(P ∗ηP ) = µ(η) for any

P ∈ (ON×NC )K. Note that

ρΨP,η =
∑
k∈K

wk tr(P ∗k (Ψ∗kΨk + 〈Ψ∗kM〉Q〈M∗Ψk〉)PkFηk
)

=
∑
k∈K

wk tr((Ψ∗kΨk + 〈Ψ∗kM〉Q〈M∗Ψk〉)FPkηkP∗k
)

= ρΨ,PηP∗ .

We have

F(ΨP, η) =
∑
k∈K

wk tr

(〈
(ΨkPk)∗

(
−1

2
∆ + Vnl

)
(ΨkPk)

〉
Fηk

)
+

∫
Ω

Vloc(r)ρΨP,η(r)dr + EHXC(ρΨP,η)− σ
∑
k∈K

wk trPkS

(
1

σ
(ηk − µI)

)
P ∗k

=
∑
k∈K

wk tr

(〈
Ψ∗k

(
−1

2
(ik +∇)2 + Vnl

)
Ψk

〉
FPkηkP∗k

)
+

∫
R3

Vloc(r)ρΨ,PηP∗(r)dr + EHXC(ρΨ,PηP∗)− σ
∑
k∈K

wk trS

(
1

σ
(PkηkP

∗
k − µI)

)
,

where

EHXC(ρΨ,η) =
1

2

∫
Ω

∫
Ω

ρΨ,η(r)ρΨ,η(r′)

|r − r′|
drdr′ + Exc(ρΨ,η),

namely,

(3.4) F(ΨP, η) = F(Ψ, PηP ∗).

Finally we obtain from (3.4) that

F(ΨP, P ∗ηP ) = F(Ψ, P (P ∗ηP )P ∗) = F(Ψ, η).
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We may view (3.2) as the translation invariance and (3.3) as the quasi unitary
invariance.

We obtain from (3.1) that

(3.5) inf
(Ψ,η)∈(MN

B,C)
|K|×(DN×N )|K|

F(Ψ, η) = inf
(Ψ,η)∈(MN

B,C)
|K|×(SN×NC )

|K|
F(Ψ, η),

where DN×N = {A ∈ RN×N : A is a diagonal matrix}. We see that

inf
(Ψ,η)∈(MN

B,C)
|K|×(DN×N )|K|

F(Ψ, η)

is the original ensemble Kohn-Sham DFT model, which means that the model (2.6)
is equivalent to the original ensemble Kohn-Sham DFT model.

We see from (3.1) that the solution of (2.6) is not unique. Thus we may turn to
consider the following optimization problem

(3.6) inf
[Ψ,η]∈(MN

B,C)
|K|×(SN×NC )

|K|
/
∼
F(Ψ, η)

which is equivalent to (2.6). Here∼ denotes the equivalence relation defined as follows:

(Ψ, η) ∼ (Ψ′, η′) if and only if there exist P ∈
(
ON×NC

)|K|
and c ∈ R such that(

Ψ′

η′

)
=

(
1

P ∗

)(
Ψ

η + cIN

)(
P

P

)
.

Therefore, the equivalence class [Ψ, η] is

[Ψ, η] = {(ΨP, P ∗(η + cIN )P ) : P ∈
(
ON×NC

)|K|
, c ∈ R}.

Let P ∈
(
ON×NC

)|K|
and

ηk = Diag(εk1INk1
, εk2INk2

, . . . , εkdk
INkdk

)N×N , ∀k ∈ K,

then (ΨP, η) ∼ (Ψ, η) if and only if Pk has the same block structure with ηk for any
k ∈ K

Pk = Diag(Pk1, Pk2, . . . , Pkdk
)N×N , Pki ∈ ONki×Nki

C .

If η = (IN )k∈K is fixed, then Fηk
= IN and (ΨP, η) ∼ (Ψ, η) for any P ∈

(
ON×NC

)|K|
,

i.e., the energy functional is unitarily invariant. It is nothing but the classical Kohn-
Sham DFT model.

Similarly, for the gradient of F , we have the following theorem.

Theorem 3.2. Given c ∈ R, (Ψ, η) ∈ ((H1
#(Ω,C))N )|K| ×

(
SN×NC

)|K|
, and P ∈(

ON×NC
)|K|

.
1. There hold

(3.7)

FΨ(ΨP, P ∗(η + cIN )P ) = FΨ(Ψ, η)P,

∇ΨF(ΨP, P ∗(η + cIN )P ) = ∇ΨF(Ψ, η)P,

∇ηF(ΨP, P ∗(η + cIN )P ) = P ∗∇ηF(Ψ, η)P ;

2. ∇ηk
F(Ψ, η) is Hermitian matrix for any k ∈ K;

3.
∑

k∈K tr∇ηk
F(Ψ, (η + cIN )) = 0.

The first property tells us how to apply unitary transformations to Ψ, η and the
associated gradients consistently. The third property is the another description of
the translation invariance of F with respect to η and will be used in our convergence
analysis.
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3.2. Existence of the minimizer. In this subsection, we show the existence of
the minimizer of the ensemble Kohn-Sham DFT model. We consider that the sampling
of k-points is at Γ point only, for which Ψ, η and other corresponding functions and
spaces are of real valued. For the general sampling K, the existence of the minimizer
of the ensemble Kohn-Sham DFT model is still open.

Following [6], we assume that Exc is of the form

Exc(ρ) =

∫
Ω

N (ρ)(r)dr

and

(3.8) N ∈P(3, (c1, c2)) (c1 ≥ 0) or N ∈P(4/3, (c1, c2),

where

P (p, (c1, c2)) = {f : ∃a1, a2 ∈ R such that c1t
p + a1 ≤ f(t) ≤ c2tp + a2 ∀t ≥ 0}

with c1 ∈ R and p, c2 ∈ [0,∞). We assume that there exists a constant α > 0 such
that for any ψ ∈ L2

#(Ω), the following inequality holds:

(3.9) (ψ,Bψ) ≥ α‖ψ‖2.

We also assume that the assumptions A.I-A.IV are satisfied. Let

Focc = {F = Diag(f1, f2, . . . , fN ) ∈ DN×N : 2

N∑
i=1

fi = Ne, fi ∈ (0, 1), i = 1, 2, . . . , N}.

Obviously,

F occ = {F = Diag(f1, f2, . . . , fN ) ∈ DN×N : 2

N∑
i=1

fi = Ne, fi ∈ [0, 1], i = 1, 2, . . . , N}.

We first have the following lemma.

Lemma 3.3. There holds

inf
(Ψ,η)∈MN

B×SN×N
F(Ψ, η) = inf

(Ψ,F )∈MN
B×Focc

F̃(Ψ, F ),

where F̃(Ψ, F ) = Ẽ(Ψ, F )− σ tr(S ◦ f−1)(F ),

Ẽ(Ψ, F ) = tr

(〈
ΨT

(
−1

2
∆ + Vext

)
Ψ

〉
F

)
+ EHXC(ρ̃Ψ,F )

with ρ̃Ψ,F = 2 tr((ΨTΨ + 〈ΨTM〉Q〈MTΨ〉)F ).

Proof. Let (Ψ, η) ∈MN
B ×DN×N . We have

F(Ψ, η) = F̃(Ψ, Fη),

which together with (3.5) yields the conclusion.
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Let f(−∞) = 1, f(+∞) = 0 and S(−∞) = lim
x→−∞

S(x), S(+∞) = lim
x→+∞

S(x),

then f and S are continuous on [−∞,+∞] and f([−∞,∞]) = [0, 1]. Thus S ◦ f−1 is
continuous on [0, 1]. By Lemma 3.3, instead of inf

(Ψ,F )∈MN
B×SN×N

F(Ψ, η), we consider

the following minimization problem

(3.10) inf
(Ψ,F )∈MN

B×Focc

F̃(Ψ, F ).

We shall prove that F̃ does indeed have a minimizer on MN
B ×F occ. Let

˜̃E(Ψ) = tr

(〈
ΨT

(
−1

2
∆ + Vext

)
Ψ

〉)
+

1

2

∫
R3

ρΨ(r)ρΨ(r′)

|r − r′|
drdr′ + Exc(ρΨ),

where ρΨ = 2 tr(ΨTΨ + 〈ΨTM〉Q〈MTΨ〉). Then we have

(3.11)
˜̃E(ΨF 1/2) = Ẽ(Ψ, F ),∀(Ψ, F ) ∈MN

B ×F occ.

To prove F̃ has a minimizer on MN
B ×F occ, we need the lower semi-continuity

of
˜̃E in the weak topology of (H1

#(Ω))N (See, e.g., [6, 7]).

Proposition 3.4. Suppose (3.8) holds. If Ψ(n) converges weakly to Ψ in (H1
#(Ω))N ,

then

˜̃E(Ψ) ≤ lim
n→∞

˜̃E(Ψ(n)).

Using (3.9), Jensen’s inequality and the similar arguments in [7], we get that

Ẽ(Ψ, F ) is bounded below over MN
B ×F occ.

Proposition 3.5. If (3.8) and (3.9) hold, then there exist constants C > 0 and
b > 0 such that

Ẽ(Ψ, F ) ≥ C−1
N∑
i=1

‖ΨF 1/2‖2H1
#
− b ∀(Ψ, F ) ∈MN

B ×F occ.

Finally, we obtain the existence of a minimizer for (3.10).

Theorem 3.6. If (3.8), (3.9) and the assumptions A.I-A.IV hold, then there exits
(Φ∗, F∗) ∈MN

B ×F occ such that

F̃(Φ∗, F∗) = inf
(Ψ,F )∈MN

B×Focc

F̃(Ψ, F ).

Proof. Let α = inf
(Ψ,F )∈MN

B×Focc

F̃(Ψ, F ). It follows from Proposition 3.5 and

S([−∞,+∞]) being bounded that α > −∞. It is clear that α <∞.

Choose Ψ(n) = (ψ
(n)
1 , . . . , ψ

(n)
N ) ∈ MN

B and F (n) = Diag(f
(n)
1 , . . . , f

(n)
N ) ∈ F occ

such that

lim
n→∞

F̃(Ψ(n), F (n)) = α.

We then get from Proposition 3.5 that Ψ(n)(F (n))1/2 is uniformly bounded in (H1
#(Ω))N .

We derive from Kakutani’s Theorem (see Theorem 4.2 in page 132 of [8]) that there
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exists a weakly convergent subsequence of Ψ(n)(F (n))1/2 in (H1
#(Ω))N . Without loss

of generality, let

Ψ(n)(F (n))1/2 ⇀ Ψ∗ = (ψ∗,1, . . . , ψ∗,N ) in (H1
#(Ω))N ,

where Ψ∗ ∈ (H1
#(Ω))N . Since (H1

#(Ω))N is compactly embedded into L2
#(Ω), we see

that Ψ(n)(F (n))1/2 → Ψ∗ strongly in L2
#(Ω) as n→∞. Let F∗ = 〈ΨT

∗Ψ∗〉. We have

(3.12) F (n) = 〈(Ψ(n)(F (n))1/2)TΨ(n)(F (n))1/2〉 → F∗,

which shows F∗ ∈ F occ and that there exists Φ∗ ∈ MN
B such that Φ∗F

1/2
∗ = Ψ∗.

From (3.11), (3.12), and Proposition 3.4, we obtain

F̃(Φ∗, F∗) =
˜̃E(Ψ∗(F∗)

1/2)− σ tr(S ◦ f−1)(F∗)

≤ lim
n→∞

˜̃E(Ψ(n)(F (n))1/2) + lim
n→∞

(
−σ tr(S ◦ f−1)(F (n))

)
≤ lim
n→∞

(˜̃E(Ψ(n)(F (n))1/2)− σ tr(S ◦ f−1)(F (n))

)
= lim
n→∞

F̃(Φ(n), F (n))

= α.

This completes the proof.

4. Numerical approximations. We apply the planewave method to discrete
(2.6). For any k ∈ K, let

Vk,NG = span

{
eG : G ∈ R∗, 1

2
|k + G|2 ≤ Ecut

}
,

where Ecut is a given cutoff energy, NG is the largest number of planewaves among
k ∈ K. Consequently, a finite planewave discretization of the ensemble Kohn-Sham
DFT minimization problem (2.6) is as follows

(4.1) inf

(Ψ,η)∈
( ∏

k∈K
MN
B,C,k,NG

)
×(SN×NC )

|K|

F(Ψ, η),

where
∏

is the Cartesian product and MN
B,C,k,NG is the Stiefel manifold

MN
B,C,k,NG = {Ψ ∈ (Vk,NG)N : 〈Ψ∗BΨ〉 = IN}.

Since
∏

k∈K
MN
B,C,k,NG is compact for any finite sampling, we obtain the existence of

a minimizer of the discrete problem (4.1) in the sense of section 3.2. In addition,
the invariance of the energy functional and its gradient in section 3.1 also holds since∏
k∈K
MN
B,C,k,NG ⊂ ((H1

#(Ω,C))N )|K|.

4.1. Numerical method. We understand that the line search method is widely
used to solve a minimization problem, in which there are two main issues: a search
direction and a step size. In our minimization problem (4.1), we observe that the
iterative behavior for Ψ and η may be different. Hence it is better to apply different
step sizes for Ψ and η when we apply the line search method to solve the minimization
problem (4.1). Inspired by the adaptive step size strategy proposed in [10], we propose
an adaptive double step size strategy for the line search method.
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4.1.1. Adaptive double step size strategy. An adaptive step size strategy is
concluded as the following four steps [10]:

Initialize → Estimate → Judge → Improve.
We suppose that the initial guess of the step sizes (tn,initial

Ψ , tn,initial
η ) at n-th iteration

is given. Then we introduce the other three steps of our adaptive double step size
strategy one by one.

Let D
(n)
Ψ = (D

(n)
Ψk

)k∈K ∈
∏

k∈K
TΨk
MN
B,C,k,NG , D

(n)
η = (D

(n)
ηk )k∈K ∈

(
SN×NC

)|K|
.

For the sake of convenience, omiting Ψ(n), η(n), D
(n)
Ψ and D

(n)
η , we denote

F((ortho(Ψ
(n)
k , D

(n)
Ψk
, tΨ))k∈K, η

(n) + tηD
(n)
η )

by F̄n(tΨ, tη), where ortho(Ψ
(n)
k , D

(n)
Ψk
, tΨ) means one step from Ψ

(n)
k ∈ MN

B,C,k,NG
with the search direction D

(n)
Ψk

and the step size tΨ to the next point in MN
B,C,k,NG .

More introduction about ortho(Ψ
(n)
k , D

(n)
Ψk
, tΨ) will be provided in section 4.1.2. By a

simple calculation, we have

∂F̄n
∂tΨ

(0, 0) = 2 Re〈FΨ(Ψ(n), η(n)), D
(n)
Ψ 〉,

∂F̄n
∂tη

(0, 0) = Re〈∇ηF(Ψ(n), η(n)), D(n)
η 〉.

We assume
〈(
D

(n)
Ψk

)∗
BΨ

(n)
k

〉
= 0 for any k ∈ K to ensure

∂F̄n
∂tΨ

(0, 0) = Re〈∇ΨF(Ψ(n), η(n)), D
(n)
Ψ 〉.

We always assume that all search directions D
(n)
Ψ and D

(n)
η are descent directions,

namely,

(4.2)
∂F̄n
∂tΨ

(0, 0) ≤ 0,
∂F̄n
∂tη

(0, 0) ≤ 0, n = 0, 1, 2, . . . ,

where ∂F̄n
∂tΨ

(0, 0) = 0 if and only if ∇ΨF(Ψ(n), η(n)) = 0, and ∂F̄n
∂tη

(0, 0) = 0 if and

only if ∇ηF(Ψ(n), η(n)) = 0. For simplicity, we always suppose ‖∇ΨF(Ψ(n), η(n))‖+
‖∇ηF(Ψ(n), η(n))‖sF 6= 0 in the adaptive double step size strategy, otherwise we have
obtained the minimizer of the problem (4.1).

Estimate. The final step sizes are supposed to satisfy the following non-monotone
condition:

(4.3) F̄n(t
(n)
Ψ , t(n)

η )− Cn ≤ ν
(
t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) + t(n)
η

∂F̄n
∂tη

(0, 0)

)
, n = 0, 1, 2, . . . ,

where ν ∈ (0, 1) is a given parameter. Here Cn can be F(Ψ(n), η(n)) or that introduced
in [39] as follows

(4.4)


C0 = F(Ψ(0), η(0)), Q0 = 1,

Qn = αQn−1 + 1,

Cn = (αQn−1Cn−1 + F(Ψ(n), η(n)))/Qn,

where α ∈ [0, 1) is a given parameter. We consider the approximation of the energy
functional F around (Ψ(n), η(n)) as follows:

(4.5) F̄n(tΨ, tη) ≈ F̄n(0, 0) + tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0) +
1

2
cn,1t

2
Ψ +

1

2
cn,2t

2
η,
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where cn,1, cn,2 ≥ 0 are approximations of the second derivatives, cn,1 = 0 if and only
if ∇ΨF(Ψ(n), η(n)) = 0, and cn,2 = 0 if and only if ∇ηF(Ψ(n), η(n)) = 0. Replacing

F̄n(t
(n)
Ψ , t

(n)
η ) in (4.3) by the right hand term of (4.5), we obtain

F̄n(0, 0) + tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0) +
1

2
cn,1t

2
Ψ +

1

2
cn,2t

2
η − Cn

≤ ν
(
tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0)

)
,

or equivalently,

F̄n(0, 0) + tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0) + 1
2cn,1t

2
Ψ + 1

2cn,2t
2
η − Cn

tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0)
≥ ν.

Hence, we propose the following estimator

(4.6) ζn(tΨ, tη) =
F̄n(0, 0) + tΨ

∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0) + 1
2cn,1t

2
Ψ + 1

2cn,2t
2
η − Cn

tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0)

to guide us whether to accept the step sizes or not at the n-th iteration. Since the
estimator (4.6) remains reliable only in a neighborhood of (Ψ(n), η(n)), it is reason-

able to restrict t
(n)
Ψ ‖D

(n)
Ψ ‖∞ ≤ θ

(n)
Ψ and t

(n)
η ‖D(n)

η ‖sF,∞ ≤ θ
(n)
η for some given small

θ
(n)
Ψ , θ

(n)
η ∈ (0, 1). Thus, we first set

t
(n)
Ψ = min

(
tn,initial
Ψ ,

θ
(n)
Ψ

‖D(n)
Ψ ‖∞

)
, t(n)

η = min

(
tn,initial
η ,

θ
(n)
η

‖D(n)
η ‖sF,∞

)
,

and then calculate the estimator ζn(t
(n)
Ψ , t

(n)
η ).

Judge. The estimator ζn(t
(n)
Ψ , t

(n)
η ) is used to determine whether to accept the

step sizes (t
(n)
Ψ , t

(n)
η ) or not. If (t

(n)
Ψ , t

(n)
η ) satisfies

(4.7) ζn(t
(n)
Ψ , t(n)

η ) ≥ ν,

then we accept this step sizes. Otherwise, (t
(n)
Ψ , t

(n)
η ) is to be improved.

Improve. If (t
(n)
Ψ , t

(n)
η ) is not accepted , then we solve the minimizer of the

approximation (4.5) of F̄n and set it to be the step size. Combining the restriction of
approximation in the neighborhood of (Ψ(n), η(n)), we take

(4.8)

t
(n)
Ψ = min

(
− 1

cn,1

∂F̄n
∂tΨ

(0, 0),
θ

(n)
Ψ

‖D(n)
Ψ ‖∞

)
,

t(n)
η = min

(
− 1

cn,2

∂F̄n
∂tη

(0, 0),
θ

(n)
η

‖D(n)
η ‖sF,∞

)
.

Here and hereafter, − 1
cn,1

∂F̄n
∂tΨ

(0, 0) is replaced by − 1
cn,2

∂F̄n
∂tη

(0, 0) if∇ΨF(Ψ(n), η(n)) =

0, and − 1
cn,2

∂F̄n
∂tη

(0, 0) is replaced by − 1
cn,1

∂F̄n
∂tΨ

(0, 0) if ∇ηF(Ψ(n), η(n)) = 0. Note

that we choose ν ∈ (0, 1/2] to ensure that step sizes (4.8) satisfy (4.7). To ensure the
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convergence of the iterations, we may do some adjustments on the above step sizes.
More precisely, if

(4.9) c ≤ t
(n)
η

t
(n)
Ψ

≤ c̄

does not hold, we then reduce one of two step sizes to make them satisfy the above
inequalities. Here c̄ > 1 > c > 0 are given constants.

Remark 4.1. We can always choose cn,1, cn,2 such that the minimizer of (4.5)
satisfies tΨ = tη, i.e.,

− 1

cn,1

∂F̄n
∂tΨ

(0, 0) = − 1

cn,2

∂F̄n
∂tη

(0, 0).

In this case, the minimizer of (4.5) is also the minimizer of the following function

F̄n(0, 0) +

(
∂F̄n
∂t

(0, 0) +
∂F̄n
∂t

(0, 0)

)
t+

1

2
(cn,1 + cn,2)t2.

Hence, the approximation of F̄n with the same step size tΨ = tη is a special case of
the above discussion.

We summarize the above process as Algorithm 4.1.
Note that it is very difficult to calculate the second derivatives of F̄n(tΨ, tη).

Thus we design some strategies to get good approximations cn,1 and cn,2. We provide
three strategies to get cn,1 and cn,2 by one trial step with step sizes (ttrial

Ψ , ttrial
η ). For

convenience, we use the short notation

F̃n(tΨ, tη) = F̄n(0, 0) + tΨ
∂F̄n
∂tΨ

(0, 0) + tη
∂F̄n
∂tη

(0, 0) +
1

2
cn,1t

2
Ψ +

1

2
cn,2t

2
η.

We shall also simply denote F̄n(t, t) and F̃n(t, t) by F̄n(t) and F̃n(t), respectively. In
this case, cn,1 + cn,2 are denoted by cn, trial step sizes ttrial

Ψ and ttrial
η are denoted by

ttrial.
(S1) Applying the same step size tΨ = tη for Ψ and η, we use the energy at ttrial

to get the approximation F̃n, namely, F̃n satisfies

F̃n(ttrial) = F̄n(ttrial),

where

ttrial = min

max
(
tmin, t(n−1)

)
,

θ(n)√
‖D(n)

Ψ ‖2∞ + ‖D(n)
η ‖2sF,∞

 ,

tmin and θ(n) ∈ (0, 1) are given parameters. Then we have

cn =
2(F̄n(ttrial)− F̄n(0)− ttrialF̄ ′n(0))

(ttrial)2
.

We choose

t
(n)
Ψ = t(n)

η =

min

(
t
(n)
m , θ(n)√

‖D(n)
Ψ ‖2∞+‖D(n)

η ‖2sF,∞

)
, t

(n)
m > 0,

ttrial, otherwise,
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Algorithm 4.1 Adaptive double step size strategy

Input: Ψ, η, DΨ, Dη, t
initial
Ψ , tinitial

η , tmin
Ψ , tmin

η , ν, c1, c2, θΨ, θη, C
1: Set

tΨ = min

(
max(tinitial

Ψ , tmin
Ψ ),

θΨ

‖DΨ‖∞

)
,

tη = min

(
max(tinitial

η , tmin
η ),

θη
‖Dη‖sF,∞

)
;

2: Calculate the estimator

ζ(tΨ, tη) =
F̄(0, 0) + tΨ

∂F̄
∂tΨ

(0, 0) + tη
∂F̄
∂tη

(0, 0) + 1
2c1t

2
Ψ + 1

2c2t
2
η − C

tΨ
∂F̄
∂tΨ

(0, 0) + tη
∂F̄
∂tη

(0, 0)
,

where F̄(tΨ, tη) = F((ortho(Ψk, DΨk
, tΨ))k∈K, η + tηDη);

3: if ζ(tΨ, tη) < ν then
4: set

tΨ = min

(
− 1

c1

∂F̄
∂tΨ

(0, 0),
θΨ

‖DΨ‖∞

)
,

tη = min

(
− 1

c2

∂F̄
∂tη

(0, 0),
θη

‖Dη‖sF,∞

)
;

5: end if

6: if
tη
tΨ

< c then

7: tΨ = 1
c tη, tη = tη;

8: else if
tη
tΨ

> c̄ then

9: tΨ = tΨ, tη = c̄tΨ;
10: end if
11: Return (tΨ, tη).

where

t(n)
m = −F̄

′
n(0)

cn
= − F̄ ′n(0)(ttrial)2

2(F̄n(ttrial)− F̄n(0)− F̄ ′n(0)ttrial)
.

(S2) Applying the same step size tΨ = tη for Ψ and η, we use the derivative of

F̄n(t) at ttrial to get the approximation F̃n, namely, F̃n satisfies

F̃ ′n(ttrial) = F̄ ′n(ttrial),

where

ttrial = min

max(tmin, t(n−1)),
θ(n)√

‖D(n)
Ψ ‖2∞ + ‖D(n)

η ‖2sF,∞

 ,

tmin and θ(n) ∈ (0, 1) are given parameters. Then we have

cn =
F̄ ′n(ttrial)− F̄ ′n(0)

ttrial
.
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We choose

t
(n)
Ψ = t(n)

η =

min

(
t
(n)
m , θ(n)√

‖D(n)
Ψ ‖2∞+‖D(n)

η ‖2sF,∞

)
, t

(n)
m > 0,

ttrial, otherwise,

where

t(n)
m = −F̄

′
n(0)

cn
= − F̄ ′n(0)ttrial

F̄ ′n(ttrial)−F ′n(0)
.

(S3) Applying different step sizes tΨ 6= tη for Ψ and η, we use partial derivatives of

F̄n(tΨ, tη) at (ttrial
Ψ , ttrial

η ) to get the approximation F̃n, namely, F̃n satisfies

∂F̃n
∂tΨ

(ttrial
Ψ , ttrial

η ) =
∂F̄n
∂tΨ

(ttrial
Ψ , ttrial

η ),
∂F̃n
∂tη

(ttrial
Ψ , ttrial

η ) =
∂F̄n
∂tη

(ttrial
Ψ , ttrial

η ),

where

ttrial
Ψ = min

(
max(tmin,Ψ, t

(n−1)
Ψ ),

θ
(n)
Ψ

‖D(n)
Ψ ‖∞

)
,

ttrial
η = min

(
max(tmin,η, t(n−1)

η ),
θ

(n)
η

‖D(n)
η ‖sF,∞

)
,

(tmin
Ψ , tmin

η ) and θ
(n)
Ψ , θ

(n)
η ∈ (0, 1) are given parameters. Then we have

cn,1 =
∂F̄n
∂tΨ

(ttrial
Ψ , ttrial

η )− ∂F̄n
∂tΨ

(0, 0)

ttrial
Ψ

, cn,2 =

∂F̄n
∂tη

(ttrial
Ψ , ttrial

η )− ∂F̄n
∂tη

(0, 0)

ttrial
η

.

We chooset
(n)
Ψ = min

(
t
(n)
m,Ψ,

θ
(n)
Ψ

‖D(n)
Ψ ‖∞

)
, t

(n)
η = min

(
t
(n)
m,η,

θ(n)
η

‖D(n)
η ‖sF,∞

)
, t

(n)
m,Ψ > 0 and t

(n)
m,η > 0,

t
(n)
Ψ = ttrial

Ψ , t
(n)
η = ttrial

η , otherwise,

where

t
(n)
m,Ψ = −

∂F̄n
∂tΨ

(0, 0)

cn,1
= −

∂F̄n
∂tΨ

(0, 0)ttrial
Ψ

∂F̄n
∂tΨ

(ttrial
Ψ , ttrial

η )− ∂F̄n
∂tΨ

(0, 0)
,

t(n)
m,η = −

∂F̄n
∂tη

(0, 0)

cn,2
= −

∂F̄n
∂tη

(0, 0)ttrial
η

∂F̄n
∂tη

(ttrial
Ψ , ttrial

η )− ∂F̄n
∂tη

(0, 0)
.

For strategies (S2) and (S3), we need to calculate the following two partial deriv-
atives

∂F̄n
∂tΨ

(ttrial
Ψ , ttrial

η ),
∂F̄n
∂tη

(ttrial
Ψ , ttrial

η ).

A direct calculation shows

∂F̄n
∂tΨ

(ttrial
Ψ , ttrial

η )

=

〈
FΨ((ortho(Ψ

(n)
k , D

(n)
Ψk
, ttrial

Ψ ))k∈K, η
(n) + ttrial

η D(n)
η ),

(
∂ ortho(Ψ

(n)
k , D

(n)
Ψk
, ttrial

Ψ )

∂t

)
k∈K

〉
.
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and

∂F̄n
∂tη

(ttrial
Ψ , ttrial

η ) =
〈
∇ηF((ortho(Ψ

(n)
k , D

(n)
Ψk
, ttrial

Ψ ))k∈K, η
(n) + ttrial

η D(n)
η ), D(n)

η

〉
.

We see that
∂ ortho(Ψ

(n)
k , D

(n)
Ψk
, ttrial

Ψ )

∂t
is very difficult to calculate. Instead, we apply

the third order approximation

∂ ortho(Ψ
(n)
k , D

(n)
Ψk
, ttrial

Ψ )

∂t
≈
∂ ortho(Ψ

(n)
k , D

(n)
Ψk
, 0)

∂t
+
∂2 ortho(Ψ

(n)
k , D

(n)
Ψk
, 0)

∂t2
ttrial
Ψ

+
1

2

∂3 ortho(Ψ
(n)
k , D

(n)
Ψk
, 0)

∂t3
(ttrial

Ψ )2

in practice.

4.1.2. The preconditioned conjugate gradient method. Now we introduce
the preconditioned conjugate gradient method for solving the minimization problem
(4.1). The preconditioned conjugate gradient (PCG) method is a typical line search
based optimization method. For the constrained optimization problem (4.1), we usu-
ally need to keep each iteration point on the constrained manifold. Thus some uni-
tarity preserving strategies are required. We then introduce the preconditioner, the
conjugate gradient parameter and the unitarity preserving strategies one by one.

We first introduce the preconditioner applied to ∇ΨF and ∇ηF . Let (Ψ, η) ∈( ∏
k∈K
MN
B,C,k,NG

)
×
(
SN×NC

)|K|
, where all ηk are diagonal matrices. We consider a

preconditioner in the form of Mη
Ψ(Φ) = (Mηk

Ψk
(Φk))k∈K for ∇ΨF , where

Mηk

Ψk
(Φk) = MΨk

(
1

2wk
ΦkF

−1
ηk

)
and MΨk

: Vk,NG → Vk,NG is a linear operator. In our numerical experiments, we
apply the following preconditioner MΨk

used in Quantum ESPRESSO [33]

[MΨk
]G,G′ = δG,G′

1

1 + 1
2 |k +G|2 +

√
1 +

(
1
2 |k +G|2 − 1

)2 ,
which is independent of wavefunctions. We consider a preconditioner in the form of
Mη(A) = (Mηk

(Ak))k∈K for ∇ηF , where Mηk
: SN×NC → SN×NC is a linear operator

defined by

(4.10) (Mηk
(Ak))ij = −Akij

1

wk

ηkii − ηkjj

fkj − fki
, ∀i, j = 1, 2, . . . , N, ∀k ∈ K.

Here fki = f((ηkii − µ)/σ) and

fkj − fki

ηkii − ηkjj
=

1

σ
f ′
(
ηkii − µ

σ

)
when ηkii = ηkjj .

Applying Mηk

Ψk
to

∇Ψk
F(Ψ, η) = 2wk(Hk(ρΨ,η)Ψ− BΨkΣk)Fηk

,
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we obtain
Mηk

Ψk
(∇Ψk

F(Ψ, η)) = MΨk
(Hk(ρΨ,η)Ψ− BΨkΣk).

Here Σk = 〈Ψ∗kHk(ρΨ,η)Ψk〉. Compared to∇Ψk
F(Ψ, η), Mηk

Ψk
(∇Ψk

F(Ψ, η)) eliminates
the occupation number Fηk

and 2wk. We see that

(∇Ψk
F(Ψ, η))i = 2wk(Hk(ρΨ,η)ψki − (BΨkΣk)i)(Fηk

)ii

is almost 0 when the occupation number (Fηk
)ii is close to 0. Consequently, the

preconditioner Mηk

Ψk
removes Fηk

in ∇Ψk
F(Ψ, η) to eliminate the impact of small

occupation numbers on the convergence rate, which has been mentioned in [21, 28].
Applying Mηk

to ∇ηk
F(Ψ, η), we have

Mηk
(∇ηk

F(Ψ, η)) = cI + ηk − Σk,

where c is defined by (B.3). We note that κ(ηk − Σk) is the preconditioned gradient
mentioned in [14], where κ is some positive constant.

We then introduce the conjugate gradient parameters. The typical choices of
the conjugate gradient parameters include the Hestenes-Stiefel (HS) formula [20], the
Polak-Ribiére-Polyak (PRP) formula [31, 32], the Fletcher-Reeves (FR) formula [13]
and the Dai-Yuan (DY) formula [11]. In our numerical experiments, we choose the
DY formula, which is expressed as

β(n) =
Re
(〈
Mη(n)

Ψ(n)(G
(n)
Ψ ), G

(n)
Ψ

〉
+
〈
Mη(n)(G

(n)
η ), G

(n)
η

〉)
Re
(〈
D

(n−1)
Ψ , G

(n)
Ψ −G(n−1)

Ψ

〉
+
〈
D

(n−1)
η , G

(n)
η −G(n−1)

η

〉)
for the PCG algorithm, where Re gives the real part, G

(n)
Ψ = ∇ΨF(Ψ(n), η(n)), G

(n)
η =

∇ηF(Ψ(n), η(n)). Hereafter, we shall sometimes use the notations G
(n)
Ψ and G

(n)
η to

simplify some formulas.
Now we turn to introduce the unitarity preserving strategy we use. Let DΨk

∈
TΨk
MN
B,C,k,NG . We denote by

ortho(Ψk, DΨk
, tΨ)

one step from Ψk ∈ MN
B,C,k,NG with the search direction DΨk

and the step size tΨ
to the next point in MN

B,C,k,NG . In our numerical experiments, we apply the QR
strategy, which is defined by

(4.11) orthoQR(Ψk, DΨk
, tΨ) = (Ψk + tΨDΨk

)L−∗,

where L is the lower triangular matrix such that

LL∗ = IN + t2Ψ〈D∗Ψk
BDΨk

〉.

We refer [9] for some other unitarity preserving strategies such as the PD strategy.
We assume ortho(Ψk, DΨk

, tΨ) satisfies the following assumption, which is needed
in our analysis and valid for both QR and PD strategy (see, e.g., [9]).

Assumption 4.2. There exist constants C1, C2 > 0 such that

‖ ortho(Φ, DΦ, t)− Φ‖ ≤ C1t‖DΦ‖, ∀t ≥ 0,∥∥∥∥ ∂∂t ortho(Φ, DΦ, t)−DΦ

∥∥∥∥ ≤ C2t‖DΦ‖2, ∀t ≥ 0

for any Φ ∈MN
B and DΦ ∈ TΦMN

B .
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We now propose our preconditioned conjugate gradient method as Algorithm 4.2.

Algorithm 4.2 PCG method

1: Given α ∈ [0, 1), ν ∈ (0, 1/2], tmin
Ψ , tmin

η , Ecut > 0, and choose the initial data

Ψ
(0)
k ∈ MN

B,C,k,NG and η
(0)
k = Diag(ε

(0)
k1 , . . . , ε

(0)
kN ) for any k ∈ K. Let D

(−1)
Ψ =

(D
(−1)
Ψk

)k∈K = 0, D
(−1)
η = (D

(−1)
ηk )k∈K = 0, n = 0;

2: Calculate the gradient G
(n)
Ψ = (G

(n)
Ψk

)k∈K, G
(n)
η = (G

(n)
ηk )k∈K and the precon-

ditioned gradient G̃
(n)
Ψ = Mη(n)

Ψ(n)(G
(n)
Ψ ), G̃

(n)
η = Mη(n)(G

(n)
η ), where G

(n)
Ψk

=

∇Ψk
F(Ψ(n), η(n)), G

(n)
ηk = ∇ηk

F(Ψ(n), η(n))
3: Calculate the conjugate gradient parameter β(n);
4: Calculate the search direction

D
(n)
Ψ = −G̃(n)

Ψ + β(n)D
(n−1)
Ψ , D(n)

η = −G̃(n)
η + β(n)D(n−1)

η ;

5: Project the search direction D
(n)
Ψk

to the tangent space TΨk
MN
B,C,k,NG

D
(n)
Ψk

= P ∗
0,Ψ

(n)
k

(D
(n)
Ψk

), ∀k ∈ K;

6: Set D
(n)
Ψk

= −D(n)
Ψk

sign Re
〈
G

(n)
Ψ , D

(n)
Ψ

〉
, D

(n)
ηk = −D(n)

ηk sign Re
〈
G

(n)
η , D

(n)
η

〉
for

any k ∈ K;

7: Choose the appropriate parameters (θ
(n)
Ψ , θ

(n)
η );

8: Calculate Cn by (4.4);

9: Given the initial guess of the step sizes (tn,initial
Ψ , tn,initial

η );

10: Give cn,1 and cn,2 and calculate t
(n)
Ψ and t

(n)
η by

(t
(n)
Ψ , t(n)

η )

= Adaptve double step size strategy(Ψ(n), η(n), Dn
Ψ, D

(n)
η , tn,initial

Ψ , tn,initial
η ,

tmin
Ψ , tmin

η , ν, cn,1, cn,2, θ
(n)
Ψ , θ(n)

η , Cn);

11: Set Ψ
(n+1)
k = ortho(Ψ

(n)
k , D

(n)
Ψk
, t

(n)
Ψ ), η

(n+1)
k = η

(n)
k + t

(n)
η D

(n)
ηk for any k ∈ K;

12: Pick up P (n+1) = (P
(n+1)
k )k∈K ∈ (ON×NC )|K| such that (P

(n+1)
k )∗η

(n+1)
k P

(n+1)
k is

diagonal for any k ∈ K and then update

Ψ(n+1) = Ψ(n+1)P (n+1), η(n+1) = (P (n+1))∗η(n+1)P (n+1),

D
(n)
Ψ = D

(n)
Ψ P (n+1), D(n)

η = (P (n+1))∗D(n)
η P (n+1);

13: Let n = n+ 1. Convergence check: if not converged, go to step 2; else, stop.

We see that D
(n)
Ψ in the 4-th step of Algorithm 4.2 is not in the tangent space∏

k∈K TΨ
(n)
k

MN
B,C,k,NG . Thus we project D

(n)
Ψk

to T
Ψ

(n)
k

MN
B,C,k,NG in the 5-th step. In
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order to ensure
∂F̄n
∂tΨ

(0, 0) = Re〈∇ΨF(Ψ(n), η(n)), D
(n)
Ψ 〉,

we apply the projection P ∗
0,Ψ

(n)
k

for each k ∈ K.

4.1.3. The restarted preconditioned conjugate gradient method. To get
better approximations, we turn to consider the restarted preconditioned conjugate
gradient method.

In practice, we expect that there exists a positive constant a such that

(4.12) lim
n→∞

−Re
(〈
G

(n)
Ψ , D

(n)
Ψ

〉
+
〈
G

(n)
η , D

(n)
η

〉)
∣∣∣〈G(n)

Ψ ,Mη(n)

Ψ(n)(G
(n)
Ψ )
〉∣∣∣a +

∣∣∣〈G(n)
η ,Mη(n)(G

(n)
η )
〉∣∣∣a > 0.

Here G
(n)
Ψ = ∇ΨF(Ψ(n), η(n)) and G

(n)
η = ∇ηF(Ψ(n), η(n)). Thus we restart the PCG

method when

(4.13)
−Re

(〈
G

(n)
Ψ , D

(n)
Ψ

〉
+
〈
G

(n)
η , D

(n)
η

〉)
∣∣∣〈G(n)

Ψ ,Mη(n)

Ψ(n)(G
(n)
Ψ )
〉∣∣∣a +

∣∣∣〈G(n)
η ,Mη(n)(G

(n)
η )
〉∣∣∣a < γ,

for some given parameter γ ∈ (0, 1). Applying this strategy, we propose a restarted
preconditioned conjugate gradient method shown as Algorithm 4.3.

In the numerical experiments, we observe that retarting directly is sometimes
better than changing the sign of the search direction when the preconditioned conju-
gate gradient direction is not a descent direction. Thus we propose a new restarted
preconditioned conjugate gradient method shown as Algorithm 4.4.

4.2. Convergence analysis. In this subsection, we analyze the convergence of
the restarted PCG methods (Algorithms 4.3 and 4.4). For convenience, we show the
detailed proofs for the case that the sampling of k-points is at Γ point only. For the
general sampling K, the convergence of the restarted PCG method can be obtained by

the similar arguments. We shall sometimes use the notations G
(n)
Ψ = ∇ΨF(Ψ(n), η(n))

and G
(n)
η = ∇ηF(Ψ(n), η(n)) to simplify some formulas.

We first give some assumptions which is needed in our analysis.

Assumption 4.3. There exist αΨ, αη > 0 such that

(4.14)
〈∇ΨF(Ψ, η),Mη

Ψ(∇ΨF(Ψ, η))〉 ≥ αΨ‖∇ΨF(Ψ, η)‖2,
〈∇ηF(Ψ, η),Mη(∇ηF(Ψ, η))〉 ≥ αη‖∇ηF(Ψ, η)‖2sF

for (Ψ, η) ∈MN
B,NG × S

N×N .

We obtain from the assumption above that the preconditioner is bounded from
below uniformly. We see that Mη

Ψ we applied always satisfies (4.14) and Mη we applied
satisfies (4.14) when f is strictly monotonically decreasing.

Assumption 4.4. The gradient of F is Lipschitz continuous. That is, there exists
L0 > 0 such that

‖FΨ(Ψ1, η1)−FΨ(Ψ2, η2)‖+ ‖Fη(Ψ1, η1)−Fη(Ψ2, η2)‖sF
≤ L0(‖Ψ1 −Ψ2‖+ ‖η1 − η2‖sF )

for any (Ψ1, η1), (Ψ2, η2) ∈MN
B,NG × S

N×N .
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Algorithm 4.3 Restarted PCG method I

1: Given α ∈ [0, 1), ν ∈ (0, 1/2], a, tmin
Ψ , tmin

η , Ecut > 0, and choose the initial data

Ψ
(0)
k ∈ MN

B,C,k,NG and η
(0)
k = Diag(ε

(0)
k1 , . . . , ε

(0)
kN ) for any k ∈ K. Let D

(−1)
Ψ =

(D
(−1)
Ψk

)k∈K = 0, D
(−1)
η = (D

(−1)
ηk )k∈K = 0, n = 0;

2: Calculate the gradient G
(n)
Ψ = (G

(n)
Ψk

)k∈K, G
(n)
η = (G

(n)
ηk )k∈K and the precon-

ditioned gradient G̃
(n)
Ψ = Mη(n)

Ψ(n)(G
(n)
Ψ ), G̃

(n)
η = Mη(n)(G

(n)
η ), where G

(n)
Ψk

=

∇Ψk
F(Ψ(n), η(n)), G

(n)
ηk = ∇ηk

F(Ψ(n), η(n))
3: Calculate the conjugate gradient parameter β(n);
4: Calculate the search direction

D
(n)
Ψ = −G̃(n)

Ψ + β(n)D
(n−1)
Ψ , D(n)

η = −G̃(n)
η + β(n)D(n−1)

η ;

5: Project the search direction D
(n)
Ψk

to the tangent space TΨk
MN
B,C,k,NG

D
(n)
Ψk

= P ∗
0,Ψ

(n)
k

(D
(n)
Ψk

), ∀k ∈ K;

6: Set D
(n)
Ψk

= −D(n)
Ψk

sign Re
〈
G

(n)
Ψ , D

(n)
Ψ

〉
, D

(n)
ηk = −D(n)

ηk sign Re
〈
G

(n)
η , D

(n)
η

〉
for

any k ∈ K;
7: if (4.13) holds then

8: D
(n)
Ψk

= −P ∗
0,Ψ

(n)
k

(G̃
(n)
Ψk

), D
(n)
ηk = −G̃(n)

ηk , ∀k ∈ K;

9: end if
10: Choose the appropriate parameters (θ

(n)
Ψ , θ

(n)
η );

11: Calculate Cn by (4.4);

12: Given the initial guess of the step sizes (tn,initial
Ψ , tn,initial

η );

13: Give cn,1 and cn,2 and calculate t
(n)
Ψ and t

(n)
η by

(t
(n)
Ψ , t(n)

η )

= Adaptve double step size strategy(Ψ(n), η(n), Dn
Ψ, D

(n)
η , tn,initial

Ψ , tn,initial
η ,

tmin
Ψ , tmin

η , ν, cn,1, cn,2, θ
(n)
Ψ , θ(n)

η , Cn);

14: Set Ψ
(n+1)
k = ortho(Ψ

(n)
k , D

(n)
Ψk
, t

(n)
Ψ ), η

(n+1)
k = η

(n)
k + t

(n)
η D

(n)
ηk for any k ∈ K;

15: Pick up P (n+1) = (P
(n+1)
k )k∈K ∈ (ON×NC )|K| such that (P

(n+1)
k )∗η

(n+1)
k P

(n+1)
k is

diagonal for any k ∈ K and then update

Ψ(n+1) = Ψ(n+1)P (n+1), η(n+1) = (P (n+1))∗η(n+1)P (n+1),

D
(n)
Ψ = D

(n)
Ψ P (n+1), D(n)

η = (P (n+1))∗D(n)
η P (n+1);

16: Let n = n+ 1. Convergence check: if not converged, go to step 2; else, stop.
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Algorithm 4.4 Restarted PCG method II

1: Given α ∈ [0, 1), ν ∈ (0, 1/2], a, tmin
Ψ , tmin

η , Ecut > 0, and choose the initial data

Ψ
(0)
k ∈ MN

B,C,k,NG and η
(0)
k = Diag(ε

(0)
k1 , . . . , ε

(0)
kN ) for any k ∈ K. Let D

(−1)
Ψ =

(D
(−1)
Ψk

)k∈K = 0, D
(−1)
η = (D

(−1)
ηk )k∈K = 0, n = 0;

2: Calculate the gradient G
(n)
Ψ = (G

(n)
Ψk

)k∈K, G
(n)
η = (G

(n)
ηk )k∈K and the precon-

ditioned gradient G̃
(n)
Ψ = Mη(n)

Ψ(n)(G
(n)
Ψ ), G̃

(n)
η = Mη(n)(G

(n)
η ), where G

(n)
Ψk

=

∇Ψk
F(Ψ(n), η(n)), G

(n)
ηk = ∇ηk

F(Ψ(n), η(n))
3: Calculate the conjugate gradient parameter β(n);
4: Calculate the search direction

D
(n)
Ψ = −G̃(n)

Ψ + β(n)D
(n−1)
Ψ , D(n)

η = −G̃(n)
η + β(n)D(n−1)

η ;

5: Project the search direction D
(n)
Ψk

to the tangent space TΨk
MN
B,C,k,NG

D
(n)
Ψk

= P ∗
0,Ψ

(n)
k

(D
(n)
Ψk

), ∀k ∈ K;

6: if sign Re
〈
G

(n)
Ψ , D

(n)
Ψ

〉
≥ 0 or sign Re

〈
G

(n)
η , D

(n)
η

〉
≥ 0 or (4.13) holds then

7: D
(n)
Ψk

= −P ∗
0,Ψ

(n)
k

(G̃
(n)
Ψk

), D
(n)
ηk = −G̃(n)

ηk , ∀k ∈ K;

8: end if
9: Choose the appropriate parameters (θ

(n)
Ψ , θ

(n)
η );

10: Calculate Cn by (4.4);

11: Given the initial guess of the step sizes (tn,initial
Ψ , tn,initial

η );

12: Give cn,1 and cn,2 and calculate t
(n)
Ψ and t

(n)
η by

(t
(n)
Ψ , t(n)

η )

= Adaptve double step size strategy(Ψ(n), η(n), Dn
Ψ, D

(n)
η , tn,initial

Ψ , tn,initial
η ,

tmin
Ψ , tmin

η , ν, cn,1, cn,2, θ
(n)
Ψ , θ(n)

η , Cn);

13: Set Ψ
(n+1)
k = ortho(Ψ

(n)
k , D

(n)
Ψk
, t

(n)
Ψ ), η

(n+1)
k = η

(n)
k + t

(n)
η D

(n)
ηk for any k ∈ K;

14: Pick up P (n+1) = (P
(n+1)
k )k∈K ∈ (ON×NC )|K| such that (P

(n+1)
k )∗η

(n+1)
k P

(n+1)
k is

diagonal for any k ∈ K and then update

Ψ(n+1) = Ψ(n+1)P (n+1), η(n+1) = (P (n+1))∗η(n+1)P (n+1),

D
(n)
Ψ = D

(n)
Ψ P (n+1), D(n)

η = (P (n+1))∗D(n)
η P (n+1);

15: Let n = n+ 1. Convergence check: if not converged, go to step 2; else, stop.

Assumption 4.5. There exists a constant C̄ > 0 such that

(4.15) cn,1 + cn,2 ≤ C̄(‖D(n)
Ψ ‖

2 + ‖D(n)
η ‖2sF ), n = 0, 1, 2, . . .
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Assumption 4.6. There holds

(4.16) c ≤
− 1
cn,2

∂F̄n
∂tη

(0, 0)

− 1
cn,1

∂F̄n
∂tΨ

(0, 0)
≤ c̄, n = 0, 1, 2, . . .

We observe that the assumption 4.5 is similar to that the Hessian of F is bounded.
If the same step sizes for Ψ and η are applied, then we see from Remark 4.1 that
Assumption 4.6 is satisfied. And we can always choose some cn,1 and cn,2 such that
Assumptions 4.5 and 4.6 hold.

Assumption 4.7. For the subsequence {nj}j∈N satisfying

lim
j→∞

−
(〈
G

(nj)
Ψ , D

(nj)
Ψ

〉
+
〈
G

(nj)
η , D

(nj)
η

〉)
∣∣∣〈G(nj)

Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G

(nj)
η )

〉∣∣∣a 6= 0,

there exists a constant C > 0 such that

(4.17) ‖D(nj)
Ψ ‖+ ‖D(nj)

η ‖ ≤ C, ∀j ∈ N.

We see that the above assumption can be satisfied by many strategies in practice.
For example, if the preconditioned gradients in the iterations are bounded uniformly,
we can restart the algorithm when the conjugate gradient parameter is very large.
Then we obtain uniformly bounded search directions.

In the following lemma, we need the following assumption for the step sizes.

(4.18) lim
n→∞

t
(n)
Ψ > 0, lim

n→∞
t(n)
η > 0.

Lemma 4.8. Suppose Assumption 4.3 holds and the sequence {(Ψ(n), η(n))}n∈N is

generated by Algorithm 4.2. If D
(n)
Ψ and D

(n)
η satisfy (4.2) and (4.12), t

(n)
Ψ and t

(n)
η

satisfy (4.3) and (4.18), then either

‖∇ΨF(Ψn, η(n))‖ = 0, ‖∇ηF(Ψn, η(n))‖sF = 0

for some positive n or

lim
n→∞

(‖∇ΨF(Ψn, η(n))‖+ ‖∇ηF(Ψn, η(n))‖sF ) = 0.

Proof. Suppose

‖∇ΨF(Ψn, η(n))‖+ ‖∇ηF(Ψn, η(n))‖sF 6= 0,∀n ∈ N,

otherwise the conclusion is true. It follows from the definition of Cn that for any
n ≥ 1, there holds

F(Ψ(n+1), η(n+1))−F(Ψ(n), η(n)) = F(Ψ(n+1), η(n+1))−Cn−
αQn−1

Qn
(F(Ψ(n), η(n))−Cn−1).

Since

F(Ψ(1), η(1))−F(Ψ(0), η(0)) = F(Ψ(1), η(1))− C0,
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summing up all n ∈ N gives that

∞∑
n=0

(F(Ψn, η(n))−F(Ψ(n+1), η(n+1)))

= −
∞∑
n=0

(F(Ψn+1, η(n+1))− Cn) +

∞∑
n=0

αQn
Qn+1

(F(Ψ(n+1), η(n+1))− Cn)

= −
∞∑
n=0

1

Qn+1
(F(Ψn+1, η(n+1))− Cn)

≥ −ν
∞∑
n=0

1

Qn+1

(
t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) + t(n)
η

∂F̄n
∂tη

(0, 0)

)
.

Note that Qn = 1 +
n∑
i=1

αi ∈ [1, 1
1−α ], which together with (4.2) leads to

−
∞∑
n=0

t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) < +∞, −
∞∑
n=0

t(n)
η

∂F̄n
∂tη

(0, 0) < +∞.

Hence

lim
n→∞

t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) = 0, lim
n→∞

t(n)
η

∂F̄n
∂tη

(0, 0) = 0.

Then by (4.18), we have

lim
n→∞

∂F̄n
∂tΨ

(0, 0) = 0, lim
n→∞

∂F̄n
∂tη

(0, 0) = 0,

which arrive at

lim
n→∞

(
−∂F̄n
∂tΨ

(0, 0)− ∂F̄n
∂tη

(0, 0)

)
= 0.

Since −∂F̄n∂tΨ
(0, 0)− ∂F̄n

∂tη
(0, 0) is a product of∣∣∣〈G(n)

Ψ ,Mη(n)

Ψ(n)(G
(n)
Ψ )
〉∣∣∣a +

∣∣∣〈G(n)
η ,Mη(n)(G(n)

η )
〉∣∣∣a

and

−
(〈
G

(n)
Ψ , D

(n)
Ψ

〉
+
〈
G

(n)
Ψ , D

(n)
η

〉)
∣∣∣〈G(n)

Ψ ,Mη(n)

Ψ(n)(G
(n)
Ψ )
〉∣∣∣a +

∣∣∣〈G(n)
η ,Mη(n)(G

(n)
η )
〉∣∣∣a ,

we obtain from (4.12) that

lim
n→∞

∣∣∣〈G(n)
Ψ ,Mη(n)

Ψ(n)(G
(n)
Ψ )
〉∣∣∣a +

∣∣∣〈G(n)
η ,Mη(n)(G(n)

η )
〉∣∣∣a = 0.

Consequently, we get from (4.14) that

lim
n→∞

(‖∇ΨF(Ψn, η(n))‖+ ‖∇ηF(Ψn, η(n))‖sF ) = 0,

which completes the proof.
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Remark 4.9. We see from the above proof that we may only need to consider the
subsequence {nj}j∈N satisfying

lim
j→∞

−
(〈
G

(nj)
Ψ , D

(nj)
Ψ

〉
+
〈
G

(nj)
η , D

(nj)
η

〉)
∣∣∣〈G(nj)

Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G

(nj)
η )

〉∣∣∣a 6= 0.

In addition, (4.18) can be replaced by that (4.9) holds for the above {nj}j∈N and

(4.19)

∞∑
j=0

t
(nj)
Ψ = +∞.

We mention that (4.19) is weaker than (4.18) under the premise of (4.9).

Theorem 4.10. Suppose F is continuously differentiable in H1
#(Ω)×SN×N and

FΨ is bounded, i.e., there exists C0 > 0 such that

(4.20) ‖FΨ(Ψ, η)‖ ≤ C0, ∀(Ψ, η) ∈MN
B,NG × S

N×N ,

and Assumptions 4.2 - 4.6 hold true. Let {(D(n)
Ψ , D

(n)
η )}n∈N and {(Ψ(n), η(n))}n∈N are

generated by Algorithm 4.3 or Algorithm 4.4. If {(D(n)
Ψ , D

(n)
η )}n∈N satisfies Assump-

tion 4.7, then there exists a positive sequence {(θ(n)
Ψ , θ

(n)
η )}n∈N such that either

‖∇ΨF(Ψn, η(n))‖ = 0, ‖∇ηF(Ψn, η(n))‖sF = 0

for some n > 0 or

lim
n→∞

(‖∇ΨF(Ψn, η(n))‖+ ‖∇ηF(Ψn, η(n))‖sF ) = 0.

Proof. Let

(θ
(n)
Ψ , θ(n)

η ) = sup

{
(θ̃

(n)
Ψ , θ̃(n)

η ) : F̄n(tΨ, tη)− F̄n(0, 0)− tΨ
∂F̄n
∂tΨ

(0, 0)− tη
∂F̄n
∂tη

(0, 0)

− 1

2
cn,1t

2
Ψ −

1

2
cn,2t

2
η ≤ −

ν

2

(
t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) + t(n)
η

∂F̄n
∂tη

(0, 0)

)
for any (tΨ, tη) ∈ T

θ̃
(n)
Ψ ,θ̃

(n)
η
, c ≤ θ̃

(n)
η

‖D(n)
η ‖sF

/
θ̃

(n)
Ψ

‖D(n)
Ψ ‖

≤ c̄

when ‖D(n)
Ψ ‖ 6= 0 and ‖D(n)

η ‖sF 6= 0,

θ̃
(n)
Ψ = 1 when ‖D(n)

Ψ ‖ 6= 0, and θ̃(n)
η = 1 when ‖D(n)

η ‖sF = 0

}
,

where sup is in the sense of lexicographical order and

T
θ̃
(n)
Ψ ,θ̃

(n)
η

=

{
(tΨ, tη) : 0 ≤ tΨ ≤

θ̃
(n)
Ψ

‖D(n)
Ψ ‖

, 0 ≤ tη ≤
θ̃

(n)
η

‖D(n)
η ‖sF

, and c ≤ tη
tΨ
≤ c̄

}
.

Then we prove that the conclusion is valid when above (θ
(n)
Ψ , θ

(n)
η ) are taken.

Suppose

‖∇ΨF(Ψn, η(n))‖+ ‖∇ηF(Ψn, η(n))‖sF 6= 0, ∀n ∈ N,
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otherwise the conclusion is true. In Algorithm 4.3 or Algorithm 4.4, it follows from

Assumption 4.6 that every t
(n)
Ψ and t

(n)
η satisfies

ζn(t
(n)
Ψ , t(n)

η ) ≥ ν,

t
(n)
Ψ ‖D

(n)
Ψ ‖ ≤ θ

(n)
Ψ , t(n)

η ‖D(n)
η ‖sF ≤ θ(n)

η ,

which implies

F̄n(0, 0) + t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) + t(n)
η

∂F̄n
∂tη

(0, 0) +
1

2
cn,1(t

(n)
Ψ )2 +

1

2
cn,2(t(n)

η )2 − Cn

≤ ν
(
t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) + t(n)
η

∂F̄n
∂tη

(0, 0)

)
.

Then we obtain from the definition of (θ
(n)
Ψ , θ

(n)
η ) that

F̄n(t
(n)
Ψ , t(n)

η )− Cn ≤
ν

2

(
t
(n)
Ψ

∂F̄n
∂tΨ

(0, 0) + t(n)
η

∂F̄n
∂tη

(0, 0)

)
,

i.e., (4.3) holds.
As shown in Remark 4.9, we only need to take subsequence {nj}j∈N satisfying

lim
j→∞

−
(〈
G

(nj)
Ψ , D

(nj)
Ψ

〉
+
〈
G

(nj)
η , D

(nj)
η

〉)
∣∣∣〈G(nj)

Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G

(nj)
η )

〉∣∣∣a = δ > 0

into account.
We observe that the corresponding t

(nj)
Ψ has only four options:

t
(nj)
Ψ = max(tinitial

Ψ , tmin
Ψ ), t

(nj)
Ψ =

θ
(nj)
Ψ

‖D(nj)
Ψ ‖

, t
(nj)
Ψ = − 1

cnj ,1

∂Fnj
∂tΨ

(0, 0), t
(nj)
Ψ =

1

c
t(nj)η .

Consequently, there exists a subsequence of {nj}j∈N, which is also denoted by {nj}j∈N
for convenience, such that one of the following four cases holds.

Case 1. t
(nj)
Ψ = max(tinitial

Ψ , tmin
Ψ ). Obviously

∞∑
j=0

t
(nj)
Ψ ≥

∞∑
j=0

tmin
Ψ = +∞,

which together with Remark 4.9 yields the conclusion.

Case 2. t
(nj)
Ψ =

θ
(nj)

Ψ

‖D
(nj)

Ψ ‖
. If

lim
j→∞

t
(nj)
Ψ > 0,

then Lemma 4.8 leads to the conclusion. Otherwise, there exists a subsequence of

{nj}j∈∞ also denoted by {nj}j∈N such that lim
j→∞

θ
(nj)

Ψ

‖D
(nj)

Ψ ‖
= lim
j→∞

t
(nj)
Ψ = 0.

We first prove that there holds

(4.21)
F̄n(tΨ, tη)− F̄n(0, 0)− tΨ

∂F̄n
∂tΨ

(0, 0)− tη
∂F̄n
∂tη

(0, 0)− 1

2
cn,1t

2
Ψ −

1

2
cn,2t

2
η

= O(t2Ψ‖D
(n)
Ψ ‖

2 + t2η‖D(n)
η ‖2sF )
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when (tΨ, tη) satisfies (4.9).

For convenience, we denote by F̄n,s(t) = F̄n(t, st), Ψ(n)(t) = ortho(Ψ(n), D
(n)
Ψ , t),

η(n)(t) = η(n) + tD
(n)
η . By Assumptions 4.2 and 4.4, (4.20) and Ψ̇(n)(0) = D

(n)
Ψ , we

have

|F̄ ′n,s(t)− F̄ ′n,s(0)|

=

∣∣∣∣2 Re
〈
FΨ(Ψ(n)(t), η(n)(st)), Ψ̇(n)(t)

〉
+ s

〈
∇ηF(Ψ(n)(t), η(n)(st)), D(n)

η

〉
− 2 Re

〈
FΨ(Ψ(n)(0), η(n)(0)), Ψ̇(n)(0)

〉
− s

〈
∇ηF(Ψ(n)(0), η(n)(0)), D(n)

η

〉 ∣∣∣∣
≤
∣∣∣∣2〈FΨ(Ψ(n)(t), η(n)(st)), Ψ̇(n)(t)− Ψ̇(n)(0)

〉 ∣∣∣∣
+

∣∣∣∣2〈FΨ(Ψ(n)(t), η(n)(st))−∇ΨF(Ψ(n)(0), η(n)(0)), Ψ̇(n)(0)
〉 ∣∣∣∣

+ s

∣∣∣∣ 〈∇ηF(Ψ(n)(t), η(n)(st))−∇ηF(Ψ(n)(0), η(n)(0)), D(n)
η

〉 ∣∣∣∣
≤ 2C0C2t‖D(n)

Ψ ‖
2 + 2L0(C1t‖D(n)

Ψ ‖+ st‖D(n)
η ‖sF )‖D(n)

Ψ ‖

+ L0(C1st‖D(n)
Ψ ‖+ s2t‖D(n)

η ‖sF )‖D(n)
η ‖sF

for any s, t > 0, where Proposition 2.1 and Theorem 3.2 are used in the last inequality.
Applying Young inequality, we obtain that

|F̄ ′n,s(t)− F̄ ′n,s(0)|

≤ 2C0C2t‖D(n)
Ψ ‖

2 + 2L0

(
C1t‖D(n)

Ψ ‖
2 +

t‖D(n)
Ψ ‖2 + s2t‖D(n)

η ‖2sF
2

)

+ L0

(
C1
t‖D(n)

Ψ ‖2 + s2t‖D(n)
η ‖2sF

2
+ s2t‖D(n)

η ‖2sF

)
≤ C̃t(‖D(n)

Ψ ‖
2 + s2‖D(n)

η ‖2sF ),

where

C̃ = max

(
2C0C2 + L0 +

5

2
C1L0, 2L0 +

1

2
C1L0

)
.

Hence we have ∣∣∣∣F̄n(t, st)− F̄n(0, 0)− t∂F̄n
∂tΨ

(0, 0)− st∂F̄n
∂tη

(0, 0)

∣∣∣∣
≤
∫ t

0

∣∣F̄ ′n,s(τ)− F̄ ′n,s(0)
∣∣dτ

≤ C̃t2(‖D(n)
Ψ ‖

2 + s2‖D(n)
η ‖2sF )

for any s, t > 0. Therefore, if (tΨ, tη) satisfies (4.9), then we arrive at (4.21) by (4.15).

By the definition of (θ
(nj)
Ψ , θ

(nj)
η ), Assumption 4.3, (4.9), (4.14) and (4.17), for

any nj large enough, there exists

(4.22) t
∗,nj
Ψ ∈

(
0,

θ
(nj)
Ψ

‖D(nj)
Ψ ‖

+
1

nj

)
, t∗,njη = s∗nj t

∗,nj
Ψ , c ≤ s∗nj ≤ c̄
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such that

O((t
∗,nj
Ψ )2‖D(nj)

Ψ ‖2 + (t∗,njη )2‖D(nj)
η ‖2sF )

= Fnj (t
∗,nj
Ψ , t∗,njη )−Fnj (0, 0)− t∗,njΨ

∂Fnj
∂tΨ

(0, 0)− t∗,njη

∂Fnj
∂tη

(0, 0)

− 1

2
cn,1(t

∗,nj
Ψ )2 − 1

2
cn,2(t∗,njη )2

> −ν
2

(
t
∗,nj
Ψ

∂Fnj
∂tΨ

(0, 0) + t∗,njη

∂Fnj
∂tη

(0, 0)

)

≥
−ν2 min(1, c) min(1, 1/c̄)

(
∂Fnj
∂tΨ

(0, 0) +
∂Fnj
∂tη

(0, 0)
)

∣∣∣〈G(nj)
Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G

(nj)
η )

〉∣∣∣a
· 1(
‖D(nj)

Ψ ‖2 + ‖D(nj)
η ‖2sF

)1/2

(
(t
∗,nj
Ψ )2‖D(nj)

Ψ ‖2 + (t∗,njη )2‖D(nj)
η ‖2sF

)1/2

·
(∣∣∣〈G(nj)

Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G(nj)

η )
〉∣∣∣a)

≥ 1

4C
νδmin(1, c) min(1, 1/c̄) min(aaΨ, a

a
η)
(

(t
∗,nj
Ψ )2‖D(nj)

Ψ ‖2 + (t∗,njη )2‖D(nj)
η ‖2sF

)1/2

·
(
‖G(nj)

Ψ ‖2a + ‖G(nj)
η ‖2asF

)
,

i.e.,

(4.23)
O(((t

∗,nj
Ψ )2‖D(nj)

Ψ ‖2 + (t∗,njη )2‖D(nj)
η ‖2sF )1/2)

≥
νδmin(1, c) min(1, 1/c̄) min(aaΨ, a

a
η)

4C
·
(
‖G(nj)

Ψ ‖2a + ‖G(nj)
η ‖2asF

)
.

We see from lim
j→∞

θ
(nj)

Ψ

‖D
(nj)

Ψ ‖
= 0, (4.17) and (4.22), that

lim
j→∞

(
(t
∗,nj
Ψ )2‖D(nj)

Ψ ‖2 + (t∗,njη )2‖D(nj)
η ‖2sF

)1/2

= 0.

Let j →∞ in (4.23), we get

0 ≥
νδmin(1, c) min(1, 1/c̄) min(aaΨ, a

a
η)

4C
lim
j→∞

((
‖G(nj)

Ψ ‖2a + ‖G(nj)
η ‖2asF

))
,

which produces the conclusion.

Case 3. t
(nj)
Ψ = − 1

cnj,1

∂Fnj
∂tΨ

(0, 0) = −
〈
G

(nj)

Ψ ,D
(nj)

Ψ

〉
cnj,1

. We get from Assumption 4.6

that t
(nj)
η has only three options:

t(nj)η = max(tinitial
η , tmin

η ), t(nj)η =
θ

(nj)
η

‖D(nj)
η ‖

, t(nj)η = − 1

cnj ,2

∂Fnj
∂tη

(0, 0).

If t
(nj)
η is one of the first two options, the similar arguments in Cases 1 and 2 can be

applied to t
(nj)
η . Thus, let t

(nj)
η = − 1

cnj,2

∂Fnj
∂tη

(0, 0) = −
〈
G

(nj)
η ,D

(nj)
η

〉
cnj,2

. Then we obtain
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from Assumptions 4.5 and 4.7, (4.9), and (4.14) that

(1 + c̄)t
(nj)
Ψ

≥ t(nj)Ψ + t(nj)η

≥ −

〈
G

(nj)
Ψ , D

(nj)
Ψ

〉
+
〈
G

(nj)
η , D

(nj)
η

〉
C̄(‖D(nj)

Ψ ‖2 + ‖D(nj)
η ‖2sF )

=
−
(〈
G

(nj)
Ψ , D

(nj)
Ψ

〉
+
〈
G

(nj)
η , D

(nj)
η

〉)
∣∣∣〈G(nj)

Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G

(nj)
η )

〉∣∣∣a
·

∣∣∣〈G(nj)
Ψ ,Mη(nj)

Ψ(nj)(G
(nj)
Ψ )

〉∣∣∣a +
∣∣∣〈G(nj)

η ,M
η(nj)(G

(nj)
η )

〉∣∣∣a
C̄(‖D(nj)

Ψ ‖2 + ‖D(nj)
η ‖2sF )

≥
δmin(aaΨ, a

a
η)

2C̄C2

(
‖G(nj)

Ψ ‖2a + ‖G(nj)
η ‖2asF

)
provided j � 1. Consequently, either

∞∑
j=0

t
(nj)
Ψ =∞

or
lim

j→+∞
(‖∇ΨF(Ψ(nj), η(nj))‖2a + ‖∇ηF(Ψ(nj), η(nj))‖2asF ) = 0,

which leads to the conclusion.

Case 4. t(nj)η =
1

c
t(nj)η . We observe that the corresponding t

(nj)
Ψ has only two

options:

t(nj)η = max(tinitial
η , tmin

η ), t(nj)η =
θ

(nj)
η

‖D(nj)
η ‖sF

.

Thus applying similar arguments in Cases 1 and 2 for t
(nj)
Ψ to t

(nj)
η , we complete the

proof.

5. Numerical experiments. In this section, we apply the PCG method and
its restarted versions to simulate several gold clusters (see Figure 1 for their config-
urations) and two complicated multicomponent periodic systems (see Figure 2 for
their configurations). We implement the PCG method and its restarted versions in
the software package Quantum ESPRESSO [33]. All calculations are carried out on
LSSC-IV in the State Key Laboratory of Scientific and Engineering Computing of the
Chinese Academy of Sciences.

In our numerical experiments, we do not restrict the step sizes to satisfy (4.9) for
some given parameters c and c̄, which can be viewed as c = 0, c̄ = +∞. Although
(4.9) is necessary in our theoretical analysis, numerical results show that the step sizes
can be more relaxed. Therefore, we directly apply the step size strategies (S1), (S2)
or (S3) to get the step sizes in the numerical simulations.

In the following tables and figures, PCG-S1, PCG-S2 and PCG-S3 stand for
the corresponding PCG method (Algorithm 4.2) when the step size strategy (S1),
strategy (S2) and strategy (S3) are applied, respectively. We denote the restarted
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Fig. 1: The configurations of the gold clusters

(a) Au14 (b) Au18 (c) Au20

(d) Au32 (e) Au42 (f) Au50

(g) Au72 (h) Au92 (i) Au147

(j) Au309
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Fig. 2: The configurations in the unit cell for the multicomponent periodic systems

(a) NdCu2Si2 (b) AlCrTiV

versions Algorithm 4.3 and Algorithm 4.4 by PCG-S?-r1 and PCG-S?-r2 respectively,
where ? can be 1, 2 or 3. We mention that “Error” for the SCF iteraions is the error

of density and “Error” for the PCG methods is
(
‖ 1

2∇ΨF‖2 + ‖∇ηF‖2sF
)1/2

.
We will compare our PCG methods with the SCF iterations. It is known that

we have to solve a linear eigenvalue problem at each SCF iteration, for which the
Davidson iterative diagonalization and the CG diagonalization are commonly used in
Quantum ESPRESSO. The Davidson iterative diagonalization is faster, but the CG
diagonalization uses less memory and is more robust [33].

We list all the parameters used in our numerical experiments. The Ultrasoft pseu-
dopotentials and the Gaussian smearing with σ = 0.05 Ry are applied for gold clusters.
We use the DY approach to get the CG parameter and the QR strategy as (4.11) for

the orthogonalization operation. We apply θ(n) = min{0.8,
√
‖D(n)

Ψ ‖2∞ + ‖D(n)
η ‖2sF,∞}

for strategies (S1) and (S2) and θ
(n)
Ψ = min{0.8, ‖D(n)

Ψ ‖∞}, θ
(n)
η = min{0.8, ‖D(n)

η ‖sF,∞}
for strategy (S3). We set tmin = tmin

Ψ = tmin
η = 0.001 and initial trial step sizes

ttrial = ttrial
Ψ = ttrial

η = 0.4. For the restarted versions, we set γ = 0.5 and a = 1. The
convergence criterion is(

‖1

2
∇ΨF‖2 + ‖∇ηF‖2sF

)1/2

< 1.0× 10−5

for the PCG method and its restarted versions, and the convergence threshold for
density is 1.0 × 10−9 for the SCF iterations. For the SCF iterations, We apply the
Broyden mixing method. The initial guess for the wavefunctions is generated by the
superposition of atomic orbitals [33] if not specified.

We see that whether or not to restart has almost no effect for the simulation
of gold clusters for the strategies (S2) and (S3). As a result, we mainly show the
numerical results obtained by the PCG method (Algorithm 4.2) for gold clusters. In
addition, we will also mention some improvement of the restarting approach for the
strategy (S1) in Figure 3.

First, we take a look at the results of all the gold clusters. The results obtained by
the PCG method (Algorithm 4.2) based on different step size strategies are listed in
Table 1. In Table 1, “Iter.” means the number of iterations required to terminate the
algorithm and “A.T.P.I” is the average CPU time required per iteration. As shown in
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Table 1, the strategy (S3) with different step sizes for Ψ and η is indeed the best. More
precisely, the strategy (S3) needs less iteration and the CPU time to achieve similar
accuracy than the strategies (S1) and (S2) with same step sizes for Ψ and η, especially
for large systems. We see that the strategies (S2) and (S3) are more expensive than
the strategy (S1) per iteration. However, by comparing the strategies (S1) and (S2),
we see that the strategy (S1) need more iterations to achieve the same accuracy than
the strategy (S2). Even the iterations for Au18, Au72, Au92, Au147 and Au309 do
not converge after 200 iterations under the strategy (S1). We point out that whether
or not to restart has no effect on the strategies (S2) and (S3) for the simulation of
these gold clusters under the convergence criterion discussed in this section. However,
it will improve the convergence of the iteration a little for the strategy (S1). If we
restart the PCG method as Algorithm 4.3, the calculations for Au18, Au72 and Au92

can also converge under the strategy (S1). Due to limited space, we only show the
results of Au92 obtained by the restarted PCG method I (Algorithm 4.3) later.

To compare the three step size strategies more clearly, we take Au92 as an example
and show the convergence curves for F − Fmin, 1

2‖∇ΨF‖ and ‖∇ηF‖sF in Figure 3,
where Fmin is a high-accuracy approximation of the exact total energy. We also
illustrate the benefit of the restarting approach for the strategy (S1). First, the
strategy (S3) is indeed faster than the other two strategies. Secondly, by comparing
the convergence curves for the error of the energy, we see that the strategy (S1) is not
much different from the strategy (S2), and the strategy (S1) seems to be better when
the energy has not converged. But there may be some fluctuation for the strategy
(S1) when the energy almost converges. From the convergence curves for 1

2‖∇ΨF‖
and ‖∇ηF‖sF , we see that the descent speed of the gradient obtained by the strategy
(S1) slows down suddenly when the energy almost converges and then is much smaller
than the strategy (S2). Finally, by comparing PCG-S1 and PCG-S1-r1, we find that
the restarting approach does improve the convergence of the iteration for the strategy
(S1).

We conclude from the above that the strategy (S3) seems to be the best one among
the three strategies. We then choose the PCG method based on the step size strategy
(S3) to be compared with the SCF iterations based on the CG diagonalization. The
detailed results are shown in Table 2. We see from Table 2 that, apart from Au14,
the PCG method converges faster than the SCF iterations, especially for large scale
systems. For instance, the PCG method converges in half the CPU time of SCF
iterations for Au42, and the PCG method converges in less than 1/3 the CPU time of
the SCF iterations for Au147. We also mention that the energy obtained by the PCG
method is slightly smaller than that obtained by SCF iterations for Au20, Au42, Au50,
Au92 and Au309, which means that SCF iterations may require a smaller convergence
threshold to obtain the same energy obtained by the PCG method. However, SCF
iterations has already cost more CPU time even with the accuracy in the table.

Now, we show the numerical results for the two complicated periodic systems
shown in Figure 2. Different from the gold clusters, for these two systems, the spin
polarization is taken into account and the cases using different initial guesses of wave-
functions are tested. Since these two systems show more obvious metallicity, more
smearing strategies may be used. Here, we consider the Gaussian smearing and the
Marzari–Vanderbilt smearing, which are some typical smearing functions used in the
simulation of metallic systems. The detailed results are reported in Tables 3 and 4.
Here, Nk = 2|K|, “atomic” means that the initial guess of wavefunctions is generated
by the superposition of atomic orbitals, and “atomic+random” means that the initial
guess of wavefunctions is generated by the superposition of atomic orbitals plus a
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Table 1: The numerical results for gold clusters obtained by the PCG method (Algo-
rithm 4.2) based on different step size strategies.

Algorithm Energy (Ry) Iter. Error CPU time (s) A.T.P.I (s)
Au14 NG = 322453 N = 92 cores = 36

PCG-S1 -1194.49861028 90 9.3E-6 587.0 6.52
PCG-S2 -1194.49861028 50 9.7E-6 397.7 7.95
PCG-S3 -1194.49861028 37 8.5E-6 299.2 8.09

Au18 NG = 322453 N = 119 cores = 36
PCG-S1 -1536.01945578 200 1.4E-5 1626.6 8.13
PCG-S2 -1536.01945578 62 7.2E-6 647.3 10.44
PCG-S3 -1536.01945578 37 8.9E-6 384.6 10.39

Au20 NG = 322453 N = 132 cores = 36
PCG-S1 -1706.76524000 109 9.1E-6 963.3 8.84
PCG-S2 -1706.76524000 55 8.3E-6 621.6 11.30
PCG-S3 -1706.76524000 38 9.1E-6 429.7 11.31

Au32 NG = 429409 N = 211 cores = 36
PCG-S1 -2731.11762824 90 8.3E-6 1808.6 20.10
PCG-S2 -2731.11762824 48 8.4E-6 1270.7 26.47
PCG-S3 -2731.11762824 38 8.3E-6 1019.1 26.82

Au42 NG = 429409 N = 277 cores = 36
PCG-S1 -3584.66580292 78 1.0E-6 2133.8 27.36
PCG-S2 -3584.66580292 55 5.8E-6 2011.6 36.57
PCG-S3 -3584.66580292 39 8.5E-6 1390.6 35.66

Au50 NG = 429409 N = 330 cores = 36
PCG-S1 -4267.69535810 114 6.8E-6 3700.7 32.46
PCG-S2 -4267.69535810 58 9.4E-6 2626.5 45.28
PCG-S3 -4267.69535810 39 9.2E-6 1786.2 45.80

Au72 NG = 556667 N = 475 cores = 36
PCG-S1 -6145.78233806 200 1.1E-4 13959.2 69.80
PCG-S2 -6145.78233806 89 9.8E-6 8557.1 96.15
PCG-S3 -6145.78233806 40 9.0E-6 3760.7 94.02

Au92 NG = 556667 N = 607 cores = 36
PCG-S1 -7853.07110320 200 2.3E-5 19697.0 98.49
PCG-S2 -7853.07110320 91 7.9E-6 12229.9 134.39
PCG-S3 -7853.07110320 40 9.8E-6 5535.4 138.39

Au147 NG = 1320073 N = 971 cores = 72
PCG-S1 -12547.62980551 200 4.4E-5 37056.7 185.28
PCG-S2 -12547.62980551 88 9.7E-6 23166.6 263.26
PCG-S3 -12547.62980551 42 9.0E-6 11193.5 266.51

Au309 NG = 1320073 N = 2040 cores = 72
PCG-S1 -26379.41930504 200 1.5E-4 134638.7 673.19
PCG-S2 -26379.41930504 124 9.1E-6 119025.8 959.89
PCG-S3 -26379.41930507 51 6.8E-6 49831.2 977.08
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Fig. 3: Convergence curves for F−Fmin, 1
2‖∇ΨF‖ and ‖∇ηF‖sF obtained by different

step size strategies for Au92.
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Table 2: Comparison of the SCF iterations based on the CG diagonalization and the
PCG method based on the step size strategy (S3). The density mixing factor for the
SCF iterations is 0.3.

Algorithm Energy (Ry) Iter. Error CPU time (s)
Au14 NG = 322453 N = 92 cores = 36

SCF -1194.49861028 16 9.5E-10 271.9
PCG-S3 -1194.49861028 37 8.5E-6 299.2

Au18 NG = 322453 N = 119 cores = 36
SCF -1536.01945578 18 5.5E-10 452.7

PCG-S3 -1536.01945578 37 8.9E-6 384.6
Au20 NG = 322453 N = 132 cores = 36

SCF -1706.76523999 15 8.3E-10 470.2
PCG-S3 -1706.76524000 38 9.1E-6 429.7

Au32 NG = 429409 N = 211 cores = 36
SCF -2731.11762824 16 3.5E-10 1476.1

PCG-S3 -2731.11762824 38 8.3E-6 1019.1
Au42 NG = 429409 N = 277 cores = 36

SCF -3584.66580291 20 2.2E-11 2870.1
PCG-S3 -3584.66580292 39 8.5E-6 1390.6

Au50 NG = 429409 N = 330 cores = 36
SCF -4267.69535809 17 7.8E-10 3629.5

PCG-S3 -4267.69535810 39 9.2E-6 1786.2
Au72 NG = 556667 N = 475 cores = 36

SCF -6145.78233806 24 1.9E-10 10766.7
PCG-S3 -6145.78233806 40 9.0E-6 3760.7

Au92 NG = 556667 N = 607 cores = 36
SCF -7853.07110315 21 4.8E-10 16142.4

PCG-S3 -7853.07110320 40 9.8E-6 5535.4
Au147 NG = 1320073 N = 971 cores = 72

SCF -12547.62980551 30 3.8E-10 39669.2
PCG-S3 -12547.62980551 42 9.0E-6 11193.5

Au309 NG = 1320073 N = 2040 cores = 72
SCF -26379.41930501 23 3.5E-10 154451.0

PCG-S3 -26379.41930507 51 6.8E-6 49831.2

superimposed “randomization” of atomic orbitals [33]. We observe from Tables 3 and
4 that, for both the two smearing methods, except for the system NdCu2Si2 with the
initial guess of wavefunctions being given by the superposition of atomic orbitals, the
SCF iterations fail to converge after 500 iterations. We also see that both the PCG
method and the restarded PCG methods can obtain convergent approximations for
both the two systems, no matter what kind of initial guesses and smearing meth-
ods are used. Comparing the results for PCG-S3 with the results for PCG-S3-r1 and
PCG-S3-r2, we observe that the restarting strategy does accelerate the convergence of
the PCG method except for the system NdCu2Si2 calculated by PCG-S3-r2 with the
initial guesses of wavefunctions being given by “atomic+random” and the Gaussian
smearing. Comparing the results for PCG-S3-r1 with the results for PCG-S3-r2, we
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Table 3: Comparison of the SCF iterations based on the Davidson iterative diagonal-
ization, the PCG method and the restarted PCG methods. The density mixing factor
for the SCF iterations is 0.4, and the Gaussian smearing with σ = 0.01 Ry is applied.

Algorithm Initial orbitals Energy (Ry) Iter. Error
NdCu2Si2 NG = 3837 N = 36 Nk = 576 cores = 36

SCF
atomic -1368.00296219 24 1.9E-10

atomic+random -1367.99467076 500 6.8E-6

PCG-S3
atomic -1368.00296213 440 9.9E-6

atomic+random -1367.99713429 255 9.8E-6

PCG-S3-r1
atomic -1368.00296213 313 9.9E-6

atomic+random -1367.99713429 239 9.5E-6

PCG-S3-r2
atomic -1368.00296205 308 8.0E-6

atomic+random -1367.99713429 290 8.8E-6
AlCrTiV NG = 1759 N = 25 Nk = 144 cores = 36

SCF
atomic -479.31372455 500 2.1E-4

atomic+random -479.31491981 500 7.0E-4

PCG-S3
atomic -479.36755754 200 9.9E-6

atomic+random -479.36755753 283 9.3E-6

PCG-S3-r1
atomic -479.36755753 136 9.2E-6

atomic+random -479.36755753 234 9.6E-6

PCG-S3-r2
atomic -479.36755753 109 8.5E-6

atomic+random -479.36755754 115 8.0E-6

also see that the second restarting approach (Algorithm 4.4) is better than the first
restarting approach (Algorithm 4.3) for the system AlCrTiV, but the first restarting
approach is better than the second restarting approach for the system NdCu2Si2. We
conclude that the PCG method and the restarted PCG methods are more stable when
different initial orbitals are used and our methods are suitable for different smearing
functions.

6. Concluding remarks. In this paper, we have first investigated the energy
minimization model of the ensemble Kohn-Sham density functional theory from a
mathematical aspect, in which the pseudo-eigenvalue matrix and the general smear-
ing approach are involved. We have shown the invariance and the existence of the
minimizer of the energy functional and proposed a preconditioned conjugate gradient
method to solve the numerical approximations of the energy minimization problem.
In particular, we have presented an adaptive double step size strategy since the it-
erative behavior for Ψ and η may be different. Under some mild and reasonable
assumptions, we have obtained the global convergence of the PCG algorithm based
on the adaptive double step size strategy. We have reported a large number of numer-
ical experiments which can not only verify our theory, but also show the superiority
over the traditional SCF iterations. In particular, our numerical experiments have
demonstrated that our algorithm can produce convergent numerical approximations
for some metallic systems, for which the traditional self-consistent field iterations fails
to converge.

Appendix A. Gradient of the energy functional. In this appendix, we
introduce the gradient of F with respect to Ψ and η. Assume that the exchange-
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Table 4: Comparison of the SCF iterations based on the Davidson iterative diagonal-
ization, the PCG method and the restarted PCG methods. The density mixing factor
for the SCF iterations is 0.4, and the Marzari–Vanderbilt smearing with σ = 0.01 Ry
is applied.

Algorithm Initial orbitals Energy (Ry) Iter. Error
NdCu2Si2 NG = 3837 N = 36 Nk = 576 cores = 36

SCF
atomic -1368.00214304 24 4.0E-10

atomic+random -1367.99221653 500 5.6E-6

PCG-S3
atomic -1368.00214302 313 9.7E-6

atomic+random -1368.00214304 541 9.9E-6

PCG-S3-r1
atomic -1367.99610068 309 8.0E-6

atomic+random -1368.00214304 226 9.4E-6

PCG-S3-r2
atomic -1368.00214301 310 9.5E-6

atomic+random -1368.00214303 315 9.1E-6
AlCrTiV NG = 1759 N = 25 Nk = 144 cores = 36

SCF
atomic -479.31161107 500 9.6E-4

atomic+random -479.30711971 500 2.1E-3

PCG-S3
atomic -479.36717223 204 9.8E-6

atomic+random -479.36717223 154 9.2E-6

PCG-S3-r1
atomic -479.36717223 104 9.8E-6

atomic+random -479.36717223 128 9.2E-6

PCG-S3-r2
atomic -479.36717223 90 8.5E-6

atomic+random -479.36717223 109 9.5E-6

correction functional Exc is differentiable.
Since Ψk is complex valued and F is real valued, F is not differentiable with

respect to Ψk. Let Ψk = Ψk,Re + iΨk,Im, where Ψk,Re and Ψk,Im are real valued.
We see that F is differentiable with respect to Ψk,Re and Ψk,Im. Thus we apply
the Wirtinger derivatives. More precisely, we view Ψk and Ψ̄k as two independent
variables for all k ∈ K, then the energy functional (2.5) is a differentiable functional
of Ψ, Ψ̄ and η, which is still denoted by F for convenience, namely, F(Ψ, Ψ̄, η). A
direct calculation shows

FΨk
=

1

2
(FΨk,Re

− iFΨk,Im
).

We refer to [23] for more details. We use the convenient notation F(Ψ, η) = F(Ψ, Ψ̄, η)
and L(Ψ, η,Λ) = L(Ψ, Ψ̄, η,Λ). Then there holds

FΨk
(Ψ, η) = wkHk(ρΨ,η)ΨkFηk

and

LΨk
(Ψ, η,Λ) = wk(Hk(ρΨ,η)ΨkFηk

− BΨkΛk),

where

Hk(ρ) = −1

2
(ik +∇)2 + Ṽloc(ρ) + Ṽnl(ρ)

with Ṽloc(ρ) = Vloc +

∫
Ω

ρ(r)

| · −r|
dr + Vxc(ρ), Ṽnl(ρ) : Ψk 7→ Vnl(Ψk) + MD̃ 〈M∗Ψk〉,
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Vxc(ρ) =
δExc

δρ
, and

D̃ =

∫
Ω

Ṽloc(ρ)(r)Q(r) dr.

It is clear that at any minimizer (Ψ, η), we have

Λk = 〈Ψ∗kH(ρΨ,η)Ψk〉Fηk
.

Hence we set

∇Ψk
F(Ψ, η) = 2LΨk

(Ψ, η, (〈Ψ∗kH(ρΨ,η)Ψk〉Fηk
)k∈K)

and ∇ΨF = (∇Ψk
F)k∈K. Obviously, LΨk,Re

= LΨk,Im
= 0 if and only if LΨk

= 0.

Then we calculate Fηk
=

(
∂F
∂ηkij

)N
i,j=1

by referring to Appendix E in [21]. We

see that

(A.1) dεki = (P ∗k dηkPk)ii, i = 1, . . . , N

and

(A.2)

(dFηk
)ij =

N∑
i′,j′=1

Pkii′

(
P ∗k f

(
ηk − µI

σ

)
Pk

)
i′j′

P ∗kj′j

=

N∑
i′=1

Pkii′P
∗
ki′j

1

σ
f ′
(
εki′ − µ

σ

)
(dεki′ − dµ)

+
∑
i′ 6=j′

Pkii′P
∗
kj′j

fkj′ − fki′

εkj′ − εki′
(P ∗k dηkPk)i′j′ ,

where P = (Pk)k∈K ∈
(
ON×NC

)|K|
, P ∗k ηkPk = Diag(εk1, . . . , εkN ), fki = f((εki−µ)/σ).

We get from
∑

k∈K
wk trFηk = Ne that

(A.3) dµ =

∑
k∈K wk

∑N
i=1 f

′ ( εki−µ
σ

)
dεki∑

k∈K wk

∑N
i=1 f

′
(
εki−µ
σ

) .

Moreover, we have

(A.4)

d

(
σ trS

(
1

σ
(ηk − µI)

))
= σ

N∑
i′=1

dS

(
εki′ − µ

σ

)

=

N∑
i′=1

S′
(
εki′ − µ

σ

)
(dεki′ − dµ)

=

N∑
i′=1

1

σ
(εki′ − µ)f ′

(
εki′ − µ

σ

)
(dεki′ − dµ) .
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It follows from (A.2) and (A.4) that

∂F
∂ηkij

=
∂E
∂ηkij

−
∑
k′∈K

wk′σ
∂ trS

(
1
σ
(ηk′ − µI)

)
∂ηkij

=
∑
k′∈K

N∑
i′,j′=1

∂E
∂(Fηk′ )i′j′

∂(Fηk′ )i′j′

∂ηkij
−
∑
k′∈K

wk′σ
∂ trS

(
1
σ
(ηk′ − µI)

)
∂ηkij

=
∑
k′∈K

wk′

N∑
i′′=1

 N∑
i′,j′=1

〈ψk′j′ , Hk′(ρΨ,η)ψk′i′〉Pk′i′i′′P
∗
k′i′′j′ − εk′i′′ + µ

 1

σ
f ′
( εk′i′′ − µ

σ

) ∂εk′i′′
∂ηkij

− ∂µ

∂ηkij

∑
k∈K

wk′

N∑
i′′=1

 N∑
i′,j′=1

〈ψk′j′ , Hk′(ρΨ,η)ψki′〉Pk′i′i′′P
∗
k′i′′j′ − εk′i′′ + µ

 1

σ
f ′
( εki′′ − µ

σ

)

+ wk

∑
i′′ 6=j′′

 N∑
i′,j′=1

〈ψkj′ , Hk(ρΨ,η)ψki′〉Pki′i′′P
∗
kj′′j′

 fkj′′ − fki′′

εkj′′ − εki′′
P ∗ki′′iPkjj′′ ,

which together with (A.1) and (A.3) leads to

∂F
∂ηkij

= wk

N∑
i′=1

(〈ψ̃ki′ , Hk(ρΨ̃,ηD
)ψ̃ki′〉 − εki′ + µ)

1

σ
f ′
( εki′ − µ

σ

)
P ∗ki′iPkji′

−
wk

∑N
i′=1 f

′
(
εki′−µ
σ

)
P ∗ki′iPkji′∑

k′∈K wk′
∑N
i′=1 f

′
(
εk′i′−µ

σ

) ∑
k′∈K

wk′

N∑
i′=1

(〈ψ̃k′i′ , Hk′(ρΨ̃,ηD
)ψ̃k′i′〉 − εk′i′ + µ)

1

σ
f ′
( εk′i′ − µ

σ

)
+ wk

∑
i′ 6=j′
〈ψ̃kj′ , Hk(ρΨ̃,ηD

)ψ̃ki′〉
fkj′ − fki′

εkj′ − εki′
P ∗ki′iPkjj′

= wk

( N∑
i′=1

(〈ψ̃ki′ , Hk(ρΨ̃,ηD
)ψ̃ki′〉 − εki′)

1

σ
f ′
( εki′ − µ

σ

)
P ∗ki′iPkji′

−

∑N
i′=1 f

′
(
εki′−µ
σ

)
P ∗ki′iPkji′∑

k′∈K wk′
∑N
i′=1 f

′
(
εk′i′−µ

σ

) ∑
k′∈K

wk′

N∑
i′=1

(〈ψ̃k′i′ , Hk′(ρΨ̃,ηD
)ψ̃k′i′〉 − εk′i′)

1

σ
f ′
( εk′i′ − µ

σ

)

+
∑
i′ 6=j′
〈ψ̃kj′ , Hk(ρΨ̃,ηD

)ψ̃ki′〉
fkj′ − fki′

εkj′ − εki′
P ∗ki′iPkjj′

)
.

Here Ψ̃ = (Ψ̃k)k∈K, ηD = (ηk,D)k∈K, Ψ̃k = (ψ̃k1, . . . , ψ̃kN ) = ΨkPk, ηk,D := Diag(εk1, . . . , εkN ),
and

fkj′ − fki′

εkj′ − εki′
=

1

σ
f ′
(
εki′ − µ

σ

)

provided εkj′ = εki′ .
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When all ηk are diagonal matrix, we see from Pk = IN for all k ∈ K that

∂F
∂ηkij

= wk

(
(〈ψki, Hk(ρΨ,η)ψki〉 − εki)

1

σ
f ′
(
εki − µ
σ

)
δij

−
f ′
(
εk′i−µ
σ

)
δij∑

k′ wk′
∑N
i′=1 f

′
(
εk′i′−µ

σ

)dµ
+ 〈ψkj , H(ρΨ,η)ψki〉

fkj − fki

εkj − εki
(1− δij)

)
for any k ∈ K, where

(A.5) dµ =
∑
k′∈K

wk′

N∑
i′=1

(〈ψk′i′ , Hk′(ρΨ,η)ψk′i′〉 − εk′i′)
1

σ
f ′
(
εk′i′ − µ

σ

)
.

We denote by ∇ηk
F = FTηk

=

((
∂F
∂ηkij

)N
i,j=1

)T
, ∇ηF = (∇ηk

F)k∈K.

Appendix B. Kohn-Sham equation. In this appendix, we show the associ-
ated standard Kohn-Sham equation for the ensemble Kohn-Sham DFT.

Let LΨ(Φ, η,Λ) = 0, i.e.,

(B.1) Hk(ρΦ,η)ΦkFηk
= BΦkΛk, ∀k ∈ K.

Thus we have

(B.2) ΣΦk,ηk
Fηk

= Λk,

where ΣΦk,ηk
= 〈Φ∗kH(ρΦ,η)Φk〉. Let Lη(Φ, η,Λ) = 0. Without loss of generality,

let all ηk be diagonal. If not, by (3.7), we still have LΨk
= 0 and Lηk

= 0 after
diagonalizing ηk and then rotating the Φk and performing a similarity transformation
on Λk accordingly.

Denote ηk = Diag(εk1, . . . , εkN ). Since f is strictly monotonic decreasing, the
derivatives of f are always less than 0. We obtain from ηk being diagonal and
Lηk

(Φ, η,Λ) = 0 that ΣΦk,ηk
= ηk + cI is diagonal, where

(B.3) c =
dµ

1
σ

∑
k wk

∑N
i′=1 f

′
(
εki′−µ
σ

) .
Here dµ is defined as (A.5). Denote εki = εki + c, then ΣΦk,ηk

= Diag(εk1, . . . , εkN ).
Consequently, we arrive at the standard Kohn-Sham equation

(B.4) H(ρ)φki = εkiBφki, i = 1, 2, . . . , N.

where ρ =
∑
k∈K

wk tr((Φ∗kΨk + 〈Φ∗kM〉Q〈M∗Φk〉)Fηk
), ηk = Diag(εk1, εk2, . . . , εkN ).

If Λk are forced to be Hermitian, then we can derive the Kohn-Sham equation
without the condition Lη(Φ, η,Λ) = 0. Indeed, it is clear that ΣΦk,ηk

= 〈Φ∗kH(ρΦ,η)Φk〉
are Hermitian since Hamiltonian operator H(ρΦ,η) is self-adjoint. It follows from
Λ∗k = Λk and F ∗ηk

= Fηk
that

(B.5) ΣΦk,ηk
Fηk

= Fηk
ΣΦk,ηk

.
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Thus there exists P ∈
(
ON×N

)|K|
such that

ΣΦkPk,P∗k ηkPk
= P ∗k ΣΦk,ηk

Pk, FP∗k ηPk
= P ∗kFηk

Pk, P ∗k ΛkPk

are diagonal. Let Diag(εk1, . . . , εkN ) = P ∗k ΛkF
−1
ηk
Pk. We still denote ΦkPk and

P ∗k ηkPk by Φk and ηk, respectively. Consequently, we arrive at (B.4).
The Kohn-Sham equations (B.4) are usually solved by the SCF iterations which

is stated as Algorithm B.1.

Algorithm B.1 The SCF iteration method for solving ensemble Kohn-Sham DFT

1: Given ε > 0, σ and initial guess of the input density ρin. Set ρout = 0;
2: while ‖ρout − ρin‖ > ε do
3: Obtain the input density ρin by some mixing schemes from ρout and the density

of previous steps;
4: Solve the linear eigenvalue problems

H(ρin)φki = εkiφki,

to get eigenpairs (φki, εki), k ∈ K, i = 1, 2 . . . , N ;
5: Calculate µ and occupation numbers fki corresponding to eigenfunctions φki

such that
∑

k∈K
wk

N∑
i=1

fki = Ne and

fki = f

(
εki − µ
σ

)
;

6: Calculate output density

ρout =
∑
k∈K

wk tr((Ψ∗kΨk + 〈Ψ∗kM〉Q〈M∗Ψk〉)Fηk
),

where Fηk
= Diag(fk1, fk2, . . . , fkN );

7: end while
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