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Abstract
In this article, we propose a shape optimization pipeline for propeller blades,
applied to naval applications. The geometrical features of a blade are exploited to
parametrize it, allowing to obtain deformed blades by perturbating their param-
eters. The optimization is performed using a genetic algorithm that exploits the
computational speed-up of reduced order models to maximize the efficiency of
a given propeller. A standard offline–online procedure is exploited to construct
the reduced-order model. In an expensive offline phase, the full order model,
which reproduces an open water test, is set up in the open-source software Open-
FOAM and the same full order setting is used to run the CFD simulations for all
the deformed propellers. The collected high-fidelity snapshots and the deformed
parameters are used in the online stage to build the nonintrusive reduced-order
model. This article provides a proof of concept of the pipeline proposed, where
the optimized propeller improves the efficiency of the original propeller.

K E Y W O R D S
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1 INTRODUCTION

The problem of optimizing the efficiency of marine propellers is a topic of considerable importance in naval engineering
applications. The correct understanding of how the geometry of the blades would impact the propagation of vibrations
and noise is propaedeutic to the design of new propellers and for the improvement of the propulsion performances.
Therefore, a preliminary but necessary step in the optimization of propellers’ shape is the geometrical parametriza-
tion of a single blade, where both the global geometrical features, that is, pitch, rake, skew, chord lengths, and the
sections’ properties, that is, camber, thickness, are recognized as parameters.1,2 Modifications in the parameters lead to
different blade shapes, allowing the exploration of a large number of different shapes. In the project here presented,
we started from a blade provided by Fincantieri S.p.A., but the starting blade can be in general defined starting from
its parameters.

The step following the parametrization is the setup of the computational fluid dynamic (CFD) simulation in order to
compute the propeller performances. In particular, different simulation settings have been investigated in the state of the
art: open water tests,3–5 usually studied at a reduced scale, and the inverse problem concerning the wake generated by the
propeller, analyzed in previous works, such as References 6 and 7. In particular, this article focuses on the optimization of
propeller efficiency in open-water tests. From a computational point of view, the main challenge is to find a compromise
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F I G U R E 1 Pipeline of the shape optimization.

between the computational cost of high-fidelity simulations, that is, the mesh refinement, the computational resources,
and the precision in the reconstruction of the most significant physical fields in experimental tests, that is, the torque and
the thrust coefficients. Indeed, an accurate reconstruction of the experimental tests would require a significantly large
number of degrees of freedom and the computational effort needed for the optimization process would become unfeasible.

To mitigate this issue, this contribution introduces an optimization pipeline exploiting the potentialities of data-driven
or nonintrusive reduced order models (ROMs).8–15 ROMs constitutes a consolidated method for real-time approxima-
tion of the numerical solutions in different problem configurations, that is, finite volume, finite element, and so on,
and in naval applications. We can find evidence of the ROM potentiality in naval problems in previous works, such
that References 16–24.

The standard approach when dealing with ROMs is the offline–online procedure. The offline stage consists of the com-
putation of a large number of high-fidelity simulations, each one exploiting a different deformed blade; the full-order snap-
shots of the main flow fields, that is, pressure and wall shear stress are then collected. In the online stage, the reduced order
model built from snapshots and parameters is exploited to predict the propeller efficiency in the optimization process.

This contribution proposes two different ROMs approaches: a standard one, where the snapshots are evaluated on all
the mesh points of the blades, and a fast ROM, where the fields are evaluated only on a reduced number of blades points,
that is, the Gauss quadrature nodes. To the knowledge of the authors, this approach is here experimented for the first time
in a ROM fashion and allows for a significant reduction in the computational time without losing the ROM accuracy.

We now present the structure of the article, which follows the pipeline represented in Figure 1. Section 2 will analyze
the geometry of a propeller and of a single blade (Section 2.1), the deformation of the original propeller (Section 2.2), and
of the whole mesh (Section 2.3). The setting of the full order model (FOM), which is simulated in the open-source software
OpenFOAM, is described in detail in Section 3. Then, the basic theory of reduced order models (ROM) is presented in
Section 4, where two different ROMs approaches are described (Sections 4.1 and 4.2). Section 5 describes how the two
ROMs techniques are exploited either in a genetic (Section 5.1) or in a gradient-based method (Section 5.2). The results
obtained in all the optimization processes are there compared.

2 PROPELLER GEOMETRY AND MESH DEFORMATION

This section is dedicated to the analysis of the geometry of a single blade, followed by the exploitation of its main
parameters to obtain different deformed shapes (Sections 2.1 and 2.2).

The deformation of the blade would result in the deformation of the whole OpenFOAM mesh in our offline
simulations. This specific issue is addressed in Section 2.3.

2.1 Blade parameters

The first important step in the development of efficient propellers design is the geometrical parametrization of a single
blade of the propeller.
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The generic structure of a propeller is displayed in Figure 2, where the main components of the propeller are distin-
guished, the blades, the hub and the shaft. As can be seen from Figure 2, in this work we focus on a propeller a fixed
number of blades, namely 6 blades.

The blades of marine propellers are characterized by different geometrical features, which are measured on different
cylindrical sections and are associated with the values of the radius at which sections are taken. Figure 3 represents the
values of the radii taken into account in our particular case study for blade parametrization. In particular, r0 is the hub
radius, whereas R is the maximum radius of the propeller. As a usual approach for the study of marine propellers, the
reference radii r are all measured with respect to r

R
, as can be seen from Figure 3. In particular, the blade is characterized

by four faces: the sections at radius r0 and R, named root and tip respectively, the blade face (or pressure side) and back (or
suction side), whose borders are indicated in Figure 4. We can distinguish two classes of parameters: the global parameters,
associated with each radius value, that is, pitch, rake, skew, chord length; the section parameters, that is, quantities defined
at different chord percentages for each section, such as thickness and camber*.

The parameters which are taken into account for the blade deformation presented in this work are pitch, chord length,
thickness, and camber, whereas the other parameters are fixed for all the deformed shapes. More in detail, the pitch of
a propeller is the displacement that it makes in a complete spin of 360 degrees, we are considering a propeller with a
different pitch distribution for each section considered. The other parameters considered, that is, chord length, thickness,
and camber, are graphically defined in Figure 4A. In particular, for each section thickness and camber are defined as

F I G U R E 2 Generic structure of a propeller.

F I G U R E 3 Radial view of a propeller’s blade. The figure on the left shows the original cylinder sections of a blade, where R is the
propeller radius and r0 is the hub radius. The figure on the right represents the projections of the corresponding sections on a flat plane.
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F I G U R E 4 (A) Graphical definition of the parameters of a blade section: chord length, thickness, and camber corresponding to the
preset chord percentages. (B) Example of deformed blade root section.

lists of values associated with predefined chord percentages, as represented in Figure 4A. The parameters of the initial
shape are reserved data†, but we highlight that the entire pipeline is reproducible with all the propellers defined by the
above-mentioned parametrization.

Remark: It is worth remarking that we adopt the American convention in the definition of the thickness since it is
measured along lines orthogonal to the camber line. In the British convention, instead, it is measured along vertical lines,
orthogonal to the chord line at the specific chord percentages considered.

2.2 Blade deformation

Once the geometrical parameters of interest are selected, changes in the blade geometry can be easily made by modifying
the parameters. In this work, the deformation parameters are the multiplicative factor we impose on the original geomet-
rical parameters of the original blade. For instance, if we consider a deformation parameter equal to 1.3 for the pitch, the
resulting deformed blade will have the pitch geometrical parameter 30% greater than the original blade.

The deformation rates’ values are set within the intervals:

•
[
0.9, 1.1

]
(for pitch);

•
[
0.8, 1.2

]
(for camber);

•
[
0.7, 1.3

]
(for chord length);

•
[
0.7, 1.3

]
(for thickness).

The ranges have been chosen such that the parametric blades satisfy the structural feasibility constraint.
Figure 4B displays an example of deformation of the root section of the blade when the deformation parameter is
𝜇 =

[
1 0.95 0.75 1.27

]
, where the components refer to pitch, camber, chord length, and thickness, respectively. Such

deformation is obtained by employing the Python package BladeX.25,26 The software builds the blades by creating a
Non-Uniform Rational Basis Spline (NURBS) surface 27,28 passing through all the (deformed) blade sections. In this
representation, the shape of the surfaces is defined by the control points belonging to the UV plane, which enables the
following steps of the pipeline thanks to the mapping between such a (2D) plane and the 3D final surface.

Remark: It is worth highlighting that we considered the same deformation rates for each section and each chord
percentage, that is, we are not taking into account different deformations for different sections and/or chord coordinates.
Therefore, we are considering p = 4 parameters for the whole blade.

In the project here presented, we considered M = 216 deformed blades, where 200 blades are obtained imposing
deformations with parameters selected with uniform random distribution in the intervals defined above, and 16 blades
are deformed considering all the combinations at the extremes of the intervals. Three examples of deformed shapes are
displayed in Figure 5.

2.3 Mesh deformation

A challenging step in the pipeline of this project is to perform the mesh deformation. Indeed, after a large number of
deformed blades is obtained, as described in Section 2.1, the computational mesh (schematized in Figure 11) has to be
deformed as well, according to each blade deformation. However, it is important to highlight one important requirement
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F I G U R E 5 Graphical view of three deformed blades.

that all the deformed meshes have to satisfy: the mesh topology, as well as the number of degrees of freedom, should be
preserved in all the FOM simulations. The statement above is a prerequisite for the construction of the reduced order
model since all the pressure and velocity high-fidelity solutions should have the same degrees of freedom.

A mesh that has the same number of points and the same topology as the FOM simulation with the undeformed blades
cannot be obtained from the OpenFOAM tool of mesh generation. Therefore, the mesh deformation is performed in this
work by exploiting an interpolation technique. In particular, we followed two fundamental steps to obtain the points of
each deformed mesh: the deformation of the propeller’s shaft and the deformation of the entire mesh, described in detail
in the following parts. The images reported in Sections 2.3.1–2.3.3 display results for the deformed blade with parameter
𝜇 =

[
1 0.72 0.75 0.95

]
.

Before specifying the operative details of the deformation, we recall in the following paragraph the basic concepts of
the radial basis function (RBF) interpolation technique when used for mesh deformation.

2.3.1 RBF for mesh deformation

The general problem is to find the deformed counterpart xdef of the original undeformed mesh xundef. As starting point
we should consider a certain number Ncontrol of undeformed and deformed control points cundef and cdef. The deformed
mesh is found with the following expression:

xdef
j = f

(
xundef

j

)
=

Ncontrol∑

i=1
𝛼i𝜙

(‖‖‖xundef
j − cundef

i
‖‖‖

)
, j = 1, … ,Npoints, (1)

where𝜙i = 𝜙
(‖‖‖xundef

j − cundef
i

‖‖‖

)
are the radial basis functions, which can have different shapes, such as thin plate splines,

multiquadric or inverse multiquadric. In our case, we consider the thin plate splines, thus: 𝜙(r) = r2 log(r), where r is the
radius of the basis function, that is, r = ||xundef

j − cundef
i ||.

Remark: We highlight here that choosing a proper RBF kernel would ensure the preservation of the mesh quality and
topology throughout the discretized domain. The weights 𝛼i are found by training the interpolation with some known
control points, that have to satisfy the following conditions:

cdef
j = f

(
cundef

j

)
=

Ncontrol∑

i=1
𝛼i𝜙

(‖‖‖cundef
j − cundef

i
‖‖‖

)
, j = 1, … ,Ncontrol. (2)

2.3.2 Shaft deformation

For each deformed blade, the following list of passages is followed to obtain the deformed shaft:

1. identification of Nshaft points on the root face of the undeformed and deformed blades. Being the surface defined by
NURBS, the points are generated on the reference UV plane and mapped to the blade surface;

2. collection of the shaft points which remain unchanged in deformation, that is, the two bases of the shaft. The union of
the undeformed shaft bases and of the undeformed blades’ root provides the undeformed shaft control points, whereas
the union of the undeformed shaft bases and of the deformed blades’ root provides the deformed shaft control points;
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6 of 22 IVAGNES et al.

3. training of a Radial Basis Function (RBF) interpolating technique with the undeformed and deformed shaft control
points (as in (2)), and then extraction of the deformed shaft by applying the RBF to the undeformed points of the shaft
lateral surface (as in (1)). The control points and the final mesh points on the shaft are represented in Figure 6.

To conclude, we highlight that such an operation is needed in order to allow the correct deformation of the whole
mesh. If the points on the shaft surface are fixed, this would lead indeed to unexpected behavior when the RBF system is
assembled over all the surface points. In fact, in this case the blade points are moved, but not the adjacent ones belonging
to the shaft. The propedeutic procedure here described induces indeed a deformation on the shaft points, translating them
on the cylindrical surface accordingly to the blade root deformation.

2.3.3 Global mesh deformation

The deformation of the whole mesh is obtained with the following steps:

1. identification of Nquadrature Gauss quadrature nodes on the faces of both the undeformed and deformed blades;
we name these nodes as undeformed and deformed blades’ control points. Here we chose as control points the Gauss
quadrature nodes on the blades, but other selections that ensure a proper geometrical characterization of the blades
are possible.

2. collection of all the points of the undeformed mesh which belong to the boundaries, that is, the lateral surface of the
outer cylinder Γouter, the inlet Γinlet, the outlet Γoutlet, and the surfaces of the propeller shaft Γshaft. The union of the
undeformed blades’ control points and the undeformed boundaries will provide the undeformed mesh control points,
while the union of the deformed blades’ control points and the undeformed boundaries will provide the deformed
mesh control points;

3. training of a second RBF interpolation with the undeformed and deformed mesh control points (as reported in (2));
then, the RBF is applied on the entire internal mesh (again, as in (1)) to obtain the deformed internal mesh, which is
represented in Figure 7.

Remark: It is important to remark that, if we want to perform a deformation of a certain domain, there is the need to
include in the control points the boundaries of the domain, that is, the bases of the shaft in point (1) and the boundaries
of the whole domain in point (2).

2.3.4 Results for mesh deformation

This part is dedicated to the graphic results of the mesh deformation step. In particular, here we show different mesh
views for the original and the deformed blades and for the meshes of the corresponding FOM simulations. For a detailed
description of the FOM setting we refer the reader to Section 3.

F I G U R E 6 (A) Zoom on the control points on the propeller’s shaft. (B) Shaft points. Undeformed and deformed shaft points are
represented in blue and black, respectively.
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IVAGNES et al. 7 of 22

F I G U R E 7 (A) Representation of all the control points in the mesh, including points at boundaries and on the propeller’s surface;
(B) Zoom on the undeformed (blue) and deformed (black) control points on blades.

F I G U R E 8 Mesh on the surface of the original undeformed blade and of a selected deformed blade.

Figure 8 displays the mesh on the surfaces of the undeformed and deformed blades, Figures 9 and 10 represent the
slices of the mesh on two different planes, parallel and orthogonal to the propeller axis, respectively. All the deformed
meshes obtained through the above-mentioned interpolation technique provide good results in terms of mesh quality.

The time needed to perform the mesh deformation using a RBF interpolation method is ∼2–2.5 h in a serial
computation‡.

3 FULL ORDER MODEL

A necessary step in our pipeline is the setting of the full order model (FOM) for high-fidelity simulations. The mathemat-
ical model here considered is the Unsteady Reynolds Averaged Navier–Stokes (U-RANS) Equations, that are numerically
discretized and solved making use of the open-source software OpenFOAM,29 which exploits the finite-volume method.30

Section 3.1 describes the U-RANS approach coupled with the turbulence modeling, whereas Section 3.2 explains the
technique used to generate the rotation of the propeller in the FOM simulations.

3.1 The U-RANS approach and the turbulence modeling

In this article, we adopt the following notation: Ω ∈ Rd with d = 2 or 3 is the fluid domain, Γ its boundary, t ∈ [0,T] the
time, u = u(x, t) the velocity field, p = p(x, t) the normalized pressure scalar field divided by the fluid density, and 𝜈 the
fluid kinematic viscosity.
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8 of 22 IVAGNES et al.

F I G U R E 9 Zoom of a slice of the mesh with corresponding normal parallel to the propeller axis.

F I G U R E 10 Zoom of a slice of the mesh with corresponding normal orthogonal to the propeller axis.
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IVAGNES et al. 9 of 22

Figure 11 represents a slice of our computational domain and mesh. In particular, the mesh is built inside the outer
cylinder, whose bases are the inlet Γinlet, the outlet Γoutlet and the lateral surface Γouter. The surface of the propeller is
named here Γpropeller. In the internal domain, four different cylinders are built, whose surfaces are indicated as (Γi)4i=1.
We introduce here the internal cylinders in order to generate different mesh refinements; in particular, the mesh gets
gradually more refined from the outer surface to the blades’ surface in order to provide an accurate reconstruction of the
flow fields acting on the blades, as can be seen from Figure 11.

We briefly recall the basic concepts of the U-RANS approach, that is used in this work for the FOM simulations.
The main hypothesis that characterizes the RANS approach is the Reynolds decomposition.31 This theory is based on the
assumption that each flow field can be expressed as the sum of its mean and fluctuating parts. Considering a generic
space and time-dependent field 𝜎(x, t):

𝜎(x, t) = 𝜎(x, t) + 𝜎′(x, t).

The U-RANS formulation consists in a time-averaged version of the NSE, that can be written as follows:

⎧
⎪
⎨
⎪
⎩

𝜕ui

𝜕xi
= 0,

𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj
= −

𝜕p
𝜕xi

+
𝜕(2𝜈Eij −ij)

𝜕xj
,

(3)

where the Einstein notation has been adopted, ij = u′iu
′
j is the Reynolds stress tensor, and Eij = 1

2

(
𝜕ui
𝜕xj
+ 𝜕uj

𝜕xi

)
is the

averaged strain rate tensor.
The U-RANS formulation in (3) needs to be coupled with a turbulence model in order to close system (3). In particular,

here we adopt the 𝜅 − 𝜔 Shear Stress Transport (SST) model.32 It belongs to the class of eddy viscosity models, whose main
assumption is the Boussinesq hypothesis, that is, that the turbulent stresses are related to the mean velocity gradients as
follows:

ij = 2𝜈tEij −
2
3
𝜅𝛿ij,

where 𝜅 = 1
2

u′iu
′
i is the turbulent kinetic energy, 𝜈t is the eddy viscosity.

The final formulation is expressed as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕u
𝜕t
+ 𝛻 ⋅ (u⊗ u) = 𝛻 ⋅

[
−pI + (𝜈 + 𝜈t)

(
𝛻u + (𝛻u)T

)]
in Ω × [0,T], (4a)

𝛻 ⋅ u = 0 in Ω × [0,T], (4b)
+ Boundary conditions on 𝜕Ω × [0,T], (4c)
+ Initial conditions in (Ω, 0). (4d)

F I G U R E 11 A slice of the computational domain Ω and mesh of the FOM in OpenFOAM.
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10 of 22 IVAGNES et al.

The boundary and initial conditions (4c) and (4d) are here reported. For the pressure field, we consider:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

p(x, 0) = 0, x ∈ Ω,
𝜕p
𝜕n
(x, t) = 0, x ∈ Γinlet,Γouter,

p(x, t) = 0, x ∈ Γoutlet.

For the velocity field:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

u(x, 0) = 0, x ∈ Ω,
u(x, t) = u0(x) = (0,u0, 0), x ∈ Γinlet
𝜕u
𝜕n
(x, t) = 0, x ∈ Γoutlet

u(x, t) = 0, x ∈ Γouter,Γpropeller.

In our case, the value of the inlet velocity u0 is set such that the advance ratio J = u0
nD
= 0.85, where D = 2R (if we refer to

R in Figure 3) is the diameter of the propeller, and n = 15 rounds/second is the number of revolutions per second of the
propeller.

Moreover, the 𝜅 − 𝜔 SST model is coupled with a 𝛾 − Re
𝜃t transition model, which simulates the laminar-turbulent

transition in our simulation setting and was proposed in Reference 33. The initial and boundary conditions for the addi-
tional variables 𝜅 and 𝜔, 𝛾 and Re

𝜃t are set in the FOM following standard formulas and rules. In particular, the turbulent
kinetic energy 𝜅 and the turbulence specific dissipation rate 𝜔 are initialized to:

𝜅 = 3
2
(I u0)2, 𝜔 =

𝜅

0.5

C0.5
𝜇

L

in all the domain, where the I is the turbulence intensity, that is ∼ 9% in our case, C
𝜇

= 0.09 and L = D is the reference
length scale. The intermittency variable 𝛾 and the transition momentum thickness Reynolds number Re

𝜃t are initialized to:

𝛾 = 1,Re
𝜃t =

{
1175.51 − 589.428I + 0.2196

I2 if I < 1.3,
331.5

(I−0.5658)0.671 if I > 1.3.

For what concerns the boundary conditions, we have for all variables a fixed-value condition at the inlet, and a
zero-gradient condition at the outlet and at the walls.

As stated before, in this article we adopt the finite volume discretization technique, which consists in performing
a polyhedral discretization of the computational domain, where each finite volume is called control volume. After that,
the equations in (4) are written in integrated on each control volume of the domain interest. The divergence theorem is
then used to convert the volume integrals to surface integrals, which are finally discretized as sums of the fluxes at the
boundary faces of each control volume.

3.2 MRF approach

For what concerns the motion of the propeller, the rotation of the propeller in OpenFOAM is obtained using the Moving
Reference Frame (MRF) approach. The MRF technique is a steady-state method widely spread in industrial CFD problems
that involve rotating parts. The principle of this technique is the creation of a thin volumetric region of mesh cells around
the rotating body during the meshing phase. This region, namely the MRF zone, is in our test case the smallest cylinder
which surrounds the propeller’s blades (Γ1 in Figure 11). During the simulation, the MRF zone is rotated about the axis of
the body and the body is kept stationary. The simulation is performed until a steady state is reached, such that the thrust
and the torque forces reach a stationary value.

This stage aims to build a CFD model which provides accurate results compared to the experimental open-water
tests. In particular, our metrics for accuracy measurement are the relative error on the values of the thrust and torque
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IVAGNES et al. 11 of 22

coefficients (kT and kQ). These adimensional numbers are characteristic features in the fluid dynamics of marine
propellers and are defined as follows:

kT =
T

𝜌n2D4 , kQ =
Q

𝜌n2D5 . (5)

In expression (5), 𝜌 is the fluid density. T and Q are the thrust and the torque force experimented on the blades of our
propeller. These forces are evaluated as the sum of a pressure-based and a viscous contribution, as follows:

T = Tpressure + Tviscous = 𝜌
(

∫Γblades

pndA +
∫Γblades

𝚺ndA
)
;

Q = Qpressure + Qviscous = 𝜌
(

∫Γblades

pn × rdA +
∫Γblades

𝚺n × rdA
)
. (6)

In expression (6), Γblades indicated the blades’ surface, r = (x, y, z) is the position vector, n is the unitary normal vector to
the surface, 𝚺 is the wall-shear stress tensor.

In the project presented in this article, the FOM performed in OpenFOAM reached an accuracy of ∼ 1% and of ∼ 3%
for what concerns kT and kQ, respectively. Moreover, the time needed to perform one high-fidelity simulation is 24 − 48
hours in a parallel setting.§ The variance in the simulation time is due to the different number of iterations needed to
reach a stable regime in all the computed simulations.

4 NON-INTRUSIVE REDUCED ORDER MODEL

This section is dedicated to the explanation of the theory behind the model order reduction technique here employed to
reduce the computational effort. This technique belongs to the framework of nonintrusive reduced order methods, that is,
approaches exploiting the information provided by the high-fidelity simulations. In these kinds of models, the CFD gov-
erning equations are only used at the full order level to perform the offline simulations, but not at the reduced order level.
Nonintrusive reduced order models are composed of two fundamental stages, the reduction and the approximation step,
described in the following paragraphs. The techniques here explained are implemented in the Python packageEZyRB.34,35

4.1 Reduction

The first step consists of the compression of the original matrix of high-fidelity solutions, into a matrix of reduced
dimension. In our case, we consider as snapshots the pressure and wall shear stress at the final time instant of each
offline simulation, that is, when a steady state has been reached. The fields are evaluated not on all the points of the
computational mesh, but only on the points of the blades.

It is important to remark that the flow fields are evaluated only on the blades because the propeller efficiency only
depends on the fluid-dynamics behavior at the blades. In fact, the efficiency is evaluated as:

𝜂propeller =
T
Q

u0

2𝜋n
, (7)

where T and Q only depend on the fields on the blades, as can be evinced from (6).
Thus, each i−th snapshot is a flow field evaluated on the deformed blades corresponding to the i−th set of deformation

parameters taken into account. For instance, if we consider the generic field s, we have the following matrix of snapshots:

S =
⎡
⎢
⎢
⎢
⎣

| | |

s1(x) s2(x) … sM(x)
| | |

⎤
⎥
⎥
⎥
⎦

∈ R
Ndof×M

,

where Ndof is:
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12 of 22 IVAGNES et al.

• exactly the number of cells of the blades in the computational mesh, that is ∼ 28 × 105 in the first type of ROM we
consider (the standard ROM). In this case, the snapshots are evaluated at the cells’ centers;

• a certain number of quadrature points retained on the blades, in our case 12 × 105, since we consider a grid of 100 × 100
nodes for the back and the face of each blade, in the second type of ROM (the fast ROM). In this case, the snapshots
are evaluated on the quadrature points.

The basic principles of the two theories will be explored in Sections 4.1 and 4.2.
The reduction technique adopted in this work is the Proper Orthogonal Decomposition (POD). This technique is based

on the projection of the snapshots into a reduced space, spanned by a limited number of the so-called modes, which are
computed directly starting from the snapshots matrix in the offline stage. Each reduced snapshot si can be approximated
as a linear combination of the modes:

si ≃
L∑

j=1
aj𝝓j,

where {𝝓j}L
j=1, are the modes, L ≪ Ndof is the reduced dimension, that has to be established a priori. {aj}L

j=1 are the reduced
coefficients associated to the modes. The POD modes can be evaluated using a Singular Value Decomposition technique
(SVD) or via the correlation matrix. In the first case, for instance, the snapshots matrix is decomposed in S = U𝚺VT ,
where the columns of U ∈ RNdof×L are the POD modes. Thus, the reduced coefficients can be computed as UTS.

4.2 Approximation

In the second step, the goal is to predict the reduced coefficients associated with unknown values of the parameters,
which do not belong to the original dataset. In our case, the snapshots are si = s(𝝁i), i = 1, … ,M and the parameters are
𝝁i ∈ Rp, p = 4. The goal here is to evaluate s(𝝁∗), that is, the pressure field for deformation parameters that are not in our
initial set of parameters.

Different techniques can be employed to reach this task. Here we consider one of the most used techniques, the RBF
interpolation. The RBF allows representing our field at unknown parameter 𝝁∗. In particular, the unknown coefficients
a∗(𝝁) can be computed in the following way:

a(𝝁∗) =
M∑

i=1
𝜔i𝜙(||𝝁∗ − 𝝁i||),

where𝜙(||𝝁∗ − 𝝁i||) are the radial basis functions with center𝝁i and weight𝜔i. The weights are found from the conditions:

a(𝝁j) =
M∑

i=1
𝜔i𝜙(||𝝁j − 𝝁i||), j = 1, … ,M.

In this work, radial basis functions of multiquadric shape, of expression 𝜙(r) =
√

1 + (𝜀r)2, with r = ||𝝁∗ − 𝝁i||. Alterna-
tive approaches that can be used as approximation part of ROMs are the Gaussian Process Regression (GPR),36 or the
K-Neighbors Regression (KNR).

4.3 Standard ROM: Full mesh

In the standard-ROM model we introduce, we consider as snapshots the pressure and wall shear stress fields evaluated
on all the mesh points of the blades.

The question that automatically arises is: What is the procedure to predict the efficiency of a propeller starting from the
deformation parameters 𝝁∗?

The efficiency of a propeller can be predicted by performing the following steps:

1. deform the original blades according to the deformation parameters 𝝁∗;
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IVAGNES et al. 13 of 22

2. deform the blades’ points using a RBF technique and triangulate the mesh;
3. compute the normal unitary vectors to the cells and their areas, that are necessary for the computation of thrust and

torque forces;
4. exploit the standard ROM to predict the pressure and wall-shear stress fields on the blades;
5. compute the thrust and torque forces approximating the integrals in (6), and then the efficiency (following expres-

sion (7)).

Remark: We specify here that in step 2 a triangulation is applied on the deformed mesh to make straightforward the
computation of the normals and areas to the cells.

The integrals 6 are approximated as discrete sums on all the mesh cells, as follows:

Tapprox = 𝜌
Ndof∑

c=1
(pcncac + 𝚺cncac);

Qapprox = 𝜌
Ndof∑

c=1
(pcnc × xcac + 𝚺cnc × xcac), (8)

where xc is the position of the centre of cell c, the approximated reduced fields are pc = prom(xc), 𝚺c = 𝚺rom(xc), nc and ac
are the normal to cell c and its area.

The critical issue of this analysis is the computational time required to go through steps 1–5. In particular, the most
computationally expensive step is 2 and the total time to predict the efficiency of a deformed propeller is ∼ 6 min.

4.4 Fast ROM: Quadrature points

We here consider the second type of ROM, named fast ROM. In this case, the snapshots are evaluated on the coordinates
of a predefined number Nquadrature of Gauss quadrature nodes on the blades.

The 3-dimensional quadrature points are found mapping the 2D cartesian Gauss-Legendre quadrature nodes into the
UV local reference system on the NURBS surfaces, and then mapping the UV coordinates in a 3D cartesian domain. In
particular, we considered as different NURBS the suction and pressure side of all blades.

Remark: The number of quadrature nodes on the blades has been selected after conducting a sensitivity study. This
study is conducted on the predictions of the thrust forces and torque momentum. In particular, we measured the accuracy
of the prediction made considering quadrature formulas with respect to the FOM value, for different degrees of quadrature
nodes. The results are represented in Figure 12. We can notice that the accuracy converges on steady values for a degree
≥ 100. For this reason, we selected 100 quadrature nodes on each face of the blades.

In Figure 13, two representations of the Gauss quadrature nodes on the undeformed and deformed blades are
displayed.

Therefore, there are in the offline stage two additional steps with respect to the standard ROM:

• the computation of the quadrature nodes on all the deformed blades in the dataset;
• the evaluation of the snapshots on the quadrature nodes through interpolation or regression techniques. Here we con-

sider a K-Neighbor Regression technique based on 5 nearest neighbors, where the fields on the quadrature nodes are
predicted by local interpolation of the targets associated with the nearest neighbors in the training set.

Moreover, a ROM is also exploited not only for the prediction of the pressure and wall shear stress fields but also for
the computation of the normal vectors to the blades’ surfaces.

We illustrate here the complete procedure to predict the efficiency of a deformed propeller with parameters 𝝁∗:

1. deform the initial blades according to parameters, as in 1;
2. generate a number Nquadrature of Gauss quadrature nodes on the deformed blades;
3. predict the normal vectors exploiting ROM and compute the jacobians of the deformation;
4. exploit the ROMs to predict the pressure and wall shear stress on the blades’ quadrature points;
5. evaluate the torque and thrust forces, and consequently the efficiency.
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14 of 22 IVAGNES et al.

F I G U R E 12 Accuracy of predicting forces, momentum and efficiency using quadrature formulas, for different number of quadrature
samples. The accuracy is measured as a relative error with respect to the reference FOM value.

F I G U R E 13 Quadrature nodes on undeformed and deformed blades. In this picture, Nquadrature = 10, 800.

The technique here presented, which—to the best of our knowledge—is novel for this application, allows for a reduc-
tion in the computational time. Indeed, the efficiency evaluation for a single propeller takes approximately 8–15 s.¶ The
reason for this gain is that the mesh generation, that is, the expensive step 2 in standard ROM, is here replaced by step 2,
which is much faster than the mesh generation.

The most important difference between the two approaches is the computation of the forces: in the standard case, we
approximate the integrals in (6) with discrete sums on all the mesh cells; in the second case, the quadrature formulas on
the Gauss nodes are considered to approximate the integrals. However, the use of integration formulas to compute the
forces does not lead to a minor accuracy in the reconstruction of the efficiency.

4.5 Results and comparison of ROMs

As specified in the previous paragraphs, the reduced order model can be built considering different techniques for the
reduction and approximation stages. In this work, we always exploit the POD as a reduction method, since it is a consol-
idated technique in the field of industrial applications. On the other side, the approximation technique has been chosen
as the result of an analysis of the accuracy of the resulting ROM. In particular, the RBF, GPR and KNR approximat-
ing techniques are here compared. As for the RBF, the thin plate spline is chosen as basis functions; in the KNR the
regression is implemented considering k = 5 and uniform weights. The accuracy is here measured in terms of k-fold
cross validation error. It is computed by splitting the database into k consecutive folds (we chose k = 10 in our case),
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IVAGNES et al. 15 of 22

T A B L E 1 Accuracy analysis for the standard ROM.

ROM field RBF GPR KNR

Pressure 0.776% 0.632% 9.651%

Wall shear stress (x) 1.542% 3.571% 3.348%

Wall shear stress (y) 3.293% 6.305% 5.310%

Wall shear stress (z) 1.335% 2.156% 3.968%

Note: The accuracy is measured in terms of the mean of the k-fold cross validation errors with k = 10.

T A B L E 2 Accuracy analysis for the fast ROM.

ROM field RBF GPR KNR

Pressure 2.673% 5.857% 12.117%

Wall shear stress (x) 2.913% 6.208% 4.852%

Wall shear stress (y) 6.252% 12.233% 7.489%

Wall shear stress (z) 2.959% 5.907% 5.152%

Normals (x) 4.688% 11.312% 4.984%

Normals (y) 4.595% 11.03% 4.487%

Normals (z) 4.511% 10.837% 4.888%

Note: The accuracy is measured in terms of the mean of the k-fold cross validation errors with k = 10.

and each fold is used once as validation while the k − 1 remaining folds form the training set. We remind that the
database is composed of M = 216 snapshots, corresponding to the initially deformed blades (details about the sampling are
provided in 2.1.

The mean values of the k-fold errors for the standard and fast reduced order models are reported in Tables 1 and 2.
The results show that the GPR is the best technique for the standard approach, whereas the RBF provides the best results
for the fast ROM. The best methods are chosen for the efficiency prediction in the shape optimization in order to obtain
good results in the FOM-ROM validation.

Figure 14 displays a comparison between the full-order fields acting on the blade and the reconstructed reduced-order
fields. In the case of the fast ROM approach (Figure 14C,F), the fields are computed and represented on the Gauss
quadrature nodes. The figure shows a good agreement between the reconstructed fields and their original high-fidelity
counterpart.

5 OPTIMIZATION PROCESS

This section is dedicated to the shape optimization process. In particular, Section 5.1 briefly recalls the theory on the
genetic algorithm, here exploited for optimization, and Section 5.2 is dedicated to a comparison among the results
obtained from the genetic optimization and those obtained using a gradient-based approach.

5.1 Genetic optimization

This subsection is dedicated to the explanation of the genetic algorithm (GA) used for the optimization step. It was
introduced for the first time in Reference 37 and it is inspired by the evolution mechanism.

The general scheme of how it works is displayed in Figure 15. In particular, it starts from an initial population of
Npop individuals and the fitness, that is, the objective function we want to minimize/maximize, is evaluated for all the
individuals. Then, the algorithm iteratively performs three steps: selection of the best individuals, crossover, recombination
of the genes of the individuals, and mutation of the genes, allowing the evaluation of new individuals.

 10970207, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7426 by Sissa Scuola Internazionale, W
iley O

nline L
ibrary on [30/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 22 IVAGNES et al.

F I G U R E 14 High-fidelity and reduced order fields corresponding to the initial blade: relative pressure in the first row and wall shear
stress magnitude in the second row.

F I G U R E 15 Schematic representation of the genetic algorithm.

The GA is computed in Python making use of the Deap evolutionary computational framework 38,39 and the following
hyper-parameters are considered:

• the initial population is composed by 30 and 150 individuals for the standard and fast ROMs, respectively;
• in the mate stage, a one-point crossover is performed, that modifies in-place the input individuals;
• in the mutation step, a Gaussian mutation of mean 𝜇 = 1 and standard deviation 𝜎 = 0.1 is applied to the input indi-

vidual. The independent probability for each attribute to be mutated is set to 0.5 and 0.8, when the standard and fast
ROMs are exploited, respectively;
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IVAGNES et al. 17 of 22

• the evolutionary algorithm employed in the genetic process is the (𝜇 + 𝜆) algorithm, which selects the 𝜇 best individuals
for the next generation (𝜇 = 5 for the standard ROM, 50 in the fast approach) and produces 𝜆 children at each genera-
tion (𝜆 = 10 in the standard approach, 80 in the fast one). The probabilities that an offspring is produced by crossover
and by mutation are 0.4 and 0.5, respectively.

• the previous steps are repeated for 10 and 20 generations for the standard and fast cases, respectively.

Remark: In this article, we chose the genetic algorithm for optimization instead of a gradient-based algorithm since
it allows us to evaluate a larger number of individuals, in our case of deformed shapes, and avoids getting stuck into local
minima.

In our particular test case, the individuals are the parameters, so each individual i has 4 genes, corresponding to the
deformation rates of the geometrical parameters. The fitness function f (i) we want to maximize is the efficiency. We
consider two different optimization processes:

• basic optimization, where the efficiency 𝜂propeller is the fitness;
• constrained optimization, where a series of geometrical and physical constraints applies to the optimization process.

In this case, we consider a penalized fitness function:

f (i) = 𝜂propeller(i) −
Nconstraints∑

j=1
wj penalty (i)j, (9)

where penalty (i)j and wj are the penalty and the weight associated with the jth constraint, Nconstraints is the number of
constraints taken into account.

We specify here only the generic formulation to apply constraints in the optimization procedure since the constraints
imposed in this work are protected by nondisclosure agreements. It derives that a punctual discussion about the geomet-
rical features of the optimal blade cannot be pursued; we consider the constrained optimization as an additional test with
a different objective function, limiting our considerations to the precision comparison between ROM and FOM.

5.1.1 Results of genetic optimization

Table 3 displays the best individual obtained from the genetic algorithm (GA) in the standard and fast ROM approaches.
In particular, we measure the results of the optimization processes in terms of absolute increases of the percentage

efficiency with respect to the starting propeller, that is, the one corresponding to parameter 𝜇 =
[
1 1 1 1

]
. Table 3

reports the following metrics:

ΔFOM = 𝜂opt
FOM − 𝜂

start
FOM, ΔROM = 𝜂opt

ROM − 𝜂
start
ROM,

where 𝜂start
FOM and 𝜂start

ROM are the FOM and ROM efficiencies of the starting propeller, whereas 𝜂opt
FOM and 𝜂opt

ROM are the effi-
ciencies for the optimal propeller. Moreover, we underline here that the efficiency of the starting propeller is captured
with an absolute error of 0.01% in the standard ROM approach and of 0.33% in the fast ROM approach.

T A B L E 3 Results of genetic optimization for the unconstrained and constrained cases, for both the standard and fast ROMs.

Parameters

Optimization Def. pitch Def. camber Def. chord length Def. thickness 𝚫ROM 𝚫FOM

Standard Unconstrained 0.92 1.03 0.70 0.75 +5.15% +5.13%

Constrained 1.01 0.81 0.82 0.99 +0.79% +0.81%

Fast Unconstrained 0.91 0.89 0.74 0.70 +3.76% +3.24%

Constrained 0.99 0.90 0.77 1.02 +1.16% +0.80%

Note: ΔROM and ΔFOM are the efficiency improvements with respect to the starting propeller of the optimization processes.
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18 of 22 IVAGNES et al.

Table 3 shows that the standard and fast optimization processes lead to similar values of the final optimal efficiency,
although the algorithms converge to different results in terms of individuals in the parameter space.

In general, the optimized propeller obtained with an unconstrained algorithm is characterized by higher efficiency
with respect to the one resulting from the constrained process. Indeed, as can be seen from the Table, the unconstrained
optimization processes lead to blades with small thickness, since it would result in lower torque values, and hence to more
efficient propellers. On the other hand, thin blades can reduce the robustness of the propeller’s structure and, hence, make
the propeller more vulnerable to external stress. This is the reason why geometrical constraints (on the chord length and
on the thickness, for example) are required by industries to ensure the robustness of the propeller’s mechanical structure.

For what concerns the accuracy in the prediction of the efficiency, Table 3, together with Tables 1 and 2, show that the
standard technique is more accurate, with an error behind the 0.1% on the efficiency value. However, the fast algorithm
allows for reaching parametric points with comparable full-order efficiencies in a significantly reduced amount of time.
Indeed, as already pointed out in Sections 4.3 and 4.4, the evaluation of the efficiency for a single individual lasts about
6 min exploiting the standard ROM, while it lasts less than 15 s exploiting the fast approach.

Another consideration that can be withdrawn is that the two techniques do not converge to the same optimal paramet-
ric points. The reason for this fact is that the objective function is computed following a different approximated procedure.
The same holds true for the penalty terms related to forces’ constraints in the constrained optimization. The optimal
blades are graphically represented in Figure 16 and compared in shape with the original starting blade of the pipeline
(colored in gray).

5.2 A comparison with gradient-based algorithms

In this article, the authors chose to adopt a genetic algorithm for the optimization process, since it allows the eval-
uation of a large number of individuals, increasing the probability that the global optimum is reached. On the other
hand, gradient-based algorithms suffer from high sensitivity to the initial guess of the optimization and this can lead
the algorithm to freeze into the closest local optimum. Moreover, the genetic process is characterized by a large number
hyper-parameters, specified in Section 5.1, and changing those parameters allowed us to do a large number of optimization
experiments and to choose the values resulting in the highest objective function.

Here we show different experiments done using a gradient-based algorithm varying the initial guess of the optimiza-
tion process. This part focuses on the results obtained using two different techniques: the conjugate gradient (CG) method,
first described in Reference 40, and the L-BFGS-B method, namely the Limited-Memory version of the bound-constrained
BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm, treated in References 41–43.

In this subsection, we focus on the constrained fast optimization and made a comparison between the results
obtained with the above-cited gradient-based methods and the genetic algorithm. The results are reported in Table 4 for

F I G U R E 16 Graphical representation of the final optimal shapes obtained from the standard (A) and the fast (B) optimization
processes. The figure displays the starting blade in gray, the optimal blade from the unconstrained optimization process in light blue, and the
optimal blade from the constrained optimization in orange.
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IVAGNES et al. 19 of 22

T A B L E 4 Results of gradient optimization for different initial guesses for the CG and L-BFGS-B methods.

Test Method Initial guess Func. evals Grad. evals 𝚫ROM Final point

1a CG
[
1 1 1 1

]
160 30 +0%

[
1 1 1 1

]

1b L-BFGS-B 190 38

2a CG
[
0.9 1.1 0.9 1.1

]
255 49 −0.4%

[
0.9 1.1 0.9 1.1

]

2b L-BFGS-B 305 61

3a CG
[
0.99 0.90 0.77 1.02

]
247 48 +1.1%

[
0.99 0.90 0.77 1.02

]

3b L-BFGS-B 120 24

4a CG
[
0.9 0.8 0.8 0.9

]
151 28 −32.6%

[
0.9 0.8 0.76 0.9

]

4b L-BFGS-B 215 43 −0.1%
[
1 1 0.75 1.15

]

Note: The results are reported in terms of number of function and gradient evaluations, initial and final points of the optimization, and fitness improvement
with respect to the starting propeller.

different starting points and for the CG and L-BFGS-B approaches. We specify that the fitness incrementsΔROM are always
measured with respect to the initial propeller, corresponding to parameters

[
1 1 1 1

]
, and do not depend on the starting

guess of each optimization process.
The gradient-based approaches are stuck in the initial guess in most of the cases here analyzed. In particular, in Tests

3a and 3b, where the starting point is the optimum obtained from the GA, both the gradient-based approaches do not
improve the results obtained with the genetic. Only for Test 4b the gradient method converges to a point that does not
coincide with the initial guess, but it does not improve the genetic results. Moreover, it reaches an efficiency value lower
than the efficiency of the starting propeller of our pipeline. We specify also that the values of the fitness reported in Table 4
correspond to the penalized efficiency of the propeller, that is, the one expressed in (9).

Remark: It is important to highlight that the genetic algorithm is characterized by a larger number of function
evaluations with respect to gradient-based algorithms, resulting in a bigger computational time. The tuning of the hyper-
parameters, specified in Section 5.1, leads to a number of function evaluations equal to 180 and 2750, for the optimizations
employing the standard and fast ROM, respectively. Considering the fact that a function evaluation takes the same amount
of time for gradient-based and genetic algorithms, the genetic computational time is one order of magnitude bigger than
the gradient-based optimization. In fact, Table 4 shows that, in the constrained and fast ROM optimization, the maximum
number of function evaluations is 305. However, the gradient-based method produces results (in Table 4) that are often
stuck in local minima and never approach the results of the genetic algorithm (reported in Table 3). Therefore, we can
finally say that the genetic algorithm provides a robust and efficient method, that has been validated in many previous
industrial shape optimization projects, such as References 16,17,44.

6 CONCLUSIONS

The manuscript has illustrated a shape optimization pipeline exploiting data-driven ROM for improving the efficiency.
The complexity of the here-discussed application, both in the geometry of the propeller and in the formulation of the
original model, highlights the modularity and generality of the ROM based on data.

The parameterization of the blade, discussed in Section 2, has been propagated to the mesh nodes, obtaining a series
of discretized spaces that share the same topology, allowing us to apply the POD technique. As presented in Section 2.3,
the deformation applied to the mesh nodes maintains an overall quality similar to the original mesh and avoids recon-
structing a new mesh for any new deformation. It must be said that due to the RBF technique applied in this phase, the
computational cost of the mesh deformation is not negligible, but lower than the one required for constructing the mesh
from scratch. This possible computational bottleneck will be however better addressed in future works in order to mitigate
its impact over the entire pipeline.

A problem related to the computational burden of the mesh generation also arises in the online stage, when using
a standard ROM approach, as discussed in Section 4.1. One possible solution—that resolves the problem only at the
online stage—is explored here with the Fast ROM, introduced in Section 4.2. The data-driven model is indeed built over
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the quadrature nodes of the blade faces, avoiding the deformation of the mesh since the objective function to minimize
depends only on integral quantities over the blade surface.

As the reader can see in Section 4.3, the ROMs demonstrate in this work great precision, even thanks to the large
offline simulation campaign performed to collect the initial high-fidelity snapshots. The computational cost required by
the creation of this database is of course not negligible but has allowed a big reduction during the optimizations, allowing
to test several methods and for the hyper-parameters tuning thanks to the huge gain in simulation time (24 h = 8.64 × 104 s
for the FOM against 15 s for the Fast-ROM, more than 5000 times faster). Future works will perform anyway the sensitivity
analysis at varying the dimension of the solutions database, trying to provide guidelines for increasing accuracy in fixed
computational budget contexts.

The efficiency of the reduced models allowed for testing different optimization procedures in Sections 5, comparing
in this case the employment of methods based on the gradient of the objective functions in Section 5.2 and methods based
on genetic strategies in Section 5.1. Even if the gradient-based approach is the most rigorous one, its employment over a
nonconvex manifold (here computed by the RBF technique) produces poor results in terms of performance and shows
its sensitivity to the selected starting point. The genetic optimization, requiring a larger number of evaluations, is able
instead to produce better shapes in all the tests we performed.
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